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ABSTRACT

The United States Nuclear Regulatory Commission is responsible for the safe operation
of the United States nuclear power plant fleet, and human reliability analysis forms an
important portion of the probabilistic risk assessment that demonstrates the safety of
sites. Treatment of post-initiating event human error probabilities by three human
reliability analysis methods are compared to determine the strengths and weaknesses of
the methodologies and to identify how they may be best used. A Technique for Human
Event Analysis (ATHEANA) has a unique approach because it searches and screens for
deviation scenarios in addition to the nominal failure cases that most methodologies
concentrate on. The quantification method of ATHEANA also differs from most
methods because the quantification is dependent on expert elicitation to produce data
instead of relying on a database or set of nominal values. The Standardized Plant
Analysis Risk Human Reliability Analysis (SPAR-H) method uses eight performance
shaping factors to modify nominal values in order to represent the quantification of the
specifics of a situation. The Electric Power Research Institute Human Reliability
Analysis Calculator is a software package that uses a combination of five methods to
calculate human error probabilities. Each model is explained before comparing aspects
such as the scope, treatment of time available, performance shaping factors, recovery and
documentation. Recommendations for future work include creating a database of values
based on the nuclear data and emphasizing the documentation of human reliability
analysis methods in the future to improve traceability of the process.

Thesis Supervisor: George E. Apostolakis
Title: Professor of Nuclear Engineering



(This page intentionally left blank)



Acknowledgements

I would like to thank all of the people at MIT who helped me with my coursework
and thesis. First and foremost, I would like to thank Professor Apostolakis for his
patience and guidance through this process. The insights and advice he gave me will
undoubtedly serve me throughout my career. I wish to thank my thesis reader Professor
Golay, for his time and comments. I also want to recognize my fellow colleagues who
willingly helped me at any hour: David Carpenter, Tyler Ellis, Erik Johnson, and Michael
Stawicki.

Away from MIT, I would like to thank Jeffrey Julius at Scientech, Ken Canavan
at EPRI, John Forester at Sandia National Laboratories, and Susan Cooper at the USNRC
for answering my questions at the PRA subcommittee meeting of the ACRS in March
2007 and in subsequent emails or phone calls. I would also like to thank Mary Presley,
an alumna of MIT, for her advice and gracious assistance. Finally, I would like to thank
Annalise Gill and my family for their love, patience and support that have shaped me into
the person I am today.



(This page intentionally left blank)



Table of Contents

1 Introduction .................................................................................................................. 14
2 ATHE4NA -A Brief Overview and Important Terminology.......................... 17

2.1 Steps 1-4: Identifying Human Failure Events .................................... . 19
2.2 Steps 5-7: The Error Forcing Context ..................................... ...... 21
2.3 Step 8: Quantification................................... ........................................... 25
2.4 Example of the Search Process ........................................ ........... 29

3 EPRI HRA Calculator -A Brief Overview and Important Terminology......... . 34
3.1 Basic Terminology: HI Types, Cue-Response Structures, and Timing.... 35
3.2 Steps 1-3: SHARP1 and Event Definition................. ....... 38
3.3 Steps 4-6: Quantification ............................................................................... 40

3.2.1 H CR/ORE ................................................................................................. 42
3.2.2 Cause-Based Decision Tree (CBDT) ...................................... ..... 44
3.2.3 Calculating the HEP .................................................... 53

4 SPAR-H- A Brief Overview and Important Terminology.............................. ... 55
4.1 Model of Human Performance ......................................... ........... 56
4.2 Task and Error Types ..................................................... 60
4.3 Treatment of Dependency ................................................... 60
4.4 Performance Shaping Factors ........................................................... 61
4.5 Uncertainty and Recovery.................................................................... 68

5 Comparative Analysis ofATHEANA, SPAR-H, and the EPRI HRA Calculator .... 69
5.1 T erm inology..................................................................................................... 71
5.2 General Approach and Scope ........................................................................ 73
5.3 A vailable Tim e ................................................................................................ 75
5.4 Performance Shaping Factors and Response Time Variation................ 76
5.5 R ecovery........................................................................................................... 77
5.6 D ocum entation ............................................................... ........................... 78

6 C onclusion .................................................................................................................... 80
7 R eferences .................................................................................................................... 84



(This page intentionally left blank)



Table of Figures

Figure 1: High Level Human Reliability Analysis Block Diagram ...................... 16
Figure 2: Summary Flow Chart of the ATHEANA Process ............................. 19
Figure 3: Simplified MLOCA Event Tree .................................................... 34
Figure 4: EPRI HRA Calculator Summary Flow Chart ....................................... 35
Figure 5: Generalized Event Tree for Calculating HEPs ................................. 41
Figure 6: Conceptual Representation of the pc Distribution as a Function of Available
Time (Tw, Tw') ........... ....................................................................42
Figure 7: HCR/ORE Correlation, Lognormal Distribution of Response Time ............43
Figure 8: CBDT Failure Mode Decision Trees, a-h ..................................... 52
Figure 9: Diagram of Factors that Contribute to the Complexity PSF in SPAR-H ....... 64



(This page intentionally left blank)



Table of Tables

Table 1: Example Expert Opinion Elicitation Results for Failure to Isolate a Stuck-Open
Atmospheric Dump Valve within 30 Minutes of the Initiating Event.......................... 29
Table 2: MLOCA Event Tree Top-Event Summary.............................. ........ 32
Table 3: Available Recovery Factors for a Given Recovery Time.............................. 54
Table 4: Example Recovery Checklist with Probability for Recovery (modified).......... 54
Table 5: Operational Factors in SPAR-H, including how PSFs are incorporated .......... 549



(This page intentionally left blank)



Acronyms

ASEP
ATHEANA
BWR
CBDT

CREAM
EFC

EOC

EOO
EOP
EPRI
HCR

HEP

HFE
HI
HRA
IE
MMI
NPP
NRC
ORE
PRA

PSF

PWR
SHARP
SHARP1
SPAR-H
THERP
TRC

UA

Accident Sequence Evaluation Program
A Technique for Human Event Analysis
Boiling Water Reactor
Cause-Based Decision Tree
Cognitive Reliability and Error Analysis Method
Error Forcing Context
Error of Commission
Error of Omission
Emergency Operating Procedure
Electric Power Research Institute
Human Cognitive Reliability
Human Error Probability
Human Failure Event
Human Interaction
Human Reliability Analysis
Initiating Event
Man-Machine Interface
Nuclear Power Plant
Nuclear Regulatory Commission
Operator Reliability Experiments
Probabilistic Risk Assessment
Performance Shaping Factors
Pressurized Water Reactor
Systematic Human Action Reliability Procedure (EPRI HRA framework)
Revision of SHARP
Standardized Plant Analysis Risk Human Reliability Analysis
Technique for Human Error Rate Prediction
Time Reliability Correlation
Unsafe Action



(This page intentionally left blank)



1 Introduction

Human reliability plays an important role in the safety and reliability of the

operation of complex technologies. Space exploration, large processing facilities, and

nuclear power are all susceptible to mistakes committed by the human operators, and

these errors need to be identified and analyzed in order to avoid loss of life, injury, and

the engineering system itself. Mistakes can be costly in terms of both human life and

monetarily. This paper is only concerned with the safety of nuclear reactors and

specifically how the operators affect the probability of a failure event.

In order to better ensure the safety of nuclear reactors, the US Nuclear Regulatory

Commission (NRC) requires probabilistic risk assessments (PRAs) for each reactor to

determine that the nuclear power plant (NPP) is safe to operate. As part of the PRA, a

human reliability analysis (HRA) is conducted to determine how the operators affect the

safety of the plant. These analyses attempt to recognized and quantify how human error

can lead to a failure of the NPP. Three models for the quantification of post-initiating

events are investigated and compared to determine the relative strengths of the models

and suggestions are made for future work in the HRA of NPP.

The HRA methods quantify human error probabilities (HEPs), and this is

challenging for many reasons including the fact that human actions are unpredictable and

influenced by many factors.1 First, the scope of the HRA is identified in terms of the



larger context of the needs of the PRA that the HRA results will be incorporated into.

This involves an evaluation of the available resources and the type of human failure

events that need to be addressed. From this information, appropriate models can be

selected to perform the HRA. Next, the HEPs need to be identified through a rigorous

search process. This involves the construction of logic structures and a screening process

to identify the important human failure events. Many methods include iterative processes

to help analysts with the screening process. Last, the HEPs are quantified to give

numerical results to be included in the PRA. The quantification is the focus of this paper

and the three models compared are A Technique for Human Event Analysis

(ATHEANA), 2 Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H),

3 and the Electric Power Research Institute Human Reliability Calculator (EPRI HRA

Calculator). Figure 1 shows an overview of the three main steps involved in an HRA:

Scope
What does the PRA need from the HRA? (fit into larger context)

What are the avalable resources? (expertise, money, time)
What kind of:FEs need :to be addressed? (pre/post4nitiator, EOC, EOO)

O: utput: Select appropriate odel(s)

Search Process
Is the logic structure appropriate?

What situations orfactors detetine: the important HFEs?
Output logic structure of HFEs identified for quantificaton

Quantitative Analysis
Which PSFs are important? (inclusion of appropriate PSFs in model)

How it dependency handled?
What is the basi for:the model? (expert opiion, :TRC, THERP, PSFs)

Output: Numerical reults for inclusion in PRA
-L



Figure 1: High Level Human Reliability Analysis Block Diagram

The next three sections provide overviews of how the three quantification

methods work for ATHEANA, the EPRI HRA Calculator, and SPAR-H. Section five

compares various aspects of the models including scope and the treatment of dependency,

performance shaping factors, and time among others. Finally, the conclusions of the

comparison are presented in section six along with suggestions for future work.

