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ABSTRACT

The behavior of feed-forward neural networks under faulty conditions is examined

using quantitative models. The madaline multi-layer network for pattern classification is used

as a representative paradigm. An operating model of the madaline network with internal weight

failures is derived. The model is based upon the operation of a single n-input processing node

in n-dimensional space. It quantitatively determines the probability of a node failure (incorrect

classification) under specified fault conditions. Resulting errors are then propagated through

network to determine the probability of madaline failure. The analysis is intentionally general

so that the models can be extended to other neural paradigms.

Thesis Supervisor: Dr. Wallace E. Vander Velde, Professor of Aeronautics and Astronautics
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CHAPTER ONE

INTRODUCTION

Processing architectures inspired by biological neural systems, so-called neural

networks, have been proven to excel at certain classes of computational problems. These

systems can modify their outputs in order to minimize some error function, essentially

performing non-linear optimization of a multi-dimensional function mapping. This ability to

learn, by self-tuning the processing topology to minimize output error, makes the systems

attractive for implementing functions that are not well understood or difficult to formulate

mathematically. Furthermore, the systems exploit massive parallelism through distributed

storage of global information to achieve a robust realization of this mapping.

Simulations of these architectures have demonstrated their utility for a variety of state

identification problems, particularly in pattern recognition. Hardware prototypes which

implement the algorithms in silicon are now being introduced for such problems. With the

continued advancement of the technology, it is inevitable that operational hardware

implementations will be deployed into meaningful systems in the next five years.

It has been conjectured that the fundamental properties of these systems make them

inherently fault-tolerant. Since state information is dispersed throughout the connection

weights of a large network, the argument goes, loss of any particular local data will not notably

disturb the global state representation, so the systems can withstand a degree of locally

distributed failures. Moreover, their internal thresholding logic is able to restrain the

propagation of errors. The most celebrated property is the architecture's ability to learn. This

means the systems can adapt to internal failures, effectively reconfiguring themselves around

failed elements.

Although these claims may have merit, there has been no examination of neural

network architectures resulting in quantitative metrics of performance under faulty conditions.



To date, the research has provided only qualitative analyses of particular properties and failure

characteristics of select network instantiations; for examples see [11, 33, 35, 36]. Given the

expansive progression of the systems and their likely deployment into substantive applications

in the next several years, it is clear that a quantitative measure of their fault-tolerance is in

order.

This thesis addresses the quantification of the performance of neural networks in the

presence of faults. It is the start of the formulation of a set of criteria that can be applied to

designing ultra-reliable systems.

The approach is to develop a model of the operation of a neural network under faulty

conditions. A particular feed-forward network is chosen as a representative paradigm. A

spatial analysis of the operation of a processing node, or neuron, is used to determine the

effects of faults in the network. Network reliability is determined by a systematic propagation

of the errors from failed nodes.

The purpose of this thesis is not a final pronouncement on the fault-tolerance of neural

networks. The models developed here, and the methods used to construct the models, serve as

an essential foundation for the rigorous analysis that must be partaken to determine the viability

of neural networks as reliable processing architectures.

A general discussion of the computational model of a neural network is omitted from

this work. The reader unfamiliar with the architecture and operation of these connectionist

systems is referred to the many references now available on the subject, including newly

available textbooks [20, 54], summary compilations [3, 46], and the seminal articles that span

the forty years of research of these systems referenced therein.

Chapter Two provides a detailed description of the madaline neural network, the

paradigm selected for study here. Since the failure models constructed later in the text are

based upon the operation of madaline processing elements, called adalines, particular attention



is given to the description of the adaline in that Chapter. This includes adaline learning,

although learning is not addressed in the failure models. It is hoped that this additional detail

will provide the unfamiliar reader with a more substantive understanding of this particular

neuron element.

Chapter Three comprises virtually all the novel work. The formal criteria for the

madaline failure model are presented first. Next, a spatial analysis is used to determine the

operation of an n-input adaline node. In §3.3, failure models of the adaline are constructed.

These models require evaluating the expected values of functions of random variables, where

the variables are the components of an adaline synaptic weight vector. The probability density

functions of those components are next derived. In §3.5, the models are evaluated. Closed-

form solutions for the probability of adaline failure are obtained. Monte Carlo simulations are

used to evaluate those equations. In the final section of Chapter Three, the adaline failure

models are combined to determine madaline failure.

Concluding remarks, including the identification of future research areas, are presented

in Chapter Four.



CHAPTER TWO

THE ADALINE AND MADALINE MODELS

One early computational model which continues to pervade fine grain parallel

architectures is the adaptive linear element, or adaline. The adaline was introduced by Widrow

[60] over three decades ago during the first wave of connectionist activity and was shown to be

a statistically-optimum, trainable classifier. Its utility as a statistical predictor led to its useful

application in real-time adaptive signal processing problems. Currently it is overwhelmingly

used in these contexts [64] and has had commercial success in the telecommunications

industry, particularly as an adaptive equalizer for digital modems and as an echo canceller in

long distance telephone transmissions. With the recent resurgence in neural networks, the

adaline has again become in vogue as a classifier.

In addition to being one of the earliest models for neural processing, the adaline is also

one of the simplest. This makes it ideal for study. Furthermore, it is so general in form, that

other, more complex neural models can be considered specializations of it. For example,

Rosenblatt's perceptron [38] can be considered to be an adaline with additional random fixed

weights and asymmetric Boolean input and output values. Also, if a sigmoid function replaces

the hard-limiter in an adaline, the popular back-propagation learning method [40] can be used

to train a network of adalines. In fact, nearly all non-stochastic connectionist processing

systems are generalized by the adaline model. For this reason, the adaline is chosen as a model

for study here. The failure models which are developed in Chapter Three will similarly be

broad representations which can be tailored to the parameters of other neural processing

models.

This chapter describes the operation of the adaline in both recall and learning phases.

After a review of single element operation and capabilities, the incorporation of the element into

a network of many adalines (a madaline) is discussed. The acronyms adaline and madaline,

incidentally, were coined by Widrow.



2.1. A SINGLE PROCESSING ELEMENT: THE ADALINE

The adaptive linear element is a processing node which performs a weighted sum of its

inputs followed by a hard limiting threshold function. A diagram of an adaline is shown in

Figure 2-1. The adaline has n inputs, xi, i = 1, ... , n, and one output, y. The inputs and

output take on binary values. Unlike conventional Boolean representations, however, the

inputs and output are symmetrically-valued: each may be either +1 or -1. This approach

simplifies the mathematical analysis and allows for inhibiting signals (at level -1) to be readily

utilized.

X 1 w1
X2 WS

X n wn

Figure 2-1: An Adaptive Linear Element

Each input is multiplied by a weight value. Thus, there are n weights, wi, i = 1, ..., n,

corresponding to the respective inputs. Weights have continuous values and can be positive or

negative (or zero).

n

A sum of the weighted inputs is first performed in the node. The result is s = Xxiwi.
i=1

If the inputs xi and wi are considered to be the elements of two n-dimensional vectors x and w,

X = X2 W W2

-xn. -wn-
then the sum can be written as the dot product of the two vectors. Thus,

s = x ow = XTw = WTX

The sum is fed to a threshold element with parameter 0 to yield the node output y. The

threshold function is depicted in Figure 2-2. Thus, the output can be written as a function of

the input and weight vectors and the threshold value:



y= SGN{xow-06} (2-1)

where SGN{ } simply takes the sign of its argument.

X*W

Figure 2-2: Hard Limiting Threshold Function

2.1.1 Adaline Classification

The adaline can classify input sets into two categories, a +1 or -1 category, as specified

by the output. If the argument of eq. (2-1) is set to 0, the decision boundary in n-dimensional

space, 91n , of the adaline is found:

x o w = 0 (2-2)

This is an (n-1)-dimensional plane (a hyperplane) in input space 91n, given by the equation:

n - x 1 w1 - X2 W2 - ... - XnlWn- 1 +0 (2-3)
W

n

Classification can be seen with a simple 2-input adaline example (Figure 2-3). The

adaline schematic is shown in part (a) of the figure and the 4 possible input combinations,

(±I1, ±1), are shown in 2-dimensional space in part (b). Suppose input (+1, +1) is assigned to

the set A and the remaining inputs to the complement set, A. Any number of lines in the input

space can be drawn to separate those inputs, that is, to make that decision boundary. A

particular one is shown in the figure. The line has the equation x2 = -X1 + 1.

From eq. (2-2) the decision boundary of this example is x1wl + x2w2 = 6, which can

be manipulated, as presented in eq. (2-3), to obtain a linear equation for x2 in terms of xl and

0:



W1
x2 = - X1 + (2-4)W2 W2

wi 0
The resulting line (a hyperplane of dimension 1) has a slope of - - and an x2-intercept of w

If w1, w2, and 0 are all set to 1, eq. (2-4) is x2 = -X1 + 1, precisely the line drawn in Figure 2-

3b. Now if the set A is equated with a y value of +1 and the set A with a y value of -1, the

adaline with w, = w2 = 0 = 1 will perform the desired classification, creating the decision

boundary shown in Figure 2-3b. By varying the parameters Wl, w2 and 0, other decision

boundaries can be drawn.

(-1,.

xi W
X2 W2Y

(-1,

Xi

1)

(a) Schematic Representation (b) Input Space

Figure 2-3: The 2-input Adaline

2.1.2 Simplifying the Adaline Equations

One of the characteristics of the adaline, and of all neural network processors, is

regularity. Regularity affords easy replication and streamlines mathematical analysis.

Although it may be obvious that the input weights of an adaline can be readily modified to

perform a classification function, the requirement to change the threshold parameter, 0, for

each adaline does not appear to be a simple task. In the model described by eq. (2-4), a new

threshold function must be constructed (with a new 0) in order to move the x2 intercept of the

decision boundary.

In fact, the model can be altered to make the adaline structure more regular. The

threshold function is simplified by setting 0 = 0 for all adalines. The variability of the



threshold parameter can be recovered by adding a new input, x0 a +1, and weighting that input

by wo. Thus, the strict definition of the adaline function, originally described by Widrow [60]

is given by

y = SGN {xiwi (2-5)

The adaline is shown in Figure 2-4.

+1

X1
X2

Xn

y

Figure 2-4: The Adaline

The general n-1 dimensional hyperplane is determined by

xn -wo - xlwl - x2W2 - ... Xn-1Wn-1 (2-6)
Wn

The new weight, wo, is -0 of the original model. In the 2-input example, eq. (2-4) becomes,

wl w0
x2 = X1 -wo

w2 W2

Figure 2-4 and eq. (2-5), where x0 =- +1, will be used for the remainder of this work as the

adaline definitions.

2.2 TRAINING AN ADALINE USING LMS TECHNIQUES

The adaline has the ability to classify its inputs into one of two categories. In the

example of the previous section, a two input adaline was programmed to perform as a logical

AND gate. That is, if -1 is equated with logical FALSE (F) and +1 is equated with logical TRUE

(T) , then the output, y, is T if and only if input xi is T AND input x2 is T; otherwise y is F.

With w1 = w2 = +1 and wo = -1 (the weight values have no logical significance and are

coincidentally +1 and -1), the AND function, tabulated below, has been constructed.



-1, F

-1, F

+1, T

+1, T

-1, F

+1,T

-1, F

+1, T

y = (x 1 AND x2 )

-1, F

-1, F

-1, F

+1, T

Figure 2-5: Logical AND Function Constructed by the 2-input Adaline of §2.1

In this example, the adaline was programmed. That is, eq. (2-6) was analytically

solved for wo, wl, and w2. (There were three unknowns and 1 equation, so two variables

were arbitrarily set to +1.) Programming the weights of an adaline becomes difficult,

however, as the number of inputs grows large. If the analytic classification function is not

known (if the location of the hyperplane is not known) programming becomes impossible. 1

For example, suppose the input vector represents a 2-dimensional pattern of a binary image and

it is desired to have an adaline determine if that image is a filled-in circle. It would be a very

difficult task to identify a priori the placement of the hyperplane decision boundary on the input

space.

As its name implies, however, the adaline can be made to adapt itself in order to

perform the classification. When presented with the set of inputs and corresponding outputs,

the adaline can adapt its weights so that the appropriate classification will be performed. This

process is called learning and is one of the fundamental properties of neurocomputing systems.

It obviates the need for analytical solutions to classification problems and the ensuing

programming which is requisite for all conventional computing systems. The neural approach

also allows, simply upon presentation of examples, abstraction of concepts to statistically

resolve the key features of the input space and generalization to situations never before

encountered.

1. If the hyperplane location is known, a look-up table or other less complex method could be used to perform
the classification.



In this section, adaline learning is examined. It is shown that the adaline can learn a

classification in an optimum manner by using only information available only locally, that is,

by using only the input and weight vectors, the desired output, and the current output, which

may be in error. The adaline adjusts its weights to minimize this error.

2.2.1 Training Based Upon Output Error

The adaline can learn a classification function simply upon repeated presentation of

pairs of input vectors and corresponding desired outputs. This process is called supervised

learning because a supervisor is required to present the adaline with the desired output category

for the input vector. 2 Thus, the availability of an output training signal is assumed. For large

input vectors (representing, for example, a two dimensional pattern) this is a non-trivial

assumption: it is not always clear which is the appropriate classification, and if it were a look-

up table may well suffice for the task.

Consider the following process. A specific input vector x 1 with a desired

classification, Yd, is presented to an arbitrarily configured adaline. The adaline settles to an

output, y, based upon its arbitrary weights, w. An error signal, e, is constructed from Yd and

y. The signal E is a penalty or cost function of output y with respect to Yd , = C(y, Yd). The

weights are then systematically adjusted until the error is zero or the cost is minimized in some

reasonable sense. If the error is zero, then the adaline has been properly adapted and it has

"learned" the classification of that specific input vector xl. This process can be repeated for

multiple pairs of vectors and desired classes, { Xi, Ydi }. If the cost is optimally minimized, the

adaline has learned to the best of its ability. When the error is zero for all vectors, the adaline

has learned the appropriate classification.

2. Another form of learning, called unsupervised or self-organized, obviates the need for the training input.
Two of the more popular unsupervised learning methods are Kohonen's self-organizing map [26] and the
adaptive resonance theories of Grossberg and Carpenter [52].



The principal challenge to creating a supervised learning scheme is the derivation of a

systematic weight modification method which will converge to some optimally minimum net

error. For example, in a poor learning scheme, the weight modifications which may be

required to learn the classification of a second vector, X2, may completely destroy the learned

classification of xl.

Consider the cost function as a surface above a multi-dimensional plane of its

arguments. If the cost function is quadratic in its arguments, its surface will be a paraboloid

with a single (global) minimum. The principal method of iteratively finding the minimum of

such a surface from an arbitrary starting location is gradient descent [63]. In this method, a

change in the arguments of the cost function is made in the opposite direction of the gradient of

the surface, that is, in the direction of steepest downhill change. Figure 2-6 illustrates gradient

descent with one argument only.

X = Xk

Figure 2-6: Gradient Descent Minimizing with One Argument

Because the adaline performs a linear sum of weighted inputs, a cost function which is

quadratic with adaline weights can be constructed and a gradient descent method can be used to

iteratively modify the weights until the minimum is reached. Finding that cost function was the

breakthrough of Widrow which has made the adaline widely applicable.

2.2.2 Gradient Descent for Least Mean-Squared Error

Consider the error with respect to the linear sum. Let the error signal be equal to the



difference between the desired output, Yd, and the sum, s, and be denoted es. The presence of

a possible negative value for es is bothersome since minimizing this error would lead to driving

the adaline to a negative error, not a minimum net error. To avoid this problem, it is

appropriate to square the cost function. Thus the error signal can be defined as

(s) 2 = (Yd- S)2

= (Yd - xTw)2

Clearly, (es) 2 is a quadratic function of the weights w. It is a paraboloid with a global

minimum w* (at a constant x and yd), as illustrated in Figure 2-7.

Figure 2-7: Minimum of a Parabolic Cost Surface

The actual output error is ey (Yd - y). But, (Fy) 2 is a monotonic function of (Es) 2 [60].

That is, as (Es) 2 increases, (ey) 2 increases; as (Es)2 decreases, (Ey) 2 decreases. Minimizing

(Es) 2 will therefore minimize (ey) 2. This means that w*, the minimum of the parabolic function

(Es) 2, provides the least mean-squared output error of adaline.

In both the training and recalling phase of adaline operation, the input vector is assumed

to be random. Thus (Es) 2 will be a random variable with an expected value E { (Fs)2 }. From

the definition:

E { (es)2 } =E { (ydd - xTw) 2

and since xTw = WTX (a scalar),

. . i



= E { (yd - wTx) (yd -xTw)}

= E { (yd)2 - 2ydXTW + WTXXTW I

E{(Es)2 } = E{(yd)2 } -2E{ydxT}w +WT E(xxT}w

The input vector is assumed stationary, that is, its statistics do not vary with time. If p is

defined as the cross-correlation of the input vector and the desired response scalar and R is the

input correlation matrix:

p - E{ydX)

R - E{xxT}

then

E { (cs)2 } = E { (yd) 2 }- 2 pTw + wTRw

Recognize that Yd = +1, so that E (yd)2 } = 1:

E { (s) 2 } = 1 - 2 pTw + wTRw (2-7)

It is desired to minimize this expected value. Gradient descent in weight space is used.

The gradient of E { (e~) 2 } is

V E (s) 2} - E{ (s)2 } (2-8)

and from eq. (2-7)

VE{ (e~s)2 } =- 2p + 2Rw (2-9)

The argument of the minimum value, w*, is reached when the gradient is zero:

0 = V Et (es) 2 } =-2p + 2Rw

which yields

w* = R- 1p

The minimum error is found by inserting w = w* into eq. (2-7):

E { (Es) 2 } = 1 - 2 pTR-lp + pTR-1RR-lp

= 1 - 2 pTR-1p + pTR-1p



E(Es)2 } = - pTR-lp

The gradient descent method dictates the change from an arbitrary weight vector, Wk, to

the next Wk+1, where the index represents an iteration number:

AWk =-}Vk

Wk+1 = Wk + AWk

where .t is a constant which determines the rate of change and guarantees convergence. Using

eq. (2-9)

Wk+1 = Wk + t(2p - 2Rw) (2-11)

Unfortunately, all statistics required to implement eq. (2-11) are not known. If they

were, w* = R-1 p could be used to minimize E t (F,)2 } directly. Instead of the true gradient, an

estimate of the gradient must be made.

