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ABSTRACT

A model of software applications for business process management based on colored Petri
Networks is proposed and the corresponding application development process is exposed. A
language is proposed to specity the enabling rules of the transitions. An algorithm to solve the
binding problem is proposed and detailed. These elements allow the developers to isolate
themselves from the very complex details of business process orchestration, transaction

management, multi-threading issues, and to concentrate on the implementation of the transitions
themselves.

As a proof of concept, a lightweight business process engine based on that model has been
implemented as well as the associated development and code generation tools.
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Objectives

Business process management is increasingly at the core of any business for the following
reasons:

e The economic activities are becoming more and more complex as new products and
services are offered on a more global market.

¢ Increasing competition and global markets drive the need for an ever faster adaptation of
processes to changing market conditions.

e Even when applied properly, classical software applications and classical software
development approaches are not necessarily flexible and rapid enough to respond to these
challenges.

The main objective of the present work is to provide the core implementation of a lightweight
business process management engine for small and medium size enterprises. We have excluded
big enterprises from this work because they use large-scale systems likc ERP and CRM systems
that already contain workflow management engines. These systems are usually not affordable for
small and medium scale enterprises.

We will use high level Petri networks to model business applications. The structure and behavior
of an application can be specified as a high-level Petri net. The resulting application will be a set
of communicating high-level nets.

We will develop a code generator that generates the application code from a description of the
Petri Nets model in order to accelerate application development and improve the quality and

reliability of the resulting applications.



Part | Petri Networks theory - Literature Review

I.1 General Introduction

Petri nets were introduced by Carl Adam Petri in his Ph.D. thesis in 1962 [12]. Today, Petri
networks designate a class of network models for concurrent systems. They provide a rigorous
and scientific basis for the synthesis [1, 2, 5, 13], analysis, verification [5], validation [3] and
simulation of such systems. Petri networks come today essentially in three different forms [14,
15}:

1. Low-level Petri networks. The basic model here is that of elementary net systems. They
are well suited for the investigation of properties of concurrent systems and as a basis for
other models but not for practical applications because the size of the models explodes
even for simple applications.

2. Place/Transition networks: The main model here is that of place transition systems. They
fold repetitive features of clementary net systems in order to obtain more compact models.

3. High-level Petri networks: The main models here are those of predicate transition nets
and colored Petri nets. Those models use algebraic and logical tools to yield models that
are very compact and practical to use in real applications.

The structure of a Petri network is given by a bipartite directed graph. There are two types of
nodes called places (or states) and transitions. Directed links can only connect nodes of different
types. Transitions represent tasks or activities that have to be done in the process, and places
represent identifiable steps or milestones in the process. A directed link from a place to a
transition represents a precondition to be met or an input that is necessary for the execution of
the transition. A link from a transition to a place represents the production of some result or
output by that transition when it occurs.

The global dynamic state of the system is represented by the presence of tokens in the places.
The presence of tokens in the input places of a transition determines if that transition is enabled,
i.e. if it can occur. The effect of the occurrence of the transition is to consume some tokens in its
input places and to producc new tokens in its output places. The three flavors of Petri networks
cited previously essentially differ by the type of their tokens and by their enabling and

occurrence rules.



1. In low-level Petri networks, there can be at most one token in each place. In fact, places
in these networks can be considered as Boolean variables. A transition is enabled if all
the input places of the transition have a token and no output place has a token. When the
transition occurs, tokens are removed from the input places and added to the output
places of the transition. In this case, the global state of thc network can be represented as
an array of Boolean variables or as a Boolean function.

2. In place-transition networks, places can contain any number of tokens and tokens are
indistinguishable. A transition is enabled if all the input places of the transition contain
enough tokens. When the transition occurs, tokens are removed from the input places and
added to the output places of the transition. The numbers of tokens involved in the
enabling rules and in the occurrence rules are specified as a function of the arcs of the
network. In this case, the global state of the network can be represented as an array of
integer variables or as an integer function.

3. In colored Petri networks, places can contain any number of tokens and tokens are
distinguishable. They carry some information with them that is used in the enabling rules
and in the occurrence rules and that is accessible when a transition occurs. Each token has
a type called its color. The information carried by the tokens represents the parameters
and the results of the execution of a transition. In this case, the global state of the network
is represented by an array of multi-sets of tokens.

Petri Networks can be also used in combination with queuing theory [10, 11] in order to obtain
stochastic process models for the simulation of process systems [6].

The rest of this section presents a summary of the essential definitions and properties of high
level Petri networks that we will use in the following parts of this work. A very detailed
treatment of theses results can be found in the Kurt Jensen’s books and papers [7, 8, 9].

1.2 Definitions

Places or states are nodes of the network that can contain tokens. They store the dynamic state
of the system. They are usually represented graphically as ellipses. Transitions are the nodes of
the network that represent actions or behaviors that can occur in the system. They are usually
represented graphically as rectangles. Ares represent pre-conditions and post-conditions of

transitions.



