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ABSTRACT

In my thesis I explore the problem of optimizing trading strategies for complex portfolio
transitions. Institutional investors run into this issue during periodic portfolio rebalancing
or transition between asset managers. The costs of rebalancing can be broadly broken into
trading costs (both the transaction cost and the market impact) and the opportunity costs
of delaying the execution and bearing the risk of current-to-target portfolio divergence.
This thesis proposes a methodology for measuring the opportunity cost as well as a
strategy that minimizes the proposed measure through optimal portfolio transition
execution. The benefits from the proposed trading strategy are benchmarked against the
industry standard portfolio trading practices.
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1. Introduction

Institutional investors periodically reallocate their portfolios to shift the asset mix

or reshuffle investment managers. They face a variety of costs when they undertake

these transitions, including commissions, bid-ask spreads, opportunity cost, and market

impact.' Commissions and crossing bid-ask spread are relatively well researched and are

straight-forward to quantify. Opportunity cost refers to adverse changes in price arising

from exogenous market forces, while market impact refers to adverse price movements

that occur in response to the purchase and sale of securities. Opportunity cost and market

impact are especially interesting both because they represent the largest share of total

trading cost and because investors can influence their magnitude by how they trade.

I explore an algorithm for determining the optimal sequence and size of trades

that minimize opportunity cost for portfolio transitions. The proposed algorithm differs

from the examined industry-standard practices in that it aims to minimize the opportunity

cost. Our primary concern is with minimizing the value deviation between the legacy

("from") and the target ('to") portfolios rather then the absolute performance of a single

security or a group of securities targeted for a purchase or a sale. As standard in the asset

custody business, I assume the investor does not use leverage to execute the transition

and hence the trades are constrained to be self-financing.

1.1. Portfolio Manager Transitions

Institutional investment committees and plan sponsors manage or oversee taxable

corporate and tax-exempt endowment, pension or foundation funds. Their investment
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decisions are bound by the fiduciary responsibility and code of conduct standards

stemming from the 1974 ERISA federal statue. Among those, is the requirement to

review the investment performances at reasonable intervals and evaluate if the fiduciary

iishould continue using the current mix of service providers or look for replacements

The emphasis on the decisions of the institutional investors stems from the dominant

position of the institutional equity and bond funds in the US asset management

marketplace. As of December 2000, institutional funds represented $6,646 B compared to

$4,770 B of the retail equity and bond holdings. The institutional portfolios are far more

concentrated in size and more actively supervised, evaluated and managed. This presents

the challenge and the opportunity of minimizing transition costs whenever an investment

committee decides to re-allocate their assets among its managers or the universe of

investment strategies and styles.

The details of the investment evaluation and subsequent allocation decisions have been

explored by Heisler et al (2006)i' as well as Goyal and Wahal (2006)'v, the latter of

whom had built a unique dataset of asset managers' hiring and firing decisions by 3,591

plan sponsors from 1994 to 2003. The plan sponsors took into account managers'

performance, investment style as well as own risk tolerance and forward-looking market

views in allocating funds among 7,153 equity bond and hybrid mutual funds (as of 2003).

Allocations to Hedge Funds and Private Equity partnerships fall outside our domain of

analysis due to the fact that such transitions are almost always based on cash transactions
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(either withdrawals or investments) and would not trigger portfolio rebalancing trades.

Rather, such investments would likely lead to portfolio liquidation challenges studied at

length by Almgren and Chriss (1999, 2000, 2003), Liu and Loewenstein (2002) and Rosu

and Lo (2004) among others.

In particular, Goyal and Wahal's study describes 9,214 manager transition events over 10

years involving $636 B, or roughly 35 portfolio transitions per week. If we could

minimize the transition cost by even a few bips, the value to the asset management

community would be economically meaningful $63.6 M per bip of savings over the past

ten years alone.

1.2. Research goal

I explore a methodology for measuring and optimizing one of the three costs that

constrain optimal portfolio rebalancing - the opportunity cost. The goals of this study are:

" to analyze the present industry-standard portfolio rebalancing and trading

strategies

" propose a measure of the opportunity cost

" derive a portfolio trading optimization (PTO) methodology that would improve on

the present industry practices

* measure and quantify the improvement
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2. Portfolio Trading Research Review

Most of the existing Portfolio Trading research and analysis has been concentrated on the

task of estimating the liquidation value and the cost of trading individual equity positions

or portfolio consisting of these individual equities. The classical papers on the subject are

those by Robert Almgren and Neil Crissv (1997, 2000), Bertsimas and Lovi (1998), Barra

Market Impact Handbook (1997)v" and Andre Peroldvi' (1988).

My research has been inspired by the work of Mark Kritzman, Simon Myrgren and

Sebastien Page on "Optimal Execution for Portfolio Transitions" (2005 draft, upcoming

in JPM in the summer of 2006).

3. Proposed Optimal Portfolio Trading Methodology

Kritzman, Myrgren and Page paperi proposes a portfolio trading optimization (PTO)

method based on the principal of minimizing portfolio trading tracking error. The

tracking error (squared) is defined as a function of the securities in the current ("from"),

the target ("to") portfolios and the proposed trades, as shown in Equation (1):

TE 2 (kUEN+wA~) **(k~ w 1T (=WCURRENT W ARGET + WJN)

-or -

(w-legacy)*Sigma* (w-legacy + w-delta)= (w-legacy) * Sigma *

1 My algorithm for portfolio transition is motivated by Sharpe (1987). Sharpe showed that by calculating
the derivatives of quadratic utility with respect to portfolio weights and then continually shifting the
portfolio weights from the security with the lowest derivative to the one with the highest derivative, one
arrives at the mean-variance efficient portfolio when all the derivatives are equal. We apply this insight to
derive our algorithm for minimizing tracking error as a function of the sequence and size of trades.
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Where: wk = relative portfolio weights of the securities in the legacy and target

portfolios after the kth trade. Sum of the weights should add up to one.

w,= the vector of relative weights corresponding to each proposed

transaction. For example, buying security #1 and selling identical

dollar amount of security #3 would be represented as

W.= [w 0 - w ... ] Net sum equality of relative weights with

zero (0) ensures that all trades are self financing.