2 ATHEANA - A Brief Overview and Important Terminology

ATHEANA was developed to improve the capabilities of HRA, and in particular,

the method was designed to realistically represent and quantify behavior observed in

accidents and near-miss events at NPPs. ATHEANA targets specific sets of conditions

that make up the context of a situation that can "trigger error mechanisms in plant

personnel." 4 Both intentional and unintentional errors of commission (EOCs) and errors

of omission (EOOs) are quantified by ATHEANA. For each HFE, this method attempts

to identify important contexts, called error forcing contexts (EFCs), that may lead

operators carrying out an inappropriate action. The quantification process uses expert

opinion to define the probability of failure within these contexts. While quantification is

the primary focus of this paper, the search process of ATHEANA is presented here as the

context for the consensus-based expert opinion quantification method.



ATHEANA is unique in its ability to conform to specific scenarios instead of

providing limited options that can be adjusted to fit a particular context. The method

provides more adaptability to situations than more rigid models that rely on

predetermined PSFs to differentiate between varying conditions. Coupled with the search

process, ATHEANA can provide results tailored to the specific characteristics that are

likely to drive human performance. NUREG-1624 provides guidance for post-initiating

events and analysis of post-initiator HFEs has been the focus for the model, but there is

no reason that the same process could be applied to pre-initiator HFEs. This flexibility is

an advantage of the method over many current HRA techniques.

Figure 2 provides a graphical summary of the ATHEANA process; these eight

steps will be reviewed.



0 Iterative

0 0 O 0

Figure 2: Summary Flow Chart of the ATHEANA Process 5

2.1 Steps 1-4: Identifying Human Failure Events5

The first portion of the ATHEANA framework is designed to identify the

significant modes of human failure to include in the plant's PRA. The first step requires

the HRA team (a multi-disciplinary team comprised of experts such as HRA analysts,

PRA analysts, operators, trainers, and thermo-hydraulics specialists) to carefully define

INFORMATION BASE
Hardware: plt-specific operational •• • a: "as built, as operated"
People: training history, unwritten rules, etyculture, I operatorbiases, etc.
Other: physiological factors, MM, timing and cues, etc.
Charateriti of severe ccidents plant behavior out of expected range,
not well understood, actualplant state n t ••recognized, etc.
Underlying assumptions: operators are knowledgeable and rational,
intentional "errors" c" n • with sever consequences, but there is a
rational basis behind the decision.



the scope of the HRA required to do an "adequate" job for the overall PRA. The HRA

team must decide where the boundaries are for the analysis. Quantitative screening can

be helpful in determining the necessary scope, and NUREG-1624 suggests a method for

identifying candidate HFEs.

Once the important initiators are selected, and their corresponding event trees

identified, the HRA team proceeds to prioritize the plant functions, systems, and

equipment required to respond to the accident initiators. With these critical items

identified, candidate HFEs can be more readily identified by examining the initiating

event (IE) event tree and then systematically evaluating the event tree branch points for

possible human-caused functional failures.

With the scope and issue clearly defined, the HRA team moves on to describe the

base-case scenario, or the expected evolution of the accident scenario. Part of defining

the base case includes describing and understanding the human performance context of

the scenario. The following is a list of suggested components of the base case

description, taken from the ATHEANA user's guide: 6

* A list of possible causes of the initiating event(s)

* A brief, general description of the expected sequence of events (as in

PRA event trees), starting before reactor trip

* A description of the assumed initial conditions of the plant

* A familiarization/description of the expected plant conditions for the

accident sequence

* A specification of the expected sequence timing of plant status changes



* A description of the expected trajectories, over time, ofkey parameters

indicating plant status and a specification of the status of indications

and other cues that are expected as the sequence evolves

* Any assumptions of expected plant behavior,

system/equipment/indicator responses, and operator response

* A discussion of the procedures expected to be used for the given

situation

* A description of key operator actions, and their timing, expected

during the scenario progression

Concurrently with the base case definition, the HRA team identifies and defines

the possible human failure events and the corresponding unsafe actions (UAs, where one

or more unsafe action makes up a HFE). In order to identify the HFEs, a systematic

process, building on the IE event trees from step 1, is followed by determining: 6

1. whether the function is necessary or undesired

2. the system(s) or equipment that perform the function

3. the pre-initiator status of the system(s) or equipment

4. the functional success criteria for the system(s) or equipment

5. the functional failure modes of the system(s) or equipment

6. how the operator interacts with the equipment and deciding if EOCs, EOOs, or

both are relevant.

Both the ATHEANA user's guide6 and NUREG-1642 provide tables of example UAs for

generalized equipment functional failure modes to help the HRA team through this step.

At this point the HRA team has developed a list of HFEs and associated UAs important

to the scope of the PRA.

2.2 Steps 5-7: The Error Forcing Context



These next steps focus on defining EFCs that are most likely to lead to accident

scenarios. ATHEANA attempts to define EFCs based on the following characteristics:

many severe accidents share common attributes, plant behavior may be out of the

expected range, plant behavior may not be well understood by operators, plant procedures

may not helpful/appropriate, and the actual plant state may not being recognized by

operators.5 These error forcing contexts are comprised of a combination of plant state

(hardware) and other performance shaping factors (PSFs). The goal of identifying these

EFCs is to find regimes where operators believe an inappropriate action is the correct

action, because these are the situations that cause EOCs.

Vulnerabilities based on the knowledge of an operator need to be identified

because these may result in HFEs. In order to identify the PSFs, plant-specific

background data must be considered, such as: formal procedures, crew

characteristics/dynamics, ergonomics, informal rules and biases. An example of an

informal rule is "beat the automatic system when practical," as opposed to "wait for the

automatic system before taking action." 2 The former rule might carry with it a greater

chance for an EOC to occur. Plant biases include frequency and recency biases that arise

from plant operation and simulator training (operators may have an expectation of how a

scenario will unfold).6 The goal of this search is to find scenarios that might prove

"troublesome" to operators and produce an error-forcing context. Simulator exercises

may prove helpful in this step in that they allow the HRA analyst to observe how the

operators behave and think. They can also serve to test theories of operator response.



With the base case defined, and having an idea of what the important PSFs might be, the

HRA team searches for and defines potential deviations from the base case. These are

credible scenarios that include the identified EFC, and nuclear records show that no

serious accidents have developed from base case scenarios. Section 2.4 will provide an

example of a deviation scenario and its accompanying EFC.

The analysts must take into account other complicating factors, as well as

recovery factors, as part of the context of quantification. Complicating factors can be

PSFs or physical conditions not yet considered for a particular EFC such as additional

hardware failures, configurations problems, unavailabilities, or factors typically not

considered in a PRA. Specifically, there are two groups of PSFs that can contribute to

the EFC: those triggered by the defined EFC and additional PSFs not specific to the

context. New plant conditions or PSFs need to be included in the scenario definition, and

they can also activate different or more error mechanisms, creating an iterative process

until the EFC is described completely by the PSFs and physical conditions identified.

To prevent an unrealistically conservative estimate, recovery factors are included

in the analysis. In search for potential recovery actions and evaluation of their feasibility,

there are five steps outlined in the ATHEANA user's guide: 6

1. Define possible recovery actions given a HFE/UA has occurred

2. Consider time available for diagnosis and execution of potential recovery actions

3. Identify recovery cues

a. Timing of recovery cues

b. How compelling these cues are

i. Do they strongly alert operators to a need for recovery?



ii. Is there sufficient information to identify the most applicable

recovery action?

4. Identify additional resources for aid in recovery (i.e., more staff) and associated

timing

5. Assess the strength of recovery cues and timing with respect to EFCs - is there a

"high" or "low" likelihood of successful recovery? Deviation scenarios with high

likelihood of recovery need no further analysis or quantification. In this step,

there are some suggested factors to consider when assessing feasibility of

recovery:6

a. Dependencies between the initial error and recovery actions that would

make recovery unlikely

b. Initial mindset (or diagnosis) of the situation may be hard to break

c. Distractions or attention to other activities could cause new cues to be

overlooked

d. Operators may delay recovery action because there is a negative

consequence to taking the action; this is especially relevant when plant

hardware providing an alternative recovery is "almost" repaired.

NUREG-16242 gives further guidance on assessing recovery actions by type of

failure: "thinking" (mistakes and circumventions) or "doing" (slips and lapses). For

thinking failures, this involves assessing how the operator could persist in believing their

UA is the "correct" action, using the same process and information from step 5. "Doing"

failures, as suspected, are more straightforward. First the team must decide whether the

slip/lapse is recoverable at all: was plant hardware irreparably damaged? Was it so

damaged that the time for recovery is greater than the time available? If recoverable,

then the team must determine whether the slip/lapse can induce a mistake. If so, then it

should be further analyzed, if not, then it can be dropped from further analysis. At the



end of this process, the final EFC for the HFE and UAs describes all of the foreseen

scenarios.

2.3 Step 8: Quantification5

ATHEANA calculates the conditional likelihood of an UA given the occurrence

of an EFC. This is a departure from the typical HRA methods that quantify the

probability of human error under plant conditions specified in the event and fault trees.

The quantification has three stages. The first assigns a probability to the EFC. Next, the

conditional likelihood f the UAs capable of causing a HFE are determined, and lastly, the

conditional likelihood of no recovery from each UA is calculated.

The search process for EFCs ends when the team feels assured that the EFC is

sufficiently well defined and that both the frequency of the context and the conditional

probability of the UA in that context can be estimated with an appropriate degree of

confidence. To test the adequacy of EFCs, the HRA team can do simulator tests,

compare EFCs with past operational experience and with human performance checklists. 7

The rigorous way to quantify the probability of a human failure event (P(HFE))

is:



P(HFEIS) = Y P(EFC, ,S) * P(UAj EFC, ,S) * P(RJEFC, ,UAj , S) [1]
all i,j

where S refers to the PRA accident scenario, and P(RIEFC,, UA , S) is the probability of

non-recovery given an unsafe action has occurred in an error forcing context for that

scenario. Note that non-recovery is only modeled given an unsafe action because

otherwise there is not an operator action or inaction to recover from. The probabilities

are then summed over all UA/EFC combinations.