The easiest estimate of the expected value of (es) 2 is (Es)2 itself. That is, define
A
Vk - E(ps)2 = V E t (es)2}

= (Yd - XTw) 2

= -2 x(yd - xTw)
A

Vk = -2xgs (2-12)

So that the weight change using the estimated gradient is

A

AWk = -lrk

so Wk+1 = Wk + 2txes (2-13)

Note the simplicity of this algorithm: all information required for each weight change is local to

the adaline. The new weight is simply the current weight modified in the direction of the input

vector (x) proportioned by the adaline sum error (Es).

Although an estimate of the gradient is used in the iteration process, convergence to the

minimum error, as dictated by the true gradient descent, is still guaranteed. To see this, take

the expected value of the gradient estimate. From eq. (2-12),

(2-10)



A
EtVk} = E{-2x(yd- xTw)}

-2EX { (yd- xTw)}

= -2E { xyd -xxTw}
A

E{Vk} = -2E{xydI +2E{xxTw}

which from the definitions becomes

A

E{Vk} = -2p+2Rw

which is the definition of the gradient from eq. (2-9). Thus

A

E{Vk} = Vk

Eq. (2-13), often called the Widrow-Hoff or Delta rule, presents a method for adjusting

the weights of an adaline which minimizes the output error. If the input training vectors are

independent over time, for a large number of trials the Delta rule will converge to the minimum

error given in eq. (2-10) [63].

2.3 LINEAR SEPARABILITY

The perceptive reader will note that a single line cannot create a decision boundary for

all possible binary classifications of adaline input space in Figure 2-3. Only classifications

which are determined with a single line can be implemented. Inputs which can be classified in

this way are called linearly separable. In n-dimensional space, linearly separable inputs can be

separated by an n-1 dimensional hyperplane.

The notorious example of linearly inseparable classification is the Boolean exclusive-or

(XOR) function. In two dimensional adaline input space, the XOR function is TRUE (+1) for the

set of inputs which differ in sign, namely, (-1,+1) and (+1,-1). The function is depicted in

Figure 2-8. As can be seen, no single line can separate the two classes of inputs.

In their compelling 1969 treatise Perceptrons [32], Minsky and Papert argued that the

inability of neuronal elements such as the adaline to perform linearly inseparable classifications



X2
= +1--

(-1,+1) 0

(-1, -1) 0 -

-y = -1

- (+1, +1)

a 2 X1

Ho (+1,-i)

(a) Input/Output Function (b) Input Space Classification

Figure 2-8: The 2-input XOR function

severely limited their computational capacity. Their work was so convincing (because it was

mathematically rigorous) that research at the time went into remission for well over a decade.

The XOR problem epitomizes their arguments.

For the 2-input adaline, there are 22 possible input combinations. Since the output is

binary each of the 4 input combinations can take on 1 of 2 values. Thus, there are 2(22)

possible classification functions. Of these 16, only 2 require classification of linearly insep-

arable functions: the XOR and its complement, the XNOR. However, in the more general n-

input adaline, there are 2(2n) possible input classification functions and the number that require

classification of linearly inseparable inputs becomes a larger fraction of the total. It has been

shown that as n approaches infinity, the percentage of linearly separable classification functions

in the ensemble becomes zero [56]. Thus, for a reasonably large adaline, Minsky and Papert's

concerns are legitimate.

The inability of the adaline to perform linearly inseparable classifications is clear from

the semantics: the decision boundary created by an adaline in its input space is linear and can

therefore only separate inputs which are linearly separable. To implement a non-linear

separation, a non-linear decision boundary must be constructed.

Recall that the decision boundary is determined by setting the argument of SGN {* } in

eq. (2-1) to zero. In that equation, the argument is s = 0 + w x1 + ... + wnxn, a linear
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function of the inputs. If this argument is changed to a generalized non-linear function of the

inputs, non-linear separation can be implemented.

For example, let the non-linear sum, s', be defined as

S' = w0 + wlx1 + wll(Xl) 2 + W2X2 + W22(X2) 2 + Wl2X1X2

and the weights to be programmed as wo = 0.25, Wi = w2 = 0, Wi1 = w22 = -0.5, and wl2 = -

0.875. These parameters yield the decision boundary of Figure 2-9, where the inputs inside

the ellipse are classified as y = +1.

X1

Figure 2-9: Non-Linear Decision Boundary for the XOR Function

Clearly, the key to implementing linearly inseparable classifications is to apply a non-

linear function to the inputs. The question then becomes how to create the non-linearity. After

all, the elegance of the LMS algorithm is due to the linear combination of the inputs yielding a

quadratic error surface in weight space.

In fact, a non-linearity is readily available in the form of the adaline threshold. The

inputs can be "preprocessed" with adalines to obtain a non-linear function of the inputs. Since

the threshold is not a generalized polynomial, not all classifications can be implemented with

one layer of preprocessing. As shown in the next section, two preprocessing layers - for a

total of three layers - are required to implement any arbitrary mapping. 3

3. Viewed in another way, adalines which implement the logical NAND can be used as building blocks for
larger functions [2]. Since all logical functions can be constructed from NAND elements, a network of



2.4 MANY ADALINES: IMPLEMENTING ANY CLASSIFICATION FUNCTION

It is clear that a non-linear operator must be applied to the inputs of an adaline in order

for the device to perform a linearly inseparable classification. If adalines are used to realize this

preprocessing, a layered network of many adalines - a madaline - is created.

A madaline is a network of layers of adalines. A three layer madaline with equal

number of adalines per layer is shown in Figure 2-10. (Weights between adalines are not

shown for simplicity.) In general, the number of adalines per layer can vary. Full connectivity

between layers is usually assumed (a weight of 0 is equivalent to an open connection), but the

topology is strictly feed-forward: no feedback paths are allowed.

single n-input adaline

x .

x

x

Yl

Y2

Yn

Figure 2-10: A Three Layer Madaline

In Figure 2-3, a single adaline formed a single line in the adaline input space. Two

adalines with the same inputs can form two lines. In general, m adalines can form m decision

hyperplanes.

Figure 2-3b is repeated below (Figure 2-11b) with a new decision line separating an

additional classification, B and B. Two adalines, configured as shown in Figure 2-11 la, are

used to create these two lines.

adalines can implement any logical function.
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Figure 2-11: Additional Classification of Adaline Input Space

The two outputs, Yi and Y2, which classify all four inputs into both classes A (A) and

B (B), respectively, can be fed to a third adaline. Since A is represented by yi = +1 and B as

Y2 = +1, these two outputs can be used as the inputs for the third adaline. To implement the

XOR, the desired classifying set is A AND B, so the third adaline must implement the Boolean

function y3 = y1 AND Y2, a linearly separable function realized with wo = -1, wl = -1, and w2

= +1. The three adaline structure with the classification of the inputs is shown in Figure 2-12.

Thus the XOR function, which is linearly inseparable, can be implemented with 3 adalines

assembled in a two layer structure.

+1

y3

+1

Figure 2-12: A Three Adaline XOR

The network of Figure 2-12 forms a region { A AND B } in adaline input space by

x

x

+1 
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bounding it with 2 decision lines. Additional regions can be formed using additional adalines

in the second layer. More complex regions can be formed using additional adalines in the first

layer. In principle, a two layer madaline with sufficient number of adalines in each layer can

form any number of convex regions in the input space. If convex decision regions are all that

is required, a two layer network will suffice.

To implement decision regions which are more general than convex, an additional layer

is needed [28]. An adaline can create arbitrary regions from convex regions, so the convex

regions created in the second layer must be fed to a third layer. The second layer becomes

"hidden", forming an internal representation of the input space [40]. The third layer which has

formed decision boundaries of arbitrary geometry can implement any classification function

and acts as an output layer.

Thus, a three layer madaline neural network with sufficient numbers of adalines in each

layer can implement any classification function. A formidable problem, however, is

determining the number of adalines required for a particular classification task. A larger

problem is assigning the weight values. For n adalines in a network, the assignment of

weights to implement a classification function requires satisfying O(n 2) constraints. Similar to

the single input adaline, if the analytic classification function is not known - if all of the

boundaries of the classification region are not known a priori - learning must be used. This is

the subject of the next section.

2.5 MADALINE LEARNING

Learning in a madaline network is similar to adaline learning in that it is based upon

error feedback. Madaline learning, however, is plagued by the problem common to all non-

linear multi-layer adaptive neural networks: credit assignment [32]. The dilemma is

determining the effect of network parameters, namely, the synaptic weights, on the output error

of the network.



In a single adaline, a parabolic cost function can be created and the minimum error can

be found through gradient descent. In a multi-layer network, the cascaded non-linearities

prohibit the construction of a parabolic error surface. The output error surface is arbitrarily-

shaped. A global minimum may exist, but reaching it through gradient descent is virtually

impossible due to the local minima which permeate the surface.

The back-propagation learning rule [40] exploits the sigmoidal nature of its neuron

threshold function. Using the derivative chain rule, the change in output error for network

parameters is propagated backward through the network layers.4 Even so, convergence to an

absolute minimum error is not guaranteed. The step threshold of the adaline has an infinite

derivative and thus prohibits such an approach.

The madaline network has evolved in stages since its original introduction 30 years ago

[56]. The learning rules have also evolved with the architecture. Through the history,

however, all madaline learning rules have been based upon the simple principle of minimal

disturbance. In Widrow's words [64]:

When training the network to respond correctly to the various input patterns, the
"golden rule" is to give the responsibility to the neuron or neurons that can most
easily assume it. In other words, don't rock the boat any more than necessary
to achieve the desired objective.

The minimal disturbance principle is best embodied by madaline learning rule II (MRII)

[67]. Consider a network of adalines which is presented with an input pattern, x. If the output

classification, y, is in error, then weights of the adalines in the first layer are perturbed to

determine their effect on the output. The adaline in the first layer whose weighted sum is

closest to zero is perturbed first. That is, the adaline whose weight change will have the

minimum disturbance on the network is given a first attempt at reducing the error. The

perturbation is such that adaline output changes sign. If this perturbation reduces the network

4. Since back-propagation uses the gradient descent techniques of Widrow, it is sometimes referred to as the
generalized Delta rule.



output error, the weight changes are accepted; otherwise, the changes are rescinded. The first

layer adaline whose weighted sum is the next closest to zero is then perturbed. This process

continues for all first layer adalines and then to all subsequent layer adalines until the network

error is zero or all adalines have been perturbed. This tedious process is not computable

locally, but has shown acceptable results.

The next generation of madaline learning rules, MRIII [4], propagates an estimate of

the error gradient backward through the network layers. It has been shown to converge to the

weights which would have been found using back-propagation. That is, the madaline rules are

globally calculated versions of the local back-propagation of errors. It is important to

remember, however, that convergence of madaline to zero error using any rule - or for that

matter, convergence of any multi-layer perceptron network to zero error - cannot be

guaranteed, except for particularly well-behaved input sets.



CHAPTER THREE

FAILURE MODELS

In this chapter, a failure model of the adaline is constructed. The approach is to

examine the operation of an n-input adaline in (n+1)-dimensional space and is an extension of

Stevenson's weight sensitivity analysis work [50]. Given specific fault modes, the model can

be evaluated to determine the probability of adaline failure under faulty conditions. The models

of many adalines connected in a feed-forward topology are then combined into a madaline

failure model. Since the madaline architecture is a generalization of many different feed-

forward neural networks, the models can be used for further study of other networks.

Clarifying definitions of the failure model and fault modes which will be considered are

presented first. Next, the operation of a single n-input adaline in 9 n + 1 is described. From

this, a failure model of the adaline is developed which treats all failures as weight perturbations

and describes the operation of an adaline as a function of the perturbation. After identification

of the probability distribution for the adaline weights, the specific fault modes are inserted into

the failure model and the probabilities of failure are determined. Extensions are then made to

the madaline network.

3.1 MODEL CRITERIA

In this work, a failure model of an adaline is desired which can be extended in some

manner to evaluate a madaline network of arbitrary size. Ideally, the adaline can be considered

as a "black box" with inputs, outputs, and an internal mapping function. The goal is to

determine the probability of failure of the black box. Extension to a madaline network failure

model can be realized through a systematic assembly of black box models. The probability of

madaline failure can be determined from a combinatorial aggregation of adaline failure

probabilities.



A necessary foundation for achieving that goal is a clear understanding of the terms

associated with dependable computing. In the vernacular of the technical community [5], the

adaline is a resource which provides a service. This service is a mapping of an input vector, x,

to an output scalar, y, by a specification, S, such that y = S(x). If the actual output, y', does

not agree with the specified output (for the same input), then the output y' is in error and the

resource has failed. The failure is caused by one or more internal resourcefaults.

Figure 3-1 depicts the adaline as a black box resource. It provides the specified service

stated in eq. (2-5):
n

y = SGN{• xiwi } (2-5)'i= 0
In this context, the adaline service is binary classification for the n-dimensional input vector.

The linear summer and threshold units in the adaline provide the capability for that service.

The particular classification function is the service specification and it is determined by the

weight vector 1, w = [wo w, ... wn]T. Note that the adaline is being considered only in its

feed-forward (or recall) operation: no learning mechanism is associated with the resource of

Figure 3-1.

X 1
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xn
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RESOURCE

Figure 3-1: The Adaline as a Black Box Resource

With these basic definitions in hand, the purpose of the failure model can be stated

1. Normally one would say that the specification determines the weight vector, but this discussion is for
general adaline operation. A weight vector can be determined through programming or training, but even an
arbitrary weight vector will result in some service specification.



succinctly: the model will determine the (conditional) probability of adaline failure, given some

internal adalinefault. In other words, assuming the adaline weights have been set such that a

specified service is provided and given some internal adaline fault, the failure model will

determine the probability of the misclassification of the input vector. Note the underlying

assumption that a fault-free adaline does not misclassify. By definition, an adaline with a

specified weight vector provides a specified service. It is true that a single adaline is incapable

of providing a linearly inseparable classification service, but a fault-free adaline is guaranteed to

perform the service specified by its weights.

Since the adaline is defined as the resource of interest in this work, it should be clear

that the failure model does not consider adaline training. Although adaptability is an important

fault-tolerance attribute, by no means does it guarantee that the adaline can learn around all

possible faults. Consideration of adaline adaptability requires a thorough evaluation of a

specific learning rule in the context of the assumed topology. Instead of examining the

performance of particular learning schemes, this work is meant to evaluate the fault-tolerance of

a neural network in the recall phase. The work can be compared to similar studies of

heteroassociative or autoassociative memories (a.k.a., content addressable memories) when the

input vector is incomplete. 2 Here, the probability of (correct) madaline recall will be

determined, given some internal memory fault.

Since the failure model assumes some internal resource fault has occurred and

determines the probability of correct operation (classification) conditioned on this event, the

selection of the fault event is the underpinning of a valid failure model. In Chapter Two, the

weight vector was shown to create a hyperplane which separates the adaline input space.

Changes in the weight vector change the adaline classification by moving the hyperplane. A

reasonable fault to consider, then, is a perturbation of the weight vector. In fact, except for

2. Kohonen [25] offers an extensive review of these systems.



pathological cases3 , faults in the summer or threshold units can be modelled as weight faults by

moving the decision hyperplane to emulate their effect and altering the weight vector to produce

the new hyperplane. For example, a stuck-at-one failure occurs when all inputs are classified

as y = +1. A weight vector of w = [a 0 ... 0]T, a > 0, could be used to model this failure.

From a practical perspective, since weights far outnumber 4 other components in a physical

implementation, weight faults are the most meaningful events for study. Furthermore, in a

practical setting weights are likely to be more failure prone since they must be a dynamic

media, while the summer and threshold units can be constructed from fixed electronic devices.

Thus, for this work, the following supposition applies: Since the adaline failures are

considered to be input misclassifications and are caused by some internal adaline fault, and

adaline weights determine the classification function by positioning the decision hyperplane,

then all faults are considered weight faults or can be emulated by weight faults.

The next logical question concerns the type of weight fault: which weight faults should

be considered in the analysis? In search of an answer to that question, consider an electronic

implementation of an adaline. An input would be amplified by a weight value which can be

positive or negative. A physical realization, however, must place a limit on the maximum and

minimum values which can be achieved. For example, an operational amplifier will saturate at

its rail voltages. One reasonable fault mode to consider, then, is the driving of the weight from

its preset value to one of its possible rail values. This will be called a railfault. For simplicity,

assume the rails are at ±1. A rail fault, then, is a change in a weight from its original value to

its rail value, wi -- ±1.

A second likely fault is the disconnection of a synapse such that the input at that

3. A pathological failure would be an adaline which no longer implements a linear hyper-"plane", i.e., the
decision boundary is non-linear.

4. In a single madaline layer with n adalines, there are n2 weights and n summers and threshold units. For n =
20, weights account for over 90% of the components; at n = 100, representing a pixelated 10 by 10 window
for image recognition, weights account for 98% of the components.



synapse does not contribute to the internal summed value. This disconnection can be

represented by a zero weight value for that synapse, wi --+ 0. This fault will be called a zeroed-

weight fault.5

A failed adaline produces an output y' which has the opposite sign of its non-failed

output. Adalines in the adjoining layer whose inputs are attached to the failed adaline thus

receive an erroneous input. With some probability, a non-faulty adaline with an erroneous

input will produce an output different than the output with error-free inputs. That is, with

some probability the adaline with an erroneous input behaves as if it had failed. This failure

can be modelled as a weight fault, the fault being a change of sign in the weight component.

Although its physical manifestation is unlikely, such a fault is paramount for modelling errors

which propagate through the network and will be considered as an adaline fault mode. This

fault will be called a sign-change fault.

Of course, many other classes of weight faults exist and could be enumerated ad

infinitum. The rail fault and the zero weight fault represent the extreme fault modes which

could beset an adaline. Using these faults in the failure model should result in a conservative

estimate of the probability of correct adaline operation since it is unlikely that a small weight

perturbation would cause an adaline to fail while a weight change to -1, +1, or 0 would not.

The sign-change fault is useful in propagating adaline failures through the network. These

three fault modes will be used in the remainder of this work to determine their effect on adaline

operation.

A final pronouncement on faults is in order before the model criteria are summarized.

The model developed in the subsequent sections is a static one, that is, the analysis is

performed for a fixed state of the system. This requires faults themselves to be invariant in

time: the model assumes a fault occurs and stabilizes and the analysis on the faulty adaline is

5. Note that a dead short in a synapse is equivalent to a +1 rail fault.



performed. Dynamic faults, those which vary with time, require careful analysis but can be

treated as a succession of static faults. Transient faults, those which are present for only a

limited time, may produce transient errors; the failure model will determine the probability of

adaline error while the fault is present.