= covariance matrix of the securities in the two portfolios

(Wk U ET) is effectively a vector of delta portfolio

weights, defined as (WTarget - WLegacy)

Taking the partial derivative of TE with respect to the proposed trades will give us the

ranking of the sensitivities of the tracking errors with respect to the potential trades. The

derivative with the highest values will reduce the TE the most and the corresponding

pair-trade should be executed first.

dTE 2
= 2W + 2Yw, (2)

To find the optimal trade size for the security with the highest TE derivatives, we find

the point where the two marginal TE derivative values are equal (dTE = dTEB) on both

the long and short legs of the proposed trades. Taking partial derivatives of two sample
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positions (i.e.: assets 'A' and 'B') w.r.t. individual security weights, we can rewrite

equation [2] as:

dTE =aa + PAw (3)

dTE' =aB (4)

Solving the two equalities for the trade size yields a linear relationship and the

optimal trade amount where the marginal TE decays are equal:

aB +Bw-aA +PAW (5)

aB aA(6
WOPTIMAL - PA - PB

After we identify the optimal long and short legs of the pair trade and their

corresponding optimal trade quantities, we need to impose an additional constraint of

trading the smallest amount of the two quantities. As a result, the larger quantity will

remain the optimal trade leg for the next round of trade selection, but its opposite optimal

leg of the pair trade will be different in the next round.

As we execute the proposed trades, we adjust the "from" and the "to" portfolio

weights by the optimal trade size of both legs of the pair trade. This optimization process

will continue iteratively until all outstanding trades are prioritized and quantified,

bringing the "from" and the "to" portfolio vector weights into equality.
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It is conceivable that the trade sizes will be either too large (and would require

significant market impact penalty to execute) or too small (trade thrashing). A simple

solution to this problem would be to further constraint both the maximum (as a % of

average daily volume) and the minimum trade size to avoid these issues.

This trading strategy need not to be optimized and executed in real-time. Instead, we

can pre-optimize the trading path and queue the trades through the execution algorithm of

choice while the trader could add value by actively watching the market for temporary

pricing inefficiencies that could be exploited outside of the recommended trading

strategy. While the human trader is capable of exploiting alpha-generating trading

opportunities, our strategy can be used to re-optimize the remaining portfolio weights as

they experience unplanned shifts due to human interventions. The methodology is

flexible enough to support both real-time trading optimization, pre-optimized trading

strategy derivation as well as the combination of the two.

4. Data

The data for much of the list of publicly traded securities and their daily price attributes

came from Bloomberg.

The initial data download produced the list of 4916 publicly listed equity tickers, their

descriptive data (market capitalization, GICSx industry designation, 360-day annualized
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volatility) and daily closing prices for the period of 90 trading days preceding August 7th

2006. After the price quote pull was completed, additional 186 equities with missing

pricing data points were dropped reducing the total population to 4730 publicly listed

companies. Where price data was available but descriptive information missing, the

missing data was populated from either Bloomberg's own industry descriptive fields or

from finance.yahoo.com and studio.financialcontent.com

Sector-specific return matrices were calculated on the equal-weighted (arithmetic

average) basis of available returns per each GICS sector.

The samples of complex portfolio transaction tasks came from real-world portfolio re-

balancing orders courtesy of Ross McLellan of the State Street Global Markets.

Complete data sets of historical prices and sample trade portfolio allocations are available

upon request.

4.1. Data overview

The sample "buy" and "sell" portfolios containing 4,020 securities served as a model for

analyzing the real-world implications of the portfolio trading method explored in this

paper. These portfolios were derived from a real world rebalancing scenario on a roughly

$1B client portfolio.

13



From my universe of 4730 publicly traded US equities, I collected empirical observations

on two types of portfolio transitions.

The first comparison was based of a real-world portfolio obtained from a well known

Boston-area asset custody firm. The portfolio's original trade list contained 122 "buys"

representing 19.26% of the overall portfolio value of $965,944,646.00. The 1,983 "sells"

represented 18.88% of the overall portfolio value. The difference in quantity between the

numbers of equities comprising "buy" vs. "sell" portfolios is purely coincidental and is

the result of client's asset allocation change.

Buys Sells
Portfolio Size $965,462,368
# of equities 122 1983
fraction portfolio value 0.192596472 0.188799943
$ starting value $185,944,646.18 $182,279,240.21
average order (#, shares) 60,170 4,883
min order (#, shares) 800 100
max order (#, shares) 242,197 117,800
average order ($$) $ 1,524,136 $ 91,921
min order ($$) $ 328,563 $ 1,364
max order ($$) $ 3,680,585 $ 653,250

Of the original 122 "buys", 2 equity trades were missing identifying tickers and were

dropped from the sample portfolio. This had the cumulative effect of reducing the "buy"

portfolio fractional value by 0.12%, or $1,164,756. Likewise, 33 "sell" tickers were

missing and were dropped. The dropped "sell" trades represented 0.15%, or $1,461,957

of the portfolio. The net of these changes were inconsequential to the test performed.
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The second comparison algorithms' performance comparison was based off random

portfolios of varying size, drawn from the equity population and assigned random

weights. The random portfolio construction methodology has allowed me to verify the

observations from the one-off real-world portfolio and explore the effects of portfolio

size and composition on the OPT strategy performance. The results were similar to those

derived from examining a sample real-world portfolio and are reported below.

4.2. Data limitations

I have concentrated my analysis on the publicly traded US equities. To the extent that

portfolio transactions called for trades in foreign-listed equities, they were dropped from

the sample portfolio and their relative economic value redistributed among the remaining

assets.

My analysis is based on the data collected and applied to the US public markets.

However, there is nothing in the proposed method, that we are aware of, that would limit

its application to foreign equity markets. In fact, this method could be logically extended

to work on any publicly traded securities (i.e.: fixed income and derivate products).

However, the data availability and the sampling error in analyzing relatively illiquid asset

classes would require careful consideration.

For the purpose of exploring the effect of substituting individual equity covariance

observations with those of its sector, the sector covariance was derived from an equal-

weighted (arithmetic average) of returns for each GICS sector. An alternative metric of
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market-weighted returns could be computed but would be expected to produce similar

covariance values. In practical terms, computing market-weighted index required relying

on the availability of the market weights for each of the 4730 equities in my universe.

282 further market cap values were missing from my universe. While I have no reason to

suspect a biased omission of that market-cap data, such a suspicion could not have been

cleared without further data analysis.

The task of testing and applying this method to international portfolios denominated in

multiple currencies would present another order of complexity in adding the currency

exposure and discontinuous trading horizons (time-zones) risks to the optimization. The

former could be simplified by assuming we would treat our international portfolio as US$

denominated by hedging-away the currency risk at the portfolio level. The latter presents

a structural problem of trading in the markets were one can not execute the long and the

short legs of a pair trade at one continuous point in time. One could imagine short-term

hedging TE execution risk through international markets' futures. However, the method

of executing optimized pair trades would be severely compromised in practice if such a

trade can not be put on at a singular point in time.
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5. Numerical Analysis

In quantifying the practical benefits of the proposed portfolio trading strategy, I need to

benchmark it against the existing industry norms. This will allow me to measure the

benefit out the proposed method in minimizing the Tracking Error (TE) relative to the

status quo. The second benefit is in freeing me from the practical complications of

selecting and fitting a market model. For the purpose of this research effort, I will

concentrate my analysis on estimating the relative improvement derived from employing

the proposed PTO method from the industry standard approach of minimizing sector

imbalances during transition.

