
The Effect of Structure, Actuator, and Sensor on
the Zeroes of Controlled Structures

by

Farla Mindy Fleming
S.B. Massachusetts Institute of Technology (1988)

SUBMITTED TO THE DEPARTMENT OF

AERONAUTICS AND ASTRONAUTICS

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Science
in

Aeronautics and Astronautics
at the

Massachusetts Institute of Technology
February 1991

@ Massachusetts Institute of Technology, 1990.
All rights reserved.

Signature of Author I -

Department of Aeronautics and A4tronautics
December 21, 1990

Certified by

Certified by

Accepted by

Professor Edward F. Crawley
Thesis Supervisor, Department of Aerona tis and Astronautics

j • r r

Professor Michael Athans
Thesis Co-Supervisor, Department of Electrical Engineering and Computer Science

!

Aero
Professor Harold Y. Wachman

Chairman, Department Graduate Committee

MASACHUSErTS "STII UTE
OF TECHNOY OGY

FEB 19 1991
LIBRARIES



The Effect of Structure, Actuator, and Sensor on the Zeroes of

Controlled Structures

by

Farla Mindy Fleming

Submitted to the Department of Aeronautics and Astronautics on

December 21, 1990 in partial fulfillment of the requirements for the Degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT

Effects on the zero frequencies of single input single output systems of design and

modelling decisions are explored. The pole-zero patterns of transfer functions from

input to output are studied as a function of sensor and actuator choice, namely type

and impedance, and location. A variety of zero definitions are used for the studies.

Where possible infinite order models are adopted to explore the design decisions

so that the effects of finite order modelling are removed. The design studies are

parametric in nature, so that the effects of impedance and location may be better

understood. Examples focus on point or localized actuators and sensors and simple

uniform structures. The sensitivity of the zero frequencies to changes in the sensor

and actuator location for both collocated and non-collocated cases are presented.

Non-minimum phase behavior is visible in only certain non-collocated situations.

In addition to the design decisions, the zeroes are shown to be a function of the

modelling technique used to model the structural response for collocated and dual

systems. Methods for improving the zero predictions in the control bandwidth are

suggested.
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Chapter 1

Introduction

Although open loop zeroes are a key indicator of the eventual performance achievable

in control system design, they have not received the attention given to other aspects

of the controlled structures problem. Among the influential features, the transient

response of systems, namely overshoot and response time, are affected greatly by the

zeroes. Zeroes are critical in the disturbance rejection and isolation problems where

the sensitivity transfer function becomes unity at the frequencies of the undamped

zeroes. Systems with non-minimum phase zeroes have significant performance lim-

itations. These non-minimum phase zeroes set the bandwidth limitations on both

disturbance rejection and command following [1].

Zeroes effectively encapsulate in a different form information regarding the input

to output characteristics of a system. For controlled structures in particular, the

zeroes are closely related to the modal residues, an inner product of modal control-

lability and observability, as defined in Chapter 2. The focus of this effort is on

the behavior of the zeroes, rather than the residues, for numerous practical reasons.

Firstly, the zeroes may be found directly from experimental data and identification

methods. The zeroes also allow for a direct assessment in the frequency domain of

the impact on performance of various design and modelling issues. Finally, the zeroes

are a concept that is easily abstracted from the single input single output to the multi

input multi output case.

The zeroes need not be considered fixed parameters in the design of controlled



structures. Design of the actuator sensor system allows wide lattitude in placement

of zero locations and the resulting closed loop performance. For the case of single

input/ single output (SISO) feedback control of structures, collocated and dual actu-

ator sensor pairs yield alternating pole zero patterns [2,3] which have good stability

robustness properties. The pole zero spacing of these alternating pole-zero patterns

can actually be controlled by choices of sensors and actuators and their location.

Constant gain feedback effectiveness can thereby be improved by understanding the

contributing factors to zero locations. It has been shown through experiment [4] and

analysis [5] that these alternating pole-zero patterns are more robust to parameter

variations than non-collocated systems where the alternating pole-zero patterns no

longer exist. By understanding the nature of the greater sensitivity of non-collocated

systems designers may be encouraged to leave the safe haven of positive real sys-

tems [6].

In addition to design decisions regarding the actuators and sensors, a control

design relies heavily on the modelling effort to adequately capture the features of

the plant dynamics. Efforts aimed at improving the model fidelity in the bandwidth

and crossover region reduce the uncertainty environment in which a controller must

operate. Multiplicative errors in the vicinity of zeroes may be very large and 180

degrees phase uncertainty may exist for lightly damped structures [7,8]. Most control

techniques involving dynamic compensation rely on accurate models of the plant poles

and zeroes in the control bandwidth [9]. These methods consist of inverting the plant

dynamics and substituting desired dynamics in their stead. Experimental efforts of

control design and implementation show the modelling efforts ability to predict zeroes

to be a difficult problem in the control of lightly damped structures [10, 11]. Finite

order modelling techniques must therefore be evaluated on their ability to predict

poles and zeroes adequately. Control system design often requires a reduced order

model consisting of only a few modes. Such model reduction techniques must also be

examined for the consequences on the zeroes.



Knowledge of the zeroes is important as well in identification efforts. Modes may

be made unobservable or uncontrollable corresponding to pole-zero cancellation by

unwise placement of actuators and sensors. Modes which would contribute strongly

to a particular performance metric should be made observable, for good characteri-

zation, and observable and controllable for closed loop performance. Knowledge of

the zeroes can allow disturbance sources to be located so as to minimize performance

degradation.

The research on zeroes in the controlled structures community has provided help-

ful insight for the controlled structure designer. deLuis [12] addressed sensor and

actuator choice in a study of the optimal measurement to make with a highly dis-

tributed sensing and actuation system to produce the most banded static controller.

Fanson [13] addressed the issue of actuator impedance relative to the structure to ex-

plain the feedthrough nature of the collocated open loop transfer function from active

piezoelectric truss element to collocated accelerometer measurement. Williams [14]

addressed transmission zero bounds for the limited case of collocated and dual sys-

tems. The zero frequencies in the s-plane are bounded by the properties of the poles

of the system. His method relies on a discretized finite model of the structure. A

transcendental transfer function approach was used by Wie [15]. He solved for the

zero frequencies exactly, but his solution procedure has some limitations because

actuation must be introduced at the boundaries of the structure. Spector and Flash-

ner [16] carried these efforts further with a locus of the zero frequencies from the

same transcendental transfer function models where actuation must be introduced

at the boundaries. Their solution method does not allow determination of the zero

directions, a modal controllablity and observability measure. Trends were shown of

non-minimum phase behavior for a pinned-free beam as the sensor was moved suc-

cessively further from the actuated hub. A few examples show the transfer function

magnitude and phase to be sensitive to sensor location as the non-collocation destroys

the alternating pole zero pattern.



There has been limited research into the effects on the zeroes of various modelling

methods. Wie [15] and Spector and Flashner [16] address the options of structural

models based on both products and summations to determine which yield more ac-

curate dynamic response. Most modelling efforts for complicated structures however

consist of finite element or Rayleigh Ritz assumed modes models. Wie [15] showed

that consistent mass finite element models and lumped mass models yielded very

disparate results for predicting the zero frequencies. Williams proved that for Ritz

models with actuators and sensors which are physically collocated and acting along

the same axis, the zeroes converge with Rayleigh convergence characteristics as the

model order is increased. For non-collocated systems, the zeroes predicted by finite

order models become more questionable as pointed out in an example by Wie [15].

Models of systems which physically are minimum phase may contain non-minimum

phase zeroes due to truncation.

The first objective of this work is to explore the effects of the zero frequencies of

the design decisions of sensor and actuator type, impedance relative to the structure,

and location. Studies of the effects of these decisions are performed parametrically

and finite order modelling issues are decoupled from such studies when possible.

In addition as a second objective, the effect on the zero frequencies of finite order

modelling methods are examined, and methods for improving the structural models

to improve the zero predictions are explored.

The issues explored in this work are done so for the single input single output case.

Clearly, if the control system were to use successive loop closure from individual

inputs to outputs these analyses would still be valid. For the general multi input

multi output case however these results need to be extended, just as Williams [14]

extended the results of Gevarter [2] regarding alternating poles and zeroes for systems

with collocated sensors and actuators acting along the same axis.

In this study, a variety of definitions of a zero are used, depending on the nature

of the model and the information to be determined. Hence, Chapter 2 introduces an



array of accepted or proposed definitions of zeroes as well as secondary information

to be found from these definitions. These definitions are based on a transfer function

description, a residue expansion description, a transmission blocking description, and

a root locus description. The additional information to be found from these definitions

consists of controllability and observability tests, one of which is the zero direction.

The equivalence of the various definitions is established so that results based on one

definition are uniformly valid for zeroes in general. A sensitivity analysis based on the

transmission zero definition is performed to examine the sensitivity of the zeroes to

actuator and sensor location. The sensitivity of the controllability and observability

tests may also be explored.

In chapter 3, three basic design issues are addressed which directly influence the

zero frequencies. The design issues are actuator and sensor type, impedance relative

to the structure, and location. Each of these issues is individually discussed with

reference to the pole-zero pattern which they produce. The design decisions of sensor

and actuator (S/A) choice and placement are coupled as well to the nature of the

structure on which the sensors and actuators act. While collocated and dual sensors

and actuators produce alternating pole-zero patterns irrespective of the structure,

a class of sensor and actuator pairs, referred to as pseudo-dual, which guarantee

alternating poles and zeroes on particular structures are identified. The issue of

impedance of a sensor and actuator pair is studied by means of a static model of an

actuator whose stiffness may be parameterically varied so that the actuator trasitions

uniformly from a force to a displacment actuator. The sensor is similarly varied

as a mixture of a force and displacment measurement. The resulting zero loci are

presented. A study of the location of the sensor and actuator is performed via a

solution scheme based on the zeroes as a limiting high gain solution of system poles.

Both zero frequencies and directions for infinite order systems may be derived using

this method. The zero loci as a function of the collocated and non-collocated sensor

and actuator pair are presented for a variety of structures. The sensitivity of the

|



zeroes to parameter variations for both collocated and non-collocated cases are studied

parametrically. The sensitivity of the zeroes for both collocated and non-collocated

systems may be larger at different locations on the structure.

In chapter 4, the effects on the zeroes of structural modelling are examined. The

convergence behavior of the zeroes is explored given a particular modelling technique

as a function of the number of degress of freedom in the model. The prediction of the

zeroes in the control bandwidth are affected by two finite order modelling techniques,

truncation and discretization. The ability to improve zero predictions by including

information other than the open loop dynamic modes is explored. It is desired to

determine what information to include in a low order model to best predict the poles

and zeroes with fidelity in the control bandwidth.



Chapter 2

Zero Definitions

In this chapter several definitions of zeroes for both the single input single output

(SISO) and multi input multi output (MIMO) cases are presented. It is desired to

establish that all the zero definitions for the SISO case yield numerically equivalent

zeroes and likewise that all of the MIMO zero definitions yield numerically equivalent

zeroes. This equivalence of zeroes will be necessary to abstract the results based on

a particular zero definition to results for zeroes in general. These zero definitions

are compared not only for the equivalence of zeroes predicted but on the ability

of the definitions to provide other useful information such as observability and/ or

controllability tests.

The most basic concept highlighted by all of the definitions presented is the fact

that the zeroes are clearly a function not only of the homogeneous system, but of

the nature of actuation and sensing as well. While the homogeneous behavior of a

system is described only by the A matrix, the zeroes are a function of the A, B,

C, and D matrices. The B matrix captures information about the type of actuators

and their location, a measure of how effectively the control inputs can influence the

states of the structure. Similarly, the C matrix embodies the type of sensors and their

ability to measure the activity of the states. The D matrix captures the direct static

feedthrough from the actuators to the sensors. It is obvious that modelling and design

efforts which attempt to capture the zero information adequately must concentrate

equally on the structural model and the actuation and measurement mechanisms.



Building on this fundamental concept is the notion of the zeroes as a controllabil-

ity and observability measure. Often coupled to the solution of the zeroes is a test for

modal controllability and observability. A weakly controllable or observable mode is

characterized by near pole-zero cancellation. The limiting case of this is a pole-zero

cancellation which is a necessary condition for a loss of controllability or observability.

Often these poorly observable or controllable modes are truncated from a model as in

model reduction techniques such as Modal Cost Analysis [17]. Instead of this trun-

cation process, the placement of the zeroes can be incorporated in the design process

to ensure good modal controllability and observability if there is an understanding in

design of how to control zero placement. These zero definitions therefore must yield

the necessary design information.

With these fundamental concepts in mind, the zero definitions are presented first

for the SISO case and then extended to the MIMO case. Before any definitions are

given the criteria for a comparison of the zero defintions are explained. The high-

lights and implications of the individual definitions are discussed as each definition

is presented. The equivalence of the various definitions in predicting the zeroes is

determined. Finally, a sensitivity analysis of the zeroes which highlights the effects

of various parameters on the zeroes is performed based on one of the zero definitions.

2.1 Zero Definitions for the SISO Case

There are numerous possibilities for mathematically defining a zero, all of which

provide a different prespective on the physical implication of zeroes. The goal here is

to present four commonly cited definitions of zeroes and show that they all provide

numerically equivalent information. Some definitions capture more of the physical

information such as observability and controllability tests. Others, due to the nature

of the mathematics, do not yield explicit values for the zeroes.

The four definitions chosen for discussion here are based on common system re-

sponse descriptions or on operational definitions. Two of the zero definitions are



based on a description of a system response in the frequency domain, a product ex-

pansion and a summation expansion. There are also two operational definitions of

zeroes presented , based on a transmission blocking property of zeroes and on the

root locus definition of zeroes as a limiting high gain feedback location of closed loop

poles. Of these four definitions, three assume a response with no initial conditions.

The fourth, the transmission blocking definition, incorporates the initial condition re-

sponse as well. Yet all of the four definitions for the SISO case implicitly or explicitly

yield numerically equivalent values for the zeroes. All of these four definitions are

discussed first for the SISO case in this section and then extended to the MIMO case

in the next section.

While the zeroes calculated by the methods are numerically equivalent, each of

the zero definitions provides a different framework for understanding the effect of the

zeroes and for calculating them. These numerically equivalent zeroes may be catego-

rized as transmission zeros and pole cancellation zeroes. Transmission zeroes derive

their name from the the transmission blocking property of zeroes. The transmission

zeroes can be thought of as an interference of all the modal contributions. A limiting

case of these interference zeroes is a pole cancellation zero, but the pole cancellation

zeroes are always maintained as a distinct group separate from the transmission ze-

roes [18]. Pole cancellation zeroes have also been referred to as input or output or

input-output decoupling zeroes [18]. While all of the definitions capture the effect of

the transmission zeroes and the limiting case pole cancellation zeroes, the definitions

do not always provide a means for calculating them explicitly. In particular, pole can-

cellation zeroes must be found before being cancelled by a pole which would result in

the pole and zero both being unobservable. Pole-zero cancellation is often desirable,

and hence the definitions are compared for their ability to numerically predict such

occurences.

In addition to the ability of the definitions to predict the pole cancellation zeroes,

the definitions can be compared and contrasted for their ability to provide further



information about the controlled and observed system. A zero that cancels a pole im-

plies that there is a loss of observability and/ or controllability of the mode associated

with the pole. Certain zero definitions produce explicitly the discriminating evidence

of which of the modal controllability or observability has been lost. For the other defi-

nitions this information can be obtained but it requires additional calculations to find

the modal observability and controllability. One method for determining the charac-

ter of the pole cancellation zero is by looking at its corresponding direction. Just as

poles have a direction known as an eigenvector, the zeroes have a corresponding zero

direction. This zero direction provides information about whether the interference is

at the limiting case of a pole cancellation zero. The zero direction can also be used to

discern when a pole-zero cancellation is due to a loss of observability versus a loss of

controllability or in fact due to both. Only certain definitions can provide this zero

direction information which is clearly valuable.

To provide a consistent framework for presenting the various definitons, a state

space description of the system is adopted,

i= Ax + bu (2.1)

y = CX

where x E R1, u E R', y E R'. For this SISO system, the plant is square. The

performance variable (or output) is denoted by y. The system matrix A has right

and left eigenvectors given by V and W respectively, where each column of V, vi, and

each row of W, wT, correspond to the eigenvectors of a given mode. The input-output

relation from u(s) to y(s) is given by g(s).

g(s) = Y(S) (2.2)

The zero definitions are presented and discussed consecutively, beginning first with

the transfer function and residue expansion definitions. The transmission blocking

and root locus definitions then follow.



The response of a system with no initial conditions can be represented as a ratio

of products of factors of a numerator and denominator polynomial. This is referred

to as a transfer function description.

Transfer Function Definition 1 The transfer function from input u to performance

variable (or output) y is a scalar and is given by

g(s) = c(sI - A)-lb (2.3)

cQ(s)b

det(sI - A)

=OIIn (S-p ,)

where Q(s) is the matrix of cofactors of (sI - A)and z, pi are the ith zero and pole

respectively. The numerator and denominator, O(s) and O(s), are polynomials in s.

The zeroes are the roots of O(s) while the poles are the roots of O(s).

The calculation of the transmission zeroes, or the interference zeroes, and the lim-

iting case of the pole cancellation zeroes, are possible from this definition because the

numerator and denominator are solved separately. This definition does not explicitly

provide for a discriminating test to determine whether a pole-zero cancellation cor-

responds to a loss of observability or controllability or both. This information can

only be found by a separate calculation of V and W and then a test of the modal

controllability C = wTb and modal observability O0 = cvi. Zero directions, another

observability and controllability test, can not be found from this system description.

The transfer function definition of zeros lends itself to one possible physical inter-

pretation of zeroes. The transfer function, as expressed in a block diagram form, is

a serial processing of an input u(s) through successive filters, namely the poles and

zeroes. There is however no specified order or grouping of these filters specified by

the transfer function description.



As opposed to a product expansion, the residue expansion zero definition uses a

summation expansion description of the response with no initial conditions.

Residue Expansion Definition 1 The performance variable (or output) is described

by a summation of the response of each mode weighted by its modal residue, where the

modal residue is the product of the modal observability, cvi, and modal controllability,

n 

b.

g(S) (2.4)
=1(s - pi) i=1 (a - p)(24

The pole cancellation zeroes which signify a loss of observability or controllability or

both occur at those pi at which the modal residue ri = 0. The other zeroes, the transfer

function or interference zeroes are those frequencies at which the contributions of each

mode sum to zero.

The zeroes predicted from this system description are numerically equivalent to

those zeroes defined via a transfer function approach. The residue expansion is simply

a partial fraction expansion of the transfer function definition.

Pole cancellation zeroes can be found in the expanded form, where each individual

residue is calculated so that a zero residue is accounted for. If instead g(s) is evaluated

on a frequency by frequency basis, the pole cancellation zero is invisible, as is the

pole at the same frequency. Unless the poles of the system are known a priori,

the pole cancellation zeroes are not detected. This is similar to the case of the

transfer function definition, where teh numerator and denominator polynomial must

be evaluated separately. Once the response is evaluated on a frequency by frequency

basis, the pole cancellation is invisible. Modal observability and controllability are

available directly and hence the zero definition does allow for the classification of a

pole cancellation zero as one due to a loss of observability and/ or controllability.

Unfortunately, the interference or transmission zeroes are not easily calculated. They

cannot be observed explicitly as in the transfer function system description, but must

be solved for either by evaluating the summation on a frequency by frequency basis or

by combining the expansion under a commion denominator if possible. Zero directions,



as one particular observability or controllability measure cannot be found from this

definition.

This form has the ability to directly represent the SISO system response as a modal

decomposition and as such provides a modal description of the manifestation of zeroes.

A mode that is almost uncontrollable or unobservable can easily be noticed by its

small modal residue. The residue expansion description infers that the transmission

zeroes, i.e. the zeroes that do not cancel poles, arise due to the effective summing to

zero of all the modal responses. Thus the zeroes capture both the observability and

controllability of an individual mode as reflected by a pole-zero cancellation, and they

are simultaneously an aggregate quantity, a function of all the modal controllabilities

and observabilities. It is using this definition that W. B. Gevarter proved that flexible

systems with collocated and dual sensors and actuators have alternating pole-zero

patterns which result from all positive modal residues [2].