The model criteria described in this section can be summarized as follows:

* The adaline is considered to be a resource which provides a service.

* The service specification is determined by the adaline weight vector,
w = [wo wi ... wn]T.

* The single adaline possesses only recall capability; no learning
mechanism is assumed.

* The adaline fails if its output does not agree with the specified output for
the same input; the output in such a case is considered in error.

* Since adaline weights determine the adaline service by positioning a
decision hyperplane, all faults in the adaline are modelled by weight
faults.

* Two fault modes, twi -- ±1, and wi -* 0 }1, are assumed to cover the
range of adaline faults and offer a conservative estimate of the
probability of adaline failure. A third fault mode { wi -- -wi} is used to
propagate failures through the network.

* Faults are assumed to be static; model analysis occurs on a stable
system.

With the criteria defined, the model can now be constructed.

3.2 ADALINE OPERATION IN N-DIMENSIONAL SPACE

In Chapter Two, the weight vector of an adaline was shown to define the adaline

classification function by positioning a decision hyperplane in its input space. Inputs on one

side of the hyperplane are classified as y = +1; inputs on the other as y = -1. This section

extends that type of spatial analysis to consider the classification directly in terms of the

position of the weight vector, not merely the resulting hyperplane, in adaline input space. This

allows the classification function to be studied as the weight vector is altered, that is, as weight

faults are inserted.



The simple adaline example of §2.1 illustrated two-input classification. There, the

adaline was assigned weights of wo = -1, wl = 1, and w2 = 1 and thus performed the function:

y= SGN{xi + x2-11

The decision hyperplane is defined by the set of points where the argument of SGN {. } in eq.

(5-1) is zero. Figure 3-2 shows that hyperplane in the adaline input space (originally, Figure

2-3b).

Xi

hyperplane

Figure 3-2: Hyperplane X, + x2 - 1 = 0 in 9V2 Adaline Input Space

The adaline was formally defined by eq. (2-5) and Figure 2-4 with an "input" xo +1.

Figure 3-2 above then is really a two dimensional slice of the 9t 3 input space at xo = 1. To

simplify the present discussion, this "input" is ignored and the threshold term 0 is used. Thus,

the original adaline description is temporarily adopted: the adaline in this example has two

inputs, x = [x1 x2]T , two weights, w = [wi w2]T, and a threshold, denoted 0 here.

If the weight vector, w = [1 1IT, is drawn on the input space of Figure 3-2, the

association between that vector and the decision hyperplane is readily determined: they are

perpendicular (Figure 3-3).

Of course, this is not really that remarkable, it is a simple matter of geometry. The

hyperplane is determined by solving the equation xixwi = 0, or equivalently,

x o w = 0 (3-1)

For a fixed w and 0, eq. (3-1) represents the set of all vectors, x, in the input space which

.0have the same projection on w. The projection is 0- This is shown in two dimensions in
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Figure 3-3: Weight Vector Perpendicular to the Hyperplane

Figure 3-4a. This array of input vectors creates a hyperplane - in two dimensions, a line -

perpendicular to w. If 0 = 0, the projection is zero and the hyperplane includes the origin.

More intuitively, if 0 = 0, the dot product of the weight and the input vectors is zero, so the

vectors must be perpendicular. This is shown in Figure 3-4b.
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Figure 3-4: Projection of Vectors x on w, x o w = 6

Returning to the formal definition of an adaline, y = SGN { x o w 1, where x =

[x0 xi ... xn]T, w = [wo wi ... wn]T. If xO - 1 is considered to be an "input", 91n+ 1 is

required to describe the entire input space. It is clear that the weight vector is perpendicular to a

decision hyperplane which passes through the origin of that input space. For a two input

adaline, the input space is three dimensional and the decision boundary is defined by a 2-

dimensional plane. Figure 3-5 depicts the input space of the two-input adaline example. Note

the xO = +1 plane is the same as Figure 3-2 and the weight vector, w = [+1 +1 l-1]T, which



was previously determined in §2.1, is perpendicular to the decision plane.

(X2, Xl,
0

I -
I -

(I

(-1 - 1

(+1, +1, +1)

-.- I

X2 I

X IX1 i

I

I

-1, +1, -1]

I , ,P

Figure 3-5: Decision Hyperplane and Weight Vector for the 2-Input Adaline Example

From the figure, one sees that all inputs to one side of the plane are classified as y = +1;

inputs to the other side are classified as y = -1. Given the weight vector, it is easy to determine

the proper classifications: since y is determined by the sign of the dot product of the input

vector and the weight vector, inputs x which have a positive projection on w are classified as y

= +1. These are the inputs on the same side of the plane as the weight vector. Figure 3-6

portrays a simpler two-dimensional view (a separate example).6 There the projection of x on

w is negative, so y = -1 and x is categorized as "-1".

6. 2-dimensional input space is quite uninteresting if x0 is considered to be an "input". The adaline described
in this space would have only 1 true input, xl.
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Figure 3-6: Weight Vector and Decision Hyperplane in 2-Dimensional Input Space

A few remaining definitions and formulas are required before the failure model based

upon this spatial analysis of adaline classification can be constructed. The n-input adaline

requires (n+1)-dimensional space (9f n+ 1) for complete spatial description. Familiar terms

which describe one-, two-, and three-dimensional geometric structures must be extended to n

(or n+l) dimensions. Description of these higher order geometric entities can be found in

fundamental texts on the subject [48, 68].7 Figure 3-7 presents a two-dimensional depiction of

them.
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Figure 3-7: Two-dimensional Depiction of n-dimensional Adaline Input Geometry

The inputs to an adaline are strictly binary, that is, xi e {-1, + 11. In 912, these points

are distributed over a circle of radius r = .2 and in 913, they are distributed over a sphere of

7. The reader is also referred to the entertaining discussion of higher geometry in Flatland: A Romance of
Many Dimensions [1].



radius r = 4. In 91n , the points are distributed over a hypersphere of radius r = -Fn.

The term hyperplane has already been introduced. If the input space of an adaline

requires only one dimension, the decision hyperplane is a point. For 912 input space, as

shown in Figure 3-6, the hyperplane is a line, and in 93 it is a two-dimensional plane. The

general n-input adaline space spanning 9n+1 will be bisected by an n-dimensional hyperplane.

The intersection of two hyperplanes at the origin form a solid angle, 4, in the

hypersphere. Technically, this is called a lune [23]. The ratio of the surface area subtended by

a lune of magnitude 4 to the surface area of the hypersphere is given by 2x . For example, in

two dimensions, the lune is an angle, 4, which is subtended by an arc on the circumference of

the circle. The ratio of the area of this arc to the surface area (circumference) of the circle is 2.
27V

Hoff [21] showed that as the number of inputs grows large, the set of input vectors, x

= [xo x, ... xn]T, xi e C{-1, +1), become uniformly distributed over the surface of the

hypersphere. The implication of this fact coupled with the surface area ratio of a lune to its

hypersphere is that the percentage of input vectors contained in a lune of magnitude 4 is simply

given by 2. This is often referred to as the Hoff hypersphere-area approximation.8

Two hyperplanes intersecting at the origin actually form two lunes, one the spherical

reflection of the other. Thus, the percent of input vectors contained in these lunes is 2 * 2
2nr -

Since the xO "input" is always +1, the input vectors which need to be considered for

classification are distributed on only half of the hypersphere, called a hemihypersphere. For

8. Spatial analysis of classification has been used by Widrow for over three decades. Adaptive classifiers were
first addressed by his students Buzzard [9] and Mattson [29] at MIT in the late 1950's. During Widrow's
tenure at Stanford since then, his students Hoff [21], Glanz [19], Winter [67] and, most recently, Stevenson
[50] have extended the analyses. Stevenson's work is used as the foundation for this work. The adaline was
formally presented first in 1960 [60] and the madaline in two years later [56]. An excellent review of all the
work has recently been published, appropriately entitled "30 Years of Neural Networks" [61].
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Figure 3-8: Relevant Input Vectors in Two Lunes Formed by Two Hyperplanes

A final note for the perceptive reader who may have noticed that requiring the decision

hyperplane to pass through the origin prevents it from implementing all possible linearly

separable classifications of the input space. Such a hyperplane cannot implement those

classifications for the entire set of input vectors, x = [xo xl ... xn]T, but it can implement

such a classification for set of input vectors, x = [+1 x, ... xn]T, which is all that is required

here. That fact is not merely coincidental: xo - +1 is simply a mathematical tool for

implementing the threshold 6, by setting wo = -0, and treating x0 w0 as any other weighted

input. By considering only the x0 = +1 plane in Figure 3-5, one can visualize any linearly

separating decision line which is the intersection of that x0 = +1 plane and a decision plane

which passes through the origin.

example, in Figure 3-5 the points below the horizontal X1-X2 plane (x0 = -1) are irrelevant since

those vectors can never be applied to the adaline for classification. In all circumstances then,

exactly half of the possible input vectors are relevant for classification. At the same time, of

those vectors contained in the two lunes created by two intersection hyperplanes, exactly half

will be in the x0 = +1 hemihypersphere and thus relevant for classification. This means that the

percent of relevant input vectors contained in the two lunes created by the intersection of two

hyperplanes at the origin is still = - [50]. Figure 3-8 presents two examples.

input vectors in lunes relevant for classification



With a spatial analysis of adaline classification in hand, the effect of altering the weight

vector can be determined. This section defines the probability of adaline failure (misclassi-

fication) given the insertion of a specific weight fault.

The non-faulty adaline has a specific hyperplane, H, which classifies its input vectors.

If a fault is inserted in the weight vector, a new decision hyperplane, HF, is created. The new

hyperplane will reclassify the input space. Some of the inputs originally classified as y = +1

with hyperplane H will be erroneously classified as y = -1 with hyperplane HF. Similarly,

some of the inputs originally classified as y = -1 will be erroneously classified as y = + 1. If

any of the inputs which have become misclassified are applied to the adaline, the output is in

error: the adaline has failed.

The faulty hyperplane HF forms two lunes each of magnitude 0 with the original hyper-

plane H. Input vectors in both of these lunes will be misclassified: one lune will misclassify

y(x) = +1 -4 y(x) = -1 and the other will misclassify y(x) = -1 -- y(x) = +1. From the Hoff

hypersphere-area approximation, the percent of input vectors in these two lunes is . In the

section above, it was shown that the percent of relevant input vectors in these two lunes is also

0.Thus, - percent of the vectors will be misclassified. Given a uniform distribution of input

vectors9 , then, this is also the probability of adaline failure. The task is to determine the lune

magnitude, 0.

If both hyperplanes are known, the lune can be calculated and the adaline failure

probability can be readily determined. In the general case, the original hyperplane is not

known. Its expected value, that is, the expected value of the weight vector, can be determined

from a probability distribution of the weight vector. Since the faulty hyperplane is created from

9. Stevenson has reported that this is not a necessary condition. Assuming randomly oriented weight vectors
(that is, a randomly oriented hyperplanes) any input has a probability of (0/7) of being misclassified.

3.3 SINGLE ADALINE FAILURE MODEL
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3lane HF

-faulty hyperplane H
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Figure 3-9: Equivalence of Angle Between Weight Vectors and Lune Between Hyperplanes

The transformation from w to WF is determined by the weight fault which is inserted.

The three fault modes identified in §3.1 (rail fault, zeroed-weight fault, and sign-change fault)

manifest four faults { wi -4 +1, wi --> -1, wi -- 0, and wi -4 -wi} which are separately

inserted to corrupt weight components wi. Mixed fault modes are not considered, but the

method described here can be used to model any particular fault scenario. A single weight fault

is first inserted; m multiple faults, (1 < m <: n+l) are then inserted. The expected value of the

angle w and WF is calculated for each mode and eq. (3-2) is used to determine PF.

The results are functions of the weight component magnitudes, wi, and the number of
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the original hyperplane via insertion of a known weight fault, the expected value of the lune

between the two hyperplanes can also be determined. The expected value of the percentage of
E{)}

input vectors which will be misclassified is thus , where E { x } is the expected value of x.

This is the probability of adaline failure, denoted PF, in the general case:

E{4)}
PF - (3-2)7r;

The weight vector, w, is associated with the original hyperplane and a faulty weight

vector, WF, is associated with the faulty hyperplane. Since the weight vectors are perpen-

dicular to their respective hyperplanes, the angle between the vectors will be equal to the

magnitude of the lune between the hyperplanes (Figure 3-9). This means that the weight

vectors alone can be used to determine 4).



Figure 3-10: Notation for Adaline Probability of Failure

As expected values of functions of random variables (wi), the solutions to these

equations require the probability density functions for the weight components. These are

derived in §3.4. Closed-form solutions are presented in §3.5.

Spatial analysis is employed to derive E{4) }. Since PF is determined only by the

amount of input vectors contained in the lune 4, only the magnitude of the angle between w

and WF is required.1 1 Geometric axioms in the W-WF (hyper)plane are used to determine the

magnitude of 4.

Simplification of the geometry of the problem greatly reduces the complexity of the

solutions for PF. Since the adaline decision hyperplane is perpendicular to the weight vector,

the magnitude of the vector is irrelevant. Only the direction of the weight vector is important.

10. More accurately, the dimension is n+1.

11. Furthermore, since PF = , eq. (5-3), E(4) must be in the first two quadrants, that is, 4 e [0,n].
, •

inserted faults, m. The magnitudes of the weight components, in turn, are functions of the

dimension of the weight vector, n. 10 Thus, the analysis will derive a set of equations for PF

which are dependent upon the fault mode and the number of inserted faults, with notation as

tabulated below, Figure 3-10.



By normalizing the vector, that is, requiring Ilwil = 1, the geometry of the problem of finding

is simplified. Thus, for the derivations in this section the weight vector w is defined as

w = [wo wi ... Wn]T (3-3)

such that Ilwil = 1 (3-4)

Eq. (3-4) is paramount to the simplification of solutions for PF.

3.3.1 Single Weight Fault

In this section, one of the n+1 adaline weights, Wk, is corrupted with one of the four

faults enumerated in Figure 3-10. The approach is to determine the angle 0 between the

original weight vector, w, and the corrupted weight vector, WF. As discussed above, this

leads directly to the probability of adaline failure:

PF = E- (3-2)7C;

For the cases below, the weight vector w is defined by eqs. (3-3) and (3-4) and a corrupting

weight vector, Aw is defined such that

WF=W + Aw

or Aw =WF -W (3-5)

as shown in Figure 3-11. With these terms defined, 0 for all cases is determined.

W AW

F

Figure 3-11: Relationship Between w, wF, and Aw

Single Zeroed-Weight Fault

For a zeroed-weight fault, wF is

WF = [wo w 1 ... wk-1 0 wk+1 ... Wn]T

so that,



Aw = [0 0 ... O -Wk 0... 0 ]T

Notice that

WF o Aw = 0

which means that wF and Aw are perpendicular. Figure 3-12 illustrates the relationship.

Aw

W F

Figure 3-12: Relationship Between w, WF, and Aw for Zeroed-Weight Fault

Clearly from the figure,

IIAwll
sin 4- Ilwil

which from eqs. (3-4) and (3-6) reduces to

sin = Iwkl

so that

= sin- 1 IWkt

Eq. (3-2) leads to a result of

PF(n) = E t sin-1wki1 (3-7)

Single +1 Rail Fault

For this case, the dot product between the two vectors w and WF is used to determine

. Here WF is

WF = [wo w 1 ... Wk-1 1 Wk+1 ... Wn]T

The angle between w and wF is

S-cos-( (W0 WF
co1IliwlI 140)

cos- (Wo)z + ... + (wk-1) z + Wk + (Wk+1) 2 + ... + (Wn) 2

ý((Wo)2 + + (Wk-1l) 2 + 1 + (wk+1) 2 + .. + (Wn)2 1

(3-6)

(3-8)



Now, by definition, from eq. (3-4)

n
1 -IIwlw = (wi)2

i=o
n

or j(wi)2 = 1(3-9)
i=0 (3-9)

so (wo) 2 + ... + (wk-1) 2 + (Wk+1) 2 + ... + (wn) 2 = 1- (wk) 2

and eq. (3-8) becomes

1o 1 - (Wk)2 +Wk
= cos (2- (wk)2)1/2  (3-10)

so that

P1 1C l - (wk)2 + Wk,
P (2 - (wk)2)1/2 (3-11)

Single -1 Rail Fault

For the -1 rail fault, the faulty weight vector is

WF = [wo w1 ... wk-1 -1 Wk+1 ... Wn]T

A derivation identical to the +1 rail fault case leads to

C=Cos-I( (wk)2 - Wk)
S(wk)2) 1/ 2  (3-12)

resulting in

1EP (n) 1W (wk)2 k)PFI (n)= cos-1 (wk)2 1/2 (3-13)

Equivalence of P1 l(n) and PFI(n)

Intuitively, for the general case, the weight component magnitude should be
symmetrically distributed around 0, that is, equally to take on a positive value +wk as a
negative value -wk. Thus, the probability that a +1 rail fault in a weight component causes
adaline failure should be the same as the probability that a -1 rail fault causes adaline failure.



This indeed is the case. The equations for 0 for the +1 rail fault (0+) and 0 for the -1

rail fault (4•-) are ordinate reflections of each other:
i1( (_wk)2 _wk)

<)+ Cw- = COs- (wk) 2 + Wk (3-10)
(2 - (wk)211/2

-(wk) = COS - (W )2 - W (3-12)

(2 - (wk)2)1/2j

The functions are shown in Figure 3-13. Because they are ordinate reflections, the area

under their curves will be equal. As long as wk is distributed symmetrically around 0, the

functions will have the same expected value. As the reader will see in §3.4, Wk is distributed
symmetrically (its probability density function is even), so E t 0+ } = E ( 0-} ; or P F(n) =

P_ (n). Figure 3-14 illustrates the symmetry. For wk symmetrically distributed, E { )+ } =

E10-}.

-1 -0.5 0.5 1 Wk

Figure 3-13: 4+ and 0- as Functions of wk

Because PF (n) = P (n), the notation is condensed to P 1 (n) +1and one, PF (n), is

chosen as the equation for a ±1 rail fault:

P 1 (n) +P 1(n) = 1 E (Wk)2 +( Wk3
F F () qcos- (2- (Wk)2)l/ 2 )9

(3-14)



Figure 3-14: Inverse Symmetry of Ofor +1 Rail Fault and -1 Rail Fault
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For the case of a single weight component changing sign, the faulty weight vector is

WF = [W0 ... Wk-1 -Wk Wk+1 ... Wn]T

Note that it still has magnitude of 1, IIwFlI = 1. The corrupting weight vector is

Aw = [0 ... 0 -2wk 0 ... 0]T

and it has magnitude IIAwll = 2 1Wkl. The three vectors, w, wF, and Aw form the isoceles

triangle shown in Figure 3-15.