The industry-standard practice calls for prioritizing trades around the goal of minimizing

intra-sector imbalances by dollar-value exposure. In this way, the largest dollar

imbalances will get traded away ahead of the positions requiring the smallest net dollar

adjustments.

As the benchmark, we will rely on the industry standard approach of striving for balanced

sector weights between the "from" and the "to" portfolios.

5.1. Implementation Roadmap

The PTO method takes three key inputs: the covariance matrix of individual securities

and the relative weights of the "from" and the "to" portfolios. The sum of initial weights

of the two portfolios is standardized to add up to one.
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I construct my covariance matrix based off the daily closing prices of publicly listed US

equities taken during the 90 day period ending on August 7th 2006.

The "to be traded" or "delta weights" portfolio is defined as the vector weight difference

between the "From" and the "To" portfolios). The "sell" or "over-weight" positions are

represented by negative delta weights. The "buy" or "under-weight" positions have

positive delta weight values.

The portfolio of delta weights will gradually decay to zero with each trade as the

portfolio transition is progressing.

I than proceed to construct three (3) trading paths:

1. The baseline relying on the balanced-sector approach

2. The proposed PTO method

3. The modified-PTO method that proxies individual equities' covariance with the

covariance attributes of their corresponding sectors. This third approach could be

employed for the assets that are missing historical data or which are highly

illiquid, resulting in biased record of historical prices.

After each trade, I update the "delta weights" vector and measure the estimated tracking

error (TE) of the remaining positions until the portfolio transition is complete. The

cumulative TE measures are tracked for all three paths so that the TE-improvement effect

from all three strategies can be measured.
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In the end, I plot all three TE decay paths as a function of portfolio transition progress.

The transition progress is measured by the percentage reduction in the delta weights

portfolio from the original amount that is defined as the sum of absolute values of all

delta weights.

5.2. Practical Implementation Details and Assumptions

Computing the historical covariance matrix for the individual equities is an area open to

further research. For the purpose of this experiment, I relied on 90 days of historical daily

closing prices. For the equities whose historical return streams were unavailable, I set the

default historical return stream to zeros. As a practical matter, the optimal covariance

matrix estimation can be implemented as a stand-alone module that would refresh the

data on the period basis and cached in memory to minimize the run-time complexity.

Given two portfolios' vector weights: "from" and the "to", I compute the delta transition

positions' vector that becomes my "to be traded" requirements. The weights in the vector

are computed as fractions of one (1) representing the relative weight of those positions to

the overall portfolio value. The weights can be either positive (the positions need to be

accumulated) or negative (reduced).

All three methods (PTO, modified- PTO and the baseline) will generate trading lists that

side-step the issue of optimal trading size for the reasons stated earlier. For practical
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purposes, these lists can be fed to the trading algorithm of choice. It is my expectations

that the trading strategy and the resulting market impact between the two trading

strategies will be roughly equivalent, ceteris peribus. The alternative of simultaneously

optimizing for both the minimum TE and Market Impact is both computationally

unbounded and requires extensive Market Impact modeling and calibration.

The high-level architectural outline of the software implementation is shown in the

appendices.

5.3. Computational Efficiency Analysis

Both the OPT (modified-OPT is computationally equivalent to core OPT) and the

baseline methods generate recommended trade sequences. The computational complexity

of generating this sequence for the baseline (minimal sector imbalance) method is linear

due to the fact that the trade size for each asset is bounded only by the size of that asset in

the delta weights portfolio. The baseline method never fragments that asset trades and

therefore produces an N-order computational complexity (where N is the length of the

delta weights vector).

The OPT method does fragment the asset trades at the exact weight where the marginal

TE of a given asset is superseded by that of another. Therefore, the computational

complexity of the OPT method is significantly greater for at least two core computational

loads:
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1. Calculating the threshold of marginal TE improvement for alternative trades (worst

case scenario order-N for each path through the delta weights portfolio)

2. Re-optimizing the trade for the same asset due to the fact that preceding trades only

reduced it delta weight by the "optimal" amount as computed in item #1.

From the computational efficiency perspective, the OPT method theoretically unbounded

outside of the minimum trade size constraint of 1 share. At the extreme end of the

computational complexity, all optimal trades could be 1 share in size and required N^2

for each asset type to generate (first path to look for the optimal buy/sell pair indices and

the second subsequent path to optimize the size of each buy/sell trade). Therefore, the

worst-case scenario complexity will be: NA(2 * [# of shares to be traded]). This would

result is a computationally suffocating complexity and execution time for a portfolio of

any meaningful size.

However, the worst-case situation is neither the likely outcome, nor is it inevitable. One

simple solution is introducing a minimum trade size constraint that would require trading

of a certain amount of shares once the asset is picked for trading. For example, we could

require trading at least 0.1% of average daily volume (ADV) or 1 % of assets size in delta

weight portfolio. This way the worst-case scenario computational complexity will be

bounded by: N^(2 * [ 1 / (average minimum asset size fraction) ] ). For the worst case of

a portfolio of equally distributed asset sizes (all delta weights equal to each other) and the

hypothetical minimum limit of 1% of individual asset's weight, the computational

21
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complexity will be: N A(N/50). Still not pretty (NAN never is), but at least a well-defined

outcome and a significant improvement on the previous worst-case scenario.

In reality, the empirical computational complexity, as measured by time required to

generating a trade list as a function of portfolio size, growth as follows:

Baseline 't' -- w PTO t'

700

600

500

400

300

200

100

0
10 50 90 130 170 210 250 290 330 370 410 450 490 530 570 610 650

As demonstrated by the graph above, the time it takes to generate the optimal PTO

strategy (as the number of trades that comprise it - see Appendix 8.1 for details) grows

exponentially with the number of securities comprising the portfolio. The growth path

graphed above is a bit jagged due to the sample size of one for each portfolio size

increment.

Another measure of variability of the computational complexity is how the trade list

length and the time it takes to compute it vary from one equal-sized portfolio to the next.

22
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Below is an output from just such a test on 50 optimization runs of 1 00-equity large

portfolios with the "minimum trade size" constraint set to 1OA-6 (roughly $1,000 trade on

$1B portfolio):

Portfolio Size: 100 Baseline OPT mod-OPT
Sample Size: 100 time # trades time # trades time # trades
Mean 0.0195 100 1.761522 1190.184 0.157988 126.6741
Stand Dev 0.0034 0.0 0.287327 168.379 0.018514 8.093

The variability of the length of the trading list is by far the greatest with our OPT

strategy.

