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Abstract

Unmanned underwater vehicles have various missions within civilian, military and
academic sectors. They have the ability to explore areas unavailable to manned as-
sets and to perform duties that are risky to humans. In particular, UUVs have the
ability to perform bearings-only tracking in shallow areas near shorelines. This thesis
presents a guidance algorithm for this particular mission. This thesis first presents
a Modified Polar Extended Kalman Filter for the estimation problem. Bearings-only
tracking is a nonlinear problem that requires some sort of estimator to determine the
target state. The guidance algorithm is developed based on the relative positions of
the observer and the target. In order to develop the guidance algorithm, the effec-
tiveness of a variety of course maneuvers are presented. The effectiveness of these
maneuvers are analyzed both quantitatively and qualitatively. The results from this
analysis is incorporated into the final guidance algorithm. This thesis also evaluates
the developed guidance algorithm through a series of simulation experiments. The
experiments explore a variety of scenarios by varying speed, geometry and acoustic
environment. The results of the experiments are analyzed based on estimation errors
and detection time. The final conclusions indicate that some of the geometries are
more favorable than others. In addition, the degree of noise in the acoustic envi-
ronment affects the range of the UUV's sensors and the UUV's ability to perform
bearings-only tracking for an extended period of time. In addition, the desired speed
ratio is one in which the observer is either the same speed as or slower than the
target.
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Thesis Supervisor: Michael Triantafyllou
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Unmanned Underwater Vehicles

Autonomous vehicles allow humans to explore places that were previously unreach-
able to them. They also provide access into areas that are too dangerous or too
risky for humans to enter. This is constant through all environments but especially
underwater. The realm under the oceans is mostly a mystery to humans. However,
unmanned underwater vehicles (UUVs) provide new and insightful information about
this underwater world.

1.1 Missions for UUVs

The missions for UUVs are vast and diverse. They have topographical, archeological,
oceanagraphic, reconnaissance and other types of operations. UUVs have been used
to photograph the Titanic, examine steam vents, map the ocean floor and detect
mines, to name a few specific missions. They provide access to the depths of the
ocean as well as the shallows.

UUVs can withstand pressures that manned vehicles can not. They can also
operate in littoral areas without risking human lives. Littoral areas are the ocean
areas near the shore. The smaller size of the UUVs allows them to operate in areas
too shallow for larger vessels.

These differences allow UUVs to perform missions that are-either impossible for
a larger platform to accomplish or that are too dangerous for a human to perform.
UUVs have missions in both civilian and military arenas. In 2004, the US Navy re-
leased an update to its UUV Master Plan in which the main missions for UUVs
included maritime reconnaissance, undersea, search and survey (both for oceano-
graphic and mine countermeasures), communication/navigation network nodes and
anti-submarine warfare [29]. Current. missions for UUVs include inspection and iden-
tification as well as the mine countermeasures. Many of the recent developments have
been in these two areas. The UUVs are intended to be modular and able to perform
multiple missions depending on the circuitry installed.

The UUVs also vary in size depending on the mission. They range from man
portable size (diameter of 3-9 inches) to a large class UUV (diameter > 36 inches).
The two intermediate classes are the light weight vehicle (LWV) and the heavy weight
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vehicle (HWV). The different classes have different endurance times and are used for
various missions. For example, mine countermeasures could be performed by either
the LVV (operation area clearance) or the HWV (clandestine reconnaissance). Large
class. LWVs and HWVs can perform oceanographic surveys. The choice of class
depends on the specific area, and endurance required for the survey. The large UUVs
are the primary class for anti-submarine warfare (ASW) and payload delivery [29].

1.2 Choke Point Monitoring

Unmanned underwater vehicles have a potential to be a force multiplier for various
platforms. As a force multiplier, the UUVs would allow for more missions with the
same number of manned platforms. Within the mission of anti-submarine warfare,
the UUVs could monitor choke points and harbors to track and trail the enemy. This
usage would allow other assets to be otherwised engaged until the UUV handed off
its subject. When the UUV hands off its contact, it transfers the information it has
collected to another platform, which will then continue the tracking and make the
decision whether or not to engage the contact.

Choke points are areas in which there are few possible courses through which a
vehicle can travel. Some examples include the Strait of Gibralter or the Suez Canal.
Due to the depth of these channels, any vehicle exiting them would have few course
options until it gets out into deeper water. In order to monitor these areas. possible
platforms include UUVs. Due to the reduced nature of choke points and harbors,
they are easier to monitor than the wide open ocean. A sensor network would allow
for potential interesting targets and contacts to be monitored and tracked as soon as
they are leaving port or a choke point.

1.2.1 Bearings-Only Tracking

In order to be able to track an enemy submarine or ship, the UUV must be able to
perform target motion analysis (TMA). This is the ability to determine the range,
course and speed of a target. In order to maintain secrecy, the only information used
would be the bearings between the observer and the target, resulting in bearings-only
target motion analysis (BO-TMA). The bearing between the observer and the target
is the angle at which the observer detects the target (see Figure 1.1). Bearings-only
TMA uses passive sensors, which allows the UUV (or any other vessel) to observe
without being detected itself [30]. This type of underwater TMA has typically been
performed by submarines or surface ships performing anti-submarine tactics. The
ability to perform TMA with UUVs would allow the UUVs to aquire and track the
target sooner than conventional means.

The UUVs could be part of a. sensing network that monitors choke points and
delivers information to another vessel that is waiting further out from the choke
point,. Figure 1.2 demonstrates the UUV laying out the sensor field as well as tracking
a target. The UUV could be cued either by a sensor field or a third party source such
as another UUV or a manned vessel. The sensor field might be laid out in advance
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Figure 1.1: Basic geometry definition of bearing between the observer (own ship)
and the target. All angles are measured from with respect to 000 as north. # is the
bearing or line of sight angle between the observer and the target from the point of
view of the observer. vt is the velocity of the target (speed and course) while v0 is
the velocity of the observer. 9 t is the target's course and 0, is the observer's course.
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Figure 1.2: Anti-Submarine Warefare Sub-Pillar Concept of Operation "Hold at Risk"
from the Navy Unmanned Undersea Vehicle Master Plan [29]

by the same UUV. another UUV. a diver or some other method.
This thesis looks at creating a framework in which to perform bearings-only track-

ing with UUVs. In order to do so, some sort of processing must be done with the
noisy bearings only data. The different types of ianeuvers that are performed to
accomplish bearings-only tracking are analyzed and used as a starting point to codify

BO-TMA for UUNVs.

1.3 Problem Statement

The fundamental question that this thesis looks at is whether or riot UUVs have

the capability to performn BO-TMA without human interaction. Some of the main

challenges within this thesis is to develop a proper estiniation algorithm as well as

develop a guidance systen for the UUV to perform the required maneuvers to track

the target. The estimation algorithm is inherently linked to the guidance svstemr

in this application because the guidance system uses the output of the estimation

algorithm in making its decisions. This capability is useful because it, allows the

UUVs to be iutilized in tracking targets sooner than a manned asset imight, be able to.

In order to deterimine whether or not. BO-TMA is feasible using UUVs, an es-
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timation algorithm was chosen. For the purpose of this research, a modified polar
extended Kalman filter was chosen. The reasons for this choice will be further ex-
plored in a later chapter. Figure 1.3 presents the proposed flow chart for the control
of the vehicle. The chart includes the various aspects of the required mission. In addi-
tion to tracking another vessel, the UUV must be aware of its surroundings (avoiding
obstacles and avoiding counter-detection) as well as able to complete its mission and
report the information that it has gathered to the rest of the area.

The main contributions of this thesis are a working Modified Polar Extended
Kalman Filter and a guidance system which allows the UUV to track another vehicle
based on sensor information and the surrounding environment.

1.4 Literature Review

The problem of performing and optimizing bearings-only target motion analysis has
been extensively studied. There has not been much work with performing BO-TMA
with UUVs specifically, but with submarines in general. Much of the work done
in target motion analysis was done prior to the major push in work in UUVs in
the past ten years. The previous work focused more on the problems of estimation,
observability and processing rather than on the actual platform performing the BO-
TMA. The work done in bearings-only target motion analysis fall into a few different
categories. Typical work has focused on the observability of the problem, what type
of estimation to use in processing the data and the optimal observer maneuvers.

The first area in which much work has been done in the bearings-only target
motion analysis problem is that of observability. Observability for this problem is
defined as the existence of a unique tracking solution [3]. Becker presents both a
derivation for a linear approach to the Nth-order dynamics target case [2] and further
simplification and application of the observability conditions to more general cases
[3]. Fogel and Gavish also obtained the observability conditions, in which the observer
must have an order of trajectory dynamic greater than that of the target [10]. For
example, to observe the trajectory of a constant velocity target, the observer must
have some sort of acceleration (either change in course or change in speed). Jauffret
and Pillon build on both of these works, examining the nature of observability in
passive target motion analysis [15]. For angles-only TMA, a maneuver is required by
the observer to obtain observability. The observability problem influences both the
choice of estimator as well as the optimal maneuver problem.

A natural extension of the observa-bility problem is to use some form of estimation
algorithm. There are various approaches to this problem: the maximum likelihood
estimator (MLE), the pseudo-linear estimator (PLE) and Kalman filters. A fourth
approach to the problem is the graphical method, which was commonly used prior to
computers and is still taught to submarine officers. Two examples of the graphical
method are the Ekelund range and the Spiess range [30]. These were devised by
two naval officers in the 1950s and were the first two complete bearings-only TMA
solutions.

The other three types of solutions are numerical estimators. The pseudo-linear
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Figure 1..3: Proposed Problem Flowchart

18



estimator is an explicit method which provides solutions as a funtion of the measure-
ments [4, 251. However, the PLE has known bias and is not very efficient. Pham
presents a quadratic estimator that is similar to the PLE but lacks the bias of the
PLE [25]. The PLE is also used in a comparison study of performance against the
MLE [22]. Within this study, it is determined that the PLE has increased bias as
the effective noise increases, making it an unsuitable estimator for this project.

Nardone, et. al. further explore a closed form solution that is applied in a similar
method to the MLE [21]. In Berman's work, a reliable MLE is found that is a hybrid
of sorts that works at high ranges [5]. Both the maximum likelihood estimator and
the pseudo-linear estimator are nonrecursive batch methods.

These batch methods are compared to recursive methods (which are based in
Kalman filtering) [14, 8]. The main difference between the two methods is the method
of linearization. The batch processing was determined to be more accurate at ex-
tremely long ranges than the recursive processing [14].

