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ABSTRACT

This thesis considers the problem of detecting known narrowband
signals transmitted over random dispersive channels and received in addi-
tive white Gaussian noise. Methods for calculating error probabilities
and performance comparisons between optimum and suboptimum receivers are
presented for doppler-spread, delay-spread, and doubly-spread channels.

The doppler-spread channel is assumed to have a finite state-
variable representation. Asymptotic expressions for the error probabili-
ties of suboptimum receivers are derived in terms of the semi-invariant
moment-generating functions of the receiver decision statistic. The per-
formance of two suboptimum receivers, a filter-squarer-integrator and a
sampled correlator followed by square-law detection, come within one or
two dB of the optimum receiver performance in a number of examples.

The delay-spread channel is related to the doppler-spread model
by time-frequency duality.. Two suboptimum receiver structures are sug-
gested for the delay-spread channel: a two-filter radiometer, and a bank
of delayed replica correlators followed by square-law detection. A di-
rect method for finding the performance of the optimum and these subopti-
mum receivers is given which is convenient for transmitted signals and
scattering distributions with finite durations. The suboptimum receiver
performance is shown to be close to optimum in several examples.

A distributed-parameter state-variable model is given for the
doubly-spread channel. It is a linear distributed system whose dynamics
are described by partial differential equations and whose input is a dis-
tributed, temporally white noise. The model is specialized to the case
of stationary, uncorrelated scattering, and the class of scattering func-
tions which can be described by the model are given. The realizable
minimum mean-square error estimator for the distributed state vector in
the channel model is used to construct a realizable optimum detector. A
by-product of the estimator structure is a partial differential equation
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for the estimation error covariance matrix, which is necessary for the
calculation of the error probabilities.

A modal technique for solving the estimator and error covariance
equations of the distributed doubly-spread channel model is given. It
reduces the distributed model to a finite state system. This approxi-
mate model is compared with a tapped delay line model for the channel.
The performance of the optimum receiver is computed for an example. The
technique for finding the optimum receiver error probabilities is use-
ful for arbitrary signals and energy-to-noise ratios, and for a large
class of doubly-spread channel scattering functions.

Finally, several suboptimum receivers for the doubly-spread chan-
nel are considered. It is shown that their performance can be found by
the methods used to obtain the optimum receiver performance.

THESIS SUPERVISOR: Harry L. Van Trees
TITLE: Associate Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

An appropriate model for many detection and communication

problems is one that describes the received waveform as the sum of a

signal term which is a Gaussian random process and a noise term which

is also Gaussian. For example, in sonar and radar detection a known

signal is transmitted and may be reflected by a target. If the target

is not a point reflector of constant intensity, the received waveform

can be characterized as a random process with properties that are related

to the transmitted signal and the target scattering mechanism. Signals

received after transmission over certain communication channels often

exhibit a similar random behavior. Such channels include underwater

acoustic paths, orbiting dipole belts, chaff clouds, and the tropo-

sphere. The Gaussian signal in Gaussian noise model is also appli-

cable in many situations which do not involve the initial transmission

of a known waveform: passive acoustic detection of submarines, the

discrimination between various types of seismic disturbances, or the

detection of extraterrestial radio sources.

The optimum reception of Gaussian signals in Gaussian noise

has received considerable attention [1-8]. Van Trees [8] contains

a thorough discussion of optimum receivers, their realization, and

performance evaluation for a wide class of Gaussian signal in Gaussian

noise detection problems. A familiarity with these results is assumed

here.

-a
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The detection problem which is considered in the sequel is

formulated as a binary hypothesis test. With r(t) denoting the re-

ceived waveform, the two hypotheses are

H1 : r(t) = sl (t) + w(t),

T < t < T (1.1)
H0 : r(t) = s0 (t) + w(t), 0 f

The observation interval is [T ,Tf] and the signals Sk(t) are sample

functions of zero-mean, narrowband Gaussian random processes. That is,

the Sk(t) can be written in terms of their complex amplitudes as

jNJ) t
Jak t

sk(t) = /2Re[s (t) e ], k = 0,1 (1.2)

with covariance functions

E[s k (t) s k (u)] = K(t,u)

(1.3)

E[s k (t) s k (u)] = 0

• jWk(t-u)E[s(t)s(u)] = K (t,u) = Re[k (t,u)e (1.4)
k Sk

The superscript indicates complex conjugation and E[.] expectation.

Details of the representation of complex random processes are contained

in Van Trees [8,15].

The additive noise w(t) in (1.1) is assumed to be a sample

function from a zero-mean, white Gaussian random process. In terms of

complex amplitudes

w(t) = /JZRe[wk(t) e kt] , k = 0,1 (1.5)

·_~ _ ~I_
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E[wk(t)wk(u)] = No6(t-u)

(1.6)

E[wk(t)wk(u)] = 0

The subscript k in Wk(t) indicates that the

are different if the wk are not identical.

or when the meaning is clear, the subscript

received waveform r(t) may be expressed as

lowpass processes wk(t)

When the wk are the same

will be dropped. The

r(t) = /kRe[rk(t)e ], k = 0,1

K (t,u) = E[rk(t)rk(u)] = Kf (t,u) + N 6(t-u)
rk sk 0

(1.7)

(1.8)

The detection problem of (2.1) may now be restated in terms of complex

processes

H1: r l (t) = s l ( t) + wl ( t )

HO: ro(t) = so(t) + w0(t)

T < t < T
o -- -- f

A special case of the binary detection problem

occurs when H0 is taken to be the absence of the signal.

carrier frequencies are identical and the problem is one

between

(1.9)

of (1.9)

Then the

of deciding

H1: r(t) = s(t) + w(t)

T < t < T
o -- -- f

(1.10)

H): r(t) = w(t)

° .
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The hypothesis test of (1 .10) will be called the simple binary detection

problem.

A communication problem that also receives attention in the

sequel involves the reception of one of M•t equally likely, narrowband

Gaussian random processes, Sk(t), in white Gaussian noise. It will

be assumed that the zero-mean Sk(t) are sufficiently separated in

carrier frequency to ensure that they are essentially orthogonal.

Furthermore, the covariance functions of the Sk(t) differ only in carrier

frequency.

jwk(t-u)
K (t,u ) = Re [ K(t,u) e ], k = 1,...,M (1.11)

Sk S

The receiver decides at which one of the M carrier frequencies a signal

is present. In complex notation there are N hypotheses

I'k: rk(t) = sk(t) + wk(t) , k = 1,...,M (1.12)

This will be called the "M-ary symmetric, orthogonal communication

problem. Note that when 1I = 2, the formulation of (1.12) is the same

as the problem of (1.9) when the model of (1.9) has identical covari-

ance functions, KKk (t,u), and widely separated carrier frequencies.Sk
The optimum receivers for the detection and communication

problems presented above are well known [1-8]. For a large class of

criteria both receivers compare the likelihood ratio to a threshold.

Both receivers utilize the statistics

T T
Tf Tf h, r

k rk (t)hku(t,u)rk(u)dtdu (1.13)

T T
o o

I,
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The complex impulse responses hku(t,u) are solutions to the integral

equations

Tf

Nhku(t,u) + Ks (t,x)ku (x,u)dx = K (t,u) T < t,u < Tf
T k ko

o

(1.14)

Figure 1.1 show the optimum receiver for the binary detection problem

of (1.9) as an unrealizable estimator-correlator; the block ILPF

denotes an ideal lowpass filter. Figure 1.2 shows the optimum re-

ceiver for the M-ary communication problem of (1.12).

Several other realizations of the operations which generate

the statistics Zk are possible. If hku(t,u) in (1.13) is factored [8]

f

S(tu) = g(x,t)g (x,u)dx, T < t,u < T (1.15)ku T k o 0 f
T

then (1.13) becomes

T Tf 2

Zk = gk(x,u)rk(u)du dx (1.16)
T T

o o

The resulting structure, shown in Figure 1.3, will be called a filter-

squarer-integrator branch. Whenever Skr(t), the minimum-mean-square-

error realizable estimate of the signal sk(t), is available, the Rk

can be generated as shown in Figure 1.4 [8-10]. The realizable filter

hkr(t,u) produces the estimate skr(t) from rk(t ) .

In order to find the configurations of Figures 1.1 - 1.3,

one of the integral equations (1.14) or (1.15) must be solved. In

| I



Figure 1.1. Complex representation nf the estimator-correlator version of the optimum
receiver for detecting Gaussian signals in white Gaussian noise.
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Figure 1.2. Complex version of the optimum receiver for M-ary communication with
orthogonal Gaussian signals.
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Figure 1.3. Complex version of the kth branch of the optimum receiver, filter-
squarer-integrator realization.
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Figure 1.4. Complex representation of a realizable structure for generating the optimum £k"
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general this is difficult. Several special cases which have solutions

arise when the covariance functions K% (t,u) satisfy a "low-energy-
sk

coherence" condition [2,7,8], or are separable [8], or when the Sk(t)

are stationary and the observation interval is long [8]. The structure

of Figure 1.4 can be realized for a considerably wider class of prob-

lems: whenever the processes Sk(t) have finite state representations

[8,15,20].

Several measures of the performance of the optimum receiver

for the binary detection problem of (1.1) have seen use [2,11,12].

A popular one is the output "signal-to-noise" ratio of the detector,

but it is strictly valid only under low-energy-coherence conditions

[2,7]. Collins [13,14] has derived asymptotic expressions for the

detecLion error probabilities, Pr(EIH 1 ) and Pr(EI H ) , for the optimum

receiver in the general case. His method involves the use of tilted

probability distributions, and the error probabilities are given in

terms of the moment-generating function of the likelihood ratio. This

function can be found for the special cases of low-energy-coherence,

separable kernels, or stationary processes-long observation. When

the sk(t) have state-variable representations, the moment-generating

functions can also be conveniently computed.

For the M-ary symmetric, orthogonal communication problem

of (1.12), the probability of error of the optimum receiver is not

known. Kennedy [6] has derived bounds on Pr(E) which also involve

momient-generating functions of the decision statistics Z . IWhen M = 2

the asvmDtotic exDressions for the error probabilities in the detection

problem can be applied to evaluate Pr(c) for the communication case.
problem can be applied to evaluate Pr(E) for the cormnunication case.

-- --- - L I II
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A special case of the Gaussian signal in Gaussian noise model

which is treated in detail in this thesis arises when a known wave-

form is transmitted over a "dispersive" or "spread" channel [2,6,8,16,

17]. The transmitted signal is

j i)kt

fk(t) =/' Re[< (t)e , 0 < t < T (1.17)

An appropriate physical model for the channel is a collection of

moving point scatterers which reflect the transmitted signal. The

portion of the receiveu signal due to fk (t) is then modeled as a

random process. It is convenient to classify this type of dispersive

channel by its effect on the transmitted signal as doppler-spread,

delay-spread, or doubly-spread.

The doppler-spread channel arises when the moving scatterers

are distributed over a region of space which is small, in units of

propagation time, compared to the duration of fk(t). As a result the

amplitudes of the quadrature components of the reflected fk(t) vary

randomly with time. The complex amplitude of the scattered return

can be modeled as [8]

sk(t) = fk(t)y(t) (1.18)

where y(t) is a complex Gaussian random process. The multiplicative

disturbance in (1.18) causes sk(t) to exhibit time-selective fading;

in the frequency domain this appears as a broadening of the spectrum

of fk(t). The doppler spread channel is also referred to as a fluc-

I _ _ _~__-~-~_i--_-_------ _
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tuating point target model.

When the scatterers are moving at a rate which is small com-

pared with l/T, but have a spatial distribution in units of propagation

time which is significant compared to T, the result is the delay-

spread channel. Here each scattering element returns fk(t) with a

random phase and amplitude which do not vary with time. Mathematically,

the total return is given by

Sk(t) = k(t - X)y(X)dX (1.18)
-00

where y(X) is a complex Gaussian random process. Equation (1.18) indi-

cates that the duration of Sk(t) exceeds that of fk(t); Sk(t) also

exhibits frequency-selective fading. The delay-spread channel is

also called a deep or extended target model.

A combination of the effects which produce the doppler- and

delay-spread models results in the doubly-spread channel model. Here

each spatial element of the moving scatterer distribution acts as

a point fluctuating target. The integrated return is

oo

sk(t) = k(t - A)y(A,t)dX (1.19)
-- O

where y(X,t) is a two parameter, complex Gaussian random process. The

received signal exhibits both time- and frequency-selective fading in

this case; both the duration and bandwidth of fk(t) are increased. The

doubly-spread channel is also termed the deep fluctuating target model.

Construction of optimum receivers and evaluation of their

I _ I
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performance for detection or communication with the spread channel

model above is feasible in certain situations. Price [1,2,7] has

considered this problem in detail when a low-energy-coherence condition

prevails. Stated briefly, this condition requires the eigenvalues of

the kernel K% (t,u) all to be much smaller than the additive white
s
k

noise spectral density, N . Physically, this means that no time

interval over which Sk(t) is significantly correlated can contain an

appreciable portion of the total average received signal energy. In

this case, optimum receiver structures and performance expressions are

available. However, the most comprehensive treatment of the Gaussian

signal in Gaussian noise problem is possible only with the state-

variable techniques outlined above. For thie case of the transmission

of known signals over dispersive channels only the doppler-spread

model can be solved in general, since it is possible to specify a

state-variable model for the multiplicative fading process y(t) and

hence for sk(t).

A considerable protion of this thesis is devoted to the

derivation and discussion of techniques for specifying the optimum

receivers for delay-spread and doubly-spread channels, and for eval-

uating their performance. These methods involve distributed-para-

meter state-variable representations for random processes. Lvaluation

of the moment-generating functions of the optimum receiver decision

statistic allows the calculation of the appropriate error probabilities.

Of the optimum receiver structures in Figures 1.1 - 1.4, the

filter-squarer-integrator of Figure 1.3 is the easiest to implement

from a practical point of view. However, the solution of (1.15) is not

__ _ _I~
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knovw except in a few special cases. The filter-squarer-integrator

receiver may still be used with a different filter, although it will

then be no longer optimum. Its performance may not suffer much, pro-

vided that the filter is chosen properly. In order to compare the

optimum receiver with any supoptimum receiver, a technique for the

evaluation of the suboptimum receiver error probabilities must be

available.

This thesis presents a method of evaluating the detection

error probabilities for any suboptimum binary receiver. The technique

is similar to that described above for the evaluation of optimum

receiver error probabilities. The results are asymptotic expressions

which involve the moment-generating functions of the receiver decision

statistic. For the 1,J-ary orthogonal cormmunication problem, bounds on

suboptimumi receiver error probabilities are evaluated.

The application of the expressions for the suboptimum error

probabilities depends on the ability to compute the moment-generating

functions of the suboptimum receiver decision statistic. This is done

for two classes of suboptimum receivers: the filter-squarer-integrator

structure and the finite quadratic form. The latter term describes

a receiver with a decision statistic that can be written

N N

k = I r.W.or. (1.20)
i=i j=1

where the r. are complex Gaussian random variables [8]. The resulting
1

expressions for the receiver error probabilities are evaluated for the

spread channel detection problem and compared with the optimum receiver

----
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performance. These comparisons provide insight into the design of

suboptimum receivers and signals for the dispersive channel model.

A brief outline of the thesis follows:

Chapter II derives asymptotic expressions for the error

probabilities of any suboptimum receiver used for binary detection.

Bounds are given on the probability of error for the LN-ary symmetric,

orthogonal com,,urnicatzon problemi. Moment generating functions for

optimum, filter-squarer-integrator, and finite quadratic form re-

ceivers are specified for the Gaussian signal in white Gaussian

noise model.

Chapter III considers the doppler-spread channel model. A

particular filter-squarer-integrator suboptimum receiver is specified

and its performance is evaluated. A second suboptimum receiver is

suggested and error probabilities for it are calculated. A compar-

ison of the performance of optimum and suboptimum detectors is given.

Chapter IV treats the delay-spread channel model. The

notions of time and frequency duality [6,18] are used to relate the

delay-spread model to the doppler-spread problem. An alternative

technique is established for finding the performance of the optimum

receiver. Two suboptimuum receiver structures are specified and their

error probabilities are evaluated using the results of Chapter II.

Chapter V presents a distributed-parameter state-variable

model for the doubly-spread channel model. A realization for the

optimum detector is given and a method for evaluating the error

probabilities is derived. An example is discussed in detail.
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Chapter VI considers two suboptimum receiver structures for

the doubly-spread channel detection problem. They are related to the

suboptimura receivers treated earlier in the doppler-spread and Uelay-

spread models. A method of evaluating their performance is given. The

suboptimum receivers are compared with the optimum receiver for the

same example presented in Chapter V.

Chapter VII is a summary of the results of the thesis.

Some comments on signal design for dispersive channels are included.

Suggestions for further research are given.

V
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CIt•PTER II

ASYMPTOTIC ERROR PROBABILITY EXPRESSIONS

FOR TIHE DETECTION OF GAUSSIAN SIGNALS

IN GAUSSIAN NOISE

The problem of finding the detection error probabilities for

a receiver which makes a decision by comparing a random variable with

a threshold can be approached in several ways. The most direct is to

find the probability density function of the decision statistic and

integrate over the tails of the density to get the error probabilities.

For the detection of Gaussian signals in Gaussian noise, the optimum

receiver of Chapter I performs a non-linear operation on the process

r(t). In this case the probability density of the decision statistic

is not known. Even in problems where the density function is known,

it may be difficult to perform analytically or numerically the inte-

gration required to obtain the error probabilities.

For the Gaussian signal, binary detection problem of Chapter

I, it is possible to write the optimum receiver decision statistic

as an infinite, weighted sumn of squared, independent Gaussian random

variables with known variances [8]

S= .•ii 2 (2.1)
i=l

This suggests two possibilities for finding the error probabilities.

The first is the application of the central limit theorem to the suns

1
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of (2.1) to establish that Z is a Gaussian random variable. This fails

because (2.1) violates a necessary condition for the use of the central

limit theorem [8]. The second approach is based upon the fact that an

expression for the characteristic function of . is available [8,13].

Inversion of the characteristic function gives the desired density func-

tion, but in this case the inversion must be done numerically. This

is impractical due to the form of the characteristic function and the

necessity of accurately obtaining the tails of the density function [13].

Collins [13,14] has developed an alternate method of com-

puting the optimum receiver error probabilities provided that the semi-

invariant moment-generating function of the logarithm of the likelihood

ratio is available. This technique involves the notion of tilted

probability densities and the resulting error probability expressions

are in series form. The semi-invariant moment-generating function is

closely related to the characteristic function of Z in (2.1); thus for

the Gaussian signal in Gaussian noise probleir the optimum receiver

error probabilities can be evaluated.

Essential to Collins' derivation is the fact that the receiver

is optimum: it compares the likelihood ratio with a threshold. The

discussion above on the calculation of error probabilities is relevant

also when a receiver which is not optimum is being used. This is the

case in many practical situations. Hence a generalization of Collins'

results would be useful, if the moment-generation function of the out-

put of this receiver is available.

Tblis chapter derives expressions for the binary detection
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i(s) = P 1k I ,(s) = n E[es IH.], i = 0,1 (2.4)

The functions P.(s) generally exist only for some range of values of s.
1

Given H a tilted random variable O0s is defined to have a

probability density function

sL-0 O(s)
P (L) = e

Os
(2.5)

P IH (L)

From (2.2) the probability of error give H0 is

Pr(EIH ) = f p (L)e
y Os

(2.6)

Note that

d n 0(s)

de = nth semi-invariant of Os
A (n)
= On (s)

Thus the random variable

F, -;0(s)
Os 0

is zero-mean and has a unit variance. Rewriting (2.6) in terms of the

density function p (Y) gives

(2.7)

(2.8)

1 _ _ ,, - - - ----

MIn(s)-sL

----
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where

noting that

1O(S) - sýO(s) s - s)yf Y
Pr ( IIH) = e f e py (Y)dY

P (Y) = (Y• p (s + (s))

Y - 10(S)
6 =

An upper bound on Pr(IlH0 ) is obtained from (2.9) by

exp(-s / (s) Y) <

s > 0, Y> 0

Then if

Y 1 0(s)

(2.9) becomes

(S) - S(s) (Y)dY
Pr(IH O ) < e f py (Y)dY

po(S) - S4o(s)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13a)

(2.13b)

< e

(2.14)

·_ I _ _

, s > , y > o(s)
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Note t1~at the bound of (2.14) is val~id for any s that satisfies the

conditions of (2.13).

If the random variable y in (2.8) is G~aussian, the evaluation

of the integral in (2.9) is straigh-tforward. Tn general y is not

Gaussian, but it is often the sum of a large number of random variables.

Thus for cases in whiich p (Y) bears some similarity to a G~aussian

density it appears reasonable to expand p (Y) in an £dgeworth series

[13,21]

Py(Y) = 3(YL) - Y3 O(3)(Y) + (>y

+ 1y 2C6(YJ L y(5c)(y) + -- y3 y4 ~(7 )(y)

+- ( Y 3 (Y)j + ... (2.15)

where

y1  = , k > 2 (2.16)

K0 (S32
1(Y =exp (- )(2.17)

(The superscrip~t (k) denotes the ktb derivative.) Introducing (2.15)

into (2.9) gives
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~ 0 (s)-s0(s) y3 L 34 1Pr (f-H 0 )
= e I I + I

10 2 I 1
6! ¥3 6 (2.18)

)

)

)

)

---- J I
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rapidly.

To obtain a similar series for P'r(c.J Ul a second tilted

randoml variabl~e Zl is define~d

sL-vI (s)
S(L) =
Is peji (L)

whiere i-i(s) is given by (2.4). Fromn (2.3)

Pr(Ej H1) = eli ) - p9 (L)dli (2.24)

With the norm~alized random variable

(2.25)

(2.24) 1)econles

a -sV~i7~ xfe 1 pxd

where

p (X)> =F Srj~~ I(>

An upper bound on P'r(e1H 1) is obt ained by noting that

exp ~ 1 (- sIi7X) < 1 (2.29)

when
(3 * X < 0 23a

(2.23)

Pr(c H0) - e (2.26)

y ;1S

1

(2.27)

(2.28)

els- ;l(s)
X

JiiTsT
1

~1(S) - S~1(S)

(2.30a)
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Thus if

(2.26) becomes

Pr(J H H) < C
Is()- siJ,(s)

f i

ls - s~~l(s)
< C s < fl, Y ii s

i~UtC that the bound of (2.31) is valid for any s satisfying; the conditions

of (2.30).

An asymptotic expansion for P'r(EjIi 1) is obtained by the samne

procedure used for Pr(Ejl l). Thie density p~()i xaddi iesre

of (2.15) and introduced into (2.26). The result is

PrEJ11 =e i(s)-sii1(s) - 3± 4! + o v 2

(2.32)

whLere

A -Bx ('k)
fe (x)dx

Ii] (s

i1(·] j

(2.33)

(2.34c)

s · I77sYs
1

Y < 1'(s) (2.30b)

(2.31)

ikl
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The integral Ik can be expressed recursively as
k

I' exp ( ) erfc, (-A-P)0 2

Ik k-1 + exp(-) (k-l)(), k > 1 (2.35)

Approximations to Pr(E IH 1) are obtained by truncating the series (2.32).

Equation (2.32) is valid for any non-positive s for which p (s) and its

derivatives exist.

The error probabilitv hbounds (9 1 • a7d (9 3-1- n1 r ) fv-eb--to,
.L-7 .L·JL er-~V L LI~

at ten tion . The constraints of (2.13) and (2.30) limit the ran~e o h

threshold y. Since U0 (s) and il(s) are variances, they are positive,

and thus the ji.(s) are monotonically increasing functions. Then the

conditions (2.13) and (2.30) imply that

Y > j0(0) = E[Z H0O]
(2.36)

Y 1(0) = E[IHJ1]

This indicates that the threshold y must lie between the means of Z on

Hi0 and II1 if the bounds of (2.14) and (2.31) are to be used.

The bounds on the error probabilities may be optimized by

the proper choice of s. The derivative of the exponents in each of

the bounds (2.14) and (2.31) is -sji(s). Since s is constrained to be

positive on 1H1 and negative on Ii0, and since the pi(s) are positive,

this implies that Isl should be made as large as possible in each case.

The conditions (2.13b) and (2.30b) limit how large Isj can be. Hence

L _ _.
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the optimized bounds are

Pr(E H I) < e 0 (s0)-s0 0 (s0  (2.37)

Pr(EIH 1) < e (2.38)

where so and s1 are determined by

0(So) 1 (S)

(2.39)

s > 0 , s < 0
0 1-

Since the values so and sl in (2.39) optimize the bounds, they are

good candidates for use in the series expansions for the error prob-

abilities.

The bounds on, and asymptotic expressions for Pr(cHll 0 ) and

Pr(ElH1) given above hold for any binary receiver that compares a

random variable to a threshold. For these results to be useful, the

semi-invariant moment-generating function pi(s) must be available.

Also convergence of the series expressions is not likely to be rapid

if the tilted probability densities differ greatly from a Gaussian

density. Unfortunately, little is known about the convergence of the

error probability expressions in general; see Collins [13] for a

discussion of this issue.

When the decision statistic R is the logarithm of the

likelihood ratio, Pr(EIH 1 ) and Pr(cjH 0 ) are related. The connection is

established by noting that

.9 _~
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P (RI )
Z = Zn A(r(t)) = n (2.40)
op p (R 0

where R is a sufficient statistic [20] and A(r(t))is the likelihood

ratio. Then

sk

P (s) = Zn E[e OPIH 1]

mo sL
= in f e pZ H(L)dL

c sL + L
zn f e pZ III (L)dL

-CO op 0

= (s + 1) , 0 < s < 1 (2.41)

The condition on s comes from the relation of (2.41) and the simul-

taneous satisfaction of (2.11) and (2.28). Thus both of the optimum

receiver error robabilities 

s

of one of the p.(s), where the value of s is determined by the

threshold; usually p (s) is used [13].

B. Error Probability Bounds for l-ary Orthogonal Communication

This section evaluates upper and lower bounds on the

probability of error of a receiver deciding which one of M bandpass

Gaussian random processes is present. The receiver structure is

similar to that shown in Figure 1.2: the complex representation of

each branch is identical; only the carrier frequencies differ. It will

be assumed that the k are sufficiently separated to ensure that the

-- .W ___

I
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branch outputs are independent random variables. Furthermore, it is

assumed that the outputs of all the branches which have inputs con-

sisting of white noise alone are identically distributed. The re-

ceiver makes a decision by choosing the largest of the branch outputs,

£k. Equally likely hypotheses are also assumed. Note that the re-

ceiver is not necessarily optimum. This section uses the results of

Section A to evaluate bounds originally established by Kennedy [6].

The probability of error is given by

Pr(e) = Pr(sIHi )

(2.42)
= 1 - Pr(£i > all kk' k # i i Hi)

From Kennedy [6], Pr(c) may be bounded by

Pr(c) < Pr(£ < h) + M Pr(h<£ < z ) (2.43)s - s -- n

Pr(E) > - Pr ( s < h) Pr(£n > h) (2.44)4 s n

where the latter bound holds provided that

M Pr (Zn > h) < 1 (2.45)

The random variables ks and Zn are branch outputs when s(t) + w(t)and ,w(t),

respectively, are inputs. The variable h may take on different values

in the two bounds.

The lower bound (2.44) is composed of factors for which

expressions are available from Section A. From (2.32)

~ _~I_ ~
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Pr(£ < h) = e
s -

lc (s)-s lc (s)1ic0
[I 3 I' + ... ]0 -T 3

3!

where

A

f exp (-s /P'c(S) x ) (k)(Xk f lc

Ic (s)

(s)
Ic

(2.47)

(2.46)

(2.49)

The semi-invariant moment-generating function for ' , the branch output

when a signal is present, is

(2.50)Plc(S) = Qn E[ c

Similarly, from (2.18)

Pr0(s) - sOc (s)
Pr(£ > h) = e

n

= J exp (-s 0c(s u) (k)(u)du

(2.46)

(2.51)

(2.52)

Y

Y3[ -3
[I , I + ... ]

0 .

.1~ 

s 
k

(s··i 2



( ) Oc (s)

OckOc

POc(s) =

(2.53)

(2.53a)

(2.54)Zn L[e n]

Equations (2.46) and (2.51) permit evaluation of the lower bound (2.44)

and the condition (2.45). The value of h can be varied to maximize the

lower bound.

