# Towards An Information Technology Infrastructure Cost Model

By

Ken Huang

Submitted to the System Design & Management Program In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

© 2007 Ken Huang All Rights Reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

|                                                                                           | · , |          | Signature of Author                      |
|-------------------------------------------------------------------------------------------|-----|----------|------------------------------------------|
| Ken Huang<br>System Design and Management Program<br>February 2007                        |     |          |                                          |
|                                                                                           |     |          | Certified By                             |
| Dr. Ricardo Valerdi<br>Thesis Supervisor<br>Research Associate, Lean Aerospace Initiative | ~   | $\frown$ |                                          |
| Patrick Hale                                                                              |     |          | Certified By                             |
| Director<br>System Design and Management Program                                          |     |          | MASSACHUSETTS INSTITUTE<br>OF TECHNOLOGY |
|                                                                                           |     | BARKER   | FEB 0 5 2008                             |
|                                                                                           |     |          | LIBRARIES                                |

# Towards An Information Technology Infrastructure Cost Model

By

### Ken Huang

Submitted to the System Design & Management Program

On Jan 31<sup>st</sup>, 2007 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in

Engineering and Management

## ABSTRACT

Ever since the introduction of the Internet in 1994, one of the defining characteristics of the global economy, particularly in the US, is a dramatic increase in expenditures on Information Technology. While this trend is expected to continue, a major issue for companies of all sizes is the manner in which precise forecasting of future IT cost may be undertaken. The present thesis investigates the possibility that a set of the essential deterministic cost drivers with varying weighted factors may prove capable of estimating total IT infrastructure costs. An online questionnaire was developed for this purpose, and was used to survey senior IT leadership teams. The data collected from this survey was then computed with Analytical Hierarchy Process (AHP) to illustrate the relative importance of different cost drivers.

The study revealed three primary findings. First, that a set of essential deterministic cost drivers with varying weighted factors could be used as a general tool for estimating the total cost of IT infrastructure. Second, these different sectors prioritize cost drivers differently from each other. In the Financial Services sector, for instance, the security of the IT network was reported to be of greater importance than the service call response time. In the Technology sector, however, the opposite was true. Third, numerous correlations were found to exist within each cost driver category defined. The correlated nature of these cost parameters may mean that a more parsimonious model may be more predictive of total IT infrastructure costs.

It is hoped that these findings may be of benefit to a variety of large and small commercial and government entities, which may be able to use the predictive cost drivers to help eliminate problems related to inaccurate IT cost estimates. It is believed that the cost model proposed may be applicable across a variety of economic sectors. In this thesis, its applicability is demonstrated within the

3

financial services and technology sectors. Future research may be useful in evaluating the model further, by increasing the sample size, and by testing the reliability and validity of the cost model within additional economic sectors.

Thesis Supervisor:Dr. Ricardo ValerdiTitle:Research AssociateLean Aerospace Initiative

### ACKNOWLEDGMENTS

My ten years of experience in the IT workforce has made me highly sensitive to the increased spending on IT infrastructure in recent years. I am fortunate to have had numerous inspirational colleagues who have undergone the pain of projecting annual IT budgets with me and who have provided me with useful insight throughout the years.

In early October, 2005, Dr. Ricardo Valerdi sent out an email seeking an IT Cost Model researcher from within the MIT community. I was so thrilled and applied for it without any hesitation. I was very fortunate that he has accepted me. Ever since then, I have greatly enjoyed researching for Dr. Valerdi. Not only has he provided constant support to developing this thesis, but his dedication, professionalism, and flexibility to accommodate my hectic has deeply impressed and influenced me. I would like to express my highest gratitude to him, for his huge commitment of time and effort, which has gone far beyond the scope of this thesis.

I would also like to thank the following people, who have been highly in my life, and who willingly gave me their time and consideration for the purposes of filling out the cost model survey used within: Mr. ReiJane Huai, Dr. Narayanan Krishnakumar, Mr. Michael Mimo, Mr. Ziad Ghafour, Mr. Thomas Welch, Mr. Brian Garrity and Mr. Goutam Ghosh. My thesis could not be complete without their invaluable input. Indeed, their diverse views, representing various industries, have increased the scope of this thesis, and have provided it with a multi-faceted perspective. I am further grateful to my previous employers, Thomas Welch, Ziad Ghafour and Michael Mimo, who each fought stuck by my side and petitioned for me special time-off so that I could complete my SDM curriculum. Without Director Kevin Murphy's final approval and ongoing support, my study at MIT could not have come to fruition.

Certainly I would also like to mention my most significant other, Joyce Lii, my aunt, Liang-Jun Chen, and my mother, Mei-Yun Chen. Their love and spiritual support are truly unconditional and unlimited. Their encouragement assisted me to conquer any and all obstacles that stood before me.

Lastly, but certainly not least, many thanks go to the SDM Director Pat Hale for his constant help and timely guidance. His views can be found throughout my thesis and will no doubt continue to color my professional views to come.

# TABLE OF CONTENTS

| ABSTRACT                                                  | 3  |
|-----------------------------------------------------------|----|
| ACKNOWLEDGMENTS                                           | 5  |
| TABLE OF CONTENTS                                         | 7  |
| TABLE OF FIGURES                                          | 9  |
| LIST OF TABLES                                            |    |
| THESIS OUTLINE                                            |    |
| CHAPTER 1: INTRODUCTION & MOTIVATION                      |    |
| Research Goals                                            |    |
| CHAPTER 2: CURRENTLY UTILIZED COST MODELS                 |    |
| COSYSMO                                                   |    |
| The COSYSMO Algorithm                                     |    |
| PRICE Systems TRUE IT                                     |    |
| TRUE IT Overview                                          |    |
| CHAPTER 3: THE PRESENT COST MODEL                         |    |
|                                                           |    |
| CHAPTER 4: SIZE AND COST DRIVER DEFINITIONS               |    |
| CHAPTER 5: A BRIEF ON THE STATISTICAL TECHNIQUES EMPLOYED |    |
| SAS                                                       |    |
| Student's T-test                                          |    |
| Pearson Correlation                                       |    |
| Analytical Hierarchy Process (AHP)                        |    |
|                                                           |    |
| CHAPTER 6: ANALYSIS, RESULTS & DISCUSSION                 | 45 |
| Cost Drivers                                              |    |
| Systems                                                   |    |
| Hardware                                                  |    |
| Software                                                  |    |
| Support                                                   |    |
| Sector-Specific Similarities and Differences              |    |
| Systems                                                   |    |
|                                                           |    |
| Hardware                                                  |    |
| Hardware                                                  |    |

| Systems: An Example of Sector Specificity                           | 60    |
|---------------------------------------------------------------------|-------|
| CHAPTER 7: CONCLUSIONS AND FUTURE WORK                              | 64    |
| REFERENCES                                                          | 66    |
| APPENDIX A: TWO USE CASES OF THE CURRENT COST MODEL                 | 68    |
| CASE 1: Cost of a new IT system/infrastructure                      | 68    |
| CASE 2: COST OF MODIFYING AN EXISTING IT SYSTEM/ INFRASTRUCTURE     | 73    |
| APPENDIX B: MIT SURVEY                                              | 78    |
| APPENDIX C: SAS SOURCE CODE FOR COMPILING MIT CIO SURVEY            | 91    |
| APPENDIX D: DETAILS OF PEARSON COEFFICIENTS FOR THE FOUR COST DRIVE | RS112 |

# TABLE OF FIGURES

| FIGURE 1 – 2006 IT BUDGET CHANGE. ABSTRACTED FROM IN-STAT 12/05.               | 16 |
|--------------------------------------------------------------------------------|----|
| FIGURE 2 – IT UTILIZATION PIE CHART. ABSTRACTED FROM IN-STAT 12/05             | 16 |
| FIGURE 3 - IT PROJECT SIZING PROBLEMS                                          | 18 |
| FIGURE 4 – TRUE IT LOGICAL GROUPING VIEW                                       | 25 |
| FIGURE 5 – A SCREENSHOT OF THE ONLINE MIT CIO SURVEY                           | 30 |
| FIGURE 6 – A SCREENSHOT OF SUCCESSFUL SURVEY SUBMISSION.                       | 31 |
| FIGURE 7 – THE IMPORTANCE LEVEL OF THE COST DRIVERS IN TABLE 3                 | 50 |
| FIGURE 8 – THE IMPORTANCE LEVEL OF THE COST DRIVERS IN TABLE 4                 | 51 |
| FIGURE 9 – THE IMPORTANCE LEVEL OF THE COST DRIVERS IN TABLE 5                 | 52 |
| FIGURE 10 – THE IMPORTANCE LEVEL OF THE COST DRIVERS IN TABLE 6 - SUPPORT      | 53 |
| FIGURE 11. A SYMMETRIC SCATTER PLOT CONTRASTING SERVICE CALL RESPONSE TIME AND |    |
| SECURITY FROM TABLE 13                                                         | 61 |
| FIGURE 12. A SYMMETRIC SCATTER PLOT CONTRASTING EXPERIENCE WITH COMPONENT AND  |    |
| LEARNING RATE FROM TABLE 14                                                    | 62 |

# LIST OF TABLES

| TABLE 1. A RECONSTRUCTED TABLE OF IT INDUSTRY OVERVIEW. (PLUNKETT RESEARCH, LTD. 2006) |
|----------------------------------------------------------------------------------------|
|                                                                                        |
| TABLE 2. TYPES OF SIZE DRIVERS                                                         |
| TABLE 3. SYSTEMS COST DRIVERS                                                          |
| TABLE 4. HARDWARE COST DRIVERS                                                         |
| TABLE 5. SOFTWARE COST DRIVERS                                                         |
| TABLE 6. SUPPORT COST DRIVERS                                                          |
| TABLE 7 – DESCRIPTIVE STATISTICS PERTAINING TO THE COMPANIES SURVEYED                  |
| TABLE 8 – THE RESULT OF FIRST ITERATION OF COMPUTING THE MATRIX PRODUCT                |
| TABLE 9 – THE RESULTS OF SECOND ITERATION OF COMPUTING THE MATRIX PRODUCT              |
| TABLE 10 - THE RESULTS OF THIRD ITERATION OF COMPUTING THE MATRIX PRODUCT48            |
| TABLE 11 - THE RESULTS OF THIRD ITERATION OF COMPUTING THE MATRIX PRODUCT49            |
| TABLE 12 – THE SUMMARY TABLE OF THE FINAL NORMALIZED EIGENVECTORS (PERTAINING TO       |
| TABLE 3)                                                                               |
| TABLE 13. COMPARISON OF SYSTEM COST DRIVERS ACROSS FINANCIAL AND TECHNOLOGY            |
| SECTORS                                                                                |
| TABLE 14. COMPARISON OF HARDWARE COST DRIVERS ACROSS FINANCIAL AND TECHNOLOGY          |
| SECTORS                                                                                |
| TABLE 15. COMPARISON OF SOFTWARE COST DRIVERS ACROSS FINANCIAL AND TECHNOLOGY          |
| SECTORS                                                                                |
| TABLE 16. COMPARISON OF SUPPORT COST DRIVERS ACROSS FINANCIAL AND TECHNOLOGY           |
| SECTORS                                                                                |
| TABLE 17 – NINE PAIRS OF COST DRIVERS THAT HAVE CONTRASTING IMPORTANCE LEVEL           |
| BETWEEN TWO SECTORS                                                                    |

### THESIS OUTLINE

Chapter 1: Introduction & Motivation.

**Chapter 2:** *Currently Utilized Cost Models*. This section contains a detailed technical description of an existing cost model from which we draw our approach and a leading commercial IT cost model to which we compare our approach.

**Chapter 3:** *The Present Cost Model.* This section outlines the cost model utilized in the present thesis, and also provides examples of the online survey used to collect the data use to create the cost models.

**Chapter 4:** *Size and Cost Driver Definitions.* This section describes the logical reasoning behind this survey, and behind the extensive list of cost drivers devised for inclusion in the survey. In addition, a brief illustration of the techniques used to automate the survey data analysis are discussed, along with the manner in which a custom SAS program was used to compute the AHP results for IT cost analysis.

**Chapter 5:** *A Brief on The Statistical Techniques Employed.* This section describes the statistical methods and tools used to analyze the data. In particular, a brief overview of the SAS programming language will be provided, along with a description of the primary statistical techniques employed within the thesis, primarily the student's t-test and the Pearson correlation. A brief description of the Analytical Hierarchy Process (AHP) method follows, along with a discussion of how this method may prove useful for estimating IT-related costs. A simple AHP example is provided for illustrative purpose.

**Chapter 6:** *Analysis, Results & Discussion.* This section describes the results of the study, and provides detailed consideration of the implications of these findings. Strengths and weaknesses of the approach utilized within the thesis are discussed, in turn.

**Chapter 7:** *Conclusions and Future Work.* Building off of the strengths and weaknesses of the present thesis, Chapter seven identifies the primary contributions of the thesis, and identifies valuable avenues for future research.

#### CHAPTER 1: INTRODUCTION & MOTIVATION

Throughout my ten years as an IT professional, I cannot estimate how often I have witnessed companies underestimate the costs related to their IT infrastructure needs. Indeed, such estimations can be a daunting task. One must take into account the current and future needs of the company, must make decisions regarding how scalable and modular the infrastructure should be, must consider the costs of annual maintenance, and must also factor in costs associated with the IT labor force. Unfortunately, there may be a method, but it is probably very informal and non-repeatable for making these IT-related determinations, or for estimating the associated costs. And thus it is not surprising that companies continue to repeat their past mistakes, and fail to fully consider the costs associated with supporting a valid IT infrastructure. With technological advances and IT costs continuing to rise at an alarming rate, underestimating these costs may lead to dire consequences. This is particular so for businesses in e-commerce intensive fields, where the costs associated with IT infrastructure can be particularly high.

The present thesis has been designed as a means to explore the possibility that a set of essential deterministic cost drivers with varying weighted factors can be arrived at that are capable of predicting the total cost of a company's IT infrastructure needs. In particular, it is believed that such a set of cost drivers may prove a valuable tool for the estimation of IT-related total cost of ownership (TCO). TCO is a financial estimate designed to help consumers and enterprise managers assess all costs associated in the lifecycle of any capital investment, particularly in hardware or software, from acquisition to disposal. In this thesis, the possibility that a limited set of cost drivers can serve to predict relevant IT-related TCO will be undertaken.

Within the following sections, relevant IT market data that triggered the development of this thesis will be outlined, and the potential value of the cost model proposed above will be

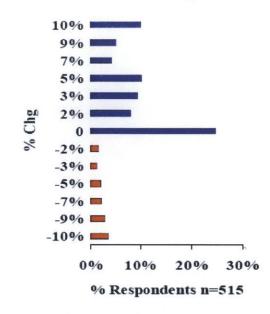
highlighted. First, IT market size and segmentation will be discussed, followed by data demonstrating some of the common mistakes that lead to the misestimating of IT-related costs.

# IT Market Research

According to a report by InfoTech Industry Trends: "The worldwide market for InfoTech products and services was estimated at \$2.1 trillion in 2005" (Plunkett Research Ltd., 2006). Indeed, as of 2005, \$416 billion was spent in the U.S. on information technology, and \$61 billion was spent on related networking equipment. The costs associated with the building and maintaining of effective IT infrastructure is, thus, vast. Table 1, which serves as a reconstructed table from Plunkett's Info Tech Industry Almanac (Plunkett Research, Ltd., 2006), displays the global IT industry overview for 2006. The staggering size of these numbers indicates the magnitude of the costs savings that could be reaped by even a small decrease in required IT costs. Furthermore, as demonstrated by Table 2, (re-depicted from Segmenting the Business Market - There's More to it Than Size, J. Jernigan 2005), there appears to be a sharp rising trend related to IT cost expenditures. According to In-Stat (2005), the data concurs with the observation from Figure 1. Based on a sample size of 1007 companies, the total mean increase in IT-related expenditures is 1.8 percent annually. While these statistics varied somewhat depending on the specific sector that a given business was categorized in, these statistics demonstrate the consistently increasing trend of ITrelated spending.

Figure 2 illustrates some interesting IT utilization patterns. First, 13% of respondents reported that they consider IT to be a core aspect of their business enterprise. Companies that responded in this fashion tend to be largely IT driven, and thus believe that they needed to keep

their IT infrastructure particularly up to date. An additional 34% of respondents regarded IT as an essential investment area, even if not absolutely core to their business practices. These companies


Table 1. A reconstructed table of IT industry overview. (Plunkett Research, Ltd. 2006)

| Leg                              | gend                              |
|----------------------------------|-----------------------------------|
| PRE = Plunkett Research estimate | In-Stat = In-Stat Market Research |
| DC = Department of Commerce      | IDC = International Data Corp.    |

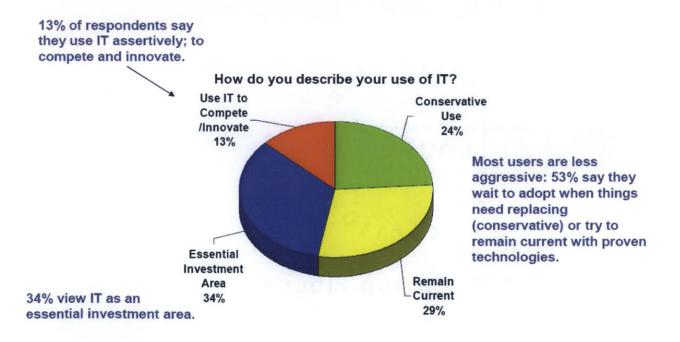
| InfoTech Industry                                   | Overviev | V          |      |         |
|-----------------------------------------------------|----------|------------|------|---------|
|                                                     | Amount   | Unit       | Date | Source  |
| Global Investment in Information Technology (est.)  | \$2.10   | tril. US\$ | 2005 | IDC     |
| U.S. Spending on Information Technology             | \$416    | bil. US\$  | 2005 | IDC     |
| Worldwide PC Shipments                              | 207.7    | mil. Units | 2005 | IDC     |
| Worldwide Server Revenues                           | \$53.70  | bil. US\$  | 2005 | IDC     |
| Worldwide Storage Revenues                          | \$27.30  | bil. US\$  | 2005 | IDC     |
| Worldwide Router Sales                              | \$7.20   | bil. US\$  | 2005 | In-Stat |
| Spending on Network Equipment, U.S. (incl. telecom) | \$61.00  | bil. US\$  | 2005 | IDC     |
| Worldwide Software Revenue                          | \$200.00 | bil. US\$  | 2005 | PRE     |
| Worldwide Security Software & Services Spending     | \$45.00  | bil. US\$  | 2005 | IDC     |
| Worldwide Database Software Market                  | \$12.50  | bil. US\$  | 2005 | PRE     |
| Worldwide Video Game Industry Revenue               | \$27.00  | bil. US\$  | 2005 | PRE     |
| Worldwide RFID Tag Revenues                         | \$504    | mil. US\$  | 2005 | In-Stat |
| Number of Cellular Phone Subscribers, U.S.          | 190      | mil.       | 2005 | PRE     |
| Total North American Cable Modem Subscribers        | 25       | mil.       | 2005 | PRE     |
| Est. Number of VOIP Subscribers, U.S.               | 5        | mil.       | 2005 | PRE     |
| Value of Computer Hardware Exports                  | 17       | bil. US\$  | J-05 | DC      |
| Value of Computer Hardware Imports                  | 37       | bil. US\$  | J-05 | DC      |
| Number of High Speed Internet Lines in the U.S.     | 37       | mil.       | 2005 | PRE     |

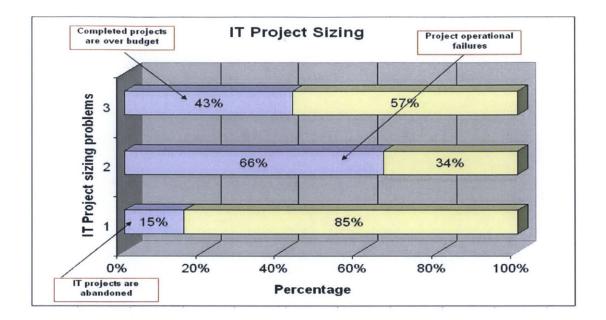
| U.S. Industry Revenues:                       | 245   | A         |      |         |
|-----------------------------------------------|-------|-----------|------|---------|
| Data Processing Services 61.0 bil.            | 61    | bil. US\$ | 2005 | PRE     |
| Software Publishing 116.0 bil.                | 116   | bil. US\$ | 2005 | PRE     |
| Wired Telecommunications Carriers 200.0 bil.  | 200   | bil. US\$ | 2005 | PRE     |
| Wireless Telecom. Carriers (Except Satellite) | 135   | bil. US\$ | 2005 | PRE     |
| Semiconductor Industry Revenues               | \$235 | bil. US\$ | 2005 | Gartner |

#### 2006 IT Budget Change









Figure 2 – IT utilization pie chart. Abstracted from In-Stat 12/05.

tend to be small to medium in size, and believed that they required a stable and scalable IT infrastructure to maintain their competitive advantages in the workplace. Surprisingly, 53% of respondents suggested that they were less aggressively investigating their IT needs. Companies that reported this perspective tended to be larger companies, however, that already had a stable and highly complex IT infrastructure. These companies were more concerned with the maintenance of their existing IT infrastructure, rather than upgrading further. Indeed, simply maintaining large IT infrastructures can be a daunting task, let alone undertaking a multi-year upgrading project requiring tremendous time, costs and human resources.

Unfortunately, many companies, both big and small, appear unable to accurately and efficiently estimate their required IT needs. Often this may cause a company to grossly overestimate their required IT needs, leading to over-spending and higher maintenance costs. Other times a company may under-estimate their needs, leading to higher long-term costs as the inadequacies of the current system become realized and corrected.

Figure 3 depicts data from the Standish Group's Chaos Report, and illustrates some of the IT project sizing problems that exist today. This figure highlights three of the major IT project sizing problems that plague the industry today. Specifically, 43% of the projects reported to be over budget, 66% of them had some type of operational failure, and 15% of them were abandoned. Each of these problems can be seen as leading to a preventable ballooning of IT-related costs. Particularly troublesome is the fact that IT infrastructure may have been purchased in advance for many of these uncompleted projects. This is particularly common within large companies with complex IT projects, as a separation between the IT workforce and upper-management often leads to an unfortunate disconnect regarding needs and resources. Unfortunately, the costs associated with these increase IT expenditures are unlikely to be able to be recouped, and will inevitably effect

17



| Legend                     |                                       |                      |                              |  |  |
|----------------------------|---------------------------------------|----------------------|------------------------------|--|--|
| IT project sizing problems | 1                                     | 2                    | 3                            |  |  |
| Problem scenarios          | Completed projects<br>are over-budget | Operational failures | IT projects are<br>abandoned |  |  |
| Percentage                 | 43%                                   | 66%                  | 15%                          |  |  |

Figure 3 - IT Project Sizing problems

the company's bottom line. These issues could have been prevented or mitigated if there would have been a reliable method for estimating the cost of IT projects before resources were committed.

# Motivation

My years of experience within the IT workforce have led me to recognize the common pitfalls that those required to estimate IT-related costs can fall into. In particular, three observations have come to serve as motivating forces for the development of this thesis: First, the costs associated with IT spending, while massive, are also inevitable. Indeed, based on Figure 2, 47% of

the companies survey – nearly half the marketplace - remain highly aggressive in developing increased IT-related infrastructure today. Thus, rather than trying to reduce IT needs, it makes more sense to try to develop increasingly accurate models for determining actual and realistic requirements. Second, misestimating IT needs remains a difficult task fraught with errors. Even for experienced CIOs, misestimation of IT requirements remains commonplace and global. It is, thus, of considerable urgency to develop precise IT cost models - or to develop methods of developing such models, at least - that can help organizations allocate their annual IT budgets more accurately and intelligently. Given the size of company's IT-related budgets, even small improvements in prediction could save millions of dollars in end of year net profit margins. Third, there currently exists a dearth of methods available to effectively determine IT-related expenditure needs. The leading model, True IT, will be outlined within this thesis, however neither it has yet proven itself effective across a broad array of economic sectors, nor has it amassed the body of evidence required to give CIOs in the business marketplace sufficient confidence to utilize them regularly. It is, indeed, this dearth of appropriate cost models that serves as the primary motivation for the present thesis. As described in the more detail within the following sections, it is the goal of the present thesis to test the proposition that a limited number of cost drivers, with variable weighted derivatives, can be developed that provide maximal predictive ability across all economic sectors. It is believed that the development of such a cost model could be of great value to the business world.

#### **Research Goals**

In this spirit, this thesis focuses on five principal research goals to aid in the development of an IT cost model. These goals include:

- 1. To identify the most common current IT cost estimation approaches.
  - 19

- 2. To propose a new but intelligent IT cost estimation approach, in terms of size drivers, cost drivers, and miscellaneous drivers and categories.
- To collect data from real business units within the technology and financial services sectors, for determination of appropriate weighted derivatives to attach to the relevant cost drivers.
- 4. To apply complex statistical tools to the developed drivers in order to investigate the relationships between each of these drivers, and their relevance within the context of active business enterprises.

It is understood that the data collected within this thesis can serve only as a first attempt to validate the cost model developed. Indeed, significant work will be required in evaluating the extent to which this model remains relevant within sectors outside the technology and financial services sectors. With this knowledge well in mind, the specific academic contributions from this study are to identify those drivers that appear most relevant, and to provide an initial test of the applicability of these drivers within two fairly diverse sectors. In the process, we will identify any limitations of this approach and note possible threats to the validity of the model (how applicable this approach is to different fields against historical data, time frame, internal validity; do we cover every input variables, etc.). In so doing, we will develop a growing database of knowledge regarding the characteristics necessary to develop a comprehensive cost model capable of estimating IT-related expenditures.

# Formal Proposal and Brief Methodology

It is proposed that there is a limited set of cost drivers that are capable of accurately predicting IT-related costs. To this end, the present thesis serves to identify those cost drivers that are maximally predictive of IT-related costs, towards the development of a comprehensive IT cost model. This effort has been undertaken with the expectation that such a cost model may be applicable across a wide range of industries, and may thus be of substantial use for CIOs as they attempt to determine and budget for their future IT needs. It is based on the recognition of similar cost model applications with more limited applicability: uniquely within the software sector, for instance. Given the success of these more limited cost model applications, it seemed the appropriate time to begin investigation of broader, more inclusive, models that could be relevant across a wide range of industry sectors.

In order to develop this list of cost drivers, CIOs within both the financial services and technology sectors were surveyed as to those drivers they believed were most imperative to the future of their business. These two sectors were chosen because of their extensive dependence on IT infrastructure for the nature of their business. The CIOs rankings were then tested with a variety of statistical techniques to identify similarities and differences across the two sectors, and to work towards the development of a complete and comprehensive IT cost model.

21

### CHAPTER 2: CURRENTLY UTILIZED COST MODELS

This section contains a detailed technical description of an existing cost model from which we draw our approach and a leading commercial IT cost model to which we compare our approach.

## COSYSMO

COSYSMO, created by Dr. Ricardo Valerdi (Valerdi, 2005) computes precise cost estimates of systems engineering effort for hardware and software systems. The model has proven particularly powerful in the aerospace and defense sectors, and contains a vast dataset of IT-related cost needs, including those for companies such as Raytheon, Northrop Grumman, SAIC, General Dynamics, BAE Systems and Lockheed Martin.

The model employed within the present thesis builds substantially from the COSYSMO's approach, both in terms of the organization of the survey structure and the assignment of ratings to specific size and cost drivers. Specifically, the present IT cost model survey utilizes a similar layout to that of COSYSMO, and shares several of the size and cost driver parameters. The model has expanded the COSYSMO survey in several manners, however, and has utilized a finer scale that is expected to provide increased accuracy of IT-cost determinations. In the following section, the COSYSMO algorithm is considered in greater detail.

#### The COSYSMO Algorithm

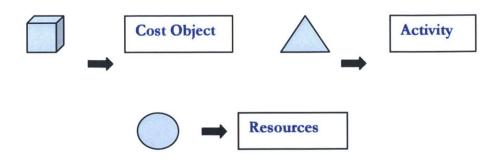
The COSYSMO algorithm is as follows

$$PM_{NS} = A \cdot \left( \sum_{k} \left( w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k} \right) \right)^{E} \cdot \prod_{j=1}^{14} EM_{j}$$

Where:

**PM**<sub>NS</sub> = effort in Person Months (Nominal Schedule) **A** = calibration constant derived from historical project data **k** = {REQ, IF, ALG, SCN} **w**<sub>x</sub> = weight for "easy", "nominal", or "difficult" size driver  $\Phi_x$  = quantity of "k" size driver **E** = represents diseconomies of scale

EM = effort multiplier for the *j*th cost driver. The geometric product results in an overall effort adjustment factor to the nominal effort.

