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ABSTRACT

In many applications, mobile robots are required to travel on outdoor terrain at
high speed. Compared to traditional low-speed, laboratory-based robots, outdoor
scenarios pose increased perception and mobility challenges which must be considered to
achieve high performance. Additionally, high-speed driving produces dynamic robot-
terrain interactions which are normally negligible in low speed driving. This thesis
presents algorithms for estimating wheel slip and detecting robot immobilization on
outdoor terrain, and for estimating traversed terrain profile and classifying terrain type.
Both sets of algorithms utilize common onboard sensors.

Two methods are presented for robot immobilization detection. The first method
utilizes a dynamic vehicle model to estimate robot velocity and explicitly estimate
longitudinal wheel slip. The vehicle model utilizes a novel simplified tire
traction/braking force model in addition to estimating external resistive disturbance
forces acting on the robot. The dynamic model is combined with sensor measurements in
an extended Kalman filter framework. A preliminary algorithm for adapting the tire
model parameters is presented. The second, model-free method takes a signal
recognition-based approach to analyze inertial measurements to detect robot
immobilization. Both approaches are experimentally validated on a robotic platform
traveling on a variety of outdoor terrains. Two detector fusion techniques are proposed
and experimentally validated which combine multiple detectors to increase detection
speed and accuracy.

An algorithm is presented to classify outdoor terrain for high-speed mobile robots
using a suspension mounted accelerometer. The algorithm utilizes a dynamic vehicle
model to estimate the terrain profile and classifies the terrain based on spatial frequency
components of the estimated profile. The classification algorithm is validated using
experimental results collected with a commercial automobile driving in real-world
conditions.

Thesis Supervisor: Karl lagnemma
Title: Principal Research Scientist
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I
Chapter 1: INTRODUCTION

1.1 Problem Motivation

Traditionally, mobile robots have been developed for use in indoor laboratory

environments or for very low-speed traversal of outdoor environments, such as with

planetary exploration rovers. Recently interest has increased in outdoor high-speed

mobile robots. A major application for high-speed robots is for the military. In 2007, the

Defense Advanced Research Projects Agency (DARPA) continued to identify advanced

unmanned systems as a major strategic thrust for the agency [13]. With the first two

DARPA Grand Challenges in 2004 and 2005, the agency demonstrated great interest in

automating military transport vehicles to minimize possible human casualties. To be

effective, such transport vehicles must travel at high speed for efficient supply delivery

and be capable of driving on unprepared surfaces in combat areas where roads may not

be present.

Vehicle automation is also desired for civilian automobiles. In 2005 there were

over 6 million motor vehicle crashes in the United States, resulting in nearly 3 million

injuries and costing over $230 billion [37]. Vehicle automation could potentially

eliminate many of these motor vehicle accidents. Of the 1.9 million single vehicle

accidents in 2005, at least 1.1 million occurred off the roadway [37]. It is clear that any
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vehicle automation, whether fully autonomous or a "driver assist", must be capable of

handling road departure situations at high speeds.

This thesis explores methods for sensing and estimating the effects of natural

terrain on a dynamic vehicle. The work in this thesis additionally recognizes that any

realizable autonomous system will be constrained by economics and space and can not

always have a sensor specifically designed for every task. Thus the algorithms presented

here use intelligent algorithm design to estimate vehicle state and terrain information

using common and/or affordable sensors normally available on a robotic platform, rather

than utilizing costly, targeted sensing. This thesis addresses two topics related to robot

mobility on outdoor terrain: wheel slip and terrain identification.

Wheeled vehicles encounter longitudinal and lateral wheel slip when driving over

any terrain type. A tire must slip against terrain in order to generate traction and braking

forces required for vehicle mobility. Traditional indoor mobile robots typically operate

on relatively flat, high-traction terrain where longitudinal wheel slip is relatively small

and frequently ignored. However, in general, outdoor terrain is low-traction, resulting in

significant levels of wheel slip. Traditional position estimation systems which rely on

wheel odometry for robot localization can accumulate large errors unless wheel slip is

estimated and directly compensated for or high frequency absolute position

measurements are available. Uncontrolled outdoor driving scenarios pose additional

challenges to mobile robots, not present in laboratory settings. Traversability of slopes is

dependant on both incline angle and terrain traction properties. Attempting to surmount a

hill with either too large slope or too low traction or colliding with unobserved terrain

features can result in robot immobilization.

15Chapter 1: Introduction



This thesis develops two algorithms for detecting robot immobilization on

outdoor terrain. The first algorithm utilizes a dynamic model-based approach to solve the

general problem of estimating vehicle speed and longitudinal wheel slip. The second

algorithm utilizes a model-free, signal recognition-based approach to directly detect robot

immobilization. Both algorithms are experimentally validated and two detector fusion

approaches are proposed for combining the results of multiple detectors.

Terrain surface properties, including roughness and traction, have a significant

effect on vehicle performance, including robot path following ability, and wheel slip.

Knowledge of terrain type can provide an indication of surface properties. In addition,

terrain type can be useful to autonomous navigation systems, such as for indicating road

departure scenarios. This thesis proposes an algorithm for estimating the traversed

terrain profile for high-speed vehicles on outdoor terrain and utilizes the estimated profile

to classify the underlying terrain type. The wheel slip detection and terrain classification

algorithms presented in this thesis provide estimates of some vehicle-terrain interactions

for future improved autonomous navigation systems for outdoor mobile robots.

1.2 Outline of this Thesis

This thesis is organized as follows. This chapter provides motivation for the

remainder of the thesis. Chapter 2 introduces two algorithms for estimating wheel slip

and detecting robot immobilization on outdoor terrain. Two detector fusion techniques

are introduced that combine multiple detector outputs to increase detection robustness

and accuracy. The algorithms presented in Chapter 2 are experimentally validated on an

autonomous robotic platform in outdoor terrain. An algorithm is presented for adapting

tire-terrain traction model parameters and preliminary simulation results are provided.

Chapter 1: Introduction 16



Chapter 3 proposes an algorithm for classifying the terrain traversed by a dynamic

vehicle using tactile information. The algorithm enhances previous terrain classification

work by explicitly considering the effects of vehicle speed by creating an estimate of the

underlying terrain profile. The terrain classification algorithm is experimentally

validated on a commercial automobile driving in real-world conditions. Chapter 4

summarizes the major contributions of this thesis and provides suggestions for future

work.

Chapter 1: Introduction 
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2
Chapter 2: WHEEL SLIP DETECTION FOR

MOBILE ROBOTS ON OUTDOOR

TERRAIN

2.1 Introduction

2.1.1 Problem Description

Mobile robot position estimation systems typically rely (in part) on wheel

odometry as a direct estimate of displacement and velocity [18],[8]. On high-traction

terrain and in combination with periodic GPS absolute position updates, such systems can

provide an accurate estimate of the robot's position. However, when driving over low-

traction terrain, deformable terrain, steep hills, or during collisions with obstacles, an

odometry-based position estimate can quickly accumulate large errors due to wheel slip.

With ineffective odometry, periodic absolute position updates can cause large "jumps" in

a robot's position estimate. In addition, between updates an odometry-based system is

unable to differentiate between a robot that is immobilized with its wheels spinning and

one that is driving normally. Autonomous robots should quickly detect that they are

immobilized in order to take appropriate action, such as planning an alternate route away
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from the low-traction terrain region or implementing traction control. Additionally,

robust position estimation is required for accurate map registration.

Wheel slip can be accurately estimated through the use of encoders by comparing

the speed of driven wheels to that of undriven wheels [25]; however this does not apply

for all-wheel drive vehicles or those without redundant encoders. Ojeda and Borenstein

have proposed comparing redundant wheel encoders against each other and against yaw

gyros as an indicator of wheel slip, even when all wheels are driven [40], however this

technique does not estimate the degree of wheel slip (i.e. whether the robot is fully

immobilized). Ojeda and Borenstein have also proposed a motor current-based slip

estimator [39]; however this technique requires accurate current measurement and

terrain-specific parameter tuning, with proposed tuning techniques requiring either an

accurate absolute positioning device or a robot with at least four driven wheels. In [2]

Visual Odometry is used to estimate robot velocity and slip for a slip prediction algorithm.

Although VO can be accurate on average over time, the authors report VO errors of

-12% on short time scales. In addition, the performance of VO can be degraded in near-

featureless environments, such as sand. It should be noted that a body of work exists in

the automotive community related to traction control and anti-lock braking systems

(ABS); however, this work generally applies at significantly higher speeds than is typical

for autonomous robots.

A large amount of work has utilized Kalman filters with inertial and absolute

measurements to enhance dead reckoning and estimate lateral slip. In [4] a navigation

system is proposed that uses inertial measurements combined with a sensor error model

in a Kalman filter to increase measurement accuracy. In [18],[33] traditional dead

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 19



reckoning accuracy is improved by including inertial measurements. In [1], absolute

position updates from GPS are fused with a model-based Kalman filter to estimate

vehicle sideslip and improve position estimation accuracy, and in [42] this work is

extended to consider the effects of vehicle roll and pitch. The notion of an effective tire

radius, which can indirectly compensate for some longitudinal slip, is presented in [32].

None of this work, however, explicitly considers the effects of longitudinal wheel slip or

vehicle immobilization.

A potentially simple approach to detecting robot slip and immobilization is to

analyze GPS measurements. In open terrain, GPS can provide accurate position and

velocity measurements; however, nearby trees and buildings can cause signal loss and

multipath errors and changing satellites can cause position and velocity jumps [44],[27].

Additionally, GPS provides low frequency updates (e.g. typically near 1 Hz [23]) making

GPS alone too slow for immobilization detection, where as close to instantaneous

detection as possible is desired to avoid excessive position errors.

Another potentially simple slip detection technique is to estimate robot body

velocity by integrating acceleration measurements (after subtracting gravitational

acceleration due to vehicle pitch) then comparing this estimate against wheel velocity,

thereby estimating wheel slip. However, such an approach is not robust at low speeds

during travel on rough, outdoor terrain. Figure 2.1 compares wheel velocity with

estimated body velocity for a sample experimental data set. At low speeds accelerometer

drift errors dominate, causing the velocity estimate to quickly diverge. In this case a

detector based on this estimate would detect immobilization for the majority of the data

set and be ineffective. Because the velocity estimate error is essentially a random walk, in
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some cases such a detector would estimate the velocity to always be larger than the wheel

velocity, thus never detecting immobilization. [15] proposes a method of aiding the

inertial estimate using vehicle constraints, however the method is not appropriate on

uneven, low-traction terrain.

Wheed VeloCR

s 1o 15 ~Time (s)2 2 os

Figure 2.1. Inaccuracy of estimating robot velocity by integrating measured
acceleration.

This chapter is organized as follows. In the following subsection, the

experimental platform used for all the experiments in this chapter is introduced. In

Section 2.2 a dynamic-model based approach to estimating wheel slip and immobilization

is introduced and experimentally validated. In Section 2.3 a second approach to

immobilization detection based on signal recognition is introduced and experimentally

validated. Section 2.4 then introduces techniques for combining multiple detectors for

one improved result. These techniques are validated by combining the detectors

introduced in Sections 2.2 and 2.3. In Section 2.5 an adaptive tire model based on the

dynamic framework introduced in Section 2.2 is presented. Finally, in Section 2.6

conclusions are drawn from this work.
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2.1.2 Experimental Platform

An autonomous mobile robot developed for the DARPA LAGR (Learning

Applied to Ground Robots) program has been used to experimentally validate the

algorithms discussed in this chapter (Figure 2.2) [35]. The robot is 1.2 m long x 0.7 m

wide x 0.5 m and has the kinematic configuration discussed in Section 2.2.2.1. The robot

is equipped with 4096 count per revolution front wheel encoders, an Xsens MT9 IMU, a

Garmin GPS 16 differential GPS, and two stereo pairs of video cameras (not used in this

work). The IMU provides acceleration and angular rate measurements and a filtered

estimate of vehicle roll and pitch. The robot has been used to collect data to process

offline using a Matlab implementation of the proposed algorithms, as well as to run an

online C++ implementation of the algorithm proposed in Section 2.2 on one of the

robot's 2.0 GHz Pentium M computers.

Figure 2.2. The LAGR robot.
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2.2 Dynamic Model-Based Wheel Slip Detection

2.2.1 Introduction

Here a method is presented for detecting robot wheel slip and immobilization that

does not require redundant wheel encoders or motor current measurements. The proposed

approach uses a dynamic vehicle model fused with wheel encoder, inertial measurement

unit (IMU), and (optional) GPS measurements in an extended Kalman filter to create an

estimate of the robot's longitudinal velocity. An insight of this approach is the realization

that a robot becomes immobilized due to an external force resisting motion, be it a

gravitational force resisting movement on an incline or an impact force exerted during a

collision. The proposed algorithm utilizes a novel tire traction/braking model in

combination with sensor data to estimate external resistive forces acting upon the robot

and calculate the robot's acceleration and velocity. Weak constraints are used to constrain

the evolution of the resistive force estimate based upon physical reasoning. The algorithm

has been shown to accurately detect immobilized conditions on a variety of terrain types

and provide an estimate of the robot's velocity during "normal" driving. The algorithm

has been run in real time onboard a mobile robot and is shown to be robust to periods of

GPS drop out. Preliminary results suggest that algorithm performance degrades

gracefully during periods of IMU drop out. The proposed approach captures all relevant

dynamics using one continuous model as opposed to approaches which seek to capture

the complete dynamics by combining multiple limited models such as in [14],[45].
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2.2.2 Dynamic Models

2.2.2.1 Robot Configuration

The robot configuration considered in this work is shown in Figure 2.3. The robot

has four rubber pneumatic tires and is a front-wheel differential-drive configuration with

undriven rear wheels that are freely-rotating castors mounted to a rear pivot joint

suspension. The robot body-fixed coordinate system and kinematic parameters are shown

in Figure 2.4 and the robot body and tire forces are shown in Figure 2.5. The dynamic

models presented below are specific to this robot configuration; however the modeling

process is adaptable to other wheeled vehicle configurations.
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Figure 2.5. Diagram showing vehicle and tire forces.