The upper bound of (2.43) is first replaced by a looser bound.

Fro.m Appendix III of Kenledy [6]

<Pr(h < Z < ) =S-- n

h

p (Ls ) (L )dL uL
S S I"

t(L -L )
s n n s

S T1

p0c (t)
< e f p (L sh sbs

-tL
)e s

dL

CO -tLs- c (-t)

fp2 (Ls)e
h s

dL
s

(2.55)

_ I

-3 8-

P0c(t)+lc(-t)
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where

T = T - T
f

log2 =1R =

C = a

TRn 2

and k , k are constants. Er is the expected value of the received

energy in Sk(t) over the observation interval, and C is the infinite

bandwidth, additive white Gaussian noise channel capacity in bits/second.

The function E°( R ) is termed the system reliability function, and it

is discussed by Kennedy [6]. Appendix I shows that

R
E (P ( ) R < R rit

-- crit
LO( ) = (2.64)R

Ch C
R > R

crit

where crit is determined by the equations
crit

crit
C

(2.65)

ý1c(s) = HOc (-s) , s< 0

R
The function E ( R ) is

P i C

(2.60)

(2.61)

(2.62)

(2.63)

*
-s11l (s ) -Ij (-S)
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R R 1
E , (-) = lc (s) + OC(-S)

(2.66)

s< 0

1?

h (J

E ) [s (s)-P (s)]h C a lc lc

Ic(s) = Oc(t), t > 0, s < 0

RCaC = t ýc(t) - Oc(t)

The pic(s) are the semi-invariant moment-generating functions of (2.50)

and (2.54).

An expression for Pr(E) can be derived when M = 2. Then

Pr(c) = Pr(2. - k < 0 )
s n

(2.68)

The semi-invariant moment-generating function of £ - Z is
s n

bc (s) = kn E[ e

S
- £n Ebe

s - n)

s] + 9n E[e

(2.69)-Plc(s) + pO0c(-s)

and E.( )

(2.67)

ilc (s) = I c(-s)
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The asymptotic expansion for Pr(E) follows directly from (2.32)

Pr((s) -S bc(S)
Pr(c) = e

A bc

Ik = f exp(-s j7Jbc(S)x)

( I 3 13 + ... ]0 3-- 33!

(k) (x)dx

(k)
be

L[C]s1 k
IUb c(s) 2

A = - (bc(S)
S (s)

bc

A bound on Pr(c) is available from (2.38)

Pr(s) < e

lbc(S) = 0 ,

ibc (s)

s< 0

When Hi = 2 and the optimum receiver is used, tight bounds on

Pr(F) are available from Pierce [27]. From (2.69) and (2.41)

1*bc(s) = p*0c(s + 1) + p*0c(-S)~cbc *iOc J~ (2.76)

where the * indicates that the optimum receiver is used. Then Pr(E)

may be bounded by [13]

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

___W __
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exp(*bc(- ".5)) exp (*bc ( - .5))

< Pr(c) < (2.77)

2[+/.125UIbc (-.5)] - 2[+/. 125b c (-.5)]

Note that this is consistent with (2.74). Equation (2.77) indicates

that for optimum reception in the binary symmetric orthogonal communi-

cation problem, the quantity *bc (-.5) is an accurate performance

indicator.

This section has evaluated bounds on the Pr(c) for the IN-ary

communication problem of (1.12). Any receiver may be used that has

identical branch structures and statistically independent branch outputs.

The expressions given are not useful, however, unless the moment-

generating functions are available. The remainder of Chapter II considers

the moment-generating functions associated with the optimum receiver and

with two classes of suboptimum receivers for the Gaussian signal in

white Gaussian noise model outlined in Chapter I.

C. 2ýoment-Generating Functions for Optimum Receivers

T'his section reviews the semi-invariant moment-generating

functions for the optimum receivers in the detection problems (1.9)

and (1.10), and t]he communication problem (1.12). These results are

Ailics i-r Crnl 1 -c Fll 21 1 T~ot--r~v F9/I1 - '11Pbc im~~1,r-C~r7 cf -i-hc rP-

sulting expressions is considered for situations in which the random

processes in the models have finite state-variable representations.

For the binary detection problem of (1.10) the moment-gener-

ating function for the optimum receiver decision statistic on H0 is

-- · II



In
(s) = (l-s) I )n(1 + )+ s

n=l 0 n=1
n (1 + )~- f

0 < s < 1

where the (A } , {A } , and (X } are the eigenvalues of the
in On cn

process Sl(t), s (t), and the composite process s (t):
proesss I o1

(2.79)

Equation (2.41) gives the moment-generating function on 1•
raln 1ucino i

Pl(S) = P,0(s + 1) (2.80)

For the special case of (1.10), simple binary detection, (2.78)

reduces to

n(s) = (1-s))
n=1

X
n oo

kn(1 + N) -
n=1

(l-s)>
kn(1 + Tn

10

0 < S < 1 (2.81)

Here the {in} are eigenvalues of the process s(t) in (1.10).

For the H-ary communication problem of (1.12) the moment-

generating function of (2.54) is identical with that of (2.81)

co

*c(s) = (l-s) I n(+ n )
0 n:

(1-s)A
Pn (1+ - nn

Rn- )

(2.82)

1 *lc(s) = l*nc ( 1 + s)

Zn(1 + ),
0

(2.78)

_ __ I L

c(t) = 1 ;l(t) + / 0(t)
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Here the {A } are the eigenvalues of the complex process sk(t) which
n

has the same complex covariance function for all k. For the binary

symmetric communication problem (M = 2), p*bc(s) is given by (2.76)

and (2.82)

bc (S) = n(l + n -) - ,n(l-sn )
n=1 0 n=l N0

O (1 + s)A
- en(l + n ) (2.83)

n=1 0

Closed form expressions for the moment-generating functions

given above exist under certain circumstances. All of these formulas

involve the Fredholm determinant associated with the random process

s(t) [22]

oo

D,(a) = H (1 + ali )  (2.84)
i=l

The {A.} are the eigenvalues of l(t,u). This function can be related
1 S

to a filtering error [8,24]

Tf

ninD (a) = E r g (t,s(t),a) dt (2.85)
T

o

where ý (t) is the minimum-mean-square realizable filtering error
P

obtained in estimating the random process s(t) which is imbedded in

complex white Gaussian noise of spectral density (A.

When s(t) has a finite state-variable representation, (2.85)

· _ lit. _ ;___
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-j

can be evaluated, since t. (t,s(t),a) is available as the solution of a
P

inon-linear differential equation obtained in solving the estimation

problem [20]. A more convenient method for evaluating the Fredholm

determinant is known [10, 24]. Suppose s(t) has the complex state-

variable representation [15]

x(t) = 1(t)'(t) + (t)_(t)

(2.86)
s(t) = _(t)x(t)

E[u(t)u (a)] = Q6(t - a)

(2.87)

E['(T ) (T )] = P
0 --o

E[u(t)u T ( ) ] = E[x(t)xT( o )] = 0 (2.88)

T 4
where the superscripts and denote transpose and conjugate transpose,

respectively. Then the Fredholm determinant for s(t) is given by

Tf
enDF ( a ) = zn det 2 (Tf) + f tr[ " (t)]dt (2.8 9)

T

where 42 (Tf) is the solution at t = T of the matrix differential

equation

il~ (t) _(t) W(t)Q # r(t) •!((t)

dt- --- (2.90)

2 (t) 2()

-- ___~_~__~_
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y .(To)

2 (To)

P
P
--

(2.91)

The functions det (.) and tr(.) are the determinant and trace, respec-

tively, of their matrix arguments.

Thus either (2.85) or (2.89) provides a way to evaluate

the Fredholm determinant for a wide class of signal processes. This

in turn allows computation of the optimum receiver error probabilities

or bounds on those probabilities.

D). Uoment-Generating Functions for Filter-Squarer-Integration Receivers

This section obtains the moment-generating functions for a

class of receivers which are generally suboptimum. The structure of

each branch in the receivers for the binary detection problem and

,-ary communication problem of Chapter I is a linear filter followed

by a square-law device and an integrator. This filter-squarer-

integrator (FSI) receiver is shown in Figure 2.1. The filter may

ru

be time-varying. The choice of g(t,u) which makes the FSI receiver

an optimum receiver is unknocwn except in a few special cases.

The moment--generating function for thie FSI receiver output

statistic Y can be obtained by first writing the random process z(t)

in Fiiure 2.1 in a Karhunen-Loeve expansion: [20,22]

z(t) = z (t), T < t < T (2.92)
= n n

n=l

... _ _
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e FILTER

Figure 2.1. Complex version of the filter-squarer-integrator receiver branch.
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where

S(t)~:. (t)dt = 6
'1" ''nl "

o

E[z z ] = A n
n n nmr

zI= f
T

I (t)l zdt

IT

f

0

% 2- r1z I (2.95)in
n=l

.ience Z is the sum of the squares of statistically independent, complex

Gaussian random variables [8], with variances given by (2.94). The

moment-generating function of Z under H. is
1

n Lie III] = ;,n L[exp(s 21'n )

, 2

l nI £n E[ e I Hi ]

n=l

= - E zn(1 - sAin) (2.96)
n=l

(2.93)

Then

(2.94)

......... mm _Y

z z pin (t)!,U (t))dtOn m •m
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by (9.d7) of [22]. T;e first {(. } are the eigenvalues of Z (t)

,iven that 1. is true. Equation (2.96) is valid for
1

(2.97)s < i ax { in } -

For the simple binary detection problem of (l.10), the

(2.4 ) follow directly from (2.96)

p0(s) = -
n=1

11(S) = -
n=l

kn(1 - sA0n)On

Zn(l - sAln)

The X On} and the {ln} are the eigenvalues of z(t) in Figure 2.1

when r(t) = (t) and (t) = s(t) + w(t), respectively, are inputs.

For the general binary problem of (1.9) with branch outputs l and k0

which are independent, the p.i(s) are
1

an (1 - slon) - X
n=l

kn(l + sA 0 0 n)

pl(s) = -
n=1

Zn(l-sll n ) -

n=1

(2.101)n (+si10n )

The xi } are the eigenvalues of j.(t) on H..
jn J 1

For the M-ary communication problem of (1.12), pOc(s) and

UlC(S) in (2.54) and (2.50) are identical to p0 (s) and pl(s), respec-

tmVely, given by (2.98) and (2.99). When i = 2, bc() in (2.69) is

p (s) of
1

(2.98)

(2.99)

(2. 100)P (s) = -
n=l



-51-

Sbc(s) = - I nn(1-sAln) - I Zn(l + sXOn (2.102)
n=1 n=l1

The moment-generating functions (2.98 -2.102) can all be

expressed in terms of Fredholm determinants, (2.84). The previous

section indicated that computation of DF(a) is feasible whenever the

{A }i of DF(a) are eigenvalues of a state representable process. In

the case of the FSI receiver, then, the error probability expressions

can be conveniently computed when z(t) in Figure 2.1 has a finite

state representation. For this to happen, both r(t) and the filter

g(t,u) should have state-variable representations.

Figure 2.2 shows a model in which the filter in the FSI

receiver has a finite number of states and the signal s(t) is re-

presented as the output of a finite state system driven by white

noise. Figure 2.2a is the model when the receiver input is signal

plus noise. The signal state equations are

x (t) = - (t) (t) + (t)u (t)-s -S -S -s -S

(2.103)

s(t) = (t) x , (t)
-S S

E[us (t) (o)] =  s6(t - o)

(2.104)

L[x (T )x(T )] = P-s O O -Os

and those for the receiver

__ _ll_______Ll__l___________·
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RECEIVER: FILTrER

a) Signal plus noise input.
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' (
w (t)
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R;CJLVLRV L FIPLTER

b) Noise input.

Figure 2.2. Comiplex state-variable model for the detection of a Gaussian signal in white

Gaussian noise with a filter-sqluarer-integrator receiver.
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S (t) = F(t)x (t) + G (t)r(t)
-r -r ---r

(2.105)
z(t) = -- (t)x (t)Z(t) =-r -r

E [r (T o) (T) ]  --or (2.106)

The receiver initial condition P is arbitrary. A composite state-
-or

variable model for the system of Figure 2.2a can be defined by letting

-s

(t) = (2.107a)

x (t)

(t) 0

t](t) = (2.107b)

-r (t)• S --r (t

S0

•(t) = (2.107c)

L G (t)

UP 0

Q = (2.107d)

N0

•(t) = ( (2.107e)

--- -

L ~J

i·

-------~--- --
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,ýI
u(t) = (2.107f)

--os

SorJ

Equations (2.84 - 2.91) can be used directly to give the Fredholm

determinant for the model above. This in turn provides a means of

obtaining u_(s) in (2.99).

When the input to the FSI is just Iw(t), the model of Figure

2.2b is appropriate. The system of differential equations is defined

by letting

x(t) = (t)
14r -r

= ' (t

-- -- r

-m

u(t) = w(t)

P = P
-0 -- or

Again the results of the previous section provide the Fredholm deter-

minant for z(t) when noise alone is the input to the FSI receiver;

then (2.98) follows immediately. The rest of the moment-generating

I i
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functions of this section can then be expressed in terms of (2.98) and

(2.99).

Although it is necessary that both the signal s(t) and the

receiver filter have state-variable representations for easy compu-

tation of the Fredholm determinant, a wide class of signals and filters

fall into this category. Once the semi-invariant moment-generating

functions are available for the FSI receivers, the error probabilities

can be calculated. The resulting suboptimum performances can be

compared with the optimum.

E. Moment-Generating Functions for Quadratic Forms

In the following chapters another receiver which is generally

suboptimum will be considered. It is one composed of branches with

outputs that can be written as finite quadratic forms

N N
L= r. (2.109)

i=l j=1

The {ri.} are complex Gaussian random variables ( see [8] for details).
1

If a vector and Hermetian matrix W are defined

r

= * (2.110)

rN

... Iffid
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then

R = R P, (2.112)

An example of a receiver with this decision statistic is one

in which r(t) is passed into a bank of linear filters. The sampled

filter outputs, ri, are quadratically combined, as in (2.109). This

type of receiver will be considered in the following cliapters. The

optimum receiver for a diversity commiunication system operating over

a Rayleigh fading channel is another case in which the operation of

(2.109) appears.

The momennt-generating functions of £ can be found by first

defining the conditional covariance matrices

A = E[' AI Isignal + noise ] (2.113)--s

A = E[ noise] (2.114)

where the conditions refer to the branch input. The joint probability

density function for i given noise only is

) = exp{ - m A (2.115)

where the I means determinant. Then

where the notation 1-1 means determinant. Then

P0(s) = en E[e se noise]

-- -ý " ,,
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(2.98) and (2.99) for simple binary detection. Equations (2.100 - 2.102)

for the other cases follow directly. Thus the error probabilities for

another class of generally suboptimum receivers can be evaluated, pro-

vied that the matrices A, A , and A in (2.118) and (2.119) are
-S -I

known.

__---4
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= Zn f e p •(p)do

=-nn 1_ -- -1=1 exp (- g p dp

-1.
-Zn det ( E ) (2.116)

- n --n

with

-1 -1 l
z = A s W (2.117)
- -n -

Thus

PO(S) = -en det(I - s A ) (2.118)

and correspondingly

Pl (s) = -en det (I - s ls ) (2.119)

The expressions of (2.118) and (2.119) can be used in place of

- =-L~__,__ _L.__~.~-IJ
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F. Summary

This chapter has considered methods of computing error prob-

abilities for receivers which use a threshold comparison to make a

binary decision. A technique for evaluating the error probabilities is

derived which depends on the knowledge of the semi-invariant rmoment-

generating function of the decision statistic. The derivation uses

tilted probability densities and is similar to one devised previously

for optimum receivers. The asymptotic expressions for the error

probabilities are also used to evaluate error probability bounds for

an .1-ary communication problem.

The case of the detection of Gaussian signals in Gaussian noise

is considered next. Moment-generating functions for the optimum

receiver are reviewed, as well as an efficient technique for computing

them when finite state-variable models are available for the received

signal processes. "Moment-generating functions for two classes of generally

suboptimum receivers are derived: filter-squarer-integrator receivers

and quadratic form receivers. The moment-generating functions of the

first class can be conveniently computed if the receiver filter has

finite state representation. The error probabilities of the optimum and

suboptimum receivers can then be compared.

The following chapter considers a particular example of the

Gaussian signal in Gaussian noise model: the reception of known signals

transmitted over a doppler-spread channel. Since a state-variable

representation is available for the signals in this model, it is

possible to directly apply the results of this chapter. The

_-o



performnance of two classes of suboptimum receivers for the doppler-

spread cIhaninel will be compared with the optimum receiver perfor-

Elance. Insight into the design of signals and suboptinimu receivers

w.ill be provided by numerical examples. 'Ihe delay-spread and

doubly-spread channel models are considered in subsequent chapters.



CHAPTEI'I III

DETECTIOAN OF KNOWN SIGNiALS T.RA1SH;ITIED

OVER DOPPLER-SPREAD CiHANNELS

This chapter considers the problem of detecting known signals

which are transmitted over doppler-spread dispersive channels. This

problem is I special case of the Gaussian signal in Gaussian noise

detection problem of Chapter I. The results of Chapter II can be

applied here if a state-variable model for the doppler-spread channel is

available. Such a model is specified, and the performance of the

optimum receiver and several suboptimum receivers is analyzed.

The first section gives a model for the doppler-spread

channel. Implementation and the performance of the optimum receiver is

reviewed. Filter-squarer-integrator (FSI) suboptimum receivers are dis-

cussed. A particular FSI configuration is chosen, and the results of

Chapter II are used to evaluate its performance. A second suboptimum

structure, called a correlator-squarer-sum (CSS) receiver, is suggested.

Its performance is analyzed and is compared to that of the optimum and

FSI receivers for a variety of signal and channel parameters.

A. The Doppler-Spread Channel Model

The doppler-spread channel model considered here can be de-

rived [6,8] by assuming that a narrowband transmitted signal

f(t) = /Y Rc[r(t) e jt], 0 < t < T (3.1)

i~
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is reflected by a collection of moving point scatterers. The dimensions

of the spatial distribution of the scatterers are small, in units of

propagation time, compared to the transmitted signal duration T. It

can be shown [6] that the random movement of the scatters produces a

fluctuation in the amplitudes of the quadrature components of ?(t). In

terms of complex amplitudes, a suitable model for the scattered return

in white noise is then

r(t) = (t)y(t) + w(t)

= s(t) + w(t) 0 < t < T (3.2)

The multiplicative disturbance y(t) is a complex Gaussian random process.

Any pure delay or doppler shift in the channel is assumed to be known

and therefore is not included in the formulation of (3.2). The ob-

servation interval in (3.2) takes into account that the only interval

during which a scattered return may be present is [0,T]. This model

is also known as a fluctuating point target model [2,7,8,16].

The multiplicative fading process y(t) will be assumed to be

zero-mean and have the known covariance function

E[y(t)y (u)] = ý(tu) (3.3)
y

Then the covariance function for the signal component s(t) is

dn. (\. f\, .3

K%(t,u) = f(t) im(t,u)f (u) (3.4)
sy

Tile energy in the transmitted signal •(t) is

2!c(t) t AE (3.5)

I MMMMW
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The expected value of the received energy in s(t) is

Tf T
E[ f I (t)l2 dt ] = E[ f f(t)12 K,(t,t)dt]

A
= E

The zero-mean, additive white noise w(t) has the covariance function

E[w(t)w (u)] = N 6(t-u)
o

The model above has a convenient state-variable description

whenever the fading process y(t) has a state-variable representation.

Suppose y(t) is the output of a linear system driven by white noise

Xf(t) = _f(t) , (t) + ýf(t) uf(t)

(3.8)

y(t) = wf(t) xf(t)

E[uf (t) f(a)] = Cqf t-G)

(3.9)

Then the signal s(t) is described by the model of (2.86 - 2.88) if

-f
F(t)= i~f(t)

( f(t)

(3.10)ý(t) = f (t)T (t)

P = Pf
-o -o f

(3.6)

(3.7)

.M

I y

'•, ( ? Tif
E[x f(To) xf (To)] = P-of



This state-variable model permits a direct application of the results of

Chapter II. A diagram of the iodel is shown in Figure 3.1.

Vhen y(t) is a stationary random process, the channel mociel

is a special case of the "wide-sense stationary uncorrelated scatterer"

(WSSUS) channel model [6,8,16] that will be discussed in Chapter V. In

this case the covariance function of y(t) is written Kv(t-u), and the

matrices _f(t), Cf(t) and C•(t) in (3.10) are all constant. Also

(3.6) reduces to

L = K (0) f (f(t)I dt
r y

o

(3.11)

= PE
t

where P is the average power in y(t). Although y(t) is stationary, the

process s(t) is still non-stationary, in general.

The examples that follow is this chapter are limited to the

case of stationary fading. First and second order state-variable models

are used for the numerical results. The model of (3.8) for the first

order case is

f(t = -kI ,  k1 > 0

(t) = (t) = 1f f
(3.12)

= 2Pk 1

P fo = P

The constant kl is chosen to be real since any imaginary part would

represent a pure doppler shift [8]. For the second order model

m _~I~ I ~___llss_
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Figure 3.1. A complex state-variable model for the bandpass doppler-spread channel.
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kf (t)-f

0 1

-k1 2 -( 1 + •2)

0

f (t) (3.13)

C f(t) = [1 , 0]-f

and Qf and Pf are functions of P, k1 and k 2 given in [8,15,24]. The

constants k1 and k2 are complex with positive real parts. This is not

the most general second order process possible, but it is a reasonably

flexible model. For details about complex state-variable models, see

[8,15,24].

B. The Optimum Receiver and its Performance

This section reviews several configurations for the optimum

receiver for the doppler-spread model given above. The performance of

the optimum receiver for binary symmetric orthogonal communication for

various channel parameters is summarized. The contents of this section

are not new [8], but they provide a framework for the results of the

following sections.

When the doppler-spread channel state-variable model of

(3.8 - 3.10) is valid, the realizable branch structure of Figure 1.4

can be used in each branch of the optimum receiver for the binary

i
--- rlYYY
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detection or the li-ary communication problems of Chapter 1. This state-

variable receiver branch is shown in Figure 3.2. This realization of

the optimum receiver has the widest applicability of the structures

reviewed in Chapter I.

When low-energy-coherence conditions prevail and the fading

is stationary, Price [2,7] has shown that the filter-squarer-integrator

receiver branch of Figure 3.3 is optimum. Note that the post-detection

integration interval here is infinite., The realizable filter ' (jo )

is specified by

(opt(j¾) = [y(W) ] +  (3.14)

where

(W) = f Kr(T) e-JWT dT (3.15)
-- oo

and the superscript +indicates the non-unique factor of the argument

which contains poles and zeros in the left-half complex plane. Note

that the structure in Figure 3.3 is similar to the filter-squarer-

integrator receiver of Figure 1.3.

A second case for which the structure of Figure 3.1 is

optimumi occurs when the fading is stationary, T(t) is a constant, and

the observation interval approaches infinity. The optimum filter in

Figure 1.3 is [8]

+ +
opt () (3.16a)

......m -Y ~
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Figure 3.2. Complex state-variable configuration of a realizable optimum receiver branch
for the doppler-spread channel.
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REALIZABLE
f (t) LTILTI

FILTER

00

Figure 3.3. A filter-squarer-integrator realization of the optimum receiver for the
doppler-spread channel under the stationary low-energy-coiherence or thie
stationary process-long observation assumptions.
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where
oo
f() = c () e dT (3.16b)

s s
-00

Except for these two cases, a filter-squarer-integrator impler:entation

for the optimum receiver is not known for the general doppler-spread

channel problem.

The performance of the optimum receiver can be evaluated by

the techniques of Collins [13], which are reviewed in Chapter II. In

order to compute the error probabilities or evaluate bounds on them,

the semi-invariant moment-generating function of the decision statistic

is necessary. These are given for the optimum receiver in Chapter II,

Section D. When the state-variable model of (3.8 - 3.10) is used, the

evaluation of the moment-generating functions is particularly convenient.

The numerical examples which follow involve either the

simple binary problem: of (1.10) or the binary symmetric orthogonal

communication problem of (1.12), with i = 2. The latter case is

particularly instructive because the tight bounds of (2.77) involve the

quantity P*bc(-.5), which influences the error probability exponentially.

The numerical examples which follow show that the relative performance

of a binary symmetric communication system for different signals and

fading parameters is closely related to the relative simple binary

detection optimum performance for the same sets of parameters. lThus

the quantity *bc (-.5) will be used in some cases as a direct measure of

relative performance.

Kennedy [6] has shown that the mi-ii.mum value which *pb (-.5)

can assume for any signal (t) and fading covariance function is

-69-
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E
min pbc(-. 5 ) = -.1488 r (3.17)

o

Thus ,*bc(-.5) normalized by Er/No provides a good measure of the

efficiency of a particular binary communication system.

For the doppler-spread channel, the binary symmetric com-

munication performance of the optimum receiver behaves as shown in

Figure 3.4. Here '(t) is a constant, as illustrated by Figure 3.5a, and

the fading is specified by the first order model of (3.12). Note that

there is a value of klT which optimizes the normalized P*bc(-.5).

Figure 3.6 shows this optimum k T and the corresponding value of I*bc(-. 5).

It is evident from Figure 3.6 that in the first order case

for some signal-to-noise ratios,a constant T(t) provides nearly the best

possible performance, as indicated by (3.17). Note that for such values

of E r/No the optimum k T is zero. In this case the channel fading is

so slow that a Rayleigh fading model s for the channel is appropriate.

Kennedy [6] has provided an approximate description of dispersion

channels which is useful for interpreting the results above. He argues

that there are roughly

Ndp = 1 + kT (3.18)

degrees of freedom in s(t), where T is the duration of '(t) and k a

reasonable measure of the bandwidth of the fading process. Ndp may also

be thought of as the available number of independent samples of ~ (t),

since such samples are nearly independent if taken 1/k seconds apart.

This suggests interpreting the communication system as having an Ndp- fold

rm
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Figure 3.4. Normalized Pr(c) bound for binary orthogonal communication,

first order fading, constant T(t), doppler-spread channel.
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(t)

a.) Constant. E t = signal energy

(t)

0 T

E

TD

U TDT

b.) Pulse train. N = number of pulses; D = duty cycle,
0 < D < 1; E t = signal energy.

Figure 3.5. Signals for the doppler-spread channel.
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"implicit" diversity.

From the results available on conventional diversity systems

[28], it is reasonable to expect that there is an optimum value of Ndp

which provides the best distribution of signal energy over the implicit

diversity elements. For conventional diversity this optimization

occurs for Ndp such that [6]

E / Nr o = 3.07 (3.19)
dp

opt

and provided the diversity paths have equal strength. Of course, for

dispersive channels the distribution of energy is determined implicitly

by T(t).

For the doppler-spread channel and a constant '(t), the

behavior in Figures 3.4 and 3.(, is consistent with the implicit

diversity interpretation, since k1 is a measure of the fading band-

width. Figure 3.4 shows performance maxima at values of k T consistent

with (3.18). In Figure 3.6 the best value of k T for low E /N
r o

minimizes the implicit diversity, which agrees with (3.19). Since,

• . .. . • 1 .i • Jr- . • 1 --, _ - - _ _ .- _

in this latter case, the channei is errectively a Riayleigh Lauding

model, the results of Figure 3.6 are in exact agreement with the

optimum diversity results of Pierce.

The concept of implicit diversity suggests that when E /Nr o

and k T are such that the optimum number of implicit diversity elements

is -greater than one, the nulse train T(t) of Figure 3.5b may provide

a better performance. The reasoning for this expectation is that the

lI _ I c _- - E-ow
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individual pulses divide the signal energy more evenly amonLg the optimum

number of implicit diversity elements. Table 3.1 gives ~*bc(-. 5) for this

T(t) with first order fading. Note that the optimum number of pulses in

each example is consistent with the argument above. Also, the better

performance of the lower duty cycle cases can be attributed to a

more even distribution of signal energy over the implicit ciiversity

elements.