2 Iwk

Figure 3-15: Isoceles Triangle Formed by Sign-Change Fault

The Law of Cosines is used to determine 0:

a2 = b2 + c 2 - 2bc* cos(o)

where c is the angle subtended by a. From the figure,

4(wk) 2 = 2 - 2cos(4)

cos(O) = 1 - 2(wk) 2

S= cos-1(1-2(wk)2)

Resulting in

PF (n)= E cos-1l(1-2(wk) 2) } (3-15)

3.3.2 Multiple Weight Faults

Approaches identical to those in the previous section are used to derive the probability

of failure when multiple faults are inserted into an adaline. In this section a single adaline is

corrupted with m weight faults of one of the four fault modes. The faults are considered

separately - mixed fault modes are left for further study.

Single Sign-Change Fault



As in the previous section, the task is to determine the angle, 4, between the original

weight vector and the faulty weight vector. For a single fault, 4 is a function of wk, 4 = g(wk),

where wk is a single weight component. In the case of m multiple faults, 0 = g(wkl, Wk2, ...

wkm), where wkj are m different weight components. In the general case, the value of 0 is not

dependent upon which weight components have been corrupted, but rather the number of

weight components (m) which have been corrupted. For mathematical uniformity and clarity,

the faulty weight vector will be assumed corrupted in its first m terms, that is, the elements wo

... wm-1 will be considered to be the faulty components.

As before, the weight vector is assumed normalized, Ilwli = 1, and a corrupting weight

vector Aw is defined as Aw wF - w. The derivations mimic the procedures of §3.3.1.

Also, the same arguments for the equivalence of P (n) and P• (n) apply to P (n,m)

and PF (n,m). For those reasons, the two multiple rail fault cases are condensed to one,

denoted P+-(n,m) and assigned, arbitrarily, to the form of P (n,m):
+M d+M a (n,m)(

P (n,m) PF (n,m) = PFM(n,m) (3-16)

Multiple Zeroed-Weight Faults

For m zeroed-weight faults, the faulty weight vector is

wF= [0 ... 0 Wm wm-+l1 ... Wn]T

so that Aw - [-wo -W 1 ... -Wm_1 0 0 ... 0]T

Again, WF and Aw are perpendicular, so

IlAwilsin 4 - IIwil

which reduces to

m-1

sin = j(wi)2
i=O0

so that



m-1
=sin-1 j(wi)2 1/2(i=0

and

POMF (n,m) = E sin-1 IM w i2) 1 /2 } (3-17)

Multiple ±1 Rail Faults

The equation for multiple ±1 rail faults was assigned to the form of the PF (n,m), that

is the form for the multiple +1 rail faults. In this case

WF = [1 1 ... 1 wm Wm-+l ... Wn]T

and the angle between w and WF is found from their dot product:

C os- W WF) =COS lw IWIIIIWF)

= cosI-( Wm (W) 2 (Wm+) 2 ...

+ (Wm) 2 + (Wm+) 2 + ... + (Wn)2) 1/ 2

But from eq. (3-9)

(3-18)

m-1 n
(wi)2 + Z(wi)2 = 1

i=O0 i=m

n m-1
X(wi)2 = 1- (wi)2
i=m i=O

and eq. (3-18) becomes

m-1
mwi +

Co - i=O 
-

v+1-

m-1
1 - (wi)2

m-1 12
j(wi)2 /

i= 0

resulting in



m-1 m-1 "

1wi + 1 - (wi)2
PF (nm) = E cos •1 i= i=0 1/2  (3-19)

m + 1 - (wi)2
i-0

Multiple Sign-Change Fault

As with the single sign-change fault, the faulty weight vector has unit magnitude,

WF = [-WO -w 1 -... -wm-1 Wm Wm+l ... Wn]T

and the corrupting vector Aw is

Aw = [-2wo -2wl ... -2wm-1 0 ... 0]T

with magnitude

m-1
IlAwl = 2 E(wi)2

i= 0

Again the vectors w, WF, and Aw form an isoceles triangle with two sides equal to unity.

Using the Law of Cosines,

m-1
IIAwil =4 X(wi)2 = 2 - 2cos(O)

i=O0

so that m-1
S= cos-1 1 - 2 (wi) 2

i-0

resulting in

ASM1F ( m-i
F (n,m) = E cos-1 1 - 2 (wi)2  (3-20)

i-0

Notice that if all vector components change sign, that is, m = n+l, PF = 1. This is sensible: if

all weights change sign, the weight vector reverses direction. It creates the same decision

hyperplane but reverses the classification of all input vectors.



3.3.3 Summary of Model Equations

The table below, Figure 3-16, provides a summary of the formulas for the four failure

models considered in this section.

Failure Model Notation Formula

Single Zeroed-Weight Fault
Probability an adaline misclassifies 0 1 E .sin - 11w k }
given one of its input weights, wk, PF(n)
has been forced to zero.

Single Rail Fault) 2 +
Probability an adaline misclassifies P (n) COS-1 1 (wk)2 k
given one of its input weights,wk, F X (2 - (wk)2 1/2

has been forced to ±1.

Single Sign-Change Fault
Probability an adaline misclassifies AS 1 E t cos-1(1-2(Wk) 2)

given one of its input weights,wk, F (n)
changes sign, Wk, -4 -Wk.

Multiple Zeroed-Weight Fault
Probability an adaline misclassifies OM (nm) E sin-1 (W)2 /
given m of its input weights have F 7 i--0
been forced to zero.

Multiple Rail Fault
Probability an adaline misclassifies P • nm)
given mrn of its input weights have F (nm) 1
been forced to ±1. 71

I

1
wi + 1 -
)

m-]

+1-
i---O

Multiple Sign-Change Fault -1 1i
Probability an adaline misclassifies ASM = E cos-1 1 - 2 (w)2
given m of its input weights change PF (n,m) i=
sign. I

Figure 3-16: Summary of Formulas for Failure Modes



The probabilities of adaline failures derived for the various fault modes in the previous

section all involve expected values of functions of the adaline weights. To evaluate the failure

probabilities, the probability distributions of the weight components must be determined. More

specifically, the probability density function of the weight components must be derived.

The adaline weight vector has n+l dimensions, w = [wo w, ... wn]T. If each

component can take on any value, determining probability distributions for the general case is

an intractable problem - specific statistics of the weight vector must be provided. However,

as discussed in §3.3, normalization of the weight vector to unit value has no effect on the

adaline decision function, yet limits the range of vector components. Furthermore, a

normalized weight vector was used to derive the equation for adaline probability and so must

be used here as well. Thus, for the analysis here, w is assumed to be normalized to unit value,

that is:

11wl 2  (w 0)2 + (W1 )2 + ... + (wn) 2

n
= (wi)2 = 1 (3-21)

i=O0

Eq. (3-21) is also the equation of a unit hypersphere. Normalization of w to unit length

requires it to lie on the unit hypersphere.

Since the vector represents the statistical information of the input classifications, the

values of each component are highly dependent upon the classification function. The analysis

in this thesis is intentionally general1 2 , so the vector must be considered "randomly oriented";

that is, the vector is assumed to be equally likely to be pointed in any direction. Thus, w is

distributed on the unit hypersphere such that the probability that it lies on any patch of the

12. For specific cases where the weight probability distributions may be known, those distributions can be used
to solve the equations of PF. If the specific weight vector is known, the lune magnitude 0 can be
determined for all cases and the mean value of 0 should be used for E [ }.

3.4 WEIGHT DISTRIBUTIONS



The vector components wi, i = 0, 1, ..., n, are each dependent random variables on the

interval [-1, +1], with eq. (3-21) imposing the interdependence. Evaluation of the equations

for PF thus requires evaluation of the expected value of functions of random variables. The

expected value of any function of random variables g(xI, x2, ... , xn), where xi are the random

variables, can be determined using the joint probability density function of the random

variables:

E { g(xl, x 2 , ... , Xn)} =

Jg(x 1 , x2, ... , xn) fxIx2...x,(X 1, x2, ... , xn)dxidx 2... dxn (3-22)

where fxlx2...x,(xl, X2, ... , xn) is the joint probability density function 13 and Ox is the range of

the random variables. The expected value of a function of only one random variable g(x) is

simply given by

E { g(x)} = Jg(x)fx(x)dx (3-23)
K~x

where fx(x) is the probability density function of x.

The equations for the probability of failure of an adaline with only one fault require the

evaluation of the expected value of a function of one random variable, wk. Those cases can be

solved using eq. (3-23) and the probability density function for wk. The equations for the

probability of failure of a multi-fault adaline require that the joint probability density function of

wo, wl, ... , wm-1 be used in eq. (3-22). In this section, these probability density functions are

derived.

Thus the problem is: given an n-dimensional1 4 random vector w = [wl w2 ... Wn] T

distributed uniformly over the unit hypersphere, determine the probability density function of a

dFx(x)
13. Notation based loosely on Drake [14]. Fx(x) = P{x <: x}; fx(x) - dx)

14. This can obviously be extended to the n+1 dimensional vector w = [wo W1 ... wn]T.

hypersphere is equal for equally-sized patches.



single vector component wi, denoted fw(w), and the joint probability density function of m

components Wl, w2, ... , Wm, denoted fw(Wl...Wm). Because fw(w) is a special case of

fw(wil...wm), i.e., fw(w) = fw(wl...wm) for m = 1, fw(wl...wm) is first derived.

The key to deriving the probability density function is to properly interpret the meaning

of the vector being "distributed uniformly over the unit hypersphere." Since the goal is to have

all directions equally likely, patches on the unit hypersphere of equal surface area (technically,

of equal surface "content" [48]), must be equally likely to contain the vector. Patches of

unequal area will have unequal probabilities of containing the vector and the ratio of those

probabilities will be equal to the ratio of the surface areas.

The probability that the vector lies on the patch which covers the entire hypersphere is

clearly unity. So, the probability that the vector lies in a smaller surface patch of area ds is

simply the ratio of ds to the surface area of the hypersphere:

ds
Prob{wo < W Wo + Aw} = (3-24)

Sn

where wo is an arbitrary vector, Aw is an incremental vector, such that both wo and wo + Aw

meet the constraints of eq. (3-21), ds is the surface area of the patch subtending Aw, and Sn is

the surface area of an n-dimensional hypersphere. Sn is readily available 15 [41, 48]:
27t n /2

Sn 2- /2 (3-25)

where F(y) is the gamma functionl6:

15. The meaning of the term Sn varies by discipline. For this thesis, Sn will denote the surface area of the unit
hypersphere which occupies n-dimensional space. For example, S3 is surface area of the conventional
sphere. It has surface area, from eq. (5-25), of S3 = 47r. Mathematicians [41] often denote the surface area
of a hypersphere which occupies n-dimensional space as Sn-1, since the surface is a manifold of n-1
dimensions in 9S n. Of course the area is the same; only the notation and formula for Sn are different.

16. Three important properties of the gamma function are useful for evaluating ( ) [03370]:

F(x) = (x-1)!, for x an integer; F( = ; and F(y+1) = yF(y).
(2Fnd]x) =) F~ )



1

F(y) = xy-le -x dx (3-26)
0

Equation (3-24) is the essence of the derivations to follow.

A note on symmetry is in order before the density functions are derived. Since the

hypersphere is symmetrical in all directions and the components of w are numbered arbitrarily

(or, the axes of in are labelled arbitrarily), the probability density function for the single

vector component is independent of the particular component chosen. Thus, fw(w) will be

identical for all components. Similarly, the joint probability density function for the first m

elements is identical to the joint probability density function for any m elements. The

recognition of the equivalences of these functions simplifies the derivations.

3.4.1 Joint Probability Density Function of Several Weights

As stated in eq. (3-24), the ratio of the surface area of a "patch" on the unit hypersphere

to the total hypersphere surface area is the probability that a unit vector distributed uniformly

over the hypersphere lies in that patch. For a patch which subtends only differential elements,

the surface area ratio gives a probability density function. For a patch which subtends m

differential elements, a joint probability density function of m components is found. (For m =

1, the single probability density function for one component is found.) Finding the probability

density functions thus requires finding the surface area of the "patch".

By definition, the probability that the vector w lies in a patch which subtends m

differential components is the joint probability density function times the differential area of the

subtending components:

w < w 1 • w 1 + dw1

Prob w2 < W 2 W2 + dw 2  = fw(W1.. .Wm) dwl dw2 ... dwm (3-27)
Wm < Wm < Wm + dwm

The probability is also equal to the ratio of the surface area of the patch to the surface area of

hypersphere, eq. (3-24):



10

ýn
subtending patch on hypersphere,
area ds

dw

dwi
... 00 ,differential components,

in general, dwl dw2 ... dwm

Figure 3-17: Patch of Area ds Subtending m Differential Components

Determining the patch area requires considering the higher order space 9Sn . Excellent,

if dated, texts are available on the subject [48, 68], but by decomposing the space into smaller

dimensional spaces which can be more easily expressed, the patch area can be described here.

The n-dimensional space 9gn is spanned by the unit vectors u I, u2, ... , Un. This space

can be considered as two orthogonal spaces, one spanned by ul, u2, ... ,Um, and the other

spanned by Urn+1, Um+2, ... , Un. This is shown in Figure 3-18, with a horizontal vector x =

111 + u2 + ... + um and a vertical vector y = um+1 + urn+2 + ... + Un. In this depiction, the

unit hypersphere filling 91n is a 2-dimensional circle, as shown, with radius r = 1. The vector

w must lie on that circle; it too can be decomposed into w = wx x + wy y.

A patch on the unit hypersphere which subtends m differential components dwl, dw2,

... dwm at wx, as shown in Figure 3-19, has an m-dimensional arc length da. The area of the

w , < wl < w, + dw 1

Prob •w2 < W2 W2 + dw2 s (3-28)... Sn ( -8
wm< Wm< m + dwm s

where ds is the area of the patching subtending dwl dw2 ... dwm. Equating the right sides of

the above probabilities,
ds

fw(wl...Wm) = Sn dw1dw 2 ... dwm (3-29)

The problem is now to determine the ds, the area of a patch on a unit hypersphere which

subtends m differential components. Figure 3-17 provides an illustration.



X = Ul+U2+...+Um

Figure 3-18: Unit Hypersphere in a Simplified 9n

patch, ds, is equal to the arc length times the area, A, of the underlying surface.

ds = da * A (3-30)

That underlying surface spans the remaining n-m dimensions and has dimension n-m-1 (n-m-1

degrees of freedom). The patch will have dimension n-1; m dimensions from da and n-m-1

dimensions from A.

Wy

Figure 3-19: Patch Arc Length, da

To understand the meaning of eq. (3-30), consider Figure 3-19 as a cross-section of a

conventional 3-dimensional sphere. The area of the patch which subtends a single differential

component dx at wx is the arc length da above wx times the circumference of the circle at wx

which is perpendicular to x. The "circumference of the circle" is simply the "area" of the

y = Um+l+Um+2+...+Un



underlying surface which spans the other 2 dimensions. Here, m=l1, so the arc length has

dimension 1 and the underlying surface has dimension 3-1-1 = 1 as well. The patch itself has

dimension 2: it is a differential ring.

The first step is to find the arc length da. From Figure 3-19, the relationship between

da and dwl dw2 ... dwm can be directly determined:

dwIdw2 ... dwm
da = sin0 (3-31)

where 6 is the angle between w and x. But,

sine =_yIIwil
and since I4wl- = 1,

sin0 = wy (3-32)

Now, wx is the length of the first m components of w:

m
wx =  (wi)2  (3-33)

i=1

by using IIwlI = 1 and Pythagoras

wy 1 - (wx) 2

m
= 1 - (wi)2 (3-34)

i= 1

Combining eq. (3-31), (3-32), and (3-34), yields an equation for da:

da = dwIdw2 ... dwm (3-35)< rn

1 - (wi) 2

i=1

Although the patch will always subtend dwl dw2 ... dwm, it will also span a surface

over the remaining n-m dimensions. To see this, expand the 2-dimensional depiction to 3

dimensions, one spanned by ul, U2, ... , um as before, one spanned by only Um+1, and one

spanned by the remaining unit vectors, Um+2, um+3, ... , Un. Define the spanning vectors x =



Ul + u2 + ... + um, y = Um+1, and z = um+2 + um+3 + ... + Un, shown in Figure 3-20. As
before, w can be decomposed into w = wx + wm+1y + wzz.

+Un

y = Um+1

Wx

X = Ul+U2+...+Um

Figure 3-20: 3 -dimensional Depiction of the Hypersphere Slice in 9?n

The differential slice in Figures 5-18 and 5-19 becomes a differential ring in Figure 3-
20. It has a radius, r, equal to distance between the arc da and x. From Figure 3-19,

m
r = wy = 1 - (wi)2 (3-36)

i=1

To see this formally, remember that the vector w = wxx + wm+ly + wzz must always
satisfy the equation of the unit hypersphere:

n
n(wi) 2 = 1

i=1

which expands to
m n
j(wi)2 + (Wm+1) 2 + X(Wi)2 = 1 (3-37)i=1 i=m+2

m n
but (wx) 2 = (wi)2 and (wz) 2 = (wi)2, so eq. (3-37) becomes

i=1 i=m+2

(wx) 2 + (wm+1) 2 + (wz) 2 = 1

or (wm+1) 2 + (Wz) 2 = 1 - (Wx) 2  
(3-38)

For a fixed wx, eq. (3-38) has the form of an equation of a circle in the y-z plane:

(wm+1) 2 + (Wz) 2 = r2



Thus, at a fixed wx the surface of the hypersphere is a circle parallel to the y-z plane, centered

on the x axis with radius r,

r = 1i - (wx) 2 , or

or r = 1 - (wi) 2

i= 1

which is eq. (3-36). Of course, the surface is a circle because only 2 dimensions, y and z, are

depicted. In the vernacular of higher geometry, a circle is a hypersphere of 2 dimensions.

To go beyond 2 dimensions and obtain the general surface of n-m dimensions, eq.