Size: Baseline OPT mod-OPT
100 time # trades time # trades time # trades

Mean 0.02031 100 1.781082 1181.906 0.161645 126.263
Stand Dev 0.01257 0.0 0.372172 166.894 0.032108 7.748

120

Since the histogram of OPT-generated # of trades
100

is roughly normal, I ran a t-test to compare the
80

means of the two tests. The test failed to reject Ho
60

that the two populations are different with

significance of 0.4713 and confidence interval of 20

[-28.6503, 13.2601] 0_E
600 800 1000 1200 1400 1600 1800

Leaving all else equal but raising the "minimum trade size" constraint set to 1 0 A-5

(roughly $10,000 trade on $ 1B portfolio) yields no statistically significant improvement

in the trade quantity fragmentation.
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6. Results

The results reported below are based on two categories of observations: random portfolio

samples drawn from the population of equities and a sample real-world portfolio.

6.1. Simulation results

First, I ran a simulation on 50 portfolios (sample size = 50) of 100 randomly selected

real-world equities with randomly assigned trading requirements (delta weights). I

measured the tracking error (TE) decay for each of those 50 portfolios between the PTO,

the modified-PTO (using sector returns and covariances in place of actual equity returns

and covariances) and the sector-neutrality baseline method. The sample statistics for the

PTO vs. Baseline and modified-PTO vs. Baseline cumulative TE decay out-performance

are summarized in the table below:

Baseline - PTO Baseline -Mod-PTO
Min 46.32% -72.03%

Max 71.37% 16.93%

t-test 60.68 -4.39

Median 58.70% -15.78%

The proposed PTO method has consistently and statistically significantly outperformed

the Baseline method in every single experiment, by an average TE improvement of

59.26%. That is to say that over the sample space of 50 experiments, the average

cumulative TE exposure of the PTO strategy was 59.26% lower than that of the baseline.

Observing a graph of a one sample run below (one can not graph an "average" run since

all 50 random portfolios had different TE decay paths and number of trades), the area
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below the PTO [yellow] curve is 59.26% less than the area below the [blue] baseline

curve, on average.

Modified-PTO strategy is a statistically significant under-performer at the 5% confidence

level, though it had randomly out-performed the Baseline on 36% sample runs. Modified-

PTO relied on the strategy covariance in place of individual equity covariance. However,

it used the actual equity covariances to calculate the tracking error. Not surprisingly, the

modified-PTO method is "flying blind" and is consistently failing to deliver an

improvement on the baseline. Its performance, as measured by TE decay, averaged out to

be - 16.66% that of the baseline. As measured by the TE decay, modified-PTO had

underperformed all three trading strategies. However this outcome is a predictable result

of the experiment set-up. The impetus to explore proxying individual covariances comes

25
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from the difficulty of estimating forward-looking covariance values even for the

continuously trading securities. For illiquid securities, or the ones with unavailable

historical data requires, such estimates may be hard to derive. Modified-PTO approach

will need to be re-examined during the future in-/out-of-sample covariance estimation

experiments.

The exact path of TE decays for each of the three strategies varied with each experiment.

However, in all experiment, the PTO had outperformed the baseline while the modified-

PTO's results were unpredictable and on average, the worst of the three strategies.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

# trades

Averale TE PTO vs. Baseline mod-PTO vs. Baseline

3.126% 3.126% 3.126%
3.044% 2.658% 2.990% 0.386% 12.7% 0.054% 1.8%
2.942% 2.027% 2.768% 0.914% 31.1% 0.174% 5.9%
2.760% 1.507% 2.688% 1.253% 45.4% 0.072% 2.6%
2.573% 1.094% 2.613% 1.479% 57.5% -0.039% -1.5%
2.116% 0.759% 2.464% 1.356% 64.1% -0.348% -16.5%
1.992% 0.493% 2.071% 1.499% 75.3% -0.079% -4.0%
1.420% 0.316% 1.810% 1.104% 77.8% -0.391% -27.5%
1.194% 0.193% 1.518% 1.001% 83.8% -0.324% -27.2%
0.510% 0.099% 1.380% 0.411% 80.6% -0.870% -170.6%
0.077% 0.014% 0.889% 0.063% 81.5% -0.811% -1049.9%

100 30,127 23,408

Average number of trades was predictably equal to the size of the portfolio for the

baseline method (order N), and roughly order 3*NA(N/50) for the PTO method. Modified

PTO's complexity falls between the two.
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6.2. Real-world results

The second type of empirical analysis was based on quantifying TE decay on a real-world

portfolio transition consisting of 4020 individual equities from a $1B portfolio in custody

of a Boston-area asset management firm. As this portfolio represented both a real-world

trading task as well as a large-scale trading optimization problem, it served as an

interesting test of the how well my sampling methodology would predict a real world

situation.

This was one of the larger portfolio optimization tasks that I have run through my three

trade optimization strategies. Both in terms of portfolio size as well as the time it took to

optimize the trading strategies. 395 of 4020 equities did not have price history and their

returns were substituted with zeros for the purpose of constructing the covariance matrix.

The computational time required (in seconds) to optimize the trading strategies and the

resulting number trading instructions for this portfolio were:

Time (sec) Time (min) # of Trades
Baseline 475.46 7.9 4020
PTO 5323.9 88.7 4021
Mod-PTO 4695 78.3 4021

It took 5323.9 seconds (88.7 minutes) for PTO to generate the optimal trading strategy on

a 1,700 Mhz Intel Pentium M processor with 600 Mhz bus and 1.5 Gigs of RAM. The

resulting PTO trade list contained fewer than expected 4,021 individual pair trade
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instructions. As a reference point, the baseline portfolio took 7.9 seconds to generate and

predictably consisted of 4020 pair trades.

The performance of the three trading strategies is graphed below. The graph of TE decay

looks similar to those produced by the random control sample experiments. Namely, the

PTO strategy outperforms the baseline throughout by the cumulative 28.36%. The

performance of the modified-PTO is inferior by -19.69%.

- modified PTO Optimized PTO - Baseline

0.30% -

0.25%

0.2 0%X

0.15%

0.10%

0.05% .

0.00%
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
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PTO vs. Baseline

0.038%
0.055%
0.065%
0.070%
0.060%
0.038%
0.016%
0.021%
0.049%
0.023%

15.7%
25.2%
32.4%
36.9%
34.3%
24.4%
11.4%
19.6%
63.3%
95.3%

mod-PTO vs.
Baseline

0.005%
0.000%

-0.017%
-0.023%
-0.048%
-0.074%
-0.078%
-0.054%
-0.006%
-0.007%

2.2%
-0.1%
-8.7%

-12.2%
-27.8%
-47.9%
-53.9%
-49.6%

-8.2%
-28.5%

The principal difference between these real-world example and the randomly constructed

sample portfolios is the relative imbalances between a few "accumulate" orders (122 of

them) and the glut of small "reduce" orders (1983 in all). The resulting relative out-

performance over the baseline falls well within one standard deviation improvement

range around the test-sample mean.