A node X is called an input node of another node y if and only if there exist a directed arc from x
to y. Analogously, we can define output nodes, input places, output places, input transitions,
output transitions, input arcs and output arcs.

Each place in a network may contain a dynamically variable number of elements called tokens.
An arbitrary distribution of tokens on the places is called a marking. The initial distribution is
called the initial marking and is usually noted My. The initial marking is determined by
evaluating initialization expressions.

A transition is said to be enabled in a given marking if, in this marking, there are enough tokens
of the right type in all the input nodes of that transition. If it is not the case, the transition is said
to be disabled.

When a transition is enabled, if may take place. When it happens, we say that the transition
occurs. The effect of the occurrence is that tokens are removed from the input places and added
to the output places. The number and type of removed and added tokens is specified by the arc
expressions of the corresponding arcs.

A marking M; is directly reachable from marking My if there is a transition T, that leads from
M, to M. A marking M, is reachable from M, if there is a sequence of transitions that lead from
Mg to Mo.

In a given marking My, it is possible that several transitions are enabled simultaneously and that
there are so many tokens that they can operate on disjoints sets of tokens. These transitions are
said to be concurrently enabled in M. This means that these transitions can occur at the same
time or in parallel. We call a step a multi-set of concurrently enabled transitions.

1.3 Multi-sets

A multi-set m or bag over a non-empty set S is a function from S to N. The integer m(s) is the

number of appearances of the element s in the multi-set m and is called the coefficient of s. The

multi-set m is usually represented by a formal sum: m = Zm(s)‘s
ses

The set of all multi-sets over S is denoted Sys. The non-negative integers {m(s)(s e§ } are the
coefficients of the multi-set m. An element s e S is said to belong to the multi-set m if m(s) =0

and we writes e m .

Usual operations are defined on multi-sets in the following way, Vm,m,,m, € S,,;, andvVne N.



o Addition: m; +m, =) (m,(s)+m,(s))'s

seS

e Scalar multiplication: n*m = Z(n *m(s))'s

ses
¢ Comparison:
m, #m, < 3ds e S :m(s)# m,(s)

m; Sm, <> VseS:m(s)<m,(s)

o Size: |m| = Zm(s)

ses

When|m| = oo, m is infinite. Otherwise m is finite.

e When m, <m,, subtraction is defined by m, —m, = z(m2 (s)—m,(s))'s

ses

Multi-sets operations have the following classical properties:
Vm,m,,m,,my €S, andVn,n ,n, € N.
1. m +my, =m, +m,

2. my+(my+my)=(m +m,)+m,

m+9O@=m
1*m=m
0O*m=0

n*(m +m,)=(n*m)+(n*m,)

N v AW

(n,+n,)*m=(n*m)+(n, *m)
8. m*(n,*m)y=(n*n,)*m
9. |, +my| = ;| + |,
10. |n*m|=n*|m|
1.4 Structure of Non-Hierarchical Colored Petri Networks

The formal definition that follows does not depend on the language in which the net expressions

are written. It only assumes that the syntax exists and allows to talk unambiguously about the

following elements:

e The elements of a type T. The set of all elements in T is denoted by the type name T.
s The type of a variable v, denoted by Type(v).
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The type of an expression expr, denoted by Type(expr).

The set of variables in an expression expr, denoted by Var(expr).

A binding of a set of variables, V associating each variable vel an element
b(v) € Type(v).

The value of an expression expr, in a binding b denoted by expr<b>. Var(expr) must be a
subset of the variables of b and the evaluation is obtained by substituting for each

variable v € Var(expr) the value b(v) € Type(v)

By definition, a non-hierarchical CP-net is a tuple CPN =(Z,P,T,A,N,C,G,E,I) satisfying the

following conditions:

1.

A S

¥ is a set of non-empty types called color sets. It indicates the types, operations and
functions that can bec used in the net inscriptions.

P is a finite set of places.

T is a finite set of transitions. We will use X = PJT to describe the set of all nodes.

A is a finite set of arcs such that: PNT=PNA=TNA=0.

N is a node function. It is defined from A intoPx T U T x P. It maps each arc to a pair
where the first clement is the source node and the second is the destination node. The two
nodes must be of different kind. When multiple arcs are present between the same nodes,
they will be combined into a single arc by adding their arc expressions. It is always
possible because they share the same multi-set type.

C is a color function. It is defined from P into X . It maps each place p to a color set C(p).
Each token on p must have a token color that belongs to C(p).

G is a guard function. It is defined from T into expressions such that:
VteT : Type(G(t)) = B A Type(Var(G(t))) c . The guard function maps each transition
t to a Boolean expression or predicate. We allow the guard expression to be missing and
we consider this to be a shorthand for the closed expression true.