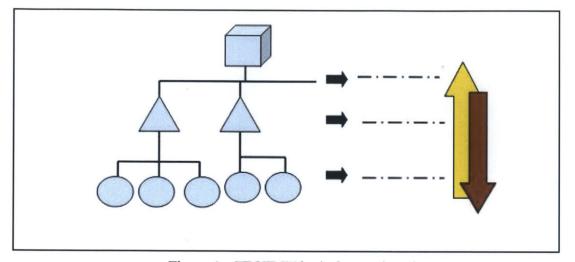

# PRICE SYSTEMS TRUE IT

PRICE Systems<sup>1</sup> is one of the leading commercial software companies that specialize in cost research and consulting regarding the affordability of IT- and software-intensive projects. TRUE IT, part of the PRICE TruePlanning software package, exists as an Information Technology Estimating Model application. According to PRICE Systems, by using TRUE IT, companies can expect 30% return on investment (ROI) and yet put 80% less effort into their IT initiatives.

#### **TRUE IT Overview**

TRUE IT utilizes PRICE Systems' proprietary cost estimating framework. This framework supplies a common user interface, and common utilities and features for estimating single and multiple models. The taxonomy of TRUE IT and its corresponding icon symbols are as follows:

<sup>&</sup>lt;sup>1</sup> PRICE Systems official website (http://www.pricesystems.com/index.asp)




The definition of each TRUE IT object is listed below:

**Cost Object:** Cost objects are fairly straightforward: Any equipment required for the building or maintenance of specific IT-infrastructure may be expected to have a cost associated to it. Indeed, in the TRUE IT software package, cost models are driven by inputs that produce cost/schedule/risk outputs. Examples of cost objects may include servers, workstations, network devices, and application software.

Activity Object: Activities are any action, task or project of interest that may have an associated cost. Examples of IT-related activities relevant to ongoing business concerns may include the installation of new hardware, the upgrading of existing hardware, the design of new software, regular maintenance, beta testing, and ongoing quality control testing. As can be seen from this list, activities can exist as one-time activities, or as longer-term ongoing concerns.

**Resources Object:** All activities can be expected to require certain resources for their implementation. For instance, the installation of new hardware may require IT-support time, Help Desk Operators, Software or Hardware Specialists and so on. Thus, resources exist as sources for the support and execution of a given Activity. Often-times these resources refer to human labor, however, this is not necessarily so.



All TRUE IT objects are grouped in the logical tree hierarchy shown in Figure 4.

Figure 4 – TRUE IT logical grouping view

As can be seen within this hierarchical model, cost objects and activity objects can be construed as existing as a function of the other two object-classes. Cost objects, for example, exist as a function of the specific activity objects included in the model, and the resource objects that may be required to implement those activities. Activity objects may similar be construed as a function of the resource objects required for implementation of that activity object, and the cost objects that corresponds to those resource objects. Resource objects are construed somewhat differently in the TRUE IT model. Resource objects are not construed as functions of cost objects and activity objects. Rather, resource objects must be determined, based on the expected support requirements of the desired activity objects.

The value of the TRUE IT framework is quite obvious. Indeed, the model is capable of: a) forecasting real workloads and estimating the resources required for the successfully execution of IT projects, b) evaluating IT investment portfolios from a continuous life cycle perspective, and c) rapid modeling and evaluation of complex IT project scenarios. As can be seen, however, decisions must be made at each level of the hierarchy. At the activity object level, the desired changes to the

IT infrastructure must be determined. At the cost object level, the specific hardware/software requirements for implementing these desired changes must be arrived at. Finally, at the resource object level, the manpower required to bring these changes to fruition must be estimated. Thus, while helpful in breaking down the steps required to implement infrastructure changes, the model leaves open the opportunity for error at all three levels within the hierarchy. And because of the interdependency of the levels within the hierarchy, errors or miscalculations at any one level may multiply the estimation discrepancy of the final model

### CHAPTER 3: THE PRESENT COST MODEL

The following chapter outlines the cost model utilized in the present thesis, and also provides examples of the online survey used to collect the data use to create the cost models.

The model employed within the present thesis builds substantially from the approach employed within the COSYSMO model. First, the organization of the survey structure is similar. While this may appear a superficial similarity, the manner in which the data are collected may have important influences on the quality and type of data obtained. In this case, the present model and the COSYSMO model share the strategy of asking practitioners to complete an online survey ranking the importance of various cost drivers. Thus, the data can be guaranteed to come from relevant and trustworthy sources, and from those individuals most likely to actually make the IT decisions for their company.

In addition, the current cost model shares several cost drivers with the COSYSMO model, and also uses a method of assigning ratings to specific size and cost drivers that are similar to that employed by COSYSMO. The overlapping cost drivers are considered a strength of the current model. The drivers utilized within the COSYSMO model have already undergone substantial validation, and are well accepted to provide accurate estimation of IT-related costs. The current model thus builds off of the strengths of the COSYSMO model, and adds additional cost drivers in an attempt to add additional predictive validity to the model.

Several differences exist as well, however. First, as already stated, the list of cost drivers in the current model is larger than that in the COSYSMO model. It is the goal of the present thesis to determine whether any of these additional drivers add incrementally to the validity of the total cost

model. In addition, the current model has utilized a finer scale that is expected to provide increased accuracy of IT-cost determinations.

#### Comparison of the Current Model and the TRUE IT Model

A primary difference between the cost model utilized in the present study and the TRUE IT application is the size of the list of cost drivers associated with both models. As will be seen below, the currently proposed model includes a broad list of cost drivers, while the TRUE IT system employs a significantly less extensive list. This does not necessarily indicate the superiority of one model over the other, as the sheer number of cost drivers is not the most relevant criteria for success. Rather, the ability of the model to predict IT infrastructure needs should be considered the most appropriate mode of evaluation. The present thesis did not perform a direct comparison of the two models, and so claims of superiority cannot be made. It can be noted, however, that one of the primary reasons for the larger driver size in the current model is the early stage of testing that this model is in. It was the purpose of this thesis to develop a broad list of drivers, that could be whittled down to those drivers that offered the maximal prediction of IT infrastructure needs. As will be seen in the results and analysis section, several cost drivers were rated as highly important, while other drivers were rated less so. Future iterations of the current cost model may, then, become increasingly narrow as only those drivers deemed most relevant will remain included.

It should also be noted that the source of the data used to support each model also differs. The current survey data was gathered from a group of senior IT leadership members in large reputable organizations. The TRUE IT system's algorithm was, instead, based on the industrial market data provided by other commercial marketing research companies. It may be argued that an advantage of the former technique is the directness of the approach, wherein the data could be

28

collected directly from the CIO of the company. A necessary downfall of this approach, however, is that the sample size will be necessarily smaller. Indeed, while the TRUE IT algorithm is based on data from hundreds of companies, the current model was designed based on the input from only seven CIOs.

The final difference between the two models relates to the nature of the cost drivers included in the model. Whereas the TRUE IT system utilizes a standard weighting on their cost drivers, the current model explores the possibility that a variable weighted factor may serve to make the model increasingly flexible across different industry sectors. Indeed, as will be seen, the weightings identified within the financial services and technology sectors varied greatly, indicating that a standard weighting would have been less likely to have provided as good a fit. It must, at this point, be noted once again, however, that the two models were not directly compared, and thus it cannot be claimed with complete confidence that the variable weightings improved predictive ability.

## The Online MIT IT Cost Model Survey

The MIT IT Cost Model Survey is a very convenient, web-based survey created especially for this thesis. The survey can be found at: <u>http://oursdm.com/mit/</u>. Figure 5 shows a screenshot of the survey webpage. The purpose of the survey was to gather all the data provided by those senior IT leadership teams (from financial and technology sectors) who were primarily responsible of the IT cost for their companies. Statistical analyses were then conducted on the data and a cost estimating relationships relevant to IT infrastructure cost was developed.

29

| 🖕 • 🧼 - 🧭 区 😚 🎼 http://oursdm.com/mit/                                                                                                                                                                                                                                                                                                                                                       | 🖌 🗿 Go 💽                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Cetting Started 🔂 Latest Headlines                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| MASSACHUSETTS INST                                                                                                                                                                                                                                                                                                                                                                           | ITUTE OF TECHNOLOGY                                                                                              |
| Universal IT infrastructu                                                                                                                                                                                                                                                                                                                                                                    | re Cost model                                                                                                    |
| Ken Huang MIT SD<br>Thesis advisor: Dr. Ricar                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| CIO survey on IT infrast                                                                                                                                                                                                                                                                                                                                                                     | ructure cost                                                                                                     |
| Version 7.0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |
| Your responses in this survey should reflect your personal experie<br>influenced by one abnormal experience. Participant information wil<br>collected for follow-up purposes only.                                                                                                                                                                                                           |                                                                                                                  |
| Thesis motivation:<br>According to the 2006 Gartner Research on IT spending report and my 8 y<br>currently there are no concrete and precise methods for IT Infrastructure c<br>quite a daunting task, from project management, capacity planning, risk ma<br>maintenance, technical support, to IT labor cost, etc. Particularly, in the are<br>infrastructure could be enormously complex. | ost estimation. Designing a successful IT infrastructure is<br>anagement, its scalability and modularity, annual |
| Objective of the survey:<br>The purpose of the survey is to identify the key drivers that have either ind<br>both of the relative and absolute importance of each driver.                                                                                                                                                                                                                    | lirect or direct impact on I.T. cost in general, and to evaluate                                                 |
| Respondents will be sent the compiled results as an incentive.<br>*The entire form below is anonymous*                                                                                                                                                                                                                                                                                       |                                                                                                                  |
| Participant Information:                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |
| First Name:                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |

Figure 5 – A screenshot of the online MIT CIO survey

# Collecting the survey results and computing the AHP results

Filling out the survey should take approximately 30 minutes. Clicking on the "Submit

Form" button completes the survey submission electronically. See Figures 5 and 6 for complete

directions on the survey submission process, as well as the successful submission confirmation

screen.

**≤** • ⇒ • € ⊗ http://oursdm.com/cgi-bin/sendform-mit.pl 📄 Customize Links 📄 Free Hotmail 📄 Windows Media 📄 Windows Please print this page for your records. First Name: Ken Last Name: Huang Division Department Business Unit: E-Commerce Investment Location: Boston Email address: kenhuang@mit.edu May we contact you for follow-ups?: Yes Name of the Corporation: JPMorgan Chase Industry: Financial Services Company size: More than 10,000 Years of experience in Information Technology: 7 Total number of years of your work experience: 10 Approximate Annual IT budget of your division or business unit: More than \$2Mil

Figure 6 – A screenshot of successful survey submission.

The survey data is stored electronically on a hosting Linux server, in a flat file format that can be imported directly into SAS. The data dictionary in Appendix A defines all the survey input variable names required for referencing the data in SAS. Appendix B shows the actual SAS program used to import the survey data, and to compute the AHP results. These AHP results can, in turn, be exported into Word, Excel or pdf format for convenient transfer and modifiability.

### **CHAPTER 4: SIZE AND COST DRIVER DEFINITIONS**

This section describes the logical reasoning behind this survey, and behind the extensive list of cost drivers devised for inclusion in the survey. In addition, a brief illustration of the techniques used to automate the survey data analysis are discussed, along with the manner in which a custom SAS program was used to compute the AHP results for IT cost analysis.

# Designing the CIO IT Cost Model Survey

The overall layout of the CIO IT Cost Model survey was based on the COSYSMO cost model survey. The survey consists of three main sections:

1. **Background information of a survey participant** -> this section gathers demographic and work-related data concerning the participant, including, for instance, their work experience, the size of their company, and their annual IT cost budget.

2. Size drivers -> size drivers are size parameters that are tangible and quantifiable; it can be expressed in discrete numeric format. Below is a list of all the size drivers utilized within the cost model analysis utilized within this thesis (see Table 2).

3. Cost drivers -> cost drivers are cost parameters that in most cases are intangible but have qualitative impact on constructing the IT cost model. Below are the descriptions of four categories of cost drivers, with explanations of the inclusion of each driver category (see Tables 3 through 6, and relevant discussions).

### Table 2. Types of size drivers

|                | Types of size drivers                                       |
|----------------|-------------------------------------------------------------|
| Number of serv | vers or racks                                               |
| Number of soft | ware licenses                                               |
| Number of KV   | Ms <sup>2</sup> (terminal servers)                          |
| Number of dist | inct sites(data centers)                                    |
| Number of user | rs / PC equipments                                          |
| Number of feet | of FA-CL or CAT5 cables.                                    |
| Number of soft | ware applications that need to be supported ( COTS and new) |
| Number of data | abases (i.e., human resources, sales, etc)                  |
| Number of data | a & phone jacks                                             |

<sup>&</sup>lt;sup>2</sup> KVM is short for keyboard, video and mouse. It is a hardware switch device that enables a single keyboard, video monitor and mouse to control multiple computers at a time.

| Table 3 | Systems | <b>Cost Drivers</b> |
|---------|---------|---------------------|
|---------|---------|---------------------|

| Service call response time          | The time required or agreed to respond a technical support ticket opened by the customer.                                                                    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reimplementation / re-design</b> | To re-architecture / to enhance some/entire functionalities of the systems in question.                                                                      |
| Client/server compatibility         | The handshakes or cohesiveness of<br>communications between its clients and the<br>server. Would be there any hiccups at the<br>network communication level. |
| Security                            | The company compliance level of the "systems" in question.                                                                                                   |
| Server Redundancy                   | A hot-standby (disaster recovery) server for the primary server of the same functionality.                                                                   |
| Business Continuity                 | High Availability of the "systems" infrastructure overall.                                                                                                   |
| MTTR (mean time to recovery         | The average amount of time required to resolve<br>most hardware or software problems with a<br>given device.                                                 |
| TCO (total cost of ownership)       | Cost to purchase and maintain software over time.                                                                                                            |
| SLA (Service level agreement)       | Formal agreement between a Service Provider<br>and customers to provide a certain level of<br>service. Penalty clauses might apply if the SLA<br>is not met. |

Each of these cost drivers were devised based on their relevance to the determination of ITsystem needs. The relevance of certain drivers are quite obvious: the TCO of a given system, for instance, is likely to be a great interest to most purchasers of IT systems. Other drivers may be less obvious, but not necessarily less important. A CIO may, for instance, neglect to take into account the fact that the service response time of the company associated with a given system may be particularly slow, and may further neglect the impact on his company's bottom-line that delays in service calls may cause. As a second example, some companies may feel that server redundancy is just an unnecessary cost, while other companies may feel that having all of their data doubly, triply, and even quadruply backed up is integral for their ongoing business concerns.

| Table 4. Hardware Cos | st Drivers |
|-----------------------|------------|
|-----------------------|------------|

| Seamless integration             | The smoothness of the coordination between two or more hardware components.                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Component volatility             | The rate of stability of the component.                                                                                                     |
| Component application complexity | The level of complexity of a component's functionality and operations.                                                                      |
| Interface Complexity             | The level of effort to interact with another hardware component.                                                                            |
| Product Support                  | The hardware warranty provided by the hardware vendor.                                                                                      |
| Experience with Component        | The overall technical experience of the engineers handling the hardware.                                                                    |
| Learning rate                    | A measure of the technical personnel mastering<br>the installation/replacement of the hardware in<br>relation to some specification of time |
| Reliability                      | The probability of performing a specified<br>function without failure under given conditions<br>for a specified period of time.             |
| Confidence level                 | The level of comfort of having this hardware lives within the current system infrastructure.                                                |

As can be seen, the cost drivers within the Hardware category are considerably different than in the system's category. Indeed, different concerns may be relevant when purchasing new hardware, compared to the purchase of new system resources. Obvious considerations include the ease with which the new systems will integrate with existing architecture, and the reliability of the hardware. Less obvious drivers, on the other hand, may include the speed with which employees are going to be able to learn the new systems. In total, however, each of these drivers were devised due to their direct relevance to the purchase of new hardware equipment. Many of these driver were utilized from the COSYSMO model.

| Confidence level                 | The level of comfort of running this application live within the current system infrastructure. |
|----------------------------------|-------------------------------------------------------------------------------------------------|
| Lines of Codes                   | The total number of lines of codes required to run this application.                            |
| Redesign required                | The necessity of re-organizing the layout.                                                      |
| Retest required                  | The necessity of examining the software for quality assurance purpose.                          |
| <b>Reimplementation required</b> | The necessity of enhancing the functionalities of the application.                              |
| Time constraints                 | The total time allowed performing any tasks relevant to this application.                       |

The considerations that need to be taken into account when purchasing new software are numerous, and quite different from considerations regarding hardware and system architecture. These considerations may include the ease with which the software can be implemented on the existing architecture, the ease with which users will be able to make use of the software, and the speed with which the software is able to undertake its core duties. Less obvious, but equally relevant, may be the total lines of code that are required to run the program. Longer code may lead

directly to longer application time, and also may require increased IT costs if the software ever requires modification.

| Learning Rate           | A measure of the technical personnel mastering<br>the maintenance in relation to some specification<br>of time.          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Professional Experience | The technical expertise from the staff or the vendor technical support team to escalate all the issues that might arise. |
| Cost                    | The annual monetary spending for maintaining the current server infrastructure.                                          |
| Repairs                 | The frequency rate of fixing any hardware component or software.                                                         |
| Call center             | The 24/7 surveillance center for monitoring any server failure and coordinating the failure to the appropriate teams.    |
| Upgrades                | The rate of upgrading the current server infrastructure design or functionalities.                                       |

#### Table 6. Support Cost Drivers

The last category of drivers is drivers related to support. This category can be considered relatively analogous to the 'Resources' category in the TRUE IT cost model. In short, the drivers in this category relate to the specific needs of those individuals who may be required to provide ongoing maintenance and support of the system/hardware/software. Drivers in this category thus include the learning rate of the IT personnel, the frequency with which upgrades are required on the new hardware/software, and the cost of repairs to the system, if repairs become necessary.

## CHAPTER 5: A BRIEF ON THE STATISTICAL TECHNIQUES EMPLOYED

This section describes the statistical methods and tools used to analyze the data. In particular, a brief overview of the SAS programming language will be provided, along with a description of the primary statistical techniques employed within the thesis, primarily the student's t-test and the Pearson correlation. A brief description of the Analytical Hierarchy Process (AHP) method follows, along with a discussion of how this method may prove useful for estimating ITrelated costs. A simple AHP example is provided for illustrative purpose.

## SAS

The primary data analyses relevant to the present thesis were performed within SAS. SAS exists as one of the leading professional scientific statistical analysis applications on the market today, and provides a complete, comprehensive and integrated platform for data analysis. Experienced SAS users may be interested in Appendix C, which provides all of the source code developed for analyzing the present data.

#### Student's T-test

The student's t-test is a standard statistical equation used to evaluate the magnitude of differences between two groups on a variable. Specifically, the t-statistic serves as a measure of effect size, and is calculated as follows:

$$t = \frac{\overline{X_1 - \overline{X}_2}}{s}$$

Where s is the grand standard deviation, 1 = group one, 2 = group two.

The strategy employed throughout this thesis was to separate the survey participants into two broad groups: those whose companies existed with the technology sector, and those whose businesses exist within the financial services sector. A primary goal of the study was to test the generalizability of the cost model developed. Although complete generalizability cannot be evaluated within a single study, and initial test of this proposition would consider the extent to which the cost model holds accurate within the two sectors chosen. Thus, a t-test was used to evaluate the magnitude of any differences that existed between companies within each sector. The results of these analyses are discussed in Chapter 6: "Analysis, Results and Discussion".

## **Pearson Correlation**

The Pearson product-moment correlation coefficient (PMCC) was created by Karl Pearson to measure the tendency for the value of two variables to vary in correlated fashion. If this were true, then as one variable increased, so would the other variable.

According to (Schmuller, 2005), the Pearson coefficient can be expressed as:

$$r = \frac{\left[\frac{1}{N-1}\right]\sum(x-\overline{x})(y-\overline{y})}{s_x s_y}$$

where  $s_x$  is standard deviation of variable x and  $s_x$  is the standard deviation of variable y. Because the numerator can be broken down to equal the covariance between variables x and y, the Pearson correlation can also be written in the following manner:

$$r = \frac{cov(x, y)}{s_x s_y}$$

As the pearson coefficient changes from zero, the magnitude of the association between the two variables increases. A positive Pearson coefficient indicates that the relationship between the two variables is such that as one variable increases, the other variable also increases. A negative Pearson coefficient indicates, in turn, that the relationship between the two variables is reciprocal – that is that as one variable increases, the other variable decreases systematically.

## Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP), developed in the 1970s by Dr. Thomas Saaty exists as an extremely robust and flexible decision making process (Saaty, 1979). The primary function of AHP is to help people set priorities and make adaptive decisions in complex situations. It is able to handle both qualitative and quantitative decision-making scenarios, and has been shown to improve on a number of human decision-making errors that can occur from a lack of focus and a lack of participation, as well as from conflicts regarding ownership and planning. Most particularly, AHP provides a useful mechanism for checking the consistency of both objective and subjective human evaluations. A primary benefit of AHP is that it helps set priorities and increases the likelihood that the most optima decision will be arrived at, even when complex qualitative and quantitative considerations must be taken into account.

The computations employed by AHP can be decomposed into the following six steps:

1. Form a pair wise comparison matrix with all the variables of interest.

Where each w is the corresponding weight (or importance level) of each individual variable, and each entry within the matrix represents the relative weight ratio between two variables.

- 2. Gather all the data, convert the fraction ratio into decimal format, and calculate the average for each variable in the matrix.
- 3. Calculate the matrix product of the matrix. The matrix product is formed by multiplying, element by element, each row of the first factor, A, by corresponding elements of the second factor, w, and adding. Thus, the first element of the product would be:

 $(w_1/w_1)^*w_1 + (w_1/w_2)^*w_2 + \dots + (w_1/w_n)^*w_n = nw_1$ . Similarly, the second element would be  $(w_2/w_1)^*w_2 + (w_2/w_2)^*w_2 + \dots + (w_2/w_n)^*w_n = nw_n$ . The n<sup>th</sup> element would be  $nw_n$ . Thus, the resulting vector would be nw.

- 4. Compute the eigenvector of the matrix A.
- 5. Sum the rows and row totals, and standardize the result (This is the first approximation of the eigenvector).

| $\int w_1 / w_1$                                                                                                                     | $w_1 / w_2$ | $w_1 / w_3$ | ••• | $W_1 W_n$     | $\int w_1$    | ] | $\begin{bmatrix} mw_1 \end{bmatrix}$ |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----|---------------|---------------|---|--------------------------------------|--|
| $w_2 / w_1$                                                                                                                          | $w_2 / w_2$ | $w_2 / w_3$ |     | $w_2 / w_n$   | w2            |   | $mw_2$                               |  |
| $w_3 / w_1$                                                                                                                          | $w_3 / w_2$ | w3 / w3     | ••• | $w_3 / w_n$   | W'3           |   | mw <sub>3</sub>                      |  |
| •••                                                                                                                                  |             | •••         | ••• |               | *             | = | •••                                  |  |
| •••                                                                                                                                  |             |             | ••• |               |               |   |                                      |  |
|                                                                                                                                      |             |             | ••• |               |               |   | •••                                  |  |
| $\begin{bmatrix} w_{1} / w_{1} \\ w_{2} / w_{1} \\ w_{3} / w_{1} \\ \dots \\ \dots \\ \dots \\ \dots \\ w_{n} / w_{1} \end{bmatrix}$ | $w_n / w_2$ | $w_n / w_3$ |     | $w'_n / w'_n$ | $\lfloor w_n$ |   | $\left[ \mathcal{W}_{n}\right]$      |  |
|                                                                                                                                      | <u>A</u>    |             |     |               | * <u>w</u>    |   |                                      |  |

6. Finally, normally by iterate steps three and four additional times in order to arrive a consistent matrix, with the following features, can be arrived at:

To increase clarity regarding the AHP process, an example of computing AHP Importance Level Scaling is provided below:

| 1 equal         | 3 moderate    | 5 strong       | 7 very strong | 9 extreme |
|-----------------|---------------|----------------|---------------|-----------|
| (1) Forming the | pair-wise com | parison matrix |               |           |
|                 | Apple         | Orange         | Banana        |           |
| Apple           | 1/1           | 1/2            | 3/1]          |           |
| Orange          | 2/1           | 1/1            | 4/1           |           |
| Banana          | 1/3           | 1/4            | 1/1           |           |

(2) Gather all the data, convert the fraction ratio into decimal format, and calculate the average for each variable in the matrix.

|        | Apple   | Orange | Banana  |
|--------|---------|--------|---------|
| Apple  | [1.0000 | 0.5000 | 3.0000] |
| Orange | 2.0000  | 1.0000 | 4.0000  |
| Banana | 0.3333  | 0.2500 | 1.0000  |

(3) Calculate the matrix produce of the matrix:

That is,  $a_{11} = (1.0000 * 1.0000) + (0.5000 * 2.0000) + (3.0000 * 0.3333) = 3.0000$ , and following the computation for  $a_{12}$  ... to  $a_{33}$ .

As a result, the first matrix product is:

|        | Apple  | Orange | Banana   |
|--------|--------|--------|----------|
| Apple  | 3.0000 | 1.7500 | 8.0000 ] |
| Orange | 5.3332 | 3.0000 | 14.0000  |
| Banana | 1.1666 | 0.6667 | 3.0000   |

(4) Compute the eigenvector of the matrix A.

| 3.0000 | + | 1.7500 | + | 8.0000 ] = | 12.7500 | 0.3194 |
|--------|---|--------|---|------------|---------|--------|
| 5.3332 | + | 3.0000 | + | 14.0000 =  | 22.3332 | 0.5595 |
| 1.1666 | + | 0.6667 | + | 3.0000 ] = | 4.8333  | 0.1211 |
| -      |   |        |   |            |         |        |
|        |   |        |   |            |         |        |
|        |   |        |   | 39.9165    | 1.0000  |        |

(5) Sum the row totals and standardize the summed totals. The standardized data becomes the eigenvector:

Finally, iterate steps three and four, three additional times to obtain the consistent matrix, which will give you the following:

|                              | Apple  | 2 <sup>nd</sup> most important criterion |
|------------------------------|--------|------------------------------------------|
| The consistent eigenvector = | Orange | 1 <sup>st</sup> most important criterion |
|                              | Banana | 3rd most important criterion             |

This eigenvector is known as the weighing factor for each variable in the matrix.

## Examples of Real-world AHP applications

According to (Khosrow-Pour, 2006), there are numerous real-world examples of successful AHP applications. Some of these applications may include strategic planning, microcomputer selection, software productivity measures and budget allocation. In addition, other less obvious applications may exist, including consideration of oil pipeline routes, the flexibility of specific manufacturing systems, and the planning of energy policy (Finnie, Wittig, & Petkov, 1993; Hamalainen & Seppalainen, 1986; Lee, 1993; Ramanathan & Ganesh, 1995; Saaty, 1994).