7. Conclusion

The proposed Portfolio Trading Optimization method is an improvement on the industry

standard portfolio trading strategy of minimizing intra-sector dollar imbalances. Across

the sample of randomly drawn portfolio rebalances, the average reduction in the tracking

error was on the order of 32.95% improvement over baseline.

The vast majority of the improvement is obtained in the first 50% of the trading by dollar

volume.
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0%
10%
20%
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40%
50%
60%
70%
80%
90%

100%

0.242%
0.244%
0.220%
0.201%
0.189%
0.174%
0.154%
0.145%
0.108%
0.077%
0.024%

0.242%
0.205%
0.165%
0.136%
0.120%
0.114%
0.116%
0.128%
0.087%
0.028%
0.001%

0.242%
0.238%
0.220%
0.218%
0.213%
0.222%
0.228%
0.223%
0.162%
0.084%
0.031%
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The modified-PTO that proxies equity returns statistics with those of their sectors did not

live up to the expectations and failed to outperform the baseline.

The PTO method is easy to apply interactively with acceptable run-time performance for

portfolios up-to 1,000 assets. The exponential growth in complexity may limit the

potential for live trading strategy re-calculations on portfolios in access of 5,000 assets

without appreciable investment in computational hardware. Given the raid decline in

marginal benefits in the second half of trading, it may be computationally attractive to

explore a combination of early PTO-optimized trading with a transition to sector-neutral

trading list prioritization for the remainder of the portfolio once the majority of the

benefits have been realized.

8. Potential Future Research Directions

Areas of future research can be sub-divided into two broad categories. The first involves

calibrating and optimizing the current model. The second extends it to incorporate market

impact estimation. The latter will allow me to estimate and "firm quote" the absolute

value of all costs for a potential portfolio transition, not just the relative improvement

over a baseline.

8.1. Optimizations to the Current model

Developing the present model into a production-quality trading optimization engine will

require calibrating baseline pre-trade estimates with the post-trade observations. The key

input in our model is the individual equities' covariance matrix. At this time, I am using a
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90 daily return data points to estimate the future covariance of the returns. In practice, it

may prove worthwhile to explore more elaborate covariance sampling and estimation

methods based on historical return patterns of varying length weighted in non-linear

fashion. Further work in this direction will involve minimizing estimation error by

comparing in- and out-of-sample TE decay performance. The currently discredited

approach of proxying missing or highly volatile equity covariance estimates with sector

or industry characteristics may prove to be worthwhile in the presence of estimation

error.

Another area of current modeling optimization may involve reducing the computation

complexity that hinders optimizations of 1,000+ element portfolios. Some of the

computational complexity can be contained by marginally reducing the thoroughness of

our optimization algorithm. For example, the second-order of magnitude traversing of the

available trades during optimal trade size evaluation could be curtailed through the use of

heuristics that would come up with a less precise but more computationally efficient

estimator of optimal trade size. One extreme end of such simplification would be

identifying the optimal trading pair and executing the maximum trading size allowable

for the pair (min of the two dollar-value legs of the trade). This extreme simplification

would obviously lead to decay in algorithm's TE improvement over baseline, but the

exact magnitude of the decay may or may not prove to be a tolerable price to pay for

return of real-time performance.
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One could also explore the optimal calibration of the "minimal trade size" constraint. The

benefit would come from the ability to solve larger portfolios and implement real-time

updates to the trade-list as opportunistic trades are pursued by the human traders. The

cost would come from a marginally less optimal outcome. The exact magnitude as well

as the marginal costs and benefits of such a trade-off could be computed empirically.

A more elegant approach may involve estimating the maximum market-impact-free

volume of trading that can be executed within a given time interval (i.e.: % of average

daily volume per day) and allowing trade allocation of that magnitude without any further

optimization. Since trading in the same security may appear at different points of the

optimal trading path, combining and executing them within a discrete period of time

would result in no real-world reduction in performance as long as such combinations

would not produce additional market impact costs. However, for this approach to be

utilized, we will need to extend our model to incorporate rudimentary market impact

estimation.

8.2. Logical Extensions to the Current model

The far larger area of applying this research on the trading floor would require estimating

total cost of portfolio transition, not just relative improvements over the baseline. This

logical extension would require modeling, developing and calibrating temporary and

permanent market impact models and optimizing the absolute cost of executing a

proposed vector of trades. This effort would need to combine the research into optimal

portfolio trading with that of market impact estimation and pre-/post-trade analysis. My
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humble efforts in pursuit of this research direction were constrained by both the

complexity of modeling market impact modeling and the proprietary nature of the data

used to calibrate and validate these models. Coupled with the time limitations of writing a

master's thesis and graduating over a finite time horizon, this noble effort is left for the

pursuit by those less constrained in their access to time, market infrastructure data and

positive cash flows.

The most interesting task of trading off the market impact for tracking errors remains

elusive due to the "curse of dimensionality" in attempting to simultaneously optimize for

both the tracking error and the market impact across time. As evidenced by the

exponential growth in complexity involved in optimizing the proposed trading strategy

alone, and second order of computational complexity may prove to be unsustainable.
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9. Appendices

9.1. Computational complexity growth with Portfolio Size
Portfolio Size

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

Baseline 't'
0.02
0.02
0.02
0.03
0.03
0.03
0.03
0.05
0.08
0.05
0.06

0.081
0.07
0.08
0.09
0.11

0.1
0.14
0.18
0.16
0.19
0.21
0.24

0.281
0.311
0.35

0.362
0.391
0.45
0.48

0.551
0.57

0.621
0.641
0.699
0.751
0.832
0.961
2.173
0.942
1.142
1.853
1.102
1.162

Baseline # trades
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

PTO 't'
1.762
2.404
2.934
3.065
3.705
5.929
6.319

6.82
8.853

11.296
11.426
12.598
16.534
21.551
19.177
18.486
26.729
33.298
33.609
40.499
46.737
36.302

62.45
62.82

70.391
59.886
92.894
63.271
70.902
88.628

110.368
152.92
138.75

130.097
132.997
130.939
301.419
366.287
200.118
147.822
201.008
211.364
166.389
179.878

PTO # trades
1122
1470
1557
1415
1623
2344
2227
2209
2533
3234
3005
3008
3591
4749
3807
3224
4133
4817
5201
6123
6503
4572
7243
6438
7013
5330
9597
6008
6175
7182
8354

10582
9782
8728
8563
8097

13982
12173
10577
7522
9871

10441
8753
9364
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540
550
560
570
580
590
600
610
620
630
640
650
660

1.172
1.282
1.332
1.492
1.472
1.472
1.582
1.582
1.672
1.712
1.862
2.203
1.883

540
550
560
570
580
590
600
610
620
630
640
650
660

276.838
262.417
345.234
400.516
282.136
342.491
365.095
248.717
204.234
296.296
551.794
453.332
610.382