2.2.2.2 Vehicle Dynamics

Modeled forces acting on the robot include gravity, a lumped external disturbance

force, and tire forces acting at the four tire-terrain contact patches (See Figure 2.5). The

disturbance force can represent a variety of external forces such as wind resistance or the

force caused by collision with an obstacle. In this work we limit the disturbance force to

forces resisting vehicle motion.
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Tire forces are composed of a normal component, traction/braking component,

rolling resistance component, and lateral force component. The traction/braking forces

are negligible for any undriven, freely rolling wheels, as is the case for the rear wheels of

the robot considered here. The rear lateral forces can also be neglected because the rear

castors spin freely and thus usually align with their velocity vectors.

The vehicle acceleration along the body x-axis is:

Vbx = F ,,ra, + F +ro res +F -mg sin(
disturb (2.1)

= ftire +a isb - g sin( o)

where m is the total vehicle mass, g is the acceleration due to gravity, fire and adis,,b are

the equivalent x-axis body accelerations due to tire forces and the disturbance force.

Assuming the vehicle's axis of yaw rotation is approximately the point midway between

the front tires and neglecting any yaw moment due to gravity (which is small for

moderate vehicle roll), the vehicle's yaw angular acceleration is:

S=c (F,,,act+ F1,res- F,iract - F 2, rol res) (2.2)

- tire

where J is the vehicle's moment of inertia about the body z-axis and c is the distance

between front wheel centers. In general, if a robot has non-negligible lateral forces which

do not act through the yaw axis, they must be estimated [51] and included in (2.2).

2.2.2.3 Normal Forces

Calculation of the robot's normal forces with arbitrary body roll (0) and pitch (qp)

is in general an underconstrained problem. Methods proposed in the literature [21],[6]
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typically consider a simplified 2-wheeled "bicycle" model, which can be applied for 2 or

4 wheeled vehicles when roll effects are ignored. In [28] it is suggested that normal

forces be estimated by considering the elasticity of the terrain using tire-soil contact

models presented in [5]. A rigid body solution can also be found (utilizing the Moore-

Penrose Generalized Inverse), assuming point tire-soil contact [34].

For the robot configuration considered in this work, the assumption of zero

moment about the passive rear suspension pivot joint allows the rear left and right normal

forces to be assumed equal. With this assumption the normal force calculation is no

longer underconstrained and an explicit solution exists. For normal force calculations it is

also assumed that the vehicle longitudinal acceleration is negligibly small, which is

generally valid for slow-moving robots. The normal forces are:

W 1 2
Ni =-cos(p() a (bcos(9)-h tan(V))--sin(9) (2.3)

2 (a+b c

N 2 = -cos()I (bcos(9)-htan(p))+ -sin(9) (2.4)
2 a+b c

W
N 3 =N 4 = (hsin(p)+acos(p)cos(9)) (2.5)

2(a+b)

As a notational convenience we define the "normal accelerations" as:
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nfyl = * ,.

nf,r -N

n = N 4

m m

(2.6)

(2.7)

(2.8)

2.2.2.4 Traction/Braking Model

A large body of research has been performed on modeling tire forces on rigid and

deformable terrain. Most models are semi-empirical and express tire traction/braking

forces as a function of wheel slip i and wheel skid is, where [51]:

and

V,
r co

V t

(2.9)

(2.10)

where vt is the tire longitudinal velocity, r is the tire radius and co is the wheel angular

velocity. For example, in [51] the traction force of a pneumatic tire on rigid terrain is

formulated as:

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 28



Kte~ Cii i! icritical

F N- 2n=A(a N - K'i)2  .c. (2.11)
F t r c t on p I N --t , .i i > i c rt, c a

2l, K'i

where K, =k, Al, 1+ 'i , K'=k AI,, and crtical P= .
2 A it k,(i, +AY

Where A, pp, k,, it, and Ci are constants, e is the longitudinal strain (which is proportional

to the slip), and N is the normal force acting on the wheel. A similar formulation is

proposed for braking forces.

Implementation of a slip-based tire traction model such as (2.11) has many

practical difficulties, including the need to distinguish the cases of traction and braking

and driving forward and reverse to correctly calculate slip or skid. Another difficulty is

introduced by the fact that the formulations are undefined at zero slip (i.e. when o = 0 in

(2.9) or vt = 0 in (2.10)). Additionally, (2.11) requires separate formulations for the low

and high slip regimes (distinguished by icritical).

Here a unified, explicitly differentiable traction/braking model is proposed that

captures the critical elements of the models proposed in the literature. The

traction/braking force is expressed as a function of the wheel's relative velocity (also

known as the slip velocity), rather than slip. Slip is a normalized version of relative

velocity. A relative velocity-based formulation does not introduce the singularities found

in slip-based formulations and is consequentially easier to apply within an extended

Kalman filter framework. The proposed simplified model is:

FTraction = N (sign(v,,, )C, (1 -e AI VrI )+ C 2V,,) (2.12)

where v,e is the velocity of the tire relative to the ground:
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Vre =rW>-vfwd , (2.13)

and vfd is the tire's forward velocity, computed as:

Vfr, left -- Vbx+-CYI, Vfd right V =x --- c J, (2.14)
2 2

where yb is the robot yaw rate and C1, A,, and C2 are constants.

The simplified model is continuously differentiable and can predict both traction

and braking forces, without a need to distinguish the two cases. Additionally, this model

requires three terrain/tire dependant parameters (CI, A,, and C2). By comparison, the

popular "Magic Formula" empirical tire model requires six [51], and (2.11) requires four.

C1 is a positive constant which can be viewed as the maximum tire-terrain traction

coefficient. A, is also a positive constant and is the slope of the traction curve in the low

relative velocity region. C2 is the slope in the high relative velocity range and can be

positive or negative depending on the terrain (Figure 2.6).
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Figure 2.6. Representative traction coefficient vs. relative velocity curve indicating
effect of the 3 traction parameters. The traction coefficient is FjrdctjOn/N.

Figure 2.7 shows a plot of traction versus wheel slip for lines of constant wheel

velocity using the proposed traction/braking model, as well as a representative traction

force curve generated using (2.11). Whereas the traction-slip curve does not vary with

wheel velocity using the slip-based model, the proposed model does. Assuming the robot

typically operates near a nominal velocity, the proposed model can be interpreted as a

pseudo-linearization around the nominal operating velocity.

Figure 2.8 compares displacement estimates calculated using the two traction

models of Figure 2.7. The input wheel velocity is a 0.5 Hz sinusoid with amplitude

linearly increasing from 0 to 2 m/s at the tire radius. In the top plot the two nearly-

indistinguishable dynamic estimates show smaller amplitude due to wheel slip than the

kinematic estimate, as expected. The bottom plot shows the difference in displacement

between the two dynamic models. With wheel velocities ranging from 0-2 m/s, the

difference in displacement between the two estimates is on the order of centimeters.

When the range of operating velocities is within an order of magnitude of the nominal
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velocity, a single tire model should be sufficient for most applications, however multiple

models using different constants at multiple operating points can be employed if needed.
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Figure 2.7. Comparison of traction force vs. wheel slip curves for the slip-based
model and the proposed simplified model at various wheel speeds.
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Figure 2.8. Comparison of robot displacement calculated using proposed relative
velocity-based tire model, slip-based model, and kinematic zero slip.
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2.2.2.5 Rolling Resistance Model

Rolling resistance is generally modeled as a combination of static and velocity

dependant forces [51],[6]. Here a function with form similar to (2.12) is proposed as a

continuously differentiable formulation of the rolling resistance with the static force

smoothed at zero velocity to avoid a singularity. The rolling resistance is:

Froll res=-signvfv )N(RI (1-e -A" I fdI) + R2 Vfwd 1)

where RI, Aroi, and R2 are positive constants. Figure 2.9 shows

resistance versus wheel translational velocity curve.

a representative rolling
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Figure 2.9. Representative rolling resistance coefficient vs. velocity curve indicating
the effect of varying the 3 resistance parameters. The rolling resistance coefficient is

Fro,, resistAN.

2.2.2.6 Combined Tire Dynamics

Combining (2.1), (2.6)-. (2.8), (2.12), and (2.15), the vehicle acceleration

due to tire traction/braking forces can be calculated as:
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fire = nff (sign (v, )C (I - e~AtlI )+ C 2v - sign (v 3 )Rfrn,(I-e i - AroI )- R2, o,t v 3 )

+fnfr (sign(v 2 )C, (I- e AtI2 )+ C2v 2 -sign(v 4 )Rroft (I e-Arol14I )-R 2 frontv 4 ) (2.16)

- 2nr (sign(v5 )Rrear (i - A "oI51 )- R 2,rear V5 )

where:

V1 = V rel,frontleft' V 2 = Vrel,frontright' V 3 = Vfwd ,frontleft' V 4 = Vfwd ,frontright' V5 = Vbx

Combining (2.2), (2.12), and (2.15), the yaw acceleration due to tire forces is:

9 ire= c Nf, (sign(v, )C (I -e-AtII )+ C 2 v1 - sign (v 3 )Rfront (I - e-Aro" frontI R1 ,31 )
2J .(2.17)

- Nf r (sign(V2 )C, (I - e-AIv2 )+C 2v 2 + sign(v4 )R 1,front (I - e "Aro"" front~ R41 R.2v 4 )
2J

The models in (2.16) and (2.17) will be utilized in the slip estimation algorithm

presented in the following section.

2.2.3 Slip Detector Algorithm

2.2.3.1 Extended Kalman Filter

The slip detector algorithm utilizes an extended Kalman filter (EKF) to integrate

sensor measurements with the nonlinear vehicle model. The EKF structure requires that

the discrete, nonlinear process model be written in the form:
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£ =f(kkl,uk,wl) (.8

where £k is the a priori estimate of the state vector, x, at time step k and f is a nonlinear

function of the previous state estimate, £ _-, the current input vector, u , and process

noise, w k-

The measurement vector, z, is a nonlinear function, h, of the true, current state

vector and sensor noise v such that:

(2.19)Zk =h(xk ,Vk )

The standard EKF time update equations using the notation of [48] are:

Xk =f (Xkk_,uk,0), (2.20)

(2.21)P- =kAPlA +WkQkW,

and the EKF measurement update equations using Joseph's form of the covariance update

equation [24] are:

Kk= P-H[(H ,P-H[+VkRkV[, ,

Xk =x 7 +Kk6z -h(-i,0)),

Pk =(I-KkHk)PC (I -KH )T +KRkK[

(2.22)

(2.23)

(2.24)

The relations f(k-l,Uk ,) and h(-i,0) express the estimated state and measurement

vectors, Xij and ^ , by evaluating the nonlinear process and measurement equations,
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assuming zero noise. Q and R are process and measurement noise covariance matrices, P

is the state error covariance matrix, and Ak, Wk, Hk, and Vk are process and measurement

Jacobian matrices, where:

A(i,j a k-)Uk , (2.25)

W (,t ,U,0), (2.26)
awj

hjH (ii,] aX (2.27)

and

ah __')V h (;,o). (2.28)

To apply the EKF to real-world sensors with distinct, inconsistent sampling rates,

a modified form of the EKF update process is required. The time update equations (2.20),

(2.21) are calculated at a constant time step, At, such that in the absence of measurements

the state estimate is updated based upon the dynamic model. When a new measurement

from sensor a becomes available, the measurement update equations (2.22)-(2.24) are

computed for that measurement only, using Hk,, Vk,,, Rk,,, and he, which are the portions

of the measurement Jacobians, measurement error covariance, and measurement function

corresponding to sensor a- [49],[33]. These equations are repeated for each additional
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measurement available at a given time step, k. If no measurement is available at time step

k, then (2.22)-(2.24) are not used; instead Xk = Xk and Pk - Pi-.

2.2.3.2 State Space Model Formulation

The vehicle and sensor dynamics are formulated as a state space model using the

following state vector:

X =[IVbx, ba adist,bx, a ,'r ' , if,bgVI ,

where a), and C~r are the angular velocities of the left and right front wheels and bax and

by are the accelerometer x-axis and yaw gyro walking biases, respectively, which are

part of the IMU error model suggested in [17].

Typical errors found in accelerometers and rate gyros of low-cost IMU's are due

to constant offsets, cs, walking biases, bs, and sensor noise, v, such that [17]:

Zmeas = Zactua +c, +b +v , (2.29)

I 2fsa
with b, = -- b, + L w (2.30)

-r -r

where Zmeas is the measured acceleration or angular rate, Zactual is the true value of the

measured variable, v is assumed to be zero mean white noise, r is a time constant, fs is the

sampling frequency, a2 = E[bS2], and w is zero mean white noise with E[w2] = .

Using the above state vector, the vehicle dynamics can be written as:
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ftire (x,9, q)+adi,bx -g sin(p) W
2 fO

Z'axbax Z-ax 2

0 W3

x = fcontroieri (u) + w4  (2.31)

fcontroiier,r (u) W5

g tire (X, 0, () W6

1 b2fs
-gz _ gz

where wi are zero mean white noise and fcontroier(u) is the wheel acceleration which is a

function of the robot's onboard velocity controller and the desired velocity. Note that

with constant desired velocity, an ideal wheel speed controller would achieve fcontroieri(u)

= Ws and fcontrolerr(U) = W 6 .