## CHAPTER 6: ANALYSIS, RESULTS & DISCUSSION

## Survey Results

The following demographic data describe the characteristics of the total sample surveyed in the present thesis:

Forty-three percent of individuals surveyed (3 out of 7) were from the Technology sector, while 57% of those surveyed (4 out of 7) were from Financial Services sector. Nearly half of those surveyed (43%, or 3 out of 7) worked at companies with a workforce greater than 10,000 employees, 14% of those surveyed (1 out of 7) worked for companies with a workforce between 500 and 1000 employees, and 2 out of 7, or 29% of those surveyed, worked for companies with a workforce under 100 employees. Despite the varying company sizes, all of the employees surveyed worked for companies that reported an annual IT-budget of over 2 million dollars. Thus, each of these companies had significant IT-related needs, and thus served as appropriate models for use within the present thesis. The average of total work experience was 20.1 years, while the average length of IT-specific experience was 17.7 years

Table 7 displays additional descriptive statistics related to each of the companies surveyed in the present thesis. As can be seen from this data, the average number of users across each site was 2,765 and the average number of sites was 6.5. Furthermore, the average number of distinct applications was found to be 281, and the average number of software licenses was 887. Thus, the companies surveyed appeared to utilize IT infrastructure that incorporated a substantial degree of complexity.

| Variable   | Label                                           | N | Mean    | Std Dev | Minimum | Maximum |
|------------|-------------------------------------------------|---|---------|---------|---------|---------|
| ExperYear  | Total number of years of your work experience   | 7 | 20.14   | 3.80    | 15      | 24      |
| ITExper    | Years of experience in IT                       | 7 | 17.714  | 4.89    | 8       | 22      |
| BUD_SYS    | System                                          | 7 | 28.57   | 17.49   | 10      | 65      |
| BUD_SW     | Software                                        | 7 | 25.71   | 9.32    | 10      | 40      |
| BUD_HW     | Hardware                                        | 7 | 22.86   | 8.59    | 5       | 30      |
| BUD_SUP    | Support                                         | 7 | 22.86   | 11.13   | 10      | 45      |
| SUP_U      | Users                                           | 4 | 2765.00 | 4827.48 | 110     | 10000   |
| SUP_SL     | Software licenses                               | 4 | 887.50  | 606.05  | 50      | 1500    |
| SUP_S      | Sites                                           | 4 | 6.50    | 5.92    | 2       | 15      |
| SUP_DA     | Distinct applications                           | 4 | 281.00  | 481.17  | 4       | 1000    |
| Rank_Rack  | Number of servers or racks                      | 7 | 2.43    | 1.51    | 1       | 5       |
| Rank_Lice  | Number of software licenses                     | 7 | 2.71    | 2.87    | 1       | 9       |
| Rank_KVM   | Number of KVMS(terminal servers)                | 5 | 7.40    | 2.19    | 5       | 9       |
| Rank_Sites | Number of distinct sites(data centers)          | 6 | 4.67    | 2.73    | 1       | 7       |
| Rank_Users | Number of users/PC equipments                   | 7 | 3.14    | 2.12    | 1       | 6       |
| Rank_Feet  | Number of feet of FA-CL or CAT5 cables          | 5 | 7.80    | 1.09    | 7       | 9       |
| Rank_Appli | Number of software applications to be supported | 7 | 2.86    | 2.34    | 1       | 7       |
| Rank_DBS   | Number of databases                             | 7 | 3.00    | 2.16    | 1       | 7       |
| Rank_Data  | Number of data & phone jacks                    | 6 | 5.00    | 3.52    | 1       | 9       |

## Table 7 – Descriptive statistics pertaining to the companies surveyed.

## **Cost Drivers**

This section shows the AHP results of the four categories of cost drivers listed in section II of the survey.

## Systems

The following four tables represent each of the four iterations of the matrix product. These matrices are listed in sequential order as part of the AHP pair-wise method described in Chapter 2.

|           | Matrix 1 of Table 1 (Systems) |           |           |           |           |           |           |           |  |  |
|-----------|-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| 47.808232 | 30.138119                     | 40.981666 | 28.345904 | 44.659838 | 34.521396 | 69.897612 | 68.666418 | 85.331335 |  |  |
| 61.561623 | 41.225938                     | 55.030153 | 41.207227 | 62.29698  | 49.280739 | 100.77255 | 91.224933 | 120.66813 |  |  |
| 42.806033 | 26.081831                     | 39.917676 | 26.809977 | 48.165431 | 35.339327 | 58.096232 | 60.363457 | 64.930183 |  |  |
| 53.364853 | 32.736281                     | 51.690681 | 37.532249 | 55.940736 | 41.509577 | 79.972901 | 78.99319  | 104.13134 |  |  |
| 42.042636 | 28.390652                     | 37.702821 | 28.692107 | 36.783305 | 21.893638 | 48.177279 | 54.507882 | 80.031138 |  |  |
| 40.459122 | 24.154013                     | 37.540361 | 24.484619 | 35.462819 | 23.591442 | 42.822056 | 51.897269 | 74.728642 |  |  |
| 28.494882 | 19.324993                     | 21.971382 | 19.212532 | 26.449251 | 14.272892 | 25.833965 | 25.035469 | 40.471478 |  |  |
| 19.118493 | 15.437179                     | 16.49588  | 15.077887 | 20.908721 | 11.045665 | 19.812167 | 17.66651  | 24.004382 |  |  |
| 23.382357 | 15.145883                     | 22.48859  | 18.859695 | 31.436505 | 21.823762 | 34.692135 | 30.765768 | 34.829528 |  |  |

Table 8 – The result of first iteration of computing the matrix product

|           | Matrix 2 of Table 1 (Systems) |           |           |           |           |           |           |           |  |  |
|-----------|-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| 15982.009 | 10485.096                     | 14286.067 | 10873.885 | 16406.16  | 11171.061 | 20782.917 | 20559.275 | 26932.014 |  |  |
| 22085.803 | 14481.477                     | 19749.665 | 15047.175 | 22678.559 | 15417.96  | 28658.514 | 28365.124 | 37231.281 |  |  |
| 14574.073 | 9543.1366                     | 13043.811 | 9862.6967 | 14823.77  | 10087.789 | 18866.646 | 18823.94  | 24740.872 |  |  |
| 19037.376 | 12467.64                      | 17061.255 | 12968.964 | 19582.05  | 13330.69  | 24749.771 | 24540.577 | 32107.094 |  |  |
| 13621.313 | 8917.8857                     | 12239.637 | 9297.6097 | 14126.563 | 9731.9805 | 18095.292 | 17791.731 | 23074.772 |  |  |
| 12739.99  | 8332.9456                     | 11451.604 | 8677.3006 | 13197.438 | 9078.291  | 16846.81  | 16627.148 | 21536.853 |  |  |
| 8368.3092 | 5451.8275                     | 7525.1379 | 5659.6331 | 8567.5681 | 5954.2781 | 11204.98  | 11080.098 | 14430.11  |  |  |
| 6164.6487 | 4016.0123                     | 5540.4075 | 4156.3105 | 6262.335  | 4349.715  | 8231.077  | 8167.4085 | 10696.082 |  |  |
| 8615.1501 | 5625.5636                     | 7721.8173 | 5821.2862 | 8712.036  | 5929.3917 | 11138.573 | 11164.287 | 14749.357 |  |  |

Table 9 – The results of second iteration of computing the matrix product

Table 10 - The results of third iteration of computing the matrix product.

|           | Matrix 3 of Table 1 (Systems) |           |           |           |           |           |           |           |  |  |
|-----------|-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| 1.80069E9 | 1.17809E9                     | 1.61426E9 | 1.22281E9 | 1.84533E9 | 1.26321E9 | 2.35845E9 | 2.33827E9 | 3.05957E9 |  |  |
| 2.48788E9 | 1.62769E9                     | 2.2303E9  | 1.68946E9 | 2.54955E9 | 1.74527E9 | 3.25846E9 | 3.23059E9 | 4.22716E9 |  |  |
| 1.63906E9 | 1.07235E9                     | 1.46936E9 | 1.11303E9 | 1.67963E9 | 1.14976E9 | 2.14668E9 | 2.12837E9 | 2.78501E9 |  |  |
| 2.14673E9 | 1.40449E9                     | 1.92448E9 | 1.4578E9  | 2.19995E9 | 1.50597E9 | 2.81169E9 | 2.78763E9 | 3.64755E9 |  |  |
| 1.54635E9 | 1.01168E9                     | 1.38627E9 | 1.05008E9 | 1.5847E9  | 1.08486E9 | 2.0255E9  | 2.00814E9 | 2.62753E9 |  |  |
| 1.44419E9 | 944842873                     | 1.29469E9 | 980705981 | 1.48E9    | 1.01318E9 | 1.89167E9 | 1.87546E9 | 2.45393E9 |  |  |
| 950515025 | 621852921                     | 852122823 | 645443521 | 974023399 | 666806453 | 1.24503E9 | 1.23442E9 | 1.61522E9 |  |  |
| 699186179 | 457426014                     | 626807263 | 474774363 | 716456771 | 490471517 | 915801280 | 908008919 | 1.18815E9 |  |  |
| 968605455 | 633702386                     | 868319036 | 657737913 | 992546199 | 679425366 | 1.26856E9 | 1.25776E9 | 1.64584E9 |  |  |

|           | Matrix 4 of Table 1 (Systems) |           |           |           |           |           |           |           |  |
|-----------|-------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| 2.2962E19 | 1.5023E19                     | 2.0585E19 | 1.5593E19 | 2.3531E19 | 1.6108E19 | 3.0075E19 | 2.9818E19 | 3.9017E19 |  |
| 3.1725E19 | 2.0756E19                     | 2.8441E19 | 2.1544E19 | 3.2511E19 | 2.2256E19 | 4.1553E19 | 4.1198E19 | 5.3907E19 |  |
| 2.0901E19 | 1.3674E19                     | 1.8737E19 | 1.4193E19 | 2.1419E19 | 1.4662E19 | 2.7375E19 | 2.7142E19 | 3.5514E19 |  |
| 2.7375E19 | 1.791E19                      | 2.4541E19 | 1.8589E19 | 2.8053E19 | 1.9204E19 | 3.5855E19 | 3.5549E19 | 4.6515E19 |  |
| 1.9719E19 | 1.2901E19                     | 1.7678E19 | 1.3391E19 | 2.0208E19 | 1.3833E19 | 2.5828E19 | 2.5607E19 | 3.3507E19 |  |
| 1.8417E19 | 1.2049E19                     | 1.651E19  | 1.2506E19 | 1.8873E19 | 1.2919E19 | 2.4122E19 | 2.3915E19 | 3.1293E19 |  |
| 1.2121E19 | 7.9301E18                     | 1.0866E19 | 8.2311E18 | 1.2421E19 | 8.5031E18 | 1.5876E19 | 1.574E19  | 2.0596E19 |  |
| 8.916E18  | 5.8332E18                     | 7.993E18  | 6.0546E18 | 9.1369E18 | 6.2547E18 | 1.1678E19 | 1.1578E19 | 1.515E19  |  |
| 1.2351E19 | 8.0807E18                     | 1.1073E19 | 8.3874E18 | 1.2657E19 | 8.6646E18 | 1.6177E19 | 1.6039E19 | 2.0987E19 |  |

Table 11 - The results of third iteration of computing the matrix product.

The following summary table shows the final normalized eigenvector in percentage format (from Matrix 4 of Table 1 (Systems)):

Table 12 – The summary table of the final normalized eigenvectors (pertaining to Table 3).

|     | Total        |        |
|-----|--------------|--------|
|     | Sum          | PctSum |
| ID  |              |        |
| 1   | 2.127131E20  | 13.16  |
| 2   | 2.9388922E20 | 18.18  |
| 3   | 1.936177E20  | 11.98  |
| 4   | 2.5359117E20 | 15.69  |
| 5   | 1.8267251E20 | 11.30  |
| 6   | 1.7060389E20 | 10.55  |
| 7   | 1.1228509E20 | 6.95   |
| 8   | 8.2594434E19 | 5.11   |
| 9   | 1.1441757E20 | 7.08   |
| All | 1.6163847E21 | 100.00 |

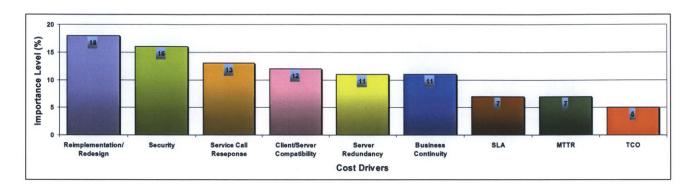



Figure 7 ranks the relative importance, in descending order, of cost drivers listed in Table 3.

Figure 7 – The importance level of the cost drivers in Table 3.

As can be seen, the three most important cost drivers within the service section were:

#### 1. Reimplementation / Redesign (18%)

2. Security (16%)

## 3. Service call response (13%)

The majority of the cost drivers in this table are relatively similar. Nevertheless, it is clear that both 'reimplementation/redesign' and 'security' are characteristics of the IT system that are

#### Hardware

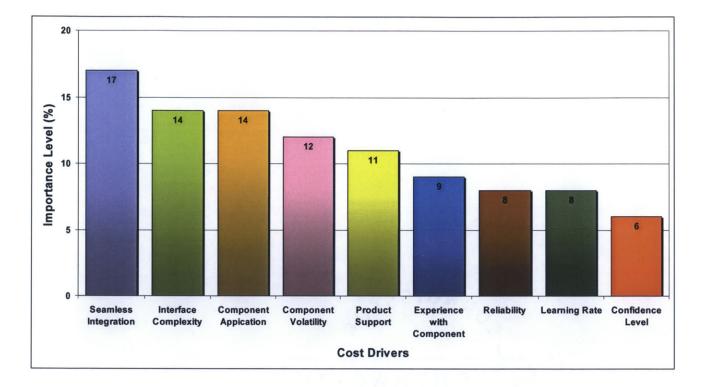



Figure 8 ranks the relative importance, in descending order, of all cost drivers in Table 4

Figure 8 – The importance level of the cost drivers in Table 4

. As can be seen, the top three most important cost drivers in terms of "Hardware" are

- 1. Seamless integration (17%)
- 2. Interface Complexity & Component application (14%)
- 3. Component Volatility (12%)

Similar to the AHP result from Table 3, the importance attributed to each cost driver in Table 4 is relatively evenly distributed. Only 'seamless integration' appears to be of greater important to IT professionals than the other cost drivers. Thus, we can assume that the smooth introduction of new hardware into the existing IT infrastructure is a primary concern.

#### Software

Figure 9 ranks the relative importance, in descending order, of all cost drivers in Table 5 in descending order.

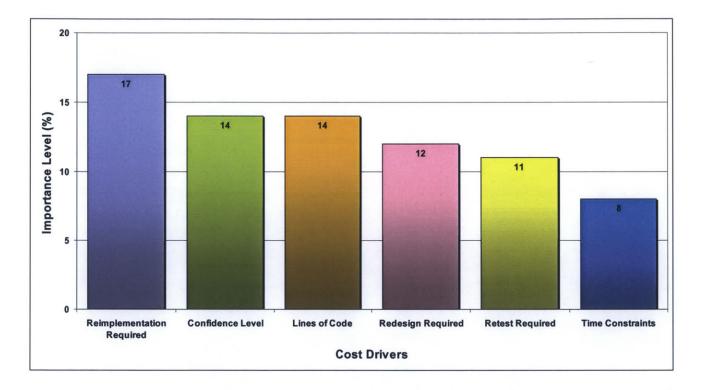



Figure 9 - The importance level of the cost drivers in Table 5

As can be seen, the three most important cost drivers in terms of "Software" are:

## 1. Reimplementation required (20%)

2. Confidence Level (19%)

#### 3. Lines of code & Redesign required (17%)

While the AHP results suggest an equal distribution of importance ratings, both "Reimplementation" and "Confidence level" received slightly higher weightings than the other possible features of IT software. Thus, it appears that companies rely primarily on their software engineers' capability to improve their software and to keep existing software available and running stability.

## Support

Figure 10 ranks the relative importance, in descending order, of all cost drivers in Table 6 in descending order.

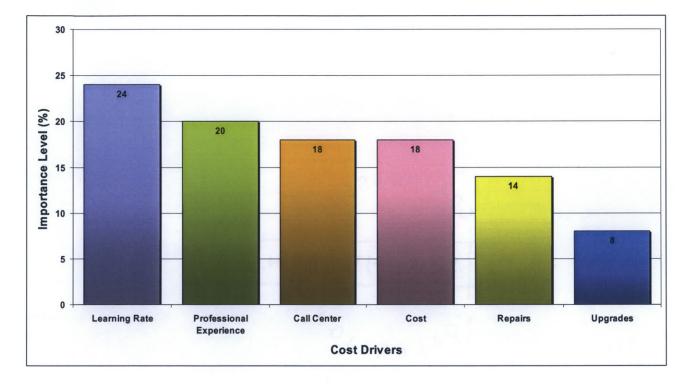



Figure 10 – The importance level of the cost drivers in Table 6 - Support

As can be seen, the three most important cost drivers in terms of "Support" are:

## 1. Learning rate (24%)

- 2. Professional Experience (20%)
- 3. Call center (19%)

With regard to IT support, those surveyed suggested that learning rate was the most important characteristic. In addition, the extent of professional experience, and the call-center cost parameters received high weightings as well. It may be that companies focus primarily on their staff's professional expertise, and concern themselves with ensuring that the technical ability of their staff is sufficient to support relevant knowledge expansion, and to accommodate necessary IT infrastructure upgrades in the future.

## Sector-Specific Similarities and Differences

In the following two subsections, the cost driver rankings associated with each of the technology and financial services industries are compared and contrasted, in order to evaluate similarities and differences across the two sectors. It is hoped that such an analysis will aid consideration of the extent to which the cost model put forward within may be readily adapted for addition sectors, not directly tested at present.

#### Systems

Table 13 compares on contrasts the rankings of System cost drivers across each of the two sectors

| Driver                | Importance level     | Importance level for |
|-----------------------|----------------------|----------------------|
|                       | for Financial Sector | Technology Sector    |
| Security              | 19                   | 10                   |
| Reimplementation      | 15                   | 20                   |
| Business continuity   | 13                   | 9                    |
| Server redundancy     | 12                   | 10                   |
| Client/server         | 10                   | 12                   |
| SLA                   | 9                    | 5                    |
| MTTR                  | 9                    | 5                    |
| Service call Response | 7                    | 24                   |
| ТСО                   | 6                    | 5                    |

Table 13. Comparison of System Cost Drivers Across Financial and Technology Sectors

As can be seen, there were significant differences across the two sectors. In the financial services sector, for instance, security of the system infrastructure was considered the most important driver, followed by the amount of reimplementation that may be required, and the extent to which business continuity may be kept. In the technology sector, in contrast, the speed of service calls was the most important driver, followed by reimplementation considerations, and the client/server compatibility. The fact that the financial sector values security, whereas technology companies value service call response is interesting, and may provide insight into the nature of the companies in each sector. Financial service companies may, for instance, require particularly tight security in order to ensure that hackers cannot access public records. Indeed, keeping hackers out is necessary, not just to retain people's money, but also to keep consumer confidence high. Without appropriate

security, the financial services company cannot survive. This is not similarly the case for many high tech companies, however. It is not, for instance, going to lower consumer confidence substantially if a telecom company has its computer network's hacked. That service call response was most important may have more to do with the specific high tech companies surveyed – companies in the service call industry would, no doubt, consider this a high priority.

#### Hardware

Table 14 compares on contrasts the rankings of Hardware cost drivers across each of the two sectors

| Driver                    | Importance level     | Importance level for |
|---------------------------|----------------------|----------------------|
|                           | for Financial Sector | Technology Sector    |
| Interface Complexity      | 15                   | 10                   |
| Seamless Integration      | 13                   | 24                   |
| Component Application     | 12                   | 20                   |
| Reliability               | 12                   | 5                    |
| Component Volatility      | 11                   | 12                   |
| Experience with Component | 10                   | 9                    |
| Product                   | 9                    | 10                   |
| Learning Rate             | 9                    | 5                    |
| Confidence Level          | 8                    | 5                    |

Table 14. Comparison of Hardware Cost Drivers Across Financial and Technology Sectors

While there are again differences across the two sectors, with regard to hardware it is more interesting to note the similarities. Indeed, the top three drivers: Interface Complexity, Seamless

Integration and Component Application, were the same for companies in both industries (although the ranking within the top three differed). Thus, companies in both sectors are extremely concerned with the integration and complexity of any new hardware brought into the company.

#### Software

Table 15 compares on contrasts the rankings of Software cost drivers across each of the two sectors

| Driver           | Importance level for | Importance level for |
|------------------|----------------------|----------------------|
|                  | Financial Sector     | Technology Sector    |
| Reimplementation | 26                   | 9                    |
| Time Constraints | 21                   | 5                    |
| Redesign         | 16                   | 17                   |
| Retest Required  | 14                   | 14                   |
| Lines of Code    | 13                   | 26                   |
| Confidence Level | 10                   | 29                   |

Table 15. Comparison of Software Cost Drivers Across Financial and Technology Sectors

Note the staggering disagreement across the two sectors. Indeed, they are almost reciprocal opposites, with the financial sector being particularly interested in the amount of time that reimplementation and redesign of the software will require, while technology companies are instead much more concerned with their confidence in the software, the efficiency of the code, and the number of retests that may be needed before complete confidence is established. The reasons for this drastic difference are unclear, but should be evaluated further in future research.

## Support

Table 16 compares on contrasts the rankings of Support cost drivers across each of the two sectors

| Driver              | Importance level for | Importance level for |
|---------------------|----------------------|----------------------|
|                     | Financial Sector     | Technology Sector    |
| Call Center Service | 26                   | 6                    |
| Learning Rate       | 18                   | 39                   |
| Professionalism     | 17                   | 24                   |
| Repairs             | 16                   | 8                    |
| Cost                | 13                   | 18                   |
| Upgrades            | 11                   | 4                    |

Table 16. Comparison of Support Cost Drivers Across Financial and Technology Sectors

Again, substantial differences resulted across the two sectors. Whereas financial service companies were particularly concerned with the call center service and professionalism, technology companies were unanimously concerned with the learning rate of their support staff. Indeed, this may again have to do with differences in the business models of companies in both sectors. Support staff for technology companies is likely to be required to perform cutting edge updates and maintenance, requiring highly skilled individuals with the capacity for fast learning. The financial services support staff may, instead, be more likely to be part of the financial service's call center, and may, thus, not require the same level of skilled expertise.

## T-Test Results: How Exactly Did the Two Sectors Differ?

A series of Student's t-tests were performed, in order to identify those cost drivers were significantly more important within one sector than the other. Thus, these t-test provide empirical support for the descriptive findings narrated above. Table 17 displays those cost drivers that did, in fact, reach significance (p = .05). As can be seen, nine pairs of variable comparison between the two reached significance. Thus, the first row in Table 17 indicates that the two sectors differed significantly with regard to their relative importance of Service call response time and reimplementation, a finding that mirrors that described above.

| Two Variables Comparison                                     | Financial Sector (n=4)<br>Mean of importance | Technology Sector (n=3)<br>Mean of importance | P value |
|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------|
| Service call response time vs.<br>Reimplementation/Re-design | 0.2048                                       | 4                                             | 0.0035  |
| Service call response time vs.<br>Security                   | 0.3635                                       | 7                                             | 0.0063  |
| Re-implementation /Re-design vs.<br>Security                 | 0.4                                          | 6.3333                                        | 0.0106  |
| Client/Server compatibility vs.<br>Security                  | 0.4524                                       | 6.3333                                        | 0.0110  |
| Component application complexity vs. Interface complexity    | 0.418                                        | 5                                             | <0.0001 |
| Product support vs.<br>Confidence level.                     | 1.4444                                       | 6.3333                                        | 0.0094  |
| Lines of code vs. Re-<br>implementation required             | 0.8492                                       | 5                                             | 0.0232  |
| Professional experience vs. Repairs                          | 1.6333                                       | 5.6667                                        | 0.0393  |
| Cost vs.<br>Upgrades                                         | 0.7333                                       | 5                                             | 0.0228  |

Table 17 - Nine pairs of cost drivers that have contrasting importance level between two sectors

# Pearson Correlations: Were there Linear Patterns Within the Driver Rankings?

As a final analysis, Pearson Correlations were computed to investigate the possibility that there may be specific linear relationships between those cost drivers that were rated as most important, and those cost drivers that were rated as less important. Such analyses are not of crucial importance, in and of themselves, but rather aid two issues: a) understanding of sector specific needs, and b) identification of redundancy in the current list of cost drivers. The results of two selected Pearson correlations, one that depicts each type of information, are reported in Figures 11 and 12 respectively. Interested readers will find details regarding all correlations, including details of the computations underlying these correlations, in Appendix D.

## Systems: An Example of Sector Specificity

Figure 11 displays a scatterplot of the relationship between rankings of Service Call Response Time and Security, across both sectors. As can be seen, a significantly negative linear trend exists, whereby companies that ranked Service Response Time high tended to rank Security very low, and vice versa. Indeed, this relationship was r = -0.85, p < .05, indicating that the linear trend was statistically significant, even with this small a sample. It may be easy to understand the nature of this relationship by considering the interests of companies who are about to undertake new IT-infrastructure purchases. In the real world, for instance, companies that value smoothly running call centers may fall under a business model that does not require high levels of system security. In opposite fashion, those with a need for security likely do not undertake significant call center business.

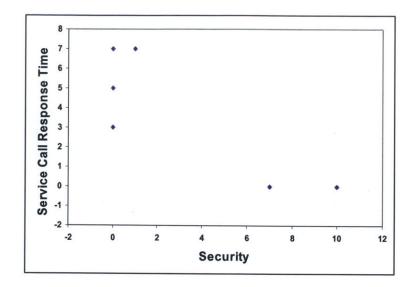



Figure 11. A symmetric scatter plot contrasting Service call response time and Security from Table 13. Hardware: An example of Redundancy

Figure 12 displays a scatterplot of the relationship between rankings of Experience with Components and Learning Rate, across both sectors. As can be seen, a significantly positive linear trend exists, whereby companies that ranked Experience high also ranked Learning Rate high, and vice versa. This, of course, makes complete sense, as Experience with the Hardware should correlate highly with one's Learning Rate in the real world. Thus, an individual with greater experience should require less time to learn the hardware. This positive relationship thus indicates that one of these two components may be redundant within the model, and that a more parsimonious model, with only one of these two variables, may remain equally predictive of overall IT expenditures.




Figure 12. A symmetric scatter plot contrasting Experience with component and Learning rate from Table 14.

These two scatterplots thus identify two important aspects of the collected data. First: there are, indeed, considerable sector-specific differences in the IT-related needs, and any global cost model developed must be able to account for these differences. Indeed, the current model, while not explicitly tested, appears likely to be capable of adapting to the unique needs of both the financial services and technology sectors by utilizing variable weightings in line with the relative rankings of each cost driver surveyed. Second: the current cost model remains in need of several iterations, in order to make it as efficient and parsimonious as possible. Indeed, as can be seen in Appendix D, there were a large number of highly correlated variables, indicating that many of those variables may be redundant within the model. Future research comparing the complete set of cost drivers against a smaller subset would enhance the accuracy and preciseness of constructing an IT cost model.

## Summary of Findings

According to the research results of META Group Inc. (2003) and additional industrial market research reports that were described in chapter 2, the cost to estimate IT project costs now exceeds \$20K per \$1M project. Because IT spending has consistently increased by 1%-6% a year, it would be of great worth to develop a set of common cost drivers that can estimate the cost of IT projects across a variety of sectors. The present thesis specifically surveyed companies within the financial services and technology sectors. Indeed, within these sectors, there does appear to be a set of essential deterministic cost drivers that can accurately project the total cost of IT infrastructure when appropriate weightings are included in the model. Future research will be required to further this research, and investigate the applicability of the currently devised cost drivers within additional sectors.

## CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This chapter encapsulates the research results and also discusses some of the factors that may limit the scope of the present work. This chapter also describes the cornerstone tools that can be used for further research.

## **Known Problems and Limitations**

Several challenges were encountered during the course of the project. First, because of the need to find senior VPs in the IT industry to agree to participate in the research, the total sample size of the project remains unfortunately small. Indeed, with seven participants, it is difficult to know how well the results obtained will generalize more widely. Second, most company budgets are confidential, and the difficulty obtaining detailed information on the specific budgets of the surveyed companies limited the ability to perform a systematic investigation of the relationship between the cost driver weightings and the actual dollars spent on IT. It may be that the rankings obtained do not correlate exactly with actual dollars spent, and future research will be required to determine the true relationships between these constructs. Finally, the model was not tested in the real world, and future research will need to do this to determine the accuracy of the model.

## **Future Research**

The findings from the present thesis can serve as a good starting point both for further academic research and commercial applications. By using the set of tools developed, an online CIO survey with the capability of exporting the data in SAS readable format and a SAS program that can dynamically generate the data set from the survey data file and compute the AHP eigenvectors, and can help calibrate the cost driver rankings for any sector. An increased sample size will make this research more relevant outside of the two domains studied. Revisiting the list of cost drivers would also be necessary to verify its relevance in an industrial setting.

Additional future work could include expanding the scope of this study to another level that could potentially resolve other IT cost related issues. A very popular and current topic is the issue of strategic IT outsourcing. It would be interesting to see how we can perform intelligent trade-off analysis between outsourcing and in-house IT operations, thus organizations can make the best costeffective decisions.