E is an arc expression function. It is defined from A into expressions such that:
Va e A: Type(E(a)) = C(p(a)) s A Type(Var(E(a))) c X where p(a) is the place of
N(a). The arc expression function maps each arc a to an expression of type C(p(a))ms,
which means that the cvaluation of the arc expression yields a multi-set over the color set

that is associated to the corresponding place.
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9.

I is an initialization function. It is defined from P into closed expressions such that:
Vp e P: Type(1(p)) = C(p),s - It maps each place p into a closed expression of type
C(p)MS, a multi-set over C(p). It describes the initial marking of the network. We allow

the initialization function to be missing and we consider this to be a shorthand for the

empty multi-set.

We also define the functions below describing the relationship between neighboring elements of

the net structure. Each function name indicates the range of the function.

p €[{A — P]maps each arc a to the place of N(a), i.e. the component of N(a) which is a
place.

t e[A — T] maps each arc a to the transition of N(a), i.e. the component of N(a) which is
a transition.

s € [A > X]maps each arc a to the source of a, i.e. the first component of N(a).

d €[ A — X]maps each arc a to the destination of a, i.e. the sccond component of N(a).
Ae[(PxTUT xP)— 451 maps each ordered pair of nodes (x;,x3) to the set of its
connecting arcs, i.e. the set of arcs that have the first node as source and the second node
as destination. A(x,,x,) = {a € A:N(a)= (xl,xz)}.

Ae[X — A;]maps each node x to the set of its surrounding arcs, i.e. the set of arcs that
have x as source or destinations.

Ax)={ae d:3x" € X :[N(a) = (x,x") v N(a) = (x', x)}

In e[ X — X ] maps each node x to the set of its input nodes, i.e. the set of nodes that
are connected to x by an input arc.

In(x) = {x' eX:3aeAd:N(a)=(x, x)} It is also denoted o x

Out €[ X = X ;] maps each node x to the set of its output nodes, i.e. the set of nodes that
are connected to x by an output arc.

Out(x)={x'e X :Jae 4: N(a)= (x,x")} It is also denoted x o

X e[X — X] maps each node x to the set of its surrounding nodes, i.e. the set of nodes

that are connected to x by an arc.

X(x)={x'eX:dae 4:[N(a)=(x,x")v N(a) = (x',x)]}

All these functions can be extended to take sets as input and return sets as result.

12



We also define:
o VieT :Var(t)=1{v:veVar(Gt))vIac A(t):ve Var(E(a))}. Var(t) is called the set of
variables of transition t.

o Vx,x,e(PxTUTxP): E(x,x,)= ZE(a). E(x(,x2) is called the expression of

aed(x.5,)
(x1,X2). The summation indicates addition of arc expressions and is well defined because
the expressions have a common multi-set type.
1.5 Behavior of Non-Hierarchical Colored Petri Networks
A binding of a transition t is a function b defined on Var(t) such that:
1. VveVar(t): b(v) e Type(v)
2. G(t)<b>
B(t) denotes the set of all bindings for transition t.
A token element is a pair (p,c) where p € Pandc e C(p). The set of all token elements is
denoted by TE.
A binding element is a pair (t,b) where 1 € Tand b € B(¢). The set of all binding elements is
denoted by BE.
A marking is a multi-set over TE. The initial marking M, is obtained by evaluating the
initialization expressions. V(p,c) € TE : M (p,c) = (I(p))(c) . The set of all markings is denoted
by M.
A step is a non-empty and finite multi-set over BE. The set of all steps is denoted by Y.
A step Y is enabled in a marking M if and only if Vp € P: ZE(p, t)(b) <M(p).

(1.b)eY
Let the step Y enabled in the marking M.
1. When(s,b) €Y, tis enabled in M for the binding b. We say that (t,b) is enabled in M and
that t is enabled in M.
2. When(¢,,b,),(¢,,b,) € Y and (1), b)) # (¢,,b,), (t1,b1) and (t2,bz) are concurrently enabled.
3. When|Y (t)| > 2, tis concurrently enabled with itself.

4. WhenY(¢,b) > 2, (t,b) is concurrently enabled with itself.

13



When a step Y is enabled in a marking M it may occur, changing the marking M, to another M,

defined by: Vp e P: M2(p)=(M1(p)— X E(p,0)(b))+ D E(t, p)(b)

(t,b)ey (,b)ey
The first sum is called the removed tokens while the second is the added tokens. M; is said
directly reachable from M, by the occurrence of the step Y, which we denote M;[Y>M,,
A finite occurrence sequence is a sequence of markings and steps:
MY >Ma[Y2>M;. . MY My such that ne N, and Mj[Y;>M;4; for all iel.n. M, is the
start marking and M, is the end marking. n is the number of steps or the length of the
occurrence sequence.
An infinite occurrence sequence is a sequence of markings and steps:
MI[Y>M;[Y2>Ms... such that Mj[Y>M;s forall ie N, .
The set of all finite occurrence sequences is denoted by OSF, the set of all infinite occurrence
sequences is denoted by OSI and the set of all occurrence scquences is denoted by
OS =0SF uOSI .
A marking M”’ is reachable from a marking M’ if and only if there exists a finite occurrence
sequence with start marking M’ and end marking M”’. The set of markings reachable from M’ is
denoted by [M’>. As a shorthand, a marking is said reachable if and only if it is reachable from
the initial marking M.