It is easy to see from a modal summation how the damping of the zeroes may or

may not be affected by the damping of the poles. The frequency domain represen-

tation of a second order response is a function of the damping only within a narrow

region about w,. Outside of this region, the response is largely independent of damp-

ing. When the individual modal responses are summed together, the damping of the

zero will depend on the damping of the pole only if the pole-pole spacing is small.

These results are consistent with [14] for the case of general modal damping. The

damping of the zeroes is bounded by the damping of the poles, and is a function of

the pole-pole spacing. The zeroes are the high gain limit of the poles in a root locus

sense. In order to tailor the high gain characteristics of the system response with

increased damping, only those modes that will influence the damping of the zeroes

need be treated.

The previous two definitions of zeroes focused on a system response description.

The next two definitions are characterized by the operational description of zeroes.



Using the interpretation of a zero as a frequency at which a signal is absorbed, a zero

can be defined which expresses this transmission blocking phenomenon directly.

Transmission Blocking Definition 1 A plant has a zero at a frequency zk if there

exists an ýk belonging to R", and a uk a scalar, not both zero, so that for the system

= Ax + bukez t  zX(0) = (k (2.5)

y = cX

y(t), a scalar, is zero for all t > 0. This corresponds to the solution of a generalized

eigenvalue problem which is square:

zkI- A -b [& =0 or [kT 7k =0 (2.6)
-c 0 Uk -c 0

where the right and left eigenvectors of this generalized eigenvalue problem are the

right and left zero directions respectively. The left zero direction corresponds to the

initial conditions and input of the adjoint system, (AT, cT, bT).

The zeroes of this definition are numerically equivalent to the zeroes defined via

the two previous definitions [19]. This definition allows the calculation of the trans-

mission zeroes and the limiting case of the pole cancellation zeroes explicitly, as well

as a direction for each zero. Information regarding the loss of observability or con-

trollability in the instance of a pole-zero cancellation is available and can be found

from the zero direction. If there is a loss of observability of mode i, then cvi = 0. The

right zero direction is then given by [v,0]T. The null portion of the zero direction is

included for the instance of a non-zero direct feedthrough term from the input to the

output. Similarly a loss of controllability is signified by wTb = 0. This ensures a left

zero direction [wiTO]. From the definitions presented thus far, only this transmission

zero definition allows for the solution of a zero direction.

This zero definition is a direct statement of the fact that the zero is an input

frequency at which the output is constrained to be zero for all time. This definition,

unlike any of the others, includes the initial conditions in addition to the zero state



response. This transmission zero definition has the advantage of yielding both the

transmission zeroes and the pole cancellation zeroes and the zero direction explicitly.

As an eigenvalue problem, this definition is in a desirable form for performing other

zero analysis work. In Section 2.3 a sensitivity analysis of the zeroes to parameter

variations is performed using this definition.

One final definition of a zero uses the effect of feedback on a system. The zero

can be expressed as the finite termination points of a root locus.

Root Locus Definition 1 A SISO system as described above has the scalar transfer

function g(s) = c(sI - A)- 1 b. The finite zeroes of this system are the finite zeroes of

the return difference 1 + g(s) in the limit as p --+ 0.

In the case of an optimally posed full state feedback or output feedback problem,

the finite zeroes are the finite asymptotic locations of the roots of the root square locus.

This locus is defined by the roots of 1 + ig(-s)g(s) = 0 and hence is symmetric about

the imaginary axis, so the zeroes occur in mirror image pairs. The locus of roots can

be defined equivalently by the eigenvalues of the Hamiltonian system as p -+ 0.

A l-bTbZ = "(2.7)
-cTc -A T

The root square loci will terminate in the limit as p -- 0 at the location of the zeroes.

If g(s) has a non-minimum phase zero, then g(-s) has a corresponding LHP zero.

The zeroes found from this root locus perspective, specifically the zeroes of g(s),

not g(-s), are the same zeroes as may be found by the other definitions [19]. Pole-

zero cancellations can be found via this approach. To determine whether the pole-zero

cancellation implies a loss of observability or controllability or both, a separate cal-

culation of wTb and cv1 must be performed. As in the transfer function definition the

modal controllability and observability must be found separately. The zero direction,

thus far only calculable from the transmission zero definition, has a physical interpre-



tation in this root locus definition, explained next. The zero direction however, must

be calculated separately.

The physical interpretation of the root locus definition of a zero is as the closed

loop pole of an associated system with infinite gain. If a displacement on a structure

were being regulated, the zero of the system would correspond to the pole of the same

system with that specific displacement measurement location fixed. This is shown to

be the case in Chapter 3. The zero direction corresponds to the closed loop mode

shape as well as the reaction forces necessary at the fixed measurement locations to

keep the closed loop mode stationary at these measurement points. The closed loop

mode shape is effectively contructed of open loop modes with an appropriate set of

initial conditions.

Four alternatives to describing and calculating zeroes for SISO systems have been

presented. While each of the above definitions implies a different solution approach,

the two types of zeroes, the interference zeroes, or transmission zeroes, and the pole

cancellation zeroes that are calculated from the individual methods are all numerically

equivalent. A comparison of the zero definitions was made based on their ability to

capture the pole cancellation zeroes, discriminate between loss of observability or con-

trollability, and to produce a zero direction as one particular measure of observability

and controllability. All of the definitions predict pole cancellation zeroes, although

as in the residue expansion definition, it is possible to miss the pole-zero cancellation

if the expansion is evaluated on a frequency by frequency basis. Only the residue

expansion and the transmission blocking definitions provide direct modal controlla-

bility and observability measures without further calculation. While the root locus

definition yields a different physical interpretation of the zero direction, it must be

found separately, and hence only the transmission blocking definition provides the

zero direction as a controllability and observability measure. It is at least clear from

the various methods, in particular the residue expansion and transmission blocking

definitions that the zeroes are closely linked to the controllability and observability



measures.

Each of the zero definitions has its merits and all of the methods can easily be

extended to the case of infinite order systems. In the next section, a presentation is

made extending these SISO definitions to the MIMO case.

2.2 Extension of the Zero Definitions to the MIMO Case

The definitions of the zeroes in SISO systems can easily be extended to the MIMO

case. Just as for the SISO scenario, it is desired to compare the information about

zero predictions and related topics such as controllability and observability and zero

directions for the various MIMO definitions. This discussion of the MIMO case is

also motivated by a need to highlight the effects of extending the zero definitions to

the MIMO case.

One important new aspect of the MIMO zero definitions is the possibility of having

an unequal number of inputs and outputs. The result of such a non-square system

is the appearance of a new type of zero, different from the zeroes of a pole-zero

cancellation and different as well from the interference or transmission zeroes. This

new type of zero has been called a compromise zero [20]. These MIMO compromise

zeroes are distinctly unrelated to the other types of MIMO zeroes which as in the

SISO case are generally called transmission zeroes and pole cancellation zeroes. The

non-square case will be treated whenever possible in the various definitions.

In the following definitions a state representation of the following form is assumed:

x = Ax + Bu (28)(2..8)

y = CX

where x e Rn, u E Rni , and y E Rn° . The number of inputs and outputs respectively

are given by ni and no. The transfer function matrix (TFM)

G(s) = C(sI - A)-'B (2.9)



If the system is not square, then all three types of zeroes, the transmission zeroes,

the pole cancellation zeroes, and the compromise zeroes, are the LHP zeroes of

(s)q(-s)det[G(-s)T G(s)] = 0. (2.12)

Just as in the SISO case, all zero types, now three, may be found via this transfer

function definition. Similar to the SISO case, information regarding observability

and controllability is not available from this definition. The zero direction is also not

available from this system description, just as in the SISO case.

This definition implies that there exists certain input signals at the inputs, which

enter the system at each input in an appropriate ratio to the other inputs, and which

produce no response at any of the outputs. The determinant is taken to determine

the frequencies at which this occurs.

It is possible through special matrix multiplications to transform the TFM G(s)

into a diagonal form with rational polynomials on the diagonal. The poles and zeroes

of these individual transfer functions form the set of poles and zeroes of the system,

not of the individual TFM elements. This is known as the Smith McMillan form.

That there is this bridge between the TFM and the system zeroes is interesting, but

the Smith McMillan form is not used often because of computational difficulties [20].

The next system response description is the residue expansion which is extended

to the MIMO case. Generalizing the SISO residue expansion to the MIMO case entails

expressing the system TFM as a residue expansion.

Residue Expansion Definition 2

n R, -" CviwTBG(s) = E (2.13)
i=1 (s-Ai) i=1 (s--A)

where R, is the residue matrix of the ith pole. If the ith MIMO pole at s = Ai is

cancelled by a MIMO transmission zero then R0 = 0. When G(s) is square, the

transmission zeroes are the frequencies at which the modal responses at each output

sums to zero.



The author has not seen a this definition expressed for the non-square case, that

is how the transmission zeroes are distinguished from the compromise zeroes. For

the square case, the transmission zeroes and the pole cancellation zeroes from a

residue expansion are equivalent to those predicted from the previous transfer function

description. This definition captures the pole cancellation zeroes by means of a test

on R,. Just as in the SISO case, the pole cancellation zeroes are found explicitly

only when the residue expansion is is written out in expanded form so that the

residues may be tested. If G(s) is evaluated on a frequency by frequency basis,

the pole cancellation zeroes can not be seen unless it is known that a single mode

response is not visible in any of the ouputs. The zeroes of individual TFM elements

are identical to the zeroes of a SISO plant with the appropriate input and output

corresponding to that element. As in the SISO scenario, this definition provides the

modal observabilities and controllabilities directly, however a zero direction is not

available from this definition.

For square systems the MIMO zeroes' transmission blocking property extends

exactly. For an appropriate initial condition and input which is now a vector, the

zero is at a frequency such that all outputs are zero for all time.

Transmission Blocking Definition 2 For square systems, the generalized eigen-

value problem for describing the transmission blocking property in the MIMO sense

is conveyed by

= 0 (2.14)-C 0 Uk
An appropriate left eigenvector can similarly be found.

For non-square systems, to find both the transmission zeroes and the compromise

zeroes, the system G(-s)TG(s) is constructed as in the transfer function definition



[20]. The system G(-s)TG(s) can be recast as

A AA A= B B C = 0 -BT] (2.15)CTC -AT 0
and the generalized eigenvalue problem with this new system to find the transmission

zeroes and the compromise zeroes is constructed and only the appropriate LHP zeroes

are the transmission, pole cancellation and compromise zeroes of the system.

zkI - A -fB ][
= 0 (2.16)-C 0 uk

As in the SISO case, the transmission blocking perspective produces numerically

equivalent zeroes to the root locus definition [19,20]. By the nature of the root locus

definition, the zeroes found from the transfer function description are equivalent to

those of the root locus description [19]. The pole cancellation zeroes can be found

via this definition. Controllability and observability tests can be found in the zero

directions for the square case. Unfortunately, for the non-square case there do not

exist any eigenvectors for the generalized eigenvalue problem.

This transmission blocking zero definition for the square case has a distinct phys-

ical interpretation. For an appropriate initial condition and input which is now a

vector, the zero is at a frequency such that all outputs are zero for all time.

The final MIMO zero definition is via a root locus perspective. For the MIMO

case, in an optimal control problem, the finite zeroes are the asymptotic locations of

the poles as the feedback gains are made arbitrarily large.

Root Locus Definition 2 The MIMO root square locus ends at the finite zeroes of

I + G( s)TG(s) as p -, 0.

These zeroes are numerically equivalent to those defined from the transfer funciton

definition and the transmission zero definition. The same form exists for the posing of

the zero definition. Pole cancellation zeroes can be found from this definition. Like the



SISO case, posing the root locus problem does not allow for solution of controllability

and observability tests. The zero directions still have physical significance as high gain

closed loop mode shapes along with appropriate reaction forces for the collocated case

or internal stress resultants for the non-collocated case. These zero directions must

be calculated separately.

As in the SISO case, this root locus definition of the zeroes is as a high gain

solution to an associated problem.

For the MIMO case, all of the four definitions yield numerically equivalent zeroes

for the square case. Excluding the residue expansion zero definition, they all yield

equivalent zeroes for the non-square case as well. Solution of the non-square case is

executed by a construction of the system G(-s)TG(s). All of the definitions allow

for the solution of the pole cancellation zeroes although for the residue expansion

definition these zeroes must be found by a test of the individual modal residues and

not by evaluating the summation expansion on a frequency by frequency basis. The

notion of controllability and observability of the zeroes is preserved in the MIMO

case although only for the pole cancellation zeroes and the transmission zeroes. It is

unclear what physical significance the compromise zeroes have. The zero directions

can only be found for the square case, and are only directly available by the trans-

mission blocking definition. The zero directions may be calculated separately for the

root locus definition. The MIMO zeroes do not correspond to zeroes of individual

single input single output relations but to the input output relations of the system

as a whole.

The zero definitions provide a variety of perspectives on the physical meaning of

zeroes as well as the difficulties that may arise in calculating or predicting them from

a model. A preliminary sensitivity analysis based on the transmission zero definition

is presented in the last section.



It is always prudent to do a first order perturbation on any design method to deter-

mine to what degree small variations in parameters influence results. A first order

perturbation analysis is done for the zeroes from the generalized eigenvalue problem

of the transmission zero definition since it conveniently expresses the solution of the

zero explicitly. This first order perturbation corresponds to the first derivative of the

zero location to small variations e in the physical parameters such as the location

of the sensor and actuator or the effective stiffness of the actuator relative to the

structure, or the structure proper.

To perform the sensitivity analysis, the system must be square, i.e., the number

of sensors and actuators must be equal, resulting in a generalized eigenvalue problem

of order N as in Equation 2.14 which is cast as Af = zBi where

A = B B = (2.17)
C D 00

and f is the right zero direction. This perturbation analysis allows for the possibility

that the eigenvalue problem is non-self-adjoint. This occurs whenever A or B is not

symmetric. Both collocated and non-collocated cases may be considered. The non-

self-adjoint nature of the problem implies that the right and left eigenvectors of this

eigenvalue problem satisfy the biorthogonality condition tjTBfk = 0 where 5k is the

right and 4T the left eigenvector.

Perturbations are described as a Taylor series expansion in a perturbation param-

eter -y,

A = A ( ) + yA(1) + 7 2A (2) +... (2.18)

where the superscript (0) implies the nominal case. B is not perturbed since it is set

by definition. The eigenvalues and eigenvectors of the generalized eigenvalue problem,

namely the zeroes and corresponding zero directions, may also be represented as a

2.3 Zero Sensitivity Analysis



Taylor series in 7.
(0) (1) + 2 (2)Zk= Zk +.Zk +.Zk

fk = 50) + YEN-1 alO(0) +1=0 (2.19)
1#k

The first order perturbation in the right zero direction is represented to lie only in
the subspace of the remaining zero directions. Substituting back into the original
eigenvalue statement, and collecting like terms in 'y yields the first order changes in
the kth zero:

(1) k (0) (1 k)zkk] (0)  k0) 
(2.20)

For the eigenvectors of this eigenvalue problem, the zero directions, the first order
perturbation is expressed by the terms that couple the other zero directions to those
of the kth zero direction, vk.

T ] (0) A(') k0)
S 0) - (0) [7VT (0) '6 (0)- ) (2.21)

From this perturbation analysis, the effect on the kth zero, location and direction, of
changes in structural parameters, (A), sensor or actuator type or placement, (C or
B), can be quickly determined to first order. The importance of the zero direction is
also clear.

As an example, consider the case where there is a pole-zero cancellation due to
an uncontrollable and unobservable mode. This would occur if a collocated and dual
sensor and actuator pair existed. In this instance, fk = [vk0] amd kT = [w0]. If
the B and C matrices were modified slightly to infer a small change in the collocated
and dual sensor and actuator pair location, then A(1) would have the form

A(1) [0 B (1)

A() = B (2.22)
CM) 0

where B() and C(1) contain both the structure and magnitude of the perturbation
in the control influence matrix B(0 ), and the measurement influence matrix, C (0 )



The left and right zero directions for the collocated and dual case are of the form

Vk = [VkO]T amd tkT = [w0O] when a simultaneous loss of observability and con-

trollablity result. Hence, no effect on the kth zero, zk1) = 0 is perceived. This can

be advantageous if it is specifically desired to try a pole-zero cancellation. This is

validated for a particular case in a sensitivity analysis performed in chapter 3.

If however, the sensor and actuator pair are not collocated, the first order per-

turbation of the zero is no longer zero. A pole-zero cancellation is attributed to

either a loss of observability or a loss of controllability but not both. Hence only the

right or the left zero direction has the special form with a null portion to the vector.

Consider the case of a loss of observability. The right zero direction would have the

form 5k = [vk0]T. If the sensor and actuator locations were then perturbed slightly

with the structure of Equation 2.22, the first order perturbation in the zero would no

longer be zero because the left zero direction would not have the same form as the

right zero direction, namely, a null portion corresponding to the input direction.

Finally, the coupling of the zero directions is very sensitive when the zeroes are

closely spaced. It would be difficult to capture the right zero direction information in

a model of such a system. It is important to be reminded that the test for a loss of

controllability or observability is sensitive in such a manner.

From this discussion of the various definitions of zeroes certain implications for

modelling and design have become apparent. The definitions presented all yield

numerically equivalent zeroes for the SISO and the MIMO cases. This allows for the

abstraction of zero results based on one definition to zeroes in general as well as the

results from the SISO case to be abstracted to the MIMO case. The zeroes inherently

contain controllability and observability information about the corresponding mode.

The type as well as the location of the sensors and actuators contribute to the location

of the zeroes in the s-plane. Closely spaced zeroes imply more difficulty in adequately

modelling the system and determining loss of observability and controllability, or

performing model reduction techniques based on these measures. In the rest of this



work it is hoped to explore these implications in more detail to better anticipate the

location of zeroes and to model them effectively.



Zero Frequencies and Their Dependence on Choice and

Placement of Sensor and Actuator

In the last chapter the zeroes were highlighted as a combined measure of modal

controllability and observability in both the SISO and MIMO case. In general, the

zeroes are a manifestation of the input to output characteristic of a system. In

examining the behavior of zeroes, the influence of the sensors and actuators must be

considered in pairs. The general characteristics of actuators and their sensors will

therefore be reviewed.

The degree of controllability of a system via an actuator is a function of its type,

impedance, and location. The actuator type can be described by the direction, the

spatial distribution, and the reaction characteristics of the actuator. The directional

characteristic of the actuator describes the axis along or about which the actuator

acts. The spatial distribution of the actuator describes the nature of the actuation as

either localized or distributed, and if distributed, how so. The reaction characteristics

classify an actuator as being either a relative actuator which reacts against another

part of the structure, or an inertial actuator which reacts against an external inertial

mass or platform. Actuator impedance refers to the relative stiffness of actuator to the

structure. At one extreme, an actuator can be considered a generalized force actuator

only when it is known that the actuator stiffness or impedance is infinitessimally small

relative to the structure. Conversely, at the other extreme, an actuator can act as

a generalized displacement actuator only when its stiffness is very large relative to

Chapter 3



the structure and hence has the authority to command displacement. The location

of an actuator refers to the point or area of the structure, in the case of localized and

distributed actuators respectively, on which the actuator acts.

Likewise, the degree of observability of a system via a sensor is a function of its

type, impedance, and location. Just as for the actuator, a sensor type is characterized

by its direction, its spatial distribution, and the nature of the sensor as a relative or

inertially based form of measurement. Sensor impedance in this instance refers to the

content of the measurement as some weighting of generalized force and displacement.

A high stiffness sensor in the load path of the structure can be used to measure the

force transmitted through that point. A low stiffness sensor out of the load path can

be used to measure the local motion of the structure. Finally, the location of a sensor

refers to the point or area of the structure over which a measurement is made.

The zeroes depend on the combination of type, impedance, and location of the

sensors and actuators. Actuator/sensor pairs of the same type are referred to as dual.

In other work, the term dual is sometimes used to describe sensors and actuators

which are both of the same type and at the same location [21]. The meaning of

dual here is of sensors and actuators only of the same type. An example of a dual

S/A pair is a transverse force actuator and a transverse displacement or rate sensor.

Actuators and sensors of the same relative impedance to the structure are referred

to as complementary. Complementary sensors and actuators have a complementary

mixture of generalized force and displacement for the actuation and measurement. A

pure generalized force actuator and a pure generalized displacement sensor or a pure

displacement actuator and force sensor are referred to as complementary extremes.