## Conclusion

In summary, based on a complete analysis of the survey data, the findings appear to validate the proposition that there is a finite set of essential deterministic cost drivers that, with varying weighing factors, may prove capable of estimating the total cost of ownership for IT infrastructure. While the present data suggest its applicability within two varying sectors, additional work is required to test its global applicability. Additional work is also required to identify cost drivers that are good candidates for elimination within the model. Nonetheless, the present work provides encouraging results, and suggests that a global cost model is within reach. The significance of such a model for the bottom line of companies who depend on IT infrastructure for their success makes continued investigation paramount.

## REFERENCES

Analytic Hierarchy Process – AHP definition in Wikipedia

< <u>http://en.wikipedia.org/wiki/Analytic Hierarchy Process</u>>

Finnie, G. R., Wittig, G. E., & Petkov, D. I. (1993). Prioritizing software development productivity factors using the analytic hierarchy process. *Journal of Systems & Software, 22*(2), 129-139.

Forman E. H. (2002) Decision by Objectives, World Scientific Publishing Company <<u>http://mdm.gwu.edu/Forman/DBO.pdf</u>>

Hamalainen, R. P., & Seppalainen, T. O. (1986). The analytic network process in energy policy planning. Socio-Economic Planning Sciences, 20(6), 399-405.

Jernigan J. (2005) Segmenting the Business Market - There's More to it than Size, In-Stat

- Khosrow-Pour M. (2006) Advanced Topics in Information Resources Management, Volume 5, Idea Group Publishing
- Lee, H. (1993). A structured methodology for software development effort prediction using the analytic hierarchy process. *Journal of Systems & Software, 21*(2), 179-186.

Plunkett Research, Ltd. (2006) Plunkett's Info Tech Industry Almanac 2006

Plunkett Research, Ltd. (2006) InfoTech Industry Trends.

- Ramanathan, R., & Ganesh, L. S. (1995). Using AHP for resource allocation problems. European Journal of Operational Research, 80, 410-417.
- Saaty, T. L. (1994). Highlights and critical points in the theory and application of the analytic hierarchy process. *European Journal of Operational Research*, *74*, 426-447.
- SAS Official website of SAS INSTITUTE INC. <<u>http://www.sas.com/index.html?sgc=u</u>>

Schmuller J. (2005) Statistical Analysis with Excel For Dummies, John Wiley & Sons

SER Serlio Software <<u>http://www.serlio.com/casecomplete/UseCaseBenefits.aspx</u>>

Student's T test Merriam Webster's definition < <u>http://www.m-w.com/cgi-bin/dictionary</u>>

TRUE IT Overview (2005) Price Systems

UHCL UML overview slide at University of Houston Clear Lake

< http://sce.uhcl.edu/helm/SWTOOLS/uml\_overview/UMLOverview1/sld015.htm>

Valerdi R. (2005) The Constructive Systems Engineering Cost Model (COSYSMO), PhD

Dissertation, University of Southern California

## APPENDIX A: TWO USE CASES OF THE CURRENT COST MODEL

Below is a detailed description of two IT usage scenarios. These scenarios are intended to illustrate the complexity of IT-needs determinations, and to provide running examples of the manner in which costs associated with a given cost model may be arrived at with the currently proposed cost driver model.

## Use Case Fundamentals

Use case modeling has been a well-known method for software development. Use case modeling can be used to conduct unexpected event elimination and to identify operational exception errors early, and before serious complications ensue. In addition use case modeling can serve as a good source for technical documentation, for easy user validation, and for better project traceability throughout the entire project cycle.

The following two use cases were developed based on the most common scenarios of building/modifying an IT infrastructure.

## CASE 1: COST OF A NEW IT SYSTEM/INFRASTRUCTURE

#### Name: Cost of a new IT system/infrastructure

#### Identifier: IT01

**Description:** The purpose of estimating the cost of a new IT system/infrastructure is to eliminate the common issues/obstacles that companies may experience due to over- or under-budgeting, or to the inaccurate allocation of human labor to a particular IT project. Implementation of the universal

IT cost model (the ultimate goal of this study), can lead to increased IT cost accuracy, and to more effective and more timely project management.

## **Primary Actors:**

- Chief Information Officer (CIO)s/IT executive teams
- IT managers

## Secondary Actors:

- IT systems engineers
- IT systems/storage administrators

#### <u>Goal:</u>

To gain a comprehensive understanding of the monetary and time expenditures that will go into developing a new IT system/infrastructure. In particular, costs associated with the implementation and maintenance of the IT infrastructure must be taken into account, as well as the labor costs associated with these processes.

#### **Frequency:**

At the commencement of a new IT infrastructure-building project.

#### **Preconditions:**

- A new project folder must be created.
- Define the project name, project start date and desired completion date.

- User can distinguish software development cost from IT infrastructure cost.
- issuer has a comprehensive understanding of the nature of each of the cost drivers (SLAs) and size drivers (servers) that will go into the calculation of the IT-infrastructure needs..

## **Post conditions:**

- Project data has been saved.
- Inputs have been checked for manual entry errors.
- All required blank fields have been filled and confirmed with user as accurate.
- User will be able to modify / update the inputs in this project at any time.
- A risk assessment calculation and a graph can be compiled.
- The total estimated IT costs, as well as the corresponding estimated project completion date.
- A critical path / DSM can be graphically presented.
- User could customize output of the model.
- The model can display cost estimate in a format similar to other cost models

#### Assumptions:

- An IT project has a clear start date and target completion date.
- Required date inputs would be entered.

• The user has a working understanding of the manner in which pre-defined input parameters and drivers can be customized.

## **Basic Course:**

- The user launches the application.
- The main screen appears, and the user creates a new project.
- The user enters the project start date and target completion date.
- The user drags the desired functionalities out of the various IT categories onto the project in a tree hierarchy fashion.
- The user enters all of the required input parameters for each IT functionality (eg. cost drivers, size drivers and misc. drivers).
- The user can customize any pre-defined parameter values.
- The user clicks on the "Calculate" button to generate the cost of the IT needs.
- The user can highlight the parameters for risk assessment.
- The user saves the project.
- The user exits out of the application.

## **Alternate Courses of Action:**

• The application experiences a syntax error, and informs the user of such.

• The user can import the input parameters from an Excel spreadsheet.

## Issues:

- Will the user be able to define additional customized input fields?
- Should the user be able to import their data from files?
- Should the outsourcing IT cost be included as a relevant variable in the model?

## **Decisions:**

• User determines the level of complexity for each driver.

## **Change history:**

Created on Feb 23<sup>rd</sup>, 2006 by Ken Huang.

Created on Mar 2<sup>nd</sup>, 2006 by Ken Huang.

\* \* \*

## CASE 2: COST OF MODIFYING AN EXISTING IT SYSTEM/

## **INFRASTRUCTURE**

<u>Name:</u> Cost of modifying an existing IT system/infrastructure (with SEER-SEM handling the SW development & maintenance)

## **Identifier: IT02**

**Description:** The purpose of estimating the cost of modifying an existing IT system/infrastructure is to eliminate the common issues/obstacles that companies may experience due to over- or under-budgeting, to inaccurate re-budgeting, or to the mis-appropriation of human labor needs on a given project modification. Implementation of the universal IT cost model, can lead to increased IT cost accuracy, and to more effective and more timely project management.

## **Primary Actors:**

- CIOs/IT executive teams
- IT managers

## Secondary Actors:

- IT systems engineers
- IT systems/storage administrators

## <u>Goal:</u>

To gain a comprehensive understanding of the costs associated with modifying an existing IT system/infrastructure. These costs may be anticipated to vary according to size and the complexity of the modification of IT infrastructure.

## Frequency:

Every time a comparable IT infrastructure building project occurs. Approximately once a year.

### **Preconditions:**

- A new project / folder must be created.
- The project name must be defined, and a project start date and desired completion date must be known.
- The user can distinguish software development cost from IT infrastructure cost.
- The user has a comprehensive understanding of the nature of each of the cost drivers (SLAs) and size drivers (servers) that exist within the IT cost model.

### Post conditions:

- The project data has been saved.
- The inputs have been checked for manual entry errors.
- All required blank fields have been filled and confirmed with user as accurate.
- The user is able to modify / update the inputs in this project at any time.

- A risk assessment calculation and a graph can be compiled.
- The total estimated IT costs have an associated project completion date.
- A critical path / DSM can be graphically presented.
- The user could customize output of the model.
- The model can display cost estimate in a format similar to other cost models.
- The model can visually illustrate the impacted segments of the project.

## **Assumptions:**

- An IT project that has a clear start date and target completion date.
- Required date inputs are entered appropriately.
- The user is able to customize all pre-defined input parameters and drivers.
- The user is able to save their project.
- The user is familiar with the existing IT infrastructure.
- The user is aware of their company's existing IT costs.

## **Basic Course:**

- The user launches the application.
- The main screen is presented, and the user creates a new project.

- The user enters the project start date and target completion date.
- The user drags the desired functionalities out of the various IT categories onto the project in a tree hierarchy fashion.
- The user defines the existing IT infrastructure cost by entering all the required input parameters.
- The user selects "Upgrade/Modify the defined IT environment.", thus creating a template.
- The user enters all of the required parameters within this newly created template or its subnets (the categories he/she would like to modify or upgrade on).
- The user defines the impact relationship among each category.
- The user can customize any pre-defined parameter values.
- The user clicks on the "Calculate" button to generate the cost.
- The user can highlight the parameters for risk assessment.
- The user saves the project.
- The user exits out of the application.

## **Alternate Courses of Action:**

- The application experiences a syntax error, and informs the user of such.
- The user can import the input parameters from an Excel spreadsheet.

## Issues:

- Will the user be able to define additional customized input fields?
- Should the user be able to import their data from files?
- Should the outsourcing IT cost be included as a relevant variable in the model?

## **Decisions:**

• User determines the level of complexity for each driver.

## **Change history:**

Created on Mar 2<sup>nd</sup>, 2006 by Ken Huang.

## APPENDIX B: MIT SURVEY

Universal IT infrastructure Cost model

Ken Huang MIT SDM'05

Thesis advisor: Dr. Ricardo Valerdi

## **CIO survey on IT infrastructure cost**

## Version 7.0

Your responses in this survey should reflect of your personal experience throughout your career and not be dramatically influenced by one abnormal experience. Participant information will remain anonymous. Participant information is collected for follow-up purposes only.

### **Participant Information:**

| Name:                      |         |           | 1D    |        |
|----------------------------|---------|-----------|-------|--------|
| Last                       | F       | irst      |       |        |
| Division/Depa<br>Location: | artment | /Business | Unit: | DDBU   |
| Email address              |         |           |       |        |
| May we conta               |         |           |       | ONTACT |
|                            |         |           |       |        |

Name of the Corporation:

CORP

| Industry: ( drop down menu ) INDUSTRY                                        |
|------------------------------------------------------------------------------|
| Company size: (< 50, > 100, 500, 1000-5000, 10,000 +) Size                   |
| 1 2 3 4 5                                                                    |
| Years of experience in Information Technology: ITEXPER                       |
| Total number of years of your work experience: EXPERYEAR                     |
| Approximate Annual IT budget of your division or business unit:\$US ITBUDGET |
|                                                                              |
| □ > \$2million                                                               |
|                                                                              |
| What is your typical budget distribution across these four categories? BUD_  |
| System% SYS Software% SW                                                     |
| Hardware% HW Support% SUP                                                    |
| Total: 100%                                                                  |
|                                                                              |
| How many of the following does your IT organization support? <b>SUP</b>      |
| Users U                                                                      |
| Software Licenses SL                                                         |
| Sites S                                                                      |
| Distinct applications DA                                                     |
| For questions please feel free to contact:                                   |
| Ken Huang                                                                    |
| Email: kenhuang@mit.edu                                                      |

**Instructions:** The survey is divided into two sections: size drivers and cost drivers. Each section is designed to calibrate specific parameters that will be calculated based on the survey results we've collected.

## Section I:

## **Size drivers**

## Which are the most representative of the size of an IT system/infrastructure?

(Ranking: 1 - (9-12); 1 is being the most representative, and (9-12) is being the least representative; duplicate ranking is acceptable. You may write your own types of size drivers into the three blank rows and incorporate them into the ranking.)

| Types of size drivers                        | Ranking   | Not Relevant |
|----------------------------------------------|-----------|--------------|
| Number of servers or racks                   | RACK      |              |
| Number of software licenses                  | LICE      |              |
| Number of KVMs (terminal servers)            | KVMS      |              |
| Number of distinct sites(data centers)       | SITES     |              |
| Number of users / PC equipments              | USERS     |              |
| Number of feet of FA-CL or CAT5 cables.      | FEET      |              |
| Number of software applications that need to |           |              |
| be supported ( COTS and new)                 | APPLI     |              |
| Number of databases (i.e., human resources,  | Provide T |              |
| sales, etc)                                  | DBS       |              |
| Number of data & phone jacks                 | DATA      |              |

## Section II:

## **Cost Drivers**

## An AHP (Analytic Hierarchy Process) example

An AHP is a mathematical process involving matrices that produces a Ranking through Pair-Wise Comparison voting of competing alternatives and different Criteria. In other words, it is a decision making process for organizing and assessing alternatives against a hierarchy of multifaceted objectives.

### **Pair-Wise Comparison:**

## 1 equal 3 moderate 5 strong 7 very strong 9 extreme

|        | Orange | Apple | Banana |
|--------|--------|-------|--------|
| Orange |        | 1/3   | 3/1    |
| Apple  |        |       | 5/1    |
| Banana | 1/3    | 1/5   |        |

You would simply need to fill in the upper half of the table. The lower half of the table reflects the inverse relative importance of the upper half of the table, and it would be filled in. In other words, **Numbers in green is what you should enter by comparing its relative importance level ranging** from 1, 3,5,7, or 9. The numbers in red will then later be computed based on the numbers in green. Using the table above as an example, 1/3 = (Orange / Apple), it means that having one apple is equivalent to having 3 oranges; in other words, 1 apple weighs 3 times more than 1 orange. The pair-wise comparison goes from rows against columns. On Row 1 / Column 3, 3/1 = (Orange / Banana), it means that having one orange is equivalent to having 3 banana; in other words, 1 orange weighs 3 times more than 1 banana.

### **Cost drivers**

Cost drivers (determine the complexity or operational environment of the system)

Please enter (1,3,5,7, and 9) with 1 being the lowest importance level and 9 being the highest importance level as compared to each individual parameter.

Table 1:Systems -> An independent entity or a group of entities that serves a specific function or set of functions. It ranges from a single standalone server, to the entire server infrastructure, e.g. clustered application servers.

 Table 2:Hardware -> A physical, tangible electronic, electrical or mechanical component of a computer.

Table 3:Software -> A commercial, COTS (commercial off-the-shelf), GNU (GPU's Not Unix) licensed or in-house application that comprises a complete set of line of codes for a specific functionality or set of functionalities.

Table 4:Support -> A dedicated source for assistance in maintaining the systems operations. It contains the information about technical issues and troubleshooting strategies which are provided in the format of engineering manual via (online/pdf/books/voice phone line).

\*definition of each cost driver can be found at Definitions Page 9 \*

## Instructions: SCALE: 1 equal 3 moderate 5 strong 7 very strong 9 extreme

Please fill in the upper half of the table.

| Cost driver Importance level using AHP approach |               |              |                   |          |            |            |           |            |                  |
|-------------------------------------------------|---------------|--------------|-------------------|----------|------------|------------|-----------|------------|------------------|
|                                                 | service call  | Reimplemen   | Client/se         | Security | Server     | Business   | MTTR(mean | TCO(total  | SLA(service      |
| Systems                                         | response time | tation / Re- | rver              |          | Redundancy | Continuity | time to   | cost of    | level agreement) |
|                                                 |               | design       | compatib<br>ility |          |            |            | recovery) | ownership) |                  |
| service call response time                      | SCRT          | RSCRT        | CS                | SECS     | SRS        | BS         | MS        | TS         | SLAS             |
| Reimplementation / Re-design                    |               | RNR          | CR                | SECR     | SRR        | BR         | MR        | TR         | SLAR             |
| Client/server compatibility                     |               |              | CSC               | SECC     | SRC        | BC         | MC        | TC         | SLAC             |
| Security                                        |               |              |                   | SEC      | SRSEC      | BSEC       | MSEC      | TSEC       | SLASEC           |
| Server Redundancy                               |               |              |                   |          | SR         | BRED       | MRED      | TRED       | SLARED           |
| <b>Business Continuity</b>                      |               |              |                   |          |            | BC         | MBC       | TBC        | SLABC            |
| MTTR(mean time to recovery)                     |               |              |                   |          |            |            | MTTR      | TMMTR      | SLAMTTR          |
| TCO(total cost of ownership)                    |               |              |                   |          |            |            |           | TCO        | SLATCO           |
| SLA(service level agreement)                    |               |              |                   |          |            |            |           |            | SLA              |

For future reference: do you have any cost drivers that are not covered under Systems? If so, enter any of the blanks below

SYS OTHER1

SYS OTHER2

SYS OTHER3 , SYS OTHER4

## **Instructions:**

## SCALE: 1 equal 3 moderate 5 strong 7 very strong 9 extreme

Please fill in the upper half of the table.

| Cost driver Importance level using AHP approach |                         |                         |                                        |                         |                    |                                 |                  |             |                     |
|-------------------------------------------------|-------------------------|-------------------------|----------------------------------------|-------------------------|--------------------|---------------------------------|------------------|-------------|---------------------|
| Hardware                                        | Seamless<br>integration | Component<br>Volatility | Component<br>Application<br>Complexity | Interface<br>Complexity | Product<br>Support | Experience<br>with<br>Component | Learning<br>Rate | Reliability | Confidence<br>Level |
| Seamless integration                            | SI                      | VS                      | CACS                                   | IS                      | PS                 | ES                              | LS               | RS          | CLS                 |
| Component Volatility                            |                         | CV                      | CACC                                   | IC                      | PC                 | EC                              | LC               | RC          | CLC                 |
| Component Application<br>Complexity             |                         |                         | CAC                                    | ICAC                    | PCAC               | ECAC                            | LCAC             | RCAC        | CLCAC               |
| Interface Complexity                            |                         |                         |                                        | 10                      | PIC                | EIC                             | LIC              | RIC         | CLIC                |
| Product Support                                 |                         |                         |                                        |                         | PS                 | EPS                             | LPS              | RPS         | CLPS                |
| Experience with Component                       |                         |                         |                                        |                         |                    | EC                              | LEC              | REC         | CLEC                |
| Learning Rate                                   |                         |                         |                                        |                         |                    |                                 | LR               | RLR         | CLLR                |
| Reliability                                     |                         |                         |                                        |                         |                    |                                 |                  | RELI        | CLR                 |
| Confidence Level                                |                         |                         |                                        |                         |                    |                                 |                  |             | CL                  |

For future reference: do you have any cost drivers not covered under Hardware? If so, please enter in the blanks below:

HARD OTHER1, HARD OTHER2, HARD OTHER3, HARD OTHER4

## **Instructions:**

## SCALE: 1 equal 3 moderate 5 strong 7 very strong 9 extreme

Please fill in the upper half of the table.

| Cost driver Importance level using AHP approach |                     |                  |                      |                 |                              |                     |  |  |  |
|-------------------------------------------------|---------------------|------------------|----------------------|-----------------|------------------------------|---------------------|--|--|--|
| Software                                        | Confidence<br>Level | Lines of<br>Code | Redesign<br>Required | Retest Required | Reimplementation<br>Required | Time<br>Constraints |  |  |  |
| Confidence Level                                | CL.                 | LCL              | RCL                  | RRCL            | REQCL                        | TCL                 |  |  |  |
| Lines of Code                                   |                     | LC               | RLC                  | RRLC            | REQLC                        | TLC                 |  |  |  |
| Redesign Required                               |                     |                  | RR                   | RRRED           | REQRED                       | TREDREQ             |  |  |  |
| Retest Required                                 |                     |                  |                      | RETEST          | REQRET                       | TRET                |  |  |  |
| <b>Reimplementation Required</b>                |                     |                  |                      |                 | REIM                         | TREIM               |  |  |  |
| Time Constraints                                |                     |                  |                      |                 |                              | TC                  |  |  |  |

For future reference: do you have any cost drivers that are not covered under Software? If so, please enter any of the blanks below:

SW OTHER1

SW OTHER2

SW OTHER3

SW OTHER4

## **Instructions:**

## SCALE: 1 equal 3 moderate 5 strong 7 very strong 9 extreme

Please fill in the upper half of the table.

| Cost driver Importance level using AHP approach |               |                            |        |         |             |          |  |  |  |
|-------------------------------------------------|---------------|----------------------------|--------|---------|-------------|----------|--|--|--|
| Support                                         | Learning Rate | Professional<br>Experience | Cost   | Repairs | Call center | Upgrades |  |  |  |
| Learning Rate                                   | LR            | PLR                        | CLRATE | RLRATE  | CCLRATE     | ULRATE   |  |  |  |
| Professional Experience                         |               | PE                         | СРЕ    | RPE     | ССРЕ        | UPE      |  |  |  |
| Cost                                            |               |                            | COST   | RCOST   | CCCOST      | UCOST    |  |  |  |
| Repairs                                         |               |                            |        | REPAIR  | CCR         | UR       |  |  |  |
| Call center                                     |               |                            |        |         | сс          | UCALL    |  |  |  |
| Upgrades                                        |               |                            |        |         |             | UP       |  |  |  |

For future reference: do you have any cost drivers not covered under Software? If so, please enter in the blanks below:

.

We greatly appreciate your time and input for completing this survey!!

,

#### **Definitions:**

#### Systems

Service call response time - > The time required or agreed to respond a technical support ticket opened by the customer.

Reimplementation / re-design -> To re-architecture / to enhance some/entire functionalities of the systems in question.

Client/server compatibility -> The handshakes or cohesiveness of communications between its clients and the server. Would be there any hiccups at the network communication level.

Security -> The company compliance level of the "systems" in question.

Server Redundancy -> A hot-standby (disaster recovery) server for the primary server of the same functionality.

Business Continuity -> High Availability of the "systems" infrastructure overall.

MTTR (mean time to recovery) -> the average amount of time required to resolve most hardware or software problems with a given device.

TCO (total cost of ownership) -> Cost to purchase and maintain software over time.

SLA (Service level agreement) -> Formal agreement between a Service Provider and customers to provide a certain level of service. Penalty clauses might apply if the SLA is not met.

### Hardware

Seamless integration -> The smoothness of the coordination between two or more hardware components. Component volatility -> The rate of stability of the component. Component application complexity -> The level of complexity of a component's functionality and operations. Interface Complexity -> The level of effort to interact with another hardware component.

**Product Support** -> The hardware warranty provided by the hardware vendor.

Experience with Component -> The overall technical experience of the engineers handling the hardware.

Learning rate -> A measure of the technical personnel mastering the installation/replacement of the hardware in relation to some specification of time.

Reliability -> The probability of performing a specified function without failure under given conditions for a specified period of time.

Confidence level -> The level of comfort of having this hardware lives within the current system infrastructure.

#### Software

Confidence level -> The level of comfort of running this application lives within the current system infrastructure.

Lines of Codes -> The total number of lines of codes required to run this application.

Redesign required -> The necessity of re-organizing the layout

Retest required -> The necessity of examining the software for quality assurance purpose.

Reimplementation required -> the necessity of enhancing the functionalities of the application.

Time constraints -> The total time allowed to perform any tasks relevant to this application.

#### Support

Learning Rate -> A measure of the technical personnel mastering the maintenance in relation to some specification of time.

Professional Experience -> The technical expertise from the staff or the vendor technical support team to escalate all the issues that might arise.

Cost -> The annual monetary spending for maintaining the current server infrastructure.

Repairs -> The frequency rate of fixing any hardware component or software.

Call center -> The 24/7 surveillance center for monitoring any server failure and coordinating the failure to the appropriate teams.

**Upgrades** -> The rate of upgrading the current server infrastructure design or functionalities.

# APPENDIX C: SAS SOURCE CODE FOR COMPILING MIT CIO SURVEY

\*\*\*\*\*

\*\*\*\*\* Program: MIT\_Survey.SAS \*\*\*\*

\*\*\*\*\* Author: Ken Huang \*\*\*\*\*

\*\*\*\*\* Date: OCT. 08 2006 \*\*\*\*\*

\*\*\*\*\*\*\*

libname MIT '.';

options ls=80 ps=60 pageno=1 nonumber nodate fmtsearch=(MIT) formdlim=";

#### data MIT.ReadIn;

infile 'C:\Ken\MIT\Master\10132006\MIT\_Survey.txt'

dlm='09'x dsd truncover LRECL=1000 FIRSTOBS=2;

input FName:\$30. LName:\$30. DDBU:\$100. Address:\$100. Email:\$100.

Contact:\$8. Corp:\$30. Industry:\$30. Size:\$30. ITExper:8.

ExperYear:8. ITBudget:\$30. BUD\_SYS:8. BUD\_SW:8. BUD\_HW:8.

BUD SUP:8. SUP U:8. SUP SL:8. SUP S:8. SUP DA:8.

Rank Rack:8. Rank Lice:8. Rank KVMS:8. Rank Sites:8.

Rank Users:8. Rank Feet:8. Rank Appli:8. Rank DBS:8.

Rank\_Data:8. SCRT:8. RSCRT:8. CS:8. SECS:8. SRS:8. BS:8. MS:8. TS:8. SLAS:8. RNR:8. CR:8. SECR:8. SRR:8. BR:8. MR:8. TR:8. SLAR:8. CSC:8. SECC:8. SRC:8. BC:8. MC:8. TC:8. SLAC:8. SEC:8. SRSEC:8. BSEC:8. MSEC:8. TSEC:8. SLASEC:8. SR:8. BRED:8. MRED:8. TRED:8. SLARED:8. BC:8. MBC:8. TBC:8. SLABC:8. MTTR:8. TMTTR:8. SLAMTTR:8. TCO:8. SLATCO:8. SLA:8. SYS\_OTH:\$100. SI:8. VS:8. CACS:8. IS:8. PS:8. ES:8. LS:8. RS:8. CLS:8. CV:8. CACC:8. IC:8. PC:8. EC:8. LC:8. RC:8. CLC:8. CAC:8. ICAC:8. PCAC:8. ECAC:8. LCAC:8. RCAC:8.

CLCAC:8. IC:8. PIC:8. EIC:8. LIC:8. RIC:8. CLIC:8. PS:8.