In practice, the high frequency and accuracy of wheel velocity measurements

commonly allows an accurate estimate of o>, and Or without modeling fcontroier. When

estimating the vehicle dynamics, we therefore neglect fcontroiier, assuming that the desired

velocity is approximately constant between sensor updates. This assumption has the

effect of smoothing the wheel speed measurements (helpful for removing pulses which

can occur in velocity measurements derived from discrete encoder values). Discretizing

the state equations and neglecting the zero-mean process noise, wi, the a priori estimate

of the robot state at time step k is:
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VbxI + fre (,, ,9,9 ql)A ,, _At - g sin(qo)At

At

bax ,k-I T a

adistb k-1

-k =kl (2.32)

rk -1

Yk- + g1i (,9,q)At
At

lg~gz

2.2.3.3 Measurement Model

The slip detector algorithm utilizes measurements from the IMU, GPS, and front

wheel encoders. The measurement vector is:

Z = kIMU 9 V IMU 1 iGPS " OiCenc Or,enc I

where XIMU and Y'IMU are IMU measurements of x-axis acceleration and yaw rate, iGPS

is the component of the GPS velocity measurement along the body x-axis, and Woenc and

COr,enc are the left and right front wheel encoder angular velocity measurements. For the

IMU measurements, the sensor model given by (2.29) is used. Note that for XJMU,

Zactual =bx+ g sin(p), as the accelerometer measures gravity even if the robot is stopped.

Simplifying, the measurement vector can be modeled as:
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ftire(X, 0,P)+cax+bax+adisbx V1

Y+ cgZ+b, V 2

z=h(x,v)= Vbx + V3  (2.33)

CO) V 4

C2) V5

where cax and cgz are constant offsets of the x-axis accelerometer and yaw gyro

respectively and vi are zero mean white noise. To approximate the constant offsets, they

are initialized to the average of the first n IMU measurements, subtracting out the

acceleration due to gravity from the acceleration measurement. When the robot is at rest,

the constant offsets are updated with new measurements using the exponential moving

average [36]:

EMA.,,e,,t = (measurementurre,,,, - EMAprev 2 + EMA,, (2.34)
+ pJ

which is an approximation of the time average of the measurement over the last p

samples, with a higher weight given to the most recent measurements. The EMA is not

guaranteed to converge to the true value of the constant offsets, but instead converges to a

locally constant offset over a window determined by the forgetting factor p, which is

sufficient in practice. The EMA is easily and recursively calculated making it suitable for

online implementation.

The estimated measurement vector is:
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ft k( aP)C x bck ±dis,bx,k

Vk7 + cgz + g ~V,k

z h(k,0)= Vbxk (2.35)

r,k

2.2.3.4 Weak Constraints

The disturbance, asislx, and accelerometer walking bias, bax, have both been

modeled as random walks. Practically, the only difference between these variables in the

model are that adis,,bx appears in the calculation of 1bx while bax does not, and that adistbx is

assigned a larger covariance in the matrix Q so that it can evolve more quickly than bax.

Although a direct measure of the disturbance force is generally not available,

rules governing its evolution can be developed based upon insight into the physical

nature of the disturbance. These rules are implemented using weak constraints described

in [20] and implemented in a vehicle model in [32]. Unlike ad hoc solutions, weak

constraints are a principled method for integrating rules and constraints into the Kalman

filter framework. Weak constraints can be viewed as virtual measurements or

observations.

The linear weak constraints considered here are treated the same as physical

measurements in the EKF framework. If some user-defined conditions are met (i.e. the

physics-based rules), (2.22)-(2.24) are used to update the state vector and system

covariance matrix with an associated noise covariance matrix, Rk,, for each weak

constraint. This is in contrast to ad-hoc techniques which may not propagate state

changes though the system covariance matrix. Each weak constraint also has an
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associated noise covariance matrix, Rk,. If the constraint is precisely known, then the

covariance is zero and the constraint is considered a strong constraint. All of the

constraints applied here have nonzero covariance.

The following pseudo code outlines the EKF update process including the weak

constraints:

while (vehicle operational){
increment EKFtime by constant dt
EKF time update (2.20),(2.21)
if (IMU measurement available){
Do EKF measurement update (2.22)-(2.24) using: Hmu, V1 ua, Ru,

ZIMU hIMu

}
if (GPS measurement available){
Do EKF measurement update (2.22)-(2.24) using: HGps, VGPS, RGPS,

ZGPS, hGPs

}
if (encoder measurement available){
Do EKF measurement update (2.22)-(2.24) using: Hencoder, Vencoder,

Rencoder, Zencoder, hencoder

}
for i = 1 : (number of weak constraints) {
if (Weak Constraint i condition satisfied){

Do EKF measurement update (2.22)-(2.24) using: Hwc1, Vwc1, Rwc1,

ZWC1, hwc1
}
}end for
(else no measurements or weak constraints)
}end while

Table 2.1 summarizes the weak constraints employed in this work. The second

column presents the condition that must be met for the constraint to be applied and the

third column gives the measurement innovation to be used in (2.23), which becomes

= k + Kk (ZkWC, - hwc (X^ ,0)) for each weak constraint i. Constraints 1-3 constrain the

nature of the disturbance based on physical reasoning, to maintain observability of the

state, similar to the implementation in [32]. Constraint 4 allows for calibration of the

IMU biases when the robot is stopped. The forth column lists the R values used for each
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weak constraint, normalized by the average of the R values for the real measurements (a

smaller value indicates higher weighting). In practice, as a precaution to prevent the filter

from diverging during fault conditions such as malfunctioning sensors, additional

constraints could be applied using this framework to limit the magnitude and rate of

change of some of the states based on known physical characteristics of the robot (i.e. the

robot may have a known top speed). For some of the conditions the variable VelDir is

used, defined as:

VelDir =sign(k + W,) (2.36)

such that VelDir equals 1 if the wheels are driving forward, 0 if the wheels are stopped or

for pure rotation, and -1 if the wheels are driving in reverse. iEMA is the EMA (2.34) of

the average of the left and right front wheel slip.
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Table 2.1. Summary of weak constraints used.

Description Condition "Measurement" Innovation Norm alzed

1) The modeled disturbance force should
only oppose motion.

2) The disturbance should act quickly. The
disturbance should not gradually increase

such that the wheel EMA of the slip slowly
increases. Only applies when the average

wheel slip is small. minA1 , threshi, and a are
user-defined constants

3) The disturbance can stop the robot, but
should not pull the robot backwards. If the
robot is moving backwards, then either it is

sliding down a hill and the disturbance
should be zero, or the estimated disturbance

is too high and should be reduced.

4) When robot is fully stopped, the
disturbance force and walking biases should

tend to zero for calibration of the IMU
constant biases. t,, is a constant. T is the
length of time the condition has been met.

if (sign(adtbx ) = VelDir)

AND (sign(adist,bx,k) 0)

Ai
if 0< EMA<m

At Ai

AND (i < thresh)

if (sign (V&-x, = -VelDir)

(if sign(f - g sin(p)) = -VelDir
tire

-:-> then -+ a)

else--> b)

if (w =0) AND (W = 0)

for T tso,

(zkWC, - hc (;,))= (0 -adist,bx,k)

(zkWC2 - wc 2 ('k ,0)) = (aadsbxk- adist,bx,k)

0 < a <1

(z,,WC, - h C3 (";,0))=

a) (o - distbx,k

b) (max(VelDir[g sin(,p) - fire, ,distbxk ) s a ,bxk)

( ZWC4 -hWC4 (',0)) =

([0,,0] -[ax,k, 'dist,bx,k ,0 gr,k O

[0.68]

[68]

[0.14]

[.07 0 0

0 1.4 0

0 0 1.4]



2.2.3.5 Slip and Immobilization Detection

The extended Kalman filter provides an estimate of the robot's forward velocity

and the front wheels' angular velocities. Using these estimates, a criterion for detecting

when the robot is immobilized is desired. A natural choice for an "immobilized" metric

is the wheel slip (2.9). In practice, the calculated wheel slip can be noisy. For example,

when the robot is stopped, an incremental wheel motion will yield a calculated slip of

100%, even though the robot is not immobilized. To improve robustness, the EMA (2.34)

of the average of the left and right wheel slips is calculated and immobilization is

detected if the EMA is larger than a threshold value. The threshold value is chosen

empirically. A low value allows the detector to react quickly, however can be prone to

falsely detecting immobilized conditions. In practice, since measurement noise can cause

large variations in calculated slip at low speeds, the threshold can be chosen to vary with

speed. Immobilization is not detected if the robot is braking (i.e. vb, > rwo). The above

technique represents one possible criterion for detecting immobilization which has

worked well in practice; however other criteria are possible.

2.2.4 Experimental Results

2.2.4.1 Determination of Model Parameters

The algorithm requires knowledge or estimates of a number of constant

parameters. Here, the robot mass and center of gravity location were directly measured.

The measurement noise and walking bias process noise covariances were drawn from

sensor data sheets and sensor measurements. The process noise and weak constraint
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covariances were initially set to values estimated using physical reasoning, before

manually tuning the values to achieve improved filter performance.

A series of simple experiments were performed on multiple terrain types to

estimate the tire parameter values. C1 was estimated by measuring the force produced by

spinning the robot's wheels while it was restrained with a spring scale. C2 was zero, as no

nominal terrain-independent value was indicated by the test data. R, was estimated by

measuring the force required to pull the robot forward with the wheels freely spinning. A,

and R2 were chosen based upon tire force curves in the literature [10] and upon

experimentation with the algorithm. A,,, was chosen to be large to approximate a static

rolling resistance force. From these experiments, a set of nominal parameters were

extracted which yielded good slip detection performance over many terrain types. Table

2.2 summarizes the tire constants used for this work.

Table 2.2. Summary of tire constants used.

Parameter Nominal Value Used

C, 0.52

A, 20 s-m

C 2  0

Rlfron, 0.08

R2fon,, 0.05

Aroi 50 s-m'

Rirear 0.0075

R2 ,rear 0.02

2.2.4.2 Algorithm Performance

The algorithm was applied to 21 outdoor experimental test runs. During these

tests, the robot traveled approximately 120 meters over a range of terrain types including

loose mulch, loose gravel over hard dry soil, mud, and various grasses. The robot was

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 46



driven at speeds ranging from 0.1 m/s to I m/s. The test runs include 20 instances of the

robot coming to a complete stop with the wheels still spinning, which were initiated by

holding the robot back using a spring scale. The tests were performed on nominally level

terrain with the robot commanded to drive in a straight line. Preliminary tests show

equivalent results on non-level terrain and while the robot autonomously navigates

arbitrary paths.

The slip detector correctly identified each of these 20 instances as immobilized

with an average detection time of 0.4 seconds. All data with the robot driving freely or

sitting at rest was correctly labeled as normal driving, with the exception of two false

positives. In total less than 0.2% of the data points were falsely labeled as immobilized.

Figure 2.10 shows a plot of the robot driving unconstrained over grass at 1 m/s. In

the top plot, it can be seen that the filter's estimated robot velocity follows the measured

wheel velocity. At time equals 14 seconds there is a spike in the calculated wheel

velocity; however the estimated robot velocity correctly smoothes this quantization error.

The second plot shows the estimated disturbance, which remains small while the robot is

driving. Just after the robot stops, suspension displacement creates a small spike in the

disturbance. The third plot shows the EMA of the wheel slip. While driving, the wheel

slip is estimated at approximately 3%, which is physically reasonable. The increased slip

while accelerating and braking is also expected. The detector correctly labeled the entire

data set as driving normally (i.e. "immobilized?" = 0). The fourth plot shows the error

covariance from the Kalman filter P matrix for vbx and asis,,x, normalized by the process

noise covariance. In all results the normalized error remains well bounded, below unity,

indicating that the filter is consistent.
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Figure 2.10. Example of robot driving normally. Note bottom plot is semi-log scale.

Figure 2.11 shows a plot of the robot attempting to drive forward at 1 m/s on

grass while restrained with a spring scale to produce 100% wheel slip. The velocity

estimate shows that the robot accelerates against the spring, but quickly becomes

immobilized. The disturbance estimate approaches a near-constant resistive value ranging

from -2.8 to -3.1 m-s while the robot is immobilized, before returning to zero when the

wheels stop spinning. During this test, the spring scale measured a 325 N force holding

the robot back. The equivalent body acceleration for the 117 kg robot is 2.8 m-s, which

closely agrees with the estimated disturbance. The slip EMA quickly approaches 100%

and the detector identifies the robot as immobilized at time equals 1.85 s.
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Figure 2.11. Example of robot becoming immobilized.

Note that the GPS velocity estimate for these two tests (conducted in open terrain

with few trees or tall buildings) was very accurate and thus GPS-based slip detection is

possible. However GPS measurements were available at 1 Hz, slower than desired for

detection. Additionally, GPS returns the average velocity over the previous time step, and

thus the measurement is truly accurate for 0.5 seconds prior to the reported measurement

time (in Figure 2.10 & Figure 2.11 the GPS velocity plots are time shifted by 0.5 s to

account for this). In the example shown in Figure 2.2, immobilization could not be

detected by GPS until t - 2.8 s, nearly one second slower than the proposed algorithm.
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2.2.4.3 Sensitivity to Tire Model Parameters

To study the algorithm's sensitivity to tire model parameter values, the 21

experimental data sets were reprocessed, individually varying one of the five tire

constants by ±20%. In all 210 tests, the algorithm correctly identified all 20

immobilizations. The number of false positives for each case is summarized in Table 2.3.