The positive complement sensor to a given actuator is that in which the measurement

is a complementary mixture of generalized force plus displacement measurement. A

negative complement sensor allows the measurement to be a complementary combi-

nation of positive displacement minus applied force. Actuators and sensors at the

same location are referred to as collocated. Collocated sensors and actuators act at



is square if the number of inputs and outputs are equal but may be non-square if

ni 5 no.

For a square system, the calculation of the transmission zeroes and the pole can-

cellation zeroes is an eigenvalue problem. There is some combination of inputs all

at the same frequency which results in a zero reponse at all of the outputs. Hence

the determinant of G(s) is often taken in the MIMO zero definitions. If however the

system is not square, the system is made square by constructing the system

G(-s)'G(s) (2.10)

This new system appears repeatedly in the definitions for the non-square case.

The elements of the transfer function matrix each contain a description of the

characteristics from the associated input and output. If the elements are expressed

in a transfer function form, then each element is a ratio of a product of SISO zeroes

to a product of SISO poles. These SISO zeroes of the individual TFM elements do

not correspond in general to the MIMO transmission zeroes from all of the inputs to

all of the outputs. This is one of the main distinctions between the SISO and the

MIMO case.

The zero definitions for the MIMO case are presented as in the SISO case beginning

first with the definitions using the product and summation expansion description of

the system response and then, the definitions relying on the operational definitions

of the zeroes. The transfer function definition is presented first.

Transfer Function Definition 2 If the system is square, ni = no, then the deter-

minant of the transfer function matrix G(s) = C(sI - A) - ' B can be taken

det[G(s)] - q(s) (2.11)

where O(s) = det(sI - A) as in the SISO case and the transmission zeroes and the

pole cancellation zeroes are the roots of (s) [19].



the same point or over the same area. An example of a collocated sensor and actuator

pair are a torque motor and an angular joint measurement at a common location.

The product of the actuator influence and sensor measurement corresponds to

real work or power when the sensor/actuator pair is dual, a complementary extreme

pair, and collocated. This special combination of sensor and actuator produces a

particular pole-zero pattern that has alternating poles and zeroes. This was proven

by Gevarter [2] for the SISO case using the residue expansion description of the system

response given by Equation 2.4. This alternating pole-zero pattern occurs when all

of the modal residues are positive or zero. This can be understood by considering the

response of the sum of two undamped second order modes with positive residues. At

some intermediate frequency between the poles, the two responses sum to zero since

the contribution to the transfer function of the lower mode has a positive residual and

phase of 180 degrees and the contribution of the upper mode has a positive residual

and a phase of 0 degrees.

These dual S/A pairs, which are also complementary extremes, and collocated,

yield an alternating pole-zero pattern and provide a degree of robustness to the control

problem. This robustness is a system property known as hyperstability [6]. The

sufficient conditions for hyperstability of structures are that S/A pairs which are a

measure of power be chosen for the input and output variables. S/A pairs that are

a measure of work, as opposed to power, are also allowed. Hence dual, collocated,

and positive complementary or non-complementary sensors and actuator pairs ensure

a hyperstable system. A hyperstable system has certain properties which describe

the nature of the robustness of the system of alternating poles and zeroes. These

properties are prescribed by Stieber and are summarized here [6]. A hyperstable

system must have equal number of inputs and outputs. Any hyperstable system

is bounded-input-bounded-output (BIBO) stable. This implies that the open loop

system with dual, collocated, and positive complementary or non-complementary

sensors and actuators is always BIBO stable. Hyperstability also ensures that the



closed loop system is hyperstable if the feedback form around the hyperstable system

is hyperstable. Constant gain feedback with such actuation and measurement qualifies

as a hyperstable system since its input output relation will be a measure of power.

Linear hyperstable systems have only left half plane or purely imaginary zeroes. Such

robustness properties guaranteed by dual, complementary extremes, and collocated

S/A pairs are desirable.

The purpose of this chapter is to study the effects on zeroes of the design pa-

rameters of sensors and actuators, namely their type, impedance, and location. The

effects on the zeroes are characterized by the s-plane pole-zero patterns. These are

the open loop locations of the poles and zeroes of the plant for which the sensors

and actuators have been chosen. These patterns may be described by certain criteria.

It is an objective of this chapter to determine the design decisions which affect the

relative spacing of the poles and zeroes in an alternating pattern, and those design

decisions which destroy the alternating patterns, and hence the associated stability

guarantees. It would be useful as well to understand which design decisions affect all

the zeroes in a similar fashion, such as shift them all upwards in frequency. Other

design choices, in contrast to affecting the relative spacing of the poles and zeroes

of all modes, affect the zeroes of modes on an individual basis. Some design choices

may destroy the alternating pole-zero pattern in such a way as to produce a missing

zero. This may be used to produce a forward loop transfer function with enough gain

margin to roll off a controller.

It is desired to study these parameters of sensor and actuator choice and place-

ment and to determine how the zeroes are affected relative to the poles when the

S/A pairs are no longer dual or complementary or collocated. Three basic studies are

performed, where only one descriptor (type, impedance, or location) is explored at a

time, leaving the other descriptors of the problem fixed. The first study is the effect

of sensor and actuator type. For this first study, the sensor and actuator are comple-

mentary extremes (either exclusively generalized forces or generalized displacements)



and collocated. Sensors and actuators are evaluated as pairs. Dual sensor and actu-

ator pairs are discussed as well as S/A pairs which act as dual on certain structures.

The second study focuses on the impedance of the actuator and sensor relative to the

structure and the use of mixed measurements. In this study the S/A pair are assumed

to be collocated and dual. The zeroes are analyzed as the impedance of the actuator

and the impedance of the sensor, relative to the structure, are varied parametrically.

Finally, the effect on the zeroes of location on the structure of a collocated and dual

S/A pair is explored parametrically. The non-collocated scenario is parametrically

studied as well, viewing the non-collocation first as a perturbation on the collocated

case and then as the non-collocation becomes more pronounced.

3.1 Duality of Sensor and Actuator Pairs

The zeroes are a reflection of the characteristic of a system from input to output.

Sensors and actuators must be considered as pairs, of the same or different type. As

an example of the importance of choice of type of an actuator or sensor, consider the

case of a moment actuator and a transverse displacement sensor at the center of a

free-free beam. These are a collocated and complementary extreme, but non-dual,

pair. The actuator excites the asymmetric modes but does not excite symmetric ones.

The sensor at the same center location detects the symmetric modes but does not

detect any motion of the asymmetric modes of the structure. The result, from input

to output, is pole-zero cancellation of every mode. The actuator produces only half of

the pole-zero cancellations and the sensor produces the other half. The input-output

behavior of the system is clearly a function of the type of both the sensor and actuator

which must be considered as a pair.

For the purposes of exploring in this section the effects of sensor and actuator

type, the actuator and sensor are assumed to be collocated, and at a fixed location.

It is also assumed that the actuator and sensor are complementary extremes, that is,

that the actuator is a pure generalized force and the sensor a pure displacement or



rate type.

Figure 3.1 shows schematically some common examples of S/A pairs which are

dual, i.e., of the same type. Note that each dual S/A pair has the sensor and actuator

acting in the same direction, over the same local area, and in the same inertial or

relative sense. These localized dual pairs are rather common. An axial or in plane

force and displacement pair can be used to control extension of one dimensional

structures or to control in plane stretching of two dimensional structures. Out of

plane control via this S/A pair is also possible with a non-isotropic structure [22].

Transverse force and displacement as well as moment and local angle can be used

to control out of plane motion. Torque actuators and angular measurements are

common in manipulator applications or attitude control. In addition to inertial S/A

pairs there are S/A pairs that react relative to another part of the structure as in

Figure 3.1(c) or (e). Examples are relative in-plane force and strain, or moment

doublet and curvature. Note that a moment doublet can be created either by a pair

of external moments or a pair of relative in-plane forces. While these S/A pairs by

nature do not act on a single point, the actuators and sensors can be considered

localized if they act over a length much smaller than the wavelength of modes under

consideration. Relative sensors such as strain gages can, in the limit, measure strain

at a localized location. However, as a dual measurement to a relative actuator,

the strain sensor must measure the average strain over the area of influence of the

relative actuator. These relative actuators are often realized with active materials

such as piezoceramics, electrostrictors, or shape memory alloys [23,12,24,25]. They

can be embedded or surface mounted to a structure [12] or incorporated into active

truss elements [13,26].

When the S/A pairs are dual, collocated, and complementary extremes, positive

residues result for all modes. In this specialized case, these residues are a measure of

the actual work done by the actuator on a mode of the structure. The residue for the
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Figure 3.1: Some common examples of localized dual sensor and actuator
pairs. Each dual S/A pair has the sensor and actuator acting
in the same direction, over the same local area, and in the same
relative sense

SISO case

ri = (cv,)(wTb) (3.1)

is composed of the inner product of the amount of generalized force an actuator exerts

on a mode and the amount of generalized motion the sensor measures of that mode.

Modal controllability and observability as a function of location must be computed

by using the mode shape or its spatial derivative corresponding to the actuation

variable type and sensing variable type. For example, modal observability of angle

and as a function of location must be made with the first spatial derivative of the

mode shape (i.e. the local slope). For dual sensor/actuator pairs which act along or

about the same axis, the modes and their spatial derivatives representative of modal

observability and modal controllability as a function of location are the same. This

guarantees that dual and collocated S/A pairs always have positive residues for each

mode, irrespective of the structure to which they are coupled.

It is possible for S/A pairs which are collocated and complementary extremes but

are not dual to be coupled to a particular structure in such a way as to ensure all

positive or all negative modal residues and thereby still maintain the robust properties

of alternating pole-zero patterns. Negative modal residues may be allowed in the

instance of no rigid body control, so that the sign of the feedback gain may be



Table 3.1: Dual and pseudo-dual sensor/actuator pairs for structures repre-
sented by spatial sinusoids

u, w ul, w1 wit

force DUAL (-) PSEUDO-DUAL

force couple/moment DUAL

moment couple (-) PSEUDO-DUAL DUAL

appropriately altered. Such S/A pairs will be referred to as pseudo-dual.

The vibrational motion of a general uniform structure can be described by two

characteristic functions, sinusoidal and exponential. For example, low order struc-

tures such as one dimensional uniform rods are governed completely by sinusoidal

functions. One dimensional beams are governed by both sinusoidal and exponential

functions, depending on the boundary conditions. Pseudo-duals can be discussed

with reference to two pure classes of structures, those governed completely by pure

sinosoidal functions, and those governed by pure exponential functions. The effects

of a structure governed by a combination of functions can then be considered.

Table 3.1 portrays a variety of combinations of collocated actuators and sensors

which can be considered localized. Displacement and its first and second derivative

are considered as sensors. Any of these sensors can be replaced by their corresponding

rates. Axial displacement is represented by u, axial strain by its first derivative, uW,

as in Figure 3.1 (a and c). Similarly, transverse displacement is represented by w,

transverse slope by w/, and curvature as wit as in Figure 3.1 (b,d, and e). A force, force

couple or moment, and moment couple are considered as actuators. A force actuator

represents either an axial force or a transverse force. A force couple describes either

a relative force actuator when in the axial direction as in Figure 3.1(c) or a pure

moment when in the transverse direction as in Figure 3.1(d). A moment couple may

be realized by either two closely spaced torque actuators or more likely by a pair of



force couples both in the axial direction but off the neutral axis. For one dimensional

axial motion only the top left two by two section of Table 3.1 is applicable.

The dual S/A pairs in Table 3.1 are along the diagonal. Dual S/A pairs always

have a positive inner product because the mode shape or its spatial derivative used to

calculate the controllability and observability are always equal. Now consider a S/A

pair off the diagonal such as the case of a transverse force actuator and a curvature

sensor. If the motion of the structure is sinusoidal, as is the case assumed for this table,

then the modal representation which corresponds to a transverse force is the zeroth

derivative, and the modal representation which corresponds to a curvature sensor

is the second derivative, and hence is spatially 180 degrees out of phase. For every

mode, and for any collocated location of such a pair on such a sinusoidal structure, the

modal residue is always negative yielding alternating pole-zero patterns. Similarly, if a

moment couple and transverse displacement are considered, the modal representation

corresponding to the observability and controllability are also 180 degrees out of

phase. These two S/A combinations are called pseudo-dual. It should be emphasized

that for structures governed by spatial sinusoids, these pseudo-duals are consistently

out of phase with each other for each mode. The other combinations of sensor and

actuator pairs may not be considered pseudo-dual. Consider a force actuator and

a slope sensor. Then if the modal representation which corresponds to that force

is sinusoidal, then the modal representation of the slope or angular measurement

is cosinusoidal. These functions will not be consistently of the same sign for all

modes for any given location. This is true of any sensor and actuator pair on a

structure governed by spatial sinusoids where the sensor and actuator operate on

modes separated by only one spatial derivative. Thus the only pseudo-duals are

those indicated in Table 3.1.

A similar discussion is used to produce Table 3.2 for structures described by purely

exponential functions. The second derivative of an exponential yields another expo-

nential, scaled but of the same sign, as opposed to the sinusoidal case where a minus



Table 3.2: Dual and pseudo-dual sensor/actuator pairs for structures repre-
sented by spatial exponentials

Uw Ul, wl wit

force DUAL PSEUDO-DUAL

force couple /moment DUAL

moment couple PSEUDO-DUAL DUAL

sign is present. The pseudo-duals are the same pairs as in the sinusoidal case but

a 180 phase shift no longer exists. For the other sensor and actuator combinations

where the modal representation of the controllability and observability are distinct

from each other by one spatial derivative, the derivative of an exponentially decreas-

ing mode shape with the positive spatial coordinate has one sign, while that of an

exponentially increasing mode shape with a positive spatial coordinate has another.

Hence, it is not possible to ensure all positive or all negative residues for such sensor

and actuator pairs unless it can be determined that the sensor and actuator are lo-

cated at a position governed exclusively by exponentially increasing or exponentially

decreasing mode shapes for all modes. One example of such a case is a clamped-free

beam with transverse force actuator and slope sensor at the free end.

It may be desirable to use such pseudo-duals in place of duals for a particular

objective. As an example, deLuis [12] proved that for highly distributed induced

strain actuators which act as distributed moment couples, the optimal measurements

to yield the most banded fixed gain controllers are transverse velocity and a curvature

measurement. The relation between transverse velocity and moment couple is pseudo-

dual.

For most general structures, the open loop mode shapes are not purely sinusoidal

or purely exponential, but are a mixture of such contributions so as to satisfy the

boundary conditions. For these S/A pairs to act as pseudo-duals, the mode shapes



of the structure must be dominated by sinusoidal or by exponential modes in the

vicinity of the collocated S/A pair for every mode in order to ensure a consistent

sign on the residue. A simple test for the sign of the modal residue of each mode,

at a collocated location may be found. This test may be performed to determine the

dominating spatial function (sinusoidal or exponential) in a region of a structure. If

a mode shape is dominated by spatial sinusoids, then the displacement and curvature

should be consistently out of phase, or

q(x)qit(x) < 0 (3.2)

Similarly, if a mode shape is dominated by spatial exponentials, the displacement and

curvature mode shape should be in phase, as discussed in Tables 3.1 and 3.2. Hence,

O(x)tIi(x) > 0 (3.3)

implies exponential dominance.

The transition point from a region of exponential dominance to sinusoidal dom-

inance may also be found. A necessary condition for the transition point is given

by

q(X)qii(x) = 0. (3.4)

Equation 3.4 is zero when either the displacement mode shape or the curvature mode

shape is zero. However Equation 3.4 is not sufficient to declare a point a transition

point from sinusoidal to exponential dominance of the mode shape because every

node of a sinusoidal function satisfies this criterion. The additional test for transition

is simply that the points satisfying Equation 3.4 must not be local maxima, but that

d
d---[#(x)it,(s)] # 0. (3.5)

This ensures that ¢(x)1iI(x) transitions from a negative to a positive product. Hence,

if ¢(x)4it(x) is tested to be always positive or always negative in a region then the

S/A pairs as outlined in Tables 3.1 and 3.2 are pseudo-dual for all modes and can be

used as a dual pair, producing alternating pole-zero patterns.



These criteria for the transition point, Equations 3.4 and 3.5 have not assumed

any specific form of structure on which the S/A pair act. The test is a general test

to determine the sign of the modal residues for all modes as a function of the collo-

cated location of the sensor and actuator. If the mode shapes consist of sinusoidal

and exponential functions, then the test yileds information regarding the dominating

function in a region. Because of the nature of the mode shapes for different uniform

beam structures, a set of general criteria for determining the suitability of such struc-

tures for pseudo-dual S/A pairs may be found. For all O(x) governed by a mixture of

sinusoidal and exponential functions, the displacement mode shapes take the form

O(X) = cosh( ) - oisinh( ) + os( ) -oisin( ) (a)(3.6)1 1 cos(A4) + aisn(A) (b)

The curvature mode shapes have the same form except that (a) and (b) are reversed.

Therefore the product of k(x)4l"(x) has a constant form for all possible combinations

of boundary conditions for uniform beams. This product is only zero when either the

diplacement or the curvature mode shape has a node location. Hence, the displace-

ment and curvature mode shapes can show immediately whether such a transition

point between sinusoidal and exponential functions may exist. The slope of the prod-

uct is then examined to determine which of these is actually the boundary between

the sinusoidally and exponentially dominated regions.

The test for sinusoidal or exponential behavior of a structure in a particular region,

as well as the transition point from one region to another are illustrated by means

of two examples. Figure 3.2 shows the product O(x)oti(x) for the first and second

modes of a free-free beam where O(x) is given by Equation 3.6(a). The middle region

is governed by sinusoidal functions since the product is negative while the outer region

is dominated by exponential functions since the product is positive. The criteria of

Equations 3.4 and 3.5 are both met at the transition points. With increasing mode

number the exponential regions become smaller. In this free-free beam instance, the

displacement/moment couple S/A pair should be placed between the nodes of the first



mode to assure negative pseudo-dual behavior for all modes. This S/A pair could also

be placed at the very tips of the free-free beam to ensure positive pseudo-dual behavior

for all modes. However, at the tips, the modal observability or controllability would

be zero for every mode.

Figure 3.3 displays the product q(x)qSI(x) for the first two modes of a clamped-

free beam where O(x) is given by Equation 3.6(b). The first mode of a clamped-free

beam is purely exponentially dominated since the product is positive everywhere.

In order for a pseudo-dual to produce alternating pole-zero patterns, the structure

must be governed exclusively by either a sinusoidal or an exponential function for

every mode. This is necessary because the residues of pseudo-duals on sinusoidal

structures are negative while those on exponential structures are positive. Hence, for

the clamped-free case, a pseudo-dual S/A pair such as a moment couple and transverse

displacement sensor may not be be used. Only at the boundaries of the structure,

exponential behavior is assured for each mode. At the boundaries of the clamped-free

beam however, the moment couple actuator or the transverse displacement sensor will

lose authority.

If it is assumed that the exponential contribution to the mode shapes occurs

exclusively near the boundaries, then the first node locations of the displacement and

curvature mode shape determine the transition point from exponential to sinusoidal

dominance. The first zero of the criterion given in Equations 3.4 is synonymous with

the location of the first node, which can be approximated for a uniform beam by a

Taylor series of the mode shape about the end of the beam. Using the mode shape

described by Equation 3.6(a)

Ax 2  Ax 4

(0) = 1 + I+ I+.- (3.7)
2! 4!

AX 3  AX5

T+3 ! + 5!-+
A x 2  A•

4

+1 2! 4!+ +



3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

spanwise location

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2:

spanwise location

(b)
O(x)0gi(x) for the first (a) and second (b) modes of a free-free
beam as a function of the span. Positive values for b(x)OI(x)
imply exponential function dominance of the mode shape in that
region. Negative values for q(x),i,(x) imply sinusoidal domi-
nance.
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Figure 3.3: b(x)q,,(x) for the first mode (a) and second mode (b) of a

clamped-free beam as a function of the span. The first mode
is dominated purely by exponential functions since (x)q/i(x) is
positive along the span.
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the location of the node of the first mode shape can be found by setting O(x) - 0.

This yields an estimate for the first node of a mode shape, and hence the location of

the transition point from exponential to sinusoidal dominance of

I
z, = 1 (3.8)

1

This would in fact predict the node location of a free-free beam at Xtr , 4.73004(0.250) o

21.5%. The true node location is at 22.5%. This is an adequate approximation. In

fact, it is valid to fourth order in Ž. Equation 3.8 can be used to quickly estimate

the boundaries for placing a pseudo-dual pair.