EPS:8. LPS:8. RPS:8. CLPS:8. EC:8. LEC:8. REC:8. CLEC:8. LR1:8. RLR:8. CLLR:8. RELI:8. CLR:8. CL1:8. HARD\_OTH:\$100. CL2:8. LCL:8. RCL:8. RRCL:8. REQCL:8. TCL:8. LC:8. RLC:8. RRLC:8. REQLC:8. TLC:8. RR:8. RRRED:8. REQRED:8. TREDREQ:8. RETEST:8. REQRET:8. TRET:8. REIM:8. TREIM:8. TC:8. SW\_OTH:\$100. LR2:8. PLR:8. CLRATE:8. RLRATE:8. CCLRATE:8. ULRATE:8. PE:8. CPE:8. RPE:8. CCPE:8. UPE:8. COST:8. RCOST:8. CCCOST:8. UCOST:8. REPAIR:8. CCR:8. UR:8. CC:8. UCALL:8. UP:8. SUP\_OTH:\$100.;

run;

\*\*\*\*\* Clean data sets \*\*\*\*\*;

data MIT.Survey;

set MIT.ReadIn;

ID=FName||LName;

\*\*\*\*\* Create new variable for Table 1 ~ 4 \*\*\*\*\*;

array x[\*] RSCRT CS CR SecS SecR SecC SRS SRR SRC SRSec BS BR BC BSec BRed MS MR MC MSec MRed MBC TS TR TC TSec TRed TBC TMTTR SLAS SLAR SLAC SLASec SLARed SLABC SLAMTTR SLATCO VS CACS CACC IS IC ICAC PS PC PCAC PIC ES EC ECAC EIC EPS LS LC LCAC LIC LPS LEC RS RC RCAC RIC RPS REC RLR CLS CLC CLCAC CLIC CLPS CLEC CLLR CLR LCL RCL RLC RRCL RRLC RRRed ReqCL ReqLC ReqRed ReqRet TCL TLC TRedReq TRet TReim PLR CLRate CPE RLRate RPE RCost CCLRate CCPE CCCost CCR ULRate UPE UCost UR UCall; array y[\*] RSCRT R CS R CR R SecS R SecR R SecC R SRS R SRR R SRC\_R SRSec\_R BS\_R BR\_R BC\_R BSec\_R BRed\_R MS\_R MR\_R MC\_R MSec\_R MRed\_R MBC\_R TS\_R TR\_R TC\_R TSec\_R TRed\_R TBC\_R TMTTR\_R SLAS\_R SLAR\_R SLAC\_R SLASec\_R SLARed\_R SLABC\_R SLAMTTR\_R SLATCO\_R VS\_R CACS\_R CACC\_R IS\_R IC\_R ICAC\_R PS\_R PC\_R PCAC\_R PIC\_R ES\_R EC\_R ECAC\_R EIC\_R EPS\_R LS\_R LC\_R LCAC\_R LIC\_R LPS\_R LEC\_R RS\_R RC\_R RCAC\_R RIC\_R RPS\_R REC\_R RLR\_R CLS\_R CLC\_R CLCAC\_R CLIC\_R CLPS\_R CLEC\_R CLLR\_R CLR\_R LCL\_R RCL\_R RLC\_R RRCL\_R RRLC\_R RRRed\_R ReqCL\_R ReqLC\_R ReqRed\_R ReqRet\_R TCL\_R TLC\_R TRedReq\_R TRet\_R TReim\_R PLR\_R CLRate\_R CPE\_R RLRATE\_R RPE\_R RCost\_R CCLRATE\_R CCPE\_R CCCost\_R CCR\_R ULRATE\_R UPE\_R UCost\_R UR\_R UCALL\_R;

Do I=1 to dim(X);

```
Y[I]=1/X[I];
```

drop i;

end;

run;

\*\*\*\*\* Get average of Table 1 - 4 \*\*\*\*\*

\*\*\*\*\* Create Base for it \*\*\*\*\*;

proc freq data=MIT.Survey noprint;

table ID / out=ID (drop=percent);

run;

proc summary data=ID;

var Count;

output out=MIT.Average(drop=\_type\_\_freq\_) sum=Count;

run;

%macro Ave(Var);

proc univariate data=Mit.Survey noprint;

var &var;

output out=&var.new mean=&var.m;

run;

data MIT.Average;

merge MIT.Average &var.new;

run;

#### %mend;

%Ave(RSCRT) %Ave(CS) %Ave(CR) %Ave(SecS) %Ave(SecR) %Ave(SecC) %Ave(SRS) %Ave(SRR) %Ave(SRC) %Ave(SRSec) %Ave(BS) %Ave(BR) %Ave(BC) %Ave(BSec) %Ave(BRed) %Ave(MS) %Ave(MR) %Ave(MC) %Ave(MSec) %Ave(MRed) %Ave(MBC) %Ave(TS) %Ave(TR) %Ave(TC) %Ave(TSec) %Ave(TRed) %Ave(TBC) %Ave(TMTTR) %Ave(SLAS) %Ave(SLAR) %Ave(SLAC) %Ave(SLASec) %Ave(SLARed) %Ave(SLABC) %Ave(SLAMTTR) %Ave(SLATCO) %Ave(RSCRT R) %Ave(CS R) %Ave(CR R) %Ave(SecS R) %Ave(SecR R) %Ave(SecC R) %Ave(SRS R) %Ave(SRR R) %Ave(SRC R) %Ave(SRSec R) %Ave(BS\_R) %Ave(BR\_R) %Ave(BC\_R) %Ave(BSec\_R) %Ave(BRed R) %Ave(MS R) %Ave(MR R) %Ave(MC R) %Ave(MSec R) %Ave(MRed R) %Ave(MBC R) %Ave(TS R) %Ave(TR R) %Ave(TC R) %Ave(TSec R) %Ave(TRed R) %Ave(TBC R) %Ave(TMTTR R) %Ave(SLAS R) %Ave(SLAR R) %Ave(SLAC R) %Ave(SLASec R) %Ave(SLARed R) %Ave(SLABC R) %Ave(SLAMTTR R) %Ave(SLATCO R) %Ave(VS) %Ave(CACS) %Ave(CACC) %Ave(IS) %Ave(IC) %Ave(ICAC) %Ave(PS) %Ave(PC) %Ave(PCAC) %Ave(PIC) %Ave(ES) %Ave(EC) %Ave(ECAC) %Ave(EIC) %Ave(EPS) %Ave(LS) %Ave(LC) %Ave(LCAC) %Ave(LIC) %Ave(LPS) %Ave(LEC) %Ave(RS) %Ave(RC) %Ave(RCAC) %Ave(RIC) %Ave(RPS) %Ave(REC) %Ave(RLR) %Ave(CLS) %Ave(CLC) %Ave(CLCAC) %Ave(CLIC) %Ave(CLPS) %Ave(CLEC) %Ave(CLLR) %Ave(CLR) %Ave(VS R) %Ave(CACS R) %Ave(CACC R) %Ave(IS R) %Ave(IC R) %Ave(ICAC R) %Ave(PS R) %Ave(PC R)

%Ave(PCAC\_R) %Ave(PIC\_R) %Ave(ES\_R) %Ave(EC\_R) %Ave(ECAC\_R) %Ave(EIC\_R) %Ave(EPS R) %Ave(LS R) %Ave(LC R) %Ave(LCAC R) %Ave(LIC R) %Ave(LPS R) %Ave(LEC R) %Ave(RS R) %Ave(RC R) %Ave(RCAC R) %Ave(RIC R) %Ave(RPS R) %Ave(REC R) %Ave(RLR R) %Ave(CLS R) %Ave(CLC R) %Ave(CLCAC R) %Ave(CLIC R) %Ave(CLPS R) %Ave(CLEC R) %Ave(CLLR R) %Ave(CLR R) %Ave(LCL) %Ave(RCL) %Ave(RLC) %Ave(RRCL) %Ave(RRLC) %Ave(RRRed) %Ave(ReqCL) %Ave(ReqLC) %Ave(ReqRed) %Ave(ReqRet) %Ave(TCL) %Ave(TLC) %Ave(TRedReq) %Ave(TRet) %Ave(TReim) %Ave(LCL R) %Ave(RCL R) %Ave(RLC\_R) %Ave(RRCL\_R) %Ave(RRLC\_R) %Ave(RRRed\_R) %Ave(ReqCL\_R) %Ave(ReqLC R) %Ave(ReqRed R) %Ave(ReqRet R) %Ave(TCL R) %Ave(TLC R) %Ave(TRedReq R) %Ave(TRet R) %Ave(TReim R) %Ave(PLR) %Ave(CLRate) %Ave(CPE) %Ave(RLRate) %Ave(RPE) %Ave(RCost) %Ave(CCLRate) %Ave(CCPE) %Ave(CCCost) %Ave(CCR) %Ave(ULRate) %Ave(UPE) %Ave(UCost) %Ave(UR) %Ave(UCall) %Ave(PLR R) %Ave(CLRate R) %Ave(CPE R) %Ave(RLRate R) %Ave(RPE\_R) %Ave(RCost\_R) %Ave(CCLRate\_R) %Ave(CCPE\_R) %Ave(CCCost\_R) %Ave(CCR\_R) %Ave(ULRate\_R) %Ave(UPE\_R) %Ave(UCost\_R) %Ave(UR\_R) %Ave(UCall R);

#### ods listing close;

ods rtf file='Average.doc' path='C:\Ken\MIT\Result\10132006';

#### proc print data=MIT.Average;

title 'Average of all the variables from Table  $1 \sim 4'$ ;

#### run;

ods rtf close;

#### ods listing;

#### ods listing close;

ods rtf file='EigenValue.doc' path='C:\Ken\MIT\Result\10132006';

\*\*\*\*\* Get the eigenvalue of each table \*\*\*\*\*

\*\*\*\*\* Table 1 \*\*\*\*\*;

#### Proc IML;

 $T1 = \{1.0000 \ 1.4699 \ 2.4000 \ 2.5757 \ 4.0667 \ 2.6952 \ 3.6667 \ 2.4967 \ 2.7633, \\ 3.7549 \ 1.0000 \ 3.8027 \ 2.9429 \ 6.0286 \ 3.7347 \ 3.7619 \ 4.4286 \ 2.4966, \\ 1.9683 \ 2.5178 \ 1.0000 \ 2.9729 \ 2.7633 \ 1.0000 \ 3.2585 \ 1.0000 \ 2.7905, \\ 3.7183 \ 2.3696 \ 2.0837 \ 1.0000 \ 4.1429 \ 3.1714 \ 4.3333 \ 4.4286 \ 3.0952, \\ 1.8995 \ 0.8440 \ 2.1788 \ 0.5329 \ 1.0000 \ 2.5048 \ 5.2857 \ 4.1429 \ 5.1905, \\ 1.7919 \ 1.3072 \ 1.0000 \ 1.1252 \ 1.5252 \ 1.0000 \ 5.0000 \ 4.4286 \ 4.4286, \\ 1.1271 \ 0.7397 \ 1.9776 \ 0.7125 \ 0.3950 \ 0.3125 \ 1.0000 \ 3.2857 \ 4.6190, \\ 1.8106 \ 0.2490 \ 1.0000 \ 0.3252 \ 0.3442 \ 0.3252 \ 0.4667 \ 1.0000 \ 4.6000, \\ 2.0918 \ 1.7236 \ 1.4191 \ 1.1253 \ 1.4272 \ 0.3361 \ 0.6935 \ 0.9138 \ 1.0000 \};$ 

TT1=T1\*T1; create tempTT1 from TT1; append from TT1;

TTTT1=TT1\*TT1;

create tempTTTT1 from TTTT1; append from TTTT1;

T8\_1=TTTT1\*TTTT1; create tempT8\_1 from T8\_1; append from T8\_1;

T16\_1=T8\_1\*T8\_1; create tempT16\_1 from T16\_1; append from T16\_1;

#### print TT1 TTTT1 T8\_1 T16\_1;

#### Quit;

%macro NewFile(file, title=);

data &file;

set &file;

Total=Sum(of col1 col2 col3 col4 col5 col6 col7 col8 col9);

retain ID 0;

ID+1;

#### run;

proc tabulate data=&file;

class ID;

var Total;

table ID All, Total\*(sum pctsum);

title "&Title";

#### run;

#### %mend;

%NewFile(TempTT1, title=Summary from Table 1 Matrix 1) %NewFile(TempTTTT1, title=Summary from Table 1 Matrix 2) %NewFile(TempT8\_1, title=Summary from Table 1 Matrix 3) %NewFile(TempT16\_1, title=Summary from Table 1 Matrix 4);

\*\*\*\*\* Table 2 \*\*\*\*\*;

#### Proc IML;

T2={1.0000 3.6667 4.7778 3.7238 1.0000 3.8667 2.4222 3.8572 3.7143,

1.5758 1.0000 2.6222 1.0000 3.8667 1.0000 1.0000 5.2000 4.1111,

1.1038 2.3810 1.0000 2.7090 3.7556 3.5556 2.6667 4.2000 3.5556, 2.2420 1.0000 2.9331 1.0000 3.6400 3.0889 2.6444 5.2000 4.1111, 1.0000 1.2423 1.5757 1.3289 1.0000 2.8889 3.5556 4.2000 3.8889, 1.2423 1.0000 0.8128 1.5905 1.0477 1.0000 3.6667 3.3852 3.4000, 1.6223 1.0000 1.6129 1.9461 0.9143 0.5810 1.0000 2.8889 2.3333, 1.5753 0.9884 1.0296 0.9757 1.1143 2.4922 0.9461 1.0000 5.6667, 2.5750 1.1313 0.9143 1.1313 0.8032 0.5352 0.7333 0.4222 1.0000};

TT2=T2\*T2;

create tempTT2 from TT2;
append from TT2;

TTTT2=TT2\*TT2; create tempTTTT2 from TTTT2; append from TTTT2;

## T8\_2=TTTT2\*TTTT2;

create tempT8\_2 from T8\_2; append from T8\_2;

T16\_2=T8\_2\*T8\_2; create tempT16\_2 from T16\_2; append from T16\_2;

print TT2 TTTT2 T8\_2 T16\_2;

#### Quit;

#### %macro NewFile(file, title=);

data &file;

set &file;

Total=Sum(of col1 col2 col3 col4 col5 col6 col7 col8 col9);

retain ID 0;

ID+1;

#### run;

proc tabulate data=&file;

class ID;

var Total;

table ID All, Total\*(sum pctsum);

title "&Title";

#### run;

%mend;

%NewFile(TempTT2, title=Summary from Table 2 Matrix 1) %NewFile(TempTTTT2, title=Summary from Table 2 Matrix 2) %NewFile(TempT8\_2, title=Summary from Table 2 Matrix 3) %NewFile(TempT16\_2, title=Summary from Table 2 Matrix 4);

\*\*\*\*\* Table 3 \*\*\*\*\*;

#### Proc IML;

T3={1.0000 2.7778 2.8572 4.2889 2.2646 3.2286, 1.1779 1.0000 2.9265 3.7460 2.6281 3.8934, 1.6124 2.9259 1.0000 3.1111 2.6635 3.3302, 2.4860 1.8029 1.1557 1.0000 2.3778 2.9220, 3.3903 3.4295 2.6492 2.6682 1.0000 4.2000, 1.7348 2.5218 2.2599 3.2121 1.2328 1.0000}; TT3=T3\*T3;

create tempTT3 from TT3;

append from TT3;

TTTT3=TT3\*TT3;

create tempTTTT3 from TTTT3; append from TTTT3;

T8\_3=TTTT3\*TTTT3; create tempT8\_3 from T8\_3; append from T8\_3;

T16\_3=T8\_3\*T8\_3; create tempT16\_3 from T16\_3; append from T16\_3;

print TT3 TTTT3 T8\_3 T16\_3;

Quit;

%macro NewFile(file, title=);

data &file;

set &file;

Total=Sum(of col1 col2 col3 col4 col5 col6);

retain ID 0;

ID+1;

run;

proc tabulate data=&file;

```
class ID;
var Total;
table ID All, Total*(sum pctsum);
title "&Title";
```

#### run;

%mend;

%NewFile(TempTT3, title=Summary from Table 3 Matrix 1) %NewFile(TempTTTT3, title=Summary from Table 3 Matrix 2) %NewFile(TempT8\_3, title=Summary from Table 3 Matrix 3) %NewFile(TempT16\_3, title=Summary from Table 3 Matrix 4);

\*\*\*\*\* Table 4 \*\*\*\*\*;

Proc IML;

T4={1.0000 3.6077 2.3333 4.2109 3.6349 3.8889, 2.4502 1.0000 2.5238 3.3619 2.6553 4.4400, 0.9620 1.2395 1.0000 4.5556 2.4730 3.4000, 1.5657 1.3266 0.7757 1.0000 2.8730 3.6667, 2.2379 2.9346 2.3824 1.7158 1.0000 4.6000, 0.9048 1.1638 0.5352 0.5810 0.4908 1.0000};

TT4=T4\*T4;

create tempTT4 from TT4; append from TT4;

TTTT4=TT4\*TT4;

create tempTTTT4 from TTTT4; append from TTTT4; T8\_4=TTTT4\*TTTT4;

create tempT8 4 from T8 4;

append from T8\_4;

T16\_4=T8\_4\*T8\_4;

create tempT16\_4 from T16\_4;
append from T16\_4;

print TT4 TTTT4 T8\_4 T16\_4;

#### Quit;

%macro NewFile(file, title=);

data &file;

set &file;

Total=Sum(of col1 col2 col3 col4 col5 col6);

retain ID 0;

ID+1;

### run;

proc tabulate data=&file;

class ID;

var Total;

table ID All, Total\*(sum pctsum);

title "&Title";

#### run;

#### %mend;

%*NewFile*(TempTT4, title=Summary from Table 4 Matrix 1) %*NewFile*(TempTTTT4, title=Summary from Table 4 Matrix 2)

102

%NewFile(TempT8\_4, title=Summary from Table 4 Matrix 3) %NewFile(TempT16\_4, title=Summary from Table 4 Matrix 4); ods rtf close; ods listing;

\*\*\*\*\* Labels \*\*\*\*\*;

data MIT.SurveyLabel;

set MIT.Survey;

/\*

format RSCRT CS CR SecS SecR SecC SRS SRR SRC SRSec BS BR BC BSec BRed MS MR MC MSec MRed MBC TS TR TC TSec TRed TBC TMTTR SLAS SLAR SLAC SLASec SLARed SLABC SLAMTTR SLATCO VS CACS CACC IS IC ICAC PS PC PCAC PIC ES EC ECAC EIC EPS LS LC LCAC LIC LPS LEC RS RC RCAC RIC RPS REC RLR CLS CLC CLCAC CLIC CLPS CLEC CLLR CLR LCL RCL RLC RRCL RRLC RRRed ReqCL ReqLC ReqRed ReqRet TCL TLC TRedReq TRet TReim PLR CLRate CPE RLRate RPE RCost CCLRate CCPE CCCost CCR ULRate UPE UCost UR UCall fscale. RSCRT\_R CS\_R CR\_R SecS\_R SecR\_R SecC\_R SRS\_R SRR\_R SRC\_R SRSec R BS R BR R BC R BSec R BRed R MS R MR R MC R MSec\_R MRed\_R MBC\_R TS\_R TR\_R TC\_R TSec\_R TRed\_R TBC\_R TMTTR R SLAS R SLAR R SLAC R SLASec R SLARed R SLABC R SLAMTTR R SLATCO R VS R CACS R CACC R IS R IC R ICAC R PS\_R PC\_R PCAC\_R PIC\_R ES\_R EC\_R ECAC\_R EIC\_R EPS\_R LS\_R LC\_R LCAC\_R LIC\_R LPS\_R LEC\_R RS\_R RC\_R RCAC\_R RIC\_R RPS\_R REC\_R RLR\_R CLS\_R CLC\_R CLCAC\_R CLIC\_R CLPS\_R CLEC R CLLR R CLR R LCL R RCL R RLC R RRCL R RRLC R

RRRed\_R ReqCL\_R ReqLC\_R ReqRed\_R ReqRet\_R TCL\_R TLC\_R TRedReq\_R TRet\_R TReim\_R PLR\_R CLRate\_R CPE\_R RLRate\_R RPE\_R RCost\_R CCLRate\_R CCPE\_R CCCost\_R CCR\_R ULRate\_R UPE\_R UCost\_R UR\_R UCall\_R fscale.;

label FName='First Name'

\*/

LName='Last Name'

DDBU='Division/Department/Business Unit'

Address='Location'

EMail='Email address'

Contact='May we contact you for follow-up?'

Corp='Name of the corporation'

Industry='Industry'

Size='Company size'

ITExper='Years of experience in IT'

ExperYear='Total number of years of your work experience'

ITBudget='Approximate annual IT budget of your division or business unit'

BUD\_SYS='System'

BUD\_SW='Software'

BUD HW='Hardware'

BUD\_SUP='Support'

SUP U='Users'

SUP SL='Software licenses'

SUP S='Sites'

SUP\_DA='Distinct applications'

Rank Rack='Number of servers or racks'

Rank Lice='Number of software licenses'

104

Rank KVMS='Number of KVMS(terminal servers)'

Rank Sites='Number of distince sites(data centers)'

Rank\_Users='Number of users/PC equipments'

Rank\_Feet='Number of feet of FA-CL or CAT5 cables'

Rank Appli='Number of software applications that need to be supported'

Rank DBS='Number of databases'

Rank Data='Number of data & phone jacks'

SCRT='Service call response time'

RSCRT='Reimplementation/Re-design vs Service call response time'

RNR='Reimplementation/Re-design'

CS='Client/Server compatibility vs Service call response time'

CR='Client/Server compatibility vs Reimplementation/Re-design'

CSC='Client/Server compatibility'

SecS='Security vs Service call response time'

SecR='Security vs Reimplementation/Re-design'

SecC='Security vs Client/Server compatibility'

SEC='Security'

SRS='Server redundancy vs Service call response time'

SRR='Server redundancy vs Reimplementation/Re-design'

SRC='Server redundancy vs Client/Server compatibility'

SRSec='Server redundancy vs Security'

SR='Server redundancy'

BS='Business continuity vs Service call response time'

BR='Business continuity vs Reimplementation/Re-design'

BC='Business continuity vs Client/Server compatibility'

BSec='Business continuity vs Security'

BRed='Business continuity vs Server redundancy'

BC='Business continuity'

MS='Meantime to recovery vs Service call response time'

MR='Meantime to recovery vs Reimplementation/Re-design'

MC='Meantime to recovery vs Client/Server compatibility'

MSec='Meantime to recovery vs Security'

MRed='Meantime to recovery vs Server redundancy'

MBC='Meantime to recovery vs Business continuity'

MTTR='Meantime to recovery'

TS='Total cost of ownership vs Service call response time'

TR='Total cost of ownership vs Reimplementation/Re-design'

TC='Total cost of ownership vs Client/Server compatibility'

TSec='Total cost of ownership vs Security'

TRed='Total cost of ownership vs Server redundancy'

TBC='Total cost of ownership vs Business continuity'

TMTTR='Total cost of ownership vs Meantime to recovery'

TCO='Total cost of ownership'

SLAS='Service level agreement vs Service call response time'

SLAR='Service level agreement vs Reimplementation/Re-design'

SLAC='Service level agreement vs Client/Server compatibility'

SLASec='Service level agreement vs Security'

SLARed='Service level agreement vs Server redundancy'

SLABC='Service level agreement vs Business continuity'

SLAMTTR='Service level agreement vs Meantime to recovery'

SLATCO='Service level agreement vs Total cost of ownership'

SLA='Service level agreement'

Sys\_Oth='Other cost drivers under system'

SI='Seamless integration'

VS='Component volatility vs Seamless integration'

CV='Component volatility'

CACS='Component application complexity vs Seamless integration'

CACC='Component application complexity vs Component volatility'

CAC='Component application complexity'

IS='Interface complexity vs Seamless integration'

IC='Interface complexity vs Component volatility'

ICAC='Interface complexity vs Component application complexity'

IC='Interface complexity'

PS='Product support vs Seamless integration'

PC='Product support vs Component volatility'

PCAC='Product support vs Component application complexity'

PIC='Product support vs Interface complexity'

PS='Product support'

ES='Experience with component vs Seamless integration'

EC='Experience with component vs Component volatility'

ECAC='Experience with component vs Component application complexity'

EIC='Experience with component vs Interface complexity'

EPS='Experience with component vs Product support'

EC='Experience with component'

LS='Learning rate vs Seamless integration'

LC='Learning rate vs Component volatility'

LCAC='Learning rate vs Component application complexity'

LIC='Learning rate vs Interface complexity'

LPS='Learning rate vs Product support'

LEC='Learning rate vs Experience with component'

LR1='Learning rate'

RS='Reliability vs Seamless integration'

RC='Reliability vs Component volatility'

RCAC='Reliability vs Component application complexity'

RIC='Reliability vs Interface complexity'

RPS='Reliability vs Product support'

REC='Reliability vs Experience with component'

RLR='Reliability vs Learning rate'

**RELI='Reliability'** 

CLS='Confidence level vs Seamless integration'

CLC='Confidence level vs Component volatility'

CLCAC='Confidence level vs Component application c

#### omplexity'

CLIC='Confidence level vs Interface complexity'

CLPS='Confidence level vs Product support'

CLEC='Confidence level vs Experience with component'

CLLR='Confidence level vs Learning rate'

CLR='Confidence level vs Reliability'

CL1='Confidence level'

Hard\_Oth='Other cost drivers under hardware'

CL2='Confidence level'

LCL='Lines of code vs Confidence level'

LC='Lines of code'

RCL='Redesign required vs Confidence level'

RLC='Redesign required vs Lines of code'

RR='Redesign required'

RRCL='Retest required vs Confidence level'

RRLC='Retest required vs Lines of code'

RRRed='Retest required vs Redesign required'

**RETEST='Retest required'** 

ReqCL='Reimplementation required vs Confidence level'

ReqLC='Reimplementation required vs Lines of code'

ReqRed='Reimplementation required vs Redesign required'

ReqRet='Reimplementation required vs Retest required'

**REIM='Reimplementation required'** 

TCL='Time constraints vs Confidence level'

TLC='Time constraints vs Lines of code'

TRedReq='Time constraints vs Redesign required'

TRet='Time constraints vs Retest required'

TReim='Time constraints vs Reimplementation required'

TC='Time constraints'

SW Oth='Other cost drivers under software'

LR2='Learning rate'

PLR='Professional experience vs Learning rate'

PE='Professional experience'

CLRate='Cost vs Learning rate'

CPE='Cost vs Professional experience'

COST='Cost'

RLRate='Repairs vs Learning rate'

RPE='Repairs vs Professional experience'

RCost='Repairs vs Cost'

**REPAIR='Repairs'** 

CCLRate='Call center vs Learning rate'

CCPE='Call center vs Professional experience'

CCCost='Call center vs Cost'

CCR='Call center vs Repairs'

CC='Call center'

ULRate='Upgrades vs Learning rate'

UPE='Upgrades vs Professional experience'

UCost='Upgrades vs Cost'

UR='Upgrades vs Repairs'

UCall='Upgrades vs Call'

UP='Upgrades'

Sup\_Oth='Other cost drivers under support';

#### run;

```
ods listing close;
```

ods rtf file='MIT Survey.doc' path='C:\Ken\MIT\Result\10132006';

proc print data=mit.surveylabel label;

title 'MIT Survey - Ken Huang';

run;

ods rtf close;

ods listing;

ods listing close;

ods rtf file='MIT Frequency.doc' path='C:\Ken\MIT\Result\10132006';

proc freq data=MIT.Surveylabel;

table Size itbudget;

title 'Frequency output';

run;

```
proc means data=MIT.Surveylabel;
```

var experyear itexper BUD\_SYS BUD\_SW BUD\_HW BUD\_SUP

SUP\_U SUP\_SL SUP\_S SUP\_DA Rank\_Rack Rank\_Lice Rank\_KVMS

Rank\_Sites Rank\_Users Rank\_Feet Rank\_Appli Rank\_DBS Rank\_Data;

title 'Mean Output';

#### run;

ods rtf close;

#### ods listing;

ods html body='Size.htm';

ods listing close;

ods rtf file='MIT Graphs.doc' path='C:\Ken\MIT\Result\10132006';

#### proc gchart data=mit.surveylabel;

vbar3d size itexper experyear itbudget;

title 'Graphs';

run;

ods rtf close;

ods listing;

ods html close;

quit;

\*\*\*\*\* Pie Chart \*\*\*\*\*;

goptions colors=(blue yellow);

#### proc gchart data=mit.surveylabel;

pie3d industry /noheading ctext=black percent=outside

slice=inside;

title 'Testing title';

run;

quit;