(5-38) is re-expanded with r given by eq. (3-36):

(wm+1) 2 + (wm+2) 2 + ... (Wn) 2 = r2  (3-39)

This is the equation of an n-m dimensional hypersphere with radius r. Thus, the surface

spanned by the remaining n-m components of w is an n-m dimensional hypersphere with
m 12

radius given by eq. (3-36), r = 1 - , (wi)2

i=1

As stated by eq. (3-30), the area of the patch subtending m differential components is

the m-dimensional arc length, da, times the area of the underlying (n-m)-dimensional

hypersphere, A. Using the 3 dimensional sphere as an example again, the patch above a single

differential component dwl at wi is a differential ring with area equal to the arc length times the

circumference of the ring at wl, shown in Figure 3-2117. The "circumference of the ring" is

technically the area of a 2-dimensional hypersphere.

The surface area of n-dimensional hypersphere with a radius other than unity, denoted

An, is given by [48]:

17. In this case, da = dw and the circumference = 2nr, r = 1-(wl) 2 . Thus, the area of the patch is the

constant 2ndw. This interesting well-known result [53] reveals that if a sphere is sliced into equal widths
perpendicular to one axis, each slice will have equal surface area. For example, an orange cut up in such a
way would yield slices with equal peel area.



r2=_=1X1

2

Figure 3-21: Slice of a Sphere at One Fixed Component, wj

An = Sn rn-1
(3-40)

where Sn is the surface area of the unit n-dimensional hypersphere, given by eq. (3-25). The

area of the underlying (n-m)-dimensional hypersphere with radius r given by eq. (3-36) is thus

ASnmm n- )/(wi)2 2A = Sn-mn 1-1(wi)2
i=1 I

(3-41)

Combining this result with length of the arc da, eq. (3-35), the area of the patch is

finally obtained:

m =wwn-m-1)/2
1- (wi)2

ds = dwidw2 ... dwm Sn-m (=
m 1/2

1-1(wi)2

i=1

which reduces to

ds = dwldw2 ... dwm Sn-m m n-m-2)/2
1-1(wi)2

i=l
(3-42)

The patch area is substituted into eq. (3-29) to obtain the joint probability density

function:

dwidw2 ... dwm
m n-m-2)/2

Sn-m 1 - E(wi)2
i=l1

fw(wil...wm) dwldw2...dwm Sn



which simplifies nicely to

S. Sn-m- 2)/2

f(wl...wm) = Sn -I (wi) 2  (3-43)
ni=l1

SnmUsing eq. (3-25), the fraction n is reduced for easier computation:
Sn

F(2) m n-m-2)/2

fw(wil...wm) = nm()m/21- (wi)2 (3-44)

Behavior of the Joint Probability Density Function

With the joint probability density function in hand, some comments on its behavior are

in order. First, note that despite its complicated form in eq. (3-44), the function of eq. (3-43)

is actually quite elegant. It reveals that the joint probability density function of m components

is given by a constant term times the radius of a particular hypersphere raised to a power. The

constant is the ratio of the surface area of an (n-m)-dimensional unit hypersphere, Sn-m, to the
m 1/2

surface area of an n-dimensional unit hypersphere, Sn. The radius, r = 1-(wi)2  , is that
i=l1

of an (n-m)-dimensional hypersphere on the surface of the n-dimensional unit hypersphere.

The power (n-m-2) is simply two less than the difference in dimensions.

A relevant question is the validity of the form of eq. (3-43) when m=n; can the joint

probability density function of m components be used to determine the probability density

function of all n components? The answer is yes, with some appropriate interpretation.

First the density function of eq. (3-43) must be formally stated to account for the

constraints on the range of the components. Formally, the probability density function is non-

zero only when the components are within the n dimensional unit hypersphere:



m
iff (wi) 2 < 1

i=1

0 otherwise

For m=n, the density function is non-zero only when the components are within the n-

dimensional unit hypersphere1 8 . From eq. (3-45),

SoSn
Sn 1- (wi)2

0

n
iff (wi)2 < 1

i=1

otherwise
n

Now, So = Ot, so fw(wi...wn) = 0, unless (wi)2 = 1, in which case the denominator of eq.
i=1

(3-46a) is zero as well. But, this condition holds in all cases: it is the requirement of w being a
n

unit vector. Cancelling the zeros in the numerator and denominator at E(wi)2 = 1, eq. (5-46)
i=1

becomes:

fw(wl...wn) =

1
Sn

0

n

iff (wi)2 = 1
i=1

otherwise

Eq. (3-47) states that the n components of a unit vector are simply distributed uniformly over

the surface of the unit hypersphere - which was the original statement guiding the derivations

of this section. The Sn in the denominator is a normalizing factor so that the density over the

surface integrates to 1.

18. The components must actually be on the n-dimensional unit hypersphere. This condition is met by the
resulting equation.

t S o = 2 and 0.
F(0) F(0)

(3-46a)

(3-46b)

(3-47)

) m n-m-2)/2(f Sn-m m n
Sn 1 - (wi)2fW(wi ... W.) = nI=1 (3-45)

fw(Wl...Wn) =



I I1 iffw 1
2 + w 2

2 = 1

fw(wiw2)= Sn - 2n

0 otherwise

The density is illustrated in Figure 3-22. It is an infinitesimally thin, hollow cylinder of radius
1

1 and height 2~, centered at the origin. The "area" under the density (which must equal 1) is
1

simply the circumference of the unit circle times the height of the cylinder: 2n = 1.

At £ i -.. .. .

W2

Figure 3-22: Joint density of Both components of a Vector on the Unit Circle

The density for a single component can be determined by integrating out the density of

the other component. The area under the density contributed by w2 for each dw, is 2da times
1

the height 2, where da is the arc length at w, shown in Figure 3-23. From Figure 3-19,
27,dw

da dw=

1
so fw(wi) = 1

which agrees with eq. (3-43) for n=2 and m=l.

It is often instructive to study the behavior of a probability density function by

identifying its first two central moments, i.e., its mean and variance. Since eq. (3-43) is an

even function of all of its arguments, all variables have zero mean. This reduces the covariance

matrix to

For example, for n = 2:



'4k W2

-J

da

q

W1

dwi

Figure 3-23: Calculation of Probability Density of Single Component on the Unit Circle

SEt(wa)2) E{waw 2} ... E{WiWm)} 1
R= E{w2W1} E{(w 2)2} ... E{w 2Wm} (3-48)

LE{wmwl} E{wmW2 ) ... E t(wm)2I

Clearly by the symmetry of the problem E t (wi) 2 } = E t (wj) 2 } and E {wiwj I = E { wkWl I.

Higher order central moments would reflect the same symmetry. Unfortunately, the expected

values in eq. (3-48) will all be functions of n and the remaining m- 1 or m-2 variables and their

significance may be difficult to interpret. For this reason, the covariance matrix is left in the

form of eq. (3-48) and the variance for only the single probability density function, m=1, is

derived - in the next section.

As a conclusion to the joint probability density function, Figure 3-24 presents a

tabulation of the density functions for n = 2 to 5 and m = 1 to n. Note the uniform distribution

for m = (n-2).

3.4.2 Probability Density Function of a Single Weight

The probability density function of a single weight, w, is derived from the joint

probability density function for only 1 component. That is, the single probability density

function is given by eq. (3-43) with m = 1:



19. Although the ratio appears reducible, because n is an integer the function can be calculated

relatively easily and the fractional form is easier to use than a reduced form. Appendix B.1 derives a form
for the ratio which does not explicitly require the gamma function. For notational convenience, the original
fractional form will be used.

Snm m n-m-2)/2
fw(Wi...Wm) = 1- (wi)2

i= 1nn

mn 2 3 4 5

1 1 1 2 3 1(W

( 2  2 (w1)2  4 ((wlY 2)

2 1 1 1 3 1-(w)2 2

27r 2r 1-(w1)2-(w2)2  27r

3 1 2 3
- 47 1-(w )2- 2) 2  47c

4 1 3
21r2  47t 2  1-(wl)2_(w2)2-(W3 )2(w4)2

5 3
87r

2

Figure 3-24: Tabulation of Joint Density Function

fw(wl) = 1 1X wi2 n-3)/2
i=l1

which, after dropping the subscript on w and simplifying the notation, becomes

fw(w) = 2()_ _(1-w2)( n-3)/2  (3-49)

The distribution is an even function with zero mean and, except for the case of n=2, a

mtnt
maximum value (at w = 0) given by the ratio19 12;



It is instructive to see how f,(w) behaves as n grows large. Because the sum of the

squares of the components must equal 1, it seems likely that the probability density function of

any component will be amassed near 0 for large n. That is, it is unlikely that the component

takes on a value near 1 since all other components must then be much less than 1 but all have

identical probability distributions.

Indeed, this is the case. The value of increases with n. The variance,

1
calculated in Appendix B.2, is given simply by 1 .

The equations of fw(w) for various values of n are tabulated in Figure 3-25. The actual

distributions are plotted in Figure 3-26.

3.5 PROBABILITY OF ADALINE FAILURE

Evaluation of the probability of adaline failure requires the incorporation of the

probability density functions derived in the previous section into the formulae for the

probability of the adaline failure from §3.3. Those results are repeated here for convenience.

PF(n) =1 E t sin-I1wkI } (3-50)

XE1 1 co( 1-2 (Wk) 2 + wk'(

PF (n)=E cos= 1  2)1 2k (3-51)X (2 - (wk)2)l/2 )

PF AS(n) 1 E cos-1(1-2(wk) 2) } (3-52)

PF (n,m) = -E sin--1 wi) 2 1/2 (3-53)

m-1 m-1 "
wi + 1 - y(wi)2

+M 1 i_-0 i-0PF (n,m) = E cos-1 1 1/2 (3-54)

m + 1 - (wi)2j

q i=_0



f ,w)

-1 -0.5 0.5 1

Figure 3-26: Probability Density Function for Values of Vector Dimension, n

20. The result for n=2 agrees with the result conventionally derived when w is one of the two vector
components on the unit circle [34]. Note that despite the fact that fw(1) = oo, there are no impulses at w = 1
and therefore the probability of w =1 is zero. A similar phenomenon occurs in all cases of the joint density
function when m = n - 1.

21. For n=3, the uniform distribution is a well-known paradigm; see note 17.

nI2nm2

n fw(w) n  fw(w)
1,

2(see note 20) 20 1.72(1-w2) 8 .5
2 lcw2(sent20

31 (see note 21) 50 2.78(1-w2) 2 3 .5

2

4 2 . 12 100 3.96(1-w2) 48.5

5 (1-w2) 500 8.92(1-w2) 298 .5

10 1281 2 7/2  1.16(1-w2) 7/2  1000 12.6(1w2) 4 9 8 .5

Figure 3-25: Tabulation of Single Probability Density Function



PASM, .PF (n,m) =
1 m-1

E cos -1 1 - 21(wi)2
i= 0

Recall that for notational convenience, the density functions of §3.4 were derived for an

n-dimensional vector, w = [Wi w2 ... wn]T. The weight vector of interest, however, has n+l

elements, where n is the number of true adaline inputs, w = [wo wi ... Wn]T. Thus, the

density functions for the weight vector of an adaline with n inputs are:

F n+1'

fw(w) = (l-w2)(n-2)/2

fF(n+l)\(
fw(wl...wm) 

(2

i[- (n-+)7)m/2

(3-56)

m-1 n-m-1)/2
(wi)2

i=0O
(3-57)

The problem is now to use eq. (3-22) and eq. (3-23) to solve eqs. (3-50) through (3-55). In

Ead}all cases, P = and ( = g(wo,... ,wm-,n), so

1
PF(n) = 1 fg(w,...,w.,n) fw(w,...,w

PF(n) = x- Jg(wo,...,wm-l,n) fw(wo,...,wm-1
)dwo...dwm-1 (3-58)

The particular instantiations of eq. (3-58) are as follows:

] ((n+(1) 1

PF (n )t3/2 _Jsin-lwl (1-w 2 )(n-2)/ 2dw
F 2 1 321) 1

(3-59)

( - n +2 )
p 1 (n)= 2(

F 2!3/2
cos-

-1

)2+1(1 - (w) 2 + w 1-w2)(n-2)/2dw
S(2 - (w)2)1/2

F(n+1 1

PFAS (n) = ()2 cos-1 (1-2(w)2) (1-w2)(n-2)/2dw
F( Q!>3/2 1

(3-60)

(3-55)

(3-61)



rQ(n+1
nM )2POF (n,m) = 2

F(2 )g(m+2)/2

1-I

i=0
dwo...dwm.-1

F~2V
2)g(m+2)/2

m-1
1 - (wi)2

i=0O Cm-1 1/2

Y(Wi)2
i=O

m-1
1- (wi)2
i=0

dwo...dWm-l

rp(n-n+i )7(m+2)/2

(m-1 m-1l
cos -1 1 - 2X(wi)2 1-Y,

i-0 i=0
-1

(wi)2
n-m-l)/2

dwo...dwm-1

3.5.1 Closed-Form Solutions

Solving eqs. (3-59) through (3-64) is no small task. However, the integrals can be

simplified by recognizing that both g(-) and fw(*) in all cases are even functions of wi. Since

the product of even functions is an even function the integral of eq. (3-58) can be reduced to:
1

2m
PF(n) =1 fg(wo,...,wm_l,n) fw(wo,...,wm_l)dwo...dwm-1l

and the arguments of g(o) and fw(*) will all be positive. For example, eq. (3-59) is reduced to:

+MPF (n,m)

Sn-m-1)/2
(3-62)

} (n-rn-i)/2

ASMPF (n,m)

(3-63)

(3-64)

1I
sin-1( 1(mwi)2 : 2

i= 0

-

9V
(3-65)



S 2mF n+) 1
P (n,m) = 2 J sin- 1(w)(1 -w2 )(n- 2)/2dw (3-66)F (!01 3/2 0

Further simplifications can be made by recognizing similarities in the arguments of g(*) and

fw(.) and making clever substitutions.

Despite these simplifications, the integrals are still formidable. Closed-form solutions

are attainable, but those forms themselves are complicated functions which are impractical to

solve by hand. The single zeroed-weight fault, for example, has the simplest integral to solve,

eq. (3-66). That integral can be reduced to

2m]F n+1 I
P 2mF( ) (2) sin- (w)(1-w2)(n-2)/2dwPF(nm) 2 n)t3/2 0

2mF n+1 i/2- J2O(cos) n-3dO (3-67)
]F ,3/2 0

The solution to equation (3-67) derived in Appendix B.3, is non-trivial.

Because the integrals reduce to a form impractical to solve by hand for any reasonably

large n, the formulas for the probability of adaline failure are left in the forms of eqs. (3-59) to

(3-63). Several computer-aided techniques, including simulation [44], or mechanical

quadrature [27] can be used to determine PF(n,m) for particular values of n and m.

3.5.3 A Monte Carlo Simulation

Instead of integrating the equations (3-59) through (3-64) and solving for the PF

directly, the trend for the failure probabilities as functions of n and m are determined. This is

accomplished through simulation of statistical trials, the so-called Monte Carlo method [44]. In

this process, N vectors, xj, j =1... N, with distributions identical to the distributions of the

adaline weight vector are constructed. The value of Pj = g(xj) is then calculated. For large

enough N, the average value of 0 approximates its expected value. That is, according to the

Law of Large Numbers



N

rN=E{( o (3-68)
N~*0

The functions g(*) were developed in §3.3. They are simply the arguments of E{*} in

Figure 3-16. The problem is now to construct a vector x whose components have the same

distribution as the weight vector w. That is, the "simulated" vector x must have components

whose probability density function is given by eq. (3-56):

fx(x) = Cn(1-x2)(n-2)/2  (3-56)

where ( )Cn = (3-70)wher Cn i.,2)_ -

Schreider [44] provides a direct method for constructing sample set of numbers with

probability density fx(x). It involves transforming a sample set with uniform distribution into a

set with the desired distribution. If Fx(x) is the desired distribution

x

Fx(x) a ffx(z)dz = P{x < x}
- 00

and Y = {y 1, Y2, ... } is a sample set whose components are uniformly distributed over [0,1],

then a sample set X = { x1, x2, ... } can be constructed by solving

Fx(xi) = yi

that is, by setting
F-1

xi = F (yi) (3-71)
x

Unfortunately, for fx(x) of eq. (3-69), Fx(xi) is an odd polynominal of order (n/2) [15] and

inverting it to apply eq. (3-71) is particularly difficult. Another method must be used in this

case.

Fortunately, Schreider provides another method. This involves distributing two

variables uniformly in the rectangle which bound the density function. One variable is

distributed uniformly on the range of the abscissa, x e [-1, 1], and the other on the range of



the ordinate, y E [0, max(fx(x))]. A test is performed on the pair (x,y): if y < fx(x), then the

variable x is placed in the sample set. Otherwise the pair is discarded. The process is repeated

until the desired sample set size is obtained.

The process is illustrated in Figure 3-28, with fx(x) from eq. (3-69) with n=100. For

pair A, yl < fx(xl), so xl is saved for the sample set. But, for pair B, Y2 > fx(x2), so the pair

is discarded and x2 is not placed into the sample set. If a large number of pairs is generated,

the points (xi,yi) will be uniformly dispersed in the rectangle ([-1,+1], [0,Cn]). The process

will bias the X sample space; the bias is determined by the probability density function.

f '(x)

x
-1 Xl X2 +1

Figure 3-28: Process for Creating Biased Sample Space

To code the process for simulation, a pair of random numbers is created. The variable

x is distributed uniformly between -1, and +1. The variable y is distributed uniformly between

0 and Cn, where Cn is given by eq. (3-70). If y • Cn(1-x 2 )(n-2)/2, then the variable x is written



to a file representing the sample space. 22 The process is repeated until the sample space is

adequate in size.

Monte Carlo simulations were used to estimate adaline failure probability for all of the

fault modes previously discussed. To ascertain a trend for likelihood of adaline failure as the

number of inputs grow, simulations for n=10, 20, 30, 40, 50, 100, 200, 300, and 500 were

performed. For the multiple fault cases, faults were inserted as a percentage of the number of

inputs. Three cases were simulated: 1% faulty weights, 10% faulty weights, and 50% faulty

weights23 . For n < 100, the 1% faulty weights case was omitted. The following procedure

was used for each case of n:

1. A 100,000 element sample set was created. The elements have a

distribution equivalent to components on an n+ 1 dimensional unit

hypersphere (density of eq. (3-56)). The sample set was created using the

process described by Figure 3-28.

1
2. For the single fault case, where PF(n) == Efg(w)}, Pr was determined as

the average of all 100,000 components processed by g(*):

1 1 100,000
PF = i 100,000 1 g(xj)

j=1

As a sanity check on the sample set, an average sum of squares for n+1

components was also taken. Ideally this should be equal to 1.