If the structure is governed by exponential functions in a region for all modes

then a pseudo-dual S/A pair will guarantee alternating pole-zero patterns. Similarly,

a structure dominated by spatially sinusoidal mode shapes will guarantee alternat-

ing pole-zero patterns for the pseudo-dual S/A pairs. The transition point may be

estimated using Equation 3.8.

While the robustness property for any structure of dual S/A pairs is often de-

sirable, there may be occasion when a pseudo-dual, collocated and complementary

extreme, S/A pair choice is desired. deLuis [12] showed that for structures with

highly distributed induced strain actuators configured for bending, as in the actuator

of Figure 3.1(e), the sensors which yielded the most banded constant gain controller

are curvature, the dual measurement, and transverse velocity, a pseudo-dual mea-

surement. In his analysis deLuis assumed an infinitely long structure and hence the

analysis was implicitly limited to the case of structures governed by purely sinusoidal

mode shapes.

The behavior of a pseudo-dual pair was experimentally documented for a free-free

beam, built by deLuis. The S/A pair used by deLuis for his free-free beam, transverse

velocity and a moment couple, is typified by Figure 3.4(d). The S/A pair was placed
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Figure 3.4: A sample of collocated but non-dual sensor and actuator pairs.
A pseudo-dual pair is shown in (d) as a moment couple actuator
and transverse displacement sensor

on the beam at a point which does not guarantee consistently sinusoidally dominated

or consistently exponentially dominated mode shapes.

Figure 3.5 shows an experimental test configuration for the free-free beam with the

piezoceramic moment couple actuator/ velocity measurement pair at 9.375% along the

span. This corresponds in the figure to the first S/A pair from the left, which is well

outside the node of the first mode shape of a free-free beam at 22.5% and therefore

initially in a region of exponential dominance. The resulting transfer function is

shown in Figure 3.6. The poles are visible at 34 Hz, 59 Hz, and 99 Hz. At each pole

pair, the phase drops by roughly 180 degrees. A zero pair may be seen by the phase

rising by approximately 180 degrees. Zeroes are visible at 57 Hz and 101 Hz. The

pole-zero pattern is therefore pole at 34 Hz, zero at 57 Hz, pole at 59 Hz, pole at 99

Hz, zero at 101 Hz. There is no zero between the second and third modes at 57 Hz

and 98 Hz. The alternating pole-zero pattern is destroyed between the second and

third poles. This is shown schematically in Figure 3.7.

The mode at which the alternating pattern is destroyed may be estimated using

Equation 3.8. The results are shown in Table 3.3. The transition point is correctly

predicted to occur between the second and third mode. For the first and second mode,

a moment doublet actuator, and transverse velocity sensor are in the exponentially
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Figure 3.5: Experimental configuration of free-free beam with embedded
piezoceramic actuators and collocated accelerometer sensors. A
transfer function is taken from the voltage to the leftmost actu-
ator, producing a moment couple, to the collocated acceleration
sensor, integrated to velocity. The center of this S/A pair is lo-
cated at 9.375% along the span, outside of the node of the first
mode shape and hence initially in a region dominated by expo-
nential behavior.

dominated region, and pseudo-dual. For the third and higher they are in a sinusoidally

dominated, and negative pseudo-dual. This sign change in the residues causes the

missing zero apparent in the transfer function.

Dual, collocated, and complementary extreme S/A pairs provide a measure of

real power or work. Dual, collocated, and complementary extreme S/A pairs en-

sure that the alternating pole-zero pattern is present irrespective of the structure on

which they act. There are instances where the dual requirement on S/A pair may

be relaxed and the alternating pole-zero pattern is still assured. This occurs only for

certain structures which have S/A pairs referred to as pseudo-dual. These structures

are dominated by exponential or sinusoidal functions in the region of the S/A pair for

all modes. Collocated and dual sensors and actuators which operate on modes sepa-

rated by two spatial derivatives will produce alternating pole-zero patterns on both

t
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Table 3.3:

Transfer function from voltage to collocated velocity of S/A pair
described in Figure 3.6. Poles occur at 34, 59, and 99 Hz, zeroes
at 57 and 101 Hz

Estimate of transition point, xt, from exponentially dominated to
sinusoidally dominated mode shape for a free-free beam
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Figure 3.7: Effect on the pole-zero pattern of a pseudo-dual S/A pair when
the mode shape behavior transitions from spatial sinusoidally
to exponentially dominated functions. The alternating pole-zero
pattern is destroyed at the mode where transition occurs, here
between the second and third modes, resulting in a missing zero.
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purely sinusoidal and purely exponential structures. Collocated and dual sensor and

actuator pairs which operate on modes separated by one spatial derivative can never

produce alternating pole-zero patterns on structures governed by purely sinusoidal

mode shapes, although may produce alternating pole-zero patterns on structures gov-

erned by exponential mode shapes, if the exponential behavior is always consistently

increasing or decreasing. Hence a free-free beam with a moment couple actuator and

transverse velocity sensor were shown to have an alternating pole-zero pattern if the

collocated S/A pair were placed within the nodes of the first mode. A clamped-free

beam was shown not to be able to produce alternating pole-zero patterns with such

a S/A pair. If the exponential or sinusoidal behavior is not maintained for all modes

for the pseudo-duals, then a zero in the alternating pole-zero pattern is missed at the

frequency at which the transition point passes through the collocated S/A pair. This

effect on the pole-zero pattern may be used to control when a zero is missed if this

is desired for a particular control scheme [27]. Most often however, violating duality

while still maintaining a collocated S/A pair results in destruction of the alternating

pole-zero pattern and in fact, there is no guarantee that the system has imaginary

zeroes.

In addition to the design decision of type of sensor and actuator pair which is a

discrete set of possible combinations, the choice of sensor and actuator impedance

relative to the structure influences the pole-zero pattern, but the design choice is

given by a continuous spectrum of possibilities. This effect of impedance is explored

next.

3.2 Impedance of Sensor and Actuator Pairs

The relative stiffness or mechanical impedance of the actuator to the structure deter-

mines whether the actuator acts as a generalized force or a generalized displacement

(or velocity) along a certain axis. For example, consider the case of a relative actua-

tor, one that reacts against another part of the structure, such as an embedded active



material. If the actuator is very stiff relative to the structure locally, the actuator acts

like a displacement (or velocity) source, the structure being compliant. Conversely,

if the structure is very stiff locally relative to the actuator, the actuator acts like a

force source.

Similarly a sensor may be considered to have a certain impedance relative to the

structure. A load cell, a generalized force sensor, tends to be comprised of a very

stiff spring. A generalized displacement (or velocity) sensor is characterized by a very

compliant spring relative to the structural stiffness such as a strain gage, or a devise

with no stiffness at all such as an optical metrology path. In such cases the sensor

tends not to disturb the motion of the original structure.

When an actuator and sensor have the same relative mechanical impedance to

the structure, they are referred to as complementary. Hence a generalized force ac-

tuator which has a very low relative mechanical impedance to the structure (i.e. a

force source) is a complement to a displacement (or velocity) sensor. If the rela-

tive mechanical impedance of the actuator is varied parametrically, a spectrum of

actuation results, continuously varying from a pure generalized force to a pure gen-

eralized displacement as shown in Figure 3.8. The relative impedance of the sensor

to the structure can similarly be varied to produce the sensing spectrum as in Fig-

ure 3.8. The ends of the spectrum corresponding to sensors and actuators with very

low impedance or very high impedance are referred to as complementary extremes.

A low impedance sensor measures generalized displacement, a high impedance sen-

sor force. The spectra are drawn such that at any given distance along the actuator

spectrum, the positive complementary measurement is the corresponding point on the

spectrum just below. The pure force actuator and pure displacement sensor form a

dual and positive complementary pair, as do the pure displacement actuator and pure

force sensor. A complementary S/A pair has matched relative impedance. In addi-

tion to the positive complements where the measurement is the sum of displacement

and applied force at a given location, there may be a negative complement which
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Figure 3.8: Spectra of sensor and actuator from pure generalized force to pure
generalized displacement (or velocity). Complementary extremes
are denoted by arrows, positive complements by circles, negative
complements by squares and positive non-complements by x.

corresponds to a measurement of displacement minus applied force. This negative

part of the spectrum is also visible in Figure 3.8.

It is desired to show in this section how the pole-zero distributions are altered

parametrically as a function of the mechanical impedance of the actuator and the

impedance of the sensor relative to the structure when the S/A pair are dual, posi-

tive complementary, and collocated. The effect on the pole-zero pattern of negative

complements is also explored. The effect due to a mismatch in the relative impedance

of the sensor to the structure with respect to the relative mechanical impedance of

the actuator is also presented.

A study is performed to focus on the pole-zero patterns of various complemen-

tary S/A pairs. The study is based on an appropriate simple model which attempts

to capture all of the relevant behavior. This model is shown in Figure 3.9(c). For

the purposes of this model the sensor and actuator variables are dual, i.e. linear

force and displacement, and collocated. The unactuated structural model is shown

in Figure 3.9(a). The parameter 7-y is used to modify the relative structural stiffness

of the non-actuated part of the structure to the actuated part. The actuator model

is displayed in Figure 3.9(b). It is assumed that the actuator acts statically. Hence,

no conclusions regarding the behavior of an actuator with internal dynamics may be



made. The actuator model allows for the actuator stiffness ka to be varied paramet-

rically relative to k. by setting ka = ak.. Hence the actuator can be transformed

uniformly from a pure force actuator, with low relative stiffness a, to a pure displace-

ment actuator with high relative stiffness a. The resulting force applied on the first

structural mass, fapp, by the actuator is

far = fco, - kaqi = fco,, - ak.ql (3.9)

where fc,,mm is the commanded force. As a is increased fap decreases until ultimately

the stiffness of the actuator dominates that of the structure and the commanded force

in effect imposes a commanded displacement on the structural mass.

The impedance of the sensor needs to be modelled as well. As the relative

impedance of the sensor decreases from being infinitely stiff to being compliant, the

sensor measurement is also caused to vary from a pure generalized applied force to a

mixed measurement of fapp,, normalized by the structural stiffness, and the displace-

ment of the structural mass, qi.

y = q + cf a- -  (3.10)
k,

The equations of motion for this model are given by:

m 0 + k, + ak, +  k, - qL (3.11)rn0 "•+ = fc,,,, (3.11)
0 m [ 2 -7k, 7 k, q2 0

Dividing through by k, and letting M = 1 yields1 ] 1 + a ][ q
[i f 1 + +a+7  -; q]= ]fcomm (3.12)

0 1 62 -7 7 q2 0

Equal a and c imply a positive complementary S/A pair. These equations of

motion produce a transfer function from to y of

y c(s 4 + ( + 27 + 1)s 2 +7(1 + )) (3.13)
SC+ +S+(+(3.13)-s + (a+ 2+ )s+2 +)k'
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Figure 3.9: Model used to study actuator and sensor impedance relative to
the structure. The unactuated structural model is given by (a)
consisting of two modes. The actuator model is depicted in (b).
The applied force is a function of the actuator stiffness as given
by Equation 3.14. The complete system is given in (c).



It should be noted that in this model, the zeroes are functions only of c, the

measurement weighting parameter, and 7, and the poles are a function solely of the

actuator stiffness, a, and 'y. The leftmost pair of the spectrum of Figure 3.8 is found

by setting c = a = 0 which represents a complementary sensor and actuator pair

where both the sensor and actuator have a low impedance relative to the structure.

As the spectrum is traversed both a and c increase.

The spectrum of Figure 3.8 may be normalized so that the actuator spectrum

maps from b - 0 to b = 1 and similarly the sensor spectrum maps from d = 0 to

d = 1. This is done by rewriting Equations 3.9 and 3.10 as

b
fap• = fcom m  1 - b kq (3.14)

and

y = (1 - d)ql + df ' 
f(3.15)k,t

respectively. A pure force actuator and a pure displacement sensor correspond to

b = 0 and d = 0, and a pure displacement actuator and force sensor correspond to

b = 1 and d = 1. These two cases correspond to complementary extremes.

The transfer function from f.n to y can be rewritten in terms of b and d as

y d(S4 + ( + 27)S2 + 'Y - d d(3.16)
k' - 1-b

It is interesting to note that in the extremes of d = 0 and d = 1, the measurement

(Equation 3.15) yields a quantity whose variation, if premultiplied by fcomm is a

measure of the true work done on the system. In the case of d = 0, it is clear that

8y = Sql (3.17)

In the limiting case of d = 1 and b = 1, (i.e. infinite ka), then examining the first of

equations 3.11 indicates that ql responds quasistatically to f,,mm

fco m  = mqj + (k, + k,. + ka)qi (3.18)

S(k.(1 + 7 ) + k,)qi (3.19)
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so that the applied force faý, is given

fapp = fcom nm - kaqi• k,(1 + 7)qi (3.20)

Substituting into Equation 3.15 gives

Sfapp
8y- = _ (1 + y7)Sqi. (3.21)

In the intermediate cases between the extremes, the relationship between y and a

true displacement variable is dynamic. Rewriting the first of Equations 3.11 again as

fc•mm = fapp + kaql = m4 1 + (k, + 7 k, + ka)qi (3.22)

then the relationship between fapp and q, is given by the driving point dynamic

stiffness of the structure in the absence of the actuator stiffness

fapp= mq' + (k, + 7k,)ql = Zq, (3.23)

so that if Equation 3.15 were rewritten as

Y = (I - d)ql + dfapp (3.24)Z8za
The variation of the measurement, multiplied by the commanded force, would produce

a true measure of work. However since this produces a complex frequency dependent

measurement equation, the static stiffness of the structure as seen by the actuator is

appropriate to substitute for the complex impedance. Substituting the static stiffness

of the structure will no longer ensure a measure of the work for the S/A pair, however

the pole-zero patterns appear to alternate.

From the transfer function of Equation 3.16 the nature of the pole-zero behavior

is apparent. Pole-zero cancellation occurs when d = 1 - b which can occur for an

infinite number of combinations of b and d, and for positive complements when d =

b = 0.5. The zeroes at d = 0 are identical to the poles at b = 1. The zeroes when

the measurement is pure displacement correspond to the poles when the actuator is

infinitely stiff. Similarly, the zeroes when d = 1 are identical to the poles when b = 0.



The zeroes when the measurement is a pure force, or a stiff sensor, correspond to the

poles when the actuator is very compliant.

Figure 3.10 shows the imaginary poles and zeroes predicted by this model as a

function of both b and d. The first pole is given by a dashed line, the second by a solid

line. The zeroes are represented by o's. A value of - = 1 is used in Figure 3.10(a), and

7-y = 0.1 is used in Figure 3.10(b). Decreasing 7-y is seen to shift the poles and zeroes

down and decrease the sensitivity of the poles to b but not to change any trends.

In Figure 3.10, since the zeroes are not a function of b, each horizontal row of o's

represents a different value of d. For positive complements, namely positive values of

d, the zeroes are always imaginary. Zeroes are shown for values of d of 0.1, 0.3, 0.5, and

0.9 where increasing d produces zeroes of lower frequency. The pole-zero pattern is

alternating for both complementary sensor and actuator, given by equal b and d, and

for non-equal values of b and d as well, except for pole-zero cancellations visible for all

cases of d = 1 - b. Hence a collocated and dual but positive non-complementary S/A

pair is shown to preserve the alternating pole-zero pattern, save pole-zero cancellation.

For positive complementary S/A pairs, Figure 3.10 shows that the zero frequencies

may be either consistently above or below the pole frequencies. This is determined

by which end of the spectrum the S/A pair is located. A complementary S/A pair at

the far left end of the spectrum, namely, a force actuator and displacement sensor,

have a pole first and then a zero. A complementary S/A pair at the other end of

the spectrum, a displacement actuator and force sensor have a zero first in frequency,

then a pole. For 7-y = 1, the poles may vary from 0.618 to 1 and from 1.618 to oo. The

zeroes may vary from 1 to 0.618 and from oo to 1.618. The simple model also shows

that irrespective of the type of actuator, a pure displacement sensor produces zeroes

consistently at or above the poles and a pure force sensor produces zeroes consistently

at or below the poles.

The pole-zero spacing is a function of the location of the actuation and sensing

mechanisms along the spectrum. The pole-zero spacing is largest when the sensor and

|



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b

(b)
Figure 3.10: Poles and zeroes of simple model as a function of b and d for pos-

itive complements and non-complements. Poles are represented
as the dashed and solid lines. The zeroes are represented as
circles. Solutions of -y = 1 (a) and y = 0.1 (b) are shown.
The pole-zero pattern is alternating for any values of b and d.
Pole-zero spacing is largest at the complementary extremes.

0.33

0.29

0.28

0.27

02

...------- d=.9

0

|

-



actuator are complementary extremes. As the impedance of the complementary S/A

pair is increased from the force actuator/displacement sensor the pole-zero spacing

decreases, with the pole first in frequency, until the center of the spectrum is reached.

As the impedance is increased further, the pole-zero spacing increases again, this

time with the zero first in frequency. The effect of traversing the the spectrum from

low to high relative impedance for complementary S/A pairs is to shift all the zeroes

consistently downwards. This is shown schematically in Figure 3.11. This effect on

the pole-zero pattern contrasts with that of sensor type selection.

For non-complementary S/A pairs, the relative spacing is still a function of the

sensor and actuator location along the spectrum. Consider the case where b = 0 and

d may vary. The zeroes slowly move closer to the poles, moving downwards as d is

increased. Similarly, when d = 0 and b is allowed to vary, the zeroes move closer to

the poles as b is increased.

The relative pole-zero spacing for systems with only imaginary zeroes affects the

average slope of the transfer function. The limiting case of course is pole-zero can-

cellation of every mode and hence a transfer function of unity which has a slope of

zero. If the zeroes were all shifted slightly upwards, a pole would occur first and

then a zero. The average slope of the transfer function overall would be slightly

negative. If the zeroes were moved further away, the average slope of the transfer

function would become more negative. If in the limit the zeroes were to shift upwards

until they reached and cancelled the poles just above them, then only the first pole

would remain, and the average slope of the transfer function would be -40dB/decade.

Compared to the initially flat transfer function, the relative spacing of the poles and

zeroes can alter the average slope of the transfer function. For complementary S/A

pairs with low relative impedance to the structure, the average slope of the transfer

function is negative, while for complementary S/A pairs with high relative impedance

to the structure, the average slope of the transfer function is positive.

While a, the relative actuator stiffness must always be positive due to the physics
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Figure 3.11:
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Effect of the pole-zero pattern in the s-plane of impedance of
actuator and sensor relative to the structure for positive com-
plements or non-complements. Altering the relative impedance
of the actuator or the sensor or both effects the relative spacing
of the poles and zeroes. As dual, collocated and positive com-
plementary or non-complementary sensors and actuators ensure
an alternating pole-zero pattern.



of the problem, the mixture of measurements can be influenced in two ways. The first

is by physically changing the mechanical stiffness of the sensor, which will yield only

positive complements, and the second is by making two independent measurements,

one low impedance and one high, and then algebraically mixing their signals. In the

latter case, the signals can be summed to yield positive complements, or differenced

to yield negative complements. In the negative complement case, Equation 3.10 is

rewritten as

y = (1 - d')ql - d f".- (3.25)
k "

This produces a transfer function from fcomm, to y for the differential case of

y -d'(s 4 + (-1 + 2 + 2y)S 2 +y(-± + 2))Yn -d'(4 + (- +- 2d + _ ))(3.26)

The locus of zeroes as a function of d' for this negative complement case are found

in Figure 3.12 for -y = 1. Once again, the poles are included for reference. The

imaginary zeroes are denoted by o's. In the case of negative complements there are

real zeroes which are at s = ±2.7 when d' = 0.1, and s = ±0.9 when d' = 0.3.

The initial effect of a small d' for this negative complement is to make the imaginary

zeroes move upwards in frequency as d' is increased. This has the desired property of

keeping the zero above the first pole consistently between the first and second pole

as b is increased, thus preserving the pole-zero-pole pattern. However, the highest

imaginary zero pair is already at ±joo on the imaginary axis. So for small d' this

zero pair moves instead to symmetric positions along the real axis. As d' is increased

such that 0 < d' < 0.5, the real zeroes move closer in to the imaginary axis. The

real zero pair produces a non-minimum phase zero for negative complements with

0 < d' < 0.5. Irrespective of -y, there is a transition point at d' = 0.5 just as there was

in the positive complement. For 0.5 < d' < 1 both zeroes are again imaginary, and

steadily approach the poles from below. Pole-zero cancellation occurs when b = 0

and d' = 1 for this differential case. For values of d' near 1, or a near negative force

measurement, the zeroes relative to the poles are again characterized by a zero first



in frequency, as was the case for the positive complement. For the range of values

0 < d' < 1, one zero is bounded from below by 1 and above by the second pole. The

other zero takes on real values from oo to 0, and then imaginary zeroes from 0 to v/2.