# APPENDIX D: DETAILS OF PEARSON COEFFICIENTS FOR THE FOUR COST DRIVERS

## #1 Re-implementation/Redesign (Table 1 -Systems)

| 8 Variables: | RSCRT_R | CR | SECR | SRR | BR | MR | TR | SLAR |
|--------------|---------|----|------|-----|----|----|----|------|
|              |         |    |      |     |    |    |    |      |

|          |   |         |            |          | Sir         | nple Statisti | CS                                                         |
|----------|---|---------|------------|----------|-------------|---------------|------------------------------------------------------------|
| Variable | N | Mean    | Std<br>Dev | Sum      | Minimu<br>m | Maximum       | Label                                                      |
| RSCRT_R  | 6 | 3.75491 | 3.08215    | 22.52943 | 0.20000     | 6.99790       | Reimplementation/Re-design vs. Service call response time  |
| CR       | 7 | 3.80273 | 3.43819    | 26.61910 | 0.14290     | 7.00000       | Reimplementation/Re-design vs. Client/Server compatibility |
| SECR     | 7 | 2.94286 | 3.63999    | 20.60000 | 0.20000     | 9.00000       | Security vs. Reimplementation/Re-design                    |
| SRR      | 7 | 6.02857 | 3.04506    | 42.20000 | 0.20000     | 9.00000       | Reimplementation/Re-design vs. Server redundancy           |
| BR       | 7 | 3.73470 | 2.71982    | 26.14290 | 0.14290     | 7.00000       | Reimplementation/Re-design vs. Business continuity         |
| MR       | 7 | 3.76190 | 2.91684    | 26.33330 | 0.33330     | 9.00000       | Reimplementation/Re-design vs. Meantime to recovery        |
| TR       | 7 | 4.42857 | 1.51186    | 31.00000 | 3.00000     | 7.00000       | Reimplementation/Re-design vs. Total cost of ownership     |
| SLAR     | 7 | 2.49660 | 2.06157    | 17.47620 | 0.14290     | 5.00000       | Reimplementation/Re-design vs. Service level agreement     |

|                                              | Pearson  | Correlation | n Coefficien | nts      |          |          |          |          |
|----------------------------------------------|----------|-------------|--------------|----------|----------|----------|----------|----------|
|                                              | Prob >   | r  under    | H0: Rho=0    |          |          |          |          |          |
|                                              | Num      | ber of Obs  | ervations    |          |          |          |          |          |
|                                              | RSCRT_R  | CR          | SECR         | SRR      | BR       | MR       | TR       | SLAR     |
| RSCRT_R                                      | 1.00000  | -0.61584    | -0.84553     | -0.38491 | -0.04178 | 0.38257  | -0.50944 | -0.02241 |
| Reimplementation/Re-design vs Service call   |          | 0.1930      | 0.0340       | 0.4511   | 0.9374   | 0.4541   | 0.3019   | 0.9664   |
| response time                                | 6        | 6           | 6            | 6        | 6        | 6        | 6        | 6        |
| CR                                           | -0.61584 | 1.00000     | 0.56335      | -0.03440 | 0.31974  | -0.17138 | 0.32892  | -0.23357 |
| Reimplementation/Re-design vs. Client/Server | 0.1930   |             | 0.1879       | 0.9416   | 0.4845   | 0.7133   | 0.4713   | 0.6142   |
| compatibility                                | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| SECR                                         | -0.84553 | 0.56335     | 1.00000      | 0.22031  | 0.23390  | -0.02870 | 0.57456  | 0.38642  |
| Reimplementation/Re-design vs. Security      | 0.0340   | 0.1879      |              | 0.6350   | 0.6137   | 0.9513   | 0.1773   | 0.3918   |
|                                              | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| SRR                                          | -0.38491 | -0.03440    | 0.22031      | 1.00000  | 0.41102  | 0.22231  | 0.35168  | 0.11140  |
| Reimplementation/Re-design vs. Server        | 0.4511   | 0.9416      | 0.6350       |          | 0.3597   | 0.6318   | 0.4392   | 0.8120   |
| redundancy                                   | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| BR                                           | -0.04178 | 0.31974     | 0.23390      | 0.41102  | 1.00000  | 0.44990  | 0.35072  | 0.28643  |
| Reimplementation/Re-design vs. Business      | 0.9374   | 0.4845      | 0.6137       | 0.3597   |          | 0.3111   | 0.4405   | 0.5334   |
| continuity                                   | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| MR                                           | 0.38257  | -0.17138    | -0.02870     | 0.22231  | 0.44990  | 1.00000  | 0.61911  | 0.76601  |
| Reimplementation/Re-design vs. Meantime to   | 0.4541   | 0.7133      | 0.9513       | 0.6318   | 0.3111   |          | 0.1382   | 0.0446   |
| recovery                                     | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| TR                                           | -0.50944 | 0.32892     | 0.57456      | 0.35168  | 0.35072  | 0.61911  | 1.00000  | 0.69698  |
| Reimplementation/Re-design vs. Total cost of | 0.3019   | 0.4713      | 0.1773       | 0.4392   | 0.4405   | 0.1382   |          | 0.0818   |
| ownership                                    | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| SLAR                                         | -0.02241 | -0.23357    | 0.38642      | 0.11140  | 0.28643  | 0.76601  | 0.69698  | 1.00000  |
| Reimplementation/Re-design vs. Service level | 0.9664   | 0.6142      | 0.3918       | 0.8120   | 0.5334   | 0.0446   | 0.0818   |          |
| agreement                                    | 6        | 7           | 7            | 7        | 7        | 7        | 7        | 7        |
| agreement                                    | 6        | 7           | 7            | 7        | 7        | 7        | 7        |          |

## #2 Security (Table 1 –Systems)

| 8 Variables: | SecS_R | SecR_R | SecC_R | SRSEC | BSEC | MSEC | TSEC |
|--------------|--------|--------|--------|-------|------|------|------|
|              | SLASEC |        |        |       |      |      |      |

|          |   |         |         |          | Simple Stat | istics  |                                          |
|----------|---|---------|---------|----------|-------------|---------|------------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum     | Maximum | Label                                    |
| SecS_R   | 6 | 3.71832 | 3.82319 | 22.30991 | 0.11111     | 9.00090 | Security vs. Service call response time  |
| SecR_R   | 7 | 2.36961 | 2.47785 | 16.58730 | 0.11111     | 5.00000 | Security vs. Reimplementation/Re-design  |
| SecC_R   | 7 | 2.08369 | 2.50752 | 14.58580 | 0.11111     | 6.99790 | Security vs. Client/Server compatibility |
| SRSEC    | 7 | 4.14286 | 3.43650 | 29.00000 | 1.00000     | 9.00000 | Security vs. Server redundancy           |
| BSEC     | 7 | 3.17143 | 2.57016 | 22.20000 | 0.20000     | 7.00000 | Security Business continuity             |
| MSEC     | 7 | 4.33333 | 3.12695 | 30.33330 | 0.33330     | 9.00000 | Security vs. Meantime to recovery        |
| TSEC     | 7 | 4.42857 | 1.90238 | 31.00000 | 1.00000     | 7.00000 | Security vs. Total cost of ownership     |
| SLASEC   | 7 | 3.09523 | 2.65076 | 21.66660 | 0.33330     | 7.00000 | Security vs. Service level agreement     |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scatter Plot Matr                                                                                                                                                     | ix                                  |              |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|
| 02468                | 0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0246                                                                                                                                                                  |                                     | 1            |
| 8 -<br>SecS_R<br>0 - | ° ° ° °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ° ° ° ° ° °                                                                                                                                                           |                                     | °            |
|                      | SecR_R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                     | <b>0</b> −5  |
|                      | o SecC_R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0 |                                     | o<br>        |
| -                    | <ul> <li>○</li> <li>○</li>&lt;</ul> | SRSEC 00000                                                                                                                                                           |                                     | • - 2        |
|                      | ° ° ° °<br>° 8 ° 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BSEC                                                                                                                                                                  |                                     | •            |
| - 8                  | 8° • • 8° • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>e</b> ° 8 ° ° ° 8 °                                                                                                                                                | MSEC                                | • - 8<br>- 0 |
| 7 - ∞ °<br>1 ~       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       | ) <mark>° ° ° ° ° TSEC</mark> ° ° ° | •            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       |                                     | - 6<br>- 0   |
|                      | 0 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2468                                                                                                                                                                  | 02468 024                           | 5            |

|                                                                                                                 | Pear     | son Correl  | ation Coef | ficients |          |          |          |          |
|-----------------------------------------------------------------------------------------------------------------|----------|-------------|------------|----------|----------|----------|----------|----------|
|                                                                                                                 | Pı       | ob >  r  un | der H0: Ri | no=0     |          |          |          |          |
|                                                                                                                 | I        | Number of   | Observatio | ons      |          |          |          |          |
|                                                                                                                 | SecS_R   | SecR_R      | SecC_R     | SRSEC    | BSEC     | MSEC     | TSEC     | SLASEC   |
| SecS_R                                                                                                          | 1.00000  | 0.61202     | 0.14101    | -0.39393 | -0.57807 | -0.24395 | -0.38764 | 0.03473  |
| Security vs Service call response time                                                                          |          | 0.1966      | 0.7899     | 0.4397   | 0.2295   | 0.6413   | 0.4477   | 0.9479   |
|                                                                                                                 | 6        | 6           | 6          | 6        | 6        | 6        | 6        | 6        |
| SecR_R                                                                                                          | 0.61202  | 1.00000     | 0.84694    | -0.63823 | -0.60198 | -0.61641 | -0.04201 | -0.16817 |
| Security vs Reimplementation/Re-design                                                                          | 0.1966   |             | 0.0162     | 0.1229   | 0.1527   | 0.1404   | 0.9287   | 0.7185   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| SecC_R                                                                                                          | 0.14101  | 0.84694     | 1.00000    | -0.58637 | -0.33776 | -0.60899 | 0.05826  | -0.36185 |
| Security vs Client/Server compatibility                                                                         | 0.7899   | 0.0162      |            | 0.1665   | 0.4587   | 0.1467   | 0.9013   | 0.4251   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| SRSEC                                                                                                           | -0.39393 | -0.63823    | -0.58637   | 1.00000  | 0.87988  | 0.90992  | 0.42247  | 0.62033  |
| Security vs. Server redundancy                                                                                  | 0.4397   | 0.1229      | 0.1665     | 2        | 0.0090   | 0.0045   | 0.3450   | 0.1372   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| BSEC                                                                                                            | -0.57807 | -0.60198    | -0.33776   | 0.87988  | 1.00000  | 0.70786  | 0.24153  | 0.24510  |
| Security vs. Business continuity                                                                                | 0.2295   | 0.1527      | 0.4587     | 0.0090   |          | 0.0751   | 0.6018   | 0.5963   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| MSEC                                                                                                            | -0.24395 | -0.61641    | -0.60899   | 0.90992  | 0.70786  | 1.00000  | 0.56035  | 0.79537  |
| Security vs. Meantime to recovery                                                                               | 0.6413   | 0.1404      | 0.1467     | 0.0045   | 0.0751   |          | 0.1907   | 0.0325   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| TSEC                                                                                                            | -0.38764 | -0.04201    | 0.05826    | 0.42247  | 0.24153  | 0.56035  | 1.00000  | 0.76174  |
| Security vs. Total cost of ownership                                                                            | 0.4477   | 0.9287      | 0.9013     | 0.3450   | 0.6018   | 0.1907   |          | 0.0466   |
|                                                                                                                 | 6        | 7           | 7          | 7        | 7        | 7        | 7        | 7        |
| SLASEC                                                                                                          | 0.03473  | -0.16817    | -0.36185   | 0.62033  | 0.24510  | 0.79537  | 0.76174  | 1.00000  |
| Security vs. Service level agreement                                                                            | 0.9479   | 0.7185      | 0.4251     | 0.1372   | 0.5963   | 0.0325   | 0.0466   | 1.00000  |
| , and the ground the                                                                                            | 6        | 7           | 7          | 7        | 0.5905   | 0.0325   | 0.0400   | 7        |
| A DECEMBER OF STREET, S | 0        | /           | /          | /        | /        | /        | /        | 7        |

## #3 Service call response time (Table 1 –Systems)

| 8 Variables: | RSCRT | CS | SECS | SRS | BS | MS | TS |
|--------------|-------|----|------|-----|----|----|----|
|              | SLAS  |    |      |     |    |    |    |

|          |   |             |            |              | Si      | mple Statist | ics                                                           |
|----------|---|-------------|------------|--------------|---------|--------------|---------------------------------------------------------------|
| Variable | N | Mean        | Std<br>Dev | Sum          | Minimum | Maximum      | Label                                                         |
| RSCRT    | 6 | 1.4698<br>5 | 2.06054    | 8.81910      | 0.14290 | 5.00000      | Service call response time vs. Reimplementation/Re-<br>design |
| CS       | 6 | 2.4000<br>0 | 2.58921    | 14.4000<br>0 | 0.20000 | 7.00000      | Service call response time vs. Client/Server compatibility    |
| SECS     | 6 | 2.5756<br>7 | 3.66793    | 15.4540<br>0 | 0.11110 | 9.00000      | Service call response time vs. Security                       |
| SRS      | 6 | 4.0666<br>7 | 4.02128    | 24.4000<br>0 | 0.20000 | 9.00000      | Service call response time vs. Server redundancy              |
| BS       | 7 | 2.6952<br>3 | 2.86974    | 18.8666<br>0 | 0.20000 | 7.00000      | Service call response time vs. Business continuity            |
| MS       | 7 | 3.6666<br>6 | 3.81033    | 25.6666<br>0 | 0.33330 | 9.00000      | Service call response time vs. Meantime to recovery           |
| TS       | 7 | 2.4966<br>0 | 2.62997    | 17.4762<br>0 | 0.14290 | 7.00000      | Service call response time vs. Total cost of ownership        |
| SLAS     | 7 | 2.7632<br>7 | 3.25604    | 19.3429<br>0 | 0.14290 | 9.00000      | Service call response time vs. Service level agreement        |

|    |   |          |          |          |        |          |                                   |                                              |   | Sca       | atter F  | Plot       | Matri    | x        |          |                  |      |                |          |       |
|----|---|----------|----------|----------|--------|----------|-----------------------------------|----------------------------------------------|---|-----------|----------|------------|----------|----------|----------|------------------|------|----------------|----------|-------|
|    | 0 | 2 4      | 1        |          |        |          | 02                                | 46                                           | 8 |           |          | 0 2        | 246      |          |          | 0246             |      |                |          |       |
| 5- | 1 | <u> </u> | <u> </u> | ┍┷┙      |        | 6        | $\begin{bmatrix} - \end{bmatrix}$ | ш                                            | 5 | $r^{1-1}$ |          | ┟┷┷┙       | <b></b>  | יריד     |          |                  | 7    |                | -        | -     |
|    | R | SCR      |          |          | 0      |          | -                                 | ٥                                            |   | ø         | •        | •          | 0        | 11       | >        |                  | ∘∥   | °              |          | ł     |
| 0- |   |          | 늭        | <b>∞</b> |        | _        | <b>∞</b>                          |                                              | - | <u> </u>  | <u> </u> |            | <u> </u> | 0        | ہ<br>ہ   | 00 0             | ᅴᄂ   | 000            |          | -     |
| -  | • | 0        | °        |          | cs     |          | 0                                 | 0                                            | ° | 0         | ° 0      |            | 0<br>0   | 0.       | , I      | 0                | •    | • •            | °        | -6    |
|    | ŝ |          |          |          |        |          | ê                                 |                                              |   | 80        | 0        | 00         | •        | <u>∞</u> | <u> </u> | 00 0             |      | 00             |          | -0    |
| 8- |   | 0        | 0        |          | 0      | •        |                                   | ECS                                          |   |           | 0        |            | 0        |          | <b>`</b> | 0                | 0    | 0              | •        | -     |
| 0- | â | •        |          | 00       | ò      |          |                                   | ECO                                          |   | 80        | ఀం       | 80         | Č o      | 1 .      | 0        | 0 <del>0</del> 0 | · 11 | ೲಁ             |          | -     |
|    | 0 | 0        | •        | 0        | 0      | •        | 0                                 | •                                            | 。 |           |          |            | • •      |          | > 8      | ° •              | ٦Ē   | <u> </u>       | 。        | - 8   |
|    |   |          |          | 8        | 0      |          | 80                                |                                              |   | S         | RS       | 0          | -        | 0        |          | 08               | 11 I | œ              |          | - 0   |
| 6- | 0 |          |          | 0        |        | =        | 0                                 |                                              | 뉙 |           |          |            | wi       |          | > °      | <b>o</b>         | ᅴ는   | 0              |          | L     |
|    | 8 | ٥        | ٥        | 8        | 0      | •        | <b>e</b>                          | ٥                                            | • | 0         | •        |            | BS       | 0        |          | ° 0              | - 11 | or<br>official | •        | I     |
| 0- |   |          | 4        | <u> </u> | •      |          | <u></u>                           | <u>.                                    </u> | _ | <u> </u>  |          | <u> </u>   | 0 0      |          | <u> </u> |                  | 닉님   |                | <u> </u> | -<br> |
|    | ۰ | 0        | °        | •        | 0      | °        | °                                 | 0                                            | ٥ |           | 0 0<br>0 |            | 0 0<br>0 |          | MS       | 0 0 0            | 0    | 0<br>0.0       | ٥        | - 8   |
| -  | ۲ |          |          | •        | 8      |          | 80                                |                                              |   | 8         |          | ŵ          |          |          |          | õ                | ĬĽ   | 8 <b>0</b> °   |          | ⊢o    |
| 6- |   | ٥        | 0        |          | ٥      | 0        |                                   | ٥                                            | 0 |           | ° °      |            | 8        | FI -     | × 8      | тѕ               |      | •              | 0        | -     |
| 0- | ŝ |          |          | 8        | 0      |          | နို                               |                                              |   | 80        | °        | 80         | *        | 80       |          | 13               |      | ຮັ             |          | -     |
|    |   |          | 0        |          |        | 0        |                                   |                                              | 0 |           | 0        |            | 0        |          | 0        | °                | ٦Ē   |                |          | - 8   |
|    | ê | ٥        |          | 00       | ٥<br>٥ |          | 8                                 | ٥                                            |   | 80        | ° o      | <b>8</b> 0 | °        | 6        | <b>`</b> | 96 °             | •    | SLAS           | S        | -0    |
| ļ  | 1 | 1 1      |          |          |        | <u> </u> | ЧŤ                                |                                              | ~ | <u> </u>  |          | <u> </u>   |          |          |          |                  |      |                | J        | Ū     |
|    |   |          |          | 0 2      | 24     | 6        |                                   |                                              |   | 02        | 468      |            |          | 02       | 468      |                  | 1    | 0246           | 58       |       |

| Pear                                                   | rson Corre  | elation Co | oefficients | I       |         |         |         |         |
|--------------------------------------------------------|-------------|------------|-------------|---------|---------|---------|---------|---------|
| P                                                      | rob >  r  u | nder H0:   | Rho=0       |         |         |         |         |         |
|                                                        | Number o    | f Observa  | ations      |         |         |         |         |         |
|                                                        | RSCRT       | CS         | SECS        | SRS     | BS      | MS      | TS      | SLAS    |
| RSCRT                                                  | 1.00000     | 0.88741    | 0.99421     | 0.52676 | 0.46985 | 0.52285 | 0.78758 | 0.95165 |
| Service call response time vs. Reimplementation/Re-    |             | 0.0183     | <.0001      | 0.2829  | 0.3471  | 0.2872  | 0.0629  | 0.0035  |
| design                                                 | 6           | 6          | 6           | 6       | 6       | 6       | 6       | 6       |
| CS                                                     | 0.88741     | 1.00000    | 0.93000     | 0.40876 | 0.35300 | 0.51724 | 0.60665 | 0.82868 |
| Service call response time vs. Client/Server           | 0.0183      |            | 0.0072      | 0.4210  | 0.4925  | 0.2933  | 0.2017  | 0.0415  |
| compatibility                                          | 6           | 6          | 6           | 6       | 6       | 6       | 6       | 6       |
| SECS                                                   | 0.99421     | 0.93000    | 1.00000     | 0.50568 | 0.44717 | 0.52292 | 0.76317 | 0.94042 |
| Service call response time vs. Security                | <.0001      | 0.0072     |             | 0.3061  | 0.3739  | 0.2871  | 0.0775  | 0.0052  |
|                                                        | 6           | 6          | 6           | 6       | 6       | 6       | 6       | 6       |
| SRS                                                    | 0.52676     | 0.40876    | 0.50568     | 1.00000 | 0.99729 | 0.88386 | 0.78757 | 0.71935 |
| Service call response time vs. Server redundancy       | 0.2829      | 0.4210     | 0.3061      |         | <.0001  | 0.0195  | 0.0629  | 0.1071  |
|                                                        | 6           | 6          | 6           | 6       | 6       | 6       | 6       | 6       |
| BS                                                     | 0.46985     | 0.35300    | 0.44717     | 0.99729 | 1.00000 | 0.85356 | 0.77856 | 0.71873 |
| Service call response time vs. Business continuity     | 0.3471      | 0.4925     | 0.3739      | <.0001  |         | 0.0145  | 0.0392  | 0.0688  |
|                                                        | 6           | 6          | 6           | 6       | 7       | 7       | 7       | 7       |
| MS                                                     | 0.52285     | 0.51724    | 0.52292     | 0.88386 | 0.85356 | 1.00000 | 0.52060 | 0.72619 |
| Service call response time vs. Meantime to recovery    | 0.2872      | 0.2933     | 0.2871      | 0.0195  | 0.0145  |         | 0.2309  | 0.0646  |
|                                                        | 6           | 6          | 6           | 6       | 7       | 7       | 7       | 7       |
| TS                                                     | 0.78758     | 0.60665    | 0.76317     | 0.78757 | 0.77856 | 0.52060 | 1.00000 | 0.81863 |
| Service call response time vs. Total cost of ownership | 0.0629      | 0.2017     | 0.0775      | 0.0629  | 0.0392  | 0.2309  |         | 0.0243  |
|                                                        | 6           | 6          | 6           | 6       | 7       | 7       | 7       | 7       |
| SLAS                                                   | 0.95165     | 0.82868    | 0.94042     | 0.71935 | 0.71873 | 0.72619 | 0.81863 | 1.00000 |
| Service call response time vs. Service level agreement | 0.0035      | 0.0415     | 0.0052      | 0.1071  | 0.0688  | 0.0646  | 0.0243  |         |
|                                                        | 6           | 6          | 6           | 6       | 7       | 7       | 7       | 7       |

## #1 Seamless integration (Table 2 – Hardware)

| 8 Variables: | VS | CACS | IS | PS | ES | LS | RS | CLS |  |
|--------------|----|------|----|----|----|----|----|-----|--|
|              | 25 |      |    |    |    |    |    |     |  |

|          |   |             |         | ana di       | Si      | imple Statisti | cs                                                       |
|----------|---|-------------|---------|--------------|---------|----------------|----------------------------------------------------------|
| Variable | N | Mean        | Std Dev | Sum          | Minimum | Maximum        | Label                                                    |
| VS       | 6 | 3.6666      | 3.86438 | 21.9999<br>0 | 0.33330 | 9.00000        | Component volatility vs Seamless integration             |
| CACS     | 6 | 4.7777<br>7 | 3.87969 | 28.6666<br>0 | 0.33330 | 9.00000        | Component application complexity vs Seamless integration |
| IS       | 6 | 3.7238<br>2 | 3.81732 | 22.3429<br>0 | 0.14290 | 9.00000        | Interface complexity vs Seamless integration             |
| PS       | 7 | 1.0000<br>0 | 0       | 7.00000      | 1.00000 | 1.00000        | Product support                                          |
| ES       | 6 | 3.8666<br>7 | 3.66970 | 23.2000<br>0 | 0.20000 | 9.00000        | Experience with component vs Seamless integration        |
| LS       | 6 | 2.4222<br>2 | 2.23375 | 14.5333<br>0 | 0.20000 | 5.00000        | Learning rate vs Seamless integration                    |
| RS       | 6 | 3.8571<br>5 | 3.68116 | 23.1429<br>0 | 0.14290 | 9.00000        | Reliability vs Seamless integration                      |
| CLS      | 6 | 3.7143<br>0 | 3.82792 | 22.2858<br>0 | 0.14290 | 9.00000        | Confidence level vs Seamless integration                 |

|       | ,                        | Scatter Plo | ot Matrix   | (              |              |                                     |
|-------|--------------------------|-------------|-------------|----------------|--------------|-------------------------------------|
| 02468 | 02468                    | 0           | 2468        |                | 02468        |                                     |
| 8-1   | 8 8                      |             | 。           | <br>           | · · · · · ·  |                                     |
| VS VS | °°°                      | 8 0         |             | <b>o</b> o ° ° | ∞°°          | o°<br>∞ –                           |
|       |                          |             | (           | <u> </u>       | <u>~</u>     |                                     |
|       | ACS 0 0                  | 0           | >           | 0 0            | 0 0          | 00                                  |
|       | \∞                       |             |             | ••             | ∞            | ▶ <u></u> ►0                        |
| 8-000 | ° 8 IS                   | 8           | ° ° °       | • °            | °°           | °°-                                 |
| 0-8 8 | 0                        | 8 9         |             | 80             | <b>%</b>     | <del>8</del> 0 -                    |
|       |                          | PS 🛛        |             | <b>o</b> o o o | ~ ~ ~ ~      | ∞ • • • • <sup>−</sup> <sup>2</sup> |
|       | • • <del>•</del> • • • • | PS 🗠        |             | <b>0</b> 0 0 0 | <b>w</b> 000 | -0                                  |
| 8-000 | ° 8 ° °                  | 8           |             | 0 0            | ° 0          | ° °                                 |
| 0-8 8 | o o o                    | 8           | ES          | 80 08          | 0° °         | <b>8</b> ∞ –                        |
| - 00  | 0 0 0 0                  | ○           | <u> </u>    |                | 00           | <u> </u>                            |
| 8 8   | ○ <del>0</del> ○         | 8 de        | • °         | LS             | ക            | 80 -0                               |
| 8- 00 | 8 %                      |             |             | 0              |              |                                     |
| 0     | 0 ° 0 °                  | 8 0         | - T         | °8<br>∞        | RS           | e v v v                             |
|       |                          |             |             |                |              |                                     |
|       | °° ° °                   | 8           | ° °         | ° °            | ° ° °        | CLS 8                               |
|       | <u></u>                  | الب_فالح    | <b>₽</b> ][ | 80             |              |                                     |
| 02    | 468                      | 0 1 2       |             | 0 2 4          |              | 02468                               |
|       |                          |             |             |                |              |                                     |

| Pearson                                                  | Correlatio | n Coeffici | ents    |    |         |         |         |         |  |  |  |
|----------------------------------------------------------|------------|------------|---------|----|---------|---------|---------|---------|--|--|--|
| Prob>                                                    | r  under   | H0: Rho=   | 0       |    |         |         |         |         |  |  |  |
| Number of Observations                                   |            |            |         |    |         |         |         |         |  |  |  |
|                                                          | VS         | CACS       | IS      | PS | ES      | LS      | RS      | CLS     |  |  |  |
| VS                                                       | 1.00000    | 0.87748    | 0.99683 |    | 0.99664 | 0.88559 | 0.93997 | 0.99664 |  |  |  |
| Seamless integration vs Component volatility             |            | 0.0216     | <.0001  |    | <.0001  | 0.0189  | 0.0053  | <.0001  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| CACS                                                     | 0.87748    | 1.00000    | 0.85931 | •  | 0.89281 | 0.68379 | 0.89358 | 0.91062 |  |  |  |
| Seamless integration vs Component application complexity | 0.0216     |            | 0.0283  |    | 0.0166  | 0.1342  | 0.0164  | 0.0116  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| IS                                                       | 0.99683    | 0.85931    | 1.00000 |    | 0.98727 | 0.87464 | 0.92948 | 0.99060 |  |  |  |
| Seamless integration vs Interface complexity             | <.0001     | 0.0283     |         |    | 0.0002  | 0.0226  | 0.0073  | 0.0001  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| PS                                                       |            |            |         |    |         |         |         |         |  |  |  |
| Seamless integration vs Product support                  |            |            |         |    |         |         |         |         |  |  |  |
|                                                          | 6          | 6          | 6       | 7  | 6       | 6       | 6       | 6       |  |  |  |
| ES                                                       | 0.99664    | 0.89281    | 0.98727 |    | 1.00000 | 0.88269 | 0.94076 | 0.99663 |  |  |  |
| Seamless integration vs Experience with component        | <.0001     | 0.0166     | 0.0002  | •  |         | 0.0198  | 0.0052  | <.0001  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| LS                                                       | 0.88559    | 0.68379    | 0.87464 |    | 0.88269 | 1.00000 | 0.78574 | 0.87768 |  |  |  |
| Seamless integration vs Learning rate                    | 0.0189     | 0.1342     | 0.0226  |    | 0.0198  |         | 0.0639  | 0.0215  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| RS                                                       | 0.93997    | 0.89358    | 0.92948 |    | 0.94076 | 0.78574 | 1.00000 | 0.93965 |  |  |  |
| Seamless integration vs Reliability                      | 0.0053     | 0.0164     | 0.0073  |    | 0.0052  | 0.0639  |         | 0.0054  |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
| CLS                                                      | 0.99664    | 0.91062    | 0.99060 |    | 0.99663 | 0.87768 | 0.93965 | 1.00000 |  |  |  |
| Seamless integration vs Confidence level                 | <.0001     | 0.0116     | 0.0001  |    | <.0001  | 0.0215  | 0.0054  |         |  |  |  |
|                                                          | 6          | 6          | 6       | 6  | 6       | 6       | 6       | 6       |  |  |  |
|                                                          |            |            |         |    |         |         |         | 1.00    |  |  |  |

#2 Interface complexity (Table2 - Hardware)