3. For the multiple fault case, m elements were randomly selected from the

sample set and processed by g(o). The adaline failure probability was

estimated as the average of 100,000 of these trials:

22. A coding simplification can be made by eliminating the factor Cn. For y distributed uniformly on [0,1] and

a test of y < (l-x2)(n-2)/2 , the same results will be obtained. Elimination of Cn simply scales the density
function and the Y sample space both to 1.

23. More accurately the cases were, m=0.01n, m=0.10n, and m=0.50n. The number of inputs is n, but an
adaline has n+1 weights.



1 1 100,000
PF =  100,000 1 g([wow1 ... Wm]j)

j= 1

where [WOWl ... Wm]j is a set of m randomly selected elements from the

sample space.

The size of the sample space, or more specifically the number of trials, in a Monte

Carlo simulation determines it accuracy. From the Chebyshev Inequality, the accuracy of a

Monte Carlo simulation can be determined: for N trials, the error in predicting an event

probability is inversely proportional to the root of N [44]. That is,

N
g (xj) 1

S=N - E{ g(x)} (3-72)

For the simulations here, 100,000 trials were performed, resulting in an error = +0.003. Thus

the results for the adaline failure probability can be assumed accurate in the second decimal

point.24

The procedure enumerated above provides a quick survey into the trend for adaline

failure probability. It suffers, however, from an important statistical inaccuracy: the

components on the n-dimensional vector are independent. Ideally, n components should have

some measure of dependence upon one another, because in fact they are dependent random

variables. A more rigorous method for creating a sample space would be to create m

components at a time using the multi-dimensional joint probability density function, eq. (3-44).

In this method, m components, xi, would be drawn from a uniform distribution over [-1,+1].

An additional element, y, distributed over [0, Cn] would also be drawn. If y • fx(xl, ... , Xm),

where fx(xl, ... , Xm) is the joint density of eq. (3-44), then the m xi components would be

used as a sample. 100,000 samples would be then be averaged.

The problem with this more rigorous method is computation time. For any reasonably

24. Note that 4,000,000 independent trials would be required to secure the third decimal point.



large m, the probability that y < fx(xl, ... , Xm) is very small.25 Some tests using this method

were attempted: tens of thousands of "bad" samples were found for every good sample, when

m was only 20. Computation times of days were required to achieve any reasonable sample

size. A positive note, however, is that the preliminary results showed that the dependent

samples resulted in statistically insignificant differences from the independent samples (see

discussion below).

The source code and results for the simulations are contained in Appendix A. The

following section interprets the results.

3.5.3 Simulation Results

The results of the Monte Carlo simulation are tabulated in Figure 3-29. Plots of the

data are presented in Figures 3-30 through 5-33. This section contains some interpretative

commentary on the data.

The first note of interest is that the sum of the squares for n+l components behaved
n

very well. In all cases, I(xi)2 = 1.00 ± 0.009. This means that the simulation did create a
i=O0

sample set whose elements have a distribution such that the sum of n+1 squares equals unity,

which was the original intention. That is, the independent trials behaved as if they were

dependent.

25. At a minimum, the sum of the squares of the xi components must be less than one. The sample space is
an n-dimensional hypercube of volume 2n. The volume enclosing the elements whose sum of squares is
less than 1 is a hypersphere of dimension n and radius 1. Its volume becomes a very small fraction of the
volume of the hypercube as n grows large.



TYPE OF FAULT

n m

1
10

5

1

20 2

10

1

30 3

15

1

40 4

20

1

50 5

25

1

100 10

50

1

200 2

20

100

1

300 3

30

150

1

500 5

50

250

Figure 3-29: Tabulation of Simulation Results

Sign-
Zeroed Rail Sign-

Change

0.081 0.258 0.161

0.235 0.422 0.469

0.057 0.254 0.114

0.090 0.317 0.180

0.0243 0.484 0.486

0.046 0.252 0.093

0.093 0.346 0.186

0.243 0.458 0.488

0.040 0.252 0.080

0.095 0.364 0.190
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Figure 3-30: Probability of Adaline Failure for Single Fault Cases

For the single fault case, Figure 3-30 shows that the adaline failure probability

decreases exponentially with n for both the zeroed-weight and sign-change fault modes. Curve

fitting indicates that

0o kPF (n) (3-73)

and
PFAS (n) 2k (3-74)

0 A

where k = 0.25. This is a sensible result: PF(n) a E{ sinl(wi)} and P S(n)

Efcos-1(1-2wi 2) j; for wi small, sin-l(wi)= wi, so PF(n) a E{wi}; also for for wi small,

CoS1(-2w2)= sn-(2i) 2i o ASA S 0cos(1-2wi2) sin-(2wi) = 2wi, so P•S(n) aO E{2wi}. Thus, PF (n) = 2 PF(n). This

doubling is also apparent in the raw data (Figure 3-29).

Clearly from the figure, a rail fault is far more likely to cause adaline failure than either

of the other two fault modes. This is because w, the non-faulty weight vector, is normalized to

unit length. For n of any meaningful magnitude, including n =10, the weight components wi

are small. Since the probability of a single rail is given by

0.30



±1 1• -1 (k)2 +WklP (n) = Ecos-1 k (3-14)

with all wk small, PFI(n) - E2cos-1 = 0.25, as indicated.

Interpretation of the multiple fault data is a lesson in asymptotic behavior. This is

because for large m the sum

m-1
(wi)2 = m (3-76)

i=O0

For example, for the multiple zeroed-weight fault,

p OM(n,m)= E sin- (wi)2

which for m large, using eq. (3-76), becomes

OM 1 (3-77)
PFM(n,m) = - sin -1  (3-77)
pOM 1

so PFM (n,0.01n) - sin-1(0.1) = 0.030
OM 1

PF (n,0.1n) = sin-1(0.32) = 0.102
0M 1

PF (n,0.5n) -= sin- 1(0.707) = 0.250

These results agree with the data for large n.

Similarly, for the multiple sign-change weight fault,

ASM 1 ( rm-i
P (nm) = -E cos-1 1 - 2 j(wi)2
F 7Cnim ) i=0

which for m large becomes

PF (n,m) = cos(1 - 2) (3-78)

so P ASM(n,0.0ln) = cos-1(0.98) = 0.064

ASM 1
PF (n,0.ln) = 1-cos-1(0.8) = 0.205

ASM 1
PF (n,0.5n) = - cos-1(0.1) = 0.500

Again, these results agree with the data.
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Figure 3-31: Probability of Adaline Failure for Multiple Zeroed-Weight Faults
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Figure 3-32: Probability of Adaline Failure for Multiple Sign-Change Faults

For the multiple rail fault cases, the asymptote is only clear when m is a large

percentage of n. In this case IIWFII is much larger than w o WF, so the argument of cos- 1(.)
(wowF'\

vanishes: - cos-• I-Fwi) and 0 approaches .
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Figure 3-33: Probability of Adaline Failure for Multiple Rail Faults

3.6 PROBABILITY OF MADALINE FAILURE

Extension of the models for adaline failure to a madaline network can be made by

propagating the adaline failure probability through the network. In this section, a technique is

described for propagating adaline failures. It is based upon the combinatorial probabilities and

utilizes the adaline sign change weight fault model.26

Since a madaline network consists of connected layers of adalines, an adaline failure in

one layer results in an output error which is propagated to the input of the adalines in the

subsequent layer. There is some probability that despite being non-faulty an adaline in the

subsequent layer produces an output different than it would have if all its inputs were correct.

In other words, there is some probability that the "down stream" adalines produce erroneous

outputs and behave as if they have failed. The problem is to determine the probability that

adalines in the last layer - the output layer - produce erroneous outputs.

26. It should be noted that Stevenson [50] developed a different method for propagating failures in a madaline.
That method employs an approximation of adaline failure probabilities and is valid when the probabilities
are small.
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The key to propagating an adaline failure combinatorially through a madaline network is

recalling that the probabilities of adaline failure described previously in this chapter are

conditional probabilities. They stated the probability of adaline failure, or erroneous output,

conditioned on the event that a fault occurred. Furthermore, in §3.1 the assumption was made

that fault-free adalines do not fail. Thus, the unconditional probability that an adaline fails is:

Prob { adaline failure } = PF(n,m) * Prob{ fault occurs } (3-80)

where PF(n,m) is the conditional probability of adaline failure. Figure 3-34 illustrates with a

Venn diagram.

S
/PP{S}= 1

F P{EF}= P{EnF}PE P{ F)

P{En rF} = P{E}

E P{E} = P{El F} * P{F}

Figure 3-34: Conditional Probability Venn Diagram

If an adaline fails, its output has the incorrect sign. The erroneous output is

propagated to the inputs of next layer adalines. These adalines operate normally, but have an

input with the wrong sign: they behave as if they suffer from a single sign change fault. If the

preceding adaline failed with a probability PF then these adalines will fail with a probability
AS

p = PFF (n) (3-81)

where n is the number of adalines per layer.

Similarly, non-faulty adalines in the next layer will behave as if they suffer from sign

change faults, but in this case all of their weights (except wo) may have changed sign. The

probability that m of them have changed can be approximated 2 7 by the binomial distribution:

27. The probability of m events in n trials can be determined using the binomial distribution when the trials are



(n)(PI)m (1-pl)n-m m! (n -m!)(p l)m (1-pl)n-m

where Pl is the probability that the preceding adalines have failed, given in eq. (3-81). Thus,

adalines two layers away from the offending fault will fail with probability

n

P2 = ((n)(PI)i (1-pl)n-i p SM(n,i) (3-82)

i=1

Propagation of the adaline failure into further layers can be performed by repeatedly applying

eq. (3-82), incrementing the indices of pi each time.

Eq. (3-82) can be estimated using the expected value of n Bermoulli trials (bionomial

distribution) and by assuming n is large. In this case, m=npl, that is, npi errors are expected

in the layer subsequent to the adaline with the offending fault. Using the asymptootic

approximation for the multiple sign-change fault, eq. (3-78),

PF sM(n,m) =•1 cos-1 1( - 2 m (3-78)

eq. (3-82) reduces to

1
p2 = 1 cos 1(1 - 2pl) (3-83)

Again, equation (3-83) can be used iteratively to determine pi, the probability of failure of the

adaline in layer i from the offending fault.

Notice that eq. (3-83) is independent of n, the size of the layer. Also recall that for m

<< n, PF(n,m) decreases as n grows, so the original PF which has been combinatorially

propagated ("po" in eq. (3-83)) will be smaller for a larger n. These two facts reveal that a

"tall" madaline, one with a large number of nodes per layer, will be less likely to fail than a

short madaline.

The last layer in a madaline is the output layer. The output adalines encode a recalled

independent. Clearly, this is not the case here: an error from a single source is propagating through the
network. Nevertheless, if the probability of an event is small, the binomial is a valuable approximation.



pattern which was evoked with the original input vector x. Let the output encoding be resilient

to a Hamming distance of d, so d adalines in the output layer can be erroneous with the

madaline still operational. If the probability of failure of adalines in this last layer PL, where

PL is determined by eq. (3-82) or eq. (3-83), then the probability that 0 to d adalines have

failed is given by the binomial probability:

d

Prob{0, 1, ... d adalines failed) = X(()(pL) (1-pL)n- i)

i= 0

Thus the probability the madaline fails is

d

Prob{madaline failure} 1 - (()(pL)i (1-pL)n-i) (3-84)
i= 0

If no output errors can be tolerated, d=0, and eq (3-84) becomes

Prob (at least 1 output error } = 1 - (1-pL) n  (3-85)

Thus, the double-edged sword: for n large, (1-pL) n quickly vanishes and the madaline is bound

to fail. The madaline output layer, then, should have a large number of inputs but few actual

adalines.

Limiting the number of output neurons is a perfectly reasonable requirement. Since the

output nodes are binary, n nodes can encode 2n output classes. As an example, for n = 10,

1024 different classes can be encoded. Thus, the number of input nodes, and possibly hidden

nodes, can be large, but the output nodes should be small in number.

3.6.1 An Example

A simple example can be used to evaluate the reliability of a madaline network. In

principle a three layer madaline can perform any function that an L layer madaline can perform.

Consider, then, a three layer madaline with n=100 neurons in each of the first two layers and

10 output neurons. If a single fault is inserted into the first layer - which is the worst

scenario because of error propagation - the adalines in the hidden layer will "fail" with



probability

Pl = PF * PFS(100)

= 0.05 PF

where PF is the probability of failure of the fault adaline and PAS(100) is obtained from Figure

3-29. The adalines in the output layer will fail, using eq. (3-83), with probability

1
p2 = = cos'l(1 - 0.1PF)

Assume no output errors can be tolerated. Using eq. (3-85),

Prob { madaline failure } = 1 - (1-p2) 10  (3-86)

0For a single zeroed-weight fault, PF = pF( 10 0 ) = 0.025 and eq. (3-86) reveals

I madaline failure
Prob 100-100-10 layered configuration = 1- (1 - 0.023)10 = 0.21

single zeroed-weight fault in layer 1

Similarly, for the insertion of a sign-change fault in layer 1, PF = PFs(100) = 0.051 and

I madaline failure
Prob 100-100-10 layered configuration = 1 - (1 - 0.03)10 = 0.28

single sign-change fault in layer 1J

The results from the above example are clearly unacceptable. 2 8 Some design

parameters must be altered to reduce the probability of failure.

3.6.2 Some Analysis

One simple method of improving the reliability of a faulty madaline network is to

increase the Hamming distance of the output encoding. If the output nodes encode the

madaline output vector y such that a handful of output errors can be tolerated, the madaline

failure probability will decrease. If no Hamming distance can be tolerated, a code should be

built in to the network (it can be learned) so that a few errors can be tolerated. That is, coded

28. If there were a 100 output nodes, the failure probabilities would be a ridiculous 0.89 and 0.96, respectively.



redundancy should be employed in the output layer. Otherwise, physical redundancy can be

employed in the output layer, forcing some acceptable Hamming distance.

Increasing the output Hamming distance, however, does not get to the root of the

problem. The architectural impediment which plagues the reliability of a madaline network is

the property which is often touted as its chief defense against faults: connectivity. The full

connectivity between layers in the madaline neural network acts as a conduit for error

propagation. The problem is that full connectivity allows a faulty node to communicate

through multiple links with forward nodes. This means that one adaline can inflict multiple

sign-change faults in adalines two layers down stream.

The key to isolating a failed element is sparse connectivity. A sparse network will

reduce the propagation of errors. The performance penalty which must be paid is network size:

a larger network will be required to achieve the same functional capacity. In effect, physical

redundancy is being used to isolate faulty elements.

A deliberate topology which isolates failures must be used to reap the full benefits of

sparse connectivity. For example, consider the network of Figure 3-35. It has 4 layers. The

first three layers have 100 nodes each and the output layer had 10 nodes. Connectivity is

restricted so that adalines in Layer 3 are never susceptible to multiple sign-change faults from a

single faulty adaline in Layer 1. Each node has a fan-in of 10, so that the layer 3 nodes have a

single output.

Suppose a single zero-weight fault is inserted into a first layer neuron. The probability

of failure of that neuron, as before, is 0.025 (from the data). Because of the limited

connectivity, the probability of failure of a second layer adaline is simply

pl = (0.025) * PAS( 10)

which from the data is

Pl = (0.025) * (0.161) = 4.025E-03



Figure 3-35: Sparsely Connected 4-Layer Madaline

The adalines in the third layer cannot possibly have a multiple sign-change fault. They will fail

with probability

P2 =P1 * PS(10 ) = (4.025E-03) * (0.161) = 6.48E-04

Recognizing that these failures are independent makes the calculation of the probability of

failure for the output neurons straight forward:

10
Prob{a Layer 4 adaline fails} = (6.48E-04)J Ps(10j)

j=1

which, to the first order, is approximately

Prob{a Layer 4 adaline fails} = 6.48E-04 PFS(10,1)

= (6.48E-04)*(0.161) = 1.04E-04

Now, tolerating no errors in the output leads to

I madaline failure
Prob 100-100-100-10 sparse configuration = 1 - (1 - 1.04E-04) 10 = 1.04E-03

single zeroed-weight fault in layer 11

Layer 1 Layer 2 Layer 3 Layer 4
100 nodes 100 nodes 100 nodes (Output)
fanout: 10 fanout: 10 fanout: 1 10 nodes

fanin: 10



Although constructing this network may be impractical, this exercise has shown that

sparse connections can drastically reduce the probability of madaline failure.

3.6.3 Multiple Faults in a Network

With a method for propagating of the effect of faults from preceding layers to the output

layer developed, a final area requiring examination remains: faults inserted into output adalines.

This raises the general question of modelling the behavior of a madaline with multiple faults

distributed through the network. Determining madaline failure is these cases is a systematic, if

tedious, application of combinatorial probability. The method for analyzing such systems is

described below, but formal analysis is left for future work.

Suppose two faults are inserted into two successive layers of a madaline network. Let

the faulty adaline in the first layer fail with probability PF1 and the faulty adaline in the second

layer fail with probability PF2. As discussed above, the non-faulty adalines in the second layer

have a probability of producing an erroneous output of p = PF1 * FS(n). The faulty adaline in

the second layer has an additional probability of failure. This adaline fails with probability

given by

Prob faulty adaline in e = Prb rroneous input OR ( fault re
Ssecond layer fails I L causes failure causes failure/

which is

Prob { faulty adaline in AS (n) + PF2 - PF.p-AS(n).PF2second layer fails = PF1PF F2F-nPF1

Using such simple statements of combinatorial probability and careful bookkeeping, the error

caused by a faulty adaline can be propagated through the network and multiple faults in a

madaline can be considered.

Next suppose f faults, each causing an adaline to fail with probability PF, are

distributed randomly in a madaline network with L layers and n adalines per layer. Assuming

that the faults are uniformly distributed and no single adaline receives more than one fault



(although the models developed previously can account for this), the probability that any

adaline fails because of an inserted fault only is

f
PF,FAULT = -1 PF

For n large, the number of failures in the first layer can be assumed to be n* (PF) = PF.

fThe adalines in the second layer thus see m = fPF erroneous inputs. From these erroneous

inputs alone the second layer adalines will fail with a probability PF,EI

PF,EI = PSM(n,m) (3-86)

But, L in the second layer will also have faults of their own; those faulty adalines will have a
nL

probability of failure of (PF,EI + PF - PF,EI"PF). The number of expected failures in the second

layer will thus be

n - )PF,EI + • (PF,EI + PF - PF,EI*PF) (3-87)

The third layer will see m erroneous inputs, where m is given by eq. (3-87). The probability

of failure for non-faulty third layer adalines from these erroneous inputs is determined using

eq. (3-86). Third layer faults must also counted.