The recursive methods consist of the use of Kalman filters. The earliest work in
this area developed a Modified Polar Extended Kalman filter (MPEKF) to use in
lieu of a regular cartesian Kalman Filter [1]. This modification allows for the state
equations to be decoupled and for the measurement to be linear. The modified polar
coordinates better reflect the coordinates in which the problem was set. Moorman
and Bullock made modifications to the extended Kalman filter to remove most of
the bias that was present [20]. All three estimators have been the basis of much of
the work done in bearings-only TMA. The MPEKF has advantages in that it uses
less processing power. The batch processing of the MLE improves the long range
estimation. For the purpose of this thesis, the MPEKF was chosen.

In addition to the work done in observability and estimation, there has also been a
focus on optimizing the maneuvers performed by the observer (or own ship). Fawcett
used the Cramer-Rao lower bound to predict the behavior of an MLE in response to
various maneuvers in order to chose the course that would optimize the performance
of the estimator [9]. Passerieux and Van Cappel used optimal control theory to
determine the maneuver that minimizes a criterion based on the Fisher information
matrix. They determined that [24]

the obtained optimal (or very close to optimal) observer trajectories are
as follows: 1) with the range accuracy criterion, a > trajectory with two
legs of equal lengths, target near the broadside direction on both legs and
direction of the second leg such that bearing rate is maximized, 2) with
the global accuracy criterion, a smooth Z trajectory composed of three
legs of approximately equal lengths, and 3) in both cases the averaged
observer motion is oriented towards the target.

Kronhamn used an adaptive ownship motion control based on the multihypothesis
cartesian Kalman filter to determine optimal maneuvers [17]. S.E. Hammel has done
much of her work in the area of BO-TMA. Her doctoral thesis focuses specifically on
optimal observer motion for the nonlinear tracking problem [13]. Like much of the
other work done in this area, it shows that there is a trade-off between increasing
bearing rate and decreasing range in the observer maneuvers. LeCadre and Tremois
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took a different approach in determining optimal observer motion within bearings-
only tracking. They used dynamic programming within a hidden Markov model of
the problem [6, 7, 26].

In 2004, the US Navy released its Unmanned Underwea Vehicle Master Plan
which was the culmination of many hours of work done by various committees and
workshops. It presents an overall view of the current uses of UUVs and a plan
for future development [29]. This document presents an overview of the research
timelines and areas of necessary development and research. In his master's thesis,
Mierisch examined and developed a situational awareness algorithm for UUVs [19].
His basic premise was for the UUV to use its measurements of the contact's motion to
determine whether or not it had been detected. Mierisch used probability and known
observations of passive and hostile behavior to make this determination.

Another area of work that is vital to bearings-only tracking is that of underwater
acoustics. Underwater acoustics provides of the basis of the bearing measurements.
Both Lurton and Urick present a comprehensive introdution to underwater acoustics
and sound [18, 28]. Building on Lurton and Urick's work as well as their own practical
experience, the professors of Underwater Acoustics and Sonar at the United States
Naval Academy have created their own set of course notes based on this information
[27]. This work provides the basis for the environmental simulation within this thesis.

1.5 Thesis Organization

This thesis will further delve into the choice and the development of the Modified
Polar Extended Kalman Filter in Chapter 2. The guidance algorithm will be pre-
sented in Chapter 3, along with its development. Chapter 4 examines the simulation
environment and experimental setup. Also, this chapter will further explain the
models chosen to represent the underwater environment. Chapter 5 will look at the
performance of the algorithm and present. the results of the simulations. The final
chapter, Chapter 6, will draw conclusions from these results and present further areas
of research.
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Chapter 2

Modified Polar Extended Kalman
Filter

There are various approaches to the bearings-only estimation problem. The Modified
Polar Extended Kalman Filter (MPEKF) was chosen for this thesis in part due to the
commonality of the Kalman filter. The lower processing power and recursive structure
required by the MPEKF also makes it a more appropriate candidate for UUVs with
limited power. In addition, the proposed situation does not require extreme long range
estimation (the area in which the maximum likelihood estimator outperforms the
MPEKF). Therefore, this thesis focuses on the use of the MPEKF for its estimation
algorithm.

2.1 State Space and Measurement Models

Bearings-only tracking is inherently a nonlinear problem. The nonlinearity can either
be in the state equations or in the measurement equations. If a traditional cartesian
Kalman filter is used, the state dynamics are linear while the measurement relation-
ships are nonlinear. The traditional cartesian state vector consists of the relative
position and relative velocity of the target in both the x and y direction.

Transforming the problem into modified polar coordinates, on the other hand,
causes the state equations to be nonlinear but the measurement matrix to be linear.
The state vector then contains the bearing, the bearing rate, the range rate divided by
range and the reciprocal of range of the target from the observer's perspective. The
measurement vector has been simplified since it is solely concerned with the bearing.

Another benefit of using modified polar coordinates is that the state vector is
partially decoupled. The only component that is not observable prior to an observer
maneuver is the reciprocal of range. This allows the state estimates to behave as one
would theoretically expect, even in the face of errors. unlike the Cartesian coordinates
[1].
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Figure 2.1: Visual representation of the target state vector where r, is the target's
x-position, ry is the target's y-position, 9 is the target's course, v is the target's speed
and r is the range between the observer and the target.

2.1.1 State space coordinate transformation

Since the algorithm uses the modified polar coordinate system, the transformation
from the target and observer state vectors is presented. The initial absolute state
space vector for the target is given by

Xt =

rxt

ryt
Vt

ot

(2.1)

where rxt and r,g are the target position, vt is the target speed and Ot is the target
course in cartesian coordinates (Figure 2.1). The state vector for the observer is
similar. The modified polar state vector, on the other hand is defined by
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Y1

y _ Y2 _ (2.2)
Y3

where r is the range between the observer and the target and 3 is the bearing angle
from the observer to the target. The modified polar extended Kalman filter uses the
modified polar (MP) state vector for its estimation. However, the information that is
of interest to the observer is the course and speed of the target, as well as its position.
Therefore, transformations between the two coordinate systems are included within
the MPEKF. The cartesian state vector used in Aidala and Hammel's work consists
of the relative position and velocity of the target with respect to the observer [1].
The formation of this vector from the aforementioned target state vector is given as
follows:

X1 " vtsin(0t) - vosin (90)

S X2 [vtcos (9t) - vocos (0) (2.3)
3 rXt - rX0

X4 ryt -ryo

where vj is the target's speed, v, is the observer's speed, &t is the target's course, 0,
is the observer's course, rxt and ryt are the target's position and rxo and ryo are the
observer's position.

Once this state vector is obtained, it can easily be transformed into the y-coordinate
system and vice versa. Since the observer state is assumed known with reasonable
accuracy, the target information can be pulled from the transformed x state vector.
The transformations between the coordinate systems are as follows:

y2sin (y3) + yicos (y3)

X = - Y2cos (y3) - Y1sin (Y3) (2.4)
Y4 sin (y3)

[x1X4 - X2x3]/[x + x4]
[X1X3 + X2x4] / [x 2 + X 2]

y = fy [xix+ -x]/ x 4 ] . (2.5)

_ 1/ 2x + X4

2.2 Filter Equations

The filter equations are based on the general discrete time Kalman filter relations from
Gelb's Applied Optimal Estimation [12} and the derivation of the MPEKF found in
Aidala and Hammel's Utilization of Modified Polar Coordinates for Bearings-Only
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Tracking [1]. The filter is initialized using

yo = initial estimate of the MP state vector (2.6)
Po = initial estimate of the MP state vector error covariance matrix. (2.7)

Once the filter is initialized, the propagation phase commences. This filter does not
include any process noise [1]. In the propagation phase between measurements,

= f[y] (2.8)
&f[y]

Ay = f (2.9)
ay

P = A, *P*A . (2.10)

where the function f is defined as

[S1S4 - S2S3] / [S3 + S4]
f [Y [S1S3 + S2S4]/ [S3 + S] (2.11)

Y3 + tan-1 [S3/S4] ]
Y 4/ VS3+ S4

where

S1 = y1 +y4[wicos(y 3)-W 2sin(y 3)] (2.12)

S2 = Y2+y41[wsin(y3)+w 2cos(ya)] (2.13)

S3 = (At)yI + y4 [w 3cos (y3) - w4sin (y3)] (2.14)

S4 = 1 + (At)y2 + y4[wasin (y3) + w4cos (y)] (2.15)

in which wi is relative acceleration term that is dependent on the characteristics of
the motion of both the target and observer and At is the time between measurement
steps (assumed to be 1 for this thesis). The measurement matrix for this particular
EKF is

H = [0, 0,170] (2.16)

because 3 is measured directly.

Using the measurements, the filter estimate is updated using the following equa-
tions:

K = P~HT[HP-HT + R] (2.17)
P = [I - KH]P- (2.18)
9 = 9~ + K[z - H -] (2.19)

where R is the measurement noise covariance and z is the actual sensor measurement
of bearing 13.
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2.3 Observability

Due to the fact that the bearing is the only measurement that the filter is receiving,
neither the range nor its reciprical is observable without some sort of maneuver. A
passive sensor gives bearing information and possibly frequency information but is
unable to obtain range information. An active sensor on the other hand, provides
range information since it is known how long it takes the energy to travel to the
target and back to the sensor. A passive sensor is just receiving energy. The other
parts of the state vector are observable because they can be derived from the bearing
measurements. In order for the state vector to be fully observerable, the observer
needs to perform some type of maneuver. In this case, the observability of the range
is intuitive.

The necessity of an observer maneuver can also been seen by looking at the system
dynamics [12]. The A matrix is a partial differentiation of Equation (2.11). This is
made up of the S functions given in Equations (2.13) through (2.15). When both the
target velocity and the observer velocity are constant, the w terms are equal to zero
because the target's and observer's accelerations are zero. If the w terms are equal
to zero, the y4 term falls out of the S functions, thereby having no effect on the other
states. State y4 = i, so the reciprical of range is not observerable when neither the
target nor the observer have any acceleration. However, when the observer performs
a known maneuver, the w terms are now nonzero and y4 will drive 3 (the direct
measurement), causing 1 to be observable through 0.

The final method of looking at the observability is to look at it from a linear algebra
point of view. In this method, the rank of the observability matrix determines how
many states in the state vector are observable [16]. The observability matrix is shown
as

H

0 = H A (2.20)

H -A 3

where H is the measurement array given in Equation (2.16) and A is the matrix given
in Equation (2.10). During a straight segment of the observer's motion

0 0 1 0

0 [ X 1 0 (2.21)
X X 1. 0

where x represents any non-zero value. This matrix has rank(0) = 3 and therefore
is not fully observable. As can be seen by the observability matrix itself, the final
column is always zero, indicating that y4 is unobservable. When the observer is in
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the middle of a maneuver, the observability matrix is

0 0 1 0

S= X1 X
X X 1X

L X 1x
(2.22)

again where x represents any non-zero value. In this case rank(O) = 4, indicating a
fully observable state vector.