Hence, choosing values of d in the range 0 < d < 1, and d' in the range 0 < d' < 1

has caused the entire range of possible zero positions to be spanned.

Equation 3.25 shows that this non-minimum phase zero effect is not an artifact of

a truncated model. Initially, a small positive fapp is applied and the initial output is

negative since the mass does not move instantaneously. In the steady state, y becomes

positive as the (1 - d')ql term dominates so long as 0 < d' < 0.5. For the case of

0.5 < d' < 1, the static response of y to fo m is negative, implying that positive as

opposed to negative feedback will have to be used.

The results of this simple model are consistent with the trends reported in two

experiments. Figure 3.13, from [13], shows results from an experiment involving an

active piezoceramic element controlling a cantilevered truss structure. This piezo-

electric element is substantially stiffer than any of the surrounding truss members. A

collocated eddy current displacement sensor and a collocated load cell sensor are avail-

able. Because of its high stiffness, the actuator acts almost as a pure displacement

source. When the measurement is collocated displacement, near pole-zero cancella-

tion is achieved with zeroes just above the poles as can be seen in Figure 3.13(a). A

pole at approximately 8 Hz is encountered before any zeroes. This is as predicted

by the simple model for a pure displacement sensor, irrespective of the impedance

of the actuator. The phase of such a transfer function with near pole-zero cancel-

lation is practically constant with small excursions at the locations of the pole-zero

pairs. The slope of the displacement transfer function is flat. A collocated load cell

measurement yields larger pole-zero spacing, with a zero at approximately 6.5 Hz

appearing before the first pole at approximately 8 Hz shown in Figure 3.13(b). Both

positive and negative complements with a pure force measurement predict the zero

first in frequency. The average slope of the force measurement transfer function is
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Figure 3.12: Poles and zeroes of simple model as a function of b and d' for
negative complements and non-complements. For 0.5 < d' < 1
the zeroes are purely imaginary and are depicted by circles.
For 0 < d' < 0.5 one zero pair is real and moves closer to the
imaginary axis as d' increases. Real zeroes occur at s = ±2.7
when d' = 0.1 and s = ±0.9 when d' = 0.3.

~



2T 00

10-
IA no

-C -200
CL100

S10
- 1

Strut 11 Displacenent Sensor

10o 1 Frequency (Hz) 1 0?

(a)

2 00 -

a. 102

-7 101

100

10-1

10 -2.
101 Frequency (Hz) 1 02

(b)
Figure 3.13: Transfer functions from Fanson et.al. from voltage applied to

an active strut to collocated displacement (a) and load cell (b).
Poles and zeroes are very closely spaced with zeroes following
poles for the displacement sensor due to the very stiff actuator.
Pole-zero spacing is improved for the transfer function with a
force measurement.

slowly rising as it should since a zero occurs first in the transfer function with a force

measurement. The average slope of the transfer function is modified by the change

in relative pole-zero spacing.

Fanson [13] used a different model, shown in Figure 3.14 to explain the reason for

the close pole zero spacing and feedthrough nature of the displacement measurement

transfer function. The actuator was modelled as acting on a residual input stiffness, 3,

as opposed to acting directly on the structural mass. For low residual input stiffness,

close pole-zero spacing and a feedthrough term were predicted. This low residual

input stiffness is akin to claiming a high relative stiffness actuator compared to the

local stiffness of the structure.
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Figure 3.14: Model used by Fanson et.al. to predict close pole-zero spacing
included a stiffness in series with the actuator. This captures
the effect of the actuator impedance relative to the structure.
Close pole-zero spacing was correctly predicted.

Another experimental example can be found in Chen, Lurie, and Wada [28]. The

objective of the experiment is to incorporate impedance matching of an active strut

actuator via feedback of collocated force and/ or velocity to destiffen and add damping

to the actuator dynamics, if needed, to match the actuator stiffness to the structural

stiffness. The data presented in Figure 3.15 are for a cantilevered truss with the active

element in a longeron at the root. This active strut is the same strut used in [13]

but the truss structure is not the same. The open loop transfer functions are shown

for the displacement measurement, Figure 3.15(a) and sensed force (b) cases. The

displacement and force measurement transfer functions have distinctly different pole-

zero distributions, the displacement transfer function, nearly flat, showing near pole-

zero cancellations due to a stiff actuator. The force measurement transfer function

has the first zero at approximately 10.5 Hz, below the first pole at 12.5 Hz. The

average slope of the force transfer function slowly rises due to the zero appearing first

in frequency and the better pole-zero spacing.

The simple model used here correlates well with the complex experiments pre-

sented. The order of the pole-zero pattern is properly predicted as well as the relative



spacing of the poles and zeroes and the average slope of the transfer function.

All dual, and collocated pairs produce alternating pole-zero patterns in the most

general sense. Dual, positive complementary, and collocated S/A pairs ensure alter-

nating pole-zero patterns, save pole-zero cancellation at the center of the spectrum.

Increasing the impedance of positive complementary, dual, and collocated S/A pairs

from low impedance complementary extremes causes all of the zeroes to decrease. The

relative pole-zero spacing is largest at the complementary extremes, and is smallest

(pole-zero cancellation) when the complements are at the center of the spectrum.

For high impedance complementary sensors and actuators, the alternating pole-zero

pattern begins with a zero first in frequency, for a restrained structure. For low

impedance complementary sensors and actuators the pattern begins first with a pole,

for a restrained structure. The average slope of the transfer function may be altered

by varying the pair of S/A complements used. Positive non-complementary, dual, and

collocated S/A pairs still yield alternating pole-zero patterns, save pole-zero cancel-

lations when the sensor and actuator are at opposite locations of the spectrum, when

b = 1 - d. The relative pole-zero spacing may be varied by modifying the operating

point of the sensor on the spectrum, or of the actuator on the spectrum without

sensor and actuator complements. Negative complements and non-complements may

produce alternating pole-zero patterns as well. However, for certain combinations of

measurement, a non-minimum phase plant may arise. The non-minimum phase zero

is furthest away from the imaginary axis when d' is small. Traversing the positive

sensor spectrum of a dual S/A pair while leaving the relative impedance of the actu-

ator fixed, or vice versa, produces this same effect of stiffening or destiffening all of

the zeroes consistently.

3.3 Location of Sensor and Actuator Pairs

The previous two sections discussed respectively how the type and how the impedance

of the sensor and actuator influence the pole-zero patterns. There is a third para-
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Figure 3.15: Transfer functions from Chen et.al. from voltage to active strut
to collocated displacement (a) and load cell (b). Although a
similar configuration to that of Figure 3.13, the structure was
actually different. Results from the simple model correlate well
with this data from



metric dependence, one of location of the sensor and actuator. This is explored by

explicitly solving for the exact zero frequencies of simple continua, a longitudinal rod

and a Bernoulli-Euler beam with various boundary conditions. Initially, a dual, com-

plementary extreme, and collocated S/A pair, displacement and force, is assumed to

act. After the effects on the zero frequencies of the collocated and dual S/A pair

have been studied, the non-collocated case is then examined, first for small degrees of

non-collocation, then for larger non-collocation distances. The behavior of these zero

frequencies as a function of location yields interesting information about the character

of zeroes and their sensitivity to sensor and actuator location.

Collocated Sensor and Actuator Pairs

The effects on the zeroes as a function of the location of the sensor and actuator

are studied first for the collocated case. Exact zeroes are found from infinite dimen-

sional spatially continuous models. The solution method borrows from the root locus

definition that the zeroes of an open loop transfer function are equal to the poles of

the closed loop system with infinite gain (Section 2.2). Finding the zeroes directly

from an infinite order model ensures that no errors in the zero locations are intro-

duced by finite order modelling effects. These finite order modelling effects are the

focus of Chapter 4.

To allow for exact solution for the zeroes of a collocated S/A pair, the Bernoulli-

Euler beam is assumed uniform along its length. Two sets of beam boundary condi-

tions are examined in the collocated S/A pair case, free-free and clamped-free. These

choices of boundary conditions allow the presence or absence of rigid body constraints

and plant symmetry to be examined.

Referring to Figure 3.16, the actuator force f is assumed to act on the beam at

the location xa. In this collocated case, the sensor at location x, is assumed to act

at the same point. The structure can be subdivided into two regions corresponding

to spanwise locations x < x,, region 1, or x > x,, region 2. The partial differential



equation for each region of a uniform Bernoulli-Euler beam is given by

84w 82w
EIp 4 + pAt = 0. (3.27)

The problem is solved by assuming separate solutions in the two regions

wi (x) = aicos(pz) + bisin(o3x) + cicosh(&3z) + disinh(fpx)

w2 (x) = a2cos(3x) + b2sin(p3x) + c2cosh(,z) + d2sinh(/3x) (3.28)

with an internal boundary at the location of the actuator, Xa, to ensure compatibility.

Displacement and slope compatibility at the boundary yield two equations

Wi(xa) = w2(xa) (3.29)

wit(xa) = w/(xa). (3.30)

At the actuator location there are also two force equilibrium equations.

E"2wl " ""0w2"

El •2, (xa)- El ,x (Xa) = 0 (3.31)

E8 3wl , =, 32
El X (Xa) - El 92 (Xa) + f(xa) = 0 (3.32)

If the sensor is collocated with the actuator, then

f(Xa) = -kwi(x,) = -kwi(Xa) (3.33)

is an example of the possible feedback for the collocated case. This physically corre-

sponds to a simple mechanical spring at xa, as shown in Figure 3.16(b). If the gain is

increased to infinity, the limiting location of the poles of the system at high gain will

be the zeroes of the open loop transfer function from actuator to sensor. Physically

this corresponds to finding the poles of the beam with k - o00, i.e., a pin at Xa.

Substituting Equation 3.33 into Equation 3.32 gives

EI-(3a)l El (3.34)3122El a - 32 (a) - kwi(Xa) = 0. (3.34)

Together with the boundary conditions for the free-free case,
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back is implemented via a mechanical spring whose applied force
at x. is proportional to the displacement at the sensor location.
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(3.36)

(3.37)

(3.38)

this yields a generalized eigenvalue problem for the free-free case

-1 0 1 0 0 0 0 0 a1

o -1 0 1 0 0 0 0 b1
C( X) &(X) ch(X) h( X) -C(X) -a(X) -ch(X) -sh(X) C I

-,(X) c(X) -ah(X) ch(X) S(X) -- (X) -sh(X) -ch(X) dl-c(X) -s(X) ch(X) ,h(X) C(X) A(x) -ch(x) -Sh(X) 42

,(X) -c(X) ah(X) ch(X) -Kc(X)- (X) -oca(X)+ c(X) -,cch(X)- h(X) -,h(X)- ch(X) 62
o o0 0 0 -c() -a() ch(;) sh(,) 2
o 0 0 0 a(X) -c(,) sh(,) ch(k) d2

(3.39)
where c(.), s(.), ch(.), and sh(.) refer to cos(.), sin(.), cosh(.), and sinh(.) respectively

and X = 6x., A = 3l, and K - . This generalized eigenvalue problem has

order twice as large as the simple structural solution without explicit consideration

of the forcing. From this eigenvalue problem a transcendental equation results which

is a function of the spring stiffness k. The form of the transcendental equation is

0

0

0

0

0

0

0

0



fi (, Xa) + Af2 (0, Xa) = 0. The limit as --+ oo is then taken. The resulting

transcendental equation, f2(1, Xa) = 0, yields the roots which are the zeroes of the

original open loop system.

This solution technique has been verified to ensure that the rigid body information

is properly captured in the case of a free-free beam. With two rigid body modes and

only one actuator and sensor pair, one of these rigid body modes is uncontrollable

and/or unobservable and remains at the origin. As . --+ oo the second pair of rigid

body poles moves off to infinity on the imaginary axis.

For the collocated scenario and the dual S/A pair examined here, the zeroes are

equivalent to the poles of a flexible structure with a pin at the location of the S/A pair.

The zero directions, as described in Equation 2.6, are given by an initial conditions

vector and an input direction vector, the latter being a scalar for the SISO case. The

initial conditions portion of the zero direction is given by the mode shapes of this

pinned system. The input direction is given by the reaction force at the pin.

This solution method can also be applied to the collocated but non-dual, and

non-collocated cases. For a non-dual but collocated sensor and actuator pair, or a

non-collocated sensor and actuator pair, the zero directions can be constructed in the

same fashion by finding the closed loop mode shapes and the reaction forces at the

actuator location.

The zero frequencies as a function of the location of a collocated S/A pair spanwise

location are shown in Figure 3.17 for the free-free beam, and in Figure 3.18 for the

clamped-free beam, each for the first four modes.

These zero frequency plots are referred to as zero trajectories. The zero and pole

frequencies are expressed as a dimensionless parameter A = l1 where the true zero or

pole frequency of mode i, in radians, is given by

E l(3.40)
A? L 4

Included with the zero trajectories are the neighboring pole frequencies for reference.

The pole frequencies are represented by dashed lines, while the zeroes are represented
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Figure 3.17: Zero trajectories for free-free beam with collocated transverse
forcing and displacement measurement, as a function of span-
wise location of sensor/ actuator pair. Poles are included for
reference as horizontal lines.
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Figure 3.18: Zero trajectories for clamped-free beam with collocated trans-
verse forcing and displacement measurement, as a function of
spanwise location of sensor/ actuator pair. Poles are included
for reference as horizontal lines.
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by solid lines.

These trajectories have many interesting features. The free-free beam results are

discussed first and then contrasted with the clamped-free case. For the free-free

case, the zero trajectories are symmetric about the midspan due to the symmetry

of the structure. The pole-zero cancellations at the node locations of the modes

are apparent. There is a loss of both observability and controllability at this pole-

zero cancellation. This is due to the sensor and actuator being dual and both being

situated at the node of the mode shape.

The local slope of the zero trajectory at the pole-zero cancellation is also zero,

consistent with the prediction in the general sensitivity analysis of Chapter 2. Section

2.3 used a transmission zero definition to perform a first order perturbation on the

zero frequencies, given by ( @T (0) (45_0)
Z(k) = (3.41)

k k Uk)
A simultaneous loss of observability and controllability produces right and left eigen-

vectors given by f)k = [vk0]T amd 6T = [w0O]. Hence, a slight change in B or C

signifying a change in location of the sensor and actuator pair produces no change in

the kth zero. This may be shown by examining the numerator of zP) for the case of

first order changes in B and C but not in A.

z [T]()o B() [v(O) (3.42)]C 0 0

This case clearly gives the first order perturbation in zk as zero. If however, only

observability or controllability were lost and not both, z ) : 0. This result, general

for any structure has two basic implications. Attempting a pole-zero cancellation in

a collocated scenario is a viable technique due to the low sensitivity to error in A/S

location or actual node location. This was suggested by Juang and Williams [29].

Conversely, in order to effect large changes in the pole-zero spacing, the S/A pair

must be moved substantially if it is in the vicinity of a nodal point of a mode of

interest.



Aside from the local slope at these node locations, the sensitivity of the zero has

another important property. The frequency with which the zero trajectories oscillate

grows higher with increasing zero number. The sensitivity of the zero to changes in

the S/A pair location therefore generally becomes stronger with increasing frequency.

Just as higher frequencies of structures are not predicted with a good deal of certainty,

the zero frequencies become more unreliable as a result.

The migration of the zero frequency for each zero in Figures 3.17 and 3.18 is

bounded between the poles immediately above and below it. This must hold true to

satisfy the alternating pole-zero spacing of collocated and dual systems. Irrespective

of the location of a collocated, dual, and complementary extreme S/A pair, or of

the structure on which the pair acts, the pole-zero pattern alternates. For the free-

free case of Figure 3.17, the zero trajectories never encounter the lower pole as they

do the upper for pole-zero cancellation. For the clamped-free case of Figure 3.18,

however, the zeroes migrate over the full range between the lower bounding and

upper bounding pole. The open loop zeroes, equivalent to the closed loop high gain

poles, are the poles of an initially free-free or clamped-free beam to which a pin has

been added at the collocated sensor and actuator location. A pin introduced to the

free-free beam produces a finite change in the stiffness of the structure which initially

had no constraints. Hence the zeroes of the free-free beam do not ever drop so low

as to encounter the lower bounding pole. If the open loop system begins completely

unconstrained, the zeroes will never approach the open loop poles just below. For the

clamped-free case, the introduction of a pin near the already constrained end causes

the infinite gain closed loop poles to gradually depart from the open loop poles as the

pin is moved away from the fixed end.

The separation between the upper pole and the zero trajectory of Figure 3.17 of

a given zero appears to look like the function 02 (x), i.e., the square of the transverse

displacement mode shape. Recalling the residue expansion definition of a zero of

Section 2.1, the pole cancellation zero is the limiting case of a general transmission



zero. The pole cancellation zero is determined by a test of the modal residue

ri = (cv)(wTb) (3.43)

which is the inner product of the modal observability and controllability. For the

point actuators and sensors adopted here, c and b are unit vectors, and ri takes the

form

ri = i OT (3.44)

which is seen to vary as the mode shape squared as the collocated S/A pair traverses

the span. If the zero were a simple linear function of the residue, then the separation

would depend exactly on 0'T . However, the transmission zero is not a linear function

of the individual residue of that particular mode. In fact, the other modes contribute

an ever stronger influence as the zero moves from a pole cancellation zero, although

the zero trajectory maintains a characteristic preference for that particular mode.

Hence the zero trajectory and the function q2 (x) do not coincide exactly. But this

reaffirms the role of the zero as a controllability and observability measure of the

flexible modes, at least for the collocated case.

For the clamped-free beam of Figure 3.18, there are similarities and differences to

the features of the zero trajectories observed in the free-free case. The zero trajectories

are no longer symmetric as the plant symmetry is lost. The pole-zero cancellations

are still visible, and occur as the trajectory for a given zero is at a maximum. Hence,

again there is a zero local slope when the S/A pair is at the node locations. This is

another case exemplifying the sensitivity prediction of Section 2.3. The sensitivity of

the zero in general increases with rising zero number as in the free-free beam. When

the S/A pair is at the clamped end, the zeroes are equal to the poles of a clamped-free

beam. As the S/A pair is moved slightly away from this constrained end, the zeroes

increase in frequency. In contrast to the free-free case, the zero migrations of the

clamped-free beam are bounded exactly from above and below by the poles.

From these results it is clear that the zeroes are a modal controllability and ob-

servability measure. The trajectories appear similar to the mode shape squared which



is a quantity often weighted to produce the modal cost used to truncate models. The

migration of the zeroes for collocated and dual S/A pairs is bounded by the poles

immediately above and below, irrespective of the rigid body or constrained behavior

of the system. The zero migrations for the unconstrained structure are smaller rel-

atively to the pole spacing than those for corresponding constrained systems. The

zero trajectories are symmetric as a function of spanwise collocated and dual S/A

pair location when the structure is symmetric.

Slightly Non-Collocated Sensor and Actuator Pairs

The effects of non-collocation may be viewed first as a perturbation on the collo-

cated case, as is done in this subsection, and then for the highly non-collocated case

discussed in the next subsection. This approach promotes a deeper understanding of

non-collocated systems.

The solution method described in the previous subsection is extended to the non-

collocated case. The technique of modelling the actuator as a transverse force acting

at an internal boundary of the structure is retained. The distinction is that now a non-

collocated displacement measurement is fedback. For a uniform beam, the governing

equation is given by Equation 3.27, with solutions 3.28 and displacement and slope

compatibility at the actuator location x. given by Equation 3.29 and 3.30. At the

actuator location there are still two force equilibrium equations, Equations 3.31 and

3.32, but now the force fedback is proportional to the displacement at the sensor

location

f (Xa) = kw(x,) (3.45)

yielding a new shear equilibrium equation in place of Equation 3.34

EIaX3 (xa) - EI• X2 (xa ) - kwl(x,) = 0. (3.46)

The results of the solution of the transcendental equation of the generalized eigen-

value problem in the limit as -! oo as a function of Xa, x, are displayed in Fig-

ure 3.19. The zeroes are shown in terms of the dimensionless frequency parameter,



A, for successively increasing zero number. The collocated solutions are included for

reference. The non-collocated zeroes are plotted at the spanwise location t which

corresponds to the center of the S/A pair so that xa = x- - A and x, = ~ + . Each

curve represents a different fixed degree of non-collocation. Non-collocation distances

of A = 5% and A = 10% are shown.