#### 8 Variables: IS\_R IC\_R ICAC\_R PIC EIC LIC RIC CLIC

|          | Simple Statistics |             |         |              |         |         |                                                          |  |  |  |  |  |  |
|----------|-------------------|-------------|---------|--------------|---------|---------|----------------------------------------------------------|--|--|--|--|--|--|
| Variable | N                 | Mean        | Std Dev | Sum          | Minimum | Maximum | Label                                                    |  |  |  |  |  |  |
| IS_R     | 6                 | 2.2419<br>8 | 2.99615 | 13.4518<br>7 | 0.11111 | 6.99790 | Interface complexity vs Seamless integration             |  |  |  |  |  |  |
| IC_R     | 7                 | 1.0000      | 0       | 7.00000      | 1.00000 | 1.00000 | Interface complexity vs Component volatility             |  |  |  |  |  |  |
| ICAC_R   | 6                 | 2.9331<br>3 | 3.98716 | 17.5988<br>0 | 0.20000 | 9.00090 | Interface complexity vs Component application complexity |  |  |  |  |  |  |
| PIC      | 5                 | 3.6400<br>0 | 3.52817 | 18.2000<br>0 | 0.20000 | 9.00000 | Product support vs Interface complexity                  |  |  |  |  |  |  |
| EIC      | 6                 | 3.0888<br>8 | 2.92930 | 18.5333<br>0 | 0.20000 | 7.00000 | Experience with component vs Interface complexity        |  |  |  |  |  |  |
| LIC      | 6                 | 2.6444<br>3 | 2.87416 | 15.8666<br>0 | 0.20000 | 7.00000 | Learning rate vs Interface complexity                    |  |  |  |  |  |  |
| RIC      | 6                 | 5.2000<br>0 | 2.92575 | 31.2000<br>0 | 0.20000 | 9.00000 | Reliability vs Interface complexity                      |  |  |  |  |  |  |
| CLIC     | 6                 | 4.1111<br>0 | 3.54444 | 24.6666<br>0 | 0.33330 | 9.00000 | Confidence level vs Interface complexity                 |  |  |  |  |  |  |

|                |        |                   | Scatter    | Plot Matri     | ix               |                  |                                       |
|----------------|--------|-------------------|------------|----------------|------------------|------------------|---------------------------------------|
| 0246           | C      | 02468             |            | 0246           |                  | 02468            |                                       |
|                |        | <u>    </u>       | <b> </b>   |                |                  |                  |                                       |
| 6- IS_R        | l - II | • -               | ĭ o        | o v            | 0                | ° °              | ° –                                   |
| 0              | 8      | o <sup>o</sup> o  | ° ° °      | 8 00           | 8 00             | ° 000            | ° ° ° ° -                             |
|                | IC_R   | <del>0</del> 0 00 | ∞ • • •    | <b>o</b> o o o | • • • •          | • • • •          | • • • • • • • • • • • • • • • • • • • |
| 8-0 0          | 8      | ICAC_R            | ° •        | • •            | • •              | ° •              | ○ ◇ -                                 |
| 0-00 0         | 8      |                   | ° o o      | <u></u>        | 8 00             | ° 00             | 8 0 0                                 |
|                |        | 800               | PIC        | °<br>°° °      | °<br>8°°         | 。                | 8 ° - 0                               |
| 6-<br>0-<br>0- | 1 11   | °<br>°            | 。。<br>。。。。 | EIC            | • • •<br>•       | 0<br>0 0 0       | 000<br>80                             |
|                |        | °<br>∞ °          | ° ° °      | •<br>•         | LIC              | 0<br>0<br>0<br>0 |                                       |
| 8-8<br>0-0     |        | 8°°               | ° ° °      | ° ° °          | ° ° ° °<br>° ° ° | RIC              | ° ° ° ° °                             |
|                | 8 4    | °°°°              | ° °        | ° °            | ° ° °            | 。                |                                       |
|                | 0 1 2  |                   | 02468      |                | 0246             |                  | 02468                                 |

|          |                                                                                                                                                                                                  | er H0: Rho=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numb     | per of O                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contraction Calif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                                  | bservations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IS_R     | IC_R                                                                                                                                                                                             | ICAC_R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.00000  | · ·                                                                                                                                                                                              | 0.44522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.65069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.24607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.15279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.55197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        |                                                                                                                                                                                                  | 0.3763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6        | 7                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.44522  |                                                                                                                                                                                                  | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.08602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.26766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.34413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.3763   |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.65069 |                                                                                                                                                                                                  | 0.06834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.18559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.11656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.79830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.69091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.2344   |                                                                                                                                                                                                  | 0.9131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5        | 5                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.01317  |                                                                                                                                                                                                  | -0.08602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.18559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.86645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.22154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.9802   |                                                                                                                                                                                                  | 0.8713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.24607 |                                                                                                                                                                                                  | -0.26766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.11656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.14334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.49852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.6383   |                                                                                                                                                                                                  | 0.6081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.15279 |                                                                                                                                                                                                  | 0.34413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.79830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.14334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.76116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.7726   |                                                                                                                                                                                                  | 0.5042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.55197 |                                                                                                                                                                                                  | 0.09676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.69091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.55192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.49852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.76116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.2561   |                                                                                                                                                                                                  | 0.8553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6        | 6                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 1.00000<br>6<br><br>6<br>0.44522<br>0.3763<br>6<br>-0.65069<br>0.2344<br>5<br>0.01317<br>0.9802<br>6<br>-0.24607<br>0.6383<br>6<br>-0.15279<br>0.7726<br>6<br>-0.7726<br>6<br>-0.55197<br>0.2561 | 1.00000       .         6       6         .       .         6       7         .       .         6       7         0.44522       .         0.3763       .         6       6         -0.65069       .         0.2344       .         5       5         0.01317       .         0.9802       .         6       6         -0.24607       .         0.6383       .         6       6         -0.15279       .         0.7726       .         6       6         -0.55197       .         0.2561       . | 1.00000         .         0.44522           .         0.3763           6         6           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         .           .         . <tr td=""></tr> | 1.00000. $0.44522$ $-0.65069$ . $0.3763$ $0.2344$ 666 <td>1.00000         .         0.44522         -0.65069         0.01317           .         0.3763         0.2344         0.9802           6         6         6         5         6           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .         .           0.44522         .         1.00000         0.06834         -0.08602         .         0.8713         0.8713           0.3763         .         0.06834         1.00000         .         .         .           0.2344         .         0.9131         0.7651         .         .         .           0.01317         .</td> <td>1.00000.<math>0.44522</math><math>-0.65069</math><math>0.01317</math><math>-0.24607</math><math>1.00000</math>.<math>0.3763</math><math>0.2344</math><math>0.9802</math><math>0.6383</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math></math><math></math><math></math><math>6</math><math>7</math><math>6</math><math>5</math><math>6</math><math>0.44522</math><math>1.00000</math><math>0.06834</math><math>-0.08602</math><math>-0.26766</math><math>0.3763</math><math>0.9131</math><math>0.8713</math><math>0.6081</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math>-0.65069</math><math>0.06834</math><math>1.00000</math><math>-0.18559</math><math>-0.11656</math><math>0.2344</math>.<math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.2344</math>.<math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.2344</math>.<math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.2344</math>.<math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.2344</math>.<math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.9802</math>.<math>0.8713</math><math>0.7651</math><math>0.0256</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math>-0.24607</math>.<math>-0.26766</math><math>-0.11656</math><math>0.86645</math><math>1.00000</math><math>0.6383</math><math>0.6081</math><math>0.8519</math><math>0.22154</math><math>0.14334</math><math>0.7726</math>.<math>0.5042</math><math>0.1054</math><math>0.6731</math><math>0.7865</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math>-0.25617</math>.<math>0.09676</math><math>0</math></td> <td>1.00000.<math>0.44522</math><math>-0.65069</math><math>0.01317</math><math>-0.24607</math><math>-0.15279</math><math>0.3763</math><math>0.2344</math><math>0.9802</math><math>0.6383</math><math>0.7726</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math></math><math>6</math><math>7</math><math>6</math><math>5</math><math>6</math><math>6</math><math>0.44522</math><math></math><math>1.00000</math><math>0.06834</math><math>-0.08602</math><math>-0.26766</math><math>0.44522</math><math></math><math>1.00000</math><math>0.06834</math><math>-0.08602</math><math>-0.26766</math><math>0.3763</math><math></math><math>0.9131</math><math>0.8713</math><math>0.6081</math><math>0.5042</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math>-0.65069</math><math></math><math>0.06834</math><math>1.00000</math><math>-0.18559</math><math>-0.11656</math><math>0.79830</math><math>0.2344</math><math></math><math>0.9131</math><math>0.7651</math><math>0.8519</math><math>0.1054</math><math>5</math><math>5</math><math>5</math><math>5</math><math>5</math><math>5</math><math>5</math><math>0.01317</math><math></math><math>-0.26766</math><math>-0.18559</math><math>1.00000</math><math>0.86645</math><math>0.22154</math><math>0.9802</math><math></math><math>0.8713</math><math>0.7651</math><math>0.0256</math><math>0.7865</math><math>6</math><math>6</math><math>6</math><math>5</math><math>6</math><math>6</math><math>6</math><math>-0.24607</math><math></math><math>-0.26766</math><math>-0.11656</math><math>0.86645</math><math>1.00000</math><math>0.726</math><math></math><math>0.6081</math><math>0.8519</math><math>0.22154</math><math>0.14334</math><math>1.00000</math><math>0.7726</math><math></math><math>0.5042</math><math>0.1054</math><math>0.6731</math><!--</td--></td> | 1.00000         .         0.44522         -0.65069         0.01317           .         0.3763         0.2344         0.9802           6         6         6         5         6           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .           .         .         .         .         .         .         .           0.44522         .         1.00000         0.06834         -0.08602         .         0.8713         0.8713           0.3763         .         0.06834         1.00000         .         .         .           0.2344         .         0.9131         0.7651         .         .         .           0.01317         . | 1.00000. $0.44522$ $-0.65069$ $0.01317$ $-0.24607$ $1.00000$ . $0.3763$ $0.2344$ $0.9802$ $0.6383$ $6$ $6$ $6$ $5$ $6$ $6$ $$ $$ $$ $6$ $7$ $6$ $5$ $6$ $0.44522$ $1.00000$ $0.06834$ $-0.08602$ $-0.26766$ $0.3763$ $0.9131$ $0.8713$ $0.6081$ $6$ $6$ $6$ $5$ $6$ $6$ $-0.65069$ $0.06834$ $1.00000$ $-0.18559$ $-0.11656$ $0.2344$ . $0.9131$ $0.7651$ $0.8519$ $0.2344$ . $0.9131$ $0.7651$ $0.8519$ $0.2344$ . $0.9131$ $0.7651$ $0.8519$ $0.2344$ . $0.9131$ $0.7651$ $0.8519$ $0.2344$ . $0.9131$ $0.7651$ $0.8519$ $0.9802$ . $0.8713$ $0.7651$ $0.0256$ $6$ $6$ $6$ $5$ $6$ $6$ $-0.24607$ . $-0.26766$ $-0.11656$ $0.86645$ $1.00000$ $0.6383$ $0.6081$ $0.8519$ $0.22154$ $0.14334$ $0.7726$ . $0.5042$ $0.1054$ $0.6731$ $0.7865$ $6$ $6$ $6$ $5$ $6$ $6$ $-0.25617$ . $0.09676$ $0$ | 1.00000. $0.44522$ $-0.65069$ $0.01317$ $-0.24607$ $-0.15279$ $0.3763$ $0.2344$ $0.9802$ $0.6383$ $0.7726$ $6$ $6$ $6$ $5$ $6$ $6$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $6$ $7$ $6$ $5$ $6$ $6$ $0.44522$ $$ $1.00000$ $0.06834$ $-0.08602$ $-0.26766$ $0.44522$ $$ $1.00000$ $0.06834$ $-0.08602$ $-0.26766$ $0.3763$ $$ $0.9131$ $0.8713$ $0.6081$ $0.5042$ $6$ $6$ $6$ $5$ $6$ $6$ $-0.65069$ $$ $0.06834$ $1.00000$ $-0.18559$ $-0.11656$ $0.79830$ $0.2344$ $$ $0.9131$ $0.7651$ $0.8519$ $0.1054$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $0.01317$ $$ $-0.26766$ $-0.18559$ $1.00000$ $0.86645$ $0.22154$ $0.9802$ $$ $0.8713$ $0.7651$ $0.0256$ $0.7865$ $6$ $6$ $6$ $5$ $6$ $6$ $6$ $-0.24607$ $$ $-0.26766$ $-0.11656$ $0.86645$ $1.00000$ $0.726$ $$ $0.6081$ $0.8519$ $0.22154$ $0.14334$ $1.00000$ $0.7726$ $$ $0.5042$ $0.1054$ $0.6731$ </td |
|          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### #3 component application complexity (Table 2 - Hardware)

| 8 Variables:                      | CACS_R | CACC_R | ICAC | PCAC | ECAC | LCAC | RCAC | CLCAC |
|-----------------------------------|--------|--------|------|------|------|------|------|-------|
| A STATE OF THE PARTY OF THE PARTY | 8      |        |      |      |      |      |      |       |

|          |   |         |         |          |         | Simple Stati | stics                                                         |
|----------|---|---------|---------|----------|---------|--------------|---------------------------------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum | Maximum      | Label                                                         |
| CACS_R   | 6 | 1.10380 | 1.46956 | 6.62282  | 0.11111 | 3.00030      | Component application complexity vs Seamless integration      |
| CACC_R   | 6 | 2.38100 | 2.28156 | 14.28601 | 0.14286 | 5.00000      | Component application complexity vs Component volatility      |
| ICAC     | 6 | 2.70900 | 2.52985 | 16.25400 | 0.11110 | 5.00000      | Interface complexity vs Component application complexity      |
| PCAC     | 6 | 3.75555 | 3.78223 | 22.53330 | 0.20000 | 9.00000      | Product support vs Component application complexity           |
| ECAC     | 6 | 3.55555 | 2.57913 | 21.33330 | 0.33330 | 7.00000      | Experience with component vs Component application complexity |
| LCAC     | 6 | 2.66665 | 2.85192 | 15.99990 | 0.33330 | 7.00000      | Learning rate vs Component application complexity             |
| RCAC     | 6 | 4.20000 | 2.93939 | 25.20000 | 0.20000 | 9.00000      | Reliability vs Component application complexity               |
| CLCAC    | 6 | 3.55555 | 3.13877 | 21.33330 | 0.33330 | , 7.00000    | Confidence level vs Component application complexity          |

|          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Scatter F                             | Plot Matrix | x                            |                                 |                                         |
|----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-------------|------------------------------|---------------------------------|-----------------------------------------|
|          | 0 1 2 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 024                                    |                                       | 0246        |                              | 02468                           |                                         |
| 3-       |                    | <b>0</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                     | <b>∞</b>                              |             | $\left[ \circ \circ \right]$ | • • • • •                       |                                         |
| 0-       | CACS_R             | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                    | o o o o                               | ° ° °       | • • •                        | • <b>•</b> •                    | <u> </u>                                |
|          | •<br>•<br>•        | CACC_R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0<br>0 0                             | 0 0<br>0 0<br>0 0 0                   |             | °<br>° °                     |                                 |                                         |
| 5-       | •                  | <u>ہ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `                                      | 0 00                                  | ○ ○         | 0 0 0                        |                                 |                                         |
| 0-       | o 8                | ° o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICAC                                   | ° 0                                   | ° 0 0       | 8 0                          | ° o o                           | °o o-                                   |
| -        | 00<br>00<br>0<br>8 | 8 °<br>° ° °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ° 8<br>°° °                            | PCAC                                  | 8°<br>8°    | • • •                        | 8°<br>° °                       | <b>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</b>              |
| 6-<br>0- | 0 0 0              | • •<br>• • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •<br>• •<br>• •                        | ~ ~ ~ °                               | ECAC        | °<br>°<br>8                  | • • • •                         | <br>∞                                   |
| -        | °° °               | °<br>° ° °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000000000000000000000000000000000000 | 0<br>00<br>00<br>00                   | °°°<br>8°°° | LCAC                         | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                                         |
| 8-       | °<br>80000         | • • •<br>• • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °<br>° 8                               | • • • • • • • • • • • • • • • • • • • | ° ° °       | •<br>• • • •                 | RCAC                            | <ul><li>○</li><li>○</li><li>○</li></ul> |
|          | ° 8                | <ul><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li><li>○</li>&lt;</ul> | • • • • • • • • • • • • • • • • • • •  | <b>a</b> o                            | ~ ~ ~       | 0 0<br>8 0                   |                                 | CLCAC 6                                 |
|          |                    | 0 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 02468                                 |             | 0246                         |                                 | 0 2 4 6                                 |

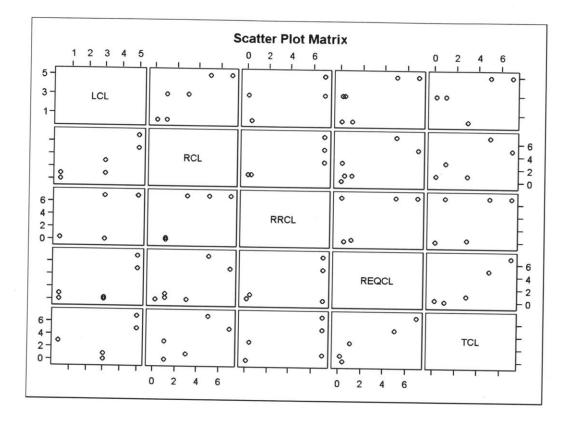
| I and the second se | Pearson Corr | elation Coef | ficients, N | = 6      | See State |          |          |          |
|----------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|----------|-----------|----------|----------|----------|
|                                                                                                                | Prob >       | r  under H0  | : Rho=0     |          |           |          |          |          |
|                                                                                                                | CACS_R       | CACC_R       | ICAC        | PCAC     | ECAC      | LCAC     | RCAC     | CLCAC    |
| CACS_R                                                                                                         | 1.00000      | -0.12925     | -0.64750    | -0.65668 | -0.58116  | -0.26726 | -0.69726 | -0.72809 |
| Component application complexity vs Seamless integration                                                       |              | 0.8072       | 0.1645      | 0.1566   | 0.2264    | 0.6086   | 0.1236   | 0.1009   |
| CACC_R                                                                                                         | -0.12925     | 1.00000      | -0.35428    | -0.08508 | -0.00108  | -0.72891 | 0.31696  | -0.16049 |
| Component application complexity vs Component volatility                                                       | 0.8072       |              | 0.4908      | 0.8727   | 0.9984    | 0.1003   | 0.5405   | 0.7613   |
| ICAC                                                                                                           | -0.64750     | -0.35428     | 1.00000     | 0.06129  | -0.03448  | 0.52771  | -0.03893 | 0.21794  |
| Component application complexity vs Interface complexity                                                       | 0.1645       | 0.4908       |             | 0.9082   | 0.9483    | 0.2819   | 0.9416   | 0.6783   |
| PCAC                                                                                                           | -0.65668     | -0.08508     | 0.06129     | 1.00000  | 0.90516   | 0.33293  | 0.86639  | 0.90550  |
| Component application complexity vs Product support                                                            | 0.1566       | 0.8727       | 0.9082      |          | 0.0131    | 0.5191   | 0.0256   | 0.0130   |
| ECAC                                                                                                           | -0.58116     | -0.00108     | -0.03448    | 0.90516  | 1.00000   | 0.40484  | 0.93567  | 0.92052  |
| Component application complexity vs Experience<br>with component                                               | 0.2264       | 0.9984       | 0.9483      | 0.0131   |           | 0.4259   | 0.0061   | 0.0092   |
| LCAC                                                                                                           | -0.26726     | -0.72891     | 0.52771     | 0.33293  | 0.40484   | 1.00000  | 0.13997  | 0.42203  |
| Component application complexity vs Learning rate                                                              | 0.6086       | 0.1003       | 0.2819      | 0.5191   | 0.4259    | 1.00000  | 0.7914   | 0.4045   |
| RCAC                                                                                                           | -0.69726     | 0.31696      | -0.03893    | 0.86639  | 0.93567   | 0.13997  | 1.00000  | 0.85555  |
| Component application complexity vs Reliability                                                                | 0.1236       | 0.5405       | 0.9416      | 0.0256   | 0.0061    | 0.7914   |          | 0.0298   |
| CLCAC                                                                                                          | -0.72809     | -0.16049     | 0.21794     | 0.90550  | 0.92052   | 0.42203  | 0.85555  | 1.00000  |
| Component application complexity vs Confidence<br>level                                                        | 0.1009       | 0.7613       | 0.6783      | 0.0130   | 0.0092    | 0.4045   | 0.0298   |          |

#1 Re-implementation required (Table 3 - Software)

| 5 Variables:                 | ReqCL_R ReqLC_R ReqRed_R ReqRet_R TREIM |  |
|------------------------------|-----------------------------------------|--|
| and the second second second |                                         |  |

|          |   |             |         |          | Simple  | Statistics |                                                |
|----------|---|-------------|---------|----------|---------|------------|------------------------------------------------|
| Variable | N | Mean        | Std Dev | Sum      | Minimum | Maximum    | Label                                          |
| ReqCL_R  | 6 | 3.3903<br>3 | 3.77049 | 20.34196 | 0.14286 | 9.00090    | Reimplementation required vs Confidence level  |
| ReqLC_R  | 7 | 3.4294<br>6 | 4.01895 | 24.00623 | 0.14286 | 9.00090    | Reimplementation required vs Lines of code     |
| ReqRed_R | 7 | 2.6491<br>5 | 3.34147 | 18.54406 | 0.14286 | 9.00090    | Reimplementation required vs Redesign required |
| ReqRet_R | 7 | 2.6682<br>0 | 3.32552 | 18.67739 | 0.14286 | 9.00090    | Reimplementation required vs Retest required   |
| TREIM    | 6 | 4.2000<br>0 | 3.87814 | 25.20000 | 0.20000 | 9.00000    | Time constraints vs Reimplementation required  |

|     |          |     |       |        |   |   |      |      | S      | Scatt    | er Pl | ot    | Matı     | rix        |            |       |        |                          |      |     |          |
|-----|----------|-----|-------|--------|---|---|------|------|--------|----------|-------|-------|----------|------------|------------|-------|--------|--------------------------|------|-----|----------|
|     | 0        | 2   | 4     | 6      | 8 |   | , .  | ı    |        |          | 24    | 6     | 8        |            |            |       |        | 02                       | 4    | 68  |          |
| 8-  |          | 1   | 1     |        | 1 |   | 1 1  |      | 0      |          | 0     | 1     | - I      |            | <u>   </u> | 0     |        |                          |      |     | 7        |
| 4 - |          | Re  | qCL   | R      |   | ° |      |      |        |          |       |       | °        |            |            |       | ٥      |                          |      |     | °        |
| 0-  |          |     | •     | -      |   | 8 |      | c    |        | <b>°</b> | (     | >     |          | 。<br>。     | 0          |       |        | °                        |      | 0   | L        |
| ľ.  |          |     |       |        | 0 |   |      |      |        |          | 0     |       |          |            |            | 0     |        |                          |      |     |          |
|     |          | <   | •     |        |   |   | Real | LC_R |        | 00       |       |       |          | 00         |            |       |        | 00                       |      |     |          |
| -   |          |     |       |        |   |   | Neq  | LO_K |        |          |       | _     |          |            | _          |       |        |                          |      |     | - 4      |
| -   | 00       |     |       | 0<br>0 |   |   |      |      |        | •        |       | ><br> |          | •          | •          |       | 0<br>0 |                          |      | •   | 아이       |
| 8-  |          |     |       | Ű      |   |   |      |      |        |          |       |       |          |            |            |       | 0      |                          |      |     | Ť        |
| 4 - | °        |     |       |        | ۰ | ° |      |      | 0      |          | ReqRe | d_R   |          |            | ٥          | 0     |        | °                        |      |     | F        |
| 0-  | •        |     | ,<br> |        |   | • |      | 8    |        |          |       |       |          | •°         |            |       |        | °0                       |      | ٥   | <u> </u> |
| -   |          |     |       | 0      |   | • |      |      |        |          |       |       | ٥        |            |            |       |        |                          |      |     | °-8      |
| -   |          |     |       |        | ۰ | • |      |      | ٥      |          | ° (   | >     |          |            | Reqi       | Ret_F | 2      | •                        |      |     | - 4      |
| -   | •        | <   | •     |        |   | • |      | 8    |        | ••       |       |       |          |            |            |       |        | ••                       |      | ٥   | • 0      |
| 8 - | •        |     |       | 0      |   | ° |      |      |        | •        |       |       | ۰        | •          |            |       | ٥      |                          |      |     |          |
| 4 - | -        |     |       |        |   | ľ |      |      |        |          |       |       |          | ľ          |            |       |        |                          | TREI | м   | ╞        |
| 0-  | •        | ' c | ,     |        |   | • |      | 8    |        | ۰0       | (     | >     |          | 00         | ٥          |       |        |                          |      |     | F        |
|     | <b>'</b> | T   | 1     | T      |   | 0 | 24   | 6    | т<br>8 | · –      | ТТ    | 1     | <b>-</b> | 0 :        | 1 1<br>2 4 | 1 6   | 8      | · <del>· · · · · ·</del> | 1    | 1 1 |          |
|     |          |     |       |        |   | U | - 4  |      | 5      |          |       |       |          | <b>U</b> . | · ·        | . 0   | 0      |                          |      |     |          |


| Pear                                           | on Correlation Co  | oefficients |          |          |          |
|------------------------------------------------|--------------------|-------------|----------|----------|----------|
| Pr                                             | ob >  r  under H0: | Rho=0       |          |          |          |
| N                                              | umber of Observ    | ations      |          |          |          |
|                                                | ReqCL_R            | ReqLC_R     | ReqRed_R | ReqRet_R | TREIM    |
| ReqCL_R                                        | 1.00000            | 0.61638     | 0.54909  | 0.79414  | 0.26412  |
| Reimplementation required vs Confidence level  |                    | 0.1925      | 0.2591   | 0.0592   | 0.6677   |
|                                                | 6                  | 6           | 6        | 6        | 5        |
| ReqLC_R                                        | 0.61638            | 1.00000     | -0.29127 | -0.07055 | -0.72367 |
| Reimplementation required vs Lines of code     | 0.1925             |             | 0.5262   | 0.8805   | 0.1040   |
|                                                | 6                  | 7           | 7        | 7        | 6        |
| ReqRed_R                                       | 0.54909            | -0.29127    | 1.00000  | 0.93987  | 0.33179  |
| Reimplementation required vs Redesign required | 0.2591             | 0.5262      |          | 0.0016   | 0.5206   |
|                                                | 6                  | 7           | 7        | 7        | 6        |
| ReqRet_R                                       | 0.79414            | -0.07055    | 0.93987  | 1.00000  | 0.43909  |
| Reimplementation required vs Retest required   | 0.0592             | 0.8805      | 0.0016   |          | 0.3837   |
|                                                | 6                  | 7           | 7        | 7        | 6        |
| TREIM                                          | 0.26412            | -0.72367    | 0.33179  | 0.43909  | 1.00000  |
| Reimplementation required vs Time constraints  | 0.6677             | 0.1040      | 0.5206   | 0.3837   |          |
|                                                | 5                  | 6           | 6        | 6        | 6        |