All three of the methods demonstrate that a maneuver is required in order to have
a fully observable state vector of the target.

The next chapter will focus on the development of the guidance algorithm and
logic through the used of the modified polar extended Kalman filter.
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Chapter 3

Guidance algorithm

This chapter looks at the process of developing the guidance algorithm. The various
steps building towards the final guidance system include a conceptual flow chart, an
examination of the effect of a wide range of maneuvers and the incorporation of the
general rule of balancing increasing the bearing rate and decreasing the range, verified
by a detailed maneuver examination, into the final algorithm. Each of these steps will
be further explored in the different sections of this chapter. The guidance algorithm
is one of the main contributions of this thesis.

3.1 Guidance concept

Figure 3.1 is a presentation of the conceptual high-level guidance flow chart. This
section further examines the guidance components that the flow chart contains.

The initial concept for the guidance begins with the UUV in a search mode,
waiting to detect a target or to be cued. This mode allows the UUV to either be in a
sweeping mode or a loitering mode. There are two options for the search mode: the
UUV looks for contacts or waits to be cued. When the UUV is looking for contacts, it
will most likely make continuous sweeps of a specified area. An example of this would
be to "mow the law" in long paths. On the other hand, a sensor network could have
been previously laid. In this scenario, the UUV will loiter until the sensor network
alerts it to a coming contact. The sensor network then passes on the target's course,
speed and position information to the UUV.

Once the UUV either detects a target or is cued by the sensor network, it turns
towards an intercept course with the target. The UUV will either use the information
from its own sensors or the information passed from the sensor network to determine
the intercept course. Once the UUV has turned towards the target, the bearings-only
TMA goes into effect.

Running concurrently with the bearings-only target motion analysis (BO-TMA)
is an obstacles avoidance regime. The BO-TMA maneuvers are intertwined with the
updates to the Kalman filter, in which both affect the other. Once the maneuvers
are complete and the UUV has a good tracking estimate, it falls in behind the target
and continues to track it until it either goes out of range, maneuvers, goes out of
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Figure 3.1: Conceptual Guidance Pseudo-Code
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the UUV's operating area or counterdetects the UUV. If the target goes out of range
of the UUV's sensors, the UUV attempts to reaquire it. After a specified amount
of time, the UUV goes back into serch mode if the target has not been reaquired.
Otherwise, if the target is reaquired or if it has maneuvered, the UUV will reenter
the BO-TMA mode. If the UUV determines that it has been counterdetected, it
will abort the mission, shutting down to minimal power for a certain period of time
and wait for a retrieval [19]. This prevents the contact from following the UUV
back to its home base. If the contact has left the UUV's operating area, the UUV
will report the aquired course, speed and position information to its home platform
and return to its search mode. The home platform is the platform from which the
UUV is launched, which could be a ship or a shore station. The UUV can report
the information through a variety of means. Some of these means include using an
antennae, or through underwater communication to another UUV or communication
buoy. In addition, the UUV can monitor its power availability. If it does not have
sufficient power, it will return to its home base to recharge before completing another
mission.

3.2 Maneuver scenarios

The development of the guidance logic begins with examining the effectiveness of
various maneuvers. An observer maneuver is defined as a course change at a constant
speed for this thesis. These design scenarios vary both the target course and the
observer maneuvers. The target course varies between 0 degrees, 15 degrees and
45 degrees. The speed (8 yd/s ~ 14 kts) and the initial absolute starting point
(500,500)yds of the target remain constant throughout the various scenarios. The
observer also has a constant speed throughout the experiments at a value of 6 yd/s
(~ 10 kts). The initial state vector is a transformation of the absolute cartesian
states of the observer and target with some added noise. The initial covariance P0 is
constant throughout the trials and is given by [1]:

[ x 10-3rad/s 0 0 0
0 1 X 10-3,;-l 0 0lxlor= o(3.1)

P0 0 1 X 10-3rad 0
[ 0 0 1 x 10-7yd-

Ten trials are run within each set-up to allow for the variation in the initial
estimate quality. The trials run for 1200 sec each.

For the most part, the observer performs two maneuvers. The only exception is
having the observer begin with a course moving away from the target and performing
a 180 degree turn, then performing the normal two maneuvers. The different scenarios
include the observer moving away from the target (Fig 3.2 :A 2), moving towards the
target (Fig 3.2 :E 3 ), long range detection (Fig 3.2 :C3) and short range detection (Fig
3.2 :D 1). The specific parameters of each experiment are presented in Table 3.1.

Within each trial, the observer's trajectory is plotted along with the target's actual
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Experiment Target Observer Ini- Observer Course Change
Course tial Position Initial

(rad) (yds,yds) Course

(rad)
Turn 1 Turn 2 Turn 3
(rad) (rad) (rad)

A1  0 (2500,200) 37r/16 7r/6 -7/4 0
B1  0 (2500,200) 37/16 -7r/6 7r/4 0
C1  0 (2500.200) 37r/16 -57/12 r/3 0
D, 0 (2500,200) -37/16 7r/4 -7/3 0

E, 0 (-1500,200) -37r/16 r/4 -7r/6 0
A2  7r/12 (-1500,200) -37r/16 7r/4 -7r/6 0
B2  7r/12 (-1500,200) 0 7r/4 -7r/6 0
C2  Tr/12 (2700,200) 7r/4 -37r/8 7r/3 0
D2 7r/12 (2700,200) 37r/16 7r/6 -77r/16 0
E2 7r/12 (2700,200) 37r/4 -7 r/6 -7/3
A3  r/4 (200,2500) </12 </3 -27r/9 0
B3  7/4 (-1500,200) r/16 r/4 -7/3 0
C3 7r/4 (-10000,5000) 7r/3 -7/6 /4 0
D3 r/4 (6000,-1000) -7/6 7/2 -7/4 0
E3 7/4 (6000,-1000) 7r/12 -7/6 r/6 0

Table 3.1: Observer-Target Geometries
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Over 10 trials for target angle 0
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Figure 3.3: Course Error results for the set of experiments that include a target course
of 0 degrees

and estimated trajectories. This is one of the areas in which the effectiveness of the
maneuver is determined. Using the different parameters, various aspects and effects
of the maneuvers are analyzed both qualitatively and quantitatively. For a purely
qualitative analysis, the visual results of the estimated and actual trajectories are
used.

For each trial and each experiment, the initial guess of the y state vector is varied
from truth by a random number. The initial visualization of the results allows for a
basic analysis of the effectiveness of the maneuver. The estimation often goes from
having erratic behavior to a bit more consistent behavior after the first maneuver
is performed (as expected). Even in cases where there are large initial errors, the
maneuver brings the estimation closer to the actual course of the target.

In addition to a qualitative analysis, a quantitative analysis is performed. This
quantitative analysis takes the average of the ten trials for each experiment. The
initial estimatation error varies over the trials due to the random error that was
added to the actual value of the state vector. Three different metrics are evaluated
in each run: the error in the course estimation, the error in the speed estimation and
the error in the range estimation. The calculation of the averages uses the absolute
values of the errors, since the magnitude of the error provided more information than
the sign of the error. An example of the results can be seen in Figures 3.3, 3.4 and
3.5.

These figures also plot the time of the maneuvers. In each of the metrics, the
maneuver has an effect on the results. In both the course and speed, the error estimate
levels out prior to the maneuver to a steady error. However, after the maneuver, the
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Figure 3.4: Speed Error results for the set of experiments that include
of 0 degrees
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Figure 3.5: Range Error results for the set of experiments that include a target course
of 0 degrees
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error decreases in all three metrics. In general, the range error tends to rise prior to
the observer's maneuver. The only exception in these 5 experiments is experiment
D. In this case, the range error initially decreases rather than increases, due to the
fact that its initial course is directed towards the target rather than away from it.
The general rise in range error is the expected result since the state that. includes the
range is unobservable prior to a maneuver. All five of the experiments result in a.
decrease in the error after the first maneuver, however the steepness of that decrease
varies. The quicker the drop, the more effective the maneuver. This is true within all
three metrics. As can be seen in Figures 3.3, 3.4 and 3.5, experiments C and D have
the most significant drops in error after the maneuver. They also have the smallest
errors at the end of the run. Since these results look at the averages over ten trials,
some of the large errors that occur in individual trials are smoothed out.

An observation from these experiments is that the observer's motion should gen-
erally be towards the target. The results of these experiments confirm the generalized
rules for optimal observer maneuvers found in the literature [24]. In general, one
wants to find a balance between

" increasing the bearing rate and

" decreasing the range [4].

The maneuvers that did better tend more towards the target than away from the
target. Another observation from these experiments is that the initial estimate needed
to be tweaked a bit. The initial estimate is based on the actual state values with some
random error added to it. The issue develops for the long range scenarios since the
error is added into the y state vector. In this state vector, one of the states is the
reciprocal of range. For long range scenarios, the same error creates a much greater
initial error since the magnitude of the error added to the state was greater than that
of the state itself. In order to overcome this in the final runs, the error is added to
the x state vector prior to it being transformed into y space. This change is also
consistent with the scenario in which the x state vector is the information given to
the UUV by the sensor network that has cued it. It is assumed that there is an initial
error in the information that passed to the UUV, rather than perfect information.

3.3 Guidance logic

The guidance logic takes various factors into account. The variables that are fed
into the logic include the observer's current state, the target's estimated state, the
estimated y state vector, the detection of the target, the current observer course com-
mand, the future course commands, the length of an individual leg of the maneuver
and the current BO-TMA command. The main output is the course command for
the observer.

The first part of the guidance logic calculates a good intercept course based on the
relative positions of the target, and observer as well as the target's estimated course.
The goal of this logic is to calculate a course that will allow the observer to come
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within range of the target. In order to do so, the observer's course must be in the
direction of a point ahead of the target's current position. In order to achieve this
point, the command course is chosen to be either perpindicular to, 45 degrees off of
or 15 degrees off of the target's estimated course based on the relative positions of the
observer and target. If the observer course is close to parallel to the estimated bearing
between it and the target, its course remains constant. Otherwise, the observer turns
towards the target's course.