1.6 Static Properties of CP-Nets

Let an arc a € A with arc expression E(a), a transition ¢ € T and a non-negative integer n € N .
1. E(a) is uniform with multiplicity n if and only if Vb € B((a)) : |E(a)(b)| = n
2. tisuniform if and only if all the surrounding arcs of t have a uniform arc expression

3. tis conservative if and only if Vb e B(¢): ZlE(p, t)<b>| = ZlE(z, p)<b>‘

peln(t) peOut(t)

4. T has the state machine property if and only if
VbeB(t): Y |E(p.0)b)= > |E(tp)b)|=1

pein(t) peOut(t)
.7 Boundedness Properties

Let a set of token elements X < 7E and a non-negative integern € N .

1. nis an upper bound for X if and only if VM e[M, > l(M | X)| <n

14



2. nis an lower bound for X if and only if VM e[M, > ](M fX)] >n
The set X is bounded if and only if it has an upper bound.
Let a place p € P, a multi-set m € C(p),,; and a non-negative integern € N .

1. nis an upper integer bound for p if and only if VM e[M >: |M(p)| <n

2. m is an upper multi-sct bound if and only if VM e[M, > M(p)<m

Lower bounds are defined analogously. A place p is bounded if and only if it has an integer

upper bound.
1.8 Home Properties
Let a marking M € M and a set of markings X ¢ M
1. Mis ahome marking ifand only if VM ' e [M; > M e[M'>
2. Xis ahome space if and only if VM' e [M, > X N[M'>= @
We use HOME to denote the set of all home markings.
VM eM: M e HOME < [M >= HOME
1.9 Liveness Properties
Let a marking M € M and a sct of binding elements X < BE
1. Mis dead if and only if no binding element is enabled. Vx € BE : -M[x >
2. X i1s dead in M if and only if no element of X can become enabled.
VYM'e[M > Vxe X :-M'[x>
3. X is live if and only if there is no reachable marking in which X is dead.
VM'e[M,>3IM"e[M' >3Ixe X : M"[x>
We say that X is dead if and only if X is dead in M.
VX,Y ¢ BE, we have
1. X 2Y = (Xdead = Y dead)
2. Xt = Xlive =T live)
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Part Il Business Process Engine Implementation

1.1 Requirements for the CPN Model Representation

The CPN model representation must fulfill the following main requirements:

1.

Ease of use: The model representation must be easy to create and to manipulate and must

integrate smoothly with version control tools.

Extensibility: This requirement has two parts. First the model should be extensible in the

sense that an existing business process model should be casy to extend with new places

and new transitions, etc. Second, the model representation must be open to the later

addition of new concepts and to the specification of specialized components.

Easy to validate: Like a compiler, the associated tools must be able to detect any error or

mistake in a process model way before the corresponding application is deployed.

The model must represent the following concepts:

e Colors: They are the token types. They are essentially objects containing fields.

e Transition Types: They specify the type of transitions, their input and output types.

e Places.

e Transitions and arcs.

o Triggers: They are special places where token may appear based on time.

e Message senders/receivers: They may produce or consume tokens in relation with a
messaging infrastructure.

The representation must contain the necessary information to drive code generation and

database generation.

1.2 Proposed Development Process

Based on the CPN model representation described in the previous section, we can propose the

following development process for software applications represented on the figure below.

Rectangles represent activities and ellipses represent artifacts. The following list describes the

essential steps of this process.

1.

CPN Model Design: This is the most important step in thc process. From the

requirements of the application and from his knowledge of the business and external
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systems, the designer crcates a new business process model. The result of this step is the
CPN model.
Database design: Although the system will automatically generate the database needed to
represent the state of the process model, parts of the database are not related to the
process model itself and must be designed manually or using other tools.
Data Model Generation: This step generates the data model necessary to represent the
state of the process.
Script generation: This step generates the SQL scripts necessary to create the system
database.
Code generation: This step generates several components from their description
contained in the CPN model: Color classes, database access classes and transition types.

. Deployment generation: This step generates the deployment descriptors that will be used

by the business process cngine to load and manage the necessary components.

Application Development Database
Process Design

EAPIE 1 Data Database Script Database
DO 1e Model _ Model Generation SQ.L
€s1gn Generation scripts
1
Colors
CPI;I . gngration Database Access
Model Transition Types

Deployment
Generation

Deployment
Descriptors
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1.3 Detailed CPN Model Representation

In order to fulfill the requirements specified in section 1 above, I have chosen to represent the
CPN model using an XML file. The format of this file is specified using an XML schema. It is a
simple solution that has the following characteristics:

1. Ease of use: XML files are text files. They are easy to create and manipulate and version
control systems are able to compare their successive versions.