This rigorous method, however, requires too much resolution to be a feasible

method of quantification, and so the HRA team may choose the following method: 6

P(HFEIS) = . P(EFC, S) * P(UA, EFC,,S) [2]
all ij

In this case, recovery is factored implicitly into P(UA, EFC,, S), as explained below. For

this formulation, the HRA team must use an expert opinion elicitation approach to

quantification. 8

An error forcing context is comprised of two parts: plant state (hardware) and

performance shaping factors. For quantification purposes, P(EFC,IS) is taken directly

from the PRA, and represents the plant state portion of the EFC. P(PSFJS) is not

included explicitly in the formulation because these are based on the scenario context, so

these PSFs are implicitly taken into account in quantifying P(UAjIEFC,,S) through

expert opinion elicitation. 8



The term "error forcing context" can be misleading because it implies that the

conditional probability P(UAJEFC, S) should be near unity. This, however, is not the

case. EFCs are contexts which increase the likelihood of error, and in some cases

"trigger" error, but do not generallyforce an error.

The probability of an UA for a specific EFC is taken from the consensus expert

opinion elicitation process described below. Due to the way the expert opinion elicitation

process is structured, aleatory uncertainty, recovery, and dependencies are all holistically

incorporated into P(UAjIEFC,,S). This judgment-based quantification consists of six

steps: 8

1. Discuss HFE and influences, identify specific EFC and "aleatory" PSFs

2. "Calibrate" experts

3. Elicit an estimated curve

4. Each expert presents his estimated curve to the group of experts

5. Open discussion amongst experts

6. Arrive at consensus curve

1. So that the experts understand exactly what they are quantifying, they should

discuss and fully understand the scenario, including: the definition of the HFE in

question, the plant state (part of the EFC), and the relevant PSFs (the other part of the

EFC). To prevent the experts from being overwhelmed, only the most relevant PSFs to

the scenario at hand should be taken into account. The importance of scenario specificity

cannot be over emphasized. Most methods that incorporate PSFs do so by generically

applying an adjustment factor (i.e., increase the failure probability by a factor of 2 if there



is time pressure). ATHEANA recognizes that in some situations these factors may not

have a large impact; for example, time pressure may not impact operators in a very

familiar situation on which they get trained frequently.

This is how ATHEANA incorporates recovery actions and the PSF portion of the

EFC. Aspects such as scenario timing and relevant cues are woven into the description of

the HFE and become the context within which the experts judge the probability of a UA.

2. The next step is to calibrate the experts so they have a more intuitive

understanding of what a probability really is (i.e., 1 failure in 10 trials is 0.1). Here, they

are encouraged to think about failures as a number of x failures in n trials instead of

directly estimating a probability.

3. Now, each expert should come up with a 7-point estimation of P(UAjJEFC,,S),

including the 1st, 10h, 25t , 50th (median), 75 h, 90 h, and 990h percentiles. The experts

should start by setting the 1st and 99
h percentiles to be the probabilities for the best and

worst case scenarios, respectively. This is where the "aleatory" PSFs come in - the best

scenario is when there are no adverse PSFs, and the worst is when all the PSFs are in

play. In exercising his/her judgment, an expert would then think about an effective crew

and imagine them in the best circumstances for the 1st percentile and imagine a

particularly ineffective crew with communication difficulties and imagine them in the

worst circumstance for the 99 h percentile estimate.



There have been extensive studies demonstrating that expert opinion is replete

with potential biases, and that experts have difficulty consistently assessing the extremes

of a range. Reference 8 describes some of these biases, and suggests methods to alleviate

these effects.

4-6. After the experts have their curves, they present them to the group and the group

deliberates until a consensus is reached. Part of the reason behind a consensus-based

approach is to avoid unintentional bias. The epistemic uncertainty for this method would

be a family of curves, one for each expert's opinion - see Table 1.

Table 1: Example Expert Opinion Elicitation Results for Failure to Isolate

Open Atmospheric Dump Valve within 30 M t9

Stuck-

2.4 Example of the Search Process

Expert Percentiles

1st 10th 25th 50th 75th 90th 99th

#1 0.01 0.03 0.05 0.08 0.4 0.8 1.0

#2 0.001 0.003 0.008 0.02 0.07 0.1 0.8

#3 0.001 0.01 0.03 0.06 0.4 0.6 0.9

#4 0.005 0.01 0.02 0.033 0.1 0.6 0.8

Consensus 0.004 0.01 0.03 0.05 0.2 0.5 0.9



The search process is presented as a series of steps that the HRA team took for

this limited trial of ATHEANA. 2 Each step was accompanied by a set of guiding

questions to aid the team in identifying important scenarios. For brevity, these questions

are not presented here - most of them can be found in the Sections above, and the rest

can be found in NUREG-1624. The HRA initially chose three initiating events to

quantify analyze: MLOCA, LOSP and ATWS. Only the MLOCA IE will be examined

here. Figure 3 is the simplified event tree for the MLOCA, and Table 2 is a list of top

events and their descriptions.

1. First the HRA team selected the initiating event of interest (MLOCA) and

prioritized the functional requirements as represented by the nodes of the event tree.

These functions/priorities were:

- Makeup: Medium Priority

- Heat Removal: Medium Priority

- Long-Term Heat Removal: High Priority

2. The team then examined the safety functions required, defined their success

criteria, and identified their failure modes. For each failure mode, the team asked "how

can the operators produce the effects characterized by the failure modes identified?"

From this process, they found two unsafe actions of particular significance, as described

in NUREG-1624:

- Operators stop pump (function: makeup; system: high-pressure injection)

- Operators operate pump outside design parameters (function: long-term cooling;

system: residual heat removal (RHR) system)



3. Addressing these unsafe acts, the team searched for and defined important error

forcing contexts. Here the team identified a credible accident sequence for each EFC to

simulate in order to test the strength of the EFC. Both sequences involve a MLOCA

where system repressurization is not possible, and continuous high-head injection is

required to keep the core cool and covered. Furthermore, in these sequences it is unclear

whether the steam generators act as a heat source or provide a heat sink because the break

is the primary method of heat removal, and the primary system pressure is less than the

pressure of the secondary system.2'5

HFE #1 - Inappropriate Termination of Makeup

The error forcing context of this scenario is a deceptive failure of the RCS

pressure indicators. In this simulation, one RCS pressure indicator was under repair and

the second failed stuck during operation at 550 psig. This was intended to make the

operators believe that the indicator is functioning normally, when in fact it indicated

greater sub-cooling than reality. This misinformation would prompt the operators to shut

off the pumps early (as directed by the procedure). In this case, core damage would

ensue if recovery of injection was not restored in a timely manner.

HFE #2 - Inappropriate Depletion of Resources

In this scenario, there is increased RWST depletion due to containment spray

system activation during the LOCA. If the RWST "empty" alarm sounds, high-head



pumps should be stopped until reconfiguration is complete, or pump cavitation will occur

leading to core damage unless the pressure can be reduced and low-pressure injection is

initiated. To "trigger" the operator error of 'failing to stop the high-head pump,' the

RWST alarm was made inoperable due to IRTU maintenance.

The conclusion of this limited test search was the identification of at least one

strong EFC. The failed RCS pressure indicators indeed caused the simulation crew to

prematurely stop the pumps even though the potential of a failed indicator was

recognized (but not verbalized) by one operator. However, the inoperable RWST

"empty" alarm did not prove to be a significant EFC at all - the crew paid sufficient

attention to the RWST level throughout the simulation, and the Work Control Supervisor

recognized that the IRTU maintenance could fail the alarm. It was also brought to the

attention of the trainers that in unfamiliar or tricky situations, operators might not adhere

to the strong tendencies developed through training like the "think it, say it" rule. Neither

scenario was considered significant enough to retain in the demonstration plant's HRA.

Table 2: MLOCA Event Tree Top-Event Summary9



Top Title Description
Event ID

RW RWST RWST failure - no inventory for RCS
makeup.

ALT Alternate Alternate cooling to the charging
Cooling pumps.

CSA Charging Pump Centrifugal Charging Pump Train A
failure.

CSB Charging Pump Centrifugal Charging Pump Train B
failure.

SIA SI Pump Safety injection Pump Train A
failure.

SIB SI Pump Safety Injection Pump Train B
failure.

EF EFW EFW failure - motor and turbine-
driven pumps.

OD Operator - Operator failure to depressurize
Depressurizes RCS for RHR injection, given failure

RCS of HPI.

RA RWST Valve RWST isolation valve Train A failure
to remain open - RHR and CBS
Train A suction path.

RB RWST Valve RWST isolation valve Train B failure
to remain open - RHR. and CBS
Train B suction palh.

L1 RHR Miniflow RHR Train A falure in miniflow
recirculation.

L2 RHR Minifow RHR Train B failure in minillow
recirculation.
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Figure 3: Simplified MLOCA Event Tree"

3 EPRI HRA Calculator - A Brief Overview and Important Terminology

EPRI produced the HRA Calculator to provide a tool that would produce

documented and reproducible results that is less resource intensive than competing HRA

methodologies. The HRA Calculator is a piece of software instead of being a

methodology for completing the search process and/or quantification process for the

HRA portion of a PRA. The EPRI HRA Calculator combines the SHARP1 framework

with five quantification methods (HCR/ORE, CBDT, THERP execution analysis,

THERP annunciator response and SPAR-H) to create an HRA tool that is easy to use,

consistent, transparent, and non-resource intensive." Unlike ATHEANA, the EPRI
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Calculator does not attempt to break down human failure events into specific unsafe

actions, or even into specific contexts. Rather, it takes a more generic approach, using

time reliability correlations (TRCs) and generic decision trees. This method is

specifically designed to be usable by a PRA expert with some HRA training and

instruction on use of the EPRI Calculator in the case that an HRA expert is not available.