Once the target is within range of the observer, the guidance calculates the BO-
TMA maneuver. The basis of this maneuver are the guidelines presented in the
literature that have been verified within this thesis. The maneuvers follow a basic Z
pattern as described in Passerieux and Van Cappel's work [24]. The guidance logic
calculates the two different courses the observer needs to take. The general direction
of the maneuver is always towards the target. In each of the following cases, the third
leg of the maneuver is the same as the first leg of the maneuver.

* If the observer's course is within 15 degrees of the target's estimated course

- The first leg of the maneuver is the observer's current course

- The second leg of the maneuver turns towards the target with a course
that is 30 degrees off of the target's estimated course

* If the observer's course is close to being the reciprocal' of the target's estimated
course

- The first leg of the maneuver is the target's estimated course

- The second leg of the maneuver turns towards the target with a course
that is 30 degrees off of the target's estimated course

" If the observer's course is towards the target

- The first leg of the maneuver is the observer's current course

- The second leg of the maneuver is the target's estimated course

* If the observer's course is away from the target

- The first leg of the maneuver is the target's estimated course

- The second leg of the maneuver turns towards the target with a course
that is 30 degrees off of the target's estimated course

The guidance algorithm allows the maneuver to complete, even if the target is
out of range of the observer. Once the maneuver is complete, the observer will either
come to a course parallel to the target's estimate or it will turn around, indicating
that the target has moved outside the range of the observer. However, this does not
happen immediately but rather after a specified amount of time has elapsed.

'A bearing 180 degrees from the other
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The guidance logic also keeps track of the history of the target state estimations.
The history provides the metric to determine whether or not another maneuver is
required. One of the basic assumptions for this problem is that the target has a
constant course and speed. Within the estimation, small variations are expected.
However, if there is a large jump within either the course or the speed history, a
new maneuver is required to maintain the integrity of the estimation. Once this is
determined, the guidance algorithm will calculated another set of maneuvers.

If the target leaves the range of the observer's sensors, the observer continues on
its current course for a specified time in order to try to reaquire the target. If the
observer does not reaquire the target, it turns away from the last known position of
the target and returns to its home base. In the simulation, this is represented by a
180 degree turn.

The guidance logic is incorporated into the main control of the UUV. The next
chapter will explore the environmental model and simulation set-up.
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Chapter 4

Simulation and Environment
Models

This chapter explores the environmental and the simulation models. The underwater
environment is a tough environment to model. This chapter presents the various
simplifications and assumptions made in the final simulations. After exploring the
sensor detection radius and environment, this chapter will present the set up for the
various trials used to test the guidance algorithm.

4.1 Detection Algorithm

The detection algorithm determines whether or not the target is within the range of
the passive sonar. If the range of the sonar extends past the location of the target,
then the target is detected. A sonar range algorithm is used in conjunction with the
detection algorithm.

The range in which a target. can be detected depends on various factors and
parameters. For passive sonar. these factors are the target source level (SL), the
ambient and self-noise level (NL), the transmission loss (TL). the detection threshold
(DT) and the receiving directivity index (DI) [28, 271. These parameters are combined
in the passive sonar equation:

SL - T L - AIL + DI ;> DT ,(4.1)

expressed in dB. The range at which a target is likely to be detected can be estimated
by solving for the transmission loss at a specific detection threshold:

r.
TL = 20logi 0ro + 10log,1 - + a (r x 1() (4.2)

where r-0 is the transition range between spherical and cylindrical spreading and a
is the attenuation coefficient. In order to simplify the calculations, the transmission
loss due to attenuation is assumed to be very small. It is also assumed that the
transmission loss is due to spherical spreading and the effects of cylindrical spreading
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are ignored. This results in
TL ~~ 10loglor (4.3)

being the function used to calculate the range of the sonar. This relation is a simplified
version of a more detailed model and does not take into account all of the aspects
of the environment. However, the purpose of this exercise is to have a way to model
the range of the sonar in the scenario with some basis in reality rather than picking
a number out of thin air.

The detection threshold is the point at which the system determines that there is
a contact. This threshold is based on the detection index desired for the sonar, as well
as the bandwidth and integration time of the sonar. The detection index is pulled off
of a chart based on the desired probability of detection, p(D), and probability of a
false alarm, p(FA):

DT = 5og10 o ( (4.4)

where d is the detection index, T is the integration time and 6f is the bandwidth
frequency of the sensor.

The directivity index, detection threshold and the self-noise are all parameters
based on the sonar equipment. The directivity index depends on the type of array
used as well as the frequency of the sound wave. There are many different estimations
of the directivity index, depending on the shape of the array. For this thesis, the sonar
was assumed to be a conformal array, with a DI of 19.54 dB at broadside [11]. For
the purpose of these calculations, the directivity index was assumed to be constant
thoughout the entire scenario. The transmission loss and the ambient noise level
depend on the environment that the observer is in. The noise level in the passive
sonar equation includes the self-noise and the ambient noise of the environment:

NLamb = NL8 , E NLship (4.5)

NLto=N Lamb E NLself (4.6)

where E represents the power sum of two decibel quantities:

L1 e L 2 = 1-010 10 (100 + 100. (4.7)

The source level is the level of noise radiated by the target [18, 27, 28]. Of these
parameters, only the transmission loss is unknown. The sonar parameters are modeled
based on known literature. Within this thesis, two environments will be modeled
through the use of varying the ambient noise level for different conditions. The
source level of the target can also be modeled for various targets. This variation is
important because it allows for the effectiveness of the algorithm to be evaluated in
different situations.

The model of the source level of the target used and modified old data from World
War II era submarines [18, 28]. It is assumed that all current data is classified, but,
that the presented model can easily be adjusted for proper parameters.

Once the sonar range algorithm calculates the detection range, the detection algo-
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rithm can determine whether or not the UUV can "hear" the target. This algorithm
is used both in initiating the bearings only tracking as well as maintaining the track
of the target.

4.2 Environment

Target motion analysis and target tracking are common activities in blue water en-
vironments. Blue water environments are also known as open ocean or those waters
that lay beyond the coastal regions of the earth [23]. A key benefit of using UUVs
is to perform this mission within a littoral area. The littoral area is that area that is
closest to shore (within 600 feet of the shoreline) [23]. The UUV would be able to
penetrate closer to harbors and choke points than would a manned sub, effectively
becoming a force multiplier. The effects of the environment are simulated within the
passive sonar equation in the detection algorithm.

For the purpose of this thesis, two different scenarios are created. Their specific
parameters are presented in Table 4.1. Both occur in shallow water environments.
The two aspects of the ambient noise are due to shipping and to the sea state. The
two different scenarios represent a typical day (refered to as the nominal case) and a
worse case scenario type of day. For the typical day, the shipping is assumed to be
heavy since the UUV would be acting either just outside a harbor or a choke point.
The sea state is assumed to be 1, with a wind speed of four to six knots. For the
worst case scenario, the sea state is assumed to be 6, the highest sea state with wind
speeds of 28 to 33 knots. Since it is a very heavy sea state, the shipping levels are
assumed to be moderate.

Wenz curves are used in order to convert this information into the decibel form
that is required for the passive sonar equation [18, 27, 28]. Figure 4.1 is a simplified
version of the Wenz curves that was used to determine the noise levels due to shipping
and sea state. The value is found at the intersection of the shipping or sea state with
the center frequency of the bandwidth. The center frequency is found by taking the
geometric mean of the two end frequencies of the bandwidth.

Parameter Environment 1: Nominal Case Environment 2: Worst Case
Self noise (NL,ef) 50 dB 50 dB
Source level (SL) 110 dB 110 dB
p(D) .90 .90
p (FA) .002 .002
Bandwidth (Af) 400 Hz 400 Hz
Integration time (T) 20 ins 20 ms
Sea state 1 6
NLS 81 dB 99 dB
Shipping heavy moderate
NLesh 93 dB 80 dB

Table 4.1: Environment Parameters
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Figure 4.1: Simplified Wenz Curve [27]

4.3 Vehicle capabilities

This thesis contains two separate vehicles, the UUV, or observer, and the contact, or
target. In order to simplify the estimation process, the target's motion is assumed to
have a constant velocity. In a choke point situation, this assumption is more realistic
due to the restrictions to motion in most choke points. The target would not be
able to make an unexpected or rapid course or speed change. Once it has left the
restricted area, however, maneuvers are possible. However, within this set up, the
target maintains course and speed for the entire experiment. The speed of the target
is restrained by the area it is operating in-

The UUV on the other hand has the ability to manuever. The main restraint on
these maneuvers is a constant turning rate of 3 degrees/s. In most cases, the UUV is
slower than the target. Its unrestrained speed capability is less, but there could be
situations in which the UUV is traveling faster than the target. The UUV maintains
a constant speed throughout the experiments. The basic dynamic equations of both
the target and observer are

Xt= Xi + vt isin(9t- 1)

Yt = Yt-i + vticos(Oti)

Vt = Vt._1.
9 t = t-1.

(4.8)

(4.9)

(4.10)

(4.11)

40

a
U.

0

1~ 11

ILit i

.110

L4. 100

90

70

40

30

20L

DOD 500,000
I i ti

too



When the observer is in the middle of a maneuver the last equation alters to

Ot = Bti + VAt (4.12)

where q is the turning rate.

4.4 Simulation set-up

In order to examine the effectiveness of the guidance algorithm, a number of different
situations were created. The different variables are the target-observer geometry,
the speed ratio and the difference between the nominal and worst case environment.
Throughout all of the experiments, the observer had the same position in the center
of the environment. The target's location, course and speed were varied for each of
the experiments.

4.4.1 Nominal cases with geometric variations

The first set of experiments have varying geometries. The speeds of the observer
and target remain constant throughout these experiments: 6 yds/s and 8 yds/s,
respectively. The initial position of the observer also remains constant through all of
the experiments. The target's initial position and the courses of both the target and
the observer are varied throughout these experiments. Table 4.2 contains the specific
values of these variables.

The five different geometries represent a variety of situations as seen in Figures
4.2, 4.3, 4.4, 4.5 and 4.6. These figures are not to scale in Cartesian space. In
experiment 2, the UUV is behind the target while in experiment 5, the observer is
initially on a close to reciprical course with the target. In the other three experiments,
the observer is off to one side or the other of the target's projected course. They vary
in the direction of the initial observer course in reference to the target's course.