13720
12990
15321
17581
12304
15981
16339
10884
9112

12419
14738
17208
20482
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9.2. Code Architecture Outline

Rough outline of the program's architecture

Client Markets
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9.3. PTO Trading Algorithm (MatLab implementation)
function [trades, strategy] = tradingStrategy(weightFrom, weightTo, teCV, cv, tickers,

maxnumtrades, mintrade, verbose)
%Do input values' error checking here...
% ............
% ............
%end-of error checking
strategy = zeros(max numtrades,2); %Init the strategy tracker array
lastTrade = 0; %Local Boolean
teFlag = 0; %Print-out TE increase debug statements

% calculate the relative weigths
weights = weightFrom - weightTo;

% Calculate the derivatives
dW = 2 * cv * weights'; %TE derivatives'= largest => trade first
te = sqrt(weights * teCV * weights');

trades(1).tickers = tickers;
trades(1).te = te;
trades(1).currentAUM = sum(abs(weights));
%trades(1).weights = weights;
trades(1).buy
trades(1).sell

strategy(1,1) te;
strategy(1,2)= sum(abs(weights));

if(verbose)
msg = ['TE: ' num2str(te,'%1.6f) 'Weights:' num2str(sum(abs(weights)),'%1.4f) 'Left:

'num2str(weights)];
disp(msg);

else
msg =['Processed trade #: 0 TE: 'num2str(te,'%1.6f) 'Weights:'

num2str(sum(abs(weights)),'% 1.4f)];
disp(msg);

end

count = 2; %Sadly, MatLab does not like index 0 references
%.. .and I subsequently refer to (count-1) for comparison

while sum(abs(weights))> 0 && count <= max numtrades
if( rem(count, 1000) == 0)

msg = ['Processed trade # : 'num2str(count)' TE: 'num2str(te,'%1.6f) Weights:'
num2str(sum(abs(weights)),'%1.4f)];

disp(msg);
end
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try
% calculate the current market impact (zeros now, could model later)
mi = zeros(l, size(weights,2));

ow = find(weights > 0); %All Overweight/TO SELL indices
uw = find(weights < 0); %All Underweight/TO BUY indices

[tmp, owderiv sort] = sort(dW(ow)); %Overweight derivative indices, sorted
[tmp, uw_derivsort] = sort(dW(uw)); %Underweight derivative indices, sorted

% Step 1. Determine which assets to SELL...
% => pick highest Deriv's amongst Over/Under-weight available

% if there is more than 1 asset left to SELL... && owderiv
if length(ow)> 1 && abs(dW(ow(ow-deriysort(end))) -

dW(ow(owderiv_sort(end-1))))< 0
% sorting did not work?
sellindex = ow(ow deriv sort(max(intersect(find(weights(ow(ow-deriv-sort))>

0), find(strcmpi(tickers(ow(owderivsort)),trades(count-1).sell) == 0)))));
else

% sell the most overweight (last) one on the sort 'ow' array
if (length(ow)> 0)

%...if there is one to be sold...
sellindex = ow(owderiv_sort(end));

else
%Exception case: we are left with a 1-leg trade...
%...so pick any known 0-weight asset
zeroWeights = find(weights == 0);
sell index = zeroWeights(end); %as good as any
lastTrade = 1;

end
end

% if there is more than 1 asset left to BUY...
if length(uw)> 1 && abs(dW(uw(uwderivsort(l))) - dW(uw(uwderivsort(2))))

< eps
% sorting did not work?
buy index = uw(uw derivsort(min(intersect(find(weights(uw(uwderiv sort)) <

0), find(strcmpi(tickers(uw(uwderiv_sort)),trades(count-1).buy) == 0)))));
else

% buy the most underweight (first) one on the sort 'uw' array
if (length(uw)> 0)

%...if there is one to be sold...
buy index = uw(uwderiv-sort(l));
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else
%Exception case: we are left with a 1-leg trade...
%...so pick any known 0-weight asset
zeroWeights = find(weights == 0);
buy index = zeroWeights(end); %as good as any
lastTrade = 1;

end
end

% Step 2. Determine optimal trade SIZE for BUY/SELL orders
% => pick weight of the highest Deriv's amongst Over/Under-weight available
% => adjust until Marginal Deriv w.r.t others == 0

%INDEXES of ALL other ow/SELL candidates'
adjacents = ow(find(abs(dW(ow) - dW(sell index))> 0));
if length(adjacents) > 0

% True, unless the LAST TRADE !!!
sellShift = weights(sell index); %Initial Optimal SELL size
if all(dW(adjacents) < dW(sell index) + mi(sellindex))

% <-- ALWAYS TRUE w/MKT Impact = 0
m_fac = .5;

else
m_fac = 0;

end
for i = 1:length(adjacents)

shift = min( ...
min( -(weights*(cv(sell index,:)-cv(adjacents(i),:))' +

m_fac*mi(sell index)) / (cv(sellindexbuyindex) - cv(sell indexsellindex) -
cv(adjacents(i)...

,buy_index) + cv(adjacents(i),sell index)), weightFrom(sell index)),

min( -(weights*(cv(sell-index,:)-
cv(adjacents(i),:))'+m fac*mi(sellindex)) / (cv(sellindexbuyindex)-
cv(sell indexsellindex)-cv(adjacents(i),buy_index)+cv(adjacents(i)...

,sellindex)), weightTo(buy index)));
if shift > 0 && shift < sellShift

sellShift = shift; % Marginal derivative adjustment threshold
end

end
else

% If last trade => sell it all...
sellShift = weights(sell index);

end

%INDEXES of ALL other ow/SELL candidates'
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% (based on how much thier derivs' are behind the top guy)
adjacents = uw(find(abs(dW(uw) - dW(buy index)) > 0));
if length(adjacents) > 0

% True, unless the LAST TRADE !!!
buyShift = -weights(buy index); %Optimal BUY size
if all(dW(adjacents) > dW(buy index) + mi(buy index))

% <-- ALWAYS TRUE w/MKT Impact = 0
m_fac = .5;

else
m_fac = 0;

end
for i = 1:length(adjacents)

shift = min(min( -(weights*(cv(buyindex,:)-
cv(adjacents(i),:))'+mfac*mi(buyindex))/(cv(buyindex,buyindex)-
cv(sell index,buy_index)-cv(adjacents(i),buy index)+cv(adjacents(i),sell index)),
weightFrom(sell index)), ...