When the second-order fading model (3.13) is used, a similar

behavior is observed. If kI = k in (3.13), the fading process is

called second order Butterworth. Figure 3.7 shows the optimum value

of Re[k1T] and the corresponding *bc (-.5) for the case of second

order Butterworth fading and a constant T(t). Table 3.2 shows the

values of P*bc(-.5) when ki and 2 are not conjugates. Table 3.3 examines

the performance of the pulse train T(t) under second order Butterworth

fading conditions. These results are all consistent with the implicit

diversity ideas discussed above for first-order fading, since the

real parts of k1 and k2 provide a measure of the bandwidth of the

second order fading process.

The notion of implicit diversity is useful in the binary

symmetric orthogonal communication examples above because it permits

an understanding of the important parameters in the optimum reception

problem. As the following examples show, the performance of the

optimum receiver for simple binary detection can be interpreted in

the same manner. In addition, the notion of implicit diversity is

helpful in the choice and design of suboptimum communication systems

mm -~-I I
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k1T duty cycle number of pulses *bc
E /N

r o

3 .1235

.5 4 .1251

5 .1254

6 .1252

5

3 .1288

4 .1344

.1
5 .1359

6 .1355

2 .1036

3 .1050

.54 .1048

5 .1045

1

2 .1059

3 .1085

4 .1080

.1 5 .1070

Table 3.1. Normalized error probability bound exponent, binary
orthogonal communication, optimum receiver, pulse train
(t), Er I/No = 20, first order fading, doppler-spread channel.
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.1374

.1377

.1358

.1340

.1329

.1353

.1336

.1294

.1289
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1 I 1 2

5.9

7.3,

10.6

13

14.7

12.6

14.6

16.6

14.7

14.7j

13 j

10.6j

7.5j

3.9j

10.6j

10.6j

10.6j

3.9j

3.9

7.5

10.6

13

14.7

8. 6

6.6

4.6

3.9

14.7j

13 j

10.6j

7.5j]

3.9j

10.Gj

10.6j

10.6j

14.7j

Table 3.2. Normalized error probability bound exponent, binary
orthogonal communication, optimum receiver, constant

(t), E IN = 20, second order fading, doppler-spreadr o
channel.
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Table 3.3. Normalized error probability bound exponent, binary
orthogonal conmnunication, oTtimum receiver, pulse train
•(t), E /N = 10, second order Butterworth fading,r o
doppler-spread channel.
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This is the same filter which generates the first-order fading process
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y(t) from white noise. When f(t) is a constant and T ,

2E

1 NklT

(jw) = (3.20b)
opt 2E

1[+ E rjw + k k + 11 NkT
ol

by (3.16). This has the same form as the filter of (3.20a) but with a

different pole. For these two special cases, then, the filters of

(3.20) used in the structure of Figure 3.3 are optimum for first order

fading.

The results of the example above suggest that a potentially

good suboptimum FSI receiver for the doppler-spread channel is one

which multiplies r(t) by T(t), passes the result through a filter

which has the same order as that which generates the fading process

y(t), and squares and integrates the filter output. Figure 3.8 shows

this configuration. Equation (3.20b) also indicates that perhaps the

bandwidth of the suboptimum receiver filter should be widened for

increasing E /N . This procedure is consistent with (3.20a) since
r o

the low-energy-coherence condition for the doppler-spread channel is [8]

E
r < < 1, LEC (3.21)

N kT

In any case, for a given T(t) and fading model the suboptimiuim

FSI receiver of Figure 3.8 can be optimized numerically over the

parameters of the receiver filter. Further design options are replacement

of the reference signal T(t) with some other waveform, or use of a

different order filter. In the numerical examples that follow, only

I
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Figure 3.8. A suboptimum filter-squarer-integration receiver branch for the doppler-spread channel.
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the structure shown in Figure 3.8 is considered. Note that when the

fading is stationary, the filter in the FSI receiver is time-invariant;

also, if T(t) is a constant, the multiplier may be replaced by a gate.

The performance of the FSI filters follows directly from the

results of Chapter II. The composite state-variable model of (2.107 -

2.108) can be used with the following substitutions

rr
S(t) = (t)

-r -n (3.22)

6(t) = Tf(t)

S(t) = ~ (t)
-S -f

--S

where the subscripts f and p denote the fading generation filter and the

receiver filter, respectively. The moment-generating functions for

the simple binary detection problem, (2.98) and (2.99), are calculated

by using the composite state variable model on each hypothesis Ui

in (2.89 - 2.91). For binary symmetric orthogonal communication Pbc(s)

follows from (2.102). The probability of error expressions, (2.18),

(2.32), and (2.70), and the bounds, (2.37), (2.38) and (2.74), can then

be evaluated.

For the simple binary detection problem the following examples

compare receiver operating-curves (ROC), which are plots of Pr( EIIl)

versus Pr(EIH 0), as the decision threshold is varied. It should be
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emphasized that the probability of error expressions are approximate,

since the series expressions for them have been truncated. Figure

3.9 shows the effect of truncating the series for the suboptimum FSI

receiver error probabilities in a particular example. An "Nth order"

approximation means that the series of (2.18), (2.32), or (2.70) has

been truncated after N terms. As discussed by Collins [13], the first

and second order approximations have roughly the same magnitude, as

do the third and fourth, and so on; hence Figure 3.9 gives just the

second and fourth order approximations. Figure 3.9 also shows the

error probability bounds of (2.37) and (2.38). Note that bounds are

not tight; this illustrates why it is useful to have the ability to

LULLtpUe bI · Jl lliti~
cUOpULe LHth rLLU LL proM M es.) .

In the examples which follow, the convergence exhibited by

the suboptimum receiver error probabilities in Figure 3.9 was observed

for the optimum receiver error probabilities as well. Furthermore, the

rates of convergence of the optimum and suboptimum approximations were

roughly equal in each case. This provides a justification for using the

bounds of (2.37), (2.38), or (2.74) as a measure of the relative

performance of several systems, when it is convenient to do so. Unless

otherwise indicated, the error probabilities calculated in the follow-

in6 examples will be second-order approximations.

Stationary fading is considered in all of the nurmerical

examples that follow. In each, the filter in the FSI suboptimum

receiver also has a zero initial condition; that is, the matrix Por--or

in (2.106) is zero. This is convenient but not necessary. Some other

value for P may improve the performance of the FSI receiver in a
-or

wmý ·Lc- - -- ··-- -·· i
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given example.

Figure 3.10 shows the ROC's for the case of first order

fading (3.12), a constant '(t) (Figure 3.5a), and simple binary

detection. The receiver filter is also first order; the poles klf

and klr refer to the fading process and receiver filter, respectively.

The approximate suboptimum error probabilities are shown for several

different values of k lrT; the optimum value is in approximate agree-

ment with the indications of (3.20b). This example assumes a fading

bandwidth, signal duration product, klfT, which is optimum (Figure 3.6).

Figure 3.10 indicates that it is possible to obtain a FSI

receiver performance that is quite close to being optimuni over a wide

range on the ROC's. In order to compare the optimized FSI performance

with the optimum receiver performance in terms of the energy difference

required to obtain equal performance, it is useful to postulate that

the logarithm of the error probabilities is linearly proportional to

Er/N o . To see that this is approximately so, consider the exponents

of the optimum receiver error probability bounds shown in Figure 3.6

and 3.7, which exhibit a roughly linear dependence on Er / . Under

this assumption the FSI receiver performance is within several tenths

of a dB of the optimum receiver performance for the examiple of Figure

3.10. Of course, it is possible to vary E /N in the probability ofr o

error expressions to obtain this comparison directly, but this simple

estimate will be sufficient here.

Figure 3.11 compares the FSI and optimum receiver approximate

error probabilities for several other first order fading parameter

sets. In each case T(t) is a constant, and the value of klrT has been

_A ~irc -- ---- ·-----~-~
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varied to give the best FSI receiver performance. Again the suboptimum

performance 
is close to that of the optimum receiver.

Figures 3.12 and 3.13 show the optimum and FSI suboptimum

ROC's for first order fading and the pulse train (t) of Figure 3.5b.

A ain the subo timum receiver filter has been roughly optimized. Figures

3.14 and 3.15 give similar plots for the second order fading model of

(3.13). Figure 3.14 assumes Butterworth fading and a constant T(t);

Figure 3.15 is an example in which the poles of the fading process are

not conjugates. Figures 3.12-.15 also indicate that it is possible to

obtain good performance with the FSI receiver of 3.8, provided that

the filter in the receiver is properly chosen.

For the binary symmetric communication problem, Table 3.4

covlpares the performance of the optimum receiver and suboptimum FSI

receiver for a variety of signal and fading parameters. In each case

the receiver parameters are chosen to approximately optimize receiver

performance. Given are the normalized exponents in the Pr(c) bounds,

as well as the fourth order approximations to Pr(s). Note that the

bound exponents are good indicators of relative performance. Again the

performance of the optimized FSI receiver is close to that of the

optimum receiver.

For orthogonal communication when H is greater than two, the

results above and the bound of (2.59) provide an indication of the

suboptimum FSI receiver performance. The exponent in (2.59) for

rates less than Rcrit is proportional to R as shown by (2.66). The

zero rate exponent, given by (2.66) with R = 0, is just pbc(s) of (2.69)

-•9-
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OPTIMIUI' SUBOPTIMUM FSI
E /N k T signal O_ k lrT

r o f r

-bc (-.5) - Zn Pr(E) -Zn Pr(E)*bc -'bc (s) E/
ErlNE o -, r o

r o r o
(4th order) (4th order)

30 1 constant .092 .155 10 .087 .148

20 5 constant .119 .217 10 .113 .209

10 2 constant .121 .285 10 .116 .277

2 pulses

20 5 duty .5 .120 .216 10 .115 .201
cycle

4 pulses
20 5 duty .1 .131 .229 10 .130 .219

cycle

4 + 4j 8+ Sj
10 constant .136 .366 .123 .288

4 - 48 - Sj

3 + 3j 6 + 6j

10 constant .130 .293 .110 .275
1.5 - 1.5j 3 - 3j

Table 3.4. Binary orthogonal communication, optimuim and suboptimum receiver fourth order
approximations to error probabilities, doppler-spread channel.
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normalized by E /L . For low rates, then, an M-ary communication
r o

systerm using a suboptimum FSI receiver can be made to perform nearly

as well as the optimum receiver, provided the FSI filter is optimized

as in the binary communication examples above. Comparison of the

optimum and suboptimum M1-ary error bounds for higher rates can be

carried out as indicated in Chapter II, but this has not been done here.

For both the simple binary detection problem and the binary

symmietric communication problem, the examples above show that a

properly designed suboptimum filter-squarer-integrator receiver will

achieve close to the optimum performance over a doppler-spread channel.

In these cases it is possible to obtain a FSI performance within 1 dB

in E /N of the optimum, for a wide range of fading parameters and
r o

for several signals. It should be pointed out that the techniques used

can be applied to other signals and higher order fading spectra as

well.

The examples presented in this section provide a rule of

thumb for selecting a good filter in the FSI receiver: choose a filter

bandwidth which is larger than the fading spectrum bandwidth, k, by

a factor of roughly /1 + E /N kT , where T is the signal interval.
r o

Of course, in any particular case the filter optimization can be done

numerically. Figure 3.16 shows the effect of varying the FSI filter

bandwidth in an example. Note that the performance maximum is broad.

Thus the choice of the filter by the criterion above is likely to be a

satisfactory one in most cases.
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D. d; Correlator-Squarer-Sum Suboptirkmum Receiver

This section considers another class of suboptimum receivers

for the doppler-spread channel detection and communication problems

of Chapter I. The branch structure of the receiver consists of a

bank of correlators followed by square-law devices whose outputs

are weighted and sum•:ed to form the decision statistic. This receiver

is called a correlator-squarer-sum (CSS) receiver. Its performance is

analyzed for the doppler-spread channel and compared with that of

the optimum and FSI suboptimum receivers of the previous sections.

There are many ways to choose the reference signals and

correlation intervals for the CSS receiver. The diversity discussion

in Section B of the present chapter suggests one such choice. If

k is the bandwidth of the fading process y(t) in (3.2), then samples

of y(t) taken 1/k seconds apart are approximately uncorrelated. That

is, y(t) is significantly correlated only over time intervals approx-

imately 1/k seconds long. From the model of (3.2) the same statement

can be made about s(t): the correlation between samples of s(t) 1/k

seconds apart is small.

This relation suggests the approximate staircase model for

y(t) shown in Figure 3.17. Here the value of Ya(t) in each segment is

assumed to be a zero-mean complex Gaussian random variable with a

variance equal to E[y(t.) (ti)], where t. is some time between

(i-l)T and iT. The random amplitudes of Ya(t) in different intervals

are assumed to be independent. This staircase approximation to y(t)

is, of course, not exact.

ediMI -- i
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Re [y (t) ]

Re[I (t)]

- T 1 = I /k

Figure 3.17. A random staircase approximation to the fading process y(t).
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The approxiimationr for the fadingý process y"'(t) shown in Figure
1 1-7 V t 0h t_-Ii- ; 1F + th 1- 1 -F di ll d

[8.20]. Each filter is matched to the appropriate segment of %(t).

The filter outputs are sampled, squared, weighted by the expected

value of the energy in s(t) during the appropriate interval, and summed.

Figure 3.18 gives a block diagram of this receiver; Figure 3.19

shows a simpler realization of the same structure using a t second

correlator.

The correlator-squarer-sunm receiver has been derived by

assuming the independent, slowly-fading staircase approximation to

y(t). It can still be used with the original model for the fading

process, in which case it is a suboptimum receiver.

When the transmitted signal T(t) is a constant (Figure 3.5a),

the CSS receiver in Figure 3.19 assumes a particularly simple form.

The signal r(t) is passed into a - second integrator. The integrator

output is sampled at the times iT, i = 1, ... ,N,. A weighted sum

of the squared samples gives the decision statistic.

U ...

J. I •U ~t _. 1." LlL K- ,L .LJLL. .- I Ll t %_ LCll l L 1U.LLC ,VItl L •LlY £LtU LL .t l Lt

by the model of ýy (t), what would the optimum receiver be for the

problem of (3.2)? The answer can be found by realizing that in this

hypothetical problem the channel output consists of a signal T(t)

multiplied by the staircase Ya(t). This corresponds exactly to a

time diversity system in which the segment of '(t) between (i-1)T

and i. is transmitted over a bandpass Rayleigh channel [8,20]. The

fading from interval to interval is independent.

The optimum receiver for this diversity model consists of

a gate which feeds r(t) to one of N correlators or matched filters

I.~. . _... _~__II _~_ ~ ~_~__~__ __ _____.~ ,~ ~Y
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Figure 3.19. Complex version of correlator-squarer-sui'i suboptimum receiver, gated
correlator realization.
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Another motivation for using the CSS suboptimum receiver of

Figure 3.18 is provided by considering the case when the correlation

time of the fading, l/k, is much larger than the signal duration T.

Then the doppler-spread channel model reduces to that of a known signal

T(t) transmitted over a slowly fading Rayleigh channel. By the

argument above the CSS receiver of Figure 3.18 is optimum for this

case, if N = 1.

There are several levels of optimization possible for the

CSS receiver of Figures 3.18 and 3.19:

(i). If the weights W .ri are chosen in accordance with the

discussion above as

it

Wri = f K (t,t)dt
(i-1)T

it

= j'(t)l 2 K(t,t)dt , i=1,...N (3.23)
(i-l)T y

then the number of correlators N = T/l is a design

variable. Note that, if T(t) is constant and the

fading is stationary, the W . are equal.

(ii). Both the weights, Wri, and the number of correlations

can be varied. This is a more complicated optimization

problem.

The performance of the CSS receiver for the detection and

communication problems of Chapter I with the doppler-spread channel

model of this chapter can be found by a direct application of the

results of Chapter II. The decision statistic of the CSS receiver in
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Figure 3.18 is a finite, weighted sum of squared complex Gaussian

random variables. Hence the equations of Chapter II, Section E can

be used to find the semi-invariant moment-generatint functions re-

quired to evaluate error probability expressions and bounds. The

following relations enable direct use of the equations of Chapter II,

Section E. The vector I in (2.110) has components r., shown in

Figure 3.18. The weighting matrix b of (2.111) is real and diagonal

with elements

.. = W .6..ii ri ij (3.24)

The elements of the N dimensional covariance matrices of (2.113) and

(2.114) are

A ..i
n13

and

Asij

it j *
= f (t)(u) E[r(t)r (u)l noise] dtdu

(i-l)T (j-1)T

N 6..
o 13

iT
S

(i-1)T

i-T

(i-1)T

it

f

(j-1)T

I f(t) 2 dt (3.25)

1*(t)T*(u) E[T(t)f (u)l signal + noise]dtdu

(j l f(t)12 T(u) 2 'K(t,u)dtdu + A
(j-1)T y nij

(3.26)

The moment generating functions p0 (s) and pl(s) of (2.118) and (2.119)

follow directly.

I

j I



-104-

The expressions given above indicate that it is not necessary

in this case to have processes which can be represented by state-variable

models. Only the integrals in (3.25) and (3.26) need to be evaluated,

and they require only knowledge of the covariance function ki(t,u). Of
y

course, evaluation of the integrals in a given problem may not be easy.

The performance of the CSS receiver can now be compared with

that of the optimum and FSI suboptimum receivers. The binary symmetric

communication problem is considered here, since computation of the

exponents in the error probability bounds, pbc(s) and '*bc(-.5),

provides an accurate comparison of relative performance. The trans-

mitted signal T(t) is the constant envelope waveform shown in Figure

3.5a. The fading is first order and stationary, as specified by

(3.12). The covariance function ik(t,u) is
y

-kllt-u
(tu) = P e (3.27)

y

The covariance matrices A and A follow easily from (3.25-.26).

The weights W .ri in (3.23) are equal for this case. The simplified CSS

receiver shown in Figure 3.19 is appropriate in this example. The

number of integrator samples N is variable.

Figures 3.20 and 3.21 contrast the performance of the optimum,

FSI, and CSS receivers for this example. Plotted in each case are the

normalized exponents in the error probability bounds versus k T:

P*bc(-.5) for the optimum receiver, and the minimum value of the
b*bc

appropriate pbc(s) for the suboptimum receivers. Figure 3.20 shows the

performance comparison for E /No = 5, Figure 3.21 for E /No = 20.
r o r o
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Both suboptimum receivers are optimized: the receiver filter pole is

varied in the FSI case, and the number of correlators for the CSS

receiver. This resulting value of Nop is indicated in parentheses

for various points on the CSS curves; the FSI receiver optimum para-

meters have been indicated previously in this chapter.

The curves of Figures 3.20 and 3.21 show that the optimized

FSI and CSS receivers both have a performance that is not far from the

optimum. Furthermore, for low k T the CSS receiver is the better of

the two suboptimum receivers, whereas the FSI gives a better performance

for higher values of k T. This is not surprising since the CSS

receiver becomes optimum in the limit of low k T and the FSI receiver

becomes optimum in the limit of large klT. Note that the optimum

number of correlators in the CSS receiver is approximately equal

to the implicit diversity of the system, 1 + k T. This provides

a rule of thumb of optimizing the CSS receiver without actually

calculating the performance.

The results of Figures 3.20 and 3.21 indicate that one of

two suboptimum receivers can be used to obtain a performance that is

within one dB, in this example, of the optimum receiver performance

for binary symmetric communication over a doppler-spread channel.

For values of k T less than one, the CSS receiver should be used; for

other k T the FSI receiver is a better choice. This is significant

because the CSS and FSI receiver structures are considerably simpler

than that of the optimum receiver. It should be pointed out that this

performance comparison can be carried out for other signals and

higher order fading spectra as well.

L ..
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E. Summary

This chapter has considered in detail the performance of the

optimum receiver and two suboptimum receivers for the doppler-spread

channel. A state-variable model for the channel and the performance

of the optimum receiver were reviewed. A suboptimum receiver with a

filter-squarer-integrator structure was suggested. Its performance

was analyzed from the results of Chapter II and compared with the

optimum. Proper design of the FSI receiver permitted nearly optimum

performance. A second suboptimum receiver was proposed which consists

of a bank of correlators followed by square-law detection and a weighted

summation. Its performance was compared with the optimum and FSI

receivers, again by the techniques of Chapter II.

The numerical examples indicated that either the CSS receiver

of the FSI receiver could be used to achieve a performance within one

or two dB of the optimum. For low kT the CSS receiver was the better

performer; for large kT the FSI receiver was closer to optimum. The

parameter k is the fading bandwidth and T is the signalling interval.

The significance of this result is that the complicated optimum receiver

can be replaced in a given problem by one of two much simpler receivers

without much sacrifice in performance.

The numerical examples also provided guidelines for designing

the suboptimum receivers. For the FSI receiver, a filter of the same

order as the fading provides good performance if its bandwidth is

increased by a factor that can be determined from F /N and kT. The
r o
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optimum number of correlations in C5S receiver is r-oui~hly the implicit

diversity in tEie system. The performance maxima Ec~r either case are

hroad. ~hus these ~uidelines provide a way to realize ~ood yerforn-iance

without careful numerical optiB;ization ill each exarilple.

L~ Final word concerns the applicability of the techniques

used to compare the performance of the doppler-spread c~~annel receivers

in this chapter. It is not necessary tilat ~(t) be a constant or tliat

the fadin~ be first order, a frequent choice in ttie exarilpj.es. c)tSler

si~nal. and ?I;i~iler order fading, stationary or non-stationary, may be

treated.
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CHAPTER IV

DETECTION OF KNOWN SIGNALS TRANSMITTED

OVER DELAY-SPREAD CHANNELS

This chapter considers the problem of detecting or communicating

with known signals which are transmitted over delay-spread channels. This

is another special case of the Gaussian signal in Gaussian white noise

model of Chapter I. In contrast to the doppler-spread channel, however,

it is not possible to specify a finite state-variable model for the delay-

Moodl

%.J A- LVL_ LLT_ 'rl-.zy a .L TU C LL L L.Ie LL_ JjJ.J.L :, FL C-U "t IutU .t_ II.* WC.b

originally done by Bello [18] and Kennedy [6]. These concepts are

applied to the two suboptimum receiver structures of Chapter III to give

suboptimum receivers for the delay-spread channel. Then an alternate

approach is suggested for the analysis of optimum receiver performance

for the delay-spread channel. It involves reduction of the receiver

Adecisro ntati- 4 t t i4 fill it4 f1 dl nGOL1 if-LO 4d.J i-.LAPn s L1 s c o% %J nUL n LTe sumll %I o suare L auAC].sL 'c- ra "om varUM &

ables. The method is also applied to two suboptimum receiver structures.

The suboptimum and optimum receiver performances are compared in an example.

A. The Delay-Spread Channel Model

The delay-spread channel model used here is similar to the
doppler-spread model of Chapter II. The known narrowband transmitted

signal

spread channel. The ability to do this was essential in much of Chapter

III in order to apply the results of Chapter II.

This chapter considers two approaches to the analysis of the

delay-spread problem. The first is use of time-frequency duality notions

I

k~n r-ro~

i
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f(t) = /2 Re[f(t) ejet] 0 < t < T (4.1)

is reflected by a large collection of small point scatterers. For the

delay-spread model it is assumed that the spatial distribution of

scatterers has dimensions, in units of signal propagation time, which

are ci nifican +-A t- d 1 t h C d
g n compare 

o t e tr 

T.

Furthermore, it is assumed that the scatterers are moving at a rate

which is slow compared to l/T. Then the scattered return can be con-

sidered as the superposition of returns from slowly fading (Rayleigh)

scatterers [8]. The complex amplitude of the total received signal is

r(t) = s(t) + w(t)

S f f(t - X) y(X)dA + w(t), T < t < Tf (4.2)

where y(A) is a complex Gaussian random process and w(t) is complex

white Gaussian noise. The formulation of (4.2) implies that the channel

produces no doppler shift. This model is also known as a deep or

extended target model and has received considerable attention [2,7,8,16].

The channel process y(A) is zero-mean and has the known

covariance function

E[y(A)y ()] = Ký (A,a) (4.3)
y

The covariance function for s(t) is

oo Co

Ka(tu) (t-A)Ka(Ao) (u-c)dAda

(4.4)

= m m 
y

a I __M M I

.mm
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The energy in the transmitted signal is

T
Et 2= f (t) 2dt (4.5)

0

The expected value of the energy in s(t) over the observation interval

[T ,Tf] is
Tf

E = f ,(t,t)dt
r T s

T
o

Too 00 f
=f f -. (X,o) [I T(t-X)T*(t-o)dt]dhdo (4.6)

0o

Unless K&'(A,a) is identically zero outside of some region in
y

the A-a plane, r(t) will contain the scattered return from f(t) over

the infinite time interval [-c,-]. Thus the larger the interval

[T ,Tf], the better the optimum receiver will perform. In some cases

it is useful to consider scatterers which have a finite spatial distri-

bution. Then K'%(A,o) is zero outside a finite region in the XA-
y

plane. For example, suppose K\(A,a) is non-zero only for 0 < A,o < L;
y

then the observation interval need not exceed [0, T + L], for r(t)

t- i 1 1-i
LULon a ns ony wII tLe noise ouLside L[lhS Interval.

A special case of the above model arises when the scatterers

are assumed to be uncorrelated. That is, the channel process y(X) is

assumed to be uncorrelated for different values of X

Ky(A,o) S(A)6(A-a) (4.7)

where S(A) is positive and real. S(X) is often called the scattering

I .. ~

mý



-113-

function of the channel. The process y(X) is said to be spatially

white when (4.7) holds. This model is also a special case of the

"wide-sense stationary uncorrelated scatterer" channel described in the

next chapter. Introduction of (4.7) into (4.4) and (4.6) gives

•(t,u)= f •(t- X)S(X)?*(u- X)dA (4.8)

Tf

E = f S(A) [ If(t - X) 2dt]dA (4.9)
r - T

The idea of implicit diversity is also a useful one in the

delay-spread channel model. Kennedy [6] has pointed out that samples of

the Fourier transform of the complex envelope of the received signal

separated in frequency by 1/L are nearly independent. The quantity

1/L is the correlation bandwidth of the channel and is determined

by how fast the correlation function K(X,oa) varies in A and o. In the

case of uncorrelated scattering, 1/L is given by the bandwidth of

the Fourier transform of the scattering function S(X). If the

transmitted signal bandwidth is W, the bandwidth of s(t) is roughly

W + 1/L. Thus it is possible to obtain

Nd9k 1 + LW (4.10)

nearly independent samples of the Fourier transform of s(t). As a

result, the delay-spread channel is said to possess Ndk degrees of

freedom, or to have an implicit diversity of Ndk. Such an argument

is clearly approximate in nature, but it will be useful both in

N _ _ __~1_1__1_
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interpreting performance results and in providing a guideline for

signal design.

B. Duality and Doppler-Spread Channel Receivers

This section discusses the notion of time-frequency duality

and its use in the delay-spread channel detection problem. The original

application of duality ideas to this channel model was done by Bello [18].

Kennedy [6] considered the performance of the optimum receiver for the

delay-spread channel and its relation to a dual doppler-spread channel.

These results are briefly reviewed here. Then this section considers

the use of several suboptimum receivers for the delay-spread channel.

These are related to dual doppler-spread channel suboptimum receivers.

A short description follows of the notion of duality that is

used here. For more details see [6,8,18]. A function y2( - ) is said

to be the dual of yl ( - ) if y2(-) is related to yl(*) by the Fourier

transform

m -j2 ft
y 1 (t) e dt = 1(f) (4.11a)

-O0

If yl (' ) is a complex Gaussian random process, then y2( is the statistical

dual of y1 (*) if

K2 2 y2 1 2 2)

= 0 0 (t ,t2) e dt dt (4.11b)

If y2 (' ) is the statistical dual of y('), and if both processes are

expanded in series with uncorrelated coefficients over the infinite

0 -1
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interval, then both expansions have the same eigenvalues, and the

eigenfunctions of y 2 ( - ) are related to those of yl ( - ) by (4.11a) [6].

Note that the dual of a stationary white Gaussian process is also a

stationary white Gaussian process, by (4.11b).