It was observed that the algorithm performance was most sensitive to changes in C1 .

Increasing C1 increases the maximum modeled traction, making the model less likely to

estimate that traction has been lost and the wheels are slipping. Conversely, decreasing

C1 reduces the modeled available traction, increasing the likelihood of wheel slip in the

model and causing an increase in the number of false immobilization detections. Even in

the worst case, only 0.3% of the data points were falsely labeled immobilized.

Two additional cases were evaluated as a limited study of second-order

sensitivities. The first should be the worst case for false positives, with both traction

parameters -20% and all resistance parameters +20%. In this case, all immobilizations

were detected and there were 6 false detections. The second should be the worst case for

correct detections, with both traction parameters +20% and all resistance parameters -

20%. In this case there was only 1 false detection; however one immobilization was not

detected. In summary, the algorithm appears to be quite robust to errors in the estimated

tire model parameters. It should be noted that the algorithm's velocity estimate accuracy

will depend on the accuracy of the tire model for the current terrain.

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 50



Table 2.3. Sensitivity of false immobilized flags to changes in tire parameters.

Parameter C1  A, R, R2 Aroii

Parameter Nominal +20% -20% +20% -20% +20% -20% +20% -20% +20% -20%
Change

Poses 2 1 5 2 3 2 2 2 2 2 2

2.2.4.4 Algorithm Performance without GPS

The 21 experimental datasets were reprocessed without including GPS velocity

measurements (i.e. using wheel encoder and IMU measurements only). The algorithm

again correctly identified all 20 immobilizations. Without GPS, the false immobilization

detections increased from two to four (0.35% of all data points). Figure 2.12 shows the

results of processing the data set of Figure 2.11 without using GPS measurements. In this

case the two plots are nearly indistinguishable. These results suggest the algorithm can be

applied on systems lacking reliable GPS, such as mobile robots in urban surroundings,

underwater, or where GPS is not available such as for Mars rovers. However, GPS can

increase accuracy and improve performance when available.
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Figure 2.12. Same data as Figure 2.11 processed neglecting GPS.

2.2.5 Conclusions

A dynamic model-based slip detector has been proposed that has proven effective

at detecting robot immobilization over a variety of outdoor terrains. The detector utilizes

a novel tire traction/braking model and weak constraints to estimate external forces acting

on the robot. The algorithm can be applied to any vehicle with an IMU, wheel encoders,

and (optionally) GPS. Sensitivity analysis has indicated that accurate immobilization

detection is possible with relatively coarse engineering estimates of tire/terrain model

parameters. The algorithm also yields reasonably accurate estimates of the robot's
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velocity and could potentially be implemented in a position estimation system that is

robust to wheel slip. Inclusion of a lateral tire-force model could potentially allow

estimation of side slip within the presented framework.

In Section 2.5 a technique for autonomously adapting the tire model parameters

is presented which allows the algorithm to provide accurate velocity estimates as well as

improve the slip detection time and reliability over variable terrain. Section 2.4 explores

fusing the output of multiple slip detection algorithms to increase detection speed and

accuracy.

2.3 Classification-Based Wheel Slip Detection

2.3.1 Introduction

Here a method is presented for detecting robot immobilization using a signal-

recognition approach. Offline, a support vector machine (SVM) classifier is trained to

recognize immobilized conditions within a feature space formed using inertial

measurement unit (IMU) and optional wheel speed measurements. The trained SVM can

then be used to quickly detect immobilization with little computation. Experimental

results show the algorithm to quickly and accurately detect mobile robot immobilization

in various scenarios.

One drawback of the model-based slip detection algorithm presented in Section

2.2 is that it requires identification of a small number of physical tire model parameters.

The classification-based approach presented here was developed as an alternative, model-

free approach to detecting robot immobilization. The classification-based approach,
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however, only produces a binary immobilization detection output and does not produce

an estimate of the robot's velocity.

Machine learning/classification techniques have been employed in various mobile

robotics applications including vibration-based terrain classification [10] and self-

supervised vision-based road detection [12], as well as other applications such as speech

recognition [19]. The author is aware of no previous work utilizing these techniques for

robot immobilization detection.

2.3.2 Classification Algorithm Overview

The algorithm proposed in this work was inspired by the observation that a human

in a vehicle with eyes closed can quickly and robustly distinguish whether the vehicle is:

1) completely stopped with wheels stopped,

2) driving normally over outdoor terrain, or

3) immobilized, with the wheels rotating but slipping.

Even in the absence of training for this task and without visual feedback, a human

can interpret clues such as vehicle heave/jounce and motor/engine sound signature to

discriminate between cases 1-3 with reasonable accuracy.

The proposed algorithm uses a signal-recognition approach to detect mobile robot

immobilization (case 3 above) based on inertial and wheel speed measurements. The

measurements are used to form n features that can be used to distinguish between the two

classes "immobilized" and "normal driving." A support vector machine (SVM) is used to

determine class boundaries within the n-dimensional feature space [11].

The SVM is trained using a hand-labeled data set of 1 instance-label pairs (xi, c1 ),

(xi, ci), ... , (xi, ci) with xi e 91 " and c e {-1,l} [26],[29]. In this work, "normal" is
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labeled as c = -1 and "immobilized" as c =1. The 1 training instance feature vectors, xi,

are combined to form the I x n feature matrix, X = [x ... x ], and the labels form the

1 x 1 training label vector, c = [c - -* c ] I.

Classification accuracy is improved by scaling each feature type to have similar

magnitudes [29]. To scale each feature to the range [-1, 1], the n x n scale factor matrix,

S, is formed such that:

if i= j
{max(columnj of X()S =- (2.37)

0 otherwise

and the scaled training feature matrix, X, is then:

Xk=X-S. (2.38)

X and c are used to train a SVM using a radial basis function (RBF) kernel. An

RBF kernel was chosen because it performs well with both non-linear and linear class

relations and requires few kernel parameters [29]. SVM parameters are found using a grid

search to systematically find a parameter set that minimizes the average classification

error and error standard deviation of a v-fold cross-validation [29]. The final SVM model

is trained using the best SVM parameter set and the entire training data set.

The parameter search and SVM training can be computationally expensive.

However training is performed only once, offline, producing an SVM model suitable for

computationally inexpensive online classification. Note that during online classification,
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each measured feature vector, x, is first multiplied by the scale factor matrix, S, before

classification by the trained SVM.

During online classification, the output of the SVM's decision function is a scalar

decision value, f E (-oo,oo), where the value of f is a measure of the distance of the

instance from the class boundary in the n-dimensional feature space. Typically an

instance is labeled as:

immobilized (1)

label normal (-1)

unknown (0)

if f >0

if f <0

if f =0

(2.39)

However, increased accuracy can usually be achieved at the expense of lowered labeling

completeness (i.e. labeling more instances "unknown") using the following:

immobilized (1)

label = normal (- 1)

unknown (0)

if f > threshold

if f <-threshold

if -threshold f >!threshold

(2.40)

In this work (2.39) has been used unless otherwise specified,

meaning that all data has been classified.

2.3.3 Feature Vector Selection

In this work four features have been chosen to form the feature

vector x, =[ x,x ,x0, ,, 4 ]. Each feature is a numerical representation of sensor data

that attempts to mimic the sensory cues a human operator would exploit when attempting

to detect immobilized conditions. Data is sampled at a ratefs and a numerical transform is
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calculated on a set of N data points for each feature instance. Figure 2.3 and Figure 2.4

illustrate the coordinate system used in feature definitions.

The first two features were chosen as the variance of the N element groupings i of

roll rate, 0 iN , and pitch rate, Pj,N , such that:

xi'I = varbiN )=E((0i,N -E~i,N )2,(.1

xi,2= var(oi,N )=E((i,N -E(i,N ))2). (2.4)

These two features are a measure of the degree of roll and pitch experienced by a vehicle

during travel over uneven outdoor terrain.

The third feature was chosen as a measure of the variation in the z-axis (vertical)

acceleration. The variance is a measure of the total variation from the mean over all

frequencies; however empirical results have shown that only high frequency z-axis

acceleration signal variation effectively distinguishes immobilized conditions. For feature

three, Pai the p element vector of the power spectrum coefficients of grouping i of z-

axis acceleration is calculated using a discrete Fourier transform, where:

p= N+l (2.43)
2 1n

where [~ ] is the ceiling function. Then feature three is calculated as:

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 57



p
Xi, 3 = PaZ'i,.

k=[p/2l
(2.44)

For this work, N = 50 was chosen and f, = 100 Hz, resulting in a sum of the

frequency content from 25 to 50 Hz. This frequency range was empirically determined to

perform well for the robot system used in this work.

Feature four was chosen as the mean of the magnitude of the wheel angular

accelerations:

xi, =mean(I ,bftj,N +6rti,NI)=EIi1ftIN + rt,i,N I)

where 64ftiN and rt,i,N are the N element groupings i of the left and right wheel angular

accelerations, respectively. During outdoor driving, terrain unevenness leads to variations

in wheel torque, leading to variations in wheel angular acceleration. This variation is

minimized when the robot is immobilized.

2.3.4 Experimental Results

The SVM classifier was trained on data gathered during traversal of mud, loose

mulch, and various grasses at speeds ranging from 0 to 1.0 m/s. The training data

included 14 instances of the robot coming to a complete stop with the wheels still

spinning, which were initiated by retarding robot motion with a spring scale. Using N =

50, the classifier was trained with 408 instance-label pairs, 18% of which were labeled as

immobilized.

The classifier was tested using two distinct data sets. In the first set, the robot was

driven once again over grass; however immobilization was initiated when the robot
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experienced significant wheel slip while attempting to surmount a hill. In the second set,

the robot was driven over loose gravel mixed with dry, brittle soil, and immobilization

was initiated by retarding robot motion with a spring scale. Note that this terrain type was

not present in the training data set.

Test results using all four features described in Section I1b are shown in Figure

2.13. Total classification accuracy was 94.7%. The figure shows that all incorrectly

labeled points were near an actual immobilized period, with 98.1% of normal points

correctly classified. The 1.9% of normal points classified as immobilized were all near

the start or end of an immobilized period, which could indicate small errors in hand

labeling of these extremal points. 75% of immobilized instances were classified correctly;

however all immobilized periods were recognized as immobilized in at least some of the

data instances comprising that occurrence.

Using only the first three features so that only IMU measurements were required,

total classification accuracy was 92.0%, with 97.7% of normal instances and 59.1% of

immobilized instances correctly classified. With only three features, classification

accuracy was reduced, however false immobilized detections remained low and all

immobilized occurrences were again detected.
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Figure 2.13. Experimental results of classifier-based immobilization detection. Each
incorrectly classified point is a 0.5 second instance. Wheel velocity is effective linear

velocity at wheel radius.

Figure 2.14 shows a receiver operating characteristic (ROC) curve for

classification of the test data set using all four features. The vertical axis shows the

percentage of total instances that are classified correctly while the horizontal axis shows

the percentage classified incorrectly. The curves are generating by progressively

increasing threshold in (2.40), causing fewer points to be classified and more points to be

"unknown." Thus, increasing threshold results in a more conservative classifier. The

upper-right endpoint of each line is the classifier accuracy with all instances classified

(threshold = 0).

It can be seen that as threshold is increased, the percent of incorrect classification

initially deceases rapidly, while the percent correct remains near constant, meaning in this

region the majority of correctly labeled points were further than threshold from the class

boundary. This curve shows the possible tradeoffs between number of instances labeled

and labeling accuracy and can be a useful design tool.

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain

I- __ - . __ __ - - =91111

60



100____________ _

*****' Actually Driving Normally
90 -. .---- ---- -----. ---. -- ---- - - -- - Actually Immobilized

Total

70 -. ------------------------------------. -----. -----. -. - -"- -----.

601 15 * 2

-n

0
40 ..... . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .

30.g.r..... . ... . ...r. b............ de.e.. i.. .x..... en... .......

10.

0 5 10 15 20 25
% Incorrect

Figure 2.14. ROC curve for immobilization detection experimental results.

2.3.5 Conclusions

A signal recognition based approach to detecting robot immobilization has been

proposed and experimentally validated. Four distinguishing features have been proposed

for the algorithm requiring an IMU and (optionally) wheel encoders or tachometers, both

common sensors on outdoor mobile robots. Future work will explore the effects of SVM

kernel selection and robot speed and configuration on algorithm performance and test the

algorithm on alternate terrain types and situations.

2.4 Detector Fusion

2.4.1 Introduction

To improve detection accuracy and robustness, immobilization detector fusion

techniques have been explored. One technique is proposed to minimize false

immobilization detections. A second is proposed to increase overall detection accuracy
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while maintaining rapid detector response. The two fusion techniques are demonstrated

with experimental data using the immobilization detection algorithms proposed in

Sections 2.2 and 2.3.

2.4.2 Fusion Techniques

To increase immobilization detection accuracy two techniques have been

explored to fuse multiple detector outputs. The first technique (termed Fusion 1) is

designed to minimize false immobilization detections at the expense of increasing the

number of immobilized instances incorrectly classified as normal. For d detectors, Di,

each with output 1 for "immobilized" and -I for "normal":

I if (DI =1) AND (D 2 =1)...
... AND (Di =1)... AND(Dd =1) (2.46)

- I otherwise

Thus Fusion 1 detects immobilized only if all detectors agree that the robot is

immobilized.

The second technique (termed Fusion 2) is designed to increase total detection

accuracy and yield faster immobilization detection than Fusion 1. For Fusion 2, each

detector output, Di, is expressed as a continuous variable on the interval [-1, 1], with an

output of 1 meaning the detector is completely confidant that the robot is immobilized, -1

meaning the detector is completely confidant the robot is driving normally, and 0

meaning there is an equal probability of the robot being immobilized or driving normally.