4.4.2 Nominal cases with speed variations

The next set of experiments examines the effect of different target-to-observer speed
ratios on the effectiveness of the guidance system. There are three different speed

Experiment Target Initial Target Course (rad) Observer Initial
Position (yds,yds) Course (rad)

1 (-3000,2000) 7r/3 71r/4
2 (-200,-1000) 5Tr/4 3r/2
3 (3000,-3500) 87r/5 37r/2
4 (-2000,-1500) 47/7 7F/12
5 (-5000,-5000) 7r,/4 77r/6

Table 4.2: Simulation parameters for nominal case geometries
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Figure 4.6: Experiment 5 Geometry

Experiment Target Speed (yds/s) Observer Speed (yds/s)
2 8 6
6 8 8
7 6 8

Table 4.3: Simulation parameters for nominal case speed ratios

ratios: 4:3, 1:1 and 3:4. In other words, the three different cases consist of the
observer being slower than the target, the same speed as the target and faster than
the target. The geometry of the situation remains constant throughout the three
different situations. This geometry is the same as experiment 2 as seen in Figure 4.3.
Again, the environmental set up is that of the nominal case. The actual speeds of
the observer and target for each experiment is presented in Table 4.3.

4.4.3 Worst Case

In addition to the nominal cases, worst case experiments are run to examine the
point in which the guidance algorithm breaks down. The first group of experiments
looks at the effect of speed in this noisy environment (as described in Table 4.1). As
in the speed experiment for the nominal case, the speed ratio is varied. The main
differences between experiments 8, 9 and 10 and the nominal case speed experiments
are the noise due to shipping and the noise due to the sea state. The geometry remains
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Experiment Target Speed (yds/s) Observer Speed (yds/s)

8 8 6
9 8 8
10 6 8

Table 4.4: Simulation parameters for worst case speed ratios

constant for these experiments, being the same as that of experiment 2 (Figure 4.3).
The actual speeds for the experiments are presented in Table 4.4.

In addition to the speed experiments, a final experiment, experiment 11, is run
in the worst case environment for comparison to the nominal case. The geometry of
this final experiment is the same as experiment 4 in the nominal case (Figure 4.5).
The speed ratio returns to the typical 4:3 of the initial cases.

4.5 Final experimental setup

Five trials are run for each of the experiments. In order to repeat the results of each
trial, a seed is used in the generation of the random numbers within the simulation.
This allows the sensor noise and initial estimation error to remain random, but re-
peatable. The simulation time is 3600 s. The observer has a turn rate of 7r/60 rad/s.
The length of the maneuver legs is 400 s.

The next chapter will present the results from these experiments.
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Chapter 5

Experimental Results

This chapter presents the results from the four different experiments as outlined in
Section 4.4. Within each set of experiments, data in both the cartesian coordinates
and the modified polar coordinates will be shown. The x state space results consist
of speed error, course error and range error. The y state space (modified polar)
includes the bearing, bearing rate, normalized range rate and reciprocal of range.
The covariance is updated within the Kalman filter, so that information is presented
in the y state. The errors in the x state demonstrate the accuracy of the information
that will be passed on from the observer to its home base.

5.1 Nominal Case Geometry Experiments

The first set of experiments vary the geometry within the nominal environment as
shown in Table 4.2. One metric of the effectiveness of each geometry is the time
at which the target moves out of the detection range of the observer. The longer
the observer maintains contact with the target, the more information it can obtain.
Therefore, those geometries which result in a longer time of contact can be considered
more effective in gathering information. These times are presented in table 5.1.

After each trial is run, the trajectories for the observer and the target are plot-
ted. This plot gives a visual representation of both the observer's motion and the
accuracy of the estimated target motion. Figure 5.1 shows the results for the fourth

Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean
1 1677s 1709s 1712 s 1675s 1709s 1696s
2 926s 908s 917s 871s 909s 906s
3 2258s 2431s 2234s 2023s 2216s 2232s
4 1785s 1831s 1814s 1915s 1832 s 1835s
5 2534s 2514s 2530s 2480s 2514s f 2514s

Table 5.1: Loss of detection in the nominal case geometries. The time for each
trial at which the target leaves the observer's sensor range, and the average for each
experiment.
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Figure 5.1: Experiment 5: Observer and Target Trajectories

trial of experiment 5. This plot contains the actual trajectory of the target, the
estimated trajectory of the target and the observer's trajectory. In addition, there
is a circle indicating the range of the observer's sonar at its initial position. This
plot demonstrates the maneuvers that the observer has completed during the run. In
this particular plot, the observer has calculated three different BO-TMA maneuvers.
These maneuvers are labeled on the plot. Towards the end of the run, the observer
completes a 180 degree turn (as label in Figure 5.1), which indicates that the target
is-no longer within range of its sensors.

The absolute time at. which the target moved outside of the observer's sensor
range can be determined from the plots of both the speed and course error. Once the
target is out of range, the filter continues to propagate the estimate, but no longer
updates it since there are no measurements. Due to the modeled dynamics of the
target, its course and speed remain constant once it is out of range of the observer. In
the same way, the estimated course and speed remain constant, resulting in constant
position error growth. The point at which the graphs become constant is the time
that the target leaves the sensing range of the observer. The jumps that can be seen
in between constant values are a result of observer maneuvers after the target has left
the observer's sensor range.

In addition to the trajectories, the range, course and bearing errors are plotted

48

0

0



Range error magnitude: Experiment 5

1500 ------

1000 -------

0 500 1000 1500 2000 2500
Time (s)

3000 3500 4000

Figure 5.2: Range Error Plot

Course error - Experiment 5

--- Trial l
Trial 2
Trial 3

- - - Trial 4
......... Trial 5

:4

- j** i-iI
---1

'I
.4 I

--------- -------- -------- --------

t
5
~

4
~------------

r~v> k L

500 1 OW 1500 2"0 2500 3"0 350M 4000
Time (s)

Figure 5.3: Course Error Plot

49

3500

3000

2500

2000
CD-c
'-I

0
a)
0)
C)
C
(U

-I V-

*.......................Tral ---.- Trial 5
--- - -- -- -- -- -- -- --- - - - -- - --- - - Trial 4 - --

Trial 3
Trial 2

- --- - Trial 1

eo

S ------- -------- ------ - ----------
--- -- -- - --- -- - -- - -- - - - - - --

500

n

15 ~~~~~~~1~~

OD
0)
c"

10

5

00



3.5--------

3 ---------

2.5 --------- -

15 ---- -

1. --- - -

0 -
0 500

Speed error - Experiment 5

Trial 1
Trial 2
Trial 3-- -------- -------- 4
Trial 4

-------- -------- -------- - .--.... Trial5

- ---- - J ---

Ole.I

1000 1500 2000
Time (s)

2500 3000 3500 4000

Figure 5.4: Speed Error Plot

for each trial of the experiment. Figures 5.2, 5.3 and 5.4 include the x state errors
for experiment 5. In this experiment, each trial has a very similar result, with offset
due to the random values. Some of the other experiments, on the other hand, have a
trial or two that do not quite follow a similar pattern in the plotted errors. Similar
plots are created for each of the other experiments.

Most of the experiments in this set have the large jump in the errors that can
be seen in Figures 5.2, 5.3 and 5.4. This jump occurs when the filter begins to
update its estimations based on the sensor measurements. The points can be seen
in Figure 5.1 that result in these large errors. The range is unobservable prior to
the first course change of the BO-TMA maneuver. These estimated positions of the
target also demonstrate the bearing ambiguity prior to the maneuver. The bearing
ambiguity-occurs when the bearing measurement crosses from 27 to 0 radians. Once
the maneuver occurs, the estimation smooths out. The only experiment that does
not have these large errors at the beginning of the run is experiment 2. This is due
to the geometry of the experiment, where the observer is coming from behind the
target, and there is a smaller range than the other 4 experiments.

The observer reports the target information obtained immediately prior to the
point in which the contact goes out of range. Table 5.2 includes the error in the
reported information. These results present a snapshot of the entire error plots. The
mean range error is about 18.5 percent of true range in experiment 1, 20.4 percent of
true range in experiment 2, 42.3 percent of true range in experiment 3, 14.8 percent
of true range in experiment 4 and 16.1 percent in experiment 5. From the errors in
the reported information, experiment 4 has one the lowest values in each of the three
different metrics. The large range errors in experiment 3 are directly related to its
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11 Range Errors (yds)
Experiment I Trial II Trial 21 Trial 3 Trial 4 Trial 5j1 Mean

1 862 513 463 261 480 516
2 603 536 623 404 674 568
3 162 4304 43 1078 319 1181
4 102 351 514 697 401 413
5 385 558 255 471 567 E447:__

Course Errors (rad)
Experiment Trial 11 Trial 2 [Trial 3 Trial 4 Trial I Mean

1 0.0954 0.0419 0.0386 0.00346 0.0356 0.0430
2 _ 0.0260 0.0336 0.0318 0.0381 0.0348 0.0329
3 0.0202 0.0415 0.00536 0.0215 0.0284 0.0234
4 0.0517 0.0234 0.00159 0.0126 0.0166 1 0.0212
5 0.00717 0.0216 0.0105 0.0320 0.0188 P0.0180

Speed Errors (yd/s) _______

Experiment Trial 1 Trial 2 Trial 31 Trial 4 Trial 5 Mean

1 0.743 0.761 0.718 0.521 0.726 0.694
2 0.885 0.797 0.777 0.617 0.399 0.695
3 0.432 2.979 0.403 1.213 0.626 1.131
4 0.443 0.622 0.758 0.538 0.645 0.601
5 0.711 0.882 0.603 0.831 0.888 0.783

Table 5.2: Errors in
case geometries

reported information at the time of contact loss for the nominal

large speed errors. This experiment had both trials that performed poorly and one
(trial 3) that performed very well. Experiment 5 was the most effective in measuring
the course of the target and consistant in its other measurements.

The other set of data. for these experiments consists of the elements from the y
state vector. The errors in these elements were plotted along with the corresponding
filter covariances. These plots provide a picture of how the filter is working. Figures
5.5, 5.6, 5.7 and 5.8 contain the original and a version zoomed around the x-axis for
experiment 4. These are the results of the second trial of experiment 4.

In figures 5.6 and 5.8 the effect of the observer's maneuvers on the covariance can
be seen. There is always some sort of dip or growth when the observer changes its
course. The errors in the y state vector are typically small for all of the experiments.
Most of the variations can not be seen until the plot is tightened around the x-axis.
As can be seen in the figures, the error does not always stay within the bounds
of the covariance. For a perfectly tuned filter, the error is expected to be out of the
covariance bounds about 32 percent of the time. However, the error is still quite small
in most cases. The growth in the bearing error that can be seen in Figure 5.6 occurs
after the observer has lost contact with the target and is no longer receiving bearing
measurements. Similar growths can be seen in the plots of the other experiments.
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Figure 5.5: Bearing and Bearing Rate Errors and Covariance for Experiment 4.
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Figure 5.6: Bearing and Bearing Rate Errors and Covariance Zoomed in Around the
x-axis for Experiment 4.
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Table 5.3:
ometries

Bearing and Bearing Rate Errors and Covariances for Nominal Case Ge-

Tables 5.3 and 5.4 presents the y state errors and covariances at the time at, which
the observer loses contact with the target.