Consider the deterministic operation g[*]. The operator

G[-] is defined to be the dual of g[-] if, when

Y2 = 1[Y] , (4.12a)

then

Y2 = G[Y 1 ] (4.12b)

where Y2 (*) and Y1 (-) are the respective Fourier transforms of y2 ( *) and

yl(*). The definition of (4.12) is also valid for random operators if

Y2 () and 1 (*) are interpreted as statistical duals of Y2 ( *) and Y '

respectively. Some examples are: multiplication by exp(-j27fT) is the

dual or a delay of T; convolution with M(.) is the dual of multiplication

by m(.), the inverse Fourier transform of M(*); multiplication by M(*)

is the dual of convolution with m•).

With these definitions it is possible to show that there is

a dual relationship between the delay-spread and doppler-spread channel

models. [6,8,18]. Let sdp(t) denote the output of the doppler-spread

channel in (3.2), and Sd£(t), the output of the delay-spread channel in

the model of (4.2). The process Sdt(t) is the statistical dual of

sdp(t) if the relationship of (4.11b) holds. Introducing (3.4) and

(4.4) into (4.11b) it is straightforward to show [8] that this dual

relationship exists if

_a

__
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(t) - Fdp (t) (4.13)

and

SCO j2T (At-au)
Kl (t,u) +-+ f j K- (X,a) e dAdo (4.14)
Ydp -_ -0 Yd£

That is, the output of the delay-spread channel is the dual of the

doppler-spread channel output if the doppler-spread model transmitted

signal dp(t) is the Fourier transform of the delay-spread channel

signal Td (t), and if the corresponding channel covariance functions

are related by the double inverse Fourier transform of (4.14).

This dual relationship has important implications for the

optimum reception of signals transmitted over the delay-spread channel.

If the conditions of (4.13) and (4.14) are satisfied, the received

signal in the delay-spread model of (4.2) is the dual of the received

signal in the doppler-spread model, since the white noise w(t) is its

own dual. Thus the eigenvalues of both processes are the same, which

implies that the moment-generating functions of the liklihood ratio

and therefore the error probabilities are identical. The delay-spread

channel optimum receiver can be specified in terms of the optimum

receiver for the dual doppler-spread channel [18,8], as shown in

Figure 4.1. The input to the delay-spread channel is T(t) and the

received signal r(t) is inverse Fourier transformed. The result,

R(f), is operated upon by the optimum receiver for the doppler-spread

channel which has a transmitted signal that is the Fourier transform of

(t) and a covariance function related to the delay-spread covariance

l -0 1 __M

d
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Figure 4.1. Complex version of the optimum receiver for the delay-spread channel, dual

realization.
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function by (4.14).

The notion of duality thus provides a way of finding the

optimum receiver and its performance for the delay-spread channel,

provided that the dual doppler-spread receiver and its performance are

available. From Chapter III, the most useful class of doppler-spread

channels with convenient performance expressions and receiver realiza-

tions can be described by state-variable models. This, in turn,

has several implications for the delay-spread dual analysis described

above. First, the transmitted signals for the doppler-spread state-

variable models are strictly time-limited. Thus the duality notion

can be conveniently applied without approximations only to delay-spread

models with transmitted signals of finite bandwidth and, hence, of

infinite duration.

A second limitation of the duality approach becomes apparent

after considering the special case of stationary fading in the doppler-

spread channel and uncorrelated scattering in the delay-spread channel.

Then (4.7) in (4.14) gives the dual relation

CO j27rAT
K1 (T) = f S(X) e dX (4.15)
Ydp -=

Since (4.15) indicates that S(X) is the Fourier transform of the covari-

ance function of a random process generated by passing white noise

through a finite state linear system, S(X) must be a rational function

in X and hence extends over [-o,c]. Without approximations, then, it is

not possible to consider performance of a delay-spread model with a

finite scatterer distribution, by means of a dual state-variable

lI I -



-119-

doppler-spread channel model.

These limitations are evident in the structure of the optimum

receiver of Figure 4.1. It is unrealizable since an infinite segment of

r(t) is required in order to take the inverse Fourier transform. Never-

theless, the notion of duality is useful in studying the performance

of delay-spread channel models with rational ý(A) and bandlimited transmit-

ted signals. For instance, Table 4.1 gives the relationships between a

doppler-spread example treated in Chapter III and its dual delay-spread

model. Often these constraints can be met by suitable approximations

in a particular delay-spread channel problem.

The application of duality above has provided a means to

directly apply the results of Chapter III concerning doppler-spread

channel optimum receivers for the binary detection or M-ary communication

problems. A logical question at this point is: do the duality relation-

ships presented above hold for the two doppler-spread channel suboptimum

receiver structures of Chapter III? The answer is yes, which permits

application of the remainder of results of Chapter III to the delay-

spread channel problem.

From the preceding discussion on duality, a logical approach

to finding good suboptimum receivers for the delay spread channel is to

inverse Fourier transform the received signal and operate on it with a

dual doppler-spread channel suboptimum receiver. The resulting structures

are unrealizable, however. A more practical receiver would be obtained

if the dual omerations could be arrie o -, • •ou1 ....r~ctl m14Y Lon r . s

issue will be investigated in the following discussion.
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DOPPLER-SPRELAD CiiHAKELL

S(t)

t

K (T) = Pe
y

(FIRST ORDER

STAT IONARY FAD ING)

DELAY-SPREADt CHAiNEL

t s in T Wt(t) = t sinWt <<oo

2PL
S(X) = (2

(27R ) + L

(UNCORRELATED SCATTERING)

Figures 3.5 and 3.6 give the performance in both problems if

k IT = LW.

Table 4.1. A particular delay-spread channel and its dual doppler-

model.

__~____
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Figure 4.2 shows a suboptimtum receiver for the delay-spread

channel that uses a dual doppler-spread channel FST receiver. Tihe

output of the channel, r(t) is inverse Fourier transformed to give R(f).

The sample function R(f) is operated upon by the suboptimum FSI receiver

which is designed for the dual doppler-spread channel. That is, if T(t)

is the transmitted signal and K%(A ,o) is the delay-spread channel
y

covariance, then the FSI receiver is designed for a doppler-spread channel

with a transmitted signal F(t) and a fading covariance function which

is the double Fourier transform of K%(A,a).
y

The performance of the receiver in Figure 4.2 is identical to

the performance of the FSI suboptimum receiver over the dual doppler-

spread channel. Thus the techniques of Chapter III for evaluating

the FSI receiver error probabilities and designing the FSI receiver

can be applied here directly. Note that the receiver in Figure 4.2

requires an inverse Fourier transform, and thus it is unrealizable.

Also, since the results of Chapter III for FSI receivers required a

state-variable model for the channel, this implies the same restrictions

on signals and channel covariance functions as in the optimum receiver

case.

The operations indicated in Figure 4.2 can be carried out

directly, without the inverse Fourier transform, if the filter

h(t,u) is time-invariant. The decision statistic Z in Figure 4.2

can be written

_Wý _ II __
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SUBOPTIMUM FSI FILTER FOR DUAL DOPPLER-

SPREAD CHANNEL: ffK,(X,a)e j 2 (X t - u ) dida

Figure 4.2. Complex version of the suboptimum dual filter-sauarer-integrator receiver for the

delay-spread channel.
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Tf

S= jf (f) 2 df
T

0

= f zz(X)1 2dX

f= fJ r(t)T*(t-A)dt12 1 h(X)i 2 dX (4.16)
-00

where .z(*), r(-), f(-), and h(*) are the inverse Fourier transforms

of Z(f), R(f), F(f), and H(f). Equation (4.16) has been derived by

replacing the operations in Figure 4.2 by their duals, according to

(4.12).

The inner integral in (4.16) can be realized by passing r(t)

into a filter matched to f (t). The matched filter output is squared,

weighted by I~(X)I 2 , and integrated. This structure is shown in

Figure 4.3 and is called a two-filter radiometer [2]. It is

interesting to note that if ih()i is chosen to be (), the

structure of Figure 4.3 is the optimum receiver when a low-energy-

coherence condition exists [2].

The performance of the two-filter radiometer is the same as

that of the receiver in Figure 4.2. Thus the results of Chapter 3

can be applied directly, provided the dual doppler-spread channel with

stationary fading has a state-variable representation. Furthermore,

the dual relationships suggest a design procedure for the TFR receiver.

The gain h(X) in the TFR receiver is the inverse Fourier transform of

N

Now1
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rVf(t)f~t

h() 2

Figure 4.3 Complex version of the two-filter radiometer suboptimuim receiver for the delay-spread

channel.
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1H(f), which in the doppler-spread model is the impulse response of a

filter that has the same order as the fading process. Hence the

squared magnitude of the Fourier transform of H(-) has the same form

as the fading spectrum. Since (4.15) indicates that the dual doppler

fading spectrum is just the scattering function S(X), this implies

lh(A) 1 2 in the TFR of Figure 4.3 should be rational with the same order

as S(A), but with possibly different parameters. Table 4.2 gives this

dual correspondence between the FSI and TFR receiver parameters for the

example considered in Table 4.1. Of course other i()I2 may be used

in the TFR receiver. Convenient performance analysis requires only

that the dual doppler-spread model have a state-variable representation.

The results of Chapter III indicate that the TFR suboptimum

receiver for the binary detection or the M-ary orthogonal communication

problems can be designed to achieve nearly optimum performance. The

general procedure of suboptimum receiver optimization consists of

2.
varying the post-detection weighting, IJ(A);  , depending on the values

of E /No, the scattering function duration, L, and the signal bandwidth

W. It should be emphasized, however, that the requirements of a rational

scattering function and a band-limited transmitted signal make the TFR

receiver in Figure 4.3 unrealizable. Of course, it may be worthwhile

to satisfy these constraints by approximations, in a given problem.

A second suboptimum receiver for the delay-spread channel is

available by inverse transforming the delay-spread channel output and

applying the result to the correlator-squarer-sum (CSS) receiver for

the dual doppler-spread channel model. Figure 4.4 shows this receiver.

As in the case of the FSI-TFR structures, the performance of the

dr "



-126-

DOPPLER SPREADi CIIANN'EL, DELAY-SPREAD CI-iAiNNLL,

FSI RECEIVER TFR RECLIVLR

S(t)

E t sin TWt

T
T 1

2 2

RECEIVER FILTER POST-DETECTION WEIGHTING

-k t 2L
h(t) = e u (t) h(A) 2 =

-1 2
(2~A) + Lr

Figures 3.9 - 3.11 give the performance in both problems if

k T = L Wr r

Table 4.2. A particular delay-spread channel TFR receiver and its

dual doppler-spread FSI receiver
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w (t)

f(t)

(f) V = iT-W/2I

NT = W

I- _ ______ __ _ -1

SUBOPTIMUM CSS RECEIVER FOR THE DUAL DOPPLER-SPREAD

CHANNEL

Figure 4.4. Complex version of the suboptimum dual correlator-sauarer-sum receiver for the

delay-spread channel.

U
_· __L_~____·_^___·ll~ _-1L-~-X..· -LI._··I.-·.i·X____I~_l~-·L1-_ ...._l~l ~l~ll~i-. IIII-y ll ~ I_ _ [ 11 '_ frith h ai l--i-t ---- i -ri' .........



-128-

receiver in Figure 4.4 is available from Chapter III when the correct

dual correspondence between the delay-spread and doppler-spread models

is made.

The operations of Figure 4.4 can be implemented without the

use of the inverse Fourier transform. Each R. in Figure 4.4 is

W
iT--

2
R f R(f)*(f)df (4.17)

1

(i-l)T -

This can be rewritten by defining

W WI< f < i-1
2 2Fif), (i-1)T - <

F.(f) = (4.18)

0 , elsewhere

Then R. becomes
1

R.= R(f)F (f~df

f Cr(t)Ti(t)dt (4.19)
--OO

where Ti(t) is the inverse Fourier transform of li(f). The resulting

receiver is shown in Figure 4.5; it produces the same output as the

receiver in Figure 4.4. The reference signals for the correlators in

Figure 4.5 are obtained by passing f(t) through a bank of ideal band-

f~--^ --- ~~~~~lt ·- 1r

pass ilters. An alternate scheme, derived by writin

form as (4.18), involves passing r(t) into the same bank of bandpass

uull -rv __~_
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f*(t) (NT = W)

Figure 4.5. Complex version of the suboptimum dual CSS receiver for the delay-spread channel,direct realization.
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filters and then correlating each of the outputs with f(t). In either

case, the receiver of Figure 4.5 is still unrealizable. However, this

model may be practical in some problems if the necessary approximations

are made.

This section has discussed a way of applying the results of

Chapter III for the doppler-spread channel to the problem of detecting

signals transmitted over delay-spread channels. This method provides the

performance of the optimum receiver and two suboptimum receivers for a

useful class of signals and channels, even though a state-variable

model for the delay-spread channel is not available. The drawback of

using duality is that it is best suited for band-limited signals and

delay-spread channels with scattering distributions of infinite extent.

The next sections give an alternate method of finding the performance of

the delay-spread channel optimum receiver and several suboptimum re-

ceivers. This method is useful for transmitted signals and scattering

distributions which have a finite duration.

C. A Series Technique for Obtaining the Optimum Receiver Performance

for the Delay-Spread Channel

This section considers an alternate technique for finding the

performance of the delay-spread channel optimum receiver for either the

binary detection or orthogonal communication problems of Chapter I. The

derivation of the method begins by expanding the random process y(X) in

(4.2) in the series

y(A) = y (A) (4.20)
i=l

rl
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where {pi(A)} is a complete, orthonormal set of functions over the

interval [Lo Lf ] ,

Lf

f 1 (X )  ( X) d  = .ij (4.21)

0

'L
The yi in (4.20) are obtained by multiplying (4.20) by j.(A) and

integrating

Lf

y. = J f y(A) (X)dX (4.22)
L

o

Since y(A) is a zero-mean complex Gaussian random process, (4.22)

indicates that the yi are complex Gaussian random variables with

covariance
Lf L

E[yiYj] = f K' (x,a). (fA)j (a)dXdo (4.23)
L L

o o

When the scattering is uncorrelated, (4.23) reduces to

L

E[yiYj] = f S(A)* (x)j (A)dA (4.24)L

Note that the series of (4.20) has correlated coefficients in

general. The set { i(X)} need only be complete and orthonormal; the

eigenfunctions of the Karhunen-Loeve expansion, which gives uncorrelated

coefficients, comprise just one possible set that may be used in (4.20).

The expansion interval [Lo,Lf] is chosen to include the region in a or

X over which K'(A,a) is non-zero.
y

M

.Mý --
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If the series of (4.20) is introduced into (4.2) the complex

envelope of the received signal becomes

r(t) = y .b (t) + w(t) T < t < T (4.26)1 i O- f
i=1

where

Lf

i(t) =f (t-X),i(X) (4.27)
L

The observation interval is

T = min (0, L )

(4.28)

Tf = max (T,Lf)

since '(t) is non-zero over [O,T].

The form of (4.26) suggests the following approach: truncate

the series of (4.26) to N terms, find the optimum receiver for the

truncated model, and determine the moment-generating functions of the

receiver decision statistic. These, in turn, permit evaluation of the

error probabilities for the truncated model optimum receiver. The

limiting value of these error probabilities, provided they converge,

give the error probabilities of the delay-spread channel optimum

receiver.

A secondary issue that will not be treated in detail here is

the use of the truncated model's optimum receiver as an approximation

to the optimum receiver of the actual delay spread channel. In such

5

Ldý
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a situation the truncated model receiver is suboptimum for the delay-

spread channel. In order to tell how good an approximation to the

truly optimum receiver it is, its performance must be found. The

techniques of Chapter II can be used to find this suboptimum performance,

if such a comparison is desired.

The truncated model is, from (4.26)

r(t) = b (t) + u w) (A 2I)
i=1

Defining the vectors

() =[% N(t), ... ,bN(t)

" (4.30)

N

permits (4.29) to be written as

r (t) =_si (t) + w(t) (4.31)

The model of (4.31) is similar to one which has received considerable

attention: the transmission of known signals over a Rayleigh fading

channel. The bi(t) are the known signals, and the covariance of the

random gains yi is given by (4.23) or (4.24).

The optimum receiver for this truncated model can be derived

by the procedure given by (4.399 - 4.404) of Van Trees [20], modified

to account for the fact that the b.(t) are not orthogonal and the yi1 1

I- - -
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are correlated. The details of this straightforward derivation are

relegated to Appendix II; the result is that the logarithm of the

liklihood ratio can be written

Z = nA(r(t))

-~R(Kl + B)R- -_ n det (I + K _) (4.32)

1
N

o0

'IV 1
B - N
-- N

o

f r (t)b (t)dt
T

'V(t)ý(t)dt

K = E[L

A branch of the optimum receiver for the truncated model is shown in

Figure 4.6. The second term in (4.32), a bias which does not depend on

r(t), can be included in the threshold.

The moment generating functions for the statistic Z in (4.32)

follow directly from Chapter II, Section E, since X is a quadratic

form. The details of the derivation are given in Appendix II. For

the simple binary problem

where r'

r

rN

(4.33)

(4.34)

(4.35)

Wý 'YL~--
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b (t)

bN(t)

Figure 4.6. Complex version of the optimum receiver branch for the delay-spread channel truncated

series model.
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P,0(s) = -s an det (I + K B

- kn det (I - s(K-  +B) B)

1*,(S) = P,0(s + 1) (4.36)

and for the binary orthogonal communication problem

P*bc(s) = P*o(s + 1) + P*0(-s) (4.37)

The error probabilities for the truncated model can be computed from

(4.36) and (4.37) as discussed in Chapter II.

Provided that there is convergence, the delay-spread channel

optimum receiver error probabilities can be found from the results

above, by letting the number of terms in the series, N, go to infinity.

In practice, the maximum value of N required to achieve a given

accuracy for p,0 (s), ),l(s), or Pbc(S) is determined experimentally.

This series expansion approach has several advantages. One

is that the method can be applied when the transmitted signal T(t)

has a finite duration. Also, there is no constraint on the scattering

characteristics. K(X,co) or S(A) need not be related directly or
y

through duality to a state-variable channel model.

A disadvantage of the series approach is that its usefulness

is determined primarily by the amount of work that is required to

obtain analytically or numerically the covariance matrix K, from

(4.23) or (4.24), and the matrix B. It would be convenient to choose

_~ I

.1, ~
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an orthonormal set { i(x)} that makes these calculations easy. On the

other hand, it is desirable that the {#i(x)} provide rapid convergence

of the performance expressions. It is not obvious how to make this

choice to satisfy either of these wishes.

As an example, consider the case when T(t) has a constant

envelope and the scattering is uncorrelated with the scattering function

shown in Figure 4.7.

Er
1 T

(t) = T

0

0 < t < T

elsewhere

(4.38)

1 27TX
{ (1- cos )

L L

0

The observation interval is

a Fourier series over [O,L]

0< A < L

elsewhere

[0, T + L]. Let the expansion of (4.20) be

1

S2k + t u a sin L k > 1

The elements of the covariance matrix K can be found easily from

Somewhat more tediously, analytical expressions for the elements

(4.39)

(4.40)

(4.24).

of B

..Wý -"'-- ---- _1
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f(t)

S I·

S(A)

U L

1 2T(S(1 - cosL- A)

0

0 A L

elsewhere

Figure 4.7. Signal and scattering function for a delay-spread

channel example with uncorrelated scattering.

I - N-,

LAMMY I - - - -- -



-139-

can be obtained from (4.30) and (4.34). The binary detection or ortho-

gonal communication error probabilities may now be computed for this

problem.

Figure 4.8 shows the exponent in the binary symmetric error

probability bounds of (2.77) for the example presented above. The

results of Chapter III indicated p bc(-.5) is a convenient measure of

relative performance in the binary symmetric communication case and is

useful in assessing relative simple binary detection performance also.

The normalized value of p bc(-.5) is plotted; it serves as a measure of

efficiency of a system, since .1488 is the maximum attainable value

for this quantity. The numbers in parentheses give the number of

harmonics, Nh, required to obtain an accuracy of three decimal places

in p.bc(-.5); the number of terms in the series of (4.20) is 2Nh + 1.

Note that there is an optimum value of L/T for each E /N in
r o

Figure 4.8. This behavior is similar to that observed in the doppler-

spread examples. Figure 4.9 shows the optimum P*bc(-. 5 ) and the

value of L/T which produces it as a function of E /N . The concept

of implicit diversity is again useful in interpreting these results.

As given by (4.10), the signal s(t) has roughly 1 + L/T degrees of

freedom (the signal bandwidth is on the order of 1/T). For a given

E /No the optimum L/T should provide a signal-to-noise ratio per

degree of freedom of approximately three.

This example illustrates that the truncated series technique

is useful for analyzing the delay-spread channel optimum receiver

performance. The method may be applied to other signals and scattering

functions as well, without constraints such as band-limited signals and

~Y -~""~' -- ._---I-
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0

r =

o

0< <

elsewhere

(h. ) = NUM1BE` OF' iHAPROICS I SIS

Figure 4.3. Error probability bound exponent for binary orthogonal

comi unication, constant r(t), optimiumu receiver, delay-spread channel.
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state-variable representations. The issue of what orthogonal series to

use in the expansion is an open one; the Fourier series was chosen in

the example above because it permitted easy evaluation of the K and _

matrices. The next sections consider application of the truncated

series approach to several suboptimum receivers for the delay-spread

channel.

D. A Two-Filter Radiometer Suboptimum Receiver for the Delay-Spread Channel

This section applies the series technique, derived above for the

optimum receiver performance, to the problem of evaluating the performance

of the two-filter radiometer in Figure 4.3. As indicated in Section B,

this structure is generally suboptimum. From (4.16) the decision statistic

for the TFR receiver is

L2  Tf Tf

S= g(f) r(t)* (t-f)r* (u)? (u- )dtdud (4.41)
L1  T T
1 o o

where

g(A) = i(h()I 2  (4.42)

The observation interval is [To,Tf] and is usually given by (4.28) to obtain

the maximum available information about l(t) from r(t). The interval

[L1 ,L2] in (4.41) is the extent of g(A). Since the output of the

matched filter in Figure 4.3 is significant over the interval

[To - T, Tf], where the duration of T(t) is [O,T], the interval [L1 ,L2]

should not include more than [To - T, Tf].

In order to find the performance of the TFR receiver, the

signal '(t-A) is written in the complete orthonormal series over [L1 ,L2]

rY
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b(t - ) =

b. (t) =
1S

b. (t)b.i(X)
i=l

L
2

f (t - ()ki(A)dX

i3

The subscript s denotes "signal", in order to distinguish i. (t)iS

from ~i(t) of the previous section. Equation (4.43) is substituted in

(4.41) to give

i=i
(4.46)

j r igi r
j--1

T

r. = -N f r(t)b ( t )i N T
o T

g.. = N2 fij o
L

* %Q~~i(Xd (4.48)

The r. in (4.47) are complex Gaussian random variables.

The decision statistic k of the TFR receiver has been expressed

as an infinite quadratic form. As in the case of the optimum receiver,

(4.43)

(4.44)

(4.45)

where

(4.47)

L

Wi( ), j(X )d
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the sums in (4.46) will be truncated to N terms each. In this case

the approximate decision statistic can be written

S= _ _± (4.49)

where is given by (4.33) and the N X N matrix _ has elements gibij
given by (4.48).

The moment generating functions for the finite quadratic form

of (4.49) are available from Chapter II, Section E. This permits

calculation of the suboptimum receiver error probabilities for the

truncated receiver. Then the number of terms in the series is allowed

to increase until acceptable convergence is obtained. This gives the

performance of TFR suboptimum receiver for the delay-spread channel.

In order to calculate the moment-generating functions for (4.49)

it is necessary to have the covariance matrix for il when r(t) is w(t)

and s(t) + w(t), respectively. For noise alone (II-16) in Appendix

II gives

A = E[R noise ]II

T

fb (t)b (t)dtN -s --s
o T

= B (4.50)-- s

where

'V 'V
b (t) = (t)... , b (t)] (4.51)
When signal plus noise is the inputNs

When signal plus noise is the input
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= E[ ýtlsignal + noise ]

1
N 2

T T

f f b(t)) (tu)b (u)dtdu +
T T
0 0

(4.52)

If K y~(X,o) is written in the double orthogonal series over [L1 ,L 2]Y

(4.53)iijl i j ( )
i=1 j=1

L2 L2
Sf f Ku(Xa)4 (()A j (c)dkda
L L

(4.54)

then from (4.4) Kz(t,u) is given by
5

K (t,u) = ict) ..b (u)s J1 is 13 js (4.55)

If the sums in (4.55) are also truncated at the Nth terms, an approx-

imation for K%(t,u) is
s

(4.56)K5(t,u) = b (t)Q (u)s -- s -- s

where 0 has elements given by (4.54). Introducing (4.56) into (4.52)

and performing the integrations give an approximation for A
-s

A = B B +B
--5 -5--5 --S

(4.57)

A('

Y

0

mdi ---
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The approximation of (4.57) can be used for A since the number of--s

terms in the series will be increased until the error probability expressions

converge.

The appropriate moment-generating functions are available

from Section E of Chapter II. For simple binary detection

P (s) = -£n det (I - s A )

(4.58)

Sl(S) = -Zn det (I - sý A)1 - --- s

and for binary symmetric orthogonal communication

Pbc(S) = 1l(s) + 10 (-s) (4.59)

The calculation of B, S , and s for the N-term truncated series

enables (4.58) and (4.59) to be evaluated. Then N is increased until

the desired error probabilities or their bounds converge. As in the

optimum receiver case, it is not clear how to choose the orthonormal

set { i(A)} ; rapid convergence and easy calculation of 3 , and

s are desirable.

For the uncorrelated scattering example of the preceding

section it is informative to compare performance of a TFR suboptimum

receiver with the optimum receiver performance. Insight into choosing

a good g(X) in (4.41) can be gained by considering the doppler-spread

channel FSI suboptimum receiver results of Chapter III and applying

duality. The filter in the FSI receiver was of the same order as the

filter which generated the fading process, but with a different bandwidth.

IrrYI _~
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For the TFR receiver this implies choosing a g(A) which is similar in shape

to the scattering function S(X) and including a parameter which permits

adjustment of the effective width of g(;).

For the delay-spread channel model of Figure 4.9, let the

TFR receiver post-detection weighting be

1 2nAg( (A - cos L ) 0 < X < L
(4.60)

0 elsewhere

The parameter A is variable; for large A the weighting is uniform over A.

The matrices B, , and % follow directly. Note that [LOLf] and

[L1 ,L2 ] are identical in this example, and that s and s are the same

as ý and k, respectively, which were calculated for the optimum receiver

in the previous section.

The suboptimum TFR receiver performance for binary orthogonal

communication can be contrasted to the optimum performance indicated in

Figure 4.8 by evaluating pbc(s) and finding its minimum. This has been

done for the above example. The results will be presented in the

next section along with those for a second suboptimum receiver for the

delay-spread channel.

E. A Correlator-Squarer-Sum Suboptimum Receiver for the Delay-Spread Channel

A second suboptimum receiver for the delay-spread channel is

considered in this section. The structure of this receiver is suggested

by the form of the TFR receiver output in (4.16)

£ p e2 if "(t)~ (t -s )dtp 21(X)12 d (4.61)

Suppose the integral in (4.61) is approximated by the sum

&..______
__
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N 21 12
N I r(t)f(t - iAA)dtl 2 1I ( i AA) 2 i A  (4.62)
i=l -.

Each term in (4.62) can be considered the squared magnitude of a

correlator output. As in the doppler-spread CSS receiver it may be

advantageous to break down the correlation integral T into subintervals

and add the squared subinterval correlator outputs.

The result is the suboptimum correlator-squarer-sum receiver

of Figure 4.10. The reference signals f (t - iAX) for each branch of

the receiver can be provided by a tapped-delay-line with an input 1(t).

The number of branches in the receiver is M = L/AX - 1 where L = Lf - L o ,

the duration of the scattering; the number of correlation subintervals

is at least N = T/T in each branch, where T is the duration of T(t).

The squared outputs of each correlation are weighted by Wij, and the

branch sums are weighted by lh(iAX) 2

Insight gained from the TFR receiver performance analyzed

with the technique of the previous section can be used in choosing the

weights for the CSS receiver. Note that the CSS receiver of Figure 4.10

does not have the same structure as the dual doppler-spread CSS receiver

in Figure 4.5.