Figure 4, below, provides a graphical summary of the EPRI HRA Calculator; these six

steps will be reviewed briefly here. 5

---------------------------

Quantification

SHARP1

------------------------ -- (

Figure 4: EPRI HRA Calculator Summary Flow Charts

3.1 Basic Terminology: HI Types, Cue-Response Structures, and Timing

To aid in the definition of human interactions (HIs), SHARP1 defines three broad

types of human interactions: 10
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Type A - Pre-Initiating event related HI

These HIs are associated with normal operation. Activities associated

with maintenance, tests, calibrations, and evolutions of the plant are all Type A

HIs. Before the initiating event, an HI can affect the availability of systems.

Type B - Initiating event related HI

In this case, a worker initiates an event by misaligning a system or through

malfunction of equipment that trips or inserts false control signals. These HIs are

not represented in the HRA because they are implicitly included in the PRA as

part of the frequency of generic initiating events. The frequencies can be

generated using plant operating histories.

Type C - Post-initiating event HI

These interactions are performed by plant staff after an initiating event,

and the two kinds of Type C HIs are CP and CR, which are procedural actuation

of systems and recovery actions, respectively. The former includes actions

directed by procedures that will terminate the accident, and the latter includes

recovery actions.

Only the post-initiating event HI quantification will be compared in this work.

Type CR HIs are highly scenario specific and are not incorporated in the plant logic

model. Instead, CR events are modeled as correction factors for individual scenarios.

The following steps, then, are primarily concerned with type CP human interactions.



In 1989, EPRI carried out a set of simulator experiments, the Operator Reliability

Experiments (ORE), in order to gather data to aide in HFE quantification-. This

program was meant to validate and support the HCR TRCs which rested upon the

cognitive categorizations of skill, rule, and knowledge based behavior.12 The

experiments, however, did not support this grouping, and cue-response structures became

the focus for quantification. The procedure driven HIs can be modeled using cue-

response structures based on five distinct scenarios. These cue-response structures for

Type CP actions, taken from EPRI TR-100259 are presented here:13

CP1: Response following a change in the plant damage state that is indicated by

an alarm or value monitored parameter (e.g., response to a spurious

pressurizer spray operation in a PWR).

CP2: Response following an event that gives rise to a primary cue (as in CP1)

that has to be achieved when a parameter is exceeded or can be seen not to

be maintainable below a certain value (e.g., initiate RHR when the

suppression pool (SP) temperature exceeds 950 F in a BWR). These HIs

involved a waiting period after the primary cue in order to reach a

determined plant state.

CP3: Response following an event that gives rise to a primary cue (as in CP1)

that has to achieved before some plant parameter reaches a critical value

(e.g., initiating SLCS before SP temperature reaches 1 100 F in a BWR).

This critical value can be regarded as a soft prompt, or secondary cue.

CP4: Performing a step in a procedure that is being followed as a result of a

plant disturbance (e.g., inhibiting ADS before lowering level in a BWR, in

response to an ATWS). The cue in this case is generally associated with

completing the previous step.



CP5: Maintaining a variable parameter below, at, or within specific limits (e.g.,

controlling the level in a steam generator to prevent overfill or dryout).

This is a control action.

Only CP1 - CP3 HIs can be quantified using the HCR/ORE process. The timing

information for those cue-response structures are described by the following: T1/2 is the

median crew response time to initiate the appropriate action, Tm is the time required to

execute the appropriate action (the "manipulation" time), Tw is the time available to

diagnose and initiate the appropriate action, and Tsw is the total time window between an

initial cue (the time origin) and irreversible plant damage.

3.2 Steps 1-3: SHARP1 and Event Definition

SHARP1 is the result of improvements made on the SHARP model as

recommended by the EPRI sponsored Benchmark of SHARP report.14 The Nuclear

Utility Services Corporation reviewed SHARP and created an accident scenario and

benchmark process. The experts found that SHARP should emphasize the integration of

the HRA into the overall PRA methodology. Instead of breaking the steps of the SHARP

method apart as being completed by human reliability or systems analysts, another

suggestion was to form an integrated team to follow the entire process through. The

evolution to SHARP1 included a new approach, emphasizing the integration of the HRA

with modeling the plant. The new method also includes only four steps, now called

stages that are iterative instead of sequential as the original seven step SHARP.



The first step is the identification of significant plant states. In order to do this,

the HRA team must limit the scope and context of the analysis. This includes defining

initiating event groups and documenting possible plant responses to each group,

including success criteria definitions for each function in the event tree and identification

of proper EOPs After the scope and context of the analysis is set, the team can proceed

to qualitatively screen the interactions.15, 5 This is done by identifying significant plant

states and functions that are crucial to accident mitigation. Because the EPRI HRA

Calculator is software, the process is well defined by the inputs to the software. For

example, the software will ask for specific information, and follow up with the next

appropriate step.

Understanding the Emergency Operating Procedures is crucial when trying to

understand the procedure based post-initiating events. This includes identifying failures

in following the EOPs that can lead to unique and significant evolutions of the initial

scenario. This step in the event definition stage is where the team can dive into the

details of specific scenarios. While there is no specific guidance on how this breakdown

and impact assessment should be done, SHARP1 refers to a variant of NUREG/CR-3177

as a possible procedure. This variant involves identifying critical values of key plant

parameters associated with EOP response points and evaluating HIs via these parameters.

However the team decides to carry out this step, they should be thorough and include

such components as: 13

- examining why the HI is required

- understanding how the HI is carried out



- identifying scenario-specific performance shaping factors

- identifying and understanding dependencies

- understanding failure consequences on the plant

- understanding failure consequences on subsequent operator actions

- identifying possible effects of training on operator actions (similar to what

ATHEANA calls identifying "unwritten rules")

- defining time sequence of the accident progression

- defining the cue-response structure of the HI

The plant logic models need to be updated to incorporate the failure modes and

dependencies. Failure modes should be modeled in only as much detail as necessary to

capture the proper dependencies because too much detail at this level will make

quantification significantly more difficult. Once this step is complete, the team should

double check that the overall plant model is self-consistent, all assumptions are

documented and well understood, and HI basic events are clearly defined and ready for

quantification. 5

3.3 Steps 4-6: Quantification

The EPRI quantification method is based on dividing the human failure event into

a failure to initiate the proper action (pc) and failure to execute (pE). The probability pE is

quantified using THERP, where look-up tables for simple manipulation actions based on

non-nuclear data, along with PSF correction factors, are used to find the probability of

failure. The probability pc, however, is more difficult to estimate. The first choice for



estimating Pc is to simply look it up using a TRC - a curve, as in Figure 6, that correlates

non-response probability to available time (Tw, T').13 ,'5 This time-reliability approach is

called the HCR/ORE method, and is further described in Section 3.2.1. Figure 5 is a

simple event tree that shows how the two probabilities are related to success.

Failure to Failure to
Initiate Execute
Correct Correct

Response Response Success

PE

Mn•

Figure 5: Generalized Event Tree for Calculating HEPs 13

For a short available time (Tw), this method works quite well. However, the data

used to create these curves fails to include those points where the operators misdiagnosed

the situation and were on the "wrong path." For these cases, the extrapolated curve, seen

as the dotted line, is not an accurate assessment of the HEP. For long times (Tw,), the

actual probably of non-response would behave asymptotically, with a minimum that

reflects a failure of the operator to properly diagnose the correct action, as seen in the

figure below. Therefore, the HCR/ORE method is only useful for some situations. Other

situations require an alternate method; that alternate approach is generally the cause-

based decision tree (CBDT) method described in Section 3.2.2.
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Figure 6: Conceptual Representation of the Pc Distribution as a Function of Available
Time (Tw, Tw,). 13

3.2.1 HCR/ORE

In addition to validating the cue-response structures, the ORE data also

demonstrated that the lognormal distribution was a good approximation for HEP

quantification, and so the HCR/ORE correlation was developed: 13

Pc =Pr(tr > T)=- D ln(Tw1/2 [3]



where T1/2 is the median response time, a is the logarithmic standard deviation of

normalized time, tr is the response time, Tw is the available time, and (Do is the standard

normal cumulative distribution. This correlation is demonstrated in Figure 7 below: 13

n kTII2))r

TW T.

Figure 7: HCR/ORE Correlation, Lognormal Distribution of Response Time

The HRA team can apply these curves to simply estimate Pc. First they determine

which cue-response structure is appropriate and find the T1/2 and a for that curve. Then,

for a given scenario, they determine the time window of the total system (Tsw,) of a given

HI from thermo-hydraulic codes (like MAAP). This system window must be adjusted

(Tsw) to fit the HI event description (i.e., MAPP may give the total time until an event,

but if the HI event begins with an alarm or parameter value, the time origin must also

begin at the point that the alarm is sounded or the parameter value is reached). To use the

curve the team must calculate the normalized time window: 13

Twnormalized = (Tsw - Tm)/Tl/2 = Tw/Ti/2 [4]



again, Tm is the time needed to actually execute the necessary action, or the

"manipulation time." Using the appropriate cue-response curve, the team can then just

look up pc on the graph for a given normalized time window (see a), or calculate it using

Equation 3.

This method is only valid in the ranges where operating and simulator data is

available - extrapolation of these curves may produce unrealistically low estimates, and

CBDTs should be used instead for these cases. 5 It is generally good practice to perform a

CBDT analysis in addition to using HCR/ORE and use the highest (reasonable) HEP to

be conservative. Furthermore, the probabilities taken from the HCR/ORE correlation are

only as good as the inputs to the correlation: Ti2 and a. Sigma is generally taken from

the ORE curves for a given cue-response structure. T/2 should be obtained from plant-

specific, HI specific data, such as simulator experiments or operator/trainer judgment.