2. Extensibility: As shown in the detailed description below, new elements can easily be
added to an existing model. Moreover, XML schemas allow the easy definition of new
types and entities in an existing schema.

3. Validation: Generic XML tools allow the validation of an XML file with respect to its
XML schema. This means that any constraint that can be expressed as an XML schema
constraint can be validated without the need of any specific tool.

The figures below present the detailed view of the model:

Context [{- .

- “':_6°I°_"S_E|~<‘EE|’ | Color [

e TR T =D ety <kl

: 0.0

) e s e r
l——: Places —sse—[—}- | Place
I : - N

—_—

B et s | pas —— e —

. _T?Jnguﬂc:n?;p;ef E]—( =l | TransitionType
]
CPNModel [{—sse-|=H L ool o s e V!

A CPN model contains a context, a list of colors, a list of transition types, a list of places and a

list of transitions.
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The context contains the identifier of the model, the default package name for the colors, the
default package name for the transition types, the default configuration package for the engine

runtime and the optional fully qualified class name of the application event listener.
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Each color has an optional package name, a class name, a list of fields and a list of methods.
Each field has a name, a java type and a description. Each method has a full description with a

method name, a list of parameters, a return type, the body of the method and a description.

- —fEPackage £
| ! hemammm

I0Specification

TransitionType
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_____ =

|

-~ - Output El-
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Each transition type has an optional package name, a class name and a list of inputs and a list of

outputs. Each input and output has a name, a color and an optional description.
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Each place has a name, a color and a prefix to use in database column names. The tokens of a
place may be cached or not by the engine. It also has a list of field options that allows to specify
the parameters for database generation for each field. The field options allow to specify if a field

is nullable, its length and default value and its SQL name and type if they are not the default.
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Transitions have a name, a type, an optional binder, a guard condition and a list of arc
expressions for inputs and outputs. Each arc expression applies to the input or output with the
given name and connects the transition to the given place.

The core of the problem of the execution or simulation of the process described in the model is to
find the bindings that enable the transitions in a given marking. That’s the function of a binder
class. Given a marking or more precisely given the multi-sets of tokens present in the input
places of a transition, the binder class has to find the tokens that make a binding for that
transition. The possibility to specify a specific binder class for each transition allows to write any

kind of binder as plain java code without the need for the guard condition and the arc expressions.
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However, the subject of the next two sections is to define a language for arc expressions and the
guard condition in order to provide a default binder implementation that can be used in the
majority of cases so that a specific binder does not have to be written for each transition.

1.4 Language Specification for Arc Expressions and Guard Conditions
The purpose of input arc expressions is to specify an expression that evaluates to a multi-set
defined over the color of the place connected to the considered input arc. As we will see, the

expression will also define variable names that we will use in the guard condition.

1.4.1 Language Grammar

We will use the traditional notation of language grammars. For example, the following
production means that an arc expression is an ‘if’ expression or a ‘multi-set” expression.
ArcExpression:

IfExpression

MultisetExpression
lfExpression:

if (Condition) then ArcExpression else ArcExpression
MultiSetExpression:

MultiSetTerm

MultiSetTerm + MultiSetTerm
MultiSetTerm:

IntegerLiteral*Identifier
Condition:

Term

Term || Term
Term:

Factor

Factor && Factor
Factor:

! Factor

Relational Expression

(Condition)
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Relational Expression:
VariableReference RelationalOperator Literal
VariableReference RelationalOperator VariableReference
Both sides of the relational expression must be of compatible types.
VariableReference:
InputName . VariableName . FieldOrMethodName
InputName is the name of an input of the considered transition.
VariableName is an identifier introduced in a term of the corresponding input expression.
FieldOrMethodName is the name of a field or the name of a method of the color of the
considered input.

RelationalOperator:

Literal:
BooleanLiteral
CharacterLiteral
StringLiteral
IntegerLiteral
FloatLiteral

The different literals have their usual definition as constants of the considered type.

11.4.2 Multi-Set Expressions

Multi-set expressions are essentially a sequence of terms separated by + signs. Each term
specifies an integer coefficient and an identifier. The corresponding multi-set will be the union of
the multi-sets specified by each term.

For each term, the coefficient specifies the cardinality of the multi-set corresponding to this term

and the identifier defines the name by which the corresponding tokens will be referred in the
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guard condition. As an additional condition, field values or method results of the tokens
belonging to a given term must be the same if they are used in any part of the guard condition.
This guarantees that the variable references used in the guard condition may refer indifferently to
any token of the same term.

For example, suppose we have the multi-set expression 2x+3y and we have the guard condition
inputl.x.name=="John Doe”. It results from the last condition that the two tokens used for the
term 2x must have the same value for their name field, in that case “John Doe”

More formally, for each term, this condition defines an equivalence relation on the tokens
belonging to the corresponding input. All the tokens used in a given term must be equivalent for

the equivalence relation defined for this term.