One of the features first noticed is the appearance of two pole-zero cancellations in

the vicinity of each node location. These two pole-zero cancellations correspond to a

loss first of observability when the sensor is at the node location and then to a loss of

controllability when the actuator is at the node location. The pole-zero cancellations

appear in Figure 3.19 to occur to either side of the node location because the zeroes

are plotted at the spanwise location which corresponds to the center of the S/A pair.

Naturally, if the node location occurs at a distance from the end of the structure

smaller than the separation distance between the sensor and actuator only one pole-

zero cancellation exists in the vicinity of the collocated pole-zero cancellation.

It is in the neighborhood of the node locations that the initially alternating pole-

zero pattern of the collocated case is most likely to be destroyed. The destruction of

the alternating pattern occurs when the sensor and actuator are located on opposite

sides of a node so that the measurement of that mode is 180 degrees out of phase

with the actuator. The spanwise region where the alternating pole-zero pattern is

destroyed is given directly by the degree of non-collocation, A. For non-collocated

S/A pairs that are originally dual and collocated, the zero corresponding to that

particular unstably interacting mode does not disappear, but just moves higher in

frequency. It may move well beyond the next pole if the degree of non-collocation

is large enough, as is seen in the next subsection. If a non-collocated configuration

is chosen and alternating pole-zero patterns are still desired for the low frequency

modes, the sensor and actuator should be placed away from any node locations of the

modes in the control bandwidth if possible.

The effects of non-collocation are larger at higher frequencies when the non-
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Figure 3.19: Zero trajectories for free-free beam case with non-collocated
transverse forcing and displacement measurement as a function
of center of spanwise location of sensor/ actuator pair, t. Re-
sults are shown for the case x, = Xa + A, A = 5%(dashed), 10%

(dotted).
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collocation distance becomes an ever greater percentage of the spatial wavelength

of the corresponding mode. This can be seen by observing that the maximum travel

of the zero as a percentage of the pole interval grows with increasing mode number.

For a given degree of non-collocation, the zero sensitivity to S/A pair location at a

pole-zero cancellation increases with increasing zero number.

The sensitivity of the zero to the sensor and actuator location for the slightly

non-collocated case may be seen by examining the slope of the zero trajectories in

Figure 3.19. Unlike the collocated case where the sensitivity of a zero is zero at a

pole-zero cancellation, for the non-collocated case this is no longer true. When the

system is no longer collocated a pole-zero cancellation corresponds to either a loss of

observability or controllability but not both. As a result, the sensitivity at the zero is

no longer zero. This was shown in Section 2.3 for the general non-collocated case and

is substantiated here by the free-free beam example. It is also evident that generally,

the sensitivity is larger as the non-collocation distance becomes larger. The zero

sensitivity to S/A pair location at a pole-zero cancellation increases with increasing

non-collocation distance for a given zero. The slope of the zero trajectories is not

largest at the pole-zero cancellations.

A tradeoff is apparent for general controlled structures problems. Sensitivity of the

zero is smaller in regions near nodes but more likely to destroy the alternating pole-

zero pattern. Higher sensitivity away from the nodes will not destroy the alternating

pattern for small sensor and actuator spacing.

The mode shapes associated with the zeroes may be found as well. These mode

shapes correspond to the initial conditions component of the zero direction (Equa-

tion 2.6). The mode shapes of the zeroes in the collocated case are given by the

modes of a pinned or clamped system. For the free-free case with a displacement sen-

sor and force actuator, the zero mode shapes are real and appear to pin the location

of the sensor, irrespective of the size of the non-collocation distance. For small non-

collocation distances, the mode shapes corresponding to the zeroes reported in this



section appear as slight perturbations to a truly pinned condition, or the collocated

case.

Highly Non-Collocated Sensor and Actuator Pairs

The preliminary consequences of non-collocation have been discussed in the pre-

vious section. For small degrees of non-collocation the zeroes are perturbed slightly

from their collocated solutions. The next step is an understanding of the effects as the

degree of non-collocation is increased parametrically to the full length of the struc-

ture. As the non-collocation distance becomes large, the behavior of the zeroes may

vary greatly depending on the type of structure on which the S/A pair acts.

The nature of the partial differential equation determines the characteristics of

the zeroes as the non-collocation distance becomes large. The two structures studied

in the collocated case are examined again here, namely a free-free and a clamped-free

uniform Bernoulli-Euler beam. A uniform free-free rod governed by a second order

partial differential equation is examined as well.

For the three sample structures, a force actuator is fixed at a free end and the

sensor is moved along the length of the span. A trajectory of zeroes is generated as

a function of the S/A pair spacing for the fixed actuator location.

Zeroes of the free-free and clamped-free beams are presented in Figures 3.20 and

3.21 as a function of the sensor location, x.. The zeroes are represented by the

frequency parameter A. For these two structures, as the non-collocation distance

is increased, non-minimum phase zeroes appear. In the case of a real zero, A is a

complex number, and the zero is plotted as the absolute value of A. The first three

poles and two zeroes are presented in Figures 3.20 and 3.21. The solid lines represent

Ai of the imaginary zeroes, the dotted lines the Ai of the real zeroes. The poles are

included as the dashed horizontal lines.

Figure 3.20 shows the zeroes of the free-free case. The actuator is fixed at xa = 0.

Beginning with the sensor location at x, = 0 the alternating pole-zero pattern of
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Figure 3.20: Zeroes as a function of sensor location as the actuator remains
fixed at x. = 0 for a free-free beam. Zeroes are plotted as
a frequency parameter A for imaginary zeroes or as abs(A) for
real zeroes. The imaginary zeroes are given by the solid line,
the real zeroes by the dotted line, the poles by the horizontal
dashed line.
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Figure 3.21: Zeroes as a function of sensor location as the actuator remains
fixed at ,Xa = 0 for a clamped-free beam. Zeroes are plotted as
a frequency parameter A for imaginary zeroes or as abs(A) for
real zeroes. The imaginary zeroes are given by the solid line,
the real zeroes by the dotted line, the poles by the horizontal
dashed line.
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a collocated S/A pair is visible. The real zeroes are at infinity. As the sensor is

moved away from the actuator, the imaginary zeroes increase in frequency as in the

slightly non-collocation case. The real zeros are still very far out along the real axis

although they move in quickly as the non-collocation distance becomes larger. The

pole cancellation zeros are visible at the node locations. It is always the imaginary

zeroes that produce the pole-zero cancellations. However, while the zero associated

with the first mode produces the pole cancellation of the node nearest the actuator

at z, = 0.225, it is a different zero that produces the pole-zero cancellation at the far

node of the first mode shape at x, = 0.775.

This imaginary zero which cancels a pole when x, = 0.775 originates at Ai = 0,

at x, = 0.67, the center of percussion of the free-free beam. Of the two pairs of

poles corresponding to the two rigid body modes of the free-free beam with high gain

feedback, one pair is at the origin, while the other pair is at infinity on the imagi-

nary axis. When the feedback is collocated, one zero is at infinity on the imaginary

axis, indicating one rigid body mode is uncontrollable or unobservable. As the feed-

back becomes non-collocated, this zero pair at infinity circulates to the real axis and

progressively nears the origin. It arrives at the origin at a sensor location given by

the center of percussion of a rigid structure. With an actuator on the end and a

sensor at the center of percussion, the other rigid body mode becomes unobservable

or uncontrollable. As the sensor continues further, the zero pair becomes imaginary

again.

In addition to the details of the figure such as the node locations and the center of

percussion there are more global features to the figure worth mentioning. Although

the free-free beam is a symmetric plant, there is asymmetry to the zeroes of the plant

as the sensor traverses the span. The real zeroes occur at points different from the

imaginary zeroes at symmetric locations. The transpose problem, a sensor at xm and

an actuator at x, will yield equivalent zeroes to the those of the case shown when the

actuator is at Xa and the sensor is at x,.



Finally the sensitivity of both the real and imaginary zeroes are visible in the

figure. As the non-collocation distance grows, the sensitivity of a particular imaginary

zero increases. The sensitivity of the corresponding real zero decreases as the non-

collocation distance increases. With increasing zero number, the sensitivity of a given

zero to the non-collocation distance becomes larger.

The zero mode shapes for the imaginary zeroes of the free-free beam example

appear to be real and pin the sensor location. For the real zeroes far away from the

imaginary axis, the zero mode shapes have a real and a complex part however both

are small. As the real zeroes move closer in to the imaginary axis, the zero mode

shapes become predominantly real.

The effect of the two rigid body modes results in a very low frequency non-

minimum phase zero when the sensor is positioned at the center of percussion and the

actuator is positioned at the end. This will pose severe performance limitations on

the disturbance rejection and command following given this S/A pair. The problem

will not be as acute for the clamped-free case.

This zero locus as a function of the non-collocation distance was also found for

the case of a clamped-free beam. The fixed end is located at x = 1 and the actuator

location is fixed at the free end, za = 0. Figure 3.21 shows that for the clamped-

free case as the degree of non-collocation is increased the imaginary zeroes rise and

the real non-minimum phase zeroes become apparent. The trajectories of the ze-

roes for the clamped-free and the free-free case have similar characteristics in that

they both have rising imaginary zeroes and decreasing non-minimum pahse zeroes

as the non-collocation distance grows larger. The clamped-free case does not have a

non-minimum phase zero tending towards the origin as the non-collocation distance

becomes large since there are no rigid body modes of the clamped-free beam.

For these two fourth order plants, as the non-collocation distance becomes large,

real zeroes appear in symmetric pairs about the imaginary axis yielding non-minimum

phase zeroes. These non-minimum phase zeroes appear ever closer to the imaginary



axis. Hence, increasingly large degrees of non-collocation for such a plant produce

non-minimum phase zeroes of increasingly lower frequency. This produces a funda-

mental limitation on the performance achievable with a non-collocated system [1].

Manipulators are plagued by such performance limitations. Torque actuators are

placed at joints, far from the end point locations being controlled. An attempt to

alleviate this severe non-minimum phase behavior is found in [30]. The application of

a control torque on a flexible manipulator is translated by means of tensioned cables

attached to the arm at points much closer to the sensed end. The non-minimum

phase zeroes of this system are then much higher in frequency.

For the case of the free-free rod, all possible combinations of xa and x, produce

solutions to the transcendental equation which are purely real values of Ai and hence

purely imaginary zeroes. Figure 3.22 shows the zeroes and poles for the case in which

the actuator remains at the free end x = 0 and the sensor is moved successively further

from the actuator. While the features of the imaginary zeroes are similar to those

of the free-free beam example, this non-collocated plant is minimum phase. Spector

and Flashner [16] discuss non-collocated structural systems by means of a pinned-free

beam example. They claim that all non-collocated systems are non-minimum phase

above some finite frequency. The free-free rod is a counter example to this claim.

Another experiment conducted by Cannon and Rosenthal [4] on a lumped mass model

approximating a torsional rod never found any non-minimum phase behavior.

Summary

The location of a dual sensor and actuator can substantially alter the pole-zero

patterns. For the collocated case, each zero migrates relative to its neighboring pole

as a function of the S/A location dominated by the controllability and observability of

that mode. For small non-collocation distances, compared to the spatial wavelength

of the mode in question, the zeroes migrate in a pattern still dominated by the modal

controllability and observability. The alternating pole-zero pattern is destroyed in the

vicinity of the nodes of the mode shapes. The effect of non-collocation has been shown
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Figure 3.22: Zeroes as a function of sensor location as the actuator remains
fixed at x, = 0 for a free-free rod. Zeroes are plotted as a
frequency parameter A for imaginary zeroes. The imaginary
zeroes are given by the solid line, the poles by the horizontal
dashed line.
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to increase the frequency of the imaginary zeroes. As the non-collocation distance

becomes large, the imaginary zeroes become higher in frequency moving far away

from their corresponding poles. Non-minimum phase zeroes may appear for certain

structures with non-collocated S/A pairs. These non-minimum phase zeroes becomes

of successively lower frequency as the non-collocation distance increases.

The sensitivity of the zeroes as a function of location of the sensor and actuator

was also studied for the collocated case and as the S/A pair were moved apart.

The sensitivity of the zero to changes in the collocated an dual S/A pair location is

zero at the nodes of the mode shapes. The sensitivity of the zeroes to changes in

the location of the S/A pair becomes non-zero at the nodes once the S/A pair are

separated slightly, and steadily increases as the degree of non-collocation becomes

larger. The sensitivity of the zero near and away from nodes generally becomes larger

with increasing zero number for both the collocated and non-collocated case. It

becomes particularly strong for the imaginary zeroes as the non-collocation is larger

than half the span of the structure.

The solution method used in this section, which is based on the operational def-

inition of zeroes, can be used not only for infinite order models of controlled flexible

structures but for finite order models, such as finite element models, as well. A

lumped stiffness corresponding to the feedback element can be included in the struc-

tural model, and incorporated into the stiffness matrix of a finite element model. For

the collocated case, as this lumped stiffness is made infinitely large, the measured

degree of freedom becomes pinned. This infinite order modelling technique can also

be applied to MIMO systems in theory, although it would be quite a challenge as the

number of sensor and actuator pairs grows.



Chapter 4

The Effect of Modelling on Zero Frequencies

The zeroes have been shown to be a complex function of the type, impedance, and

location of the actuation and sensing mechanisms. Even if these actuator and sensor

characteristics are precisely known and accurately modelled, the zeroes may still

be incorrectly predicted due to the incomplete and /or inaccurate modelling of the

structure on which the sensor and actuator pair act. The zeroes are a result of

interference of the infinity of modes of the continuum. Any incomplete finite order

model which attempts to capture this behavior is subject to errors associated with

truncation. Inaccuracy in the calculation of mode shapes due to spatial discretization

of the continuum degrades the prediction of the modes. Modal observability and

controllability may be inaccurately calculated, and hence the zeroes, a function of

the modal observability and controllability are thus affected by discretization.

The precision of the zeroes is susceptible to the limitations of various modelling

techniques which attempt to capture the structural behavior of an infinite order sys-

tem with a finite number of states. These limitations can be classified as being of

two general types, truncation and discretization. Truncation consists of capturing an

infinite order system by a finite set of modes. There are two aspects of truncation

from an infinite set to a set of N, retained modes. In one instance, the first Nr modes

are kept in the model and the higher modes from N, + 1 to oo are truncated. In the

other instance, the "best" N, modes are chosen for the model, where "best" is some

measure used to describe the importance of a mode to the control objective. Most



control design techniques require a finite set of degrees of freedom. Truncation is an

inevitable method of reducing a model to a finite order.

Discretization consists of describing the spatially varying state of the structure,

the displacements, rotations, and/or internal strains, at a finite set of locations on the

structure and then interpolating the state of this structure between such points by a

simple function. This finite set of points need not describe the exact displacements of

the structure at these points. This is because such discretization enforces constraints

which tend to stiffen the model of the structure [31]. Discretization implies a decreased

level of fidelity of the model globally at the finite set of sample points, and also a

decreased level of fidelity locally within each element.

The errors in modelling of continuous systems, whose motion is governed by partial

differential equations, can be quantified in terms of these two concepts, truncation

and discretization. In turn, the effects of truncation and discretization on the zeroes

can be decoupled and studied separately. A Rayleigh Ritz assumed modes model may

be used to isolate truncation effects. By using a truncated finite set of continuously

defined exact mode shapes, the effects of discretization are eliminated in such a model.

Once these truncation effects are understood, a model based on a finite set of equal

number of discretized mode shapes may be compared to a model based on a finite

set of exact continuously defined mode shapes. Hence, the discretization component

of the modelling process may be isolated.

There is a common basis by which these effects of truncation and discretization

can be characterized. It is shown in the first section of this chapter that the zeroes,

although being a complex aggregate quantity, do converge to exact values as the

number of modes included in a model is increased or as the fidelity of the mode shapes

is refined. For the purposes of the examples used in this chapter, these exact values

are determined from a partial differential equation model of a Bernoulli-Euler beam

with either clamped-free or free-free boundary conditions, as was done in chapter 3.

The effects of truncation and discretization, as well as any suggested improvements



to the modelling techniques are based on convergence rates of the zeroes to the exact

zeroes as a function of the number of modes included in the model or as a function

of the discretization of the field.

The purpose of this chapter is to determine strategic methods for improving zero

predictions. Specifically, a study of truncation effects can lead to criteria for choosing

certain modes over others to include in the model. A study of discretization can de-

termine the requirement for fidelity of the mode shapes. These methods for improving

zero predictions can then be combined for more accurate low order models.

In this chapter, the convergence behavior of the zeroes is established first. It is

assumed that the actuator and sensor are collocated. This convergence behavior is

then used as the basis for study of the effects of truncation of infinite order sys-

tems. The two aspects of truncation are studied individually, beginning with the

type of truncation which just eliminates all but the first Nr modes. The effects of

such truncation are discussed and explored via a simple beam model. A method of

compensating for this type of truncation is presented which is shown to be equivalent

to modelling schemes used in various other disciplines. The second type of truncation

which chooses the "best" N, modes is then discussed, and the implications of such

truncation for the zeroes is presented. The effects of discretization are then studied in

two parts by means of a simple beam model. The effect of using higher order interpo-

lation functions between the mesh points is presented. The level of discretization of

the spatial field is then explored. Together these discretization studies help determine

how to concentrate the level of fidelity for a given number of degrees of freedom to

best improve the prediction of the zeroes.

4.1 Convergence Behavior of Zeroes

A study of the effects of truncation and discretization can best be made if the zeroes

can be shown to converge, and to converge to their "exact" values. If the zeroes do

converge, it is desirable to know how the convergence proceeds as the number of modes



included in the model or the fidelity of the modes is increased. Ideally, the convergence

properties should be well behaved, and monotonic, just as the convergence of the

eigenfrequencies of a consistent assumed displacement based method is assumed [31].

The objective of this section is to establish that for collocated and dual point sensor

sensor and actuator pairs the zeroes converge in the same fashion as do the poles for

a given modelling scheme.

Convergence of the poles may be monotonic from above as successively more

modes are included in the model, with the fundamental pole converging fastest if the

modelling technique guarantees this. This Rayleigh convergence behavior is true of

techniques such as a Rayleigh Ritz assumed modes method or a Finite Element as-

sumed displacement method with compatible displacements at the boundaries and a

distribution of mass in the mass matrix consistent with those displacements. However,

convergence of the poles may not necessarily be monotonic from above. A technique

which does not assume convergence from above is a Finite Element assumed displace-

ment method with a lumped mass matrix.

Williams [32] has proven that for collocated and dual sensors and actuators, the

zeroes have Rayleigh convergence behavior as the number of modes in the model is in-

creased for a model based on compatible assumed displacement and consistent masss.

The matrix-second-order equations of motion are placed in a system matrix which

becomes singular at a zero frequency. An additional mode increases the dimension

of the system matrix by one. With some matrix manipulation, the system matrix is

shown to have an embedding property which is characteristic of Rayleigh converging

systems [33].

If an assumed displacement model with consistent displacements is not used,

monotonic convergence from above is not guaranteed. A consistent mass model in-

corporates the displacement interpolation functions used to determine the stiffness

matrix to allocate mass contributions and loads to the nodes. A lumped mass model

just distributes element mass to the nodes resulting in a diagonal mass matrix. A



Finite Element model based on a lumped mass matrix is not a Ritz analysis since the

mass matrix is not consistent and hence does not have Rayleigh convergence proper-

ties [34,35]. An example of such non-convergence is available from Wie [15] in which

an attempt was made to show the effects on zeroes of consistent versus lumped mass

matrices. The poles and zeroes of a rod with a collocated, and dual axial displacement

and force S/A pair at a tip are found. A consistent mass model and a lumped mass

model are used for comparison. The flexible poles and zeroes are given in Table 4.1.

The poles predicted by the lumped mass model may be compared to the exact

model. The poles are underpredicted for this particular number of modes. The poles

are overpredicted by the consistent mass matrix model. The zeroes follow in the same

pattern as the poles. For the lumped mass model, the zeroes are underpredicted, and

for the consistent mass matrix model, the zeroes are overpredicted.

The proof offered here to establish that the zeroes converge in the same fashion as

the poles for a given modelling technique is based on a root locus argument. The open

loop zeroes of a system are in fact the poles of a closed loop system with infinite gain.