When T(t) is a constant and the number of branches and

correlation sub-intervals is such that AX = mT for some integer m, then

the simplified structure of Figure 4.11 is possible. Figure 4.11 is

constructed by noting that certain sampled correlator outputs in

different branches of Figure 4.10 are identical under the assumed condi-

tions. The structure of Figure 4.11 is particularly simple. The waights

.WOMA _ _
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Figure 4.10. Correlator-squarer-sum suboptimum receiver for the delay-spread channel.
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Wi can be determined as appropriate combinations of the 4ij and Ih(iAA) 2

in Figure 4.10.

Since the decision statistic for the delay-spread channel CSS

receiver is a finite weighted sum of squared complex Gaussian random

variables, the moment-generating functions for computing the error

probabilities can be obtained from the equations of Chapter II, Section E.

For simple binary detection

S 0 (s) = -£n det(I - sW'A )

(4.63)
l, (s) -in det(I - sW'A )

and for binary symmetric communication

Mbc(s) - pl(S) + I0(-s) (4.64)

For the CSS receiver of Figure 4.10 the weighting matrix W' is diagonal

with elements Wi ij.

Computation of the covariance functions A and A is straight-

forward but generally tedious. In Figure (4.10)

E[rir k I noise] = f f T(t-iAX)N 6(t-u)*(u-kAX)dtdu (4.65)
(Y,-1)T (j-1)T

E[rij rk signal + noise ]

XT jT t [(tu)

f -i+ N 6(t-u)] ( )(u-kAX)dtdu
(,-l)T(j-1)T s o

(4.66)

L

R ___M 1 0

LAý -
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Evaluation of (4.65) and (4.66) provides the elements of A and A .
-n -s

For the special case of Figure 4.11, when T(t) is a constant,

jTr it
E[rr noise f] N 6(t-u)dtdu

(j-l)T (i-l)To

= N t6 (4.67)
o ij

E[rirj Isignal + noise ] f k(tu)dtdu + N 6..
(J-1)T(i-l)Ts o i

(4.68)

where kx(t,u) is given by (4.4) or (4.8). Note that no restrictions on

the form of ix(t,u) are required to compute the error probabilities for
S

this suboptimum receiver.

Figures 4.12 and 4.13 give a performance comparison of the

optimum, the TFR, and the CSS receiver for the binary symmetric

communication problem and the model of Figure 4.7. The TFR suboptimum

weighting of (4.60) is used, and the CSS structure of Figure 4.11 is

assumed with the weighting

2x
W = 1 ir cos !-- (i-.5), i = 1,...,N (4.69)
i N

For each receiver the normalized value of the appropriate error bound

exponent is plotted: *bc (-.5) for the optimum, and the minimized

Pbc(s) for the suboptimum receiver. In each case the appropriate sub-

optimum receiver parameter is also optimized, A in (4.60) for the TFR

LC
_·_ __ __
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orthogonal communication, delay-spread channel.
L
T

1 10

--~~l-CI.... I.. ~~~..- -- --~_.~_ri.~. i. --------- ..-.-.-- . ----- ·-.----~~j- I II -- Il -Lrrrrr~rr

r
Ln
W

i



r o

RECEIVER,

-U bc(
E /N

r o

TFR RECEIVER ,

(1)
(5)

GSS RECEIVEL,

- bc (s)

r o
opt

-bc (s)
E /Nr o opt

1 (
S(X) M L

.040

29r A
-cos ), 0 < A < LL

elsewhere

(op ) : cSS
opt

.020

Figure 4.13. Comparison of optimum and suboptimum receiver performance,

binary orthogonal conimunication, delay-spread channel.

1 10

.0801

= 20

-1

co .S ..A.s T (t)

-.. .. ... ...



-155-

receiver, and the number of correlations, N in (4.69) for the CSS

receiver. The TFR performance is quite insensitive to the value of A;

the optimum N for the CSS receiver is shown at various points on the

curves.

Figures 4.12 and 4.13 indicate that the TFR and CSS receivers

can achieve a performance which is no more than a few dB worse than

optimum in this example. Note that the TFR provides consistently good

performance over a wide range of L/T and E INo . Also the TFR becomes
r o

optimum as L/T gets small, since for L << T there is little post-

detection integration in the TFR; the result is just a matched filter.

The number of correlators which optimize the CSS receiver for a given

L/T and E /No is consistent with the implicit diversity description of

the channel presented earlier in this chapter. It is possible, of

course, that there exist different choices for the TFR post-detection

weighting, g(X), and the CSS weights, W., that yield better performances

for some or all of L/T and E /N .r o

F. Summary

This chapter has considered in detail the problem of detecting,

or communicating with, known signals which are transmitted over the

delay-spread channel. The notion of time-frequency duality and the

dual relationships between delay-spread and doppler-spread channel

optimum receivers were reviewed. Their duality was applied to obtain a

correspondence between two delay-spread channel suboptimum receivers

and their doppler-spread counterparts. The fact that the doppler-

spread channel performance and receiver structure results of Chapter III

I- Y"



-156-

required state-variable models and time-limited transmitted signals

implied that the duality concept is most useful for delay spread channels

whose scattering distributions are infinite in extent and which use

band-limited signals.

A second method of performance analysis has been proposed in

which the channel model is expanded in an infinite series. Truncation

of the series provides an approximate optimum receiver whose performance

can be readily evaluated with the techniques of Chapter II. As the

number of terms in the series becomes large, the performance of the

delay-spread channel optimum receiver results. The method of analysis

is attractive for problems in which the transmitted signal and the

scattering have finite durations. The technique was then applied to

evaluating the performance of a suboptimum receiver, the two-filter

radiometer. This structure is a promising one because it is the dual of

the doppler-spread channel FSI receiver. A second delay-spread sub-

optimum receiver, the correlator-squarer-sum receiver, was suggested.

Its structure is similar to that of the dopper-spread receiver of the

same name, and its performance can be found in a similar manner.

The optimum, TFR, and CSS receivers for binary symmetric

communication over a particular delay-spread channel were compared.

The scattering was uncorrelated and the transmitted signal had a

constant envelope. The results showed that the TFR and CSS receivers

can be chosen, in this example, to achieve performance levels close

to the optimum.

_~~ ~
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CHAPTER V

A DISTRIBUTED-PARAMETER STATE-VARIABLE MODEL FOR

KNOWN SIGNALS TRANSMITTED OVER DOUBLY-SPREAD CHANNELS

This chapter considers the problem of detecting known signals

transmitted over channels which produce both delay and doopler spreading

of the original waveform. Chapter III :showed that error probabilities for

the optimum receiver and several suboptimum receivers could be computed

for the doppler-spread channel provided the problem had a finite state-

variable representation. Chapter IV indicated that delay-spread channel

receiver performance could be obtained either by relating the delay-

spread problem to a dual doppler-spread model which has a state-variable

model, or by applying an orthogonal expansion technique directly to the

delay-spread channel model. The doubly-spread channel does not have a

finite state-variable representation, and it cannot be related by duality

to a doppler-spread channel. Hence the techniques discussed up to this,

point cannot be directly applied to the doubly-spread problem.

This chapter presents a distributed-parameter state-variable

model for the doubly-spread channel which permits evaluation of the per-

formance of the optimum receivers for the detection and communication

problems of Chapter I. The finite state-variable models of the previous

chapters will be called lumped-parameter models to distinguish them

from the distributed-parameter case. From the distributed parameter

state-variable model for the doubly-spread channel a realizable optimum

detector structure is derived. A method of finding the moment-generating

function of the decision statistic by means of an orthogonal expansion

technique is proposed. This in turn permits calculation of the optimum

receiver error probabilities. An example is then examined in detail.

'""
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A. The Doubly-Spread Channel: a Scattering Function Model

The doubly-spread channel model considered in this chapter

can be derived by assuming that the narrowband transmitted signal

T(t) = /TRe[T(t)ejWt] 0 < t < T (5.1)

is reflected by a collection of moving point scatterers. As in the delay-

spread model the dimensions of the scatterer distribution, in units of

propagation time, are significant compared to the transmitted waveform

duration, T. And, as in the doppler-spread case, the scatterers are

moving at a rate which is comparable to l/T. Thus it is possible to

consider the doubly-spread channel as a continuum of doppler-spread

targets. That is, the scattering element at a delay X effectively

multiplies the complex envelope of the transmitted signal by a random

process ý(X,t)dA. Integrating over all possible delays (scattering

elements) yields the complex envelope of the total received signal

r(t) = f '(t -A)ý(X,t)dX + W(t)

= s(t) + w(t), T < t < Tf (5.2)

where w(t) is complex white Gaussian noise.

The ý(X,t) in (5.2) is a complex, two parameter Gaussian random

process. The model of (5.2) indicates that the signal T(t) undergoes

both delay and doppler spreading in the doubly-spread channel; that is,

both time-selective and frequency-selective fading can be observed in the

received signal. For a more thorough discussion of the features of this

model, a number of references are available [2,6,7,8,16]. It is also

Lý
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called a deep fluctuating target model.

The covariance function of the zero-mean Gaussian process is

denoted by

E[ý(x,t)ý*(y,u)] = k(x,t;y,u) (5.3)

The covariance function for s(t) in (5.2) is

i (t,u) = f f '(t-X) (X,t;au)* (u-o)dXdo (5.4)
s

-- M -00

The energy in k(t) over [0,T] is E . The expected value of the received

energy in s(t) over the observation interval [To,Tf] is

T

E = f -(t,t)dt
r s

T

TcD= f

= f f f ~(-X)·(Xt* od da (5.5)

The comments of Chapter IV on the choice of the observation interval for

the delay spread channel are relevant here also. The non-zero extent of

i(X,t;a,u) in the variables X and a determines the duration of the

scattered signal S(t).

The doppler-spread and delay-spread channels of the previous

chapters can be derived from the doubly-spread model above. For the

delay-spread model, the fluctuations of ý(X,t) in t are negligible;

then q(A,t;o,u) can be replaced by k(X,o0), given in (4.3), and i(x,t)

by y(X). For the doppler-spread case, the distribution of scatters

___ I
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behaves as a point target. Then I(X,t) becomes y(t) and p(~,t;o,u) is

replaced by 1k\(t,u)6(X)6(C).
y

A special case of the doubly-spread channel model arises when

the scattering is spatially uncorrelated and temporally stationary.

That is, the random process (x,,t) is uncorrelated for different values

of A and stationary in the variable t. The covariance function for ý(X,t)

becomes

Y(x,t;y,T) = D(x,t-T)6(x-y) (5.6)

When the condition of (5.6) holds, the model is said to represent a

"wide-sense stationary, uncorrelated scatterer" (WSSUS) channel [6,8,16].

From (5.6) the signal covariance function reduces to

s(t ,u) = f '(t -A)D(A,t-u)P*(u-A)dX (5.7)

and the average received energy is

00 fT
Er =(I _

( 0 ) [ I d( t - A) mdt] dA (5.8)
-m T

The Fourier transform of D(A,-r) in the variable is called the scattering

function

00-j 2r fT
f(X,f) = I D(X,T) e dTr (5.9)

The doppler-spread and delay-spread channels which are derived from the

WSSUS doubly-spread model have stationary fading and uncorrelated scattering,

respectively.

Kennedy [6] has provided several measures of the implicit

diversity of a doubly-spread channel which will be useful in interpreting

~I I - - .
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the results of this chapter. One such approximate measure takes into

account the observation that time samples of the process s(t) are approxi-

mately uncorrelated if they are taken 1/k seconds apart. The quantity

1/k is called the correlation time of the channel. Its magnitude is the

smallest value for which K%(X,t;o,t + 1/k) is approximately zero for all

t,X, and G. For the WSSUS channel k corresponds to the bandwidth of

the scattering function S(x,f) in the f variable.

As in the doppler-spread channel, samples of the Fourier

transform of the complex envelope of the doubly-spread channel output

taken at frequency intervals of l/L are approximately uncorrelated. The

quantity l/L is the correlation bandwidth of the channel and is determined

by how fast the correlation function vK(A,t;,,T) varies in X and a. For

instance, in the WSSUS case, 1/L is given by the bandwidth of the Fourier

transform of S(x,f) in the x variable.

If the transmitted signal has a duration T and a bandwidth W,

then there are approximately (1 + kT) independent time samples and (1 + LW)

independent frequency samples of the channel output. This suggests

assigning

Ndb = (1 + kT)(1 + LW) (5.9a)

degrees of freedom to the channel. This argument is not precise, of course,

and Kennedy [6] indicates that other measures of the implicit diversity

may be more accurate. However, (5.10) will be useful in interpreting

performance results that are presented later in this chapter. For various

definitions for the quantities L, k, T, and W in terms of the transmitted

signal and the correlation function K(A,t;o,T), see Kennedy [6].

rll ----
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B. A Distributed-Parameter State-Variable Channel Model

The doubly-spread channel model of the previous section does

not have a lumped-parameter (finite state) state-variable model. This

prohibits direct application of the results of Chapter II to realizing

optimum receivers and calculating optimum and suboptimum receiver

error probabilities. This section shows that it is possible to represent

the doubly-spread channel by a distributed-parameter state-variable model,

and thereby obtain a realizable optimum receiver and its performance.

The distributed-parameter state-variable model presented here

is an application of the model given by Tzafestas and Nigittinale [33].

The complex formulation is added according to Van Trees, Baggeroer, and

Collins [15]. For further discussions of distributed-parameter state-

variables see [8,29,33-35].

For the distributed-parameter state-variable model the complex

Gaussian random process ý(x,t) is considered to be the output of a

distributed parameter linear system driven by a noise process i(x,t).

The system is described by thle linear partial differential equation

aX(x,t)
= '(x,t) (x,t) + ?(x,t) (x,t)at

(5.10)
(x,t) = (x,t)O(x,t)

The model of (5.10) is a specialization of one given by Tzafestas and

Nightengale [33]; note that partial differential equation can be consid-

ered as an ordinary differential equation with x as a parameter. The

.Aý c~r.l
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n-dimensional vector process X(x,t) is the state of the distributed

system at time t. The gain matrices _(x,t), ý(x,t), and ((x,t) are

known functions. The p-dimensional input process i(x,t) is temporally

..A

The state vector at time t can be related to the state of the

system at some earlier time t by

t
X(x,t) = _(x,t,t )X(xt ) + J Y(xt,T)G(x,T)U(x,-)dT, t >t

t

(5.12)

The distributed-parameter transition matrix T(x,t,T) satisfies the partial

differential equation

ýI W f -.- *

= F(x,t)_(x,t,T)at

Y(x,t,t) = I (5.13)

The covariance function of the state vector is

E[X(x,t)X (y,T)_ ] = X(x,t;y,T) (5.14)

Since
E[X(x,t)•U (y,Tl] = 0 , r > t (5.15)

E[ (.5

white with a covariance

E[k(x,t)U i(y,T)] = g(x,y,t)6(t-T)

E[U(x,t) T (y , T)] = 0

E[I(x,t)] = 0 (5.11)
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X(x,t;y,T) can be written from (5.12) as

Y(x,t,T) K (x,T;y,T) t > T

kx(x,t;y,T) =< (5.16)

(x,t;y,t) ' (y,T,t) t < T

Note that

K=(x,t;y,T) = I (y,T;x,t) (5.17)

The matrix •_(x,t;y,t) in (5.16) is the solution of a partial

differential equation. Differentiating x(x,t;y,t) gives

,_(x,t;y,t) 8 (xt) T ) _, (y,t)
= E t (y,t + E (xt)at at at

(5.18)

The first term on the right hand side of (5.18) is from (5.10)

aX(x,t) a
E X (y,t = F(x,t)K (x,t;y,t) + G(x,t)E[I(x,t)X (y,t)]

(5.19)

From (5.11) and (5.12)

E[A(x,t) U (y,t)] = _(x,t(x,y,t) (5.20)

Substitution of (5.20) in (5.19) and a similar procedure applied to the

second term of (5.18) gives the desired equation

ul
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x (x, t ;Yt)
9t

(5.21)+ G(x,t)Q(x,y, t)_ý (y,t)

with an initial condition at t of
o

'V
0 00 P-0o

(5.22)

From the assumption that

E[x(x,t ) (yt )] = 0

it follows by an argument similar to Van Trees, Baggeroer, and Collins

[15] that

E[X(x,t)XT (y , T )]= O

for all x,y,t, and T. From (5.10) the covariance for the output vector is

K (x,t;y,T) = E[Y(x,t)Y (y,T)]
I(' ty,(yl)

= C(x,t)KX(x,t;y,T)C (y,T)

E[Y(x,t)Y(y,T)] = 0 (5.23)

The distributed-parameter state-variable model for the doubly-

spread channel is given by (5.10) and (5.11).. The covariance function for

the state vector is specified by (5.16) and the solution to (5.21) with

the initial condition (5.22). The output covariance is given in (5.23).

M

-.4

SFx (t)K(x,t;y,t) + K(x,t;y,t)r(,)



Figure 5.1 shows a block diagram for the distributed-parameter state-

variable model.

For the special case of the WSSUS channel the output covariance

i (x,t;y,T) can be written in the form of (5.6). That is, (x,t) is

spatially white and temporally stationary. From (5.23) this condition

is achieved if ý(x,t) does not depend on t and if

_(x,t;y,T) = _(x,t-T)6(x-y) (5.24)

For (5.24) to hold, inspection of (5.16) and (5.21) indicates that

'(x,t), G(x,t) and g(x,y,t) should be constant with respect to t, and

furthermore that

S(x,y,t) = 6(x)6(x-y) (5.25)

Thus the distributed state-variable model for the WSSUS doubly-spread

channel is

ax(x,t)
a = (x)X(x,t) + G(x)U(x,t)at

Y(x,t) = C(x)X(x,t) (5.26)

with

E[ (x,t) iý(y,r)] = ?(x)6(x-y)6(t-T)

E[ (x,t)_TT(y, T )] = 0 (5.27)

The covariance matrices for the WSSUS model follow directly

from the more general expressions above. From (5.6), (5.24) and (5.26)

o*-



U (x,t)

Figure 5.1.

X (x, t)
Y(x, t)

Distributed-parameter state-variable model for the doubly-spread channel.
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(x,T) =- C(x)K%(x,T)C T (x) (5.28)

From (5.13) and (5.16)

_(x,T )%K (x), T > 0
-o

K(x,T ) =

K (x) (x,--), T < 0 (5.29)

'bO

where 0 (x,T) is the solution to

at = F(x)O(x,t)

E_(x,0) = I (5.30)

The matrix W (x) is the steady-state solution of (5.21)

'IVit ".1 '1 \..
0 = F(x)K (x) + K (x)F (x) + G(x)O(x)G(x) (5.31)

- - o- --o

The scattering function for the WSSUS channel is defined by (5.9). S(x,f)

is positive and real for all x and f, since O(x) is Hermetian with a

non-negative definite real part.

For an example of the WSSUS channel model, consider a first order

system for (5.26)

F(x) = -k(x)= -k (x) - jk.(x)-- r

G(x) = C(x) = 1

Q(x) = Q(x) (5.32)

I _ . . . . .. .. ...__ ~ _ _ __ _
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with

Q(x) > 0

k (x) > 0 (5.33)
r

From (5.29), (5.30), and (5.31)

_(x,T) = exp[-k (x) I-T-jki(x)T]

(x) = Q(x)
-o 2k (x) (5.34)

r

Thus

Q(x)KD(x,) = 2k (x) exp[-kr(x) T- -jk i ( x)T] (5.35)
2k (x)

r

and the scattering function is

'(x,f) = Q(x) (5.36)
2 2

[2nf + ki(x)] + kr (x)

The scattering function in (5.36), considered as a function of

frequency at any value of x, is a one-pole spectrum centered at f = k (x)/2T
0 1

and 3 dB points + k r(x)/27 about f . Except for the constraints of-- o

(5.33), Q(x) and k(x) are arbitrary. This permits considerable flexibility

in the choice of S(x,f), even for this first order model. For instance

if ki(x) is linearly proportioned to x, then S(x,f) is sheared in the

x - f plane. Also, Q(x) can be chosen so that S(x,f) is multimodal in

the x direction. Figure 5.2 shows several examples of possible scattering

functions for the first order model.

I_~_------~El----l_-II
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Q(x) -

2wx1- cos- L , O x s L

elsewhere

1 ixk(x) - k(l - - sin - )2 L

Figure 5.2a. Example of a scattering function for a first order

model.

-- ""-~-----"I
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L
2wx 4 f1- cos , 3L1 '3L- <x <L4-

Q(x) = wx L 3L
2 + cos < x < --L0 e 4

0 elsewhere

S k x 3kxk(x) = k(1 - -) - j

Figure 5.2b. Example of a scattering function for a first order model.
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The first order case above indicates that the class of scattering

functions which can be described by the model of (22) are those for

which %(x,f) is a rational function in f. The poles and zeros of this

particular function may depend on x in an arbitrary manner, except for

conditions such as those of (30). Thus higher order distributed-

parameter state-variable models permit more degrees of freedom in the

specification of the scattering function. For example, a ý(x,f) which

exhibits multimodal behavior in f can be obtained from a second or

higher order model.

C. A Realizable Detector and its Performance

This section considers the implementation of the optimum

receiver for the transmission of known signals over doubly-spread

channels which are described by the distributed-parameter state-variable

model presented in the previous section. Figure 1.4 shows a realizable

version of the optimum receiver branch which can be constructed if

the minimum mean-square error (MMSE) realizable estimate of s(t) is

available. This section derives the MMSE realizable estimator for the

doubly-spread channel output when the distributed-parameter state-

variable model of Section B is valid.

The performance of the optimum receiver for the binary detection

or orthogonal communication problems can be computed using the techniques

of Chapter II. The moment-generating functions necessary for these

computations all involved the Fredholm determinant for the random

process s(t). The Fredholm determinant can be expressed in terms of the

MMS realizable filtering error
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~p T= E[I:(t) - :(t) 2] (5.37)

A by-product of the NN~SE realizable estimator derivation of this section

is an equation for i~(t). Solving this equation permits evaluation of

the performance of the doubly-spread channel optimum receiver.

The NIMSE realizable estimate of s(t) is related to the ~I4ISE real-

izable estimate of the channel output p(x,t) by

s(t) = f ~'(t-x) ~(x,t)dt (5.38)

Ao

The estimate ~(x,t) can be obtained from the NI4SE realizable estimate of

the state vector 3~(x,t) in the distributed-parameter state-variable

model of (5.10)

(Xt= ?I(x,t)~(xlt) (5.39)

S (t) = 't(t - x) ~(x,t)X (x,t)dx (5.40)

The expected value of the state vector estimation error matrix is denoted

by

_L X.xt)[ (xLt)- 'f(Xt\l (.1

$(,y,t) · i E[X(x~t) - X.x,,jjl (5.41))

The error SŽy(t) in (5.37) is then given by

%(t)=J f (t-)c(a,t)~(o,a,t)ct (ca,t)f (t-cz)ddcrd (5.42)~cx oo 9

The NIASE realizable ·estimate of 3X(x,t) is given by the linear
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operation or r(t)

t
5 (x,t) - f h (x,t,a) k(a)do, t > T (5.43)

T
0

where h (x,t,T) is the n x 1 realizable matrix impulse response which
--o

minimizes '(x,y,t) in (5.41). The details of the derivation of the

estimator structure are given in Appendix III. The steps in the

derivation follow those of Van Trees [20] for the lumped-parameter state-

variable estimation problem. The result is an estimator structure which

is a modification of one given by Tzafestas and Nightingale.[33].

The results of Appendix III are that the MNISE realizable

estimate of 3X(x,t) is the solution of the vector partial differential

equation
A

(t(x, t) )
= (x,t)X(x,t) + h (x,t,t)[r(t)- s(t)] (5.44)

at -o

where

S(x, 't) - J ((x, t)(at) -t) (5.45)
- ' N

O -- 00

s(t) = f •(t-oy ( )_((o,t) )do (5.46)
-00oo

3 (x,T o ) = 0 (5.47)

In addition, the covariance matrix .(x,y,t) is the solution of a matrix

partial differential equation of the Ricatti type

ý_(x,y,t)
t = (x,t)((x,y,t) + ý(x,y,t)O (y,t) + N(x,t).(x,y,t) y,t)

-1 (t)(t-)t-ct) (t t)t(a,y,t)da (5.48)
Nx ,

d T
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with initial conditions

((x,y,T) = _o(x,y) (5.49)

Note that (5.48) may be considered an ordinary differential equation

with x and y as parameters. Figure 5.3 shows the estimator structure.

For the special case of the WSSUS channel model, the estimator

gain matrix N(x,t) is replaced by _(x). The equation for ((x,y,t)

becomes

aC(x,y, t)
~ t = (x)L(x,y,t) + p(x,y,t)_i (y) + _(x)(x)_ (y)6(x-y)

1 L(x,o, t)t(C)(t-) d (t-a) (i)•(a,y, t) d_ (5.50)

with

•(x,y,T ) = k (x)6(x-y) (5.51)
O-o

K (x) is specified by (5.31).
--

An alternate set of equations for L(x,y,t) can be derived for

the WSSUS case by assuming the solution of (5.50) has the form

((x,y,t) = o(x,t)6(x-y) + (x,y,t) (5.52)

Substitution of (5.52) into (5.50) gives

Lo(x,t) = _o(x)

? (x,t,t) = -- (x)I (x)T (t-x) + N- ( a(x,o,t)?i(a)*(t-a)da (5.53)
--o N -o N

o O -co

0

Im I - -`-~--~-I _~.I-~L-~LI~II_
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Figure 5.3. Realizable MSE estimator for the doubly-spread channel distributed-

parameter state-variable model.
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where P(x,y,t) is the solution to

a (x,y,t)

t = (x)(x,y,t) + J(x,y,t) y)at

N (x)W1 (x)T*(t-x) + f R(x,ot)ý( cj)o) do]

0 -00

*['(t-y) (y)i (y) + f (t-o)N(a)'(o,y,t)do] (5.54)

R(x,y,To) = 0 (5.55)

The formulation of (5.52-.55) is more attractive for numerical solution

because the effect of the spatial impulse has been removed from (5.50).

The NMSE realizable estimator for s(t) is given by (5.46). This

allows the construction of the optimum receiver configuration in Figure

1.4, which can be used in branches of the doubly-spread channel optimum

receivers for the detection or communication problems. The distributed

parameter state-variable estimator of Figure 5.3 is realizable in a

temporal sense, but it is not clear how to implement physically the

distributed-parameter system. The next section considers this problem

in more detail.

A by-product of the optimum receiver above is the error

covariance matrix L(x,y,t). By(5.42) the MMS estimation error for

s(t) is also available. This implies that the performance of the

optimum receivers can be found. Equation (2.85) relates this

filtering error to the Fredholm determinant. The various moment-

_ _
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generating functions which are used for computing the optimum receiver

error probabilities can all be expressed in terms of Fredholm determinants.

In order to find the error probabilities it is necessary to

solve (5.48),(5.50), or (5.52-.54) for "(x,y,t). In even the simplest

cases an analytic solution is difficult. Since these equations can be

considered ordinary differential equations with parameters x and y,

they can be numerically integrated, however. Thus one approach is to

obtain ý(x,y,t) at a set of discrete points, (x i,Yi,t) by numerical

integration of (5.48). Such an approach may become rapidly impractical

as the number of points in the grid grows and the dimension of ý(x,y,t)

increases. The next section discusses this issue in more detail.

It is worthwhile to investigate the form of the estimator in

Figure 5.3 as the model parameters are adjusted towards the limiting

doppler-spread and delay-spread cases. For the doppler-spread channel

it is sufficient to let N(x,y,t), the covariance of the driving noise in

(5.10), become impulsive in x and y

N(x,y,t) = Q6(x)6(y) (5.56)

Then the error covariance C(x,y,t) is impulsive in x and y, and both

the state variable model of (5.10) and the estimator of Figure 5.3

reduce to lumped-parameter models. The estimator of Figure 3.2 results.

For the delay-spread case it is sufficient to consider the

first order distributed-parameter state-variable model. The gain F(x,t)

is allowed to go to zero provided that Q(x,y,t) is chosen such that the

average energy in s(t) over the observation interval remains constant.

The result is the doppler spread model. In the diagram of Figure 5.3,

U _
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'(x,t) is set to zero.