min( -(weights*(cv(buy index,:)-cv(adjacents(i),:))'+
m_fac*mi(buyindex))/(cv(buyindex,buyindex)-cv(sellindex,buyindex)-
cv(adjacents(i),buy index)+cv(adjacents(i),sell index)), weightTo(buy index)));

if shift > 0 && shift < buyShift
buyShift = shift; % Marginal derivative adjustment threshold

end
end

else
% If last 'uw' position => last trade => buy it all...
buyShift = -weights(buy index);

end

% We <MAY> want to avoid tiny trades...
% ... bump them up to min _trade size if a valid trade
% ... (beyond optimal derivative threshold = Marginal Deriv above that of all others)
sellShift = max(sellShift, min(min_trade, abs(weights(sell index))));
buyShift = max(buyShift, min(mintrade, abs(weights(buyindex))));

% Execute the trade
if (-lastTrade)

maxTradeSize = min(buyShift, sellShift);
weights(buy index) = weights(buy index) + maxTradeSize; %Buy leg
weights(sell index) = weights(sell index) - maxTradeSize; %Sell leg

else
weights(buy index) = weights(buy index) + buyShift; %Buy leg
weights(sell index) = weights(sell index) - sellShift; %Sell leg

end

%Trading is done. Now record => don't mind errors here
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try
% Record the strategy
dW = 2 * cv * weights';
te = sqrt(weights * teCV * weights');
trades(count).buy = tickers(buy index);
trades(count).sell tickers(sell index);
trades(count).tradeSize = maxTradeSize;
%trades(count).weights weights;
trades(count).currentAUM = sum(abs(weights));
trades(count).te = te;

if(te > trades(count- 1).te & teFlag & verbose) %debug moment
msg = ['TE alert: trade # ' num2str( count-i ) '=> TE was: ' num2str(

trades(count-1).te )' is: ' num2str(te)];
disp(msg);

end

strategy(count, 1)= te;
strategy(count,2) = sum(abs(weights));

if(verbose)
msg = ['TE: 'num2str(te,'%1.6f )'Weights:'

num2str(sum(abs(weights)),'%1.6f)...
'Trade size: ' num2str( maxTradeSize)' Left:' num2str(weights)];

disp(msg);
end

catch
[msgstr, msgid] = lasterr;

end %finished recording

count = count + 1;

catch
[msgstr, msgid] = lasterr;
%s = lasterror(lasterr);
msg = ['Error reading data on pass :'int2str(count- 1)':' msgstr];
disp(msg);
count = count + 1; %move on
end

end %while loop

%Convert Strategy AUM values to % of original Total AUM
%strategy(:,2) = strategy(:,2)/strategy(1,2);
strategy = strategy( 1:count-2, :);
clear tmp cv teCV;
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9.4. Baseline Trading Algorithm (MatLab implementation)
function [trades, strategy] = tradingStrategy(weights, cv, tickers, sectors,

maxnumtrades, verbose)
% Default strategy optimizes for sector neutrality:
% 1. Rank all sectors w.r.t thier intra-sector imbalances
% 2. Initiate largest $-value pair-trades from the sector with the largest
% imbalance. If a pair trade is not possible - execute single trade
% 3. Re-rank and repeat

counter = 1;

try
while sum(abs(weights))> eps && counter <= max numtrades

te = sqrt(weights' * cv * weights);
sumTrades = sum( abs(weights));

strategy(counter, 1) = te;
strategy(counter,2) = sumTrades;

%Record trade...
trades(counter).counter = counter;
trades(counter).te = te;
trades(counter).sumTrades = sumTrades;
trades(counter).positions = weights';

if(verbose)
msg = ['TE: 'num2str(te,'%1.8f) 'Left:' num2str(weights')];
disp(msg);

end

[s, maxImbalanceSector] = PrioritizeSectors(weights, sectors);

currentSectorlndices = find(sectors == maxImbalanceSector); %Over-weight/BUY
indices from equity array

%Identify the largest Under- and Over-weight positions
[tmp, rankedSectorWeights] = sort(weights(currentSectorIndices));

smallestIndex = currentSectorIndices(rankedSectorWeights(l)); %largest Buy index
(as orders are filled, deltas converge to 0

largestIndex = currentSectorlndices(rankedSectorWeights(end)); %largest Sell index
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%Execute trade
if ( weights(smallestIndex) < 0 && weights(largestlndex) > 0)

%do pairs' trade
maxTradeSize = min( abs(weights(smallestlndex)), abs(weights(largestlndex)));

weights(smallestlndex) = weights(smallestlndex) + maxTradeSize; %Buy leg
weights(largestlndex) = weights(largestlndex) - maxTradeSize; %Sell leg

% ... Record trade
trades(counter).size = maxTradeSize;
trades(counter).sectorld = maxImbalanceSector;
trades(counter).sectorName = convertSectorld(maxlmbalanceSector);
trades(counter).buyTicker = tickers(smallestlndex);
trades(counter).sellTicker = tickers(largestlndex);

else
%do single trade (no offsetting leg available)
if ( weights(smallestIndex) < 0)

maxTradeSize = abs(weights(smallestlndex));
weights(smallestlndex)= 0; %Buy all

% ... Record trade
trades(counter).size = maxTradeSize;
trades(counter).sectorld = maxImbalanceSector;
trades(counter).sectorName = convertSectorld(maxlmbalanceSector);
trades(counter).buyTicker = tickers(smallestlndex);
trades(counter).sellTicker = ";

elseif ( weights(largestIndex) > 0)
maxTradeSize = abs(weights(largestlndex));
weights(largestIndex) = 0; %Sell all

%...Record trade
trades(counter).size = maxTradeSize;
trades(counter).sectorld = maxImbalanceSector;
trades(counter).sectorName = convertSectorld(maxlmbalanceSector);
trades(counter).buyTicker =
trades(counter).sellTicker = tickers(largestlndex);

end
end

counter = counter + 1;

end %while loop

strategy(counter, 1) = sqrt(weights' * cv * weights);
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strategy(counter,2) = sum( abs(weights) );

%Convert Strategy AUM values to % of original Total AUM
%strategy(:,2) = strategy(:,2)/strategy(1,2);

catch
[msgstr, msgid] = lasterr;
msg = ['Error reading data on pass 'int2str(counter)];
disp(msg);

end
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9.5. Empirical computational complexity of PTO algorithm
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9.6. Histogram of % improvements of OPT vs. Baseline
(100-equity portfolio, 500 sample size)

18 -

16

14

12-

10-

8-

6

4-

2-

0
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

46



9.7. Histogram of % improvements of modified-OPT vs.
Baseline

(100-equity portfolio, 50 sample size)
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9.8. Statistics for % improvements of OPT and modified-OPT
vs. Baseline

Baseline - PTO Baseline - Mod-PTO
Min 46.3% -72.0%

Max 71.4% 16.9%

"t-test 60.68 (.9

Median 58.7% -15.8%

mean
median
stdev
skew
kurtosis

mean
median
stdev
skew
kurtosis
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9.9. Sample Baseline portfolio trading instructions