For the latter case, it is recognized that operations personnel may not have a good grasp

for the time required for more complicated actions. The time ranges can, in these cases,

be indirectly estimated by having the personnel identify ranges of key parameters within

which they operators might act - the times could then be obtained from the thermo-

hydraulics code. The median time would then be the middle of the given range.

3.2.2 Cause-Based Decision Tree (CBDT) 13,5

The CBDT method is used to find HEPs for situations where TRCs are not

applicable, situations such as: CP-4 and CP-5 HIs, HIs where Tw>>TIn (ample diagnostic



time) and other areas where the HCR/ORE method is determined to be unrealistically

low. This method is based on a decision tree decomposition of a HFE into situation

specific failure mechanisms, associated PSFs and possible recovery modes. Each HI

interaction is decomposed into two high-level failure modes, each of which are in turn

broken down into four failure mechanisms. These modes and mechanisms are defined in

EPRI TR-100259:

Mode 1: Failures of the Plant Information-Operator Interface

a) The required data are physically not available to the control room operators.

b) The data are available, but are not attended to.

c) The data are available, but are misread or miscommunicated.

d) The available information is misleading.

Mode 2: Failure in the Procedure-Crew Interface

e) The relevant step in the procedure is skipped.

f) An error is made in interpreting the instructions.

g) An error is made in interpreting the diagnostic logic.

h) The crew decides to deliberately violate the procedure.

A decision tree is created for each failure mechanism (see Figure 8 a-h). The

nodes for each tree are PSFs which were predetermined to be important. The definitions

for each PSF and any addition guidance provided to analysts on how to assess each PSF

is provided in EPRI TR-100259:

a) Availability of Information:

1. Indicator Available in CR - Is the indicator in the Control Room?



2. CR Indicator Accurate - Are the indications available accurate?

3. Warn/Alt. Procedure - If the displayed information is perceived to be

unreliable, do the procedures direct the operator to alternate sources of

information? Do they warn the operator the indication might be inaccurate?

4. Training on Indicator - Has the crew received training in interpreting or

obtaining the required information under conditions similar to those prevailing

in this scenario?

b) Failure of Attention:

1. Low v. High Workload - Do to the cues critical to the HI occur at a time of

high workload or distraction? [Workload or distraction leading to a lapse of

attention (omission of an intended check) is the basic failure mechanism for

this mechanism.]

2. Check v. Monitor - Is the operator required to perform a one-time check of a

parameter, or is he required to monitor it until some specified value?

"Monitor" leads to a greater failure probability than "check" because the

operator might miss (exceed) the specified value if he does not check the

parameter frequently enough.

3. Front v. Back Panel - Is the indicator displayed on the front or back panel of

the main control area? Does the operator have to leave the control area to

read the indicator?

4. Alarmed v. Not Alarmed - Is the critical value of the cue signaled by an

annunciator? If the alarm comes in long before the value of interest is reached,

it will likely be silenced and therefore ineffective.

c) Misread/Miscommunicated Data:

1. Indicator Easy to Locate - Is layout, demarcation, and labeling of the control

boards such that it is easy to locate the required indicator?

2. Good/Bad Indicator - Is the MMI good or bad? Is it conducive to errors in

reading the display?



3. Formal Comms. - Is a formal or semi-formal communication protocol (i.e., 3-

way communication) used for transmitting values? Is the value always

identified with its associated parameter?

d) Information Misleading:

1. All Cues as Stated - Are cues/parameter values as stated in the procedure? For

example, if high steamline radiation is given as one of the criteria for a

decision or action, at the time for the given action, the steamline radiation

indicator would read high, not normal. The "no" branch is used if an indicator

is not obviously failed but would not give the anticipated value (i.e., if the

steamline was isolated).

2. Warning of Differences - Does the procedure itself provide a warning that a

cue may not be as expected, or provide instructions on how to proceed if the

cue states are not as anticipated?

3. Specific Training - Have operators received specific training in which the cue

configuration was the same as the situation of interest where the correct

interpretation of the procedure for the degraded cue state was emphasized?

4. General Training - Have the operators received general training that should

allow them to recognize that the cue information is not correct in the

circumstances? That is, is it something that every licensed operator is

expected to know? For the steamline example, the answer would be "yes"

because isolations are common; for instrument abnormalities that only occur

under a very special set of circumstances, the answer would be "no" unless the

operators had received specific training. Operators cannot be expected to

reason from their general knowledge of instrumentation to the behavior of a

specific indicator in a situation where they are not forewarned and there are

other demands for their time and attention.

e) Skip a Step in the Procedure :



1. Obvious v. Hidden - Is the relevant instruction a separate, stand-alone

numbered step or is it easily overlooked? A "hidden" instruction might be on

of several steps in a paragraph, in a note or caution, on the back of page, etc.

2. Single v. Multiple - At the time of the HI, is the procedure reader using more

than one flowchart procedure?

3. Graphically Distinct - Does the step stand out on the page? This effect is

diluted if there are several things on the page which stand out.

4. Placekeeping Aid - Are placekeeping aids, such as checking off completed

steps, used by all crews?

f) Misinterpret Instruction :

1. Standard Wording - Does the step use unfamiliar or ambiguous nomenclature

or grammatical structure? Does it require any explanation?

2. All Required Information - Does the step present all information required to

identify the actions directed and their objectives?

3. Training on Step - Has the crew received training on the correct interpretation

of this step under conditions similar to those in the given HI?

g) Misinterpret the Decision Logic :

1. "NOT" Statement - does the step contain the word "not"?

2. AND or OR Statement - Does the procedure step present diagnostic logic in

which more than one condition is combined to determine the outcome?

3. Both AND & OR - Does the step contain a complex logic involving a

combination of ANDed and ORed terms?

4. Practiced Scenarios - Has the crew practiced executing this step in a scenario

similar to this one in a simulator?

h) Deliberate Violation (*NOTE: this tree is rarely used in practice)

1. Belief in Adequacy of Instruction - Does the crew believe that the instructions

presented are appropriate to the situation (even in spite of any potential

adverse consequences)? Do they have confidence in the effectiveness of the



procedure for dealing with the current situation? In practice this may come

down to: have they tried it in the simulator and found that it worked?

2. Adverse Consequences if Comply - Will literal compliance produce

undesirable effects, such as release of radioactivity, damage to the plant,

unavailability of needed systems or violation of standing orders? In the

current regulatory climate, a crew must have strong motivation for

deliberately violating a procedure.

3. Reasonable Alternatives - Are there any fairly obvious alternatives, such as

partial compliance or use of different systems, that appear to accomplish some

or all of the goals of the step without the adverse consequences?

4. Policy of "Verbatim " Compliance - Does the utility have and enforce a strict

policy of verbatim compliance with EOPs and other procedures?



a) Data not Available:

Indicator Indicator
Avail. in CR Accurate

Warn/Alt. Training on
in Procedure Indicator

(a) Negligible

(b) Negligible

(c) Negligible

(d)
(e)

.0015

.05

(f) .5
(g) n/a

b) Failure of Attention:

Check Once Front v. Alarmed v.
v. Monitor Back Panel Not Alarmed

PCb

(a) Negligible

(b) .00015

(c) .003
(d) .00015

(e) .003

(f) .0003
(g) .006

(h) Negligible

(i) Negligible

(j) .00075

(k) .015

(1) .00075

(m) .015
(n) .0015

(o) .03

Pea

Low v. Hi
Workload

1st

2 nd

--Ci_



c) Misread/Miscommunicated Data:

Indicator Good/Bad Formal
Easy to Find Indicator Comm.

Pcc

(a) Negligible

(b) .003

(c) .001

(d) .004

(e) .003

(f) .007

Warning of Specific
Differences Training

General
Training

PCd

(a) Negligible

(b) .003

(c) .01

(d) .1

(e) 1.0

e) Skip a Step in the Procedure:
Obvious v.
Hidden

Graphically
Distinct

Placekeep.
Aid

d) Information Misleading:

All Cues
Stated

Single v.
Multiple

PCe

(a) .001

(b)

(c)

(d)
(e)

(f)

(g)

(h)

(i)

.003
.003

.01
.002

.004

.006

.013

.1

I

I
I

|

I

li-



f) Misinterpret Instruction:
Standard
Wording

All Required Training on
Information Step Pcf

(a)
(b)

(c)
(d)
(e)

(f)
(g)

g) Misinterpret Decision Logic:
"NOT" AND or OR Both AND Practiced
Statement Statement & OR Scenario

Negligible
.003

.03

.003

.003
.006

.06

Pcg

e) Deliberate Violation:
Belief in Adverse "Verbatim"
Adequate Consequences Reasonable Compliance
Tnstruction if Comnlv I Alternative Policv

(a) .016

(b) .049
(c) .006
(d) .019

(e) .002

(f) .006

(g) .01
(h) .031
(i) .0003

(j) .001
(k) Negligible

(g) Negligible

PCe

(a) Negligible

(b) Large

(c) Very Large

(d) Negligible

(e) Negligible
Figure 8: CBDT Failure Mode Decision Trees, a-h13
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3.2.3 Calculating the HEP

To calculate the HEP, all of the applicable failure mechanisms need to be

included, and for each failure mechanism, the analyst chooses the branch that most

closely describes the HI being quantified. This calculation breaks the options into

discrete probabilities using the failure mode decision trees, which helps eliminate some

of the possible inconsistency between analysts. There is no way to eliminate the use of

judgment when calculating human error, but the software attempts to provides a rigid

structure for the calculations. The total HEP is then calculated according to the following

equation: 13

Pc = i=1,-2 Yj PP, [5]

where pj is the probability of mechanism j of mode i occurring, and pl,' is the associated

non-recovery probability for that mechanism.

The probabilities pij come from generic decision trees for a given mechanism.