Again, Tables 5.3 and 5.4 provide a snapshot of the effectiveness of the filter at the
time the observer loses contact with the target. Experiment 2 is the only experiment
in which the errors typically occur within the bounds of the covariance for every
metric except the normalized range rate. The errors of the other experiments are
typically out of the covariance bounds at the time of contact loss. However, there are
various degrees of severity. For example, the mean error for experiment 3 is two orders
of magnitude greater than the mean covariance. However, the specific errors for trial
3 of experiment 3 fall much closer to if not within the bounds of the covariance. This
confirms the results from the x state errors that experiment 3's third trial performed
well. The results of the y state errors present another pict ure that confirms the picture
painted by the x state results.
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Bearing Rate Errors (rad/s)(x 10-)
Bearing Rate Covariance (a)(x 10-')

Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean
1 22.7 -5.09 -4.60 -8.48 -5.58 9.29

2.64 2.29 2.29 2.15 2.31 2.33
2 -1.57 -1.10 -1.74 0.208 -2.12 1.35

14.3 17.5 16.0 28.9 18.1 19.0
3 -12.8 228.0 -0.776 -1.24 -2.23 49.0

0.267 0.353 0.783 1.78 0.933 0.823
4 14.9 6.88 2.22 2.87 5.08 6.39

1.66 1.50 1.33 0.549 1.44 1.30
5 -13.3 -10.2 -6.90 -6.63 -10.9 9.59

0.818 0.849 0.843 0.980 0.867 0.871
Bearing Errors (rad)

Bearing Covariance (a)
Experiment Trial 1 Trial 21 Trial 3 Trial 4 Trial 5 Mean

1 0.0242 -0.0061 -0.0046 -0.0190 -0.0085 0.0125
0.0091 0.0085 0.0085 0.0080 0.0085 0.0085

2 -0.0021 -0.0012 -0.0021 -0.0017 -0.0038 0.0022
0.0149 0.0158 0.0153 0.0172 0.0158 0.0158

3 -0.0134 0.7773 -0.0571 -0.0310 -0.0384 0.1843
0.0036 0.0028 0.0034 0.0056 0.0036 0.0038

4 0.0344 0.0194 0.0097 0.0110 0.0171 0.0183
0.0045 0.0047 0.0045 0.0051 0.0045 0.0047

5 -0.0053 -0.0223 0.0181 -0.0087 -0.0248 0.0158
0.0031 0.0030 0.0032 0.0031 0.0031 0.0031



Normalized Range Rate Errors (1/s)(x10-)
Normalized Range Rate Covariance (o) (x10-)

Experiment Trial 1 Trial 2 Trial 3 J Trial 4 Trial 5 Mean

1 14.0 6.55 7.02 6.16 6.41 8.03
2.06 1.51 1.54 1.43 1.47 1.60

2 12.2 10.9 8.14 8.57 -4.48 8.85
4.18 4.14 4.93 5.32 8.15 5.34

3 1.49 23.4 6.90 13.9 5.19 10.2
0.504 0.369 0.969 1.14 1.08 0.812

4 9.61 10.9 11.6 2.45 10.6 9.03
0.436 0.256 0.299 0.293 0.263 0.309

5 11.2 7.24 13.8 9.46 6.98 9.74
0.355 0.370 0.401 0.430 0.373 0.386

Reciprocal of Range Errors (1/yd)(x 10-5)
Reciprocal of Range Covariance (o)(x10- 5 )

Experiment Trial 1 Trial 2 J Trial 3 ] Trial 4 1 Trial 5 Mean

1 16.1 -5.58 -5.11 -3.07 -5.27 7.02
1.14 1.29 1.29 1.53 1.29 1.31

2 -6.38 -5.79 -6.56 -4.55 -6.99 6.05
9.12 11.0 10.1 17.9 11.3 11.9

3 -1.97 -101.8 -0.542 -10.0 -3.69 23.6
0.353 0.104 0.573 1.08 0.6443 0.551

4 -1.27 -4.01 -5.58 -7.18 -4.51 4.51
0.882 0.827 0.768 3.16 0.817 1.29

5 -4.37 -5.98 -3.01 -5.19 -6.07 4.92
0.240 0.233 0.257 0.283 0.237 0.250

Table 5.4: Normalized Range Rate and Reciprocal of Range Errors and Covariances
for Nominal Case Geometries
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5.2 Nominal Case Speed Experiments

The next set of experiments varied the speed ratio between the target and the ob-
server. The parameters of these experiments are presented in Table 4.3. As previously
stated, each experiment uses the geometry from experiment 2 in the previous set of
experiments. In this situation, the observer is following the target. Table 5.5 presents
the time at which the target leaves the sensor range of the observer. Somewhat coun-
terintuitively, the situation in which the target and the observer travel at the same
speeds maintains the longest contact. In fact, in one trial, the target is detected by the
observer for the entire run. When the target is slower than the observer, the observer
moves itself out of range of the target due to its greater speed. Since the observer
can be considered ahead of the target in this case, it is possible for it to reaquire the
target when it turns around and heads back towards its origin (in effect heading back
towards the target). This occurs in the first and fourth trials in experiment 7.

As in the previous set of experiments, the trajectories are plotted after each run.
Figure 5.9 represents a typical run in the speed ratio experiments. In this particular
case, the target and observer have the same speed. Once again, in this particular
run, the BO-TMA maneuver has been calculated and performed three times before
the observer loses contacted with the observer. The various maneuvers allows the
observer to maintain a more consistent track of the target.

This section also includes the error plots from experiment 6 as representative of the
results from this set of speed ratio experiments. Figures 5.10, 5.11 and 5.12 contain
these plots. This set of experiments does not have the same set of large errors that
is typical of most of the geometry experiments. As stated previously, this is due to
the specific geometry of these experiments. There is a jump in the speed and course
errors of trial 1, which is consistent through all of the speed ratios. Therefore, the
cause of this jump is within the random variables in either the initial estimate or in
the noise statistics. In addition to these plots, Table 5.6 contains the errors within
the information that the observer reports when it loses contact with the target. The
mean percentage range errors are 20.4 percent, 13.7 percent and 50.5 percent for
experiments 2, 6 and 7 respectively.

As can be seen in Table 5.6, experiment 6 has the best performance over all of its
trials. In some ways this is expected since the observer has the ability to keep up with

Experiment Trial I Trial 2 Trial 3 Trial 4 [Trial 5 Average

2 926s 908s 917s 871s 909s 906s
6 2274s 2344s 2299s 1423s 3600s J 2380 s
7 2025s 2 1517s 1541s 1873 s 3  1521s 1695s

'The target never moves out of range in this trial
2The observer reaquires the target from 3150s - 3326s
3The observer reaquires the target from 2034s - 2152s and from 2565s - 2739s

Table 5.5: Nominal Speed Detection Loss. The time for each trial at which the target
leaves the observer's sensor range, and the average for each experiment.
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Range Errors (yds)
Experiment I Trial 1 [Trial 21 Trial 3[ Trial 4 Trial 5 Ave

2 603 536 623 404 674 568
6 430 543 177 213 181 309
7 15900 132 848 125 25 1406

Exprien Ta1 T Course Errors (rad) - 1
Experiment 1 Trial 21 Trial 3 [Trial 4 TrialS Ave

2 0.0260 0.0336 0.0318 0.0381 0.0348 0.0329
6 0.00642 0.00968 0.0232 0.0224 0.00619 0.0136
7 0.0557 0.0597 0.0224 0.00137 0.0450 0.0368

S_ I Speed Errors (yd/s)
Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Ave

2 0.885 0.797 0.777 0.617 0.399 0.695
6 0.960 0.989 0.602 0.730 0.0869 0.674
7 4.185 0.529 2.931 0.256 0.606 1.701

Table 5.6: Errors in Reported Information: Nominal Speed

the target when they are moving at the same speed. The observer also performed
better when it was moving slower than the target rather than when it was moving
faster (experiment 2 vs. experiment 7). However, the errors from experiment 7 when
the observer has lost the target after reaquiring it are not included in Table 5.6. Other
than an improvement in the range error in trial 1, there is not much improvement in
the errors once the observer loses the target once again.

Table 5.7 presents the y state errors and covariances for each of the three speed
ratio experiments at the initial loss of contact. Unlike experiment 2, the errors of
the other two experiments typically fall outside of the bounds of the covariance. The
errors in experiment 6 are usually about an order of magnitude greater than the
covariance while those in experiment 7 are typically two orders of magnitude greater.
Therefore, from these results, experiment 6 performs better than experiment 7.
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Bearing Rate Errors (rad/s)(x 10-')
Bearing Rate Covariance (u)(x10-s)

Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean
2 -1.57 -1.10 -1.74 0.208 -2.12 1.35

14.3 17.5 16.0 28.9 18.1 19.0
6 18.3 19.0 13.2 -15.7 6.56 14.6

0.326 0.359 0.418 0.500 0.706 0.462
7 -182.5 -13.6 -8.09 -0.661 -15.0 44.0

0.142 0.429 0.152 1.32 0.382 0.485
Bearing Errors (rad)

Bearing Covariance (a)
Experiment Trial 1 Trial 21 Trial 3 Trial 4 Trial 5 Mean

2 -0.0021 -0.0012 -0.0021 -0.0017 -0.0038 0.0022
0.0149 0.0158 0.0153 0.0172 0.0158 0.0158

6 0.0878 0.0962 0.0775 -0.0339 0.0299 0.0651
0.0037 0.0039 0.0040 0.0050 0.0048 0.0043

7 -0.6907 -0.0485 -0.8089 -0.0283 -0.0614 0.3276
0.0016 0.0053 0.0047 0.0062 0.0051 0.0046
Normalized Range Rate Errors (1/s)(x10- 5)

Normalized Range Rate Covariance (a) (x10-s)
Experiment Trial I Trial 2 1 Trial 3 Trial 4 Trial 5 Mean

2 12.2 10.9 8.14 8.57 -4.48 8.85
4.18 4.14 4.93 5.32 8.15 5.34

6 -0.465 -2.81 -3.36 7.68 7.33 4.33
0.484 0.494 0.553 2.27 1.10 0.980

7 33.7 -2.38 79.1 -7.49 -.868 24.7
0.130 0.733 0.350 0.518 0.695 0.485

Reciprocal of Range Errors (1/yd)(x10- 5 )
Reciprocal of Range Covariance (a)(x10-5)

Experiment Trial 11 Trial 2 j Trial 3 [ Trial 4 Trial 5 Mean
2 -6.38 -5.79 -6.56 -4.55 -6.99 6.05

9.12 11.0 10.1 17.9 11.3 11.9
6 -4.80 -5.86 -2.14 -2.55 -12.2 5.51

0.212 0.203 0.254 1.00 2.19 0.772
7 -68.0 -1.62 15.7 1.68 -0.314 17.5

0.0389 0.297 0.115 1.05 0.269 0.354

Table 5.7: Y State Errors and Covariances for Nominal Case Speed R.atios

60



5.3 Worst Case Speed Experiments

These experiments have a similar set-up to those in the last section. The only differ-
ence is the environment in which the experiment is perfornmed. Instead of the observer
being in the nominal, every day environment, it is now in the worst environment. The
main effect that the environment has on the observer is the reduction in the range
of the sensor. Table 5.8 contains the time of detection loss for each of the three ex-
periments. Due to the reduction of the sensor range, the observer never detects the
target in experiments 8 and 9. The increase in speed is necessary for the observer to
come close enough for the target to be within range of its sensors.