Fusion 2 is a weighted average of the detector outputs:
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1

Fusion 2= -1

0

d
if ZwD >a,

dZW~D <-a,

otherwise

(2.47)

where a, is a threshold value and i are weights with:

=1.
i=1

(2.48)

2.4.3 Experimental Results

The performance of the fusion techniques described in Section IVa was studied

using the detector proposed in Section 2.3 (i.e. the SVM method) and the detector

proposed in Section 2.2 (i.e. the EKF method). The output of the SVM method was

scaled for Fusion 2 by first determining the smallest threshold for which all classified

training points are classified correctly, threshold 00%. Then:

DSVM =sat h I
(threshold100%

(2.49)

where the saturation function, sat(x, y), is defined here as:

Sx i f |x<Hysat(x, y)=
sign(x)-Iy otherwise

(2.50)

The EKF method outputs a detected class for each of the N data points that make

up instance i of the SVM method, but does not output a confidence value. DEKF is
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therefore taken as the mean of the N data points, providing an estimate of the detector's

confidence. If half of the N points are classified as immobilized, then there is

approximately a 50% chance the robot was immobilized during those data points and

DEKF = 0. This estimate has the drawback of assigning low confidence when

immobilization begins near the end of the N points, possibly leading to sub-optimal

detection time; however it provides a computationally simple method to test the fusion

technique performance. For Fusion 2, w =i = 0.5 and a, = 0 were used.

Figure 2.15 shows a dataset of the robot driving over loose mulch and

demonstrates the relative performance of the fusion techniques. In sections A and C the

robot was driven normally under remote control, and in sections B and D the robot was

commanded to drive forward at 0.5 m/s but was restrained with a spring scale, causing

immobilization. The bottom plot indicates the moments when immobilization was

detected by the two detectors and two fusion techniques.

EA B C -Driving Normally
~. i.........................................-.m.iie

0.5 .............. . .......................................
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Figure 2.15. Detector fusion results. Wheel velocity is effective linear velocity at
wheel radius.

It can be seen that in section A the SVM method falsely detects immobilization,

likely due to rapid wheel speed oscillation. The EKF method, however, correctly labels

this instance as normal driving, allowing both fusion techniques to correctly label this
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section as normal. Similarly, in section C the EKF method misclassified an instance as

immobilized, but the SVM method and both fusion methods correctly classified this

section.

In section B, the SVM method detected immobilization very rapidly, while the

EKF method's detection time was approximately 1.0 second slower. In this case, the

SVM method detected immobilized immediately after the robot begins to decelerate,

while the EKF method detected immobilized when the robot came to a stop. As expected,

Fusion I only detected immobilization when both detectors agreed. Fusion 2 was able to

detect immobilization approximately 0.5 seconds sooner than Fusion 1 because the SVM

method expressed high confidence in its output while the EKF method expressed an

uncertain output (i.e. an output near 0). In section D, the SVM method expressed a low

confidence in its early immobilization detection and neither fusion technique detected

immobilization until the EKF method was in agreement.

A comparison of detection accuracy of the four methods when performed on the

Section 2.3.4 test set, which included 301 half-second instances, is shown in Table 2.4.

All four techniques detected the 6 immobilized periods. The SVM method detected

immobilization the fastest followed by Fusion 2; however in some cases the SVM

method detected immobilization before the vehicle was stopped, accounting for the 3

false positives. Both fusion techniques eliminated these false positives, with Fusion 2

demonstrating the highest total accuracy.

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain 65



Table 2.4. Comparison of accuracy of detection
2.3.4 test set.

SVM EKF
Method Method

and fusion techniques on Section

Fusion
1

Fusion
2

Total 94.7% 95.7% 91.7% 98.0%
Accuracy:

#False 3 0 0 0
Positives:

# False 13 13 25 6
Negatives:

Although not shown in Figure 2.15 or Table 2.4, it is possible that a detector

could falsely label an instance with high enough confidence for the point to be mislabeled

by Fusion 2 but not Fusion 1. Fusion 1 should therefore be more robust to false positives.

If both detectors mislabel an instance, it will be mislabeled under both fusion techniques.

2.4.4 Conclusions

Two simple immobilization detector fusion techniques have been proposed to

combine the output of the classifier-based immobilization detector and a dynamic model-

based detector. Fusion 1 resulted in a conservative approach to minimize false detections,

while Fusion 2 provided faster performance while potentially allowing more false

detections. Both fusion techniques were shown to eliminate false immobilization

detections on the experimental data set and increase overall accuracy compared to each

individual detector. Future work should explore using various fusion techniques to

combine more than two detectors and for alternative applications including terrain

classification.
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2.5 An Adaptive Tire Model

2.5.1 Introduction

In Section 2.2, a dynamic model-based wheel slip estimator was presented. The

algorithm estimates a robot's longitudinal velocity in the presence of wheel slip. A

valuable application of this algorithm would be to extend the method to an accurate and

robust robot position estimate. However, the presented algorithm is dependent on several

tire/terrain parameters that vary with terrain type. For accurate position or velocity

estimation, accurate identification of these traction parameters is required. This section

presents a method for automatic adaptation of the tire model parameters. Preliminary

simulation results show that the method adapts the tire parameters toward their true

values and increases velocity estimation accuracy.

2.5.2 Dynamic Model

The dynamic model used for tire parameter adaptation is identical to the one

presented in Section 2.2.2. Recall that the model-based slip detector algorithm estimates

the disturbance force causing immobilization; however the adaptation algorithm proposed

here will only be run when the vehicle is driving freely. Therefore the disturbance force

is neglected here. Using the notation of Figure 2.5, the vehicle acceleration along the

body x-axis when the robot is unconstrained is:
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Vbx = i F tract+ LF ,rollres -mg sin(q) . (2.51)

Using the same tire models proposed in Section 2.2, we define the following

parameter vector of tire constants to be identified:

=( 9, 02 93 94 95 06 97 08 9) T

= (C - A, C 2  - Rfrot -Arollfront - R2,front - Ri,rear - Aroll ,rear - R2,rear )

Using the parameter vector 9, and following the wheel velocity notation from Section

2.2:

,=V rel,fronleft V2 ~ re,,frontright 9 V3 = fwd,frontleft' 4 = fwd,frontright' V 5 = Vbx

the vehicle forward acceleration can be written as:

Vbx = nfl (sign(v1 )0, (1- e2V"I )+03v, +sign(v 3 )94(1-e6I'" )+96 v 3 )+

nfr (sign(v 2 )9,(i-e'II 2 )+ 03V 2 + sign(v 4 )94( - e'5IV4I )+ 06v 4 )+. (2.53)
2nr (sign(v5 )97 ( 1-e05I )+ 9 5)

And with initial conditions the above can be used to solve for the vehicle's velocity.

2.5.3 Adaptation Algorithm

The tire model parameters, 9, are generally unknown or poorly known functions

of many factors including tire type, tire pressure, tire wear, terrain type, terrain moisture,

etc. Rather than attempting to define a priori information for tire parameters for all

possible driving conditions, it is desired to have online, automated parameter adaptation.

This is a significant challenge as three of the parameters are nonlinearly involved in the
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model. Sensor data useful for adaptation is available from the onboard GPS and IMU.

The GPS provides an estimate of the vehicle's velocity at 1 Hz. The reported GPS

velocity estimate appears to be the average velocity over the one second interval, T,

between updates:

VGPS Vbx('r)dzr (2.54)
t-T

After estimating the vehicle's velocity by solving (2.53), we can calculate the

average estimated vehicle velocity, i(9). The IMU returns acceleration measurements

at 100 Hz which can be directly compared to the estimated acceleration calculated with

(2.53). Although the IMU data is a more direct measurement of the modeled variable, it

is desired to also utilize the GPS measurement as the IMU provides a fairly noisy signal.

The adaptation problem has been formulated as a constrained minimization

problem [38]. The adaptation is performed after each GPS update by minimizing:

f =(1 A2 1(Ad)T K (A )+ P(bs,k Vbx,k last 100accel (2.55)
2 2 kmeasurements

subject to:
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A 2.5O)

where:

-1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
A =(2.57)

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

110 0 0 0 0 0 0 0 1,

V= #)iGPS ),(2.58)

and

A j = fi"a,,ed -jo (2.59)

The term (A )T K-I(Afi) is included to control the adaptation rate, where K is a
2

positive definite gain matrix. Due to sensor noise, it is not generally desired for the

adaptation to exactly match the model to the sensor data at every time step, but rather to

tend to match the data over time. p is a positive constant used to tune the tradeoff

between GPS and IMU data preference.

The constrained minimization formulation could theoretically be solved using

Lagrange multipliers, however a closed form solution does not appear to exist for the

Chapter 2: Wheel Slip Detection For Mobile Robots on Outdoor Terrain

(2.56)

70



proposed non-linear optimization. Instead the Matlab minimization function "fmincon"

is used which utilizes a sequential quadratic programming method. Running the

adaptation algorithm on 37 seconds of test data using non-optimized Matlab code,

requires approximately 23 seconds, suggesting that the algorithm could potentially be

implemented in real time.

2.5.4 Results

Since a ground truth is necessary for evaluating the accuracy of the tire parameter

adaptation algorithm, it is not easily experimentally validated. The algorithm was instead

tested against simulated data. 37 seconds of actual wheel encoder data from the vehicle

driving over green grass was fed into the model given by (2.53), as well as the yaw rate

model discussed in Section 2.2.2. This calculation was done using a parameter vector

# , which was held constant at tre, for the first 25 seconds of simulation and then

stepped to orue,2 for the remainder of the simulation, to simulate driving onto a new

terrain type. This simulation produced the "true" velocity profile, shown in Figure 2.16.

This simulation was also used to generate simulated IMU and GPS "measurements". A

third parameter vector, sta,' was chosen as a nominal vector to initialize the adaptation

algorithm. Table 2.5 lists the parameters used for the three parameter vectors.

Using §Star , two additional velocity profiles were generated. The first was

generated using §=s,,, for the duration of the simulation, while the second was

generated using the adaptation algorithm. Figure 2.16 shows the absolute velocity error

with and without adaptation. The robot drives forward at nearly constant 1 m/s for the

first 14 seconds, then backs up and turns around, followed by driving at nearly constant
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0.5 m/s from time equals 21 to 35 seconds. We can see that after a transient period, the

error is significantly reduced using adaptation. The algorithm is also able to quickly

adapt to the parameter change at time equals 25 seconds. In this example, the average

error is reduced by 89%. The amount of error reduction will depend on how distant the

initial parameter guess is from the true value, however the improvement appears

significant since the traction parameters can change greatly over different terrains.

Table 2.5. Parameter vectors used for simulations.

1 02 03 04 05 06 07 08 09

true,1 0.52 -20 0 -0.08 -50 -0.05 -0.0075 -50 -0.02

true,2 0.40 -16 0 -0.08 -50 -0.05 -0.0075 -50 -0.02

start 0.50 -18 0 -0.10 -45 -0.05 -0.10 -45 -0.01

a
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o 1 0 1 0 s 3 s 4
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Figure 2.16. True velocity profile and velocity errors with and without adaptation.

Figure 2.17 shows the evolution of the parameter vector using the adaptation

algorithm. The velocity estimate is most sensitive to 01 and 02, and we see that these

terms are estimated very effectively. We see that none of the other terms are divergent,
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and most tend toward their true values, although some adapt very slowly, such as 08. We

should note that the algorithm does not guarantee that the parameters will reach their true

values, but simply that the velocity and acceleration errors will be reduced.
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Figure 2.17. Evolution of the tire parameters using adaptation.

In practice, robot sensors will introduce noise to the measured velocity and

acceleration used for the algorithm. To test the algorithm under more realistic conditions,
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an additional test was performed by adding generated sensor noise to the "measurements".

Zero mean white noise with variance of 0.001 m/s 2 was added to the acceleration

"measurements" and zero mean 0.05 m/s RMS noise was added to the GPS velocity

"measurements". These values were taken from the product literature and are roughly

equivalent to noise seen in practice on mid-grade commercial sensors. Figure 2.18

compares the velocity estimation error with adaptation, with and without sensor noise.

Table 2.6 compares three measures of the estimated velocity error for the three cases of

no adaptation (9 = adaptation without sensor noise, and adaptation with simulated

sensor noise. The velocity error is the difference between the particular velocity estimate

and the true vehicle speed. The percentages given for the two adaptive cases compare the

error with and without adaptation. As expected, the presence of sensor noise causes an

increase in the velocity error, however the adaptation algorithm still significantly

improves the velocity estimate over the baseline approach. Note that error values are

dependent on how close the initial parameter estimate is to the true value and on the

degree of terrain variation.

Table 2.6. Velocity errors using adaptation compared with error using 0 =9 0,.

RMS (vX - Vbx) Median IVbx - VbI Mean IVbX - Vbx

No adaptation 0.0087 0.0062 0.0065

Adaptation, no noise 0.0030 (34%) 0.000023 (0.4%) 0.00071 (11%)

Adaptation, w/ noise 0.0031 (36%) 0.00029 (4.7%) 0.0010 (15%)
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Figure 2.18. Adapted velocity estimate error with and without sensor noise.

2.5.5 Conclusions

40

In this section, a tire model parameter adaptation algorithm has been proposed.

Preliminary simulations show that the algorithm increases velocity estimation accuracy,

adapts toward the "true" tire/terrain parameters, and responds rapidly to changes in

terrain. Experimental validation of the algorithm is still required; however preliminary

results are promising.