These default probabilities are generally taken from THERP, but can be adjusted by the

HRA team. Some of the THERP values have been altered because of feedback from the

ORE and other reviews of THERP.' 3 The probability pij is then taken from the branch

which represents the expected plant conditions. Similarly, recovery factors can also be

taken from THERP or estimated by the HRA team, and are influenced primarily by



opportunity for review by another operator and time available (Table 3 and Table 4). To

avoid over-crediting recovery, credit is only given for one recovery mechanism; however,

override values may be used if credit for multiple recoveries can be justified.5

Table 3: Available Recovery Factors for a Given Recovery Time5

Table 4: Example Recovery Checklist with Probability for Recovery (modified) 13,5

HI Failure Mode Review Type Available

Tree Branch Self- Extra STA Shift El

Review Crew Review Change Re

a a No 0.5 No 0.5 0.5

Credit Credit

b d X No X X X

No

Credit

Credit

No

Credit

Recovery Time Effective
Factor

Other (Extra) At any time that there are crew members over
Crew and above the minimum complement present in

the CR and not assigned to other tasks

STA 10 to 15 minutes after reactor trip.

ERFITSC 1 hour after reactor trip - if constituted

Shift Change 6 hours after reactor trip given 8 hour shifts
9 hours after reactor trip given 12 hour shifts

WF

view



d c No 0.5 X X 0.1

Credit

e a X 0.5 No X X

Credit

f i No 0.5 X X X

Credit

g b No 0.5 X X X

Credit

h c No X X No No

Credit Credit Credit

4 SPAR-H- A Brief Overview and Important Terminology

The Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H)

provides a simplified method for estimating HEPs at US nuclear power plants (NPPs).3

SPAR-H provides steps for generating both pre-initiator and post-initiator HEPs, and this

paper is only concerned with post-initiator HEPs for comparison with the other models.

The origin of this methodology is the Accident Sequence Precursor (ASP)

program established by the NRC in 1979 as a response to the Risk Assessment Review

Group report in 1978. The original PRA models developed as part of ASP needed further



refinement, and the ASP HRA method was updated in 1994 by the Idaho National

Laboratory. In 1999, a second revision was made and this became known as the SPAR-H

method, which also included LP/SD scenarios as a separate class of events. 3

SPAR-H is strictly a quantification method and does not include a unique

approach to search and/or screen HFEs. NUREG/CR-6883 does refer to ATHEANA and

SHARP1, and includes a section comparing the results from the SPAR-H quantification

process with THERP, ASEP, HEART, CREAM, and SHARP1. This section will focus

on providing an understanding of the basis for SPAR-H and how it handles varying

situations.

The essential parts of the framework can be summarized as follows: 3

* Probabilities separated into contributions from diagnosis failure and action

failure

* Accounts for the context associated with HFEs by using PSFs and

dependency assignment to adjust base-case HEPs

* Pre-defined base-case HEPs and PSFs with guidance to improve

consistency and simplify the quantification process

* Uncertainty analysis uses a beta distribution

* Provides worksheets to further facilitate consistency and reproducibility

4.1 Model of Human Performance



The cognitive model used by the SPAR-H method is based on the information

processing and stimulus-response models. The former models behavior as a combination

of perceptual elements, memory, and decision making, while the latter largely ignores

any thought processes and treats human behavior as reflexive to a situation based on

associations between actions and either rewards or punishments. These two types

psychology are used separately in the SPAR-H model: information processing is used for

the diagnosis and the stimulus-response is used for the action of the operator.

Operational factors that need to be accounted for by the human performance model are

accounted for in SPAR-H by the eight performance shaping factors. These operational

factors come in four main groups: inflow and perception; working memory/short-term

memory; processing and long-term memory; and response.3

Inflow of information can be visual, auditory, or kinesthetic. The information

flows through filters, which change how the information is perceived and interpreted.

For example, noise and auditory distractions in an environment can mask the strength of

a message such as an annunciator. In the context of SPAR-H, perception is detection,

and the perception of an operator is effected by experience, learning, and beliefs. These

are included by the assignment of the PSFs.

Working and short-term memory form the second operational factor covered by

SPAR-H and processing and long-term memory are the third. The working memory is

treated as the ability of the operator to keep information in an active mental state, which



is differentiated from long-term memory that needs to be activated and retrieved. The

capacity of short-term memory is not set, but it varies with the way information can be

grouped. To aid the memory, SPAR-H models procedures and similar elements as

external memory that aid with both short and long term memory. This factor is modeled

as the procedures and job aid PSF. Other PSFs account for variable environments and

mental demands affecting the memory.4

The fourth operational factor is the response of the personnel, and similarly,

SPAR-H accounts for varying scenarios with PSFs. All except two of the PSFs that will

be explained in detail in a later section affect the response of the operator. Generally,

SPAR-H provides guiding analysis as opposed to a mathematical model of human

information processing. The information processing model reflects psychological

principles that can be linked to human performance. Table 4.13 describes which PSFs are

associated with each of the four operational factors.
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4.2 Task and Error Types

Diagnosis and action are two kinds of tasks completed by personnel as specified

by SPAR-H. Diagnosis actions require thinking to observe and interpret the information

to find the cause and choose a course of action. These actions rely on knowledge and

experience to plan an appropriate course of action. Action tasks are activities dictated by

rules, procedures, or diagnosis. Each task is assigned a probability, and the probabilities

of a diagnosis task and its action task are summed to yield the joint HEP. Dependence

between the two tasks is calculated to prevent underestimating an HEP.

SPAR-H does not differentiate between errors of commission and errors of

omission, because the documentation states that experience shows that no more accurate

prediction of error can be made by distinguishing between the two. Instead, base failure

rates use a composite rate for omissions and commissions. It is suggested that HRA

analysis follow a systematic search process to identify errors likely to result in unsafe

acts. 3

4.3 Treatment of Dependency



SPAR-H treats dependency similarly to THERP.18 There are five levels of

dependence ranging from no dependence to complete dependence. Guidance is provided

for determining the level of dependence based on the time separation of actions, location

of actions, additional clues, and if the same crew is involved. There is no explicit

treatment of dependency across accident sequences, but the same concepts could be

generalized to fit multiple HFEs in an accident sequence.

PSFs are treated as independent by SPAR-H; although, it is recognized that for

specific scenarios one PSF may be chosen based on how which level of another PSF was

selected. For example, when there is ample time, but also less than thirty minutes of time

beyond the nominal time, it is expected that the obvious diagnosis complexity PSF level

is chosen. To prevent PSFs from providing exaggerated results due to their independent

treatment, SPAR-H provides a method for making the HEPs less conservative. This is

accomplished by using an adjustment factor if more than three PSFs were determined to

be negative.4

4.4 Performance Shaping Factors

The definitions of the eight PSFs are discussed below, and there is some overlap

that could not be avoided between some PSFs. The PSFs are typically stratified into

levels that are assigned probabilities, and diagnosis and action events are typically



evaluated for each PSF individually. For all of the PSFs, there is an insufficient

information level that can be used as a default. 3

1. Available Time- This is the time a crew has to diagnose and respond to

abnormal events. For the diagnosis stage, the available time is broken down

into groups ranging from inadequate time with a P(fail)=1, to nominal time

and extra time. Extra and expansive time both require greater than thirty

minutes beyond the nominal time required to respond to the event. The

categories that have sufficient time, but less than thirty minutes are corrected

by having the analyst use the "obvious diagnosis" PSF for the complexity.

That eliminates needing another range for the available time. The time range

for actions is greater because actions can be much faster, such as just pressing

a button or turning a switch. The groups for the action probabilities range

from inadequate time to greater than fifty times that required. The nominal

time for actions is defined as having "some extra time" in addition to the

required time to complete the appropriate action, unlike the diagnosis stage

definition.

2. Stress/Stressors- This PSF models the negative impacts of stress. Even

though stress has been recognized as a positive motivating force in some

situations, the stress on a NPP crew modeled by SPAR-H assumes that it is

detrimental. Stressors are environmental factors such as intense noise, heat, or

increased levels of radiation that can affect performance. The three levels of



stress identified are extreme, high, and nominal. There is also an insufficient

information option in the case that a stress level cannot be assigned. Extreme

stress is caused by a sudden stressor and lasts for an extended period. For

example, the potential for radioactive release would be modeled as an extreme

stress. High stress is defined as above nominal levels, and it degrades

performance. This level can be caused by distractions and unexpected events.

The nominal level of stress is conducive to good performance.

3. Complexity- This PSF has more overlap with others and is hard to quantify

independently from other factors. The complexity is a measure of how

difficult a task is to perform in context. More demanding tasks with multiple

parts that are ambiguous are highly complex, while nominally complex tasks

are not difficult to perform due to little ambiguity and/or few variables.

Figure 4.2 shows many factors that contribute to the complexity of a situation.



Figure 9: Diagram of Factors that Contribute to the Complexity PSF in SPAR-H3

There is no procedure for determining the influence of complexity based on

the factors in Figure 4.2 that contribute. As mentioned earlier while

discussing the available time PSF, the obvious diagnosis level of complexity

is for tasks that are unlikely to be misdiagnosed. There is no need for an

obvious action complexity PSF because the nominal complexity covers simple

actions.



4. Experience/Training- The training and experience of the crew can affect their

response to a scenario. This PSF accounts for the crew being trained for the

particular scenario or similar scenarios and the years of experience. The low

PSF level is for less than six months of experience, which at a US NPP would

rarely apply to a licensed operator. The nominal level of 6 months of training

and adequate schooling would be typical of a newly licensed operator, but

most US NPP licensed operators and supervisors should qualify at the high

level for this PSF, which requires extensive knowledge in a range of

scenarios. Bypassing safety systems or operating in an abnormal

configuration may decrease the level of the crew for a given situation.