## #2 Confidence Level (Table3 – Software)

| 5 Variables: | LCL | RCL | RRCL | REQCL | TCL |
|--------------|-----|-----|------|-------|-----|
|              |     |     |      |       |     |

|          |   |         |         |          | Simple  | Statistics |                                       |
|----------|---|---------|---------|----------|---------|------------|---------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum | Maximum    | Label                                 |
| LCL      | 6 | 2.77777 | 2.09410 | 16.66660 | 0.33330 | 5.00000    | Lines of code vs Confidence level     |
| RCL      | 6 | 2.85715 | 2.68479 | 17.14290 | 0.14290 | 7.00000    | Redesign required vs Confidence level |
| RRCL     | 5 | 4.28888 | 3.71319 | 21.44440 | 0.11110 | 7.00000    | Retest required vs Confidence level   |

|          |   |         |         |          | Simple  | Statistics |                                               |
|----------|---|---------|---------|----------|---------|------------|-----------------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum | Maximum    | Label                                         |
| REQCL    | 6 | 2.26455 | 2.97908 | 13.58730 | 0.11110 | 7.00000    | Reimplementation required vs Confidence level |
| TCL      | 5 | 3.22858 | 2.82408 | 16.14290 | 0.14290 | 7.00000    | Time constraints vs Confidence level          |



| Pearson Corre                                 | lation Coeff | icients |         |         |         |
|-----------------------------------------------|--------------|---------|---------|---------|---------|
| Prob >  r  ur                                 | der H0: Rh   | o=0     |         |         |         |
| Number of                                     | Observatio   | ns      |         |         |         |
|                                               | LCL          | RCL     | RRCL    | REQCL   | TCL     |
| LCL                                           | 1.00000      | 0.88086 | 0.74991 | 0.77123 | 0.53904 |
| Confidence level vs Lines of code             |              | 0.0204  | 0.1444  | 0.0725  | 0.3485  |
|                                               | 6            | 6       | 5       | 6       | 5       |
| RCL                                           | 0.88086      | 1.00000 | 0.83998 | 0.82411 | 0.72162 |
| Confidence level vs Redesign required         | 0.0204       |         | 0.0750  | 0.0437  | 0.1688  |
|                                               | 6            | 6       | 5       | 6       | 5       |
| RRCL                                          | 0.74991      | 0.83998 | 1.00000 | 0.59598 | 0.54311 |
| Confidence level vs Retest required           | 0.1444       | 0.0750  |         | 0.2889  | 0.3442  |
|                                               | 5            | 5       | 5       | 5       | 5       |
| REQCL                                         | 0.77123      | 0.82411 | 0.59598 | 1.00000 | 0.95722 |
| Confidence level vs Reimplementation required | 0.0725       | 0.0437  | 0.2889  |         | 0.0106  |
|                                               | 6            | 6       | 5       | 6       | 5       |
| TCL                                           | 0.53904      | 0.72162 | 0.54311 | 0.95722 | 1.00000 |
| Confidence level vs Time constraints          | 0.3485       | 0.1688  | 0.3442  | 0.0106  |         |
|                                               | 5            | 5       | 5       | 5       | 5       |

#3 Lines of code (Table 3 - Software)

5 Variables: LCL\_R RLC RRLC REQLC TLC

|          |   |         |         |          | Simple St | atistics |                                    |
|----------|---|---------|---------|----------|-----------|----------|------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum   | Maximum  | Label                              |
| LCL_R    | 6 | 1.17788 | 1.41290 | 7.06727  | 0.20000   | 3.00030  | Lines of code vs Confidence level  |
| RLC      | 7 | 2.92654 | 3.26926 | 20.48580 | 0.14290   | 7.00000  | Redesign required vs Lines of code |
| RRLC     | 6 | 3.74603 | 3.09629 | 22.47620 | 0.14290   | 7.00000  | Retest required vs Lines of code   |

|          |   |         |         |          | Simple St | atistics |                                            |
|----------|---|---------|---------|----------|-----------|----------|--------------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum   | Maximum  | Label                                      |
| REQLC    | 7 | 2.62813 | 2.69888 | 18.39690 | 0.11110   | 7.00000  | Reimplementation required vs Lines of code |
| TLC      | 7 | 3.89343 | 3.53368 | 27.25400 | 0.11110   | 9.00000  | Time constraints vs Lines of code          |

|   |       |    |     |   |     |            |     |     |   | s  | Scat     | ter | Plo    | ot N | lat | rix      |     |          |   |   |     |     |   |          |            |
|---|-------|----|-----|---|-----|------------|-----|-----|---|----|----------|-----|--------|------|-----|----------|-----|----------|---|---|-----|-----|---|----------|------------|
|   | 0     |    | 1   | 2 | 3   |            | 593 |     |   |    | 0        | 2   | 4      | (    |     |          |     |          |   |   | 0 2 | 4   | 6 | 8        |            |
| 1 | 3-    |    |     |   | -'1 | •          |     |     |   |    |          |     |        |      |     | 0        | - 0 | <u> </u> |   |   | 0   | 0   | 1 | <u>'</u> | -          |
|   | 2 -   |    | LCL | D |     |            |     |     |   |    |          |     |        |      |     |          |     |          |   |   |     |     |   | ł        | -          |
|   | 1-    |    | LOL |   |     |            |     |     | 0 | -  |          | 12  |        |      |     |          |     |          |   |   | ~   |     |   | ł        | -          |
|   | ∘₋    | _  |     |   |     | <u> </u>   | _   |     | • | ٥  |          |     |        | •    | •   | •        | 0   |          | • | ۰ | °   | ٥   | • | <u> </u> | -          |
|   | - °   |    |     |   |     |            |     |     |   |    |          |     |        |      | •   |          |     |          | ٥ | ٥ |     | ٥   | ٥ |          | - 6        |
|   | 1     |    |     |   |     |            | F   | RLC |   |    |          | <   | ,<br>, |      |     |          | 0   |          |   |   |     |     |   | °        | - 4        |
|   |       |    |     |   | ۰   |            |     |     |   |    | 00       |     |        | ۰    |     | 8        | 0   |          |   |   | °°  | ٥   |   | ļ        | -2<br>-0   |
|   | 6-0   |    |     |   |     |            |     |     |   | ٥  |          |     |        |      |     |          |     | 0        | 0 | 0 |     | 0   | 0 |          | _          |
|   | 4 -   |    |     |   |     | °          |     |     | 0 |    |          | R   | RLC    |      |     | •        |     |          |   |   | •   |     |   |          | -          |
|   | 2 -   |    |     |   | •   |            |     |     | 0 |    |          |     | , LO   |      |     |          | 0   |          |   |   |     |     |   | °ŀ       | -          |
|   | ₀-└   | _  |     | _ | 4   | 8          |     |     |   | _  |          |     |        | _    |     | <u> </u> | 0   |          |   |   | 0   | 0   |   | ᆣ        | -          |
|   | - °   |    |     |   |     |            |     |     |   | 0  |          |     |        |      | 0   |          |     |          |   |   |     | 0   | 0 | ł        | - 6        |
|   | ] •   |    |     |   | •   | 0          |     |     | 0 |    | 0        | c   | >      |      |     |          | RE  | QLC      | ; |   |     | 0   |   | ٥ľ       | - 4        |
|   |       | 8  |     |   | ٥   | • •        |     |     |   |    | 0        |     |        | 0    |     |          |     |          |   |   | 00  |     |   | F        | - 2<br>- 0 |
|   | 8-0   | i. |     |   |     |            |     |     | 0 |    |          | c   | >      |      |     |          | 0   | 1        |   |   |     |     |   | =        | _          |
|   | 4 - 0 |    |     |   | 0   | 0          |     |     |   | 00 | 0        |     |        |      | °   |          | 0   |          | 0 | • |     | TLC |   |          |            |
|   |       |    |     |   |     |            |     |     |   |    |          |     |        | 0    |     | 8        |     |          |   |   |     | 120 |   | Γ        |            |
|   | ٥-Ļ-° | _  |     | - | -   | L <u>e</u> | Т   |     |   |    | <b>°</b> | -   | -      | -    |     | ¢.       |     |          |   |   | L   |     |   | ᆣ        | ÷.         |
|   |       |    |     |   |     | 0          | 2   | 4   | 6 | 1  |          |     |        |      |     | 0        | 2   | 4        | 6 |   |     |     |   |          |            |

| Pearson C                                  | Correlation Co | efficients |          |          |          |
|--------------------------------------------|----------------|------------|----------|----------|----------|
| Prob>                                      | r  under H0: ] | Rho=0      |          |          |          |
| Numb                                       | er of Observa  | tions      |          |          |          |
|                                            | LCL_R          | RLC        | RRLC     | REQLC    | TLC      |
| LCL_R                                      | 1.00000        | -0.77328   | -0.83994 | -0.45682 | -0.44961 |
| Lines of code vs Confidence level          |                | 0.0713     | 0.0750   | 0.3624   | 0.3710   |
|                                            | 6              | 6          | 5        | 6        | 6        |
| RLC                                        | -0.77328       | 1.00000    | 0.81503  | 0.86777  | 0.73976  |
| Lines of code vs Redesign required         | 0.0713         |            | 0.0482   | 0.0114   | 0.0573   |
|                                            | 6              | 7          | 6        | 7        | 7        |
| RRLC                                       | -0.83994       | 0.81503    | 1.00000  | 0.62884  | 0.30301  |
| Lines of code vs Retest required           | 0.0750         | 0.0482     |          | 0.1811   | 0.5594   |
|                                            | 5              | 6          | 6        | 6        | 6        |
| REQLC                                      | -0.45682       | 0.86777    | 0.62884  | 1.00000  | 0.77852  |
| Lines of code vs Reimplementation required | 0.3624         | 0.0114     | 0.1811   |          | 0.0392   |
|                                            | 6              | 7          | 6        | 7        | 7        |
| TLC                                        | -0.44961       | 0.73976    | 0.30301  | 0.77852  | 1.00000  |
| Lines of code vs Time constraints          | 0.3710         | 0.0573     | 0.5594   | 0.0392   |          |
|                                            | 6              | 7          | 6        | 7        | 7        |

# #1 Learning Rate (Table4 - Support)

5 Variables: PLR CLRATE RLRATE CCLRATE ULRATE

|          |   |         |         | San Star | Simple Statis | stics   |                                          |
|----------|---|---------|---------|----------|---------------|---------|------------------------------------------|
| Variable | N | Mean    | Std Dev | Sum      | Minimum       | Maximum | Label                                    |
| PLR      | 7 | 3.60771 | 2.88454 | 25.25400 | 0.11110       | 7.00000 | Professional experience vs Learning rate |
| CLRATE   | 7 | 2.33333 | 2.00001 | 16.33330 | 0.33330       | 5.00000 | Cost vs Learning rate                    |
| RLRATE   | 7 | 4.21089 | 3.08249 | 29.47620 | 0.14290       | 7.00000 | Repairs vs Learning rate                 |
| CCLRATE  | 6 | 3.63492 | 3.68692 | 21.80950 | 0.14290       | 7.00000 | Call center vs Learning rate             |
| ULRATE   | 6 | 3.88888 | 3.41674 | 23.33330 | 0.33330       | 7.00000 | Upgrades vs Learning rate                |

|   | 0  | 2 | - 1 | 4        | 6 |    |          |      |   | - 1 | 0  | 2  | 4   |   | 6  |     |     |   |   | 0  | 2   | 4   | 6 |
|---|----|---|-----|----------|---|----|----------|------|---|-----|----|----|-----|---|----|-----|-----|---|---|----|-----|-----|---|
| - | 1  | 1 |     |          | 1 |    | 1        | 1    | 1 | 1   | 1  | 1  | 1   |   | Î. | 1   | 1   | 1 | 1 | ĭ  | ĩ   | 1   | 6 |
| ł |    |   |     |          |   | 0  |          |      |   | •   |    |    |     |   | 0  | 0   |     |   | 0 | 0  |     |     | 0 |
| ł |    |   | PLF |          |   |    |          |      |   | •   |    |    |     |   | •  |     |     |   | 0 |    |     |     | 0 |
| ł |    |   | FLF | <b>`</b> |   | •  |          | 0    |   |     |    |    | D   | 0 |    |     |     |   | 0 | 0  | Č.  |     | 0 |
| ł |    |   |     |          |   | 00 |          |      |   |     |    |    |     |   |    |     |     |   |   |    |     |     |   |
| Ē |    | - |     | 0        | 0 |    |          |      | - | ٦ř  |    |    |     | _ | -  | -   |     |   | 0 |    |     |     | 0 |
|   |    |   |     |          |   |    |          |      |   |     |    |    |     |   |    |     |     |   | v |    |     |     | • |
| 1 |    |   | 0   |          |   |    | CLI      | RATE |   |     |    |    |     | • |    | 1   |     |   | 0 |    |     |     | 0 |
| ł | 00 |   | 0   |          | ۰ |    |          |      |   |     | 00 | 4  | >   |   | •  |     |     |   |   | 00 |     |     |   |
| ř |    |   |     | 0        | 0 | 0  | <i>.</i> |      |   | 5F  | -  | -  |     | - | =  | 0   | _   |   | 0 | 0  |     |     | - |
| 1 |    |   | 0   |          |   |    |          | 0    |   |     |    |    |     |   |    | ľ   |     |   | 0 | ľ  |     |     | • |
| 1 |    |   | 0   |          |   | 0  |          |      |   |     |    | RL | RAT | Έ |    |     |     |   |   |    |     |     | 0 |
|   | 0  |   |     |          |   | 00 |          |      |   |     |    |    |     |   |    |     |     |   |   | ľ  |     |     |   |
| F | -  | _ | -   | -        | _ | -  |          | -    | - | 늬닏  | _  | _  | _   | _ |    | 8   |     |   |   | 0  | _   |     |   |
| ł |    |   | 0   | 0        | ٥ |    |          | •    | 2 | •   |    |    |     | 0 | •  |     |     |   |   |    |     |     | 0 |
|   |    |   |     |          |   |    |          |      |   |     |    |    |     |   |    |     | CCL |   |   |    |     |     |   |
| 1 |    |   |     |          |   |    |          |      |   |     |    |    |     |   |    |     | COL |   |   |    |     |     |   |
| 4 | 0  |   |     |          | ٥ | 00 | ·        |      |   | JL  | \$ |    | _   | _ | •  |     |     |   |   | 00 |     |     |   |
|   |    |   | 0   | ٥        | ٥ |    |          | ٥    | • | 2   |    |    |     | ٥ | ٥  |     |     |   | 0 |    |     |     |   |
|   |    |   |     |          |   |    |          |      |   |     |    |    |     |   |    |     |     |   |   |    |     | ATE |   |
|   |    |   | 0   |          | 0 |    |          |      |   |     |    |    |     |   |    | 120 |     |   |   |    | ULR | ATE |   |
| 4 | •  | _ |     |          |   | 8  | č.,      |      |   |     | 0  | C  |     |   | •  | 8   |     |   |   |    |     |     |   |

|                                          | Pearson Correl         | ation Coefficie | nts      |         |         |  |  |  |  |  |  |  |  |  |
|------------------------------------------|------------------------|-----------------|----------|---------|---------|--|--|--|--|--|--|--|--|--|
|                                          | Prob >  r  une         | der H0: Rho=0   | <b>)</b> |         |         |  |  |  |  |  |  |  |  |  |
|                                          | Number of Observations |                 |          |         |         |  |  |  |  |  |  |  |  |  |
|                                          | PLR                    | CLRATE          | RLRATE   | CCLRATE | ULRATE  |  |  |  |  |  |  |  |  |  |
| PLR                                      | 1.00000                | 0.58452         | 0.95063  | 0.45699 | 0.37964 |  |  |  |  |  |  |  |  |  |
| Learning rate vs Professional experience |                        | 0.1681          | 0.0010   | 0.3622  | 0.4579  |  |  |  |  |  |  |  |  |  |
|                                          | 7                      | 7               | 7        | 6       | 6       |  |  |  |  |  |  |  |  |  |
| CLRATE                                   | 0.58452                | 1.00000         | 0.71920  | 0.92872 | 0.92612 |  |  |  |  |  |  |  |  |  |
| Learning rate vs Cost                    | 0.1681                 |                 | 0.0685   | 0.0074  | 0.0080  |  |  |  |  |  |  |  |  |  |
|                                          | 7                      | 7               | 7        | 6       | 6       |  |  |  |  |  |  |  |  |  |
| RLRATE                                   | 0.95063                | 0.71920         | 1.00000  | 0.63923 | 0.61896 |  |  |  |  |  |  |  |  |  |
| Learning rate vs Repairs                 | 0.0010                 | 0.0685          |          | 0.1718  | 0.1901  |  |  |  |  |  |  |  |  |  |
|                                          | 7                      | 7               | 7        | 6       | 6       |  |  |  |  |  |  |  |  |  |
| CCLRATE                                  | 0.45699                | 0.92872         | 0.63923  | 1.00000 | 0.99877 |  |  |  |  |  |  |  |  |  |
| Learning rate vs Call center             | 0.3622                 | 0.0074          | 0.1718   |         | <.0001  |  |  |  |  |  |  |  |  |  |
|                                          | 6                      | 6               | 6        | 6       | 5       |  |  |  |  |  |  |  |  |  |
| ULRATE                                   | 0.37964                | 0.92612         | 0.61896  | 0.99877 | 1.00000 |  |  |  |  |  |  |  |  |  |
| Learning rate vs Upgrades                | 0.4579                 | 0.0080          | 0.1901   | <.0001  |         |  |  |  |  |  |  |  |  |  |
|                                          | 6                      | 6               | 6        | 5       | 6       |  |  |  |  |  |  |  |  |  |

## #2 Professional experience (Table 4 - Support)

| 5 Variables:      | PLR_R | CPE | RPE | CCPE | UPE |
|-------------------|-------|-----|-----|------|-----|
| State State State | 3.1   |     |     |      |     |

|          | Simple Statistics |         |         |          |         |         |                                          |  |  |  |  |  |
|----------|-------------------|---------|---------|----------|---------|---------|------------------------------------------|--|--|--|--|--|
| Variable | N                 | Mean    | Std Dev | Sum      | Minimum | Maximum | Label                                    |  |  |  |  |  |
| PLR_R    | 7                 | 2.45017 | 3.83550 | 17.15118 | 0.14286 | 9.00090 | Professional experience vs Learning rate |  |  |  |  |  |
| CPE      | 7                 | 2.52380 | 2.60241 | 17.66660 | 0.33330 | 7.00000 | Cost vs Professional experience          |  |  |  |  |  |
| RPE      | 7                 | 3.36190 | 2.76991 | 23.53330 | 0.20000 | 7.00000 | Repairs vs Professional experience       |  |  |  |  |  |
| ССРЕ     | 7                 | 2.65533 | 2.90942 | 18.58730 | 0.11110 | 7.00000 | Call center vs Professional experience   |  |  |  |  |  |
| UPE      | 5                 | 4.44000 | 2.89275 | 22.20000 | 0.20000 | 7.00000 | Upgrades vs Professional experience      |  |  |  |  |  |

|                   |        |   |     |    |   |   |    |   |        |    | 5 | Scat | ter | Plo | t Ma | trix |   |     |        |   |   |    |    |   |    |
|-------------------|--------|---|-----|----|---|---|----|---|--------|----|---|------|-----|-----|------|------|---|-----|--------|---|---|----|----|---|----|
|                   | 0      | 2 | 4   | 6  | 8 | 3 | 1  | 1 |        |    | 1 | 0    | 2   | 4   | 6    | i.   | ĩ | ĩ   | 1      |   | 0 | 2  | 4  | 6 |    |
| 8 -<br>4 -        |        | I | PLR | _R |   |   | ۰  |   | 0      |    |   | 00   |     |     |      | 000  |   |     |        |   | 0 |    |    |   | ]  |
| 0-                | _      |   |     |    |   |   | 00 | > | _      | ٥  | 0 |      |     | >   | ٥    | 00   |   |     | ۰      | 0 |   | ٥  | 0  | 0 | F  |
| -                 | 0<br>0 |   |     |    |   | 0 |    |   | CP     | E  |   |      |     |     | 0    |      |   |     | ٥      | 0 |   |    |    | 0 | -  |
| -                 | 8      |   |     |    | • |   |    |   | -378 V |    |   |      | 8   | 3   |      | 000  |   |     | ۰      |   | ľ | •  | 0  |   | È  |
| s -[              | •      |   |     |    |   |   |    |   |        | 0  | ٥ | i —  |     |     |      |      |   |     | ٥      | ٥ |   |    |    | 0 | Ξ. |
| 4 -               | •      |   |     |    |   |   | 00 | , |        |    |   |      | F   | PE  |      | 00   |   |     | 0      |   |   | ٥  | 0  |   | E  |
| ۶Ą                | _      | - | _   | _  | 0 | • | •  |   | 0      |    |   |      |     |     |      | \$   |   |     |        |   | ۰ |    |    |   | ╞  |
| -                 | •      |   |     |    |   |   | 6  |   |        | ٥  | ٥ |      | ~   | •   | 0    |      | С | CPE |        |   |   |    | ٥  | 0 | -  |
| -                 | °      |   |     |    | 0 | 0 | 80 |   | ٥      |    |   | ۲    | 8   | 3   |      |      |   |     |        |   | • | ۰  |    |   | È  |
| 3 -<br>4 -<br>2 - | • • •  |   |     |    |   |   | 0  |   |        | 0  | 0 |      | 0   |     | 0    | •    | 6 |     | 0<br>0 | ٥ |   | UF | ΡĒ |   | ŀ  |
| 5-                | -      | - |     | -  | - | ۰ | 4  | - | •      |    |   | ŀ    |     |     |      | ŀ    |   |     |        |   | Ļ |    |    | _ | F  |
|                   |        |   |     |    |   |   | 0  | 2 | 4      | L. | 6 | -    |     |     |      | 0    | 2 | 4   | 6      | ; | · |    |    |   |    |

| Pearso                                   | on Correlation C | Coefficients |          |          |          |
|------------------------------------------|------------------|--------------|----------|----------|----------|
| Pro                                      | b >  r  under H0 | : Rho=0      |          |          |          |
| Nı                                       | mber of Observ   | vations      |          |          |          |
|                                          | PLR_R            | СРЕ          | RPE      | ССРЕ     | UPE      |
| PLR_R                                    | 1.00000          | -0.18975     | -0.75979 | -0.56617 | -0.82991 |
| Professional experience vs Learning rate |                  | 0.6836       | 0.0475   | 0.1852   | 0.0820   |
|                                          | 7                | 7            | 7        | 7        | 5        |
| СРЕ                                      | -0.18975         | 1.00000      | 0.75544  | 0.72803  | 0.56350  |
| Professional experience vs Cost          | 0.6836           |              | 0.0495   | 0.0636   | 0.3225   |
|                                          | 7                | 7            | 7        | 7        | 5        |
| RPE                                      | -0.75979         | 0.75544      | 1.00000  | 0.82640  | 0.95036  |
| Professional experience vs Repairs       | 0.0475           | 0.0495       |          | 0.0219   | 0.0132   |
|                                          | 7                | 7            | 7        | 7        | 5        |
| ССРЕ                                     | -0.56617         | 0.72803      | 0.82640  | 1.00000  | 0.93042  |
| Professional experience vs Call center   | 0.1852           | 0.0636       | 0.0219   |          | 0.0218   |
|                                          | 7                | 7            | 7        | 7        | 5        |
| UPE                                      | -0.82991         | 0.56350      | 0.95036  | 0.93042  | 1.00000  |
| Professional experience vs Upgrades      | 0.0820           | 0.3225       | 0.0132   | 0.0218   |          |
|                                          | 5                | 5            | 5        | 5        | 5        |

#3 Call center (Table4 – Support)

| 5 Variables: | CCLRate_R CCPE_R | CCCost_R CCR_R | UCALL |
|--------------|------------------|----------------|-------|
|              |                  |                |       |

|           | Simple Statistics |         |         |          |         |         |                                        |  |  |  |  |  |  |
|-----------|-------------------|---------|---------|----------|---------|---------|----------------------------------------|--|--|--|--|--|--|
| Variable  | N                 | Mean    | Std Dev | Sum      | Minimum | Maximum | Label                                  |  |  |  |  |  |  |
| CCLRate_R | 6                 | 2.23785 | 2.71984 | 13.42707 | 0.14286 | 6.99790 | Call center vs Learning rate           |  |  |  |  |  |  |
| CCPE_R    | 7                 | 2.93457 | 3.64708 | 20.54196 | 0.14286 | 9.00090 | Call center vs Professional experience |  |  |  |  |  |  |
| CCCost_R  | 7                 | 2.38244 | 3.37776 | 16.67709 | 0.14286 | 9.00090 | Call center vs Cost                    |  |  |  |  |  |  |

|          | Simple Statistics |         |         |          |         |         |                        |  |  |  |  |  |
|----------|-------------------|---------|---------|----------|---------|---------|------------------------|--|--|--|--|--|
| Variable | N                 | Mean    | Std Dev | Sum      | Minimum | Maximum | Label                  |  |  |  |  |  |
| CCR_R    | 7                 | 1.71577 | 3.23243 | 12.01042 | 0.14286 | 9.00090 | Call center vs Repairs |  |  |  |  |  |
| UCALL    | 5                 | 4.60000 | 3.57771 | 23.00000 | 1.00000 | 9.00000 | Upgrades vs Call       |  |  |  |  |  |

| 0   | 2  | 4     | 6  |    |     |     |   | 0 2 | 4 6    | 8  |    |     |     |   | 2 | 4    | 6  | 8      |
|-----|----|-------|----|----|-----|-----|---|-----|--------|----|----|-----|-----|---|---|------|----|--------|
| 1   | 1  | - É   | 1  |    | 1 1 | 1.1 |   | 1 1 | 1 1    | Ĩ. | 1  | 1   | - 1 | 1 | 2 | 4    | ĩ  | ĩ      |
| -   |    |       |    |    |     | •   |   |     | 0      |    | 0  |     |     |   |   |      |    | ۰      |
| 1   | cc | LRate | _R |    | 0   |     | • | •   |        | ٥  | 0  |     |     | 0 |   |      |    |        |
| L   |    |       |    | •  |     |     |   | ••  |        |    | •• |     |     |   | 0 | ٥    | 0  |        |
| ┦   |    | ٥     |    | ,  |     |     |   |     | 0      | 0  | 0  |     |     | ۰ |   |      |    | 0      |
| -   |    | 0     |    |    | CCF | E_R |   |     |        |    |    |     |     |   |   |      |    |        |
| - • |    | v     |    |    |     |     |   | •8  |        |    | •8 |     |     |   | 8 | 0    | 0  |        |
| -   |    | 0     |    | 1  |     |     | • |     |        |    |    |     |     | 0 |   |      |    | —      |
| -   |    |       | ¢  | ·  |     | ٥   |   | co  | Cost_R |    | •  |     |     |   |   |      |    | 0      |
| - 8 |    | ۰     |    | 80 | ٥   |     |   |     |        |    | •• |     |     |   | • | 0    | 0  |        |
| -   |    | ٥     |    |    |     |     | • |     |        | ٥  |    |     |     |   |   |      |    | $\neg$ |
| -   |    |       |    |    |     |     |   |     |        |    |    | CCR | _R  |   |   |      |    |        |
| - 8 |    | ٥     | c  | 80 | ٥   | 0   |   | ••  | ٥      |    |    |     |     |   | ۰ | ٥    | 0  | •      |
| -   |    |       | c  |    |     | 0   | ٦ |     | 0      |    | •  |     |     |   |   |      |    |        |
| 0   |    |       |    | 0  |     |     |   | 0   |        |    | 0  |     |     |   |   | UCAL | L. |        |
| 6   |    |       |    | 00 |     |     |   | •   |        |    | •  |     |     |   |   |      |    |        |

|                                        | Pearson Correlation | Coefficients |          |          |          |
|----------------------------------------|---------------------|--------------|----------|----------|----------|
|                                        | Prob >  r  under H  | 10: Rho=0    |          |          |          |
|                                        | Number of Obse      | rvations     |          |          |          |
|                                        | CCLRate_R           | CCPE_R       | CCCost_R | CCR_R    | UCALL    |
| CCLRate_R                              | 1.00000             | 0.78228      | 0.56784  | 0.12291  | 0.68313  |
| Call center vs Learning rate           |                     | 0.0659       | 0.2398   | 0.8166   | 0.3169   |
|                                        | 6                   | 6            | 6        | 6        | 4        |
| CCPE_R                                 | 0.78228             | 1.00000      | 0.93793  | 0.71202  | 0.63097  |
| Call center vs Professional experience | 0.0659              |              | 0.0018   | 0.0727   | 0.2537   |
|                                        | 6                   | 7            | 7        | 7        | 5        |
| CCCost_R                               | 0.56784             | 0.93793      | 1.00000  | 0.85850  | 0.52732  |
| Call center vs Cost                    | 0.2398              | 0.0018       |          | 0.0134   | 0.3612   |
|                                        | 6                   | 7            | 7        | 7        | 5        |
| CCR_R                                  | 0.12291             | 0.71202      | 0.85850  | 1.00000  | -0.86326 |
| Call center vs Repairs                 | 0.8166              | 0.0727       | 0.0134   |          | 0.0594   |
|                                        | 6                   | 7            | 7        | 7        | 5        |
| UCALL                                  | 0.68313             | 0.63097      | 0.52732  | -0.86326 | 1.00000  |
| Call center vs Upgrades vs             | 0.3169              | 0.2537       | 0.3612   | 0.0594   |          |
|                                        | 4                   | 5            | 5        | 5        | 5        |