D. A Modal Technique for Finding the Optimum Receiver Performance

The previous section derived a partial differential equation for

the error covariance matrix E(x,y,t) which is needed for the computation

of the doubly-spread channel optimum receiver error probabilities. It

was pointed out that one way to solve this equation is to integrate

it numerically on a grid in the x-y plane. As the dimension of the

state vector increases, this approach rapidly becomes unwieldy. It

would be useful to have a more efficient way of computing C(x,y,t)

This section proposes a modal approach to the problem. Such

approaches are commom in distributed-parameter systems [29,33,34]. Here

the method involves expanding the state vector estimates and the

covariance matrix in orthogonal series in their spatial variables.

X(x,t) = ~ (t)4i(x) (5.57)
i=1

(x,y,t) = -ij (t) i(x)Wj (y) (5.58)

i=l j=1

The set {i.(x)} is an arbitrary complete orthonormal set over the

interval [L ,Lf]

f

f 3i(x)T (x)dx = 6ij . (5.59)
L

o

How to choose the set {i(x)}_ will be discussed later. The time-varying

-- · I ------------- "



coefficients in (5.57) are

L
fA

(t) = f S(x,t)p.(x)dx
L

ij(t) = f lf (x,yt)i(x)4 (y)dxdy
Lo o

0 0

(5.60)

(5.61)

The series of (5.58) is substituted into the partial differential

equation for the error covariance, (5.48), to give

dZi j (t)
S d (x).(y) = (x,t) (t)(x)

i dt i 3 i - ij (t) X1 (Y

+ - (t)W i ( x ) ý ( y ) i (y,t) + G(x,t)_(x,y,t) _ (y;t)
i,1 ;

No i,j J(t).(x) Wf .(C (c,t)f (t-1)do
_-13 1 0

(5.62)S j (af(t-a)C(a,t)da (t (yij -0j (t)• (Y

Multiplying both sides of (5.62) by 4k(x) m(y) and integrating over x

and y yields a set of ordinary differential equations for the coefficient

matrices i (t)

___ I .- I -- --- --
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d~ i j (t)

dt ik(t) aakj(t) + k ik(t)' (t) + ij(t)
k k

N-o ik(t) (t k(t) j(t (5.63)

where

L

ai (t) = (xt)i(x) (x)dx (5.64)
L

Lf Lf
i j (t) = L f  (x,t) (x,y,t) _ (y,t)i(x)Tj (y)dxdy (5.65)

LL
0 0

Lf

bi(t) = J i(x) (t-x) (x,t)dx (5.66)
L

o

The initial conditions for (5.63) are given by

Lf Lf

ij To f f (x,y)i(x)Oj (y)dxdy
L L

o o

(5.67)
-oij

The orthogonal expansion of (5.58) has reduced the partial

differential equation for j(x,y,t) to an infinite set of ordinary

differential equations. If the orthonormal set {ýi(x)} is truncated

_ __ ___ ___ ____ ___ ____ ___i
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at the Nth member, then the system of equations (5.63) is finite.

Solution of the finite set of ordinary differential equations provides

an approximation for "(x,y,t). The number of terms, N, is increased

until "(x,y,t) converges. It is possible, of course, that there may

not be convergence in some situations.

The truncated set of differential equations (5.63) can be

more compactly described by defining the partitioned matrices

i~ll(t)

=(t ['()

12(t)

N2 (t)

(5.68)

.. N(t)

2NN(t)

w(t) - [ij(t)

=[•ij(t)

(t) = [ 1(t), b2() .0..,b (t)0

-o = [ij]

Then (5.63) and (5.67) are given by

d .(t) = (t)(t) + ý(t)q(t) + ý(t) 1 (t)Y ( t ) ( t ) ! ( t )

dt N
0

(5.69)-(T ) =
O -o

_i
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-A

The matrix differential equation (5.69) has the form of the

error covariance differential equation for a finite state, lumped-

parameter state variable estimation problem. The solution of this

equation has received considerable attention [20,24,32]. On the other

hand, the form of (5.48) is unfamiliar. With (5.48) the spatial behavior

of _(x,y,t) must be computed at many more points (x,y) than the number

of terms (submatrices) required in (5.69). This suggests that solving

(5.69) is a considerably more efficient approach than integrating (5.48).

An approximation for the estimator equation can be derived by

applying the expansion of (5.57) to (5.44) and (5.46)

dX (t) A ̂

dt , (x) = F(x,t)X.(t)~i(x)+h (x,t,t)[ (t)-s(t)](5.70)
i i

A oo A

s(t) = ( f (t-G)C(o,t)K (c)da)X (t)
i -"

A

= b.(t)iX.(t) (5.70a)
i

Multiplying (5.70) by .(x) and integrating over x gives

JL
dX.(t) f A

dt = aik(t)X~(t) + f h(x,,tt)>i(x)dx)[r(t) - (t)X(t)]

k L k
o

(5.71)

From (5.74)

Lff h
f h (x,t,t) (x)dx =(t) b (t) (5.72)
L k
o

___ ___ __ __ j__ ___

dX--i(t) ,

C
dt 0, (X) C F(xt)X (t)~i(x) (xtt)[~r(t)-S(t)1(5.70)

i i

s(t) = C (I f(t-a):(crt)~ (a)da)X (t)
i i

i

C (t>X i (t) (5.70a)

i

P~ultiplying (5.70) by $*(x) and integrating over x gives
J

L

dXi (t) ik(')~(r) f I f (xtt)Oi(x>dx>[r(t> - C ~Lk(r)~(r)l

Z ,,
dt 1o

k L k

(5.71)

From (5.74)

L
f

I CL ~j~(xtt)~i 5 (t) b (t) (5.72)-o -"ik Lk
L k

1 ~_ _ ____ i
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The estimator equation of (5.44) has been reduced to an infinite

set of ordinary linear differential equations, (5.71). If the series

(5.57) is truncated to N terms and the composite vector ý(t) is defined

A L(t) =

A N(t)

(5.73)

then the approximate set of equations can be written as

O A A

d ^ 1" A t ^ 'X;
-t X(t) = A(t)X(t) + N- E(t) (t)[r(t) - s(t)] (5.74)

o

A

s(t) = B(t)X(t) (5.75)

The approximate estimate of X(x,t) is

A A

X(x,t) - _(x)X(t) (5.76)

P(x) = [•l(x,, 1 W N(X)] (5.77)

The covariance matrix ý(x,y,t) is approximately

L(x,y,t) = (x)E(t) (y) (5.78)

cL

an t e est mat on error

p

t( ) is, from (5.42)

4 (t) = B(t) (t)B (t) 
(5.79)

I
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The expansions of (5.57) and (5.58) have led to ordinary dif-

ferential equation approximations for the partial differential equations

which specify the optimum state vector estimator and the error covariance

matrix. The form of the resulting equations, (5.69), (5.74) and (5.75)

is exactly that assumed by the appropriate equations in a lumped-parameter

state-variable. This suggests that the truncated orthogonal expansions

of (5.57) and (5.58) effectively reduce the doubly-spread channel model

to a finite state system. To see this, it is instructive to expand the

state vector X(x,t) in (5.10) in a similar series over [Lo,Lf]

X(xt) = Xi(t (x) (5.80)
i=l

L

If this series is truncated to M terms and substituted in (5.10) and

(5.2) the resulting approximation for r(t) is

r(t) - ^B(t)'X(t) + w(t) (5.82)

where x(t) is defined by adjoining the vectors xi(t), i=1,...,N. If

one starts with the finite-state model of (5.82) and finds the MMSE

estimator for 3 (t), the result is just the set of equations derived

above.

Note that if the performance of the optimum delay-spread channel

receivers is desired, Cp(t) in (5.79) is all that is necessary for the

computations. The matrix N(t) is available from (5.69). The number

-- · I
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of terms in the approximation may be increased until ' (t) converges

to a desired accuracy.

Another important observation is that (5.75) provides a way of

approximately implementing the distributed-parameter receiver of Figure

5.3. The finite state equations of (5.74) can be integrated in real

time, since '(t) can be precomputed. An indication of the dimensions

of the system (5.74) required to approximate the optimum receiver per-

formance to a desired degree can be obtained from the number of terms

required for accurate performance evaluation.

For the WSSUS case, the equations above are modified by

replacing I(x,t), C(x,t), G(x,t),P (x,y), Q(x,y,t) with N(x),C(x), ?(x),

K (x)6(x-y), and Q(x)6(x-y), respectively, in (5.64-.67). It is possible

to obtain a modal expansion for the alternate covariance matrix equations

of (5.52-.55). The result is that E(t) in the equations above is

replaced by the partioned matrices

(t) = + (t) (5.83)

where Lf

= f K (x).(x)4.(x)dxoij L -0

L L (5.84)

-ij(t) = f f f(x,y,t)i(x)' (y)dxdy

o o

and P(t) satisfies the matrix differential equation

d_(t)

(t)(t) + (t) (t) 1 ( + ~(t) ) (t)(t) ()+dt N -o -o
0

(T o ) = 0

d

(5.85)
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This alternate formulation may provide better convergence because it

separates that part of 3 (t) which comes from the impulsive behavior of

•(x,y,t).

There are several computational issues that must be considered

for the technique described in this section. First, the dimension of

the approximate lumped-parameter system is nN, where n is the order of

the distributed-parameter model and N is the number of terms in the

truncated series. Thus the computation required increases rapidly with

N. Also the higher order expansion functions pi(x) are likely to vary

more rapidly. This implies that the sampling intervals for integration

of '(t) must be shortened as N gets larger. This implies an even more

rapid rate of increase in the computation time as N increases.

Another issue that affects the desirability of using the modal

method is the effort that must be expended to calculate the matrices

A(t), '(t), and A(t), either analytically or numerically. It is not

clear how to pick the orthonormal set{ýi(x)} for the expansion. Certainly

a desirable choice is one which permits easy calculation of the system

matrices, while still providing rapid convergence. No procedure for

making such a choice is obvious, however.

It is interesting to compare the delay-spread channel finite-

state approximation of this section with one which has been suggested

for the WSSUS model [16,19]. If the transmitted signal complex envelope

T(t) is strictly bandlimited to [-W/2,W/2], the sampling theorem gives

the representation

-- Y
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1(t-x) = (t- •)•
i= -m S S

sin7rW (x- - )
s Ws

W
(5.86)

where W > W. The channel output in (5.2) can be written

Co

(5.87)
i= - 00 S S

where the random processes Y( i-, t) are defined by

s

y( - ,t) = ý p(x,t)
s -oo

i
sin rW (x- )

s W
( s dx

)
s

(5.88)

and have covariances

E[ (-,t)yL( - ,T)] = i(x,t-TE[J t)y
S S --CO

sin rW (x- i-) sinr W (x- )
s W s W) s s

T(x - V (x- w(-)
s s

(5.89)

This model is called a tapped delay line model for the doubly-spread

channel. If the sum in (5.87) is truncated to a finite number of terms,

s(t) is the output of a tapped delay line which has '(t) as an input

and the Y(i/W ,t) as tap gains.

In order to obtain a lumped-parameter state-variable model

from (5.87-.89) it is necessary to truncate the sum in (5.87) to N

terms and to assume that the ý(i/Ws,t) are uncorrelated. This

assumption is not strictly valid, as (5.89) indicates. But a justification

for it is provided by noting that, as W increases, E[7(i/Ws ,t)ý*(j/Ws,t)]' S

d __ . -- d I
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grows roughly linearly with W for i = j, and remains approximately
s

constant when i $ j. Under this condition, a state-variable model

results by specifying a state-variable representation for each tap

gain Y(i/W ,t). It is not really necessary to have uncorrelated tap
s

gains, but if this assumption is not made, then it is not clear how to

specify the tap gain state-variable model.

The tapped delay line state-variable model derived in this

fashion is not the same as the approximate model obtained by the

modal analysis of the distributed-paramter model. However, the tapped-

delay line model converges to the distributed-parameter state-variable

model for the WSSUS doubly-spread channel as W s - , provided that the

length of the tapped delay line is held constant and the tap spacing

goes to zero. In this case, the sum in (5.87) is replaced by the

integral in (5.2). The densely tapped delay line tap gains become the

distributed process ý(x,t), with the covariance determined by holding

i/W and j/W constant in (5.89) as W goes to m.

The disadvantage of the tapped delay line approach is that it

assumes strictly bandlimited signals and uncorrelated tap gains. This

modal technique presented in this section can be applied under much

more general circumstances, in particular to signals and scattering

distributions of finite duration. The set of expansion functions need

only be complete and orthonormal. When the transmitted signal is band-

limited and when the WSSUS channel scattering function '(x,f) has a

Fourier transform in the variable x which is also bandlimited, an

appropriate set of expansion functions in the modal approach is the

sin x/x set used in the tapped delay line model. However, the

I
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approximate system which results from the modal approach is different

than the tapped delay line model above, since the state variables in

the former are correlated.

This section has derived an approximate method for finding

the distributed-parameter state estimate and covariance matrix for the

doubly-spread channel model in Section B. This modal analysis replaces

the partial differential equations of Section C with a set of ordinary

differential equations. To determine whether this approach is useful

for analyzing the doubly-spread channel problem, it is necessary to

perform the computations in a practical example.

E. Optimum Receiver Performance: An Example

This section uses the model method of the previous section to

evaluate the doubly-spread channel optimum receiver performance for a

particular example. Some details of the computational techniques that

are used are discussed. The performance curves which are obtained also

provide some insight into the problems of signalling over doubly-spread

channels.

The example which is considered here involves the transmission

of a waveform with a constant envelope

O<t<T
0 < t < T

(5.90)

0 elsewhere

A first order, WSSUS distributed-parameter state-variable model is

assumed for the channel. The parameters of the model of (5.26-.27) are

_ ____ ___~_____
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(x) = -k

(x) = C(x) = 1
•(x) = L2k 2nx

(x) 2 (l-cos ) 0 < x < L

0 elsewhere

(5.91)

The scattering function for this channel is

'~(x,f) =.i

2k 2x rx
(1 - cos )L L 0 < x < L

2 2 -c < f< o
(2rf) + k -

0 elsewhere

(5.92)

and is similar to the one shown in Figure 5.2a. The observation interval

is [0,T + L], the maximum that is useful. From (5.8), the average

received energy in s(t) over this interval is E

The binary symmetric orthogonal communication problem of Chapter

I is treated, since the bounds on the optimum receiver error probability

in (2.77) are strongly influenced by the quantity p*bc(-.5). This

function is given by (2.83), whose terms can be related to the Fredholm

determinant, (2.84). The Fredholm determinant is computed for the

example of this section by integrating the tIISE estimation error p (t),

as indicated by (2.85). Relative performance of the optimum receiver for

d
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different L,T, k, and E /No will be indicated by comparing the values of

V*bc(-.5).

For the modal technique of the previous section the orthonormal

set used in this example is

1 (x) =

2 2xk
W = =- cos x

2k L L

in I 2 k L x, k > 1 (5.93)
ý2k+l(x) L

over the interval [0,L]. The matrices A(t), iB(t), anc Q(t) follow

directly from (5.64)-.66). The matrices P follow from (5.67) by
-o ij

S1 2ix
noting that K (x) = 1 (1-cos -y- ) in this example. The alternate-0 L L
covariance matrix computation of (5.83-.85) is used. P(t) is obtained

from (5.85) by fourth order Runga-Kutta numerical integration. The

filtering error 'p(t) is evaluated from (5.79). The number of terms

in the truncated series is increased in each case until the value of

P*bc(-.5) stabilizes, that is, remains constant to three decimal places.

Figure 5.4 shows P*bc(-.5), normalized by Er/No , versus T,

with k and L each equal to .5. For E r/N less than 5 there is an
r o

optimum value of T, near 1. For higher E /N there are two relative
r o

maxima in the curves as T is varied. Note that for all values of

E /N it is possible to find a value of T such that efficient performancer o

is obtained; that is,the normalized value of V*bc(-.5) is above .120

5
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1 10

w

-·---- i -- I

IwC-7 L_ A
...~. .-.--

i-- --i

ii

0

41



-194-

(recall that .1488 is an upper bound for this quantity). Since the

product kL is .25 in this example, the channel is said to be "under

spread" (kL << 1). The significance of this property will be discussed

shortly.

Figure 5.5 shows curves of the normalized value of J*bc(-.5) when

the channel has unity spread. That is, kL is one, since both k and L

are one. A behavior similar to that in Figure 5.4 is evident here.

However, in Figure 5.5 efficient performance is possible only for E r/No

greater than 5. Also the signal-to-noise ratio at which the double

maxima with respect to T begins to appear is higher in Figure 5.5.

Figure 5.6 shows another set of curves for k and L each equal

to 2.5. The kL product is thus 6.25, which permits the channel to be

classified as somewhat overspread. The differences which were observed

between Figures 5.4 and 5.5 are more pronounced in Figure 5.6. For

low Er I/No no value of T provides efficient performance. And the value

of E r/N at which the double maximum begins to occur is greater than
r o

that in Figure 5.5.

Figures 5.4 - .6 provide some insight into the role of the

product kL in this example. It appears that as kL increases, the value

of Er/No required to obtain efficient performance increases. Or from

a different point of view, if E r/No and T are held fixed and kL is

increased, the absolute performance first increases and then decreases.

A useful interpretation of the behavior that is exhibited by

the curves of Figures 5.4 - .6 is available from the idea of implicit

diversity discussed in the first section of this chapter. For the low

time-bandwidth product signal in this example, (5.9a) gives an estimate

rY ----
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of the approximate number of implicit diversity elements in the system

L
Ndb = (1 + ) (1 + kT) (5.94)db T

The quantities L and k in (5.94) refer to measures of the spread of the

scattering function S(x,f) in x and f, respectively; in this example a

one-to-one correspondence may be made with these parameters. Ndb in

(5.94) is plotted versus T in Figure 5.7. Note the minimum at L/k.

Figure 5.7 is informative when it is kept in mind that, from

an optimum diversity viewpoint, the most efficient choice of L, T, and

k will provide a signal-to-noise ratio per diversity element of about

3. The fact that there is a minimum value of Ndb which may be a good

deal greater than 1 for large kL indicates that for low E /14 , even the
r o

minimum Ndb may spread the energy too thinly among the diversity elements.

Increasing or decreasing T increases the diversity in this situation, and

the performance worsens.

At some higher Er/No, the minimum possible value of Ndb may not

spread the available energy enough. This increasing or decreasing T

improves the performance, unless, of course, Ndb is made too large.

Note that the transition Er/No, for which the minimum Ndb is just

optimum, increases with E /No 'r o

The behavior shown by the performance curves of Figures 5.4-.6

agrees closely with the observations made from the implicit diversity

description of the channel. Although this idea is only an approximate

one, it gives quite accurately the location of the single and double

minima in Figure 5.4 and 5.6. In addition the differences arising from

different kL products are easily interpreted with the implicit diversity

riiYI
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argument.

The behavior of the optimum receiver performance versus kL is more

clearly shown in Figures 5.8 and 5.9. Here bc(-.5) is plotted without

normalization, to show relative level of performance rather than efficiency.

The dotted line shows the ultimate bound on *bc(-.5). Figure 5.8 shows

that for T = 1 and large signal-to-noise ratios, an overspread channel

provides better performance than an underspread channel. In this case

large implicit diversity is required to adequately spread out the avail-

able E r/N . Figure 5.9 shows the receiver performance for T = 10.

Here the implicit diversity is already too large for the underspread

channel; hence the overspread channel performance is even worse. Figures

5.8 and 5.9 indicate the importance of properly choosing the signal

parameters.

Figure 5.10 shows bc(-.5) versus E /N for several values of
*b r o

kL, with T being chosen in each case to optimize the performance. It is

evident that if there are no constraints on T it is possible, at least

in this example, to achieve efficient performance over doubly-spread channels

with a simple signal, even if the channel is overspread (kL >> 1). There

is some decrease in performance in Figure 5.10 as kL increases, but it is

moderate. For Er/No greater than 20, the kL = 25 case is only about

1.5 dB worse than when kL = 1, provided T can be chosen optimumly.

However, for overspread channels it is necessary to have a high enough

Er/No to overcome the large implicit diversity that is built into the

channel, in order to obtain efficient performance.

Table 5.1 gives the number of harmonics, Nh, in the truncated

Fourier series required to compute some of the points in Figures 5.4-.6

~I I -
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Figure 5.8. Optimum receiver performance for T = 1, constant f(t), binary orthogonal
communication over a doubly-spread channel.

I-

Er/No100

-: --~- -· -!. -~ --------t-------i
- ·------ --i-- j

-i ---i- - .. --..~~i~.-i~~~~l~T i

:·- · · · - i --- i------i --- ·-i-----i

i r i i - i
.; .,.. .- ...I... .. -......... i..._..l_...

- i- -i

---------

-- ,-------

.. i _.~..._.___.~ .1.__...

....1_ ...~.... ...__.....;.._ _..

~;----------~---~- --

-T----------·-i--· ---

i
-- ---------·-· -!-----·



-201-
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Figure 5.9. Optimum receiver performance for T - 10, constant f(t), binary orthogonal

communication over a doubly-spread channel.
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Table 5.1. Number of harmonics required for at least three

place accuracy in .*bc(-.5), doubly-spread chan-

nel example.

Er/N o  k L T Nh

5 .5 .5 .1 8

5 .5 .5 1 6

5 .5 .5 10 10

20 .5 .5 1 6

5 1 1 1 6

5 1 1 10 10

20 1 1 1 8

5 2.5 2.5 .1 12

5 2.5 2.5 1 8

20 2.5 2.5 1 8

20 2.5 2.5 10 12

I~
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to three place accuracy. Note that the number of terms in the series

is actually 2Nh + 1. For L << T or T << l/k, and the higher values of

Er/No, more harmonics are required. It should be pointed out that for

these extremes, the doubly-spread channel model is nearly doppler-spread

or delay-spread, respectively, and then the approximate optimum receiver

performance can be found from Chapters III or IV. The computer time

required to evaluate z*bc(.5) ranged from a few seconds for low Nh to about

20 seconds for the highest Nh, on the IBM 360/65.

Direct integration of the partial differential equation for

the error covariance, (5.48), was carried out for comparison with the

modal approach. For the first order model t(x,y,t) was computed at a

grid of points in the x-y plane; integration was performed by the fourth

order Runga-Kutta method. The computer time required to compute

]*bc(. 5 ) in this manner was higher by a factor of 10 over that required

by the modal approach, and often it was impossible to obtain the

equivalent accuracy. At least in this example, the modal approach is

significantly better, and in fact, the only practical way of finding

the optimum receiver performance.

This section has considered an example of the transmission of a

known signal over a doubly-spread channel. The optimum receiver performance

has been investigated for the binary symmetric communication problem by

using the modal technique of Section D to find v*bc(-.5), the exponent

in the error probability bounds. The results for the underspread,

unity spread, and overspread cases were interpreted by considering the

concept of implicit diversity. Although only one signal and scattering

-·I --



-205-

function was investigated, the modal approach to the evaluation of the

optimum receiver performance can be applied to other signals and scattering

functions with an equal effort.

F. Summary

This chapter has considered the problem of finding the optimum

receiver for the detection of known signals transmitted over doubly-spread

channels, and evaluating its performance. A distributed-parameter state-

variable model for the doubly-spread channel has been proposed in which

the random processes are generated by passing a temporally white, dis-

tributed Gaussian noise through a linear system described by partial

differential equations. The model is also valid for a particular case of

the doubly-spread channel, the WSSUS channel. For the WSSUS condition,

the scattering functions S(x,f) which can be represented by the distrib-

uted-parameter state-variable need only be rational function if f. This

permits a wide variety of doubly-spread channel models.

A realizable optimum receiver structure was derived by finding

the MMSE realizable estimate of the channel output, s(t). This estimate

can be obtained diredtly from the MMSE realizable estimate of the

distributed-parameter state-vector in the doubly-spread channel model.

The structure of this estimator was derived; it is a linear distributed-

parameter state-variable system. A by-product of the derivation is a

partial integro-differential equation for the estimation error covariance

matrix. Solution of this equation permits the calculation of the moment-

generating functions of the optimum receiver decision statistic and

therefore the error probabilities.

-- · I F
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A modal approach for the solution of the estimator and covariance

matrix equations was proposed. The method involves orthogonal expansions

of the estimate and the covariance matrix in their spatial variables. The

distributed-parameter system is effectively reduced to a lumped-parameter

model with finite states. The moment-generating functions are calculated

directly using the techniques of Chapter II. The number of states in

the truncated model is increased until the performance measure converges.

An example was considered in which a known signal with a constant

envelope is transmitted over WSSUS channel with a first order scattering

function. The modal technique provided the binary symmetric communication

error probability bounds with a modest expenditure of computer time. The

notion of implicit diversity was useful in interpreting the results. In

this example, proper selection of the signal duration T permitted efficient

performance of the communication system over a wide range of channel

parameters, including the overspread condition.

The example presented illustrated the feasibility of using

the modal approximation for finding the delay-spread channel optimum

receiver and its performance. It should be emphasized that other signals

and any channel which fits the distributed-parameter state-variable model

can be analyzed with this technique. The amount of computer time re-

quired for such an analysis apprears to be quite reasonable.



CHAPTER VI

SUBOPTIM•TM RECEIVERS FOR THE DOUBLY-SPREAD CHANNEL

The previous chapter presented a distributed-parameter state-

variable model for the doubly-spread channel and derived a realizable

structure for the optimum receiver when a known signal is transmitted

over the doubly-spread channel. The configuration for the resulting

optimum receiver included a distributed-parameter system, that is, a

linear system whose dynamics are described by a vector partial dif-

ferential equation. This structure, although temporally realizable,

is difficult to implement directly. This suggests using a suboptimum

receiver.

Several suboptimum receivers for the doubly-spread channel are

suggested by the results of the previous chapters. In Chapter V a

modal technique for finding the optimum receiver performance was

given. Included in the formulation was a finite state approximation,

(5.74-.76), to the distributed parameter state vector estimator which

is an essential part of the realizable optimum receiver. One possibility

is to use this approximate estimator in place of the distributed-

parameter system in the optimum receiver. This may well provide a

good suboptimum receiver, but it will not be discussed further in this

chapter.

Several other suboptimum receiver structures are suggested by

the results for the doppler-spread and delay-spread channels. In the

doppler-spread case a filter-squarer-integrator structure provided

good performance if properly designed, as did its dual, the two-filter

-207-
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radiometer, for the delay-spread channel. This chapter considers a

receiver for the doubly-spread channel which is closely related to both

the FSI and TFR receivers. It consists of a distributed-parameter

linear filter whose output is squared and integrated over its space

and time variables. This doubly-spread suboptimum receiver will be

called a distributed filter-squarer-integrator (DFSI) receiver. The

following section discusses the DFSI suboptimum receiver in detail and

presents a method for evaluating its performance.

Another suboptimum receiver for the doubly-spread channel

which is considered in this chapter is called a correlator-squarer-

sum (CSS) receiver. It is essentially a combination of the suboptimum

receivers of the same name that were specified for the doppler-spread

and delay-spread channels. The performance of the doubly-spread

channel CSS receiver is analyzed so that it may be compared with the

optimum receiver.

A. A Distributed Filter-Squarer-Integrator Suboptimum Receiver

This section considers a distributed filter-squarer integrator

suboptimum receiver for the doubly-spread channel. It is related to

both the FSI and TFR receivers for the doppler-spread and delay-spread

channels, respectively. The design of the DFSI receiver is investigated

and a method for evaluating its performance is presented.

The first section of Chapter V gave the doubly-spread channel

model as a superposition of doppler-spread channels. Since the FSI

structure proved to be a good suboptimum receiver for the doppler-spread

channel, this suggests that a "superposition" of FSI receivers would

be a reasonable choice for a doubly-spread channel suboptimum receiver.

--- rl - -- -·--
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This superposition can be accomplished by distributing the

doppler-spread FSI filter over a continuum of delays and integrating the

output over the spatial variable. That is, the received signal is

passed through a time-varying realizable, distributed linear filter

with impulse response g(X,t,u). The output is squared and integrated

temporally over the observation interval. The result is then integrated

over the spatial variable . Thus the decision statistic can be

written

Lf Tf T

= f If g(X,t,u)r(u)dul 2 dt dX (6.1)
L T T
0o o0 0

The observation interval is [To,Tf]. Figure 6.1 shows this receiver

structure. Note that the order of the integrations over A and t may be

reversed.

The choice of the distributed filter can be made in many ways.