11.4.3 If Expressions

The main purpose of the if expressions is to define input arc expressions whose cardinality
depends on the values of fields of tokens from another input. Based on the evaluation of a
condition, the result is the arc expression defined in the then or in the else part of the expression.

An obvious restriction is that the condition specified in such an expression can only depend on
variables from the other inputs of the considered transition. We will impose the additional
restriction that the conditions used in if expressions depend only on terms defined in multi-set

expressions.

11.4.4 Parser Implementation

To parse the arc expressions and the guard condition, we use a classical recursive parser
implementation that generates an object representation of the expressions. That representation is
based on the well-known composite and interpreter design patterns [4] and is shown on the class
diagram below.

Classes MultiSetExpression and IfExpression implement a common interface Expression and
represent arc expressions. A MultiSetExpression instance has a collection of MultiSetTerm that
represent the terms of the multi-set expression. An IfExpression has a Condition, a then
expression and an else expression.

Classes AndCondition, OrCondition and NotCondition represent composite conditions based on
the corresponding boolean operator (And, Or, Not). Classes OneVariableRelation and

TwoVariableRelation are the leaf conditions and represent different types of relations with one
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or two variables and one of the six possible comparison operators. All these classes implement
the common interface Condition.
We have also defined a visitor interface [4] that will allow the separate implementation of

several operations defined for the whole structure (Type checking, expression evaluation, etc).

%E%}%itmééé%ggﬁ{%y&%j dition [not for commercial use]

<<interface>> <<interface>>
Expression 1 Condition
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|
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I
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: else AndCondition
|

I

I

I

[} |
I 1
I |
. [ orCondition . [ NotCondition
: l
I |
[} |
MultiSetExpression I |
I 1
OneVariableRelation TwoVariablesRelation
1 -reference : VariableReference | |-referencet : VariableReference
-operator : Operator -operator : Operator
-literal : String -reference2 : VariableReference
1 ;
MultiSetTerm
-coefficient : int <<enumeration>> VariableReference
-name : String Operator -input : String
- -variable : String
-Field : String

1.5 Algorithm for the Determination of Bindings

The problem of the determination of bindings from a marking can be formulated as a constraint
satisfaction problem. The problem is to choose tokens in the given marking so that the
constraints expressed in the arc expressions and in the guard condition are satisfied. So the
algorithm we will use to find the bindings is based on constraint programming techniques. It is
essentially a depth first search algorithm that tries to choose the tokens to put in each input multi-
set. The choices are driven by an incremental computation of the domains of the variables of the

problem. The algorithm will use steps like domain reduction, constraint propagation, variable
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selection heuristics and value selection heuristics in order to accelerate the convergence to
solution binding.
At the highest level, the inputs of the algorithm are:

e The considered transition.

e For each input place of the transition, the multi-set of tokens present in that place in the

current marking of the network.

e The arc expressions

e The guard condition
The output of the algorithm must be a list (possibly empty) of enabled bindings.
Each term appearing in the arc expressions will define a number of varables equal to the
coefficient of the term. The domains for those variables are a priori the multi-sets of tokens
present in the corresponding input place.
In order to avoid a huge memory use, computations on the domains are done incrementally in a
single domain representation. Each value in a domain can be marked in three ways: Allowed,
initially forbidden or forbidden for the first time at step i. This allows to restore de domains of

the previous steps during backtracking.

11.5.1 Fast Checking

Any arc expression has a minimum cardinality. For a multi-set expression, it is the sum of the
coefficients of the terms in the expression. For an if expression, it is the minimum value of the
minimum cardinalities of the multi-set expressions appearing in the if expression.

Obviously, the cardinalities of the token multi-sets in the given marking must be greater or equal
to the minimum cardinalities of the corresponding arc expressions. If not, no binding exists and

the problem is solved.

11.5.2 Initial Reduction

During initial reduction, we will build the equivalence classes defined for each term in the arc
expressions and compute the cardinalities of these equivalence classes. Classes with a cardinality
that is smaller than the corresponding term coefficient can not supply tokens for this term. This
allows an initial reduction of the term variables domains. If any of the domains obtained is empty,

no binding exists and the problem is solved.
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11.5.3 Main Search Loop

The main search loop is a classical depth first search algorithm. Each iteration proceeds as

follows:

1.

Constraint propagation (See next section). If constraint propagation is successful, go to
step 2 else backtrack and repeat step 1 if possible.

If all variables are set, build the new solution and add it to the result, reset the search and
leave the loop if the initial reduction of the new search detects any empty domain.

Choose the next variable and next value to set and repeat step 1

11.5.4 Constraint Propagation

Constraint propagation proceeds in 4 steps:

1.

Constraint propagation at the term level: All the variables corresponding to a given term
must belong to the same equivalence class in the equivalence relation defined by this
term. So, after a variable has been set, all the other free variables belonging to the same
term are restricted to the same equivalence class and their values belonging to other
classes are marked forbidden at this step. If any of thc domains becomes empty, the
actual partial solution is infeasible and we must backtrack.