2.6 Summary and Conclusions

In this chapter, two novel techniques for detecting robot immobilization were

presented. The dynamic model-based approach presented in Section 2.2 estimates the

vehicle speed at all time and thus has additional utility for position estimation. This

technique requires identification of a small number of vehicle traction parameters,
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although it is shown that for immobilization detection, engineering estimates of the

parameters are sufficient. Section 2.5 proposes a preliminary parameter adaptation

algorithm which may allow for increased slip estimation accuracy over highly variable

terrain. An alternate immobilization detection algorithm was presented in Section 2.3,

which uses a signal recognition based approach. This model-free technique does not

require identification of vehicle traction parameters, however it does require a priori

classifier training. Additionally, this approach only provides discrete outputs of

"immobilized" or "normal", rather than a continuous slip estimate as provided by the

more complex model-based approach. In Section 2.4 two detector fusion techniques are

proposed which were shown to increase detection accuracy and speed.

This chapter showed that common robot sensors can be used to effectively

estimate robot state information beyond their intended use. The common approach to the

methods presented is that they considered the underlying vehicle dynamics of a robot

traveling on outdoor terrain in order to find a solution.
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3
Chapter 3: SPEED INDEPENDENT VIBRATION-

BASED TERRAIN CLASSIFICATION

3.1 Introduction

Terrain characteristics can have a significant effect on vehicle handling, ride

quality, and stability. Terrain surface properties determine tire traction properties, with

large implications for longitudinal and lateral wheel slip. Additionally, terrain roughness

has the effect of varying the normal force acting on a tire, which in turn affects vehicle

characteristics [7]. For low-speed robots, terrain traction properties are of primary

concern [30], however for high speed vehicles, dynamic terrain effects must also be

considered. Classification of the terrain traversed by a vehicle can provide useful

information in many scenarios. Knowledge of terrain type can dictate the range of

possible maneuvers in hazard avoidance or road departure situations, and provide

feedback for tuning of traction control and suspension properties.

In this work we employ tactile sensing to classify terrain. Tactile sensors are

those that directly interface with the environment, such as a sensor which measures the

vehicle vibrations due to the tire ground interaction. Such sensors can provide

information unavailable to visual sensors, such as detecting a hard load-bearing surface

under a thin surface material. Brooks and lagnemma have previously proposed a wheel
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vibration-based approach to terrain classification suitable for low speed planetary

exploration rovers with rigid wheels [9],[10]. Additional, similar algorithms have

explored alternate sensor modalities, such as a body mounted IMU, for low-speed

terrestrial robots with pneumatic tires [16],[41]. None of these methods, however

consider the effect of vehicle speed on terrain vibration signature.

This chapter introduces an improved version of the vibration-based terrain

classification algorithm proposed by Brooks and lagnemma [9],[10] for high speed

motion. The Brooks algorithm was developed for low-speed planetary exploration rovers

with rigid metallic wheels and demonstrated very good performance in its intended

application. Terrestrial motor vehicles, however, experience a much larger range of

velocities. Additionally, rubber pneumatic tires dampen out many of the high frequency

vibrations exploited in the Brooks algorithm. The algorithm presented here enhances the

Brooks algorithm through the use of a dynamic model that explicitly accounts for the

effects of speed variations on vibration signature.

3.2 Algorithm Overview

3.2.1 Description of Existing Terrain Classification Algorithm

The vibration-based terrain classification algorithm proposed by Brooks takes a

signal recognition approach to classify wheel vibration time-series data. A flowchart of

the Brooks algorithm is shown in Figure 3.1. A classifier is first trained offline using

labeled training data to recognize the vibration signatures created by driving over

different terrains. The trained classifier is then utilized for online classification of

unknown terrain. In the Brooks algorithm, vibration data is recorded from a wheel
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mounted accelerometer at a fixed sampling rate (44.1 kHz). Prior to classification, the

vibration data is then broken into multiple training or testing instances of a specified

number of samples, such that each instance comprises a fixed length of time of data. The

power spectral density (PSD) is calculated for each instance and then the frequency

components are log scaled. To reduce the dimensionality of the problem, only the first k

principal components of the PSD are then used to train the classification algorithm. The

same principal components are calculated and used during online classification.

The Brooks algorithm was developed for low-speed planetary rovers with rigid

metallic wheels with grousers (Figure 3.2). In this application, the dominant wheel

vibrations are primarily due to the direct interaction between the grousers and the terrain

material, and are of relatively high frequency. At low speeds, dynamic interactions

between the wheel and the terrain geometry are minimal. For example, if the rover drives

over a rock, the wheel will most likely remain in contact with the rock during traversal, as

opposed to a higher speed vehicle which might "jump" off the rock, inducing vibrations

due to suspension dynamics.
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Figure 3.1. Flowchart for vibration-based terrain classification algorithm as
proposed by Brooks [9].
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Figure 3.2. Metal wheel with grousers used to test the terrain classification
algorithm proposed by Brooks. Box shows location of the vibration sensor.

3.2.2 Enhanced Algorithm for Dynamic Vehicles

For vehicles with rubber pneumatic tires, high frequency vibrations due to low-

speed interaction between the tire and the terrain material, such as those utilized by the

Brooks algorithm, are likely to be damped by the tires and vehicle suspension. At high

speeds, terrain geometry will exert measurable accelerations on the wheel, and these

relatively low-frequency effects are typically the dominant vibrations. Terrain material

does still affect the measurable vibrations, since the deformability of the terrain can

modulate the impact of terrain geometry on wheel acceleration.

Varying vehicle speed over a given terrain profile has two primary effects on the

measurable wheel accelerations: modulating frequency and amplitude. The temporal

frequency of the wheel accelerations is directly proportional to the vehicle speed. For

example, a vehicle driving over a bumpy road will impact each bump quicker as the

vehicle speed increases, increasing the frequency of the measured accelerations. The
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amplitude of the wheel accelerations is also related to the vehicle speed. In general,

driving over a bump at higher speed produces larger vertical wheel accelerations than

driving at lower speed, as the wheel must traverse the bump in a shorter time. The

amplitude effect is a function of the vehicle suspension and input frequency and will be

explored further in Section 3.3.1.

The classification algorithm presented in this thesis explicitly considers the

frequency and magnitude effects, resulting in an algorithm that can accurately classify

terrain at varying vehicle speeds. The key idea of the modification is that the measurable

wheel accelerations are the product of an underlying terrain profile/material combination.

If the profile can be estimated, then terrain classification can be performed on this

estimate, which is decoupled from the vehicle dynamics.

Figure 3.3 shows a flowchart for the modified algorithm. The measured time-

domain wheel acceleration is passed through the inverse of the combined tire and

suspension dynamics to produce an estimate of the road profile as a function of time

(y(t)). Next, the absolute value of the vehicle speed is integrated to estimate the vehicle

displacement (x(t)), which is combined with the road profile to form an estimate of the

terrain elevation versus displacement (y(x)). Similar to the Brooks algorithm (though in

the spatial, rather than temporal, domain), the profile signal is segmented into instances

of constant displacement, broken into spatial frequency components, and then the first k

principal components are used for classification. The algorithm uses a similar approach

of training a classifier offline with labeled training data, before performing online

classification of unknown terrain.
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Figure 3.3. Flowchart for modified speed-independent vibration-based terrain

classification algorithm presented in this thesis.

3.3 Waveform Representation

3.3.1 Profile Estimation

To estimate the terrain surface profile, we calculate the tire-suspension dynamics

using a standard quarter-car model [51], shown in Figure 3.4. The quarter-car model

represents the dynamics of one wheel of the vehicle attached to the vehicle body through

a suspension. The model consists of the "sprung" mass, m,, which is one quarter the

mass of the vehicle body, and the "unsprung" mass, m, which is the mass of a single

wheel and attached suspension components. The road height under the tire at time t is

Yroad(t), and the rate of change of the road height, 5 ,ra(t), acts as a flow source input to
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the rim of the tire. The rubber pneumatic tire is modeled as a spring and damper, kr, B,,

between the road and the unsprung mass. The vehicle's suspension is modeled as an

additional spring and damper, ks, Bs, between the unsprung and sprung masses. Linear

spring-damper models are used in this work, however in general a nonlinear spring-

damper could be used if such a model is known for the test vehicle. The vertical

velocities of the unsprung and sprung masses are vu and vs, respectively. Du and Ds are

the spring compression distances.

Vs

Ks B

Ds{ K___ _B_

V u

DU Kt Bt

Vroad

7road

Figure 3.4. Diagram of quarter-car model.

After summing the forces acting on each mass, the following state-space model of

the quarter car dynamics can be obtained:
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BS B K

Vs Is Is Is vs 0
B, B,+B, K, K,

m~ m 5  v~ B~ 31
U _ Mn, in,, in, , + road (3.1)

-1 1 0 0 Ds 0

b D 1
- 0 -1 0 0 A "-

From the above state-space model, the following transfer function of the unsprung mass

vertical velocity, vu, from the road input, roas , is obtained:

vu (s) m,m. B, s' +(mKt +mBB, )s2 +(mBKs +BK, )s+KK,
Yroad(s) m Ums4 +(mB, +m5 B, +mB, )s 3 +(mK, +mK, +BB, +mUSK,)s 2

+(BK, +BKs)s+KK,

The above transfer function relates the wheel vertical velocity to changes in the

road elevation. However, the wheel vertical acceleration can be more easily measured

with low cost sensors than the vertical velocity. In transfer function form, it is simple to

find the desired relation for wheel acceleration from road input as:

-(s) sv (s) v(s) (33)
Yroad(S) proad(S) (proad(s)

Figure 3.5 shows a Bode plot of this transfer function using the parameters for the

experimental test vehicle described in Section 3.5.1. The tire and suspension act as a

high-pass filter (from road velocity to tire acceleration), with road input frequencies

above about 50 radians/sec (8 Hz) significantly affecting wheel accelerations. This is

intuitive, as a constant road input velocity would drive the unsprung mass at a constant

velocity, thus the acceleration would be zero.
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The road input frequency is a function of the wavelength of terrain features and

the vehicle speed. Table 3.1 shows terrain wavelengths corresponding to combinations of

input frequency and two vehicle speeds representative of city/off-road and highway

driving. The table also gives representative feature types for each wavelength, with some

type definitions from [42]. At typical automotive driving speeds, road inputs below 10

radians/sec correspond to changes in slope and elevation and do not contain significant

information on terrain composition. Additionally, the quarter car model assumes a point

contact between the tire and terrain, however a typical automotive tire will have a contact

patch length on the order of 10 cm due to deformation of the rubber tire. The contact

patch will provide additional damping to high frequency, small wavelength terrain inputs.

Thus the bulk of useful terrain information will be contained between 10 to 1,000

radians/sec (1.6 to 160 Hz) at typical automotive speeds.
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Figure 3.5. Bode plot of (3.3), unsprung mass acceleration from terrain profile
velocity input.
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Table 3.1. Terrain wavelengths corresponding to combinations of vehicle speed and
road input frequency.

Profile Input Frequency Vehicle Speed Wavelength Feature types

1 rad/sec 11 m/s (~ 25 mph) 69 m Hills / slopes

(0.16 Hz) 27 m/s (~60 mph) 170 m Hills / slopes

10 rad/sec 11 m/s (~ 25 mph) 6.9 m Small hills / slopes

(1.6 Hz) 27 m/s (~ 60 mph) 17 m Small hills / slopes

100 rad/sec 11 m/s (~ 25 mph) 0.69 m Very coarse gravel

(16 Hz) 27 m/s (~ 60 mph) 1.7 m Boulders, speed bumps

1,000 rad/sec 11 m/s (~ 25 mph) 0.069 m Coarse gravel

(160 Hz) 27 m/s (~ 60 mph) 0.17 m Very coarse gravel, cobblestone

10,000 rad/sec 11 m/s (~ 25 mph) 0.007 m Very fine gravel

(1,600 Hz) 27 m/s (~ 60 mph) 0.017 m Fine/medium gravel

The model in (3.3) provides an indication of what terrain signal will be

measurable via an accelerometer mounted on the unsprung mass. However, for

classification, we wish to estimate the terrain profile, given the measured acceleration.

First the transfer function for the unsprung mass acceleration as function of profile height

is found as:

=v) (s S =S2( (3.4)
Y roas (s) ( road (s) yad (S)

Then the desired transfer function for road profile from unsprung mass acceleration is

taken as the inverse of (3.4) such that:
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Yroad (s) 1 1(35)

9(s) ()v(s
(Y road (s)) -road (s))

Substituting in (3.2) yields the desired model for estimating road profile from measured

vertical wheel acceleration:

mms 4 +(mBS +mB, +m.BS)s 3 +(mK, +msK, +BSB, +mUSK,)s 2

Yroad (s) +(BK, +BK,)s+KK,
- (3.6)

,(s) msmu5Bts 5 +(mK, +mSBB, )s4 +(muBKs +BK, )s 3 +KSKts 2

Figure 3.6 shows a Bode plot of (3.6). The response is similar to a double

integrator below 6 radians/sec (1 Hz) and a single integrator above 1,000 radians/sec (160

Hz). A constant acceleration measurement at the unsprung mass requires the wheel to be

constantly accelerating, such as while free falling; thus the high gain at low frequencies

corresponds to a step in the road profile. Typical accelerometers, however, have near

constant measurement biases. These biases can be partially estimated and removed,

however any uncompensated accelerometer bias can cause large profile deviations, which

appear as terrain slopes. For classification, only profile features on the relatively small

scale of terrain composition are desired. Large scale features, whether part of the true

profile or caused by sensor errors, will be removed before classification. In some cases,

damping in the pneumatic tire is not included in quarter-car models. Figure 3.7 shows a

bode plot of (3.6) using Bt = 0. Comparing this with Figure 3.6, we see that the tire

damping provides high frequency damping in the transfer function from tire acceleration

to road profile. Thus, inclusion of the tire damping has the added effect of reducing the

impact of high frequency sensor noise.
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Figure 3.6. Bode plot of (3.6), profile estimate from wheel acceleration input.
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Figure 3.7. Bode plot of (3.6) with no tire damping (B= 0). Note constant gain at
high frequency.