This is the essence of the solution method outlined in Chapter 3 for the continuous

case.

Any assumed displacement technique can result in a set of second order differential

equations describing the homogeneous dynamics of N points on a structure of the

LUMPED CONSISTENT EXACT

pole #1 2.828 3.464 3.142

zero #1 1.530 1.611 1.571

pole #•2 4.000 6.928 6.283

zero #2 3.695 5.629 4.712

Table 4.1: Poles and zeroes of lumped and consistent mass models of a uni-
form rod with a collocated and dual S/A pair



following form

Mqi(t) + Kqi(t) = 0 (4.1)

where M must be positive definite and K may include rigid body modes. Both M

and K must be symmetric. It is assumed that the effect of the actuator inertia and

compliance have already been incorporated into Equation 4.1. The forcing is assumed

to always enter at a sampled location on the structure and hence it is incorporated

consistently into the model. The model may or may not be completely observable and

controllable. The root locus method can find the pole cancellation zeroes in addition

to the transmission zeroes.

If it is assumed that the model in Equation 4.1 is described in terms of sampled

point displacements or rotations, and that the collocated and dual S/A pair are

located at a sampled location, a feedback form for a collocated and dual sensor and

actuator pair at sampled location i would be of the form

fi = -k qi. (4.2)

This feedback form may be included as a lumped stiffness, k1 along the diagonal of

the stiffness matrix. The force equilibrium at the sampled location corresponding to

the location of the S/A pair is augmented by a generalized force proportional to the

generalized displacement at that location.

M4,(t) + Kqi +diag(O... Okf0... O)qi = 0 (4.3)

M4i(t) + KRqi = 0 (4.4)

As kf is taken to be infinitely large, so that the poles of the original system of

Equation 4.1 approach the zeroes of the system, one diagonal element in the revised

stiffness matrix, KR, becomes infinitely large. The effect is to "pin" that degree of

freedom. The remaining N - 1 system eigenvalues of the Nth order system are the

predicted zeroes, according to the modelling method chosen, of the original system

of order N.



The zeroes of the system are given by the poles of the system given by Equa-

tion 4.4 as Kf -- oo. It suffices to determine the convergence of the poles of the

"pinned" system of Equation 4.4 to establish the conergence behavior of the zeroes.

If a modelling method ensures a particular convergence behavior of the poles of the

pinned system, the zeroes will converge in this same manner.

This proof may be extended to the MIMO case directly.

Convergence properties of the eigenfrequencies of structural dynamic systems

given by a mass and stiffness matrix are well known. For Rayleigh Ritz assumed

modes models, the poles of the "pinned" system will converge with Rayleigh con-

vergence behavior. For an assumed displacement based Finite Element model with

consistent displacements, there are two possible cases. The number of degrees of free-

dom is increased by more elements (h-type) or is increased by raising the order of the

interpolation functions (p-type). Covergence theorems based on both of these cases

may be found in Meirovitch [33]. Rayleigh convergence behavior governs both cases.

A lumped mass model will not have monotonic convergence behavior of the poles of

the "pinned" system and hence of the zeroes.

Four examples are presented to demonstrate the convergence behavior of ze-

roes. These examples all use consistent assumed displacement based models, either

Rayleigh Ritz models or Finite Element assumed displacement models with consistent

mass and compatible deflections. Hence, the zeroes should converge monotonically

from above for all of the examples presented, where collocated and dual S/A pairs are

used, as the number of modes included in the model is increased. The examples use

a Bernoulli-Euler beam model with a collocated S/A pair. The zeroes are reported

as the difference from their exact value normalized by their exact value.

These four examples are presented in Table 4.2. Examples one and two are of a

clamped-free beam with a dual transverse force/displacement pair at the tip. Example

one uses exact Rayleigh Ritz modes, where the accuracy on the frequency parameter

Ai is 10- 16, and example two uses cubic Finite Elements with compatible displacement



Table 4.2: Characteristics of plant of the examples used to show zero conver-
gence

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

STRUCTURE clamped-free clamped-free clamped-free free-free

S/A PAIR dual dual non-dual non-dual

MODEL RR FE FE FE

and slope at the sampled locations. Monotonic convergence of the zeroes from both

models is visible in Figure 4.1. Data is plotted for the first and second zero. The

errors in the second zero prediction are consistently larger than those of the first

zero as expected for Rayleigh convergence. The errors predicted in these models are

very small. This is due to the fact that the system is a simple uniform structure

and the exact mode shapes are known. For more complicated structures, the errors

are larger but the trends will be the same. The Rayleigh Ritz model for this level

of accuracy in the exact mode shape yields substantially better predictions than the

Finite Element model for the first two zeroes. This is explored in the next two sections

as a manifestation of truncation and discretization.

Non-dual S/A pair systems appear to exhibit the same convergence properties

although this has not been proven here. The author is unaware of the existence of

such a proof, although a couple of examples here show the possibility. Example three

is of a collocated but non-dual S/A pair, a clamped-free beam with a transverse force

actuator and angular measurement collocated at the tip. A finite element model of

this non-dual system has the first two zeroes converging from above as a function of

the number of degrees of freedom as shown in Figure 4.2. The error in the first two

zeroes is shown to steadily decrease, with the error in the first zero less than that of

the second zero as expected by Rayleigh convergence behavior.

The fourth example is of a free-free beam, a system with multiple rigid body
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modes and hence a pole-zero cancellation at the origin given only one S/A pair.

A collocated, non-dual S/A pair, transverse force to rotation is chosen which when

located at the center of the beam produces complete pole-zero cancellation. A Finite

Element assumed displacement model is used. The first two zeroes are still converging

from above monotonically as shown in Figure 4.3.

Convergence behavior of zeroes of collocated and dual S/A pairs is guaranteed

when the modelling scheme adopted assures convergence behavior of the poles. Ze-

roes converge to their exact values in the same manner as the poles of the particular

modelling scheme. Observability and controllability do not qualify this result. Fur-

thermore, typical results on simple systems indicate that non-dual but collocated S/A

pairs exhibit this same convergence behavior.

4.2 Model Truncation Effects

With few exceptions, truncation is a necessary step in the analysis and design of con-

trol systems for structures. However, truncation has a marked effect on the accuracy

of zeroes. Consider the fact that the system response in the frequency domain is

a summation of weighted modal frequency responses. This response is constructed

as a Fourier series where the basis functions are the modal responses of the freely

vibrating system. These basis functions contain no information regarding the nature

of the forcing or sensing of the system such as actuator or sensor type or location. An

exact prediction of the system response, including the zero locations, is only captured

when all infinity of the modal responses are included. Truncation implies trying to

reconstruct the system response with only a finite set of the basis functions. Therefore

truncation necessarily implies inaccuracies in the zero locations, even if a truncated

series of exact modes is used.

If the difficiencies introduced by truncation can be understood, then additional

basis functions can be introduced to compensate for the truncated information. These

assumed displacement functions need not be the same free vibration modes, but
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degrees of freedom

Figure 4.1: Examples 1& 2: Normalized error of the first and second zero
frequencies for a clamped-free beam with a dual tip transverse
displacement/force S/A pair, Rayleigh Ritz and Finite Element
models. First and second zero error are given by x, + and o, *
for the Rayleigh Ritz and Finite Element models respectively.
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Figure 4.2: Example 3: Normalized error of the first (o) and second (*) zero
frequencies for a clamped-free beam with a non-dual tip angular
measurement/ transverse force S/A pair, Finite Element model
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Figure 4.8: Example 4: Normalized error of the first (o) and second (*) zero
frequencies for a free-free beam with a non-dual centered angular
measurement/ transverse force S/A pair, Finite Element model
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instead an augmented set of basis functions for constructing the forced response. A

model with a fixed number of these augmented basis functions plus normal modes

could then perform as well as one with a greater gross number of normal modes. It

is necessary to find which displacement functions would serve this purpose.

There are two common types of truncation used in model reduction: including the

first Nr of the infinite number of modes, or including the "best" N, modes. These two

types of truncation are examined separately for their effect on the zeroes. The simpler

of the two types is considered first. This is the case where the first Nr modes are

retained and the modes N, + 1 to oo are truncated. These modes that are truncated

each contribute something to the response. Since these modes are all well above the

bandwidth of the model, these modes can be modelled as contributing only a static

correction term. Each truncated mode contributes only a small static correction to

the system response in the bandwidth. In fact, the example one in the last section,

Figure 4.1, in which the Rayleigh Ritz model with exact mode shapes is used, isolates

this effect. As successively more modes are used, the model is able to slowly build up

the proper prediction of the zero, since an increasingly accurate model of the static

behavior is achieved.

The static deflection shape may be a linear combination of the truncated set of

mode shapes or it may not. If the static shape is completely represented by the

set of mode shapes that are included in the model, then the zeroes are predicted

perfectly. However, if instead the forcing is such that these static deflection shapes

are a set of shapes that cannot be reconstructed completely by the modes retained in

the model, the zeroes rely on the static contribution of higher modes not included in

the model and are not necessarily accurately predicted. It is the nature of the spatial

distribution of control inputs that determines whether the static deflection shape or

shapes can be constructed from a finite set of modes.

To improve the prediction of the zeroes while still only including N, modes, the

effect of the static behavior of the actuator and structure must be incorporated into
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the model. Many disciplines take this approach of ensuring that the static informa-

tion is included because empirically or otherwise it yields good results for predicting

necessary quantities such as internal stresses, accelerations, or deflections. These

techniques are described here and they are all shown to have the same objective.

First, a standard model is developed to which the varying methods are referenced.

Then the various methods are compared with this standard model.

A structure may be described by an infinite number of modes with equation of

motion,

6,(t) + w4,(t) = m,(t) (4.5)

where ý-(t) is the orthonormalized modal coordinate, wi is the natural frequency and

'i(t) is the generalized modal force of mode i. For a general load profile Q(x, t) the

generalized modal force Ei is given by

i(t) = I (x)Q(x,t)dx (4.6)

where Oi(x) is the mode shape of mode i. If the actuator distribution function Q(x, t)

contains mode i, then E.(t) is non-zero. The displacement of the structure is then

given by
00

q(x,t) = Z.• 2 (t)Oi(x). (4.7)
i=-1

If instead of a continuous spatial field, a spatially discretized description is used, then

the modal force is

E,(t) = q¢TQ(t) (4.8)

where 0 and Q are now vectors. The deflection at the discretization points, j, is then

given by
N

qj (t) = ,t)i (4.9)

i=1

The static deflection can be expressed as

00=4
qstatic(x) = OjA(X) (4.10)

106



for the continuous case, or for the discretized case as

N --.

qatatic, = iJ . (4.11)
i--1 2d

The complete static deflection is described by the summation of the static contribution

of each mode.

If the model is to be truncated, then the deflections can be expressed as a sum of

those contributed by the N, retained modes and the truncated modes

N, 00

q(x,t) = Z ,(t) O,(x) + E ,(t)€,(x) (4.12)
i=1 i=N,+1

N, N

qj(t) = E ,(t) ,j+ E ,4(t) ,j (4.13)
i=1 i=N,+1

From Equation 4.5, the solution for the modal coordinate can be written,

fi(t) -= t . (4.14)
22 "

Substituting for the spatially continuous case gives

q(x, t) = ,[(t) ]i(x) + [ [Ei(t) - ]W(x) (4.15)

" i i i=N,+1 i 2i

or for the spatially discrete case

qi(t) = Z[ - lJ + [ ]j+ (4.16)
2,3 E P2 W.2 ,

i=1 i i i=N,+1

Equation 4.15 and 4.16 clearly identify four terms: the static and dynamic contribu-

tions of the retained modes and the static and dynamic contribution of the truncated

modes. Simple model truncation methods retain only the first two of these terms. It

will be shown that all the methods discussed in this section retain the first three.

Combining the static deflections due to retained and truncated modes gives,

q(xt) = i(x)- -• () - Z(4.17)
i=1 " i=N,.+1I

q(- _(t) ,i) - i,,j (4.18)
i1 i =1 i=N,.+1 I
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where the first term is the total static response due to all the modes, the second

is the dynamic "correction" due to the retained modes and the third the dynamic

"correction" due to the truncated modes. Alternatively, from Equations 4.12 and

4.13, if only the truncated modes are broken into their static and dynamic parts, and

the motion is assumed sinusoidal,

due t t 00 00

q(x,t) = En 41 ) '=-.2 O ta t(e) (4.19)
"I W t i-=N,+1 i=N,.+1 I

=j (t '1' ± t 24'I - E 2t (4.20)
i=1 - w=N.+1 I =N,+(

where the first term represents the total response of the retained modes, the second

the static response of the truncated modes, and the third the dynamic "correction"

due to the truncated modes.

What Equations 4.17, 4.18, 4.19, and 4.20 have in common is that the last term

of each represents a dynamic correction to due to the truncated modes, which if the

frequencies of interest are small compared to the frequencies of the truncated modes,

will be small. Thus the use of the first two terms of Equation 4.17, 4.18 or 4.19, 4.20

represent two approaches to calculating the response of a system which are in fact

identical in all but algebra, but which are considerably more accurate than just con-

sidering the response of the retained modes. The first approach (Equations 4.17, 4.18)

calculates the static response of all the modes, and corrects for the dynamic response

of the retained modes. The second (Equations 4.19, 4.20) calculates the total response

of the retained modes and corrects with the static response of the truncated modes.

Various methods have evolved in dynamic modelling to retain some information

for the modes truncated from a model. It is desired then to show that all these

methods reduce exactly to one of the two approaches presented. In aeroelasticity, a

method known as the Mode Acceleration Method (MAM) [36] is used to predict the

deflections, accelerations and stresses on the wings and fuselage due to disturbances.

The philosophy behind the MAM is to begin with a solution corresponding to the

static case and then add a dynamic correction term.
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The Mode Acceleration Method predicts a displacement field with N, retained

modes by

N 1

qN,(x,t) = qtatic(x) - 2 (t*)i() (4.21)
s=1 w

00 N ,- 
4 . 2

- ~ (X) - Wj~ (4.22)

By comparison with Equation 4.17, it is clear that the MAM is just an example of

the first approach which calculates total static response and corrects for the dynamic

response of the retained modes.

In finite element solutions of structural dynamics, models are often truncated to

only a few low frequency modes, and a component known as the residual stiffness is

included in the model [34]. If only N, of N modes are maintained in a model then the

equilibrium between the external loading, Q,(t) and the inertia and elastic loading is

not met. The response to a part of the external load vector has not been included in

the model. This portion of the external load vector is given by
N

AQ,(t) = Qj(t) - W Mq,)mi (4.23)
i=1

AQj(t) = Qj(t) - QN,.,(t) (4.24)

where AQ is the excluded portion of the external load vector, and M is the mass

matrix of the system. The correction term removed from the load vector is the

portion of the load vector which is in equilibrium with the inertia and elastic loads

associated with the retained modes. This portion of the load vector is originally given

by the modal force vectors, Ei, of the retained modes, and is then transformed back

into physical coordinates such that it is a linear combination of the retained modes.

The static correction known as the residual stiffness is then added to the model, since

the response to AQ should be at most a static response [34].

KAq = AQ (4.25)

where K is the system stiffness matrix and Aq is the static displacement correction

which is added to the displacement prediction made by the retained mode set so that
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the total response is given by

N,
q3(t) = y (t)oij + Aqi (4.26)

i= 1

where Aqj is calculated from Equation 4.24 and 4.25. The equivalence to other

approaches can be found by expanding the content of Aq in terms of the modes of

the full system

Aq = OAL. (4.27)

Replacing Aq with OA( in Equation 4.25, then substituting in Equation 4.24 and

premultiplying by OT yields for 4 orthonormal

diag(w?)A.i = qTQ,- _ TQN,,j (4.28)

Letting A = diag(w?) Equation 4.28 becomes

A = A-- - A-IqTQN, (4.29)
N 1  Nr I_

= -. (4.30)

i=Nr+1 i 1
1= 1 i=12F"  (4.31)

which is to say the A( associated with the retained modes is zero. Substituting

Equations 4.31 and 4.24 into 4.26 gives the displacement prediction via this residual

stiffness method with N, modes retained in the model and a static correction term

Aq as

N,. N

qNW(t) = y 1 W(t)',,J + E A.i(t)qSd  (4.32)
i=1 i=N.+1

N,. N

qN,.,(t) = I %+ Z -- (4.33)
i=1 i=N,+1 i

From Equation 4.33 it is clear that this residual stiffness corresponds to an approach

of the second type, Equation 4.20, which calculates the total response of the retained

modes and corrects with the static response of the truncated modes.
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In system identification, prediction of the frequency response is always performed

in a specific frequency window. Residual terms are defined as contributions due to

those modes which exist outside of the frequency range to be identified. It is found

that correlation is improved greatly by including residual terms, [37] for modes both

above and below the frequency window of interest. Since the discussion here focuses

on truncation of modes of higher frequency, the residuals due to higher frequency

modes are the focus of the remainder of this discussion.

While the two previous methods, the Mode Acceleration Method and the Finite

Element residual flexibility, expressed the displacement in the time domain, identi-

fication of this kind treats the displacement expressed in the frequency domain as a

transfer function from a certain loading. If all the modes were included, the transfer

function would have the form

qx; j c*(T O

W- ? - (4.34)

where the actuator and sensor are collocated at x.

In order to have a model that matches the data well when only N, modes are

identified, a residual stiffness is included

qN, N _ (_ x)_ 1 1 (4.35)
-= - W2 K. m.. (4.35)

In this instance the residual inertia [37] of modes below the bandwidth have been

included as well where mR.. is the residual mass. Comparison with Equation 4.19

indicates that the identified residual stiffness, Ka.., is just the static contribution

of the truncated modes. For collocated and dual sensors and actuators, the effect of

modes below a certain freqeuncy will always appear as a contribution of a pure inertia

or as a constant.

One final way to ensure inclusion of the complete static information is in a Rayleigh

Ritz assumed modes model where instead of including only the dynamic mode shapes

the static deflection shape or shapes are included in the set of comparison functions.
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This static deflection shape, assuming the SISO case, in most instances adds infor-

mation from the space spanned by the truncated modes. This method was used by

Anderson [23] in building a two-dimensional model of induced strain actuation.

The Rayleigh Ritz method begins with a representation of the physical displace-

ments by a summation of assumed shape functions. This set of assumed displace-

ment functions must satisfy the displacement boundary conditions and may include

the static deflection shape. If the assumed shape functions, save the static deflection

shape, are in fact chosen to be the exact mode shapes of the N, retained modes then

the shape function representation of the displacement is

N,.

q(x) = bi,(x) + cio(x) (4.36)
i=1

where O(x) is the static deflection shape. O(x) need not be orthogonal to the other as-

sumed displacement shape functions. The Rayleigh Ritz method produces orthogonal

estimates for the first Nr + 1 mode shapes, since N, + 1 shape functions were initially

assumed. Any Ritz mode shape, 4(x), may be expressed as a linear combination of

the assumed shape functions

N,.

'Ik(X) ai,kqi(x)+ ±(x) k = 1,2, ...- ,N. + 1 (4.37)
i=1

Clearly, the first N, mode shapes will be given by the exact mode shapes so that

4 (x) = Oi(X) (4.38)

4P2(X) = 02(X) (4.39)
... (4.40)

PN,.(X) = ON.(X) (4.41)

Finally, in addition to the N, dynamic mode shapes, there is an additional mode

which by the Rayleigh Ritz method is made orthogonal to the other modes yielding

OTMN.+1 = 0 i = 1,2,... --,N,. (4.42)
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which produces an expression for ai,N,.+

ai ,N,+1 = -- TM i = 1,2, ... ,N + 1 (4.43)

Using Equation 4.10 or 4.11 to substitute for the static deflection shape in terms of

all the modes
N -

ai,N,+1 = - M -- (4.44)
m=1 m i

and hence solving Equation 4.37 for 4N,+1

N, - N- N -

4)N,.+l(X) = j i~&) + Z X) =i W) (4.45)
i=1 i=1 I i=N,+1i

Expressing q in terms of the Ritz predicted modes
N,.+1

q(x, t) = (-icG (4.46)
k=1
N,.

- E 0 +k "N,.+1&N,+1 (4.47)
k=1
N,. N

- k(X)4k + > i(X) (4.48)
k=1 i=N,+1

which shows that using a static deflection shape in a Ritz method is just another

implementation of the second approach given by Equation 4.19. The (N, + 1)th mode

retains the static deflection information from all the truncated modes.