Constraint propagation at the input level: All the variables belonging to a given input
must be different. So, after a variable is set, its value is forbidden in the domain of all
other free variables in the same input. If any of the domains becomes empty, the actual
partial solution is infeasible and we must backtrack.

Guard condition evaluation: The objective is to find a solution such that the guard
condition is true. After each variable is set, we will evaluate the guard condition based on
the fixed variables and the reduced domains of the free variables. This evaluation is done
using three states logic. Given the partial knowledge of the variables that we have at any
given point, the guard condition can take 3 values: true, false or unknown. If the guard
condition evaluates to false, the actual partial solution is infeasible and we must
backtrack.

Creation and initial reduction of if expressions: If the transition has some if input, we use
the same three states logic to evaluate the conditions in the if expressions. This allows to

create the corresponding multi-set expressions, to create the corresponding variables and
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to apply the initial reduction to them. If any of the domains of the new variables is empty,

the actual partial solution is infeasible and we must backtrack.

11.5.5 End test, Building of a New Solution and Reset of the Search
The end test simply checks if all the variables have been set. If it is the case, the tokens

currently selected make the solution. This solution is extracted from the domains and added
to the final result.
After the new solution is built, the search is reset in the following way:
1. The tokens that were part of the solution are forbidden in the domains of all the
variables of the input to which they belong.
2. The initial reduction algorithm is reapplied. If any empty domain is found, no more

solution exists and the algorithm ends.

11.5.6 Variable and Value Choice Strategies
At each step of the procedure, we must choose which variable to set. We simply choose the one

whose domain has the smallest cardinality.
As the problem formulation does not give any clue about which value of a variable could
preferably lead to a solution, we simply choose the values in the order they are in the given

tokens lists.

11.5.7 Backtracking

Each time a “dead end” choice of the variables has been reached, the algorithm must backtrack
to the next unexplored partial solution. Two additional tasks are done during backtracking:
1. The domains of the variables are restored to their previous state by allowing the values
that were forbidden during the steps that are backtracked.
2. The variables of if expressions that were created during the steps that are backtracked are
destroyed.

When no unexplored partial solution remains, the algorithm ends.
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1.6 Business Process Engine Main Algorithm

11.6.1 Detailed Engine Configuration or Deployment Descriptor

The detailed engine configuration is also represented by a NetModel XML file that will usually
be stored in the configuration package. This file is essentially identical to the CPN model but

with all the design time information removed. Its schema is shown is the figure below.
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The config element specifies the class name of the application event listener

The place elements specify de configuration of places. Each place has a name, a class name for
the tokens, a callback class name for access to the database and may be cached or not.

The transition elements specify the configuration of transitions. Each transition has a name, a

transition type class, a binder class, a guard condition and arc expressions.
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11.6.2 Startup

The startup procedure essentially loads the configuration file and creates the object model as

specified in the class diagram shown below.

Vigual Paradigim for LI I i [not for commercial use
‘Rintime Ciass D|agram) for commercial use]
<<interface>> 0.1 ~ <<interface>>
ApplicationContext - ApplicationEventListener
+getDataSource() +startup()
+getPlaceByName() +shutdown()
+getTransitionByName()
JA
|
|
|
_BPEngine 1 PlaceNode 1 1 <<interface>>
-configPackage : String -name ; String olaceDAO PlaceDAO
-cpnModelFile : String yas —>|-classInfo : Class
-cdlataSource : DataSource i
output nput
X1 P i
inpu output
> TransltlonNode‘ 1 1 <<interface>>
-name : String binder [ _Blmjgr
1 |-guard : String +initBinder()
+bind()
1 1
0..1 1
parsedGjuard : transition[Type
<<interface>> InputNode <<interface>>
Condition -expression : String TransitionType
+setApplicationContext()
+process() :
0..1
parsedExpregsion
<<interface>>
Expression
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The engine is represented by an instance of the BPEngine class. The configuration package name,
the configuration file name and the datasource must be injected at creation time. The engine may
have an ApplicationEventListener instance as specified in the configuration file. This listener
and its startup method should be used to execute the additional configuration of transitions when
they need access to external resources or to special configuration information.

Each place is represented by a PlaceNode object. It stores the place name and the class of the
tokens for that place. It has an instance of a PlaceDAO objcct that will be used to access the
database to retrieve of save the tokens for that place. It also allows to navigate to the input and
output transitions of that place.

Each transition is represented by a TransitionNode object. It stores the transition name and guard
condition of that transition. It has an instance of a Binder object and of a TransitionType object
as specified in the configuration file. It also has an InputNodc object for each input of that
transition.

e If a specific binder has been specified in the configuration file, an instance of that binder
is created. The guard condition and the arc expressions are stored respectively in the
TransitionNode object and in the InputNode objects but are not parsed. (The specific
binder is not supposed to use the expression language described above)

e If no specific binder has been specified in the configuration file, an instance of the default
binder is used. That default binder implements the algorithm described in the previous
section. In that case, the guard condition and the arc expressions are stored respectively in

the TransitionNode object and in the InputNode objects and are parsed.