5. Procedures- Even though all NPP documents are carefully formulated to

provide the correct information, there may be situations where the information

provided by the procedure is inadequate or incorrect. The diagnosis and

action activities need to be evaluated separately, and the SPAR-H

documentation warns against using the PSF for procedures to adjust for a

complex task when the procedures are adequate. The diagnosis activity has a

nominal level if the procedure is available and enhances performance as

intended. Next is the available, but poor level, which impedes performance

because it is hard to use, but all of the necessary information remains

included. An incomplete procedure does not include the necessary

information and the lowest level for a procedure is not available. At the other

end of the spectrum, a diagnostic/symptom oriented procedure assists the crew



in diagnosis and helps keep the plant safe. Using a diagnostic oriented

procedure should make it less likely that human error will have a negative

impact on the state of the plant, but this is only true if the procedure is

appropriate for the condition of the plant and is easy for the operating crew to

follow. The action procedures have all of the same PSF levels except for the

diagnostic/symptom oriented procedures.

6. Ergonomics/Human Machine Interaction- The ergonomics of the control room

are accounted for by this PSF. The quality and quantity of information that

the instrumentation, controls, and computers communicate to the crew effects

its response to a scenario. As control rooms undergo updates, user friendly

software becomes more important to the human machine interaction (HMI) as

digital control and instrumentation becomes more prevalent. Another aspect

of HMI is the set point of an alarm relative to a dangerous level. It can be

detrimental to performance to have an alarm set point close enough to the

limit that there is not enough time for the crew to react and correct the

situation before surpassing the limit. The nominal level of this PSF is for

HMI design that supports performance. Above nominal is the good level, in

which case the HMI design improves task performance, and below are the

poor and misleading levels, which negatively impact performance. The

lowest level accounts for times when required information is not available to

the NPP personel.



7. Fitness for Duty- This PSF describes the state of the crew both physically and

mentally. Physical factors include fatigue, illness, drug use, and other medical

problems that effect performance. Mental factors include overconfidence,

personal problems, and other distractions that may similarly degrade

performance of the operator. The levels for the fitness for duty PSF are unfit,

degraded fitness, and nominal. The nominal in this instance is for the case

where nothing degrades the performance of the individual. Degraded fitness

refers to distractions and minor physical problems that negatively affect the

employee's ability to perform such as headaches, fever, cold, or bad news.

The unfit level is reserved for cases where the operator is unable to fulfill his

or her duties.

8. Work Processes- This PSF measures the impact of management, organization,

and supervision on the crew. SPAR-H maintains that supervisors need to be

figures of authority, so a supervisor becoming involved in the specifics of an

event instead of leading can be considered a breakdown in the work process

and detrimental to the performance of the crew. Conflict within a crew,

indecisiveness, and uncoordinated approaches to safety also negatively affect

performance. The three levels of work process are poor, nominal, and good

based on whether the various work processes at the NPP are detrimental, not

affecting performance, or helpful. Examples of what would be poor PSF

levels are inadequate turnover information, unclear performance expectations,



and conflict among personnel. The good level can be achieved by good

communication and supportive policies enhancing the crew performance.

4.5 Uncertainty and Recovery

The SPAR-H method describes a way to calculate the uncertainty of an HEP.

Epistemic and aleatory uncertainties are handled, but they are not separated and there is

no mathematic process for separating the uncertainty into the two categories. SPAR-H

uses a beta distribution to describe the uncertainty of an HEP, and the constraints on the

distribution yield the greatest uncertainty for the HEP.4

All calculated HEPs are treated as mean values, so in order to determine the

uncertainty, a second constraint is required. The fact that an HEP can only fall into the

range between zero and one provides this constraint, and this constrained non-informative

(CNI) prior maximizes the uncertainty for the given mean value. One potential problem

with this method for calculating uncertainty is that by basing the uncertainty solely on the

HEP, analyst variability is ignored. In other words, if two analysts find two different

HEPs, then the two HEPs will have different uncertainties since the uncertainties are

based only on the mean value. The uncertainty does not represent information based on

the specifics of the accident scenario or analyst bias due to the use of the beta

distribution.



Recovery actions in SPAR-H are modeled by the analyst in event and fault trees.

This places the burden modeling the possibility of recovery on the analyst when

developing the logic structures. An alternative way for the analyst to represent the

influence of recovery on an HEP is to adjust the PSF values. Work practices, procedures,

and ergonomics can be used to positively influence the HEP if a misdiagnosis is likely to

be recovered.3

5 Comparative Analysis of ATHEANA, SPAR-H, and the EPRI HRA Calculator

The three HRA methods presented have various strengths and weakness that

make them better suited to specific applications. The models are recapped with an

overview before comparing particular aspects of the models to determine how they differ

and what the implications of the differences may be. The goal of this chapter is to

understand how the quantification methods vary when calculating post-initiating event

HEPs.

Summary:

- Differences in Objectives:

* EPRI: To quantify HEPs in a consistent, transparent and reproducible

fashion. The method also aims to be less resource intensive and can be used

by a PRA analyst without significant HRA expertise. A specialized HRA

team is not required to use the EPRI HRA Calculator.



* SPAR-H: This method was designed to provide a quantification methodology

adequate for the ASP program that supports plant-specific PRA models for the

US NRC. The method provides limited guidance for identifying or modeling

HFEs.

* ATHEANA: To find contexts where operators are likely to fail without

recovery, and quantify the associated HEP. This includes inquiring into how

operators can further degrade the plant condition while still believing their

actions are correct. The search process of this model identifies PSFs and

includes a screening process.

Contexts Considered in Quantifying HEPs:

* The three methods all incorporate aleatory and epistemic PSFs to some

degree, and will be further discussed in the next section.

* ATHEANA was not written to address pre-initiating HFEs and even though

there are no technical problems using the method, there is no guidance

provided by the ATHEANA documentation to guide quantification of pre-

initiator events. This paper is concerned with only post-initiating events for

the three models.

* ATHEANA takes a look at a broader set of PSFs and contexts than the other

two models discussed. The accident sequence includes the consequences of a

misdiagnosis beyond simple failure of the procedure.

* The EPRI Calculator is prescriptive and limits the PSFs and cognitive factors

the analyst must consider, thus enhancing consistency among analysts and

reducing the level of resources needed. However, CBDT and ATHEANA still

have the same approach to evaluating cognitive context.

* SPAR-H similarly limits the factors, this time to eight PSFs; this is only a

quantification method, so there is no search process and little guidance

provided to find HFEs, which would be necessary to perform the entire HRA

portion of a PRA



- Quantification:

* ATHEANA uses expert elicitation for quantification after the error forcing

context is described. Agreement between the experts is addressed as part of

the quantification method.

* Depending on the type of HI - short or long available time, significant

diagnosis - the EPRI Calculator defines the context based on the appropriate

method. Quantification is completed using a time reliability curve or cause

based decision trees.

* SPAR-H uses nominal HEPs that are varied by using 8 fixed PSFs to account

for the uniqueness of a situation. It deals with dependency between PSFs with

a correction that takes the specifics of the situation into account only by using

the number of PSFs included, ignoring that interactions between PSFs may

vary with the combination of PSFs involved.

5.1 Terminology

Adjustment Factor (NUREG//CR-6883): This term describes the factor that is used to

adjust PSFs for cases where more than two PSFs are determined to be negative. This

factor is designed to prevent the model from producing HEPs that are overly

conservative.

Human Failure Event (HFE): This term describes an event where a malfunction of a part

of the plant is caused by human action. An error of commission or error of omission can

be the source of an HFE. This term is widely used in ATHEANA and SPAR-H, but not

used in the EPRI HRA Calculator. Instead, the calculator uses the term human

interaction, explained below.2



Human Interaction (HI): The EPRI HRA Calculator defines human actions as any

expected or actual action by a plant operator. Similarly to HFE, this includes both errors

of commission and errors of omission. The HIs are broken down into Type A, B, and C

depending on how the HI is related to the initiator of the scenario.

Error Forcing Context (EFC) and Failure Mechanisms a-h (NUREG-1624): An error

forcing context describes the aggregate effect of the PSFs and plant conditions that make

human error more likely. These are the scenarios targeted by ATHEANA. SPAR-H does

use the term in NUREG/CR-6883, but only in reference to the ATHEANA model. The

CBDT methodology that is part of the EPRI HRA Calculator does reference EFCs, but it

does so in a more limited context. ATHEANA requires a more in-depth search process

for EFCs.

Aleatory and Epistemic Uncertainty: Aleatory uncertainty describes irregularity that

cannot be predicted. This uncertainty is due to random events that cannot be accounted

for by having better equipment or performing more rigorous calculations. There is no

way to lessen it because it is part of the system and cannot be removed. Epistemic

uncertainty, on the other hand, can be reduced because it comes from a lack of

familiarity. This type of error can be reduced by improving a method of measurement or

quantification because the uncertainty from a lack of knowledge that can be improved

through research and studies of a system.19



5.2 General Approach and Scope

This section compares the motivations and general approaches of the three

models. The focus of this paper is the quantification of post-initiating events, but the

entire scope of the model will also be addressed.

SPAR-H and the EPRI HRA Calculator were both developed to focus on the

quantification of HEPs. This is why both models lack detailed guidance for the search

and screening processes, but both models do suggest methods that can be used to identify

and screen the HEPs. The HRA Calculator suggests following the SHARP1 framework

for iteratively identifying and screening HFEs. For SPAR-H, there is not a specific

method covered in great detail, but an example using ATHEANA is provided in section

4.2.2 of NUREG/CR-6883. The EPRI HRA Calculator does reference SHARP1 in

enough detail for the model to function as an HRA tool that can stand alone and perform

an entire HRA required for a PRA.

Unlike the other models, ATHEANA was designed to find specific scenarios in

which operators are more likely to err. The methodology provides a detailed and

rigorous search process that allows for a better representation of the important factors

associated with an EFC. This is done by allowing the situation to drive development of

the PSFs. Regarding the structure of PSFs, the opposite end would have models like

SPAR-H with a fixed set of eight PSFs that can be altered to fit the context.