To estimate the road profile, a discrete-time transformation of (3.6) is applied to

the measured acceleration using standard techniques, after first subtracting the

acceleration due to gravity from the measurement. To remove large-scale terrain

elevation content a quadratic best fit is performed on a moving data window (A one

second window has been used here) and subtracted from the estimated profile, leaving

only the relatively high frequency terrain profile information, y(t). Some remaining low

frequency content will be removed in the spatial domain, after impulses are filtered as

discussed in Section 3.3.2. Large-scale terrain elevation removal could also be

accomplished using a properly designed high pass filter.

Next the vehicle displacement is estimated from the measured vehicle speed as:

Chapter 3: Speed Independent Vibration-Based Terrain Classification 92



x(t)= fvehicle speed(t)jdt (3.7)
0

Then it is straightforward to restate the profile in spatial, rather than temporal,

coordinates as 5(x).

Two additional manipulations are required to produce a profile estimate suitable

for classification. When the vehicle is stopped, unique accelerometer data is collected in

the temporal domain; however, because vehicle displacement is zero during this time,

redundant data points, 5(X(tstppd)), are created at x(tstopped). The N redundant points are

removed and assigned the mean value of the profile each time the vehicle stops such that:

5(x(ts,,,pd ,)= y(x) (3.8)
N

5(x) is the profile estimated at constant temporal sampling frequency. However, for the

spatial frequency decomposition performed in Section 3.3.3, the profile must be sampled

at constant spatial frequency. The final profile estimate, y(x), is obtained by interpolating

f(x) at constant spatial intervals, Ax. A piecewise cubic spline interpolation has been

used. The choice of Ax determines what the maximum spatial frequency will be and will

be discussed further in Section 3.3.3.

It should be noted that the profile estimate is not expected to exactly match the

true road profile, but instead is a representation of the profile as seen by the vehicle. The

quarter car model assumes that the tire has point contact with rigid terrain. As mentioned

previously, the tire has a finite contact patch due to deformation of the tire. The tire

therefore filters some small wavelength terrain features from affecting the vehicle
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dynamics. These features are not measurable via the wheel mounted accelerometer and

will thus not be included in the profile estimate. Additionally, terrain is not, in general,

perfectly rigid. Driving over a speed bump-sized lump of a deformable terrain, such as

soil, will excite the suspension dynamics less than driving over a rigid asphalt speed

bump. In the deformable case, the profile estimate will be a representation of a rigid

profile with the same effective suspension excitation as the true deformable profile.

Although the profile estimate is not expected to be exactly accurate, it is believed to

capture the effective profile information relevant for suspension excitation. Figure 3.8

show a relatively flat asphalt profile estimate and Figure 3.9 shows a rumble strip profile

estimate with a low-frequency, periodic profile. Despite the inherent inaccuracies, the

profile estimates appear qualitatively correct.
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Figure 3.8. Estimated asphalt profile. Tire shown to scale.
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Figure 3.9. Estimated rumble strip profile. Tire shown to scale.

3.3.2 Impulse Detection and Removal

In Section 3.3.1 the road profile, y(x), was estimated. Terrain-type classification

will be performed on the estimated profile after one additional pre-filtering step. The

profile of terrain impulses, such as potholes in streets, is not representative of the profile

of the underlying terrain type. Therefore, impulses are detected and removed from the

profile estimate before performing classification. Knowledge of impulse locations may

be useful and this information can be retained to be processed separately from the terrain

classification algorithm.

The impulse detection developed for this algorithm is based upon the following

idea: variation (standard deviation) in a road profile should be relatively constant over a

given terrain type. An impulse in the terrain will create a sharp, brief increase in the

Chapter 3: Speed Independent Vibration-Based Terrain Classification 95



profile variation, whereas changes in terrain provide relatively long term changes. The

following process has been developed to identify impulses, with values adopted for this

work given in parentheses:

1. Calculate the standard deviation of the road height over a short moving

window (1 meter).

2. Calculate a moving average of the standard deviation calculated above, over a

longer window (16 meters).

3. Check if the short-scale standard deviation calculated in 1) is greater than a

specified multiple (3x) of the large-scale average calculated in 2). If larger,

label the point as an impulse.

4. For each detected impulse, "grow" the impulse back by a set distance (0.2

meters). There is a delay in the detection of the impulses due to 1) being

calculated over a window and because the spike must exceed a threshold

before the impulse is detected. Growing the labeled section back accounts for

this delay. Since the goal is to remove the data including the impulse before

classification, the growth should err on the large side.

Figure 3.10 shows an example of the impulse detection from the experimental

data. The bottom plot shows the points where impulses have been detected. Analysis of

driving video has shown that impulses are correctly identified using this detection scheme

when the vehicle hits sharp bumps or dips in the terrain. It should be noted that this

impulse detection scheme may initially label transitions from relatively smooth to rough

terrains as an impulse, however the impulse will only be detected briefly at the initial

Chapter 3: Speed Independent Vibration-Based Terrain Classification 96



terrain transition point because the standard deviation is compared to a moving average

of itself.

14

3.5

3

2.5

2

1.5

1

0.5

U
19

.2

51

0
19

x 10-3

00 1920 1940 1960 1980 2000 2020 2040 2060 2080 21

.......... x.. ... .

1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
Displacement (m)

00

Figure 3.10. Impulse detection example.

After impulses are detected, they are removed from the data used for

classification. Figure 3.11 illustrates the impulse removal process. The procedure begins

with a profile estimate vector, y(k), where k is the index of the terrain height vector

developed in Section 3.3.1, at uniformly spaced displacements x(k). Impulses are

identified using the above procedure, with a given impulse having "impulse start" index

ki and "impulse end" index ki,. The impulse is removed (Figure 3.11 .c) by eliminating

y(ki,+1) through y(kie+1) to form the truncated profile vector y' where:

Chapter 3: Speed Independent Vibration-Based Terrain Classification

- 16 m avg of std
-- 1 m std of profile

0
I-
Ct)

i

97

.........................

.. ............. . . . . . . . . . . . . . . . . . . .

.. ............. . . . . . . . . . . . . . . . . . . .

.. . . . . . ... . . . . . ......

........................ ........

.. . . . . .. . . . . . . . . . . .-

-.. . .. . . -. . . . . . -

-

-

00



y'=[--,y(k_2),y (k_1), y (ki, ), y(k ),y(k2), - (3.9)

Finally the profile estimate following the removed impulse is adjusted to be

zeroth-order continuous (Figure 3.11 .c):

y (k= y'(k) for Vk < k
y"(k) = (3.10)

y'(k)+(y(kis)-y(ki,)) forVk>ks

The above procedure is repeated to remove all detected impulses from the profile

vector before classification.

After the impulses are identified and removed, a moving average is subtracted

from the estimated profile to eliminate any remaining DC offset and low frequency

terrain effects. This step should be performed even if impulses are not removed. In this

work a moving average window of 10.24 meters (512 instances) has been used. For

notational convenience, the profile vector in the following sections will be referred to as y,

without the double prime notation. Unless otherwise noted, it is assumed in future

sections that impulses have been removed from the profile estimate vector such that

y=y.
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Figure 3.11. Illustration of impulse removal process.

3.3.3 Spatial Frequency Components

Next the profile estimate is broken into I short segments of length L. L is chosen

as a compromise between two competing requirements. L sets the classification

resolution; a terrain patch should be at least L long to be correctly classified, making a

smaller value of L desired. L also determines the resolution of spatial frequencies the

signal can be decomposed to using a Fourier transform, where:

Af . = nun
4  = - -Ax =-""numPoints Ax L L

(3.11)

where Ax, which cancels in this equation, is the spatial spacing of the profile data points

from Section 3.3.1. Small Af.n is desired to extract the maximum information for

classification from the data. For this work, L was chosen as 4 meters, which allows
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classification of terrain patches on the order of one car length and a spatial frequency

resolution of 0.25 cycles/m.

The choice of Ax in Section 3.3.1 is also determined by frequency domain

considerations. The spatial sampling frequency is:

f, = x -(3.12)

And the Nyquist frequency is then:

fNyquist = ... {lJ (3.13)
2 2A)_

The Nyquist frequency is the highest spatial frequency that can be resolved from the

profile data and therefore corresponds to the minimum feature size which can be

distinguished from the terrain. However, it does not make sense to choose Ax

significantly smaller than the distance traversed by the vehicle in one temporal sampling

interval traveling at normal operating speeds. In this work, Ax was chosen as 0.02 meters.

The spatial power spectral density (PSD) of each of the terrain profile segments is

calculated using Welch's method [50]. The PSD is then log-scaled. We will use the

notation Pf.,Y* to represent the log-scaled power at frequency i of terrain profile segment

j. The frequencies range from fmin = 0 to fax = fNyquist. To reiterate, the frequency

components are spatial frequency components of the estimated road profile in units of

cycles/meter, which are independent of the vehicle speed. These frequency components

will be utilized in the following classification algorithm.
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3.4 Classification Algorithm

The remainder of the terrain classification algorithm, described below, closely

follows the approach suggested by Brooks [9],[10], except using the profile spatial

frequency components, rather than vibration temporal frequency components.

Additionally a support vector machine (SVM) classifier is used for speed and

convenience, rather than the Fisher linear discriminent analysis based classifier utilized

by Brooks. The classification algorithm begins with offline, a priori, training of the

classifier using labeled training data of desired terrain types, followed by online

classification of unknown terrain.

3.4.1 A PrioriTraining

The purpose of a priori training is to teach the classifier to recognize the profile

signatures of different desired terrain types. Data is collected by driving over known

terrain types. In theory the driving speed for the training data can be arbitrary, however

in practice improved results are likely achieved by collecting data at the range of

expected driving speeds, due to unmodeled nonlinearities in the vehicle suspension. The

training data collected for this work was collected during normal driving at non-constant

speeds, which did not necessarily correspond to testing data driving speed.

Data is collected using an accelerometer mounted to the vehicle suspension with

its axis inline with the direction of suspension travel. Measured unsprung mass vertical

accelerations from the entire training data set are converted to a profile estimate, impulses

are removed, and the profile is broken into segments which are decomposed into spatial

frequency components as discussed in Section 3.3.3. For training, the profile is broken
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into 1 non-overlapping segments such that all data is only used once. The frequency

components of each terrain segment are then placed in a matrix, Y, as:

Pf-in-Y PfmmnY

Y=[: .: (3.14)

_P,".Y --- P,".Y

In this form, each column of Y contains the frequency components of a single terrain

segment. Y has a large number of frequency components which represents an unwieldy

feature space for efficient classification. To reduce the dimensionality, principal

component analysis is used to form a smaller set of components which contain the most

signal to perform classification on.

First the rows of Y are mean-adjusted to form the matrix Y%

mean(P

f =Y - : R1 - 1]. (3.15)

[mean(Pf)J

Singular value decomposition [9],[22] is next used to separate Y into three matrices, Ua,

Sa, and Va, such that:

Y =UaSaV . (3.16)

Ua is a unitary matrix with the principal components of Y as columns, Sa is a diagonal

matrix of singular values, and Va is a unitary matrix with the principal components of fT

as columns. To reduce the dimensionality of the classification problem, only the
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principal components containing the majority of the signal variation are desired. To

derive the first n principal components, first the matrix Usignai is formed from the first n

columns of Ua, and Ssignal is formed from the upper-left n x n block of Sa. Choosing too

high a value for n, can result in overtraining the classifier to recognize noise in the

training data and decrease the performance when classifying new data [9]. For this work,

the first ten principal components have been used (n = 10). Finally the principal

components of the terrain profile spatial frequency content are calculated as:

Wraining = S Unal UiY. (3.17)

Wraining will be an n x I matrix of the form:

PC,, --- PC

Wraining : . : . (3.18)

LPCZ, ... PC I

Terrain classification will be performed using an SVM classifier, as used in

Section 2.3.2 for immobilization classification. Each distinct terrain type is assigned a

unique positive integer label. And an 1 x 1 training label vector, c =[c, -- c, ]T, is

formed using the known terrain labels for the training data. The SVM is then trained

using the same procedure discussed in Section 2.3.2 for choosing SVM parameters and

linearly scaling the features. Wraining is used for the feature-instance matrix, X. The

principal component vectors (defined by S;4IT,,), feature scale factors, and trained

SVM model are retained for online classification.
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3.4.2 Online Classification

During online classification, wheel accelerometer data is collected at the same

rate as for the training data. The accelerometer data is converted to a profile estimate as

discussed above. For this work, the terrain is classified each time the vehicle travels over

a unique terrain patch of length L. In practice, the classified terrain patches can overlap

for increased terrain transition detection resolution (In general, a moving patch of length

L will include greater than 50% of a new terrain type before a sequential, non-

overlapping patch).