Since the observer does not detect the target in either experiment 8 or 9, the filter
just propagates the initial estimate passed to the observer by the sensing network.
The speed and the course errors are constant after the observer's initial maneuver to
attempt to intercept the target. Due to these constant errors, the range error has a
constant growth. Experiment 10 typically performs fairly well prior to losing contact
with the target. After the loss of contact, if there is a significant error in the speed,
this will manifest itself as a large range error. Table 5.9 presents the x state errors for
these experiments. Since the target was never detected in the first two experiments,
the range error was the initial estimate error and the speed and course errors are the
constant errors that occured after the intercept maneuver. The errors for experiment
10 are those at the instant that the observer lost contact. In experiments 8 and 9,
the mean percentage range error is 4.3 percent while experiment 10 mean range error
is 14.1 percent of the true range value.

In addition to the x state errors, the y state errors and covariances are also tabu-
lated. Since there are no maneuvers in either experiment 8 or 9, there are no sharp
dips within the covariances. The covariance of the bearing between the target and
observer continually grows since there are no bearing measurements. The errors and
covariances for experiment 8 can be seen in Figures 5.13 and 5.14. The point at which
the errors and covariances are measured for these two experiments is the instant be-
fore it settles to a constant speed and course error. The errors and covariances for
experiment 10 are calculated at the point at which the observer loses contact with
the target. These values are included in Table 5.10.

Since there are no maneuvers in either of the first two experiments of this set, the
errors remain within the covariance bounds. The bearing errors are typically smaller
in experiment 10 since it is receiving bearing measurements unlike the other two
experiments. It is difficult to compare the errors between the different experiments

Experiment Trial II Trial 2 Trial 3 Trial 4 1 Trial 5 Average
8 Os Os Os Os Os Os
9 Os Os O OS s Os Os

10 857s 838s 833s 618s 844 s 798s

Table 5.8: Worst Case Speed Detection Loss. The time for each trial at which the
target leaves the observer's sensor range, and the average for each experiment.
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Figure 5.13: Bearing and Bearing Rate Errors and Covariance for Experiment, 8
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for Experiment 8
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Range Errors (yds)
Experiment Trial I Trial 2 Trial 3 Trial 4 Trial 5 Ave

8 79 12 113 1 12 43
9 79 12 113 1 12 43

10 448 360 367 42 3967 1037

Course Errors (rad)
Experiment ial 1 Trial 21 Trial 3] Trial 4] Trial 5 Ave

8 0.0744 0.0365 0.0336 0.0269 0.0407 0.0424
9 0.0867 0.0508 0.0409 0.0135 0.0556 0.0495

10 0.305 0.0496 0.150 0.0376 0.718 0.252
Speed Errors (yd/s)

Experiment ial 1 Trial 21 Trial 3] Trial 41 Trial 5 Ave

8 0.359 0.321 0.265 0.333 0.344 0.324
9 0.479 0.450 0.369 0.460 0.475 0.447
10 10.45 0.703 3.970 0.143 1.392 3.332

Table 5.9: Errors in Reported Information: Worst Case Speed

since the MPEKF never really starts running in the first two experiments. The
estimates are propagated, but there are no measurement updates. The results from
experiment 10 can be compared with those of experiment 7, since they have the same
set-up but differ in the geometry. This will be further explored in the next section.
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Bearing Rate Errors (rad/s) (x 10-5)
Bearing Rate Covariance (o-)(x 10-)

Experiment Triial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean
8 76.5 22.6 60.8 -12.6 4.75 35.5

2951 2951 2923 2914 2910 2930
9 63.3 16.5 56.5 -16.0 40.3 38.5

3117 3115 3101 3093 3104 3106
10 344.7 -67.5 -68.6 3.42 -58.3 108.5

52.4 10.9 14.5 42.1 10.6 26.1
Bearing Errors (rad)

Bearing Covariance (o)
Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

8 -0.0937 -0.0902 -0.0343 -0.0730 0.1396 0.0862
0.5695 0.5998 0.5671 0.6252 0.5987 0.5921

9 -0.0964 -0.0903 -0.0369 -0.0729 0.1443 0.0822
0.5812 0.6121 0.5801 0.6395 0.6150 0.6056

10 0.0841 0.0550 0.0271 -0.0036 0.0538 0.0447
0.0189 0.0132 0.0135 0.0191 0.0127 0.0155
Normalized Range Rate Errors (1/s) ( x 10-5)

Normalized Range Rate Covariance () (x 10-5)
Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

8 -17.5 -8.18 10.3 2.27 51.6 18.0
2953 2952 2924 2914 2909 2930

9 -22.5 3.70 -4.84 34.1 50.1 23.0
3119 3118 3103 3094 3102 3107

10 -914.1 -131.8 -447.5 -34.5 -205.9 346.8
49.3 4.98 10.1 89.4 6.27 32.0
Reciprocal of Range Errors (1/yd)(x10 5 )
Reciprocal of Range Covariance (a) (x 10-5)

Experiment Trial 11 Trial 2 Trial 3 1 Trial 4 1 Trial 5 Mean

8 7.82 -0.857 11.2 -0.435 1.16 4.29
65.2 63.3 66.6 65.5 64.1 64.9

9 7.93 -1.09 11.6 -0.618 1.60 4.57
67.9 65.9 69.6 68.4 70.2 68.4

10 -51.7 -44.9 -45.4 8.19 -114.8 53.0
10.4 6.98 7.08 44.3 6.62 15.1

Table 5.10: y State Errors and Covariances for Worst Case Speed Ratios

64



5.4 Nominal Case vs Worst Case

The final set of experiments consisted of an additional run of experiment 4 in the
worst case environment. This allows for a comparison of the two different geometries.
In addition, the results from experiments 7 and 10 will be compared. Table 5.11
presents the times at which the target leaves the observer's detection range. This
demonstrates the degredation that is caused by the decreasing sensor range. This
reduction in detection time is consistent with that seen between experiments 7 and
10 as well.

The actual and estimated trajectories for experiment 11 are presented in Figure
5.15. The main differences in the observer trajectories between the two experiments
are due to the difference in the sonar range. As seen in Figure 5.15, the observer
travels on the initial intercept course for a length of time before the target comes into
range. In experiment 4, on the other hand, the target is within range of the observer
almost at the beginning of the run. Experiment 11 does not have the initial errors
that are present in experiment 4 (similar to those in Figures 5.2, 5.3 and 5.4 at the
beginning of the chapter). This is due to the fact that there is a different bearing
angle between the observer and the target when the BO-TMA is initialized and the
filter begins updating the measurements. The observer is not taking measurements
when the bearing crosses the 0 radian mark in experiment 10.

The range, course and speed errors for experiments 4 and 10 are presented in
Table 5.12. From this table it can be seen that experiment 11 performs better in the
absolute estimation of the range, however the mean percent range error for experiment
10 is 21.9 percent while it is only 14.8 percent for experiment 4. Experiment 4 also
performs better in the course and speed estimation. Similar results are seen when
experiments 7 and 10 are compared. The course and speed estimates are better in the
nominal environment while the range estimate is better in the worse environment.

The figures of the covariance and y state errors for experiment 4 are presented
earlier in this chapter in Figures 5.5, 5.6, 5.7 and 5.8. The covariance is not reduced
as quickly in experiment 11. The effects of the maneuvers can be seen fairly well in
the initial covariance plot prior to the zoom in. This can also be observed within
the results in Table 5.13. The mean covariance for each variable in experiment 11 is
much larger than those for experiment 4. The errors are also larger in experiment 11
than experiment 4 at the time of detection loss. This also holds true when comparing
the y state errors and covariances between experiments 7 and 10. The only point at
which it breaks down is within the bearing errors. The mean bearing error is smaller
for experiment 10 than it is for experiment 7.

Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
4 jj1785 s 1831s 1814 s 1915 s 1832 s 11 1835s
11 662 s 577 s 612 s 544 s 581s 595 s

Table 5.11: Nominal vs. Worst Case Detection Loss. The time for each trial at which
the target leaves the observer's sensor range, and the average for each experiment.
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Truth and Estimated Trajectories

0 initial position
+ truth trajectory

- - - initial position estimate
sonar range * estimated trajectory
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Figure 5.15: Experiment 11: Observer and Target Trajectories

Range Errors (yds)
Experiment Trial II Trial 2 1 Trial 3 Trial 4 1 Trial 5 Ave

4 102 351 514 697 401 413
11 318 86 54 258 89 J161

1I Course Errors (rad)
Experiment ITrial 1 Trial 2 Trial 3 Trial 4 ] Trial 5 Ave

4 0.0517 0.0234 0.00159 0.0126 0.0166 0.0212
11 0.0236 0.0180 0.0194 0.0748 0.0134 0.0298

Speed Errors (yd/s)
Experiment Trial 1 Trial 2 [ Trial 3 [ Trial 4 1 Trial 5 Ave

4 0.443 0.622 0.758 0.538 0.645 0.601
11 0.748 0.909 0.807 0.704 0.915 0.817

Table 5.12: Errors in Reported Information: Nominal vs. Worst Case

66

5000

0

0

0
CL

10000 1- ....

-15000 K -..