The resources required for the models vary with the level of detailed analysis that

the model is capable of. Given this, the most resource intense model is ATHEANA,

which requires an entire team of experts. The team consists of PRA, HRA, plant experts

(operators and staff), human factors, and thermo hydraulic experts. This is in contrast to

the expectations of the skill required to apply the EPRI HRA Calculator. Ideally, an

HRA expert would use the EPRI software, but it can be used by a PRA expert with

significant training in using the HRA Calculator.4 SPAR-H falls in the middle between

the two other models in terms of the skill requirements of the personnel. To fill out the

work sheets of the SPAR-H model, at least one experienced HRA analyst would need to

be part of the team performing the HRA.

The team of experts is also required for ATHEANA because not only is the search

and screening detailed and rigorous relative to most HRA methods, but the quantification

is based on expert opinion. As described in Chapter 2, the experts on the HRA team

estimate seven percentiles for each HEP and after deliberation to work out differences in

opinion, the average of the team is used to quantify the HEP. The EPRI HRA Calculator

is designed to quantify the HEPs while minimizing the amount of expert judgment

required. This allows the tool to be applied by non-HRA experts if an expert is not on the

staff and/or there are not resources available to hire. SPAR-H relies more on expert

judgment than the HRA Calculator. The eight PSFs need to be applied to the HFE by the

expert, but to minimize the demand on the analyst, the various levels of the PSFs are well

defined to decrease the impact of opinion on the process. The de-emphasis of expert



opinion by the EPRI Calculator and SPAR-H help the repeatability of the HEPs

quantified using the methods.

5.3 Available Time

When quantifying HEPs, time is a critical factor that is taken into account in

different ways by all three methods. It is recognized that time effects the operators by

applying pressure that can cause high stress situations, increasing the HEP. SPAR-H

takes the simplest approach to incorporating time into the HEP of the three methods.

This is done by dedicating a single PSF to available time. The levels are determined by

how much time is available compared to how much is required to perform the necessary

action. The method does recognize that the available time can affect other PSFs, but

other PSFs are only affected if the available time meets certain criteria. The EPRI HRA

Calculator incorporates available time into the HCR/ORE curves. 12 For this model, the

time available to perform an action is based on the total time window for the disturbance

minus the time to execute the correct action. ATHEANA incorporates the available time

as part of the EFC. There are many recognized situations with little available time that

operators are well trained for to ensure that they will perform the correct actions, but

ATHEANA specifically searches for EFC that are unfamiliar, and for these, the available

time is considered specifically when calculating the probability of an unsafe action given

a particular EFC. 2



In comparison, SPAR-H incorporates the simplest and least comprehensive

method of incorporating the available time into the HEP. This puts the model at a

disadvantage when compared to the HRA Calculator and ATHEANA because those

models build a scenario that incorporates time, while SPAR-H separates it as one of eight

PSFs that are essential independent. Available time is modeled in only a few discrete

levels that do not differentiate between how critical time may be for a particular scenario

in any way other than how the available time compares to the nominal time required to

complete an action or diagnosis.

5.4 Performance Shaping Factors and Response Time Variation

The quantification of SPAR-H is centered on eight PSFs, which are the only

factors that can differentiate any situation from one that has eight nominal values for the

PSFs. In order to prevent calculating HEPs greater than unity, the PSFs are corrected by

a factor if there are more than three PSFs. This method recognizes that there are

problems with multiplying scalars with probabilities.3 Beyond the eight discussed PSFs,

there is no guidance on how to include a factor that may not fall into one of the

predefined PSFs. Dependency is modeled using THERP. Both the terminology used and

modification factors taken from THERP tables are used by SPAR-H.18'4

When using HCR/ORE as part of the EPRI HRA Calculator, the analysts can

choose between the Sigma Decision Tree or the cue-response structure. PSFs are only



considered by their impact on the TRC. 13 Using CBDT with the HRA Calculator allows

incorporation of any relevant PSFs into the analysis in theory, but direction is only

provided for the PSFs included in the decision trees.

ATHEANA needs PSFs to account for variation in the response time. These PSFs

are not incorporated the same way as most HRA methods. Instead of using the PSFs to

determine the HEP, ATHEANA uses the PSFs as factors dependent on the context, so for

different conditions varying sets of PSFs are "triggered." 5 The method allows for any

PSFs to be considered that are important to the EFC; however, the experts are left to

determine how the combined PSFs for a scenario will affect the HEP quantification.

Unless there are multipliers determined a priori, there will be no other way to quantify the

PSF.2

5.5 Recovery

SPAR-H does not model recovery as a PSF or other influence that directly

changes the quantification of an HEP with a multiplicative factor. This is a weakness of

the simple eight PSF system that SPAR-H uses to quantify HEPs. The two suggested

methods that can force the HEP to reflect recovery are as follows (NUREG/CR-6883):

first, the analyst can perform more detailed analysis and update the logic structures to

incorporate recovery, and the second option is to adjust the appropriate subset of PSFs.

There is no guidance on which PSFs are appropriate for a situation.



The goal of the ATHEANA search process is to identify EFCs that are least likely

to be recovered by the operators. Recovery is used as a screening tool to eliminate EFCs

because recovery makes the scenario less important than other EFCs that are not likely to

be recovered.4 There is an option for the HRA team to perform a THERP based analysis

for recovery if it finds this desirable; however, recovery will be less likely than usual due

to expectations of short time frames that make recovery unlikely. 5

The EPRI HRA Calculator addresses recovery with the CBDT method, which

uses THERP tables. HCR/ORE does not model recovery because it assumes that the

operators will perform the correct diagnosis and action. 12 To compare, ATHEANA does

not have a fundamental need for recovery because the search process is based on finding

EFCs that operators are not likely to recover from. This provides a more thorough

analysis despite not handling the issue of recovery explicitly. The other two models

should represent recovery, but do not provide defensible methods for incorporating the

recovery into quantification of HEPs. This is because SPAR-H does not have an official

mechanism for quantifying recovery, so there are two paths for adjusting the either the

logic structure or PSFs to include recovery in the HEP.4

5.6 Documentation



Documentation is important for verifying and reproducing the results of an HRA.

None of the methods discussed provide substantial discussion of documentation, but they

do all address the issue implicitly. For ATHEANA, detailed documentation is more

important than for the other methods because the analysts have more freedom at every

stage of the HRA process from the identification and screening to the quantification of

HEPs. The reasoning behind the actions of the HRA team is not transparent or intuitively

obvious as it may be for SPAR-H. For example, using SPAR-H, the levels of PSFs are

all clearly defined, so by filling out the work sheets completely, a range of scenarios can

be inferred based on the values of the PSFs selected for the quantifications of the HEP.

This is not the case for ATHEANA, because the experts may have agreed on a particular

HEP curve for reasons that are not obvious and the reasoning behind their decision would

be lost without proper documentation.5 ATHEANA implicitly addresses the issue of

documentation by listing the results that each step needs to pass on to the next step of the

process. Assuming all of the results of each step are recorded, the HRA should be

reproducible.

The EPRI HRA Calculator essentially documents itself by saving the inputs that

the experts use to quantify the HEPs. This electronic documentation is the digital version

of the worksheets of SPAR-H. Similarly to ATHEANA the search process, SHARP1,

would be well documented if the analysts recorded how the products from each step of

SHARP1 were determined to justify the work.'"



6 Conclusion

The HRA field has made great progress in the past decade with the development

of ATHEANA, multiple revisions of the EPRI HRA Calculator, and continuing work on

second generation HRA models. After comparing the capabilities and limitations of

ATHEANA, SPAR-H, and the EPRI HRA Calculator, some conclusions and future needs

have been identified.

ATHEANA is very resource intensive when used for the entire HRA portion of a

PRA, but it can be utilized to identify and quantify specific EFCs that would benefit from

more rigorous modeling. By quantifying a select number of critical HEPs with

ATHEANA while using another quantification method for HEPs screened as less critical,

the much of the benefit of ATHEANA may be realized without expending the resources

required to use ATHEANA for the entire HRA. Providing an alternate quantification

method that does not rely so heavily on expert elicitation may reduce the resources

required to use the method and allow it to become more widely employed.

SPAR-H is not a method that can reliably incorporate all of the information from

a scenario into the eight PSFs and provide defensible results. The handling of multiple

PSFs with an adjustment factor to prevent HEPs greater than one does not take into

consideration which PSFs are acting together. Interaction between PSFs is not well

managed when there are more than two PSFs identified for a scenario. There are

suggestions in the SPAR-H documentation that guide interactions between some PSFs



that are likely to interact, such as the available time and stress/stressors PSFs; however,

the treatment of multiple PSFs does not account for the dependency of the PSFs. The

dependency ratings are based on THERP and are recognized as not "exhaustive," but do

"bring a degree of standardization." (SPAR-H REF) Inclusion of information into the

SPAR-H method provides generic HEPs without rigorous consideration of how the

specifics of the scenario can interact and affect the HEP.

Many HRA models are reliant on THERP data, which is based on old non-nuclear

data, so a new database, formed specifically for the nuclear industry, would provide more

applicable values for NPP PRAs. Such a database could be composed from the history of

nuclear power plant operation and also from simulator studies. There are some groups

working on similar tasks as this, but even after the completion of such a database, the

HRA community will need to adopt the new data for use as the underlying data that HRA

methods are based on.

Documentation within the models should be more heavily emphasized because

the validation of the calculated HEPs and selected HEPs from the search process is

dependent on understanding the process that the experts used to come to their

conclusions. There are two distinct goals of documenting HRA: to provide traceability

and reproducibility. The former refers to the ability of analysts to reference the

documentation and completely understand how the HEPs were calculated for the

situation. This includes an understanding of the situation based on the documentation

that allows the work of the analysts to be traced from the context to the quantification.



The reproducibility requires that the actual values calculated for the HEPs can be

duplicated based on the documentation. Many current HRA methods allow the analyst

the freedom to determine how detailed the documentation needs to be, so the

recommendation for documentation is that expectations and standards need to be

explicitly defined to ensure traceability.
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