In light of the results for the FSI and TFR suboptimum receivers in

the doppler-spread and delay-spread cases, respectively, it is

reasonable to look for a g(A,t,u) such that the structure of (6.1)

reduces to the FSI or TFR receivers when the doubly-spread channel

becomes singly-spread. In the limit of the doppler-spread channel,

then, the extent of g(X,t,u) in A should become negligible and the

time behavior should be a multiplication by f(t) followed by a filter

which has the same order as the fading spectrum. For the delay-

spread case, the g(A,t,u) should reduce to a filter matched to f(t)

with a post-detection weighting over A.

A choice for g(A,t,u) which satisfies these conditions is



r(t)

DISTRIBUTED-

PARAMETER

LINEAR SYSTEM

Figure 6.1. Distributed filter-sauarer-integrator suboptimum receiver for the delay-spread

channel.
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shown in Figure 6.2. The distributed parameter filter consists of

multiplication of r(t) by f(t-X) followed by a distributed-parameter

system which has the same order as the channel model filter in (5.10).

As the doubly-spread channel model reduces to the doppler-spread

or delay-spread cases,'so:does the distributed filter in Figure 6.2.

The result is a FSI or TFR receiver structure. Another motivation

for using the particular structure of Figure 6.2 is that the optimum

receiver for the doubly-spread channel under low-energy-coherence

conditions is similar in form to the receiver of Figure 6.2 [2].

In this case the filter in Figure 6.2 should be identical to that in

the channel model, and the post-detection temporal integration

should be infinite in extent.

The receiver structure in Figure 6.2 is simpler than the

optimum receiver given in Chapter V. It does involve a distributed-

parameter system, which presents some problems in physically implementing

the DFSI receiver. However, it is still informative to compare the

performance of the DFSI receiver with the optimum receiver performance.

And in the process an approximation to the structure of Figure 6.2 will

be obtained which can be realized physically.

The evaluation of the suboptimum DFSI receiver error probabilities

is carried out by application of the modal technique which was used in

Chapter V to evaluate the optimum receiver performance. As in Chapter V,

a series expansion is applied to the receiver filter state vector.

Truncation of the series effectively reduces the DFSI receiver to a

finite state FSI receiver. If the modal technique is applied to the

doubly-spread channel model as well, and the appropriate series

--. d re r



f*(txn)

A(, t *u)

Figure 6.2. A particular choice for the distributed filter-souarer-integrator suboptimum receiver.

·

I



-213-

_1___1_~



-214-

The vector process Z(t) can be written in a Karhunen-Loeve

expansion

Z(t) ~~i (t), T < t < Tf (6.7)

i=l

f (t) (t)dt = 6.. (6.8)

T -J 1j
o

E[iz j ] = 6ijX (6.9)

where the {Xi.} are eigenvalues of the vector process Z(t). Note that

the {i .()} are different from the {i (-)} . If (6.7) is introduced

into (6.6), the relationship of (6.9) gives

Szji2 (6.10)
i=1

The moment-generating function for the right hand side of (6.10)

is given by (2.96)

s E 1 ' V ] 2  co
E[e ] = - En(l - sXi) (6.11)

i=l

where the {I.} are the eigenvalues of Zt) given P1 or H0 .  Fquation

(6.11) can be evaluated by the techniques of Chapter II provided

that 2 (t) has a finite (lumped-parameter) state-variable representation.

Such a model can be obtained by treating the receiver filter

and the doubly-spread channel model with the modal technique of the

previous chapter. The receiver filter in Figure 6.2 is described by

-rl C ·-- -- -- ---------
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the equations

ý) (x,t)
rt ' -- ( x t) (x,t) + r (x,t)?*(t-x)~r(t)
at -r -r __

ý(x,t) = (x,t)S (x,t)

The state vector r (x,t) is expanded in the series--r

r(x,t) =
-r

ir (t) (x)
i=1

(6.13)

(6.14)

L

. (t) = r(x,t) i(x)dx
L

Substitution of (6.13) in (6.12), multiplication of both sides of the

equation by 9i(x), and integration over x gives

d
dt Xir(t) = ~ai(t) (t) + g.(t)r(t)

k=l

I kr (t)•) (t)
k=l kr -kr

Aikr (t) = L (x,t)pi(x)4k(x)dx
L

-ir (t) = f r (x,t)T (t-x)i (x)dx
L

(6.12)

zi (t)

where

(6.15)

(6.16)

(6.17)
-O•



-216-

L

bikr (t) f r I(xkt)i(x)ýk (x)dx (6.18)
L

o

If the series in (6.13) and truncated to N terms, a finite

state receiver filter results. Let

x (t) =--r Nr ( t )
I1r
'V

X (t)
--Nrj

-r(t) = [aij (t) ]

-r

B (t) = [ (t) (619)
-- r -ijr

Then (6.15) becomes

d - -(t) X = (t) (t) + (t) (t)
d t -- r -r -- r -- r

(6.20)

-rY L

0

r(t) = % (t)Ar (t)
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The modal approach applied to the doubly-spread channel provides

a similar finite state approximation. From (5.10) the distributed-

parameter model is

t (x,t) = (x, t) (x, t) + ý (x, t)•(x,t)
at -f -f '-f -f

X,t)~ = ýf(x,t) f(x,t)

s(t) = f ?(t-x)'(x,t)dx (6.21)

The subscript f has been added to distinguish the channel model from

the receiver filter. The state vector f(x,t) is expanded

00

kf(x,t) = f(t)i(x)
i=1

Lf

if(t) = _f (x,t)yi(x) (6.22)
L

Note that the orthogonal set here is not necessarily the same as that

which is used in the receiver expansion. The driving noise is expanded

in the same manner

(x,t) = i(t)i(x) (6.23)
i=1

ui(t) = (x,t)i(xdx
L

,I• Im u
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E[u (t)u (T)] = 6(t-T)
-ýii-j

Lf Lff f

L

If
L

o o

= ij(t)6(t-r)Sij

Substituting (6.22) and (6.23), multiplying the result byti(x), and

integrating over x gives

d_ if (t)
dt --i Sikf (t)f(t)

k=l

= f(t) f(t)
k=l

The series in (6.22) and (6.23) are truncated at their Nth terms. With

the definitions

Rif-1 f

((t)

Af (t) = a.(c)]
-'ij

•f(t)

%f(t)

tY(t)

= [ij (t) ]

=~ lIf(t), .. , Nf(t)]

£u (t)

uN (t)

= [( (t) ]

N(x,y,t)ý (x) (y)dxdy

(6.24)

s(t)

kO+
k=1

(6.25)

aik f (t) (t)

ý(t) (6.26)



the finite state approximation to the distributed parameter system of

(6.21) is written

d
_d- X (t) = Af(t)Xf(t) + _f (t)O(t)

s = (t) l (t) (6.27)

E[?(t)i~ (, ) ] = f(t)6(t-r) (6.28)

Figure 6.3 shows the composite approximate lumped-parameter

state-variable model when signal plus noise is the input to the distributed

FSI receiver. As was the case with the doppler-spread channel FSI

receiver, the technique given by (2.86-.90) can be used to find the

moment-generating functions of (6.11). When signal plus noise is the

receiver input, the matrices of (2.86) are

x(t) = ir(t)(t)-r
(t) 0

(t) =

0 G (t)
m-

-- · I _ ~---~_·-L-I~-- I

M



C (t) C (t) (t)Z(t •  Tffto I

I
t)

Figure 6.3. Finite state approximation to the DFSI receiver for the doubly-spread channel, signal

plus noise input.
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(t)

Q(t) =

0

N(t

u(t)

P (t) =
--o

0

0

= [0, r(t)]

Lf(t)
>•wt)

0

P
-or

The matrix P is partitioned into submatrices
-of

L Lf

(6.30)ij f = f L (xy) r) i(x)lPj (y)dxdy
L L

0 0

'k
and P is any Hermetian matrix with a non-negative definite

-or
real part.

When noise alone is the input to the receiver, the model is

x (t) = x (t)--r

(t) = A (t)-r

t'(t) = ' r(t)

~(t) = ~ t)

(6.29)
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= NO

u(t) = w(t)

P = P (6.31)
-o -or

Thus the semi-invariant moment-generating functions for the

finite state approximation to the DFSI suboptimum receiver can be

evaluated. These lead to the error probabilities as discussed in

Chapter II. The number of terms in each of the expansions of (6.13),

(6.22) and (6.23) is increased in some uniform fashion until the

performance converges.

The computer time required to compute the error prohabilities

for the DFSI receiver in the manner described above is considerably

greater than that needed for the evaluation of the optimum error

probabilities. The composite state variable model in Figure 6.3 has

twice the dimensions of the corresponding approximation used for the

optimum receiver calculations. Furthermore, to find the suboptimum

receiver error probability bounds, it is necessary to compute the

appropriate moment-generating function for a number of different values

of s. This implies a computation time that is greater than that used

in the optimum receiver case by a factor of 50 or 100.

For this reason no numerical results will be presented here.

More efficient programming could significantly reduce the computation

required in this problem, so that the method presented above could be

-·II - - -- · -·--
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applied. It is likely that the doppler-spread FSI receiver results in

Chapter III would provide a useful guide to the DFSI receiver optimization

in this case.

B. A Correlator-Squarer-Sum Suboptimum Receiver

This section considers a second suboptimum receiver structure

for the doubly-spread channel. It is similar to the correlator-squarer-

sum (CSS) receivers used for doppler-spread and delay-spread signals in

Chapter III and IV, respectively. Its performance is found by specifying

the moment-generating functions of the receiver decision statistic. The

performance of the doubly-spread CSS receiver is compared with the

optimum receiver in some numerical examples.

The CSS structure used for the doubly-spread channel is just

a combination of those of the doppler-spread and delay-spread CSS

receivers presented earlier. A motivation for this receiver choice is

provided by writing the decision statistic of the DFSI receiver of the

previous section as

Lf Tf T

f= f f If (X,t,T)' (T-X)r(T)j dtdX

L T TLT To 0 0

M Tf Tf
= f If (iAX,t,T)T*(T-iAX)'(T) 2dt iAX (6.32)
i=l T T

o 0

where i(x,t,T) is the impulse response of distributed filter following

the multiplier in Figure 6.2. Now each term in (6.23) is the output

of a FSI receiver. It seems reasonable to replace these FSI receivers with

the doppler-spread CSS receiver structure: a subinterval correlator

_ ~~~~ ~I_ _
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followed by a sampler, squarer, and weighted summation.

The doubly-spread CSS structure which results is shown in

Figure 6.4. The number branches, M, is (Lf-LP/AX- 1 ; the number of

correlations in each branch, N, is (Tf-To)/T. Note that some of the

correlator output samples, rij, will be zero because ?(t-iAX) is

non-zero only over [iAX,T + iAX]. The delayed replicas of T(t) used

for the correlations can be obtained by passing T(t) into a tapped

delay line. The variables in the receiver structure of Figure 6.4 are

N, M, and the weights, Wij.

The structure of the CSS receiver can be simplified considerably

when the envelope T(t) is constant and when AA= mT for some integer

m. In this case many of the sampled correlator outputs in different

branches are the same. The simple structure of Figure 6.5 results. The

number of correlators, N, and weights Wi are variable in this receiver.

The performance of the CSS receiver for the doubly-spread channel

can be obtained since the decision statistic is a finite weighted sum

of squared Gaussian random variables, the r.. in Figure 6.4. If a
13

vector R is defined by

'Vt 'IV V ' 'V 'V *
R = [rll , r12, . . . , r l N , r21,... , rN] (6.33)

then from (2.118) and (2.119)

P0(s) = kn det (I - sW A )

P1(S) = Zn det(I - sw A ) (6.34)

--- LI -- - -·-
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Figure 6.4. Complex version of the doubly-spread channel CBS suboptimum receiver.
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Figure 6.5. Simplified version of the doubly-spread channel CSS receiver for constant f(t)

and maX = -r.
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The weighting matrix W is diagonal with the weights W.. in Figure 6.4
-- 1]

arranged in the same manner as the r.. in (6.33). The covariance

matrices are

A = E[0 t Inoise ]-n

A = E[ftA Isignal + noise ] (6.35)

The elements of A can be found from
--

Eij rk
E[rij rkZ Inoise] =

T (T

(j-l)T (9-i)T

I f (t-iAX)T (u-kAX)6(t-u)dtdu
o (J-l)T (9-1)T

(6.36)

and those of A from
-s

*f *(t-iAX)T(t-kAX)E[rijrkr signal + noise ] =
(j-I)T (£-1)T

[ &(t,u) + N 6(t-u)]dtdu
s O

(6.37)

K%(t,u) is given by (5.4).
s

For the simplified structure of Figure 6.5, let the vector _

be defined by

rl

R

rýN

(6.38)

_~I_ __·_ ~ __

(u-kAX) k(t,u)dtdur

L--
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and W be diagonal with elements W.. Then the elements of A and A
S1 -1 -S

can be found by

E[rirj Inoise ] = j N 6(t-u)dtdu = N T6.. (6.39)
S(i-l)t (j-l)T o 0 1ij

E[rirj Isignal + noise i = (t,u)dtdu + N 6..

sL~\

I 17 i7

channel of Chapter V, Section E. The channel model is first order

2k 27TX

(1- cos )
L L O<x<L

5.(Xf) (2nf)2 + k2 -m < f < co

O elsewhere (6,41)

and the transmitted signal envelope ~(t) is constant over the interval

[OT]. The error probability bound exponent, ~bc(S)~ for binary ortho-

1 _ _ __~

'L ~~k I j· NoG(t-u)dtdu = M r8..o 1J (6.39)
E[rirj

i·r 1' 'L
'L 'L~k I K'L(tu)dtdu + No-r6..

E[ 1 ~ Isienal + noise i s 1J

/L ~n\

calculation is finding the covariance matrix n , The integrations
-- s

are tedious, if not impossible, so that numerical methods are required

In most cases.

For an example of the relative performances of the CSS receiver

and the optimum receiver, consider the.particular doubly-spread

channel of Chapter V, Section E. The channel model is first order

2k 27TX
(7- rnn \

(6.40)

Note that the calculation of the error probabilities for the

CSS receiver does not require the distributed-parameter state-variable model

for the doubly-spread channel. The most difficult feature of the performance

calculation is finding the covariance matrix A . The integrations-- s

are tedious, if not impossible, so that numerical methods are required

in most cases.

L L 0 < L2 2x

(x,f) = (2f) 2 + k 2  - < f <

0 elsewhere (6.41)

and the transmitted signal envelope T(t) is constant over the interval

[0,T]. The error probability bound exponent, Pbc(s), for binary ortho-CSSreeierdos otreuie heditrbuedpaamte sat-vribl bce

channel of Chapter V, Section E. The channel model is first orderchannel of Chapter V, Section E. The channel model is first order

2k 27TX

(1- cos )
L L O<x<L

5.(Xf) (2nf)2 + k2 -m < f < co

O elsewhere (6,41)

and the transmitted signal envelope ~(t) is constant over the interval

[OT]. The error probability bound exponent, ~bc(S)~ for binary ortho-

1 _ _ __~

[OT]. The error probability bound exponent, ~bc(S)~ for binary ortho-

1 _ _ __~

'L ~~k I j· NoG(t-u)dtdu = M r8..o 1J (6.39)
E[rirj

i·r 1' 'L
'L 'L~k I K'L(tu)dtdu + No-r6..

E[ 1 ~ Isienal + noise i s 1J

(6.40)

Note that the calculation of the error probabilities for the

CSS receiver does not require the distributed-parameter state-variable model

for the doubly-spread channel. The most difficult feature of the performance

calculation is finding the covariance matrix n , The integrations
-- s

are tedious, if not impossible, so that numerical methods are required

In most cases.

For an example of the relative performances of the CSS receiver

and the optimum receiver, consider the.particular doubly-spread

channel of Chapter V, Section E. The channel model is first order
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gonal communication is computed for the simplified CSS receiver of Figure

6.5. The A and A matrices are given above; the integration required to
-s -n

obtain A is quite tedious.--s

The weights Wi in Figure 6.5 are chosen according to the formula

max[O,iT-.5-TI

1 < i < N
W. = (l-cos-- ) dx
1 ANT= T + L

min[iT-.5,L]
(6.42)

This choice is motivated by the weights used in the doppler-spread and

delay-spread CSS receivers. In Figure 6.4, this suggests that within

a branch, each sample be weighed equally, but that from branch to

branch the weightings should be proportional to the scattering function

profile, ý(x,O). The choice of (6.42) approximates this weighting,

since the structure of Figure 6.5 is a collapsed version of the CSS

receiver in Figure 6.4.

Figure 6.6 gives a plot of the error probability bound exponents

of the optimum and CSS receivers for this example when the kL product

is less than one (kL = .25). For the optimum receiver V*bc(-.5) is

plotted, and for the CSS receiver the minimized value of pbc(S) is

shown. The optimum receiver curves come from Figure 5.4. The number of

correlations in the CSS receiver is optimized for each point on the

curves; this value is given in parentheses in Figure 6.6. Note that

the optimized CSS receiver performance is from one to two dB less than

optimum in this example.



wC_

OPTIMUM * - i-i

.080

E /N = 20r o

k .5-.5 }kL - .25
L* .5

f(t) CONSTANT

oo < ( < ac

elsewhere

2k 21Tx
-(1 - cos- )

L L

(2'f) 2 + k2

S(xf)

(Nop) : CSS

Figure 6.6. Relative performance of the CSS and optimum receivers, binary orthogonal

communication, underspread delay-spread channel.

1 10

w

CSS
Er N 3r o

.060

·1---+---- ru - -· - - - --

4W qW

!0



-231-

Figures 6.7 and 6.8 present similar curves for the cases of

unity spread and overspread (kL = 6.25) channels. In both figures

the optimized CSS receiver performance is again from one to two dB

less than optimum. The optimum receiver curves are taken directly

from Figures 5.5 and 5.6.

In this example the CSS suboptimum receiver performed adequately,

relative to the optimum receiver. The structure of the CSS receiver

is much simpler than that of the optimum receiver, and thus the perfor-

mance degradation may be acceptable from this point of view. It is

likely also that there exists a different choice of weights, W., which

would improve the CSS receiver performance in this example. Choosing

both the weights and the number of correlators is a more complicated

optimization problem, however.

The results of the CSS receiver and optimum receiver comparison

in this example suggest that it would be worthwhile to consider the

CSS structure as a suboptimum receiver for other signals and scattering

functions. Of course, there is no guarantee that the CSS receiver

performance will always be within one or two dB of the optimum in all

cases.

C. Summary

This chapter has considered several suboptimum receiver structures

for the doubly-spread channel. The first is a distributed version of

the FSI receiver for the doppler-spread channel. The received signal

r(t) is multiplied by (t-x) and passed through a distributed linear

filter of the same order as that which is used for the channel model.

The output is squared and integrated over both its time and space

ii
"m 9·-
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variables.

A method of finding the performance of the FSI receiver was pre-

sented. It involved reduction of the receiver distributed filter and

the channel model to finite state systems by the modal approach given

in Chapter V. The moment-generating functions of the receiver decision

statistic were found by the method used for the doppler-spread FSI receiver

in Chapter III. No numerical results were presented because the computer

time required to evaluate the performance was prohibitive without

more efficient programming.

A second suboptimum structure was considered for the doubly-

spread channel. It is a combination of the CSS receivers for the

doppler-spread and delay-spread channels. The signal r(t) is correlated

with a set of delayed replicas of T(t). Each correlator is a gated

correlator of the type used in the doppler-spread channel CSS receiver.

The correlator samples are squared, weighted, and summed to form the

decision statistic.

The performance of the CSS receiver was compared to the optimum

receiver performance for the example treated in Chapter V. The optimized

CSS receiver performance was within two dB of the optimum over a wide

range of parameters.

The treatment of suboptimum receivers for the doubly-spread

channel in this chapter is by no means complete. Only two structures

were considered here. A number of other possibilities are attractive [6],

such as a filter-squarer-filter receiver. The techniques demonstrated in

this chapter should be useful in the analysis of these suboptimum receivers.

· rlll 'L



CHAPTER VII

CONCLUSION

The preceding chapters have considered the problem of detecting

known signals transmitted over dispersive channels. This is a special

case of the Gaussian signal in white Gaussian noise detection problem.

Optimum and suboptimum receiver performance has been investigated for

the cases of doppler-spread, delay-spread, and doubly-spread channels.

A summary of the results of each chapter is presented below. Topics

for further research are then discussed.

Chapter II considered the problem of evaluating the error proba-

bilities for binary detection with a suboptimum receiver. Series

expressions for these error probabilities were developed by using

tilted probability densities and Edgeworth expansions. Bounds on the

suboptimum receiver error probability for M-ary communication with

orthogonal Gaussian signals were also found in a similar manner. In

order to evaluate these expressions, it was necessary to have the

semi-invariant moment-generating function of the receiver decision

statistic under both hypotheses. The moment-generating functions for

the optimum receiver were reviewed; it was pointed out that efficient

computation of the moment-generating functions was possible when the

random processes in the problem had state-variable representations.

Moment-generating functions for two types of suboptimum receivers were

found: filter-squarer-integrator receivers and those with a decision

statistic which is a finite, weighted sum of squared complex Gaussian

random variables.

-235-
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Chapter III concerned the reception of known signals transmitted

over the doppler-spread channel. The performance of the optimum,

receiver was reviewed in the case when the channel fading process has

a lumped-parameter state-variable representation. Two suboptimum

receivers were suggested for the doppler-spread channel. One structure

(FSI) consisted of a filter followed by a square-law envelope detector

and an integrator. The other (CSS) was a correlator whose output

was sampled several times during the observation interval; the samples

were squared, weighted, and summed.

The performance of each of these suboptimum receivers was

evaluated by the techniques of Chapter II and compared with the optimum

receiver performance. By properly designing the suboptimum receivers,

it was possible to come within one dB of the optimum receiver performance

in a number of examples. The CSS receiver performed better for low

values of kT, and the FSI receiver was closer to the optimum for large

kT, where k was the fading bandwidth and T the transmitted signal

duration. The numerical examples also provided guidelines for optimally

choosing the FSI and CSS receiver parameters. Of course, for arbitrary

signals and channel fading, it may not be possible to do this well with

the FSI and CSS receivers.

Chapter VI investigated the delay-spread channel detection

problem. The concept of time-frequency duality was reviewed and the

relationship between a delay-spread channel and its dual doppler-spread

channel was discussed. It was pointed out that the FSI and CSS sub-

optimum receivers for the doppler-spread channel have dual structures

which are suboptimum for the delay-spread channel. In the case of the
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FSI receiver the dual structure was called a two-filter radiometer (TFR).

It consisted of a filter matched to the transmitted signal, followed by

a square law device and weighted integration. The performance of the sub-

optimum receivers was exactly that presented in Chapter III for their

duals. The use of duality is particularly suited to delay-spread

channels with scattering distributions that are infinite in duration

and transmitted signals which are strictly bandlimited.

A more direct approach was given for finding the performance of

the optimum receiver for a delay-spread channel. It involves a series

expansion of the channel model. Truncation of the series yields an

approximation for the delay-spread channel. The optimum receiver and

its performance was found for the truncated model. The number of terms

in the series was allowed to increase until the approximate performance

converged to the optimum receiver performance for the actual delay-spread

channel. A similar technique was applied to the TFR suboptimum receiver.

Also suggested was a second suboptimum receiver which correlated the

received signal with a number of delayed replicas of the transmitted

signal. The correlator outputs were sampled, squared, weighted, and

summed. The two suboptimum receivers were compared with the optimum

receiver in several examples; their performance was within one or two

dB of the optimum. The advantage of this direct approach to the per-

formance analysis is that it is suitable for transmitted signals and

scattering distributions of finite duration. It is not clear, however,

how to obtain the orthogonal expansion to ensure rapid convergence or

easy computation of the semi-invariant moment-generating functions.
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Chapter V presented a distributed-parameter state-variable

model for the doubly-spread channel. The scattering process was modeled

as the output of a distributed linear system whose dynamics are

described by a partial differential equation driven by a temporally

white, complex, distributed random process. The model was shown to be

valid for correlated and non-stationary scattering. The special

case of a WSSUS channel model was investigated, and the class of

scattering functions which can be described by the distributed-

parameter state-variable model was given.

A realizable (causal) structure for the doubly-spread channel

optimum receiver was specified. It made use of the .,MlSE' realizable

estimate of the distributed state vector in the channel model. The

estimation equations were partial differential equations. A by-

product of the estimator derivation was an equation which specified

the MISE filtering error for the doubly-spread channel output. This

was used to calculate the moment-generating functions for the optimum

receiver, from which the error probabilities can be obtained.

In order to find the optimum receiver performance in this

manner, it was necessary to solve for the error covariance matrix of

the distributed parameter state-vector estimate. This matrix was tihe

solution of a partial integro-differential equation, with partial

derivatives in the time variable and integration over the spatial

variables. A modal approach to the solution of this equation was given.

It involved a double orthogonal expansion of the covariance matrix

in its spatial variables. The spatial dependence was integrated out

of the equations to give a finite state approximation for the distributed

m· m I
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channel model. The resulting matrix Ricatti equation was solved by

conventional techniques. The number of terms in the truncated series

was increased until the performance expression converged.

An example using this modal approach was presented. The

performance was calculated for a number of cases; the calculations

consumed a reasonable amount of computer time. An implicit diversity

description of the channel provided an interpretation of the results.

The performance of a simple signal over the doubly-spread channel of

this example was good, even when the channel was overspread.

Chapter VI investigated the performance of several suboptimum

receivers for the doubly-spread channel. One structure was a distributed

filter-squarer-integrator (DFSI), an extension of the FSI receiver for

the doppler-spread channel. The modal technique of Chapter 5 was applied

to the DFSI receiver to reduce it to a finite state model. The techniques

used in Chapter III for the FSI receiver were used to find the DFSI

moment generating functions. No numerical examples were presented,

however, because excessive computer time was required. A second

suboptimum receiver was suggested which combined the structures of the

CSS receivers for the doppler-spread and delay-spread channels. Its

performance was evaluated and compared to the optimum receiver performance

in an example. It was suggested that there are other attractive

candidates for doubly-spread channel suboptimum receivers that could

be analyzed.

One topic for possible further research is the signal design

problem. This involves choosing T(t) for transmission over a spread

channel and minimizing the error probability or some other measure of
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performance, under some set of constraints. Whether or not such study of

this problem is of real importance is likely to depend on the set of

constraints chosen. The numerical examples presented in the previous

chapters showed that it was possible to obtain a performance with simple

signals within one DB of the best possible performance. This was

observed for a wide variety of channel parameters, but it was necessary

that the signal duration or bandwidth assumed the optimum value in each

case. With only one dB in performance to be gained, the effort spent

in studying the signal design problem might be better spent elsewhere.

However, if the constraints on signal parameters, such as peak power,

duration, or bandwidth, are such that the simple signals no longer

provide efficient performance, then the signal design problem becomes

more interesting.

A problem in designing signals for spread channels is finding

an approach which actually provides solutions. A signal design method

that has been successful in several detection problems [30,31] seeks to

formulate the problem so that it fits the results of optimal control

theory [32]. This approach has been attempted by Collins [13] for the

doppler-spread channel signal design problem. In this case, the

binary orthogonal communication error probability bound exponent,

1*bc(-.5),for the optimum receiver can be expressed as several integrals

of _I'S realizable filtering errors, as given in Chapter II. When the

fading has a state-variable representation, these filtering errors are

solutions of differential equations which involve the transmitted signal

T(t). This fits the optimal control theory formulation, so that the

minimum principle can be applied to find a set of neccessary conditions

ul
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for the minimization of P**hc(-.5). Collins [13] did this with an

energy constraint on the signal ý(t), but he could not obtain realistic

solutions. It appears that one should also impose an amplitude constraint

on t(t) or its derivative in order to make the optimal control problem

meaningful.

In the course of the research for this thesis, the signal optimi-

zation problem for the doppler-spread channel was considered also, this

time with a peak power constraint in addition to the energy constraint.

A set of necessary conditions on the signal waveform was derived in the

form of non-linear differential equations with mixed initial and final

conditions. Since analytic solution of this boundary value problem

appeared impossible, numerical techniques were considered [36,37]. The

necessary conditions indicated that the optimal signal either assumed

its maximum amplitude, or was off, or satisfied a "singular" condition

during the transmission interval. A numerical gradient technique [36,37]

was applied to the problem after assuming an on-off Ž(t). The signals

which resulted had a performance of the same order as the pulse train

signal considered in Chapter III.