0

-5000 [



Bearing Rate Errors (rad/s)(x 10-5)
Bearing Rate Covariance (U) (x 10-5)

Experiment Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

4 14.9 6.88 2.22 2.87 5.08 6.39
1.66 1.50 1.33 0.549 1.44 1.30

11 102.5 70.2 62.9 -77.5 -53.1 73.2
7181 12300 13600 38500 25600 19400

Bearing Errors (rad)
Bearing Covariance (a)

Experiment Trial 1 Trial 21 Trial 3 Trial 4 Trial 5 Mean

4 0.0344 0.0194 0.0097 0.0110 0.0171 0.0183
0.0045 0.0047 0.0045 0.0051 0.0045 0.0047

11 -0.4412 -0.7246 -0.6703 -0.8581 -0.5086 0.6406
47.11 54.22 58.60 88.15 73.44 64.30

Normalized Range Rate Errors (1/s)(x 10-5)
Normalized Range Rate Covariance (a)( x 10-5)

Experiment Trial 11 Trial 2 Trial 3 Trial 4 Trial 5 Mean

4 9.61 10.9 11.6 2.45 10.6 9.03
0.436 0.256 0.299 0.293 0.263 0.309

11 89.5 192.9 185.5 346.8 222.5 207.4
7202 12400 13600 38600 25600 19500

Reciprocal of Range Errors (1/yd) ( x 10-5)
Reciprocal of Range Covariance (U)(x 10-5)

Experiment Trial 1 jTrial 2 1 Trial 3 [ Trial 4 1 Trial 5 Mean
4 -1.27 -4.01 -5.58 -7.18 -4.51 4.51

0.882 0.827 0.768 3.16 0.817 1.29
11 -41.1 -14.2 -9.35 73.3 18.8 31.4

4493 6634 7450 18500 14400 9706

Table 5.13: y State Errors and Covariances for Nominal vs Worst Case
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Estimated Trajectories with and without Filter Updates
5000

0

0 0.5 1 1.5
x-position (yd)

Figure 5.16: Experiment 4: Observer and Target Trajectories

Figure 5.16 demonstrates the effects of the filter updates on the estimation. This
figure plots the true target trajectory, the estimated trajectory with the filter turned
on, the estimated trajectory with the filter turned off and the observer trajectory for
experiment 4. This trial calculates both the updated and non updated estimates of
the target state. The observer trajectory is based on the updated estimates, while
the non updated estimates are affected by the observer's maneuvers. This figure
demonstrates that the MPEKF improves the estimate with the updates based on
the measurements. The point at which the estimate trajectory with filter updates
diverges from the truth trajectory occurs when the observer has turned around after
it has lost contact with the target.

To briefly sum up, certain geometries performed better than others. In addition,
the observer having an identical speed as the target improved the performance of
an otherwise lacking geometry. Working in the worst case environment decreased
the length of time, if any, that the observer received measurements from the target.
Further conclusions from these results will be drawn in the next chapter.
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Chapter 6

Conclusion

Unmanned underwater vehicles (UUVs) are becoming more prominent in various
areas of the civilian, military and research sectors. They have an ability to expand
access to one of earth's most unknown environments, the ocean. UUVs can augment
the work that is currently done in the underwater environment.

Specifically, UUVs have a variety of missions they can accomplish in littoral areas
that are not easily accomplished by larger vessels. This thesis examines the devel-
opment of a guidance algorithm for use in these areas. One particular mission to
be accomplished in the littoral area of the ocean is the tracking of vessels leaving a
port or coming through a check point. In order for a UUV to track without being
detected, it must perform passive bearings-only tracking.

This thesis presents a guidance algorithm for UUVs to perform bearings-only
tracking. Chapter 3 includes the development of this guidance algorithm. As a part of
this development, specific maneuver experiments are conducted. These experiments
confirm the ability to perform bearings-only tracking. The experiments allow for
an observation of the effectiveness of a variety of maneuvers that will provide the
backbone for the guidance logic.

Chapter 5 presents the results from a variety of situations using this guidance
logic. Each run in itself demonstrates that the guidance logic performs bearings-only
tracking. These situations vary the initial geometry of the observer and target, the
speed ratios between the-observer and target and the environment in which they-are
both operating. Each of these sets of experiments explores a different aspect of the
bearings-only tracking problem.

The first set of experiments explored the effects of the initial geometry of the target
and observer. These geometries correspond to various points where the observer is
cued to track the target. The least effective geometry is that in which- the observer
does not begin to track the target until the target is already ahead of the observer
and moving away as can be seen in the results from experiment 2. In this case ahead
means that the target is moving away from the observer along the bearing between
the observer and target. The observer is always trying to catch up with the target and
quickly loses contact with it in this geometry. The geometries of experiments 1, 3 and
4 are similiar in their respective positions but vary in the initial relative course of the
observer. Experiments 1 and 4 perform more consistantly than experiment 3. This
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might be due to the fact that experiment 3's initial intercept course is perpindicular
to the target's course, unlike the other two experiments. Experiment 5 has a vastly
different geometry in that observer begins out ahead of the target and its initial course
is in the general direction of the target. This allows the observer to maintain contact
with the target for a longer period of time since it begins tracking the target, before
the target has passed it.

From the results, some general guidelines can be determined for the positioning
of the observer. The observer should be outside of the harbor or chokepoint that it is
monitoring. For better results, the UUV should be cued before the target will have
passed its position. When the UUV is either off to the side of the target or heading
on a reciprocal course, it performs better than when the target has already passed as
it begins to track the target.

The second set of experiments explores the effect of the speed ratio on the effec-
tiveness of the observer's tracking. The geometry that is used is the least effective
geometry, in order to determing if changing the speed ration would improve its perfor-
mance. In this situation, the observer was most effective when it moved at the same
speed as the target. The performance at the same speed is comparable to the UUV's
performance in the other geometries at a slower speed. Somewhat counterintuitively,
the observer performed better when it was moving slower than the target rather than
faster. This is due to the fact that the observer quickly passes the target and loses
contact with the target when it is moving faster. When the observer is slower than
the target, it follows the target until the target moves out of range. However, it is
unlikely that the UUV would be able to travel faster than the target vessel. In most
situations, the UUV would travel slower or possibly the same speed as the vessel in
the restricted waters. The UUV would not have the same speed capabilities as the
target. In general UUVs are slower than the type of vessels they would be tracking.
In restricted waters, the UUV might travel at the same speed if the target has more
speed restrictions than the UUV. Once the vehicles entered open water, the target
vessel would probably speed up and the UUV would not be able to maintain a track
for the entire time.

In the third set of experiments, the speed ratio is varied again, but this time
in the worst case acoustic environment. In this undesirable environment, the UUV
never even detects the target in the first two situations. The UUV needs to be at the
top speed in order to come within range of the target. This also demonstrates the
ineffectiveness of the second geometry in an extremely noisy environment.

The final set of experiments compares the nominal environment to the worst case
environment. The results indicate that the fourth geometry is somewhat effective in
the noisy acoustic environment. The UUV is able to track the target for short period
of time before the target moves out of range. This indicates that. it is possible to use
the UUV in less than desirable weather and areas.

The results from each of the experiments indicates that autonomous bearings-only
tracking is feasible. However, further work needs to be done before this algorithm
can be implimented on a real UUV. This further work will be explored in the next
section.
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6.1 Further Work

This section presents an overview of further work that needs to be complete prior
to having a working UUV that performs autonomous bearings-only tracking. The
guidance algorithm that has been presented in this thesis only takes into account the
current states of both the observer and the target. The next step would be to enable
the observer to avoid obstacles while performing the BO-TMA.

Obstacle avoidance for UUVs is currently being explored by various organizations.
There is room for continuing work in combining low level obstacle avoidance with
target tracking. The UUV will have to maneuver around objects while trying to
maintain its track of the target. In order to maintain the track of the target, or at
least to keep the target within range, the observer should try to--prevent obstacles
from obstructing its ability to sense the target. One possible method is to always
move towards the target when avoiding an obstacle.

In addition to obstacle avoidance, the guidance algorithm can be improved to
account for target maneuvers. There are two aspects to the target maneuvers. The
first is that the filter is designed under the assumption that the target has a constant
course and speed. The UUV would either have to start the BO-TMA over again
after a maneuver, inject a process noise transient or have a more accurate model of
the target. The other aspect of target maneuvers is the determination of counter
detection. This aspect has been explored in Mierisch's work [19].

Further extensions of this work include combining with the navigation of ownship,
contact classification, online optimization of track versus trail and explicitly account-
ing for power and fuel. This thesis assumes that the observer knows its own position
perfectly. Further extensions of the work would be to account for errors in the ob-
server's self knowledge. In addition, this thesis solely focuses on the specific guidance
for the BO-TMA maneuvers. This guidance needs to be folded into the main navi-
gation system of the ownship that controls the entire mission of the observer, from
launch to recovery.

Another extension is contact classification. This would allow for the UUV to be
more discriminate in the contacts that it tracks. If the sensor network cues it to a
target, the observer can determine if the contact is one of interest or not. This would
allow the UUV to have a longerstation time in which the observer does not track
every target that it has been alerted of.

This thesis presents a modest guidance algorithm. This could be further improved
to allow for online optimization between tracking the target, and trailing the target.
Currently, the angles of the maneuvers are set in the algorithm. The online optimiza-
tion would allow for more variety in the maneuvers and improve their performance.
In addition, the optimization could be used to improve the BO-TMA performance
when encountering obstacles.

The final area in the control of the UUV that should be explored is the accounting
of the power and fuel available. The levels of power and fuel are important to the
navigation and control of the vehicle. These levels dictate whether or not the UUV
is able to wait for another contact. Work needs to be done in incorporating these
inputs into the higher level control system of the UUV.
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In order to for the UUV to perform this mission for the required length of time,
there needs to be more research into power sources and supplies. Current sources
do not last long enough for the main goals of this mission. Bearings-only tracking
requires the UUV to have a long lasting power source in order to track different
targets without having to return recharge after each track.

Another area of ongoing research is in the underwater sensors themselves. The
range of the sensors greatly affects the effectiveness of the UUV. Underwater is a
complicated and noisy environment. The noise levels vary and it is difficult to predict
the operation of the sensors from day to day. There has been much research in other
types of sensors other than acoustic sensors. These could help to increase the range
in which a UUV could detect another vessel.

Other areas of research to accomplish this mission include underwater communi-
cations and cooperation. The UUV needs to be able to communicate with the sensor
field that cues it as well as be able to send its aquired information to its home plat-
form. Underwater communications and cooperation is a current and vibrant area of
research. More than likely a sensor net would have multiple UUVs waiting to cued to
track an outgoing vessel. If this is the case, those UUVs must be able to cooperate
with each other and communicate with each other. This area is an important aspect of
implementing bearings-only tracking as part of a force multiplier in a communication
network in littoral areas.
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