For each profile segment, the PSD is calculated, and the log-scaled elements are

placed in the vector:

fmin 'Ytesr

Ytest = . (3.19)

-max Ytest_

And the principal components calculated for the training data are calculated for the online

segment using the same transformation matrices, Ssignai and Usignai:
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,,= S- JU y,, (3.20)Wtest signal U signal test (.0

PCYtest

Wtest = (3.21)

[PCnYtest

3.5 Experimental Results

3.5.1 Experimental Platform

A standard coupe-style passenger vehicle, a 1994 BMW 325is, has been

instrumented to experimentally validate the terrain classification algorithm presented in

this work (Figure 3.12). Approximate quarter-car model parameters have been identified

for this vehicle and are listed in Table 3.2. An Analog Devices ADXL320 dual-axis

accelerometer has been mounted to the suspension as shown in Figure 3.13, with one axis

aligned with the vertical suspension travel. The accelerometer has a dynamic range of

±5.0 g's and is low pass filtered at 250 Hz, yielding a 5 mg resolution. The

accelerometer is sampled at 512 Hz using a PC104-based data logging system equipped

with a Diamond Systems Diamond-MM-32-AT data acquisition board with a 16-bit A/D

resolution. The electronics package (Figure 3.14) is also equipped with a Novatel

ProPak-G2plus GPS receiver used to measure vehicle speed and a Crossbow AHRS400

inertial measurement unit (IMU) to measure vehicle tilt and acceleration. The IMU-

based vehicle acceleration measurements were used in a simple Kalman filter to augment

the GPS velocity measurements between samples and during periods of poor GPS

reception.
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Figure 3.12. The experimental vehicle.

Table 3.2. Quarter car model parameters used for experimental vehicle.

Parameter Value

M, 325 kg

M", 32.5 kg

k., 22.22 kN/m

k, 254.8 kN/m

B, 2,250 kg/s

B, 50 kg/s

Figure 3.13. Accelerometer mounting location on experimental vehicle suspension.
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Figure 3.14. The experimental electronics package.

3.5.2 Results

The experimental vehicle was driven over -12 km of real-world driving

conditions near Middlesex Fells, Massachusetts, in fair weather. The driving was on

public roads and included many turns, starts, and stops. The vehicle was driven over a

large variety of asphalt road surfaces including smooth highways, town roads, rough

parking lots, and numerous potholes. Additionally the vehicle was driven on a brick road,

a gravel parking lot, a highway rumble strip, and a grass shoulder. Figure 3.15 shows
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examples of the brick, gravel, and grass terrain types with a screwdriver in the picture for

scale. Table 3.3 shows the number of 4 meter long instances of each terrain type used for

training and testing the classifier algorithm. Due to the small amount of grass data

available, the classifier was not trained to detect grass. The grass data was included when

testing the algorithm to give an example of how an untrained terrain type is handled. The

vehicle was driven at "normal" speeds ranging from 0 to 104 km/hr (0 to 29 m/s). The

training data had a spatial mean vehicle speed of 41 km/hr (11.4 m/s) and spatial median

of 21 km/hr (5.8 m/s), while the testing data had a spatial mean speed of 57 km/hr (15.8

m/s) and spatial median of 55 km/hr (15.3 m/s). Both the training and testing data were

hand-labeled with the "true" terrain type, to compare against the algorithm result. Small

errors in the hand labeling are possible, and thus perfect classification accuracy should

not be expected.
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Figure 3.15. Photos of brick, gravel, and grass terrains.

Table 3.3. Number of 4 meter long training and testing instances by terrain type.

Terrain Type Training Instances Testing Instances

Asphalt 258 2200

Brick 68 52

Gravel 106 177

Rumble Strip 34 35

Grass 0 7

Total Instances 466 2471

Total Distance 1.9 km 9.9 km

The proposed classification algorithm was run on the -10 km of testing data.

Table 3.4 shows the classification results by terrain class with data classified with less

than 65% confidence labeled as "unknown." For all terrain types the majority of data

was either labeled correctly, or as "unknown." 89.3% of data instances were correctly

labeled, 8.2% were labeled "unknown," and only the remaining 2.5% were incorrectly
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labeled. Of the labeled data, 97.3% was correctly labeled. Additionally, the majority of

the grass data was labeled as unknown, demonstrating the algorithm is reasonably robust

to untrained terrain types. Overall the classification results are quite good, particularly

considering that besides the grass, each terrain type is a "hard" surface and might be

expected to give a similar vibration signature.

Figure 3.16 shows a 2.5 km subset of the 10 km of test results. The top plot

shows the vehicle speed, the middle plot shows the actual and predicted terrain types, and

the bottom plot shows the probability estimate. For readability, the terrain types in the

middle plot have been decimated by a factor of 3.

Table 3.4. Classification results using enhanced algorithm with 65% threshold.

Actual Label:

Asphalt Brick Gravel Rumble Strip Grass

Asphalt 92.9% 13.5% 4.0% 16.7% 42.9%

Brick 0.1% 40.4% 4.0% 0.0% 0.0%

Gravel 1.1% 9.6% 70.6% 2.8% 0.0%

Rumble Strip 0.0% 0.0% 0.0% 50.0% 0.0%

Unknown 5.9% 36.5% 21.5% 30.6% 57.1%
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Classified Accuracy: 97.26%. Total Accuracy: Correct: 89.32%, Unknown: 8.16%, Incorrect: 2.52%
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Figure 3.16. Subset of terrain classification results using enhanced algorithm
presented in this thesis. Percentage accuracies are for entire 10 km test set.

The intent of the proposed algorithm is to develop an algorithm suitable for

dynamic vehicles traveling at arbitrary speeds. Figure 3.17 shows the classification

accuracy versus vehicle speed. The figure shows both the percentage of correctly

classified instances out of all instances in the speed range, and the percentage correctly

classified instances out of the classified instances. Over all speed ranges, over 90% of

the labeled data is correctly labeled. The slightly lower accuracy at low speed is likely

due to the increased amount of non-asphalt data at lower speed.
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Some algorithm tuning is possible with the choice of SVM parameters. For the

results presented above, SVM cross-validation was performed to maximize the

classification accuracy for all terrain classes, giving equal weight to each class. An

alternative metric is to choose parameters resulting in the highest total accuracy. Using

such a metric, 90.2% of data was classified correctly; a small improvement over the

89.3% accuracy given above. However, as shown in Table 3.5, because more asphalt

data was available than other terrain types, this metric has the effect of overtraining the

classifier to detect asphalt and results in decreased classification accuracy for the other

terrain types.
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Table 3.5. Classification results using enhanced algorithm with SVM parameters
chosen to provide maximum combined accuracy. Note overtraining for asphalt

classification at expense of accuracy on other terrains.

Actual Label:

Asphalt Brick Gravel Rumble Strip Grass

Asphalt 95.5% 23.1% 7.3% 22.2% 14.3%

Brick 0.0% 23.1% 1.1% 0.0% 0.0%

Gravel 0.5% 17.3% 56.5% 0.0% 0.0%

.5 Rumble Strip 0.0% 0.0% 0.0% 47.2% 0.0%

Unknown 4.0% 36.5% 35.0% 30.6% 85.7%

Table 3.6 and Figure 3.18 show the classification results using the enhanced

terrain classification algorithm, but without filtering impulses from the data before

classification. The classified accuracy is actually increased to 98.4%, from 97.3%,

however this is at the expense of more data being labeled "unknown". The algorithm

appears to assign an "unknown" class to the majority of instances containing impulses.

However there are two benefits to impulse removal. First, detecting the presence of an

impulse provides more information than labeling the instance containing the impulse as

"unknown." Second, an impulse is generally shorter than the 4 meter terrain segments.

If labeled as an impulse, only the data containing the impulse is removed, however, if

labeled as unknown, the entire 4 meter segment is unclassified.
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Table 3.6. Classification results using enhanced
impulses.

algorithm without removing
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Actual Label:

Asphalt Brick Gravel Rumble Strip Grass

Asphalt 93.7% 13.2% 1.1% 2.7% 14.3%

Brick 0.2% 3.8% 1.7% 0.0% 0.0%

Gravel 0.6% 5.7% 48.3% 0.0% 0.0%

.9 Rumble Strip 0.0% 0.0% 0.0% 73.0% 0.0%

Unknown 5.5% 77.4% 48.9% 24.3% 85.7%

Classified Accuracy: 98.44%. Total Accuracy: Correct: 87.97%, Unknown: 10.64%, Incorrect: 1.39%
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Figure 3.18. Subset of terrain classification results using enhanced algorithm
without removing impulses.

The data was also classified using the original time-based algorithm proposed by

Brooks [9], where the frequency components are calculated directly from the measured

time-domain vibrations. The Brooks algorithm originally used a Fisher linear

discriminent analysis based classifier; however the SVM-based classifier was used here.

Otherwise the Brooks algorithm has not been modified. As shown in Table 3.7 and
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Figure 3.19, the unmodified algorithm yields significantly poorer results for a dynamic

vehicle with rubber-pneumatic tires than the enhanced algorithm presented here.

Table 3.7. Classification results using the unmodified time-based algorithm.

Actual Label:

Asphalt Brick Gravel Rumble Strip Grass

Asphalt 68.7% 15.2% 26.2% 0.0% 0.0%

Brick 6.0% 27.8% 10.5% 0.0% 63.6%

Gravel 5.3% 21.5% 34.2% 0.0% 0.0%

.9 Rumble Strip 0.0% 0.0% 0.0% 0.0% 0.0%

Unknown 20.0% 35.4% 29.2% 100.0% 36.4%

Classified Accuracy: 77.24%. Total Accuracy: Correct: 59.65%, Unknown: 22.78%, Incorrect: 17.57%
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Figure 3.19. Subset of terrain classification results using the unmodified time-based
algorithm.

3.6 Summary and Conclusions

An algorithm has been presented for supervised classification of terrain for

dynamic vehicles. The algorithm creates an estimate of the terrain profile from measured

wheel accelerations. Spatial frequency components of the estimated profile are used as

speed-independent features for classification. Excellent algorithm performance has been

Chapter 3: Speed Independent Vibration-Based Terrain Classification

0

M



experimentally demonstrated driving on multiple terrain types at a wide range of vehicle

speeds. Algorithm performance has been shown to be superior to a baseline algorithm

which does not consider the effects of vehicle speed. In addition to the profile estimation

algorithm, a novel technique for detecting terrain impulses has been developed which can

accurately detect impulses such as potholes.

Future work should explore the accuracy of the road profile estimate versus

measured profiles and explore alternate uses of the profile estimate, such as road

roughness estimation. Additional future work should validate the algorithm on additional

vehicle and terrain types.
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4
Chapter 4: CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

4.1 Contributions of this Thesis

This thesis has presented novel sensing and estimation algorithms for two

significant terrain related problems for dynamic outdoor mobile robots. In Chapter 2,

algorithms were presented for detecting wheel slip and robot immobilization using non-

task specific sensors. In Chapter 3, an algorithm was presented for estimating the

traversed terrain profile and classifying terrain type.

The major contribution of Chapter 2 is the development of longitudinal wheel slip

estimation algorithms suitable for specific sensor deprived situations. Wheel slip

estimation is trivial if a vehicle has at least one undriven wheel equipped with a speed

sensor. However, in some situations, mounting a sensor on an undriven wheel is not

practical, and for all-wheel-drive vehicles, wheel slip is expected on all wheels, making

such an approach impossible. Prior approaches have utilized electric drive motor current

or vehicle mounted video to solve the wheel slip problem, however these approaches are

not always feasible, as discussed in the text. The author is aware of no prior work which

has solved the problem using only driven wheel speed and noisy inertial measurements

on outdoor terrain. This thesis has presented two novel techniques for solving this
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problem, a dynamic model-based estimator, and a signal recognition-based approach.

For the dynamic-model based approach, a simplified tire traction/braking model was

developed, which is suitable for fast online estimation of tire forces. A preliminary

adaptation algorithm was also presented for automatic identification of traction

parameters.

The major contribution of Chapter 3 is the development of a tactile, vehicle speed

independent, terrain classification algorithm. Prior work has utilized both wheel and

body mounted sensors to measure the tactile response of a vehicle to different terrain

types. However, the author is aware of no previous work which has specifically

considered the effects of changing vehicle speed on the measured vehicle terrain response.

All prior work the author is aware of has been demonstrated at only very low, constant

speed. Excellent performance with the proposed algorithm has been experimentally

demonstrated on an automobile driving over multiple terrain types at the full range of

typical driving speeds. Additionally, as part of the classification algorithm, an algorithm

was developed for estimating the traversed terrain profile using an inexpensive wheel

mounted accelerometer.

4.2 Suggestions for Future Work

Many extensions to the work presented in this thesis are possible ranging from

additional experimental validation to further theoretical development. The dynamic

model-based wheel slip estimation algorithm presented in Section 2.2 estimates true

vehicle speed, however the experimental data available only included enough information

to validate immobilization detection. Future work should compare estimated vehicle

speed with a ground truth measurement and investigate the effect of tire model
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parameters on the velocity estimate. Future work should then expand the presented

framework to create a vehicle position estimate that is robust to wheel slip. Future work

should also experimentally validate and improve the proposed tire model adaptation

algorithm.

The proposed terrain classification algorithm has been experimentally validated

using one vehicle type on five terrain types. Future work should validate the algorithm

on additional terrain and vehicle types. Additional work should investigate the preferred

applications of the proposed algorithm. For example, terrain classes assigned in this

work were specific terrain names, such as "gravel" or "asphalt." However these terrain

names may not effectively capture the specific effect of the terrain on the vehicle. Rough

asphalt may affect the vehicle response the same as brick, but very differently than

smooth asphalt. Thus, it may be more useful to define terrain classes as more descriptive

groups, such as "hard, flat surface" and "hard, rough surface." These definitions should

be formulated with a specific application, such as traction control or automatic

suspension tuning, in mind. Future work should also explore the accuracy of the profile

estimate and explore direct applications of this estimate. Some possible uses include

creating a "roughness" measure or using the estimated terrains as simulated terrain in

vehicle simulations.
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