In the doppler-spread case the effort required to apply these

numerical techniques did not seem worth the performance improvement

that resulted. Of course, with different constraints on the signal

there may be a greater performance gain to be realized. Unfortunately,

this approach appears to be less attractive for the delay-spread and

doubly-spread channels. Here the approximate state-variable models of

Chapters IV and V for these channels have large dimensions; the numerical

techniques for finding the optimum signals in the control theory model

-~I
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are not well suited to this case. For suboptimum receivers the signal

design problem is more complicated, since bc(s) must be minimized over

s as well as the signal shape.

There are several other topics directly related to the thesis in

which further research may be fruitful. One is the modal approach to the

calculation of the doubly-spread channel optimum receiver error probabilities.

It was pointed out in Chapter V that how to choose the orthonormal series

for fast convergence or easy computation was not clear. It would be

helpful to have an organized method for making this choice. Mlore

experience in working examples should provide guidelines in this matter.

Another topic of interest is the performance of various signals

over doubly-spread channels with different scattering functions. Chapter

V discussed only one example in detail. The techniques of Chapter V

can be applied to other signals and scattering functions, however. This

would provide a better understanding of the properties and limitations

of the doubly-spread channel.

The issue of suboptimum receivers for the doubly-spread channel

is one which deserves further attention. Several structures were

considered in Chapter VI, but there are others which are attractive

candidates in the doubly-spread case [6]. The techniques of Chapters V

and VI provide an approach to the analysis of the performance of these

suboptimum receivers which may be useful.

There are other problems which lie outside the cortext of this

thesis but which may well permit application of the techniques developed

here. For example, the problem of communicating with sequences of

signals is an extension of the single transmission problevi considered
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here. Another is the detection of signals transmitted over spread

channels and received in non-white Gaussian noise. The application of the

results of this thesis to this problem should be straightforward. Also,

the doubly-spread channelrmodel presented in Chapter V provides a useful

characterization for clutter in some problems. The modal technique

for analyzing the doubly-spread channel optimum receiver performance

can be used in the detection in clutter problem, as discussed by

Van Trees [8].



APPEND IX I

A SYSTEM RELIABILITY FUNCTION FOR FILTER-SQUARER -

INTEGRATOR RECEIVERS, M-ARY ORTHOGONAL CO(iTUiXICATION

This Appendix derives the suboptimum receiver system reliability

function, EO( R ), used in the M-ary orthogonal communication error

probability bounds of (2.58) and (2.59). The filter-squarer-integrator

receiver has all branches identical except for carrier frequency, and

all branch outputs are assumed to be statistically independent and

identically distributed when noise alone is the input. The derivation

that follows is similar in outline to Kennedy's [6] for the optimum

receiver. For suboptimum receivers the derivation is complicated by

the fact that the moment-generating functions, plc(s) and pOc(s), of the

receiver branch outputs are not simply related, as is the case for the

optimum receiver.

To begin it is convenient to overbound (2.43) and (2.44)

using the results given by (2.14) and (2.31). Equation (2.46) is

bounded by

Plc(s)-S lc(s)
Pr(2 s < h) < e

5 -

s < 0 , h =  c(S)

Similarly, for (2.57)

POc (t)+<ic (r-t)-rp c (r-t)
Pr(h < < R ) < e

s - n --

(1-2)

r >0, t>0, h = llc(r- t)
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Since Plc(s) is monotonic the conditions of (I-I) and (1-2) imply that

s = r - t. Then (2.43) is bounded by

Pr(E) < e
Plc(S)-SPlc(s) 1 + Me Oc(t)-tlc (s)]

(1-3)

s < 0, t > 0, s + t > 0

The lower bound of (2.44) can be written from (I-1) and (2.14)

M
Pr(c) > - B e

-4

where B is the product of the bracketed terms in (2.14) and (2.31).

Also let s and t be determined by

9lc(s) = POc(t)

and the further condition

M 0c1 (t)-t c(t)
Me

t > 0 , s < 0

<1

(I-4a)

(I-4b)

(I-4c)

If (I-4c) holds, then so does (2.45), by virtue of (2.37). For upper

bounds on the value of B, see Kennedy [6].

The values of s and t will be chosen to optimize these bounds.

The results will be expressed in terms of

T = Tf - T

log 2 M
R =

T

(I.5a)

(I.5b)

I-

lc (s)-Slc (s)+P0c (t)-t 0c(t)
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C = (I.5c)
T £n 2

E
r

a = No (I.5d)

C is the infinite bandwidth, additive white Gaussian noise channel

capacity in bits/second, and Er is the expected value of the received

energy in sk(t) during the observation interval.

A. Properties of plc(s) and puc(S)

The semi-invariant moment-generating function of a branch

output, k, with signal plus noise as the input to the branch is, from

(2.99),

sk

Plc(S) = E [e signal + noise ]

= - n (1 - sXln) (I.6a)
n=1

s < F In{ ] (1.6b)[ ]{ -1
where the {X n } are the eigenvalues of z'(t) in Figure 2.1 given signal

plus noise as the input. With noise alone as the branch input

p c(s) = E[e sk I noise]

= - n(l - skOn )  (1.7a)
n=1

s < x OniJ (1.7b)
[ < [ -1

Lý -· -
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The {X n are the eigenvalues of z(t) given that white Gaussian noise
On

is the input to the branch.

Several properites of lc(s) and pOc(s) will be useful in the

sequel. First,

k

d in
.k = (k-l)! , k > 1, i = 0,1

k 1 s 1 - sA.ds n=1 in

(1.8)

Thus all the derivatives of the pic(s) are positive over values of s

given by (I.6b) and (I.7b), and each dk/ds k [Pic(s)] is a monotonically

increasing function of s.

Another property concerns the first derivatives at the origin

00oo

ic(0) = in. i = 0,1 (1.9)
n=l

The sum on the right-hand side of (1.9) is just the average energy in

z(t) over the observation interval. It is larger when signal plus noise

is the input than when r(t) consists of noise alone. Hence

lc (0) > Oc (0) c (1.10)

Figure I.1 summarizes the two properties.

B. The Upper Bound

If
p^(t)-t• (s)

Se 1 (1. Ila)

then the upper bound of (1.3) can be further bounded by

-- 1 IC ~ ·--- · ·-- -- - ·
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Pic(s)

-1 -1xmax 0max i maxO

Properties of Pic(s).

LI 1

;,,(w)>ýOC(O)

Figure I-1.
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p1 (s)-S c (s)
Pr(c) < 2 e (I.llb)

Equation (I.lla) can be rewritten using (I.5) as

< It C(S) - 1 c(t) (I.12a)

s + t > 0, t < 0, s <0 (.12b)

and (I.llb) similarly as

( R

Pr(c) < 2-2 (1.13)

where

Eh ( s ) - c(s)J , s < 0 (1.14)

To tighten the bound of (1.13) the function Eh( R will be maximized

over s subject to the constraints of (1.12).

From (1.14), for s < 0,

d R[- E= siU(s) < 0

and since h() is zero for s = 0, Eh()R will be maximized by choosing

the most negative value of s consistent with (1.12). This constraint

may conveniently be rewritten in terms of the function

f(s,t) = týic(s) - i0c(t)

m-·m

(I.15a)
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t > 0, s < 0, s + t > 0-- < f(st),
C

(I.15b)

The nature of the function f(s,t) can be inferred from the

derivatives

a--f = (s) - " (t)
9t ic Oc

2 f
2 -Oc (t)

t

f(s,O) = 0

(I.16a)

(I.16b)

(I.16c)

for t > 0 and 0 > s > so, where sO is determined by

(I.16d)1lc(SO) = OC(O)

Equation (1.16) and Figure I.1 imply that sections of f(s,t) have the

behavior shown in Figure 1.2. For the range of s given, f(s,t) has

only one inflection point, a maximum at ta

Figure 1.2 leads to the sketch of the contours of constant

amplitude of f(s,t) in the s-t plane, shown in Figure 1.3. The curve

A is the locus of the point ta in Figure 1.2. The fact that t decreases

along A as s decreases is evident from the definition of A

_ _



-251-

f(s,t)

olsL 0

Iic(S) = Oc (ta)

tb i c(s) = 0c(tb)

;Ic(So) Oc(O)

C = taa0 c(ta) - Oc (ta)

Figure 1-2. A section of f(s,t)

t :
a

t b :

- ~~------
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locus of A: (s,t) such that =lc(S) = 0Oc(t) (1.17)

and the properties of the pic(s) illustrated by Figure I.1. The locus

B is that given by f(s,t) = 0. Its curvature behaves similar to that

of A. Along A f(s,t) has the value

f(s,t) = tpoc(t) - P0c(t) (.18)

A

By differentiating (I.18) it can be seen that f(s,t) increases with
A

increasing t. Hence the maximum of f(s,t) in the region of interest

occurs on A at s = 0, as shown in Figure 1.3.

Ra
The constraints of (.ll) imply that f(s,t) should exceed C

Thus the permissable values of s and t lie within the intersection of

the shaded area and an area like the cross-hatched area, in Figure 1.3.

Since Eh C-) is maximized by the smallest s, Figure 1.3 indicates that

there are two types of solutions. If

R>R Rit (1.19)
- crit

where

R .ctcrit = -s'p (s') - P (-s') (I.20a)
C lc Oc

Sc(s') = 0Oc(-S'), s' <_0 (1.20b)

then the contour will lie entirely within the allowable region of

the s,t plane. Then the minimum value of s lies on the intersection

of A and the contour

_ I -- _ _ _ __ I-Ei__LII i
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s = -t

maximum

A: locus of ic(S) = Oc(t)

B: locus of tlc (s)
= Oc(t)

Figure 1-3. Contours of constant amplitude of f(s,t).

-7Y~y ... *I I·.. . . ... -.....~..~.._1...,. .. --· · -I - -- I---I-- --·
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R *
- = t 0c(t) - Oc (t)' t > 0 (I.21a)

•lc (s ) = i0 (t), smi n < 0 (I.21b)
Ic min Oc mm

Note that the definition of Rrt is the rate for which the contour

and the line s = -t just touch.

When R<Rcrit it is evident from Figure 1.3 that the minimum

value of s is the lesser of the two solutions determined by the inter-

section of the line s = -t and the contour; i.e., the iiniimuim of

the two values of s that satisfy

R (
a=-sp (s) - oc(-s) s < 0 (1.2?)

-S ic 0--Oc

To summarize the preceding results, the maximized reliability

function for R > Rit is given by (1.14) and 1.21)

Eh = G [sic(So) - Ic(sO) (I.23a)

l1c(s) = Oc(t0) (I.23b)

Rc
- = to Oc(t• - 0c(t 0 ) (I.23c)

t > 0, s < 0, R > Rcrit (I.23d)
0 - 0 0 cr-t

For R < Rcrit , (I.23a) still holds if sO is the minimum of the two

solutions to

- · .. 1.. .I~ .~. ..~
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= -s ic(s0) - Oc(-s0) R < R crit s < 0

The value of Rcrit is given by (I.20).

For some values of the rate R a better E( ) is obtainable.

From Eq. (2.70) with h = 0, the Pr(s) is bounded by

Pr(c) < 2 Me e s< 0 (1.25)

where

p(s) = £n E [e s( s -n)]

= cic(s) + Oc(-s) (1.26)

The bound of (1.25) is optimized for p(s) = 0; then (1.25) may be

written

Pr(c) < 2 M e

= 22

Plc(S) + P~ (-s)

Z R

(1.27)

by Eq. (1.5), where

Eo = c~ c(s) + Oc(-S)

P (s) = ( (-s),

(1.2 )

s< 0

To complete the upper bounding all that remains is to determine which of

is larger, as a function of R. Substitution of

crit into (I.23a) and (I.28) gives
crit

(1.24)

E* C) and E*hZ C h C,1

C



o Rcrit

Eh C

8 /R
For R < R , Eh - can be rewritten from (I.23a) and (1.24) as

- crit' h C

(1.30)(S0) + Oc (-sO0)
o ( ) --R- 1 cPh CC C a c

This is just E r evaluated at theZC

kC hwhich maximizes E)is given by (I.

For R > R .c , note thatcrit

odE
R P ,1 a

d(R)

From (1.23)

dE
h ..

d( R at 0 Cl 0

=i

s• of (1.24). But the value of s

28) and is different; hence

R < crit (I.

R
11 R (I.C

as0
SR3(j)

S0 Oc (t 0 )

so
(1.33)

31)

32)

-- I I I I

EZ C C (1.29)
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by implicit differentiation of (I.23b) and (I.23c).

0dEh
-1 <

d( R

0

Then by (I.23d)

R> R
crit

(I.34a)

since t > -s for R > Rri. Thus
crit"

h CR
Eh C

R > R itcrit (I.34b)

The final upper bound is then

-TCE ( )
CPr(E) < 2-2

- crit

Eo o ) =

crit

The reliability function E (C) is sketched in Figure

R
slope for R > Rcrit is monotonically decreasing in R.cit C

EO( R) reachesC
zero at R given by

max

R
max

C tlc (0) - P (t)
C lc O~c

(1.37)

Icc(0) 
= O0c(t)

where

(1.35)

h (C
(1.36)

1.4. Its

1 ______i;_

I"RIE okC

o R
E C

oR C R



R
C

C C

Figure 1-4. Reliability function for the suboptimum
./_ .- I . . . _ . . .

filter-squarer-int 

r.

Eo R
C

·~1·1~11 - I ~·_ _
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At zero rate

EO(0) = i 1 c(s) + P0c(-s)

(I.38)

Plc (s) = OC(-s), s _0

C. The Lower Bound

To optimize the lower bound of (I.4a) subject to the constraints

(I.4b,c) it is convenient to recognize that (I.4c) combined with (I.4b)

is just

< f(s,t) (I.39)
C -

where f(s,t) is given by (I.15a). Thus optimization results from

maximizing

h(s,t) - ic(s) - silc(S ) + P0c(t) - t 0c(t) (1.40)

along the curve A in Figure 1.3 for s < 0 and t > 0 such that s and t

lie inside the contour determined from (1.39).

The derivative of h(s,t) along the curve A is

dh(s,t) = -~U (s) ds-t (t)
dt 1lc dt Oc

S-(s + t)V Oc(t) (I.41)

by implicitely differentiating (I.4b). Thus h(s,t) has a maximum at

s = -t. If R < Rcrit the contour of (I.39) encloses the point s = -t

on A. Then (I.4a) becomes

I I _ I .._

·
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-rCE (-)
Pr(:) > 2 , R < Rcrit (1.42)

with

o 0R R 1s
E C - h(s - SO)

S- - Ic(s0o - 'Oc(-So) (I.43a)

lc(0) Oc (-So) sO < 0 (1.43b)

This is the same function derived for the upper bound.

For R > Rcrit , the contour of (1.39) does not enclose s = -t

on A, and thus to maximize h(s,t), (s,t) is chosen as the point on A

that intersects the given contour. But this is just the point chosen

in the upper bound case when R > Rrit Thus

-TCEo R
B

Pr(s)> 2 R > R (1.44)4 crit

where Eh  ) is given by (1.23). The combination of (1.42) and (1.44)

gives a lower bound on the Pr(E) that has exactly the same exponential

behavior as the upper bound.

In summary, the following bounds have been derived

-TCEo R)
Pr(E) < k 2 (I.45a)

-TCE ( R
c

~_ s

Pr(E:) > k 2 (I.45b)
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where the reliability function E( )is given by (1.36). The results

are expressed in terms of the moment-generating functions of the branch

outputs of the filter-squarer-integrator receiver. In the case of

the optimum receiver, the bounds reduce to those derived by Kennedy [6],

if the proper pic(s) are used. A thorough discussion of this case and

the system reliability function is contained in Kennedy [6]. Although

the derivation above was done for the filter-squarer-integrator suboptimum

receiver, the several necessary properties of the .ic (s) should hold for

any suboptimum receiver whose moment generating functions p. satisfy the

assumptions given at the beginning of this appendix.



APPENDIX II

THE OPTIMUM RECEIVER FOR A DELAY-

SPREAD CHANNEL TRUNCATED SERIES MODEL

This appendix derives the optimum receiver for the delay-

spread channel truncated series model of (4.29). The derivation is

similar to that for the problem of the transmission of known signals

over a Rayleigh fading channel. In this case the known signals are

not orthogonal and the fading is correlated.

The complex envelope of the received signal in the truncated

model is from (4.29)

N
r(t) b i (t ) y i + w(t) (II-1)

i=1

The b(t) are known signals, w(t) is complex white Gaussian noise, and

'V
the yi are complex Gaussian random variables. It is convenient to

define the vectors

(t) [l(t),b 2(t), ... N (t)

'i (11-2)

and write r(t) as

r(t) (t) + w(t) (11-3)

The covariance matrix for v is known and is denoted by

E[•l ] =- (11-4)

-262-
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The derivation of the optimum receiver for (11-3) follows the

method given by (4.399-4.404) of Van Trees [20]. Given that I in (11-3)

has the value Y, the likelihood ratio is available from the known signal

in white noise problem

T

A(r(t)ly) = exp [ -- r(t) Y (t)dt
o T

0

f f1
+ N r (t) b'(t) dt N1 I t(t)(t t)Ydt

o T o T
o o

=exp [ Y• + - t ] (11-5)

where
Tf

R = -- J r(t) b (t)dt (II-6)

o T
0

T

B = b (t) b(t)dt (11-7)
o T

The probability density function for the Gaussian random vector y is [8]

P Y (Y) exp - Y K t  (11-8)
7T det K

Integrating (11-5) over the density (11-8) removes the unwanted variables

y to give the likelihood ratio for the problem of (11-3):

I I _ ----

._..._
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A[r(t)] = p () exp [%tR + -t _ t• dý

1 exp{ tR R }
det (K -1)

f exp [ -(Y _( R EE_ (Y- E R)] dY

det( -1I

where

-1 = k + (II-10)

Thus the logarithm of the likelihood ratio is

= A(r(t))

'= (-+ - -1 _- zn det (I + 2 ) (II-ii)

The receiver of (II-11) can also be obtained by writing the ratio of

the probability densities of R under the signal plus noise and noise

alone hypotheses. The branch structure of the optimum receiver of (I-11i)

is shown in Figure II-i. The signal r(t) is passed into a bank of

correlators, or matched filters. The outputs ri, which are the elements

of the vector W, are combined quadratically according to (II-11). The

second term in (II-11) is a bias which does not depend on r(t).

II II 1 11111 11 111 _ I

- --



r(t)

Figure II-i. Complex version of the optimum receiver branch for the delay-spread channel

truncated series model.
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In order to compute the error probabilities for this receiver

with the techniques of Chapter II, it is necessary to find the semi-

invariant moment-generating function for Z. For either the binary

detection or the orthogonal communication problems it is sufficient to

find E[ e ] given that r(t) is just w(t). Then (2.41) and (2.76) give

the other moment-generating functions.

Since the decision statistic of II-11 is a finite quadratic

form, the expressions of Chapter II, Section E can be used directly to

give p* 0 (s). From (2.118)

P*0(s) = zn E[ esjI noise ]

-s det(I + K B) yt 1m -1'B)Zn ee E[exp(s R +B) R) noise ]

Kne - ne- _- ' -_

= -s Zn det(I + K B) - n det(I - s(K + B) A )

(11-12)

where

A = E[R RI noise ] (II-13)"-1

For simple binary detection (2.41) gives

,*1(s) = *O0(s + 1) (11-14)

and for the binary symmetric communication, (2.76) gives

~_~ _____~I~X~



P*bc(s) = u*Oc(S + 1) + P*Oc(-s)

= *0c (s + 1) + p*0(-s)

= -Zn det [I + K B] [I - (s + 1)(K +B) A ]

[I + s (K -1+ B)- A ]

(11-15)

The covariance matrix A is found from (II-6)

A = E[R R noise

A = E[R tnoise]
-- n

1
2

Tf T

f f No 6(t-u)b (t)b(u)dtdt
T T

o o

= B (II-16)

Introduction of (11-16) into (11-12), (11-13) and (11-15) completes the

derivation of the moment-generating functions that are used to compute the

error probabilities for the truncated optimum receiver.

-2 6 7-
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APPENDIX III

MINIMUM MEAN-SQUARE ERROR ESTI7MATION OF

DISTRIBUTED-PARAMETER STATE-VECTORS

This appendix derives the realizable M4SE estimator for the

state vector S(x,t) in the system of (5.10) and (5.11). The complex

envelope of the doubly-spread channel received signal is,from (5.2)

r(t) = J (t-x)'(x,t)dx + '(t)

s,0

= s(t) + w(t), T < t < T (IIf.1)
o - - f

where w(t) is white noise. The HMSE realizable estimate of X(x,t) is

obtained from r(t) by the linear operation
A t
(xt) = f (x,t,o) 'r(o)da, t > T (III.2)

T 0o

h (x,t,T) = 0 , t < T (III.3)
-o

The m x 1 matrix distributed impulse response h (x,t,T) is chosen to
--

minimize the state estimation error

((x.v.t) = E f[ (x.t) - •(x.t)~1[(v.t) - k(v.t)t ] (III.4)

The M•MSE realizable estimate of s'(t) is then

A oA

s(t) = f -(t -))C(o,t)X(o,t)do (111.5)
-- cx

with the error

P (t) = E[ s(t) - s(t)l 2 ]

= I f f(t-o)C(o,t) (o,n,t)C (a,t)f (t-a)dada (III.6)

-Y* · ii i·.urul- -"C*PY-' "" C·ll-- lr · · · · · · ·· L.I.II..-...-.··.~..-·· _ ·_····I· -_I
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The derivation of the realizable MMSE estimator for the distributed-

parameter state vector X(x,t) parallels that presented by Van Trees [20]

for the lumped-parameter state-variable estimation problem. The derivation

is extended here to the distributed-parameter case, and the complex

notation is added. The result is an estimator structure which is a

specialization of one obtained by Tzafestas and Nightingale [33] by a

different procedure.

The starting point of the derivation is the generalized Wiener-

Hopf equation [20] for h (x,t,T)

'IV' E[X(x,t)r (T)] = 1 h (x,t,o) Kr(G,T)d' T < L < t (III.7)oK.(o,T) is the covariance function of r(t). The left hand side ofr

(111.7) is,from (III.1)

E[X(x,t)r (T)]= f 'K(x,t;a,T)C (T,o)f (T-a)do (111.8)
-oo

since w(t) and r(T) are uncorrelated for T < t. KX(xt;y,T) is given

by (5.14). Substitution of (111.8) into (111.7) and differentiation of

the result gives

S3K_ (x,t,C,T) __t _ (xt _ ,I cCO a,T)f (T-c)da = h0 (x,t,t)K (t,T) + t K- (cYT)dG
O T r

T < T < t (111.9)o

To eliminate Ki(x,t;y,T) from (111.9), consider (5.18)

I _
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aKX(x,t ; o, T)

at
aL(x t )

= _(x,t)i_ (x,t;o,T) , T < t (III.10)

from (5.19), since Ui(x,t) and X(y,T) are uncorrelated for T< t. Then

the left hand side of (III.9) becomes

f at (,T)(T-)d f_(x,t)_k (x, t ;o,)'(,T)_ ( -o)d

=f (x,t)h (x,t,o)k (o,T)do , T < T < t (III.11)
o
0

where the latter expression is derived from (III.7) and (111.8). From

(III.1), (III.7), and (III.8), the first term on the right hand side of

(11.9) becomes

S(xt,t) • (t,t)

=-o (x,tt) f f f(t-a)C(a,t)KX(,t;C, T)C (a,T)f (T-a)dodc

= (x,t,t)f(t-a)C(a,t)h (,t,a)K (o,T)ddao, T < T < t
T. -

o

1

(111.12)

since E[r(t) w (T)] is zero for T < t. Substitution of (III.11) and

(111.12) into (111.9) yields a partial differential equation for h (x,t,o)
-o

ah (x,t,o>t1
t = xt)h (x,t,T) + j h (x,t,t)~(t-a)C(a,t)ho(a,t, )da (III

at o -10-o -0
.13)

_ ~_ ___

- 'L · I i

-- OO -00
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Partial differentiation of (111.2) with respect to t gives an

equation which X(x,t) must satisfy

3X(xt) IL' "U
= F(x,t)X(x,t) + h (x,t,t)[r(t) - s(t)] (III.14)

where 1MMSE realizable estimate of s(t) is

s(t) = I '(t-a)'(G,t)ý(a,t)do (111.15)-CO

The initial condition for (III.14) is

X(x,T ) = E[X(x,To)  0 (111.16)

The M4SE estimate of X(x,t) is the solution to the linear

partial differential equation (111.14). The homogeneous system that

is associated with this equation is identical to that for the equations

( U
which generate X(x,t), (5.10). The estimate of s(t) is fed back and

subtracted from r(t) to drive the estimator. The matrix gain h (x,t,t)
--

is not a function of r(t).

The nest step is to obtain an equation for h (x,t,t). The-o

Wiener-Hopf equation given by (111.7) and (III.8),with t = T is

f K(x,t;o,t)_ ( c t ) * ( t - ) d o = N h (x,t,t)-Co

+ f f f (x,(,o dadbd
T - C-0( 1 1

(III.17)

Mh 1101 W

a · .Y--.""""-'-~ · Y UIYY~Y~·· .·1··I IIC-l· ·-- ·- I- ·-·- I
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From (III.4), (111.7), and (III.8)

t t
_(x,,t) f= { [(x ,, - ( ,_ ) -f ,t, (T)d

T T

t a,

= Kx(x,t;B,t) - h (x,t,a)(o-a)(a)•(ao ;,t)dado (III.18)
T -o

Post-multiplying (III.18) by C (B)f (t-B) integrating over ý, and

combining the result with (11.17) gives

(x,t~t) = L-(x, tt) = -- ~(x,,t)C (, t) (t-o)do
O --

(III.19)

This specifies the gain h (x,t,t) in terms of the error covariance
-o

matrix.

The error covariance matrix ((x,y,t) satisfies a partial differ-

ential equation which can be derived by recognizing from (5.10) and

(111.14) that the error

A

X (xt) = x,t) - (x,t) (111.20)

satisfies the partial differential equation

1 (xt)-0
-- 03

8 t - - -o - -

(III.21)+ ,(x, t)(x,t) - h (x,t,t)w(t)
-- -- -- o '

·-111(··11~~----~-~ --~lri ·,.II

I·I

From (111.4), (III.7), and (111.8)
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Now

ft
C9(x,y,t) DX (x,t)

Dt 7- = E[ -t
XX (y,t)

-E(y,t)] + E[' (x,t)
-- --• S t

(111.22)

From (111.21) and (5.18), the first term in (111.22) is

9X (x,t)
-tE [ Ot ~s(y1t)] = k(x,t(xy,t)

- (x,t,t) f T(t-o)ý(o,t)C(o,y,t)do
-00

-No

+1 _(x,t)N(x,y,t)ý" (y,t) + - (x,t,t) o (y,t,t)
2 -- o 2 -(ytt)

(III.23)

Evaluating the other term in (III.22) in a like manner gives the matrix

partial differential equation for the error covariance

E(x, Y, t)

t =_F(x,t)E(,,t) + (x,y,t)F (y,t) + _(x,t),O(x,y,t) (y,t)

1 y ( d (t-)d(a4t)(yt)d]
0 -O -oo

(III.24)

The initial condition for (111.24) is

I II I I

-~ ·········--- · ____.._ .__ _......-~ ········-- --- --- --- -~- -~-- -~--
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C(x,y,To X(x,To;yTo)

-P (x,y) (III.25)
-- o

from (5.22).

The derivation of the MMSE realizable estimator for X(x,t)

is complete. The gain h (x,t,t) in the estimator (III.14) is related--o

to C"(x,y,t) by (111.19). The error covariance matrix is the solution

of (111.24) with the initial conditions (I.25). Thus h (x,t,t)
-o

does not depend on r(t) and can therefore be precomputed. Note that

partial differential equation (111.25) can be integrated directly,

since its right had side is only a function of C(x,y,t) and integrals

of ý_(x,y,t) over x and y.

I - -·-""~ I --'·-·---·'··-· , -~ ~.
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