Trading flow:
TE: 0.00566935 Left: -0.077184
TE: 0.00554969 Left: -0.077184
TE: 0.00463694 Left: -0.077184
TE: 0.00455377 Left: -0.077184
TE: 0.00389197 Left: -0.077184
TE: 0.00329516 Left: -0.077184
TE: 0.00287678 Left: -0.077184
TE: 0.00215737 Left: -0.054447
TE: 0.00098478 Left: 0
TE: 0.00087032 Left: 0

0.075589
0.075589
0.075589
0.075589

0
0
0
0
0
0

0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394

0.022737 -0.13134 -0.074829

0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737

0
0
0

-0.13134
-0.13134

0
0
0
0
0
0
0
0

-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829

0
0
0
0

0.056929
0.056929
0.056929

0
0
0
0
0
0
0

0.056929 0.13146 -0.084622

0.13146 -0.084622 0.052859
0 -0.084622 0.052859
0 -0.084622 0.052859
0 -0.084622 0.052859
0 -0.084622 0.052859
0 0 0.052859
0 0 0.052859
0 0 0.052859
0 0 0.052859
0 0 0

... DEFAULT trading strategy done in: <10> trades

9.10. Sample OPT portfolio trading instructions
TE: 0.005669 Weights:0.7359 Left: -0.077184
TE: 0.005073 Weights:0.6927 Left:
TE: 0.005073 Weights:0.6927 Left:
TE: 0.004711 Weights:0.6587 Left:
TE: 0.004711 Weights:0.6587 Left:
TE: 0.004664 Weights:0.6533 Left:
TE: 0.004442 Weights:0.6191 Left:
TE: 0.004442 Weights:0.6191 Left:
TE: 0.004428 Weights:0.6158 Left:
TE: 0.004417 Weights:0.6129 Left:
TE: 0.004365 Weights:0.5871 Left:
TE: 0.004364 Weights:0.5848 Left:
TE: 0.004349 Weights:0.5816 Left:
TE: 0.004282 Weights:0.5761 Left:
TE: 0.003798 Weights:0.5316 Left:
TE: 0.003791 Weights:0.5309 Left:
TE: 0.003765 Weights:0.5280 Left:

-0.05556
-0.055559
-0.038572
-0.038571
-0.035873
-0.018749
-0.018748
-0.017104
-0.015679
-0.002757
-0.0015949

0
0
0
0
0

0.075589 0.028394
0.053965 0.028394
0.053964 0.028394
0.036977 0.028394
0.036976 0.028394
0.034278 0.028394
0.017154 0.028394
0.017153 0.028394
0.015509 0.028394
0.014084 0.028394
0.001162 0.028394

0 0.028394
0 0.026799
0 0.024083
0 0.0018137
0 0.00145
0 0

Sample 10-asset Portfolio (delta weights):
-0.077184 0.075589 0.028394 0.052859

0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737

-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.13134
-0.12862
-0.10635
-0.10599
-0.10454

-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829
-0.074829

0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929
0.056929

0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146

-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622

0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
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TE: 0.002698 Weights:0.4246 Left: 0
TE: 0.002698 Weights:0.4246 Left: 0
TE: 0.002695 Weights:0.4244 Left: 0
TE: 0.002431 Weights:0.3859 Left: 0
TE: 0.002431 Weights:0.3859 Left: 0
TE: 0.002333 Weights:0.3647 Left: 0
TE: 0.002262 Weights:0.3189 Left: 0
TE: 0.001964 Weights:0.2650 Left: 0
TE: 0.00 1852 Weights:0.2528 Left: 0
TE: 0.001852 Weights:0.2528 Left: 0
TE: 0.001702 Weights:0.2290 Left: 0
TE: 0.001673 Weights:0.2196 Left: 0
TE: 0.001312 Weights:0.1497 Left: 0
TE: 0.000998 Weights:0.1139 Left: 0
TE: 0.000000 Weights:0.0000 Left: 0
TE: 0.000000 Weights:0.0000 Left: 0
... OPTIMIZED trading strategy done in: <33> trades

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0 0
0
0

0
0

0 0

0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.022737
0.016609
0.016608
0.0047079

0
0
0
0
0

-0.05
-0.05
-0.05
-0.03
-0.03
-0.02

2869 -0.074829 0.056929 0.
2868 -0.074829 0.056929 0.
2725 -0.074829 0.056929 0.
352 -0.074829 0.056929 0.
3519 -0.074829 0.056929 0.
2914 -0.074829 0.056929 0
0 -0.074829 0.056929 0.
0 -0.074829 0.056929
0 -0.074829 0.056929
0 -0.074829 0.056929
0 -0.074829 0.056929
0 -0.074829 0.056929
0 -0.074829 0.056929
0 -0.056929 0.056929
0 0 2.7756e-016
0 0 0

079796
079795
079651
060446
060445
.04984
.026927

0
0
0
0
0
0
0
0
0

9.11. Sample Modified OPT portfolio trading instructions
0.005669 Weights:0.7359 Left: -0.077184
0.005355 Weights:0.6905 Left: -0.077184
0.005284 Weights:0.5847 Left: -0.077184
0.005254 Weights:0.5781 Left: -0.077184
0.005274 Weights:0.5342 Left: -0.077184
0.005159 Weights:0.5014 Left: -0.077184
0.005129 Weights:0.4903 Left: -0.077184
0.005129 Weights:0.4903 Left:
0.005087 Weights:0.4709 Left:
0.004525 Weights:0.3236 Left:
0.003888 Weights:0.2080 Left:
0.003648 Weights:0.1544 Left:
0.003611 Weights:0.1512 Left:
0.000000 Weights:0.0000 Left:

-0.077184
-0.077184
-0.077184
-0.077184
-0.077184
-0.075589

0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589
0.075589

0.028394 0.022737
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.028394
0.0015949

0
0 2.7756e-016 0

TE: 0.000000 Weights:0.0000 Left: 0 0
... MODIFIED OPT trading strategy done in: <15> trades

0
0
0
0
0
0
0
0
0
0
0
0
0

0 0

-0.13134 -0.074829
-0.1086 -0.074829
-0.1086 -0.02197
-0.10528 -0.02197
-0.10528 0
-0.088878 0
-0.083328 0
-0.083327 0
-0.07364 0

0 0
0 0
0 0
0
0
0

0
0
0

-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.057695
-0.051567
-0.051566
-0.039666
-0.034958

0
0
0
0

0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.052859
0.017901

0
0
0

TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:
TE:

0.056929
0.056929
0.056929
0.053614
0.031643
0.015238
0.0096875
0.0096865

0
0
0
0
0
0
0

0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.13146
0.057823

0
0
0
0
0

-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.084622
-0.026799

0
0
0
0

0.052859
0.052859

0
0
0
0
0
0
0
0
0
0
0
0
0
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9.12. Three Sample Strategies' comparative performance

Optimized PTO - Baseline- modified PTO
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