This iterative process continues until the probability of failure of the output layer

adalines can be determined. Using this method and careful accounting of the combinatorial

probabilities, the madaline failure can be assessed.



CHAPTER FOUR

CONCLUSION

Those readers seeking a short answer to the question, "Are neural networks fault-

tolerant?", must wait. The work described here represents a first step in a rigorous journey

towards quantifying the fault-tolerance of these systems. Some conclusions can be drawn from the

data of Chapter Three, but, by and large, the models which were developed are building blocks for

future work.

To provide some concluding remarks, the work is briefly reviewed and future work to be

performed is identified.

6.1 SUMMARY

In this thesis, a particular neural network was selected and its operation under faulty

conditions was modelled. The paradigm is the madaline, a feed-forward binary element neural

network which is well-suited for pattern classification tasks. The madaline consists of many

processing nodes, called adalines, which adaptively place linear decision boundaries in their input

space.

An adaline decision is determined by the sign of the dot product of the input vector and an

adaline weight vector. Thus, the weight vector provides the specification for the adaline decision.

With all adaline failures modelled as weight faults, a spatial analysis of the adaline was utilized to

determine the probability of a faulty weight vector misclassifying the input space.

Three fault modes were examined. The zeroed-weight fault modelled the effect of a

synaptic disconnection in a madaline network. The rail fault examined the effect of a weight

component saturating to its minimum or maximum value. The sign-change fault considered the

effect of a weight component changing sign. Although implausible from a practical perspective,

this latter fault mode was used to model the propagation of errors in a madaline.

Rigorous closed-form solutions for the probability of adaline failure were pursued for the
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three fault modes. The models were purposely general and assumed a uniform distribution of a

weight vector normalized to unit length. Determining the expected probabilities of failure for each

fault mode required deriving the probability density function of the components of an n-

dimensional unit vector. This result, on its own, may be useful in other applications.

Although closed-form solution for adaline failure probability models were obtained,

computer simulation through statistical trials provided a better interpretation of the results. For

both single zeroed-weight and sign-change faults, the probability of adaline failure was pro-

portional to the inverse root of the number of adaline inputs, n:

PO(n) 146

AS 1
PF (n)- 2n

For m multiple faults, a similar result was obtained:

POM (n,m) = sin-1 )

F (n,m) n

The probability of adaline failure for rail faults was significantly higher but not as well behaved.

However, for a uniformly distributed weight vector, the range of the probability for the rail fault

can be shown to be between 0.25 and 0.50.

The probability of failure of a madaline network was determined by propagating errors

caused by adaline failures through the network. Since an adaline output is binary ±1, an adaline

failure produces an output with the wrong sign. Erroneous adaline outputs in one layer become

erroneous inputs in the next layer and errors are propagated using the sign-change fault. Madaline

failure can be determined through a systematic, if tedious, application of combinatorial probability.

The madaline analyses reveal that full connectivity can be a nemesis to neural networks

because it allows the propagation of multiple copies of errors to down stream neurons. Sparse

topologies appear to be worthy of consideration from a reliability viewpoint, although more

rigorous analyses must be performed before claims can be made.



6.2 FUTURE WORK

As with any research endeavor, there is more work to do. Using the spatial models and

stochastic methods developed in this thesis, future work can continue to pursue the quantification

of the fault-tolerance of neural networks. Below are four areas of research of interest.

Weight Component Distributions

The classification function of a neural network is highly dependent upon the

statistical nature of the synaptic weights. It would be folly to expect that the

distribution of the weights for a particular neural network could be employed to

predict a general result. In this work the weight vectors associated with each

neuron (adaline) were assumed to be randomly oriented. The validity of this

assumption has been reported [43], but further investigation is necessary. The

distribution of the weights in a trained network should be examined and compared

to the uniform distribution assumed here. Also, other distributions can be tested to

determine the robustness of a network as a function of the weight distributions.

Simplification of the Closed-Form Solutions.

The closed-form equations for the adaline failure probability were deemed

too involved to solve by hand. Approximations which rely on the weight

components, wi, being small should be made to obtain reasonable forms for these

equations.

Madaline Simulation.

The Monte Carlo methods should be used to determine the probability of

failure for a madaline network. In §5.6, some approximations for analyzing

complete networks were made. A simulation would provide insight to the validity

of those approximations. Note that this would not be the simulation of a neural

network; it would be the statistical evaluation of the failure model of a neural

network.

The credible results from the brief analysis of a sparsely connected network

indicate a need for additional work in madaline topologies. This work should

examine the trade-offs of network size and functional capacity versus increased

reliability.



Sigmoidal Threshold Units

The next logical research step would be to extend the models developed here

to neurons which utilize a sigmoidal threshold function in place of the step function.

A sigmoidal function may be more forgiving of faults since outputs will not fail

hard to the opposite sign. This may be especially useful to prohibit the propagation

of errors because the sigmoid has the capability of "squashing" errors before they

become large. The popularity of the back-propagation learning rule, which requires

a sigmoidal threshold function, would make this research widely applicable.
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APPENDIX A: MONTE CARLO SIMULATION CODE AND RESULTS

Three programs, all written in C for the VAX/VMS operating system, were used for the

Monte Carlo simulations of adaline failure probability. This Appendix contains the source code

for those three files and the resulting output files.

The process was to create a sample set of numbers which have the distribution of the

components of an (n+l)-dimensional unit vector. Separate sample sets of 100,000 numbers

each were created for n=10, 20, 30, 40, 50, 100, 200, 300, and 500. The sample sets were

then stored in separate files. The first program in this Appendix, COMGEN.C, created the

sample sets.

The two other programs, SINGLEPF.C and MULTIPLEPF.C, used the sample sets to

estimate the probability of adaline failure. For single fault cases, all 100,000 data points were

used individually as arguments in the equations for adaline failure. Their average was then

taken as the expected value of the probability of adaline failure for the particular case. As a

check on the validity of the sample space, the average sum of n+1 of the elements squared was

also computed. The results were written to SINGLEPF.OUT.

For the multiple fault case, m random selections from the sample space were made.

These m elements were used as arguments in the equations for adaline failure. This process

was repeated 100,000 times and the average result was posted to MULTIPLEPF.OUT. For

each dimension, n, three values of m were chosen: m = 0.01n (1% faulty weights), m = 0.1n

(10% faulty weights) and m = 0.5n (50% faulty weights). For n < 100, the case of m = 0.01n

was excluded.



A.1 COMGEN.C

/* COMGEN.C: Component Generator
This program creates 10,000 components of an n+l dimensional vector
which is distributed uniformly on the unit n+1 dim hypersphere.

The procedure is to generate a pair of uniformly distributed random
numbers, x and y. If y <= f(x), where f(x) is the density function
of interest then keep x as part of the sample space.

For a large number of samples, the set {xl, x2, ...} will have a
distribution of f(x).

The components are stored in a file for later recall to determine
expected values of functions of them.

Created: 24 October 1990, 21:00, MDz
Updated: 15 December 1990 14:00, MDz */

#include <stdio.h>
#include <math.h>
#include <time.h>

/* for file & printing output */
/* for real work */

/* for timing execution */

main()

/* Declare variables
/* Declare variables */

int
int nCase;
int CompNum = 0;

double theX, theY;

timet thetime;
FILE *outFile;

/* the dim - 1, # of adaline inputs */
/* the different cases for n */

/* count of # of components created */

/* the pair of random numbers*/

/* time stamp for performance checks */
/* output data file */

printf("COMPONENT GENERATION BEGUN.\n");

for (nCase = 1; nCase <= 9; nCase++) {

switch(nCase) {
case 1:
n = 10;
outFile = fopen("COMP10.DAT", "w");
printf("\n \tFile COMP10.DAT opened.");
break;

case 2:
n = 20;
outFile = fopen("COMP20.DAT", "w");
printf("\n \tFile COMP20.DAT opened.");
break;

case 3:
n = 30;
outFile = fopen("COMP30.DAT", "w");
printf("\n \tFile COMP30.DAT opened.");

/* n=10 */

/* n=20 */

/* n=30 */



break;

case 4:
n = 40;
outFile = fopen("COMP40.DAT", "w");
printf("\n \tFile COMP40.DAT opened.");
break;

case 5:
n = 50;
outFile = fopen("COMP50.DAT", "w");
printf("\n \tFile COMP50.DAT opened.");
break;

case 6:
n = 100;
outFile = fopen("COMP100.DAT", "w");
printf("\n \tFile COMP100.DAT opened.");
break;

case 7:
n = 200;
outFile = fopen("COMP200.DAT", "w");
printf("\n \tFile COMP200.DAT opened.");
break;

case 8:
n = 300;
outFile = fopen("COMP300.DAT", "w");
printf("\n \tFile COMP300.DAT opened.");
break;

case 9:
n = 500;
outFile = fopen("COMP500.DAT", "w");
printf("\n \tFile COMP500.DAT opened.");
break;

default:
printf("Something is Wrong!\n");
break;}

/* n=40 */

/* n=50 */

/* n=100 */

/* n=200 */

/* n=300 */

/* n=500 */

/* something's wrong */

printf("\nVector Dimension: %d", n+1);

/* Start the computation. */
thetime = time(NULL);
printf(" ... Starting Computation (n = %d)\n", n);
CompNum = 0;

while (CompNum < 100000) {

theX = rand() % 200001;
theX = theX/100000.0;
theX = theX - 1.0;

theY = rand() % 1000001;
theY = theY/1000000.0;

/* get 100,000 numbers */

/* rand # from 0 to 200,000
/* scale down, 4 dec places
/* change range to: -1 to +1

/* rand # from 0 to 1,000,000 */
/* scale down, 5 dec places */
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/* Check for y <= f(x); keep if true; else try again*/
if (they <= pow(sqrt(1.0 - (theX * theX)) , (n-2) ))

{CompNum = CompNum + 1;
fprintf(outFile, "%f\n", theX); /* save to file */
if ((CompNum % 100) == 0) /* monitor every 1000 */

{printf("Component %d: ", CompNum);
printf("%f, (y = %f)\r", theX, theY);

} /* end of printing */
) /* end of saving number */

}
fclose(outFile);

/* 100,000 components for 1 dim generated. */

printf("\n\n 10,000 components generated (n = %d).\n", n);
thetime = time(NULL) - thetime;
printf("%d vectors in %d seconds.\n", CompNum, (int)thetime);
printf("File Closed.\n");

/* end of all cases */

/* end of program */
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A.2 SINGLEPF.C

/* PROBABILITY OF ADALINE FAILURE FOR SINGLE FAULT CASE
Mark Dzwonczyk, Created: Dec 15, 1990, Updated: Dec 16, 1990 13:00

This program reads in a set of numbers with distribution f(x)
and determines the expected values of functions of them using
the Law of Large Numbers:
E{g(x)} = sum(g(x))/N, for N large. Here, n = 100,000.

This program is used only for the single fault cases */

#include <stdio.h>
#include <math.h>

/* for file & printing output */
/* for real work */

main() {

/* Declare Variables First */

n = 0;
CompNum = 0;
nCase = 0;

/* dim-i of vector; # of adaline inputs
/* count of number of vectors

/* an index for PFs

FILE *inFile;
FILE *outFile;

/* Input Data */
/* Output Data */

SOS [10];
PFSZWF[10];
PFSRF[10] ;
PFSSCF[10];
PI = 3.1415926;
w;
w2;
theArg;

/* Sum of Squares, n+1 should be 1. */
/* PF - Single Zeroed-Weight Fault*/

/* PF - Single Rail Fault */
/* PF - Single Sign Change Fault */

/* the element from the sample space
/* w squared

/* an argument for trig functions

outFile = fopen("SINGLEPF.OUT", "w");
fprintf (outFile, "Calculation of Adaline Failures as functions

dim, n\n");

printf("FUNCTION CALCULATION BEGUN.\n");

for (nCase = 1; nCase < 10; nCase++) {

PFSZWF[nCase] = 0.0;
PFSRF[nCase] = 0.0;
PFSSCF[nCase] = 0.0;
SOS[nCase] = 0.0;

/* initialize the variables */

switch(nCase) {
case 1:

inFile = fopen("COMPI0.DAT", "r");
printf("\n \tFile COMP10.DAT opened.");
n = 10;
break;

case 2:
inFile = fopen("COMP20.DAT", "r");

/* n=10 */

/* n=20 */
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printf("\n \tFile COMP20.DAT opened.");
n = 20;
break;

case 3:
inFile = fopen("COMP30.DAT", "r");
printf("\n \tFile COMP30.DAT opened.");
n = 30;
break;

case 4:
inFile = fopen("COMP40.DAT", "r");
printf("\n \tFile COMP40.DAT opened.");
n = 40;
break;

case 5:
inFile = fopen("COMP50.DAT",
printf("\n \tFile COMP50.DAT
n = 50;
break;

case 6:
inFile = fopen("COMP100.DAT",
printf("\n \tFile COMP100.DAT
n = 100;
break;

case 7:
inFile = fopen("COMP200.DAT",
printf("\n \tFile COMP200.DAT
n = 200;
break;

case 8:
inFile = fopen("COMP300.DAT",
printf("\n \tFile COMP300.DAT
n = 300;
break;

case 9:
inFile = fopen("COMP500.DAT",
printf("\n \tFile COMP500.DAT
n = 500;
break;

/* n=30 */

/* n=40 */

/* n=50 */
"r");
opened.");

/* n=100 */
"r" ) ;
opened.");

"r");
opened.");

"r");
opened.");

"r");
opened.");

/* n=200 */

/* n=300 */

/* n=500 */

default:
inFile = fopen("COMPXX.DAT", "r");
printf("Something is Wrong!\n");
break;}

/* something's wrong! */

printf("...Vector Dimension: %d\n", n+1);

/* Read the components */
for (CompNum = 1; CompNum <= 100000; CompNum++) {

fscanf(inFile, "%f\n", &w);
w2 = w * w;
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SOS[nCase] = SOS[nCase] + w2;

theArg = sqrt(w2); /* no abs val function for floats*/
PFSZWF[nCase] = PFSZWF[nCase] + asin(theArg);

theArg = (1 - w2 + w)/sqrt(2 - w2);
PFSRF[nCase] = PFSRF[nCase] + acos(theArg);

theArg = 1 - (2 * w2);
PFSSCF[nCase] = PFSSCF[nCase] + acos(theArg);

if ( ( (CompNum % 10000)== 0 ) && (CompNum > 10) )
/* monitor some results */

{printf("\nComputation at Number %d for n = %d.
RESULTS:\n", CompNum, n);

printf("\tPROB FAIL, SINGLE ZEROED-WEIGHT FAULT: %f\n",
PFSZWF[nCase]/(CompNum * PI));

printf("\tPROB FAIL, SINGLE RAIL-FAULT: %f\n",
PFSRF[nCase]/(CompNum * PI));

printf("\tPROB FAIL, SINGLE SIGN-CHANGE FAULT: %f\n",
PFSSCF[nCase]/(CompNum * PI));

printf("\tSum of %d Squares: %f\n",n+1, (SOS[nCase] *
(n+l)) / (CompNum));

/* Close printing commands */

}
fclose(inFile);

CompNum = 100000;

/* File completely read */

/* adjust for auto index increment */

printf("\n\nComputation Complete for n = %d. RESULTS FOR %d
TRIALS:\n", n, CompNum);

printf("\tPROB FAIL, SINGLE ZEROED-WEIGHT FAULT: %f\n",
PFSZWF[nCase]/(CompNum * PI));

printf("\tPROB FAIL, SINGLE RAIL-FAULT: %f\n",
PFSRF[nCase]/(CompNum * PI));

printf("\tPROB FAIL, SINGLE SIGN-CHANGE FAULT: %f\n",
PFSSCF[nCase]/(CompNum * PI));

printf("\tSum of %d Squares: %f\n",n+1, (SOS[nCase] *
(n+l) ) / (CompNum));

fprintf(outFile, "\n\nComputation Complete for n = %d. RESULTS
FOR %d TRIALS:\n", n, CompNum);

fprintf(outFile, "\tPROB FAIL, SINGLE ZEROED-WEIGHT FAULT:
%f\n", PFSZWF[nCase]/(CompNum * PI));

fprintf(outFile, "\tPROB FAIL, SINGLE RAIL-FAULT: %f\n",
PFSRF[nCase]/(CompNum * PI));

fprintf(outFile, "\tPROB FAIL, SINGLE SIGN-CHANGE FAULT: %f\n",
PFSSCF[nCase]/(CompNum * PI));

fprintf(outFile, "\tSum of %d Squares: %f\n",n+1, (SOS[nCase] *
(n+1) ) / (CompNum));

/* Completed all nCases */

/* End of Main */
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A.3 MULTIPLEPF.C

/* PROBABILITY OF ADALINE FAILURE FOR MULTIPLE FAULT CASE
Mark Dzwonczyk, Created: Dec 15, 1990, Updated: Dec 16, 1990 15:00

This program reads in a set of numbers with distribution f(x)
and determines the expected values of functions of them
using the Law of Large Numbers:
E{g(x)} = sum(g(x))/N, for N large. Here, n = 100,000.

This program is used only for the multiple fault cases.
For these, a sample set of 100,000 numbers is read
and m numbers are randomly selected from the set.