The same procedure can be used with a Finite Element model. If N modes are

calculated and N, retained, the static correction mode can be found by calculating the

static deflection j, and orthogonalizing it to the retained modes using Equations 4.37

and 4.43.

The previous three methods correct the response fro the static behavior of the

truncated modesby means of a static feedthrough term that is added to the transfer

function response so that the static behavior, the dc response, is correct at the sensor

location. In a state space model description, this would correspond to adjusting the

D matrix given the system of equations

S= Ax + Bu (4.49)

y = Cz + Du. (4.50)
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Note that this method does not augment the system order.

The inclusion of the static behavior can not improve convergence in the case

of a distributed load that can be decomposed into a finite set of mode shape basis

functions which all lie in the set of retained modes. One other instance where the static

deflection does not help convergence is when the truncated mode shape contributing

to the static deflection shape is unobservable from the sensor.

The effect of truncating modes well above the bandwidth, without taking steps

to retain their static correction, is to remove a small static contribution of that trun-

cated mode to the predicted system response. The effect on the zero is to over- or

underpredict it, depending on the type of modelling scheme being used. An example

is now given to show the improved zero convergence achieved by including the static

information in the models. A clamped-free Bernoulli-Euler beam with a collocated

transverse displacement/force S/A pair at the free end is the system to be modelled.

A Rayleigh Ritz assumed modes method is used. This problem is therefore identical

to example one of Section 4.1, except that one of the assumed modes is now the static

deflection shape of the clamped-free beam with a tip force. The results of the zero

predictions are shown for the first two zeroes in Figure 4.4. The zero predictions for

the Rayleigh Ritz model without the static mode shape is included for comparison.

The zeroes are plotted as a function of the number of assumed modes. For the case of

the static deflection shape included, N, - 1 dynamic mode shapes are included along

with the static deflection shape. The RR model including the static deflection shape

predicts the zeroes extremely well. There is an approximate improvement of four

orders of magnitude between the Rayleigh Ritz model without and with the static

deflection shape. The convergence rate of the RR assumed modes model which in-

cludes the static deflection shape is also much faster than that of the model without.

The convergence rate of the zero prediction does not decrease as the zero number

increases. The effect of the complete static information appears to improve the zero

predictions uniformly for successive zero number.
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degrees of freedom

Figure 4.4: First and second zero of a clamped-free beam with collocated tip
tranverse displacement/force S/A pair, Rayleigh Ritz model with
(x,+) and without (o,*) static deflection shape incorporated as
an additional assumed mode shape.
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The ability to improve the zero convergence rate by including the deflection shape

corresponding to the static deflection given a load entering at the actuator location,

motivates a look at the adjoint system. A deflection shape corresponding to imposing

a unit displacement at the sensor location could be included in the model, which

would correspond in a sense to the observability properties. For the collocated case

these coincide. For the non-collocated case they would not. The inclusion of the

static deflection shape corresponding to a unit load at the actuator location is only

appropriate when the actuator is a low impedance actuator. A high impedance ac-

tuator would require a static deflection shape corresponding to a unit displacement

deflection at the actuator location.

Truncating higher modes without retaining the static contribution of the trun-

cated modes removes residual stiffness of these modes and adversely influences the

prediction of zeroes. The solution for such truncation is straightforward and can be

done using one of the two generalized approaches outlined provided the truncated

modes are above the frequency range of interest. The second type of truncation,

where the "best" Nr modes are chosen for a model, may result in modes which are

truncated which fall below, within, and above the bandwidth within which the zeroes

need to be well predicted.

To determine the effect of such truncation it is necessary to evaluate why certain

modes would not be included in a model. Modal Cost Analysis (MCA) [38] is a

method for evaluating modes for truncation. The cost of mode i, Vi, is given by

1
Vi = ,[pT Qpi + rTQriw?](bTWb,) (4.51)4(jwj32 1

where Q is the output penalty matrix, wi is the frequency of mode i, (i is the modal

damping of mode i, W is the intensity of the zero mean uncorrelated white noise at the

control input location, bi is the control influence vector, and pi, ri are the measurement

vectors of the displacement and rate states. For control system design, modes which

have a low disturbability, low observability, high damping, or high frequency can be

seen to have low modal cost and hence are candidates for truncation. The question
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is then, does a low modal cost also mean that the contribution of that mode to the

zero predictions in the bandwidth is also negligible. This is clearly not the case. The

modal cost is not a measure of the importance of the mode for zero predictions. A

mode which may have low disturbability from a disturbance location may be highly

observable and controllable and have a non-negligible modal residue. A mode which

is only slightly observable may indeed have a low modal residue but depending on the

rate of change of the transfer function or singular values with respect to frequency,

a small modal residue could alter the frequency of the zero by a worthwhile amount.

Modes with high damping are just as likely to affect zeroes away from their corner

frequencies as modes with low damping.

The issue in this type of truncation however is no longer a simple question of the

residual stiffness. There are three zones where modes can be truncated, modes occur-

ing above, below, and within the bandwidth. Modes above the bandwidth contribute

a static stiffness term which can be compensated for by explicitly ensuring that the

static contribution of the truncated modes is included in the model as was shown in

Equations 4.17, 4.18 and 4.19, 4.20. Truncation of modes below the bandwidth re-

moves an inertia contribution as described in Equation 4.35. Modes truncated within

the bandwidth however are more difficult to correct for.

Such truncation in the bandwidth does not affect all zeroes equally. Pole cancella-

tion zeroes, the limiting case of a transmission zero are due to the loss of observability

or controllability of a particular mode and not on a summation of the contributions

of other modal responses. Transmission zeroes however will be affected by such trun-

cation methods.

Figure 4.5 shows a typical mode in the bandwidth that is to be truncated. For

frequencies well below its natural frequency, it acts like a pure stiffness and for fre-

quencies well above it, it behaves as a pure inertia. If the mode is modelled as

providing a pure static contribution, its effect is mismodelled for frequencies above

its natural frequency. It could be modelled as having a pure static contribution below
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its natural frequency and having no contribution above its natural frequency. The

effect of a direct feedthrough from the input to the output like a residual stiffness

would be captured in the state space form by the D matrix. Modelling this truncated

mode in the bandwidth by a step change in the static stiffness corresponds to a D

matrix that is a function of frequency, in this case, a step function. For frequencies

below the truncated mode, the D matrix would have a certain value to match the

static stiffness including the mode, and above the truncated mode, the D matrix

would be discounted by the static contribution of that mode. These two methods

of truncating a mode within the bandwidth ensure that the model order is reduced

but it is hoped that the ability to improve the accuracy of the zero prediction is still

improved.

The effects on the zeroes of the two types of truncation have been explored. For

any type of truncation, as more modes are included in the model, the zeroes predicted

approach the exact zeroes. The truncation type corresponding to the retension of the

first N, modes results in the truncated modes contributing a simple stiffness to the

response in the bandwidth. By fourier arguments, or based on experience from other

disciplines, it was shown that inclusion of the complete static deflection information

speeds both the convergence and the convergence rate of the zeroes. The convergence

rate of the zeroes is improved for all the zeroes by the inclusion of the complete static

information. If however truncation does not occur above the bandwidth, compensa-

tion for such lost modes is necessary to ensure quick convergence of the zeroes. Such

compensation may involve a frequency dependent D term. Model order reduction

for control system design is not necessaarily consistent with the objective of accurate

prediction of the zeroes.

4.3 Model Discretization Effects

Both truncation and discretization result in errors in the prediction of zeroes. For

example, in the case of an assumed displacement based model with compatible dis-
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placements and consistent masses, the zeroes will be overestimated due to constraints

on the allowable displacements. A Rayleigh Ritz assumed modes model allows only

certain constrianed displacements. A compatible displacement based Finite Element

model describes the system by only a finite set of points, producing further con-

straints. These constraints tend to stiffen the system and hence overestimate the

eigenfrequencies. The zeroes, being the eigenfrequencies of the infinite gain closed

loop system, are overpredicted as well.

Discretization has two constraining influences, a local constraint, and global con-

straint. One aspect of discretization involves the fidelity of assumed distribution

functions within. The second aspect of discretization is that the continuum to be

modelled is described by a finite set of points on the structure. This is the global con-

straint of discretization, the description of the spatial field by a finite set of sampled

points and parameters. The influence of these two constraints on the calculation of

zeroes are the focus of this section.

The effects of such discretization are studied by means of an example. The effect

of local fidelity is studied by considering two different interpolation functions, and

comparing the convergence behavior of the zero predictions. Compatible, consistent,

cubic and quintic assumed displacement function elements are assumed for a uniform

clamped-free Bernoulli-Euler beam with dual displacement /force S/A pair at the

tip. For loads entering the structure at the nodes, the cubic beam element can

capture the static information exactly. Unlike a Rayleigh Ritz assumed modes model

which only includes dynamic modes, a Finite Element model inherently contains

static information, if not exactly then at least approximately over each element. By

comparing the performance of these two element types with a Rayleigh Ritz assumed

modes model including a static deflection shape, the effect of the local fidelity may

be isolated.

To make such a comparison equitable, models of the same number of unconstrained

degrees of freedom (or states) must be compared. For the Finite Element models, the
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zero predictions are plotted as a function of the number of degrees of freedom (dofs).

For the Rayleigh Ritz model, N, - 1 dynamic modes and one static modeare used,

and the results are plotted as a function of N,.

The results are shown in Figure 4.6 for the Rayleigh Ritz model, the cubic and

quintic Finite Element models. The convergence rate of the quintic beam element

is faster than that of the cubic. This may be seen by the average slope of the zero

predictions as a function of the number of degrees of freedom. Looking at the funda-

mental zero prediction, an order of magnitude improvement in the error is visible for

low order models when the cubic and quintic are compared. Due to the higher con-

vergence rate of the quintic, the improvement grows with increasing number of dofs.

Using a cubic element, the second zero prediction has an error of 10%. While the

higher order interpolation functions allow a more accurate approximation to the mode

shape locally, the higher order polynomials make the system matrices less banded and

increase the computation required for solution. [39].

The effect of discretization of the field, or global fidelity, may also be seen in

Figure 4.6. The Finite Element and Rayleigh Ritz models both contain the exact

static deformation shape, and are compared for the same number of degrees of free-

dom. The remaining discrepancy between the models' zero predictions is due solely

to the discretization of the spatial field and the nature of the assumed displacement

functions. For a given interpolation function, as the number of degrees of freedom

is increased, the convergence of the Rayleigh Ritz model is consistently better than

the Finite Element. The performance of the zero prediction clearly increases as the

fidelity of the representation of the spatial field increases.

The two types of discretization effects on the zeroes, namely, fidelity on the global

level by number of nodal points, and fidelity on the local level by order of interpola-

tion functions have been examined. The zeroes predicted from a model are improved

as both the number of degrees of freedom is increased, and as the order of the inter-

polation functions used is increased.
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Now that the effects of truncation and discretization have been explored, it is

desirable to show that a truncated low order model can effectively capture the zeroes

by incorporating both high fidelity modes and the complete static information. The

same clamped-free beam with transverse displacement/force tip S/A pair is used

again. A cubic assumed displacement Finite Element model is adopted which includes

the residual stiffness to ensure that the complete static information is maintained in

the model even as the modes are truncated from the model. A 20 unconstrained

degree of freedom (ten element) model is used to discretize the structure. This 20

degree of freedom model produces an initial set of 20 dynamic mode shapes. This

set of 20 modes is then truncated to N, retained modes, the residual stiffness is

included in the model, and the first and second zero are calculated. Figure 4.7(a)

shows the first and second zero as a function of the number of retained modes. At

most 20 modes are included and hence there is a lower limit to the error in the zero

prediction at about 10- s and 10- for the first and second zero respectively. This

limit is represented by dashed lines. The first and second zero predictions for the

truncated models quickly approach the value predicted by a model of 20 modes. A

model with only six retained modes with a fidelity of 20 nodal dofs and the residual

stiffness included performs as well in predicting the first two zeroes as a model with

20 modes.

In this chapter, the effects of modelling on the zeroes have been examined. The

zeores converge in the same manner as the poles for a given modelling scheme. This

convergence property of the zeroes is valid for a system with collocated and dual

sensors and actuators, and for systems with unobservable or uncontrollable modes.

The effects of truncation of modes above the bandwidth removes a static stiffness

contribution. Including the complete static deflection information improves fourier

convergence of the system response and the zeroes in particular. This can be done

via an additional assumed mode or modes corresponding to the static deflection or

by including the residual stiffness correction as a feedthrough term in the D matrix.
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Truncation in the bandwidth of modes deemed unimportant in the control design

problem are not necessarily unimportant in the accurate prediction of system zeroes.

Modes truncated in the bandwidth needs to be compensated for by a D matrix

that may be frequency dependent. The effects of discretization showed that both

higher frequency sampling of the spatial field and higher fidelity of the interpolation

functions improve zero predictions. Zeroes can be well predicted with a few high

fidelity dynamic modes and the static behavior of the structure to the control inputs.
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Chapter 5

Conclusions and Recommendations

Conclusions

The effects on the zeroes of both physical design of the actuation and measurement

schemes as well as structural modelling methods have been explored. The relative

position of the zeroes to the poles is an easily measurable and physically significant

measure of the modal observability and controllability. There are two types of zeroes

for the square case, pole-cancellation zeroes and transmission zeroes where the pole-

cancellation zeroes are the limiting case of the a transmission zero as the observability

or controllability tends to zero.

The definition of a zero may take several forms and for the square case, four

definitions of the transmission and pole-cancellation zereos were given and shown to

be equivalent. Any of these zero definitions may be used to study the characteristics

of zeroes, whichever tends to be most convenient. The definitions were evaluated for

their ability to provide additional information such as controllability and observability.

Both SISO and MIMO definitions were presented.

After using the various definitions in different studies, the definitions may be

classified for utility in addressing issues. The residue expansion definition of a zero is

in a convenient form for exploring zero characteristics in terms of modal contributions.

The transmission blocking zero definition has the advantage of an explicit solution to

the zero in addition to the zero direction information. The root locus definition is a

convenient form for physical understanding of the interaction of input and output.
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By using the transmission blocking definition, a sensitivity analysis was performed

on the zeroes. The zeroes for a collocated and dual sensor and actuator pair are

insensitive to changes in the actuation and measurement locations in the vicinity of a

node, or a pole-zero cancellation corresponding to a simultaneous loss of observability

and controllability. The sensitivity of the zeroes for non-collocated and /or non-dual

sensor and actuator pairs is non-zero at pole-cancellation zeroes. The tests for modal

observability and controllability given by the zero directions become more sensitive

when the zero spacing is close.

All of the zero definitions specify that the zeores are a function of the actuation

and measurement mechanisms in addition to the structure to which they are coupled.

Sensors and actuators were then evaluated as input /output pairs by considering

three characteristics of a sensor or actuator: type, impedance of the actuator or

sensor relative to the structure, and location.

While collocated and dual sensors and actuators are guaranteed to produce alter-

nating poles and zeroes for any structure on which they act, another set of collocated

sensors and actuators called pseudo-dual can guarantee such pole-zero patterns on

particular structures. Collocated and dual sensors and actuators which operate on

modes separated by two spatial derivatives will produce alternating pole-zero pat-

terns on both purely sinusoidal and purely exponential structures. Collocated and

dual sensor and actuator pairs which operate on modes separated by one spatial

derivative can never produce alternating pole-zero patterns on structures governed

by purely sinusoidal mode shapes, although may produce alternating pole-zero pat-

terns on structures governed by exponential mode shapes, if the exponential behavior

is always consistently increasing or decreasing. The residue expansion definition of a

zero was used.

The impedance of the actuator and impedance of the sensor relative to the struc-

ture were studied parametrically via a simple reduced order model. All dual, and

collocated pairs produce alternating pole-zero patterns in the most general sense.
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Dual, positive complementary, and collocated S/A pairs ensure alternating pole-

zero patterns, save pole-zero cancellation at the center of the spectrum. Increasing

the impedance of positive complementary, dual, and collocated S/A pairs from low

impedance complementary extremes causes all of the zeroes to decrease. The relative

pole-zero spacing is largest at the complementary extremes, and is smallest (pole-

zero cancellation) when the complements are at the center of the spectrum. Positive

non-complementary, dual, and collocated S/A pairs still yield alternating pole-zero

patterns, save pole-zero cancellations. Negative complements and non-complements

may produce alternating pole-zero patterns as well. However, for certain combina-

tions of measurement, a non-minimum phase plant may arise. The non-minimum

phase zero is furthest away from the imaginary axis when d' is small. Traversing the

positive sensor spectrum of a dual S/A pair while leaving the relative impedance of

the actuator fixed, or vice versa, produces this same effect of stiffening or destiffen-

ing all of the zeroes consistently. The average slope of the transfer function may be

altered by varying relative spacing of the poles and zeroes in such a manner.

A study of sensor and actuator location was performed as the dual sensor and

actuator positions were varied parametrically on a variety of structures. An infi-

nite order model was used to remove truncation effects. The zero trajectories as

a function of spanwise location of the collocated sensor and actuator pair appear

similar to the mode shape squared. The migration of the zeroes for collocated and

dual S/A pairs are bounded by the poles immediately above and below, irrespective

of the rigid body or constrained behavior of the system. The zero migrations for

the unconstrained structure are smaller relatively to the pole spacing than those for

corresponding constrained systems.

As the sensor and actuator pair become non-collocated, the zeroes increase in

frequency, and for certain structures become non-minimum phase. The non-minimum

phase zeroes become of lower freqeuncy as the non-collocation distance increased. The

root locus definition of a zero was used to determine the zeroes for both the collocated
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and non-collocated cases.

The zeroes have increased sensitivity to the collocated sensor and actuator pair

location with increasing zero number. The zeroes also have zero sensitivity to sensor

and actuator pair location in the vicinity of a pole-zero cancellation, i.e., a node

location when the sensor and actuator are collocated.

In addition to the actuation and measurement mechanisms and the nature of

the structure, the zeroes are a function of the modelling scheme used to predict

the behavior of the structure. It was proven that for collocated and dual point

sensors and actuators that the zeroes converge in the same manner as the poles for a

given structural modelling method as the number of degrees of freedom in the model

is increased. Improvement in the zero predictions for a given number of modelled

modes may be accomplished by including the static deflection information into the

model. High fidelity mode shapes improve the zero predicitions for a given order

of the system. In particular, higher order interpolation functions improve the zero

predictions for a given number of degrees of freedom. Hence for a high fidelity model

in the control bandwidth, a low order model with high fidelity mode shapes and the

complete static information should be used. Model order reduction accomplished

by truncating modes in the bandwidth is not necessarily compatible with accurate

prediction of the zeroes in the bandwidth.

Recommendations

The issues of type, impedance of the sensor and actuator relstive to the structure,

and location may be explored further. Distributed sensors and actuators as well as

high order dual pairs should be investigated. Non-dual sensor and actuator pairs

may be investigated for their ability to induce missing zeroes to allow a possible gain

stabilized controller roll off.

The impedance of sensor and actuator can be extended by a more detailed struc-

tural model as well as a dynamic model of the actuator. The full effect of controlling

the relative spacing of the poles and zeroes for controlling hte backbone of the transfer
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function may be the basis of a verification and control design experiment.

The parametric dependence of the zeroes on location may be extended to collo-

cated and but non-dual systems. Will the relative pole-zero spacing be some coupling

of both mode shape types? Will there be non-minimum phase zeroes? Sensor and

actuator pairs on particular structures will need ot be classified into categories whcih

would or would not produce non-minimum phase zeroes.

The tradeoff between sensitivity of the zero to sensor and actuator locations at

particular structural locations and modal controllability and observability may be

incorporated into an optimization problem to place sensors and actuators most effec-

tively.

For large non-collocation distances it would be useful to generalize a test for the

type of structure which will yield non-minimum phase zeroes and which not. The

behavior of these real zeroes as a function of the damping level in the structure

should be investigated.

As for the modelling methods and errors introduced in predicting the zeroes, it is

recommended to investigate in particular the non-collocated and non-dual sensor and

actuator pair cases. Finite order modelling of a non-collocated system may predict

non-minimum phase zeroes which are actually only a product of truncation.

Truncating modes in the bandwidth should be studied to produce viable methods

for ensuring minimal disruption of the other dynamics in the model.

Modelling was approached for force type actuators and displacement type sensors.

Issues involved with displacement type actuators and force sensors may be investi-

gated as well.
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