11.6.3 Main Procedure

The main procedure of the engine is essentially a multi-threaded infinite loop that reacts to the
following events:

e Arrival or apparition of a new token: when a new token is produced either by a transition
execution of by an external entity like a message receiver, the token will be stored in the
database in the corresponding place and all the transitions that have that place as input are
checked. For each enabled binding found, a new thread is created that execute the
transition for the considered binding.

e Reset request: All the transitions are checked for enabled bindings.
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e Shutdown of the engine: The current executing transitions are continued until they are

completed but no additional transition is started.
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1.7 Implementation of the Different Generators.

11.7.1 CPN Model Object Representation

td'pNJ Mba'tell for UML Community Edition [not for commercial
Context
Jd - String <<enumeration>>
-colorPackage : String JavaTiRe
4 |-TransitionPackage : String
-configPackage : String
-applicationEventListener : String
Field
1 -name : String

-type : JavaType
-description : String

1

EHoas Color
SEYade 1 -package : String
-name : String Method
1 1 -name : String
-returnType : String
-body : String
-description
1
TransitionType Place Transition Parameter
-package : String -name : String -name : String -name : String
-name : String -color : String -type : String -type : String
-prefix . String -binder : String -description : String
1 -cached : boolean -guard : String
1 1 1
inputp input
outppts outpuks
10Specification FieldOption ArcExpression
-name : String -name : String -name : String
-color : String -s(jiName : String -placeName : String
-description : String -sqIType : String -expression : String
-nullable : boolean

-length : int

-defaultValue : String
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Our XML parser creates the object representation presented in the class diagram above from the
XML file. This object model contains all the necessary information to realize the different code
and script generations.

1. Color generation: Each color is described in detail in the model with its package, name,
list of fields and list of methods.

2. Database model generation: The state of the system is stored in a relational database that
has one table for each place in the network. Knowing the description of places and their
colors, it is easy to generate the database model as described in the next section.

3. Callback classes’ generation: The callback classes essentially contain the SQL commands
that allow to insert, read, update, and delete tokens. They can also easily be generated
from the model above.

4. Transition types’ generation: The system generates only the skeleton of transition types.
Net Model generation: As we have seen previously, the net model is essentially the CPN

model with all the design time information discarded.

11.7.2 Database Model

A database model is also described in an XML file that is specified by an XML schema. Each
model contains sequences, tables and triggers. This allows us to describe a database model
independently of the specific database implementation. This has the following advantages:
e The first step that generates the database model from the CPN model is independent of
the database implementation.
e We can add manually generated tables to the model generated from the CPN model.
e We can generate the SQL. scripts for several database implementations based on the same

database model. In our case, we have implemented script generation for ORACLE10
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lll Conclusion

II.1 General Conclusion

The present work has shown the feasibility of the rapid implementation of business process

management applications by using a development approach based on the Petri Network model

and on several code generation tools. In particular:

Developers specify the inputs and outputs of their transitions and their enabling rules
based on the requirements of their application using a very simple language. The engine
implementation takes care of the interpretation and enforcement of these rules.

Developers don’t have to write any database access code to persist the state of the process.
The only database work they have to do concerns the additional information that is
specific to their application.

Developers don’t have to care about multithreading issues or transaction management
issues. These issues are solved by the engine itself.

The system doesn’t use anything else than plain old java code and standard libraries so it
can be integrated in a wide variety of environments from standalone java applications to

sophisticated application servers.

lIl.2 a Word about Simulation

I have not implemented a simulator due to the short time frame. Howcver we have identified the

following issues for the implementation of a complete simulator:

1.

A simulation necessitates a model that contains not only the system under development
but also a description of other systems with which it communicates.

The binding algorithm presented in section I1.5 must be extended to generate all the
possible bindings in a given marking and not only one sct of distinct enabled bindings.
This is also complicated by the fact that a given transition or a given network may be
non deterministic.

Simulation necessitates the detailed description of outputs of the transitions as functions
of their inputs. This description necessitates a full featurcd language. That’s why we

have kept the implementation of the transitions as plain java code.
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4. Transitions may have side effects like database access or communication activities that

are necessary in the cxecution but are a disturbance in the simulation process.

1.3 Further Developments

Beyond our proof of concept implementation, the following further developments of the business
process engine may be considered:

e Clustering implementation. The actual implementation of the main algorithm is a
standalone¢ single server. An obvious extension would be to implement a clustered server
implementation with fail-over.

e Integration with Spring. The integration or the use of application frameworks like Spring
may ease the integration of the business process engine with other technologies (like
distributed transaction processors, distributed caches or other database technologies) in a
smooth and non intrusive way.

e Development of a complete simulator.
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