An average over 100,000 trials is used for E{g(x)}.*/

#include <stdio.h>
#include <math.h>

/* for file & printing output */
/* for real work */

main() {

/* Declare Variables First */

n = 0;
m[4] = 0;
nCase = 0;
mCase = 0;
NumOfTrials;
randIndex = 0;
CompNum = 0;
counter = 0;

/* dim-i of vector; # of adaline inputs
/* number of faults inserted

/* an index for PFs
/* an index for differents m's

/* will be 100,000, used for testing
/* a random index into the sample set

/* count of number of vectors
/* simple counter

FILE *inFile;
FILE *outFile;

/* Input Data */
/* Output Data */

theX[100000];
PFMZWF[4][10];
PFMRF[4][10];
PFMSCF[4][10];
PI = 3.1415926;
suml, sum2;
templ, temp2;
theArg;

/* The sample set
/* PF - Multiple Zeroed Weight Fault

/* PF -- Multiple Rail Fault
/* PF - Multiple Sign Change Fault

/* a sum and sum of squares
/* some temp vars for trig functions
/* some temp vars for trig functions

NumOfTrials = 100000;

outFile = fopen("MULTIPLEPF.OUT", "w");

fprintf (outFile, "Calculation of Adaline Failures as functions of
dim, n\n");

fprintf(outFile, "Multiple Fault Cases\n");

printf("FUNCTION CALCULATION BEGUN.\n");

for (nCase = 1; nCase < 10; nCase++) {

switch(nCase) {
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case 1:
inFile = fopen("COMP10.DAT", "r");
printf("\n \tFile COMP10.DAT opened.");
n = 10;
break;

case 2:
inFile = fopen("COMP20.DAT", "r");
printf("\n \tFile COMP20.DAT opened.");
n = 20;
break;

case 3:
inFile = fopen("COMP30.DAT", "r");
printf("\n \tFile COMP30.DAT opened.");
n = 30;
break;

case 4:
inFile = fopen("COMP40.DAT", "r");
printf("\n \tFile COMP40.DAT opened.");
n = 40;
break;

case 5:
inFile = fopen("COMP50.DAT", "r");
printf("\n \tFile COMP50.DAT opened.");
n = 50;
break;

case 6:
inFile = fopen("COMP100.DAT", "r");
printf("\n \tFile COMP100.DAT opened.");
n = 100;
break;

case 7:
inFile = fopen("COMP200.DAT", "r");
printf("\n \tFile COMP200.DAT opened.");
n = 200;
break;

case 8:
inFile = fopen("COMP300.DAT", "r");
printf("\n \tFile COMP300.DAT opened.");
n = 300;
break;

case 9:
inFile = fopen("COMP500.DAT", "r");
printf("\n \tFile COMP500.DAT opened.");
n = 500;
break;

default: /* som
inFile = fopen("COMPXX.DAT", "r");
printf("Something is Wrong!\n");
break; }

/* n=10 */

/* n=20 */

/* n=30 */

/* n=40 */

/* n=50 */

/* n=100 */

/* n=200 */

/* n=300 */

/* n=500 */

ething's wrong! */
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printf(" ...Vector Dimension: %d\n", n+1);

m[l] = n/100; /* mCase = 1, 1% faults */
m[2] = n/10; /* mCase = 2, 10% faults */
m[3] = n/2; /* mCase = 3, 50% faults */

/* Read the components */
printf("(reading file for n = %d ...(%d trials)...", n,

NumOfTrials);
for (CompNum = 0; CompNum < NumOfTrials; CompNum++)

fscanf(inFile, "%f\n", &theX[CompNum]);
fclose(inFile); /* Now theX[] is the sample set */
printf("file closed\n");

for(mCase = 1; mCase < 4; mCase++) {

PFMZWF[mCase][nCase] = 0.0; /*initialize variables*/
PFMRF[mCase] [nCase] = 0.0;
PFMSCF[mCase] [nCase] = 0.0;

for(CompNum = 1; CompNum <= NumOfTrials; CompNum++) {
/* do 100,000 trials */

suml = 0.0;
sum2 = 0.0;

for(counter=1; counter <= m[mCase]; counter++)
/* get m samples */

{randIndex = rand() % NumOfTrials;
suml = suml + theX[randIndex]; /* need a sum */
sum2 = sum2 + (theX[randIndex] * theX[randIndex]);

/* and a sum of squares */

theArg = sqrt(sum2);
if (theArg > 1.0) theArg = 1.0;

/* The line above is required in case by chance
the sum of sqaures is greater than 1.
The function asin will gag otherwise.

This is only relevant for n small (10, 20) */

PFMZWF[mCase] [nCase] = PFMZWF[mCase] [nCase] +
asin(theArg);

templ = 1 + suml - sum2;
temp2 = m[mCase] + 1 - sum2;
theArg = templ/sqrt(temp2);
if (theArg > 1.0) theArg = 1.0;
if (theArg < -1.0) theArg = -1.0;

/* the lines above is required in case by chance
the sum of sqaures is greater than 1.
The function acos will gag otherwise.

This is only relevant for n small (10, 20) */

PFMRF[mCase][nCase] = PFMRF[mCase][nCase] + acos(theArg);

theArg = 1 - (2 * sum2);
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if (theArg <-1.0) theArg = -1.0;

/* the line above is required in case by chance
the sum of sqaures is greater than 1.
The function acos will gag otherwise.

This is only relevant for n small (10, 20) */

PFMSCF[mCase][nCase] = PFMSCF[mCase] nCase] +
acos(theArg);

if (((CompNum % (NumOfTrials/10))==0) && (CompNum > 10))
/* monitor some results */

{printf("\nComputation at Number %d for n = %d.
RESULTS:\n", CompNum, n);

printf("\tPROB FAIL, MUL. ZEROED-WEIGHT FAULT:\n");
printf("\t\tm = %d: %f\n", m[mCase],
PFMZWF[mCase] [nCase] / (CompNum * PI));

printf("\tPROB FAIL, MUL. RAIL-FAULT:\n");
printf("\t\tm = %d: %f\n", m[mCase],
PFMRF[mCase] [nCase]/(CompNum * PI));

printf("\tPROB FAIL, MUL. SIGN-CHANGE FAULT:\n");
printf("\t\tm = %d: %f\n", m[mCase],
PFMSCF[mCase] [nCase]/(CompNum * PI));

/* Close printing commands */

/* Completed the trials */

/* Completed 3 cases for m, specific n */

CompNum = NumOfTrials; /* adjust for indexed being bumped */

printf("\n\nComputation Complete for n = %d. RESULTS FOR %d
TRIALS:\n", n, CompNum);

printf("\tPROB FAIL, MUL. ZEROED-WEIGHT FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
printf("\t\tm = %d: %f\n", m[mCase],

PFMZWF[mCase][nCase]/(CompNum * PI));

printf("\tPROB FAIL, MUL. RAIL-FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
printf("\t\tm = %d: %f\n", m[mCase],

PFMRF[mCase][nCase]/(CompNum * PI));

printf("\tPROB FAIL, MUL. SIGN-CHANGE FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
printf("\t\tm = %d: %f\n", m[mCase],
PFMSCF[mCase] [nCase]/(CompNum * PI));

/* Print to File */

fprintf(outFile, "\n\nComputation Complete for n = %d. RESULTS
FOR %d TRIALS:\n", n, CompNum);
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fprintf(outFile, "\tPROB FAIL, MUL. ZEROED-WEIGHT FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
fprintf(outFile, "\t\tm = %d: %f\n", m[mCase],

PFMZWF[mCase] [nCase]/(CompNum * PI));

fprintf(outFile, "\tPROB FAIL, MUL. RAIL-FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
fprintf(outFile, "\t\tm = %d: %f\n", m[mCase],

PFMRF[mCase] [nCase]/(CompNum * PI));

fprintf(outFile, "\tPROB FAIL, MUL. SIGN-CHANGE FAULT:\n");
for(mCase = 1; mCase < 4; mCase++)
fprintf(outFile, "\t\tm = %d: %f\n", m[mCase],
PFMSCF[mCase][nCase]/(CompNum * PI));

} /* Completed all nCases */
fclose(outFile);
} /* End of Main */
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A.4 SINGLEPF.OUT

110

Calculation of Adaline Failures as functions of dim, n

Computation Complete for n = 10. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.080718
PROB FAIL, SINGLE RAIL-FAULT: 0.258036
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.161436
Sum of 11 Squares: 0.996311

Computation Complete for n = 20. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.056952
PROB FAIL, SINGLE RAIL-FAULT: 0.254418
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.113903
Sum of 21 Squares: 0.998735

Computation Complete for n = 30. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.046256
PROB FAIL, SINGLE RAIL-FAULT: 0.252875
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.092513
Sum of 31 Squares: 0.990914

Computation Complete for n = 40. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.040086
PROB FAIL, SINGLE RAIL-FAULT: 0.251698
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.080172
Sum of 41 Squares: 0.992254

Computation Complete for n = 50. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.035947
PROB FAIL, SINGLE RAIL-FAULT: 0.251584
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.071894
Sum of 51 Squares: 0.997678

Computation Complete for n = 100. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.025370
PROB FAIL, SINGLE RAIL-FAULT: 0.250707
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.050741
Sum of 101 Squares: 0.996765

Computation Complete for n = 200. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.017980
PROB FAIL, SINGLE RAIL-FAULT: 0.250371
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.035960
Sum of 201 Squares: 1.000242

Computation Complete for n = 300. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.014626
PROB FAIL, SINGLE RAIL-FAULT: 0.250226
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.029253
Sum of 301 Squares: 0.994071

Computation Complete for n = 500. RESULTS FOR 100000 TRIALS:
PROB FAIL, SINGLE ZEROED-WEIGHT FAULT: 0.011327
PROB FAIL, SINGLE RAIL-FAULT: 0.250191
PROB FAIL, SINGLE SIGN-CHANGE FAULT: 0.022654
Sum of 501 Squares: 0.995233



A.5 MULTIPLEPF.OUT
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Calculation of Adaline Failures as functions of dim, n
Multiple Fault Cases

Computation Complete for n = 10. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 0: 0.000000
m = 1: 0.080431
m = 5: 0.234702

PROB FAIL, MUL. RAIL-FAULT:
m = 0: 0.000000

m = 1: 0.257499

m = 5: 0.422430

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 0: 0.000000
m = 1: 0.160861

m = 5: 0.469404

Computation Complete for n = 20. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 0: 0.000000

m = 2: 0.089945
m = 10: 0.243087

PROB FAIL, MUL. RAIL-FAULT:
m = 0: 0.000000

m = 2: 0.317708

m = 10: 0.448419

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 0: 0.000000

m = 2: 0.179891

m = 10: 0.486174

Computation Complete for n = 30. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 0: 0.000000

m = 3: 0.093300
m = 15: 0.243773

PROB FAIL, MUL. RAIL-FAULT:
m = 0: 0.000000

m = 3: 0.346450

m = 15: 0.458082

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 0: 0.000000

m = 3: 0.186600

m = 15: 0.487545

Computation Complete for n = 40. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 0: 0.000000

m = 4: 0.095171
m = 20: 0.245338

PROB FAIL, MUL. RAIL-FAULT:
m = 0: 0.000000

m = 4: 0.364110

m = 20: 0.461909

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 0: 0.000000

m = 4: 0.190342

m = 20: 0.490676
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Computation Complete for n = 50. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 0: 0.000000
m = 5: 0.096807
m = 25: 0.246685

PROB FAIL, MUL. RAIL-FAULT:
m = 0: 0.000000
m = 5: 0.377793
m = 25: 0.467392

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 0: 0.000000
m = 5: 0.193613
m = 25: 0.493371

Computation Complete for n = 100. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 1: 0.025390
m = 10: 0.099310
m = 50: 0.247918

PROB FAIL, MUL. RAIL-FAULT:
m = 1: 0.250688
m = 10: 0.411250
m = 50: 0.476614

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 1: 0.050780
m = 10: 0.198621
m = 50: 0.495836

Computation Complete for n = 200. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 2: 0.028232
m = 20: 0.100999
m = 100: 0.249260

PROB FAIL, MUL. RAIL-FAULT:
m = 2: 0.305295
m = 20: 0.436569
m = 100: 0.483615

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 2: 0.056463
m = 20: 0.201999
m = 100: 0.498520

Computation Complete for n = 300. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 3: 0.029282
m = 30: 0.101175
m = 150: 0.248367

PROB FAIL, MUL. RAIL-FAULT:
m = 3: 0.334698
m = 30: 0.447868
m = 150: 0.486370

PROB FAIL, MUL. SIGN-CHANGE FAULT:
m = 3: 0.058563
m = 30: 0.202350
m = 150: 0.496733

Computation Complete for n = 500. RESULTS FOR 100000 TRIALS:
PROB FAIL, MUL. ZEROED-WEIGHT FAULT:

m = 5: 0.030244
m = 50: 0.101575
m = 250: 0.248902

PROB FAIL, MUL. RAIL-FAULT:
m = 5: 0.367345 CONTE
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m = 50: 0.459844

m = 250: 0.490417

PROB FAIL, MUL. SIGN-CHANGE FAULT:

m = 5: 0.060489

m = 50: 0.203149

m = 250: 0.497804



APPENDIX B: MATHEMATICAL DERIVATIONS

This appendix presents some of the mathematical detail which was not directly relevant

to the principles developed in the body of the text.

B.1 REDUCTION OF GAMMA FUNCTION RATIOS

In §3.4.2, the probability density function for a single weight component, fw(w) is

given by:

fW(w) = 2 (1-w2)(n- 3)/2

Since the variable n is an integer, the fraction
I I(2-- n

(3-49), (Bl-1)

can be reduced to a form not

explictly requiring the gamma function. For n even, n is also an integer and the gamma

function can be calculated directly using as 1(x) = (x-l)!, for x an integer. For n even,
en-i. 1however, n -y is an odd multiple of - and the gamma function property F(x+ 1)

used in conjunction with F 1 )

= xF(x) must be

= r-. The converse is true for n odd.

The formula for the gamma function of an odd multiple of is
2

F(m + = (2m-1)!! I-2-m

where m is an integer and x!! is the semifactorial function

1 x = -1, 0
x!! = x*(x-2)*(x-4)*...*5*3 x odd

x*(x-2).(x-4)...*..4.2 x even

given by [49]:

(B1-2)

(B1-3)

The left side of eq. (B 1-2) can be rephrased as

F(m+ =

= (21 + 1) (B 1-4)

Using the property of the gamma function, F(y+ 1) = yF(y), the right side of eq. (B 1-4) is:
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F(2 + 1)
2 +1

2m- 1 2m-1
2 ( 2 )2m- 1( 1)

- 2 m -2

Concatenating eqs. (B 1-4) and (B 1-5),

( 1 2m-1m-m _222 2Fm-2 2 F(m=+ 12)

\ 2/ 2m-1 2

and from eq. (B2-2)

r(m_ (2m-1)!! En)
2 2m-1 ( 2m

F(m- =2 (2m-1)!!4
2 2m-1 * 2m

F(m- )= (2m-3)!! 4-2 2m-1

So, for n even, n = 2m, (m an integer)

F(2) = - 1 _ ) ! = (

and F( ) = (m - = (n-3)!! --
2 2(n-2)/2

And, for n odd, n = 2m+1, m = n 1 (m an integer)

(2 = 7(m + )= (n-2)!! H-2-(n-1)/2

and -( = F(m) = (m-)! = (

Using eqs. (B 1-7) and eqs. (B 1-8), the ratio ( n ) becomesUsing eqs. (B 1-7) and eqs. (B 1-8), the ratio 2 becomes

F@ Yr(n-1 2 [-

( ) 2(n-2)/2

(n-2)!!

2(n-1)/2(n-32*

n even

n odd

For obvious notational convenience, the left side of eq. (B 1-9) is used in the text.
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(B1-8a)
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B.2 VARIANCE OF SINGLE COMPONENT PROBABILITY DENSITY FUNCTION

This section derives the variance of a single component of an n-dimensional unit vector.

That variable, w, has a probability density function given by

f(w) = -w2)(n-3)/2 (3-49), (B2-1)

By definition, the variance is the second central moment

a2 (w) = E { (w - E w }) 2 } (B2-2)

but fw(w) is an even function, so E { w } = 0, and

y2 (w) = E { w2 } (B2-3)

The expected value can be found through integration. The range of integration is given by the

range of the value of w, w e [-1, +1].

1

E =w
2  2) w42(1-w2)( n-3)/2 dw (B2-4)

-1

-= (W2(l1-w2)(n-3)/2)dw (B2-5)

and since both w2 and (l-w2)(n 3)/2 are even functions, their product is even and the integral

can be reduced to
1

E w2 }= \ 2  2 J(w2(1-w2)(n-3)/2)dw (B2-6)

From here, integrals tables are used. From Dwight [15], entry 855.41,

1 F(p+1)F(m_)
fxm(1 - x2)Pdx = (B2-7)
0 2F p+m 3

So with m = 2 and p - n-3
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2Fn-3 + q+3)
2( 2 2)

and using F(x+1) = xF(x) and F() =

J(w2(1_w2)(n-3)/2)dw
0

21F (+ 1

•-, T( =•(2)
=2 2

2n(
2n( )

(B2-8)

and (• +I)= n ():

(B2-9)

Substituting eq. (B2-9) into eq. (B2-6),

E2 w2( )  4-- f (n2-1)
F 2n - 2)

From eq. (B2-3) the result is obtained:

(2 (w) = 1
n

1

J(w2(1-w2)(n-3)/2)dw

1
n (B2-10)

(B2-11)
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B.3 CLOSED-FORM SOLUTION FOR THE ADALINE FAILURE PROBABILITY

FOR THE SINGLE ZEROED-WEIGHT FAULT

In §3.5, the probability of adaline failure for the single zeroed-weight fault is given by

2F n+1 1
P0(n) = sin-1(w)(1-w2)(n-2)/2dw

F(n) n t3/ 2 0
(3-66), (B3-1)

The integral can be solved by creating a new variable 0, such that

w = sine, or 0 = sin- 1(w)

so that dw = cosO dO

and since (sin-) 2 + (cosw)2 = 1,

cosO = (1 - w2)1/2

1 /1)

dw 
= (1 

- w2 

dO

(B3-3)

(B3-4)

Setting the constant term in (B3-1) to Cn

2F(n~)
Cn =

2 3/2

and substituting eqs. (B3-2) through (B3-5) into eq. (B3-1),

C c/2
PF(n) = Cn f0(cos0)n-3d0

(B3-5)

(B3-6)

From here, tables of definite integrals can be used. Entry 2 on p. 386 of Prudnikow et al [37]

states for k > 0:

[k-12

(B3-2)

fx(cosx)kdx
0

where

(1-k+2 k - A (k-1)!!t -
- ~J~2] 4k!! -

j=0

x!! is the semifactorial function defined in eq. (B 1-3)

(x) =x. (x+1) ... * (x +j- 1)
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[x] is the largest integer up to and including x

1, k even
A= 2 k odd

So, for k odd,

[k+] =k+1 and [k-1] = k-1

2 ~2 2 2

and for k even,

[k+] = and k-1 k-2
=•and 

-22 2 2 2
Eq. (B3-7) can be used to solve eq. (B3-6) for n > 3. The result is

For n odd, n > 3:

(n-5)
2

j=0

2-2)(3
PF(n) = (2 )

Fn ]F I73/2 3 (5)((2j +21- n)(n

and

For n even, n > 3:

PF(n F()232
AFn) = r- r/

2 )32

(n-4)

j=2

j=0

2 2 -) (3 - ) ... (J+

(3 ) )...( 2j +21 - n)( n 3 - 2j) 2

Eqs. (B3-8) support the conclusion that a closed-form solution is not necessarily the

best presentation for PF. Computer-aided solutions, even if approximations, are much more

informative.
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(B3-8a)

(B3-8b)

- )

-3 -2j )2

-0 ... (

7t(n-4)!!I
2(n-3)!!


