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Abstract

This thesis is focused on the discovery of efficient asset allocations with the use of evolutionary
algorithms. The portfolio optimization problem is a multi-objective optimization problem for the
conflicting criteria of risk and expected return. Furthermore the nonstationary nature of the
market makes it a time-changing problem in which the optimal solution is likely to change as
time advances. Hence the portfolio optimization problem naturally lends itself to an exploration
with multi-objective evolutionary algorithms for time-changing environments.

Two different risk objectives are treated in this work: the established measure of standard
deviation, and the Value-at-Risk. While standard deviation is convex as an objective function,
historical Value-at-Risk is non-convex and often discontinuous, making it difficult to approach
with most conventional optimization techniques. The value of evolutionary algorithms is
demonstrated in this case by their ability to handle the Value-at-Risk objective, since they do not
have any convexity or differentiability requirements.

The D-QMOO time-changing evolutionary algorithm is applied to the portfolio optimization
problem. Part of the philosophy behind D-QMOO is the exploitation of predictability in the
optimal solution's motion. This problem however is characterized by minimal or non-existent
predictability, since asset prices are hard to forecast. This encourages the development of new
time-changing optimization heuristics for the efficient solution of this problem.

Both the static and time-changing forms of the problem are treated and characteristic results are
presented. The methodologies proposed are verified through comparison with established
methods and through the performance of the produced portfolios as compared to the overall
market. In general, this work demonstrates the potential for the use of evolutionary algorithms in
time-changing portfolio optimization as a tool for portfolio managers and financial engineers.

Thesis Supervisor: Henry S. Marcus
Title: Professor of Marine Systems
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1 Introduction

One of the most crucial decisions that investors and portfolio managers need to make is how to
allocate the available capital among different investment opportunities. A successful portfolio
maximizes the investor's profit, which forms the ultimate objective of this decision problem.
However the resulting profit from a specific portfolio only becomes known after the portfolio has
been selected and deployed in the market. Hence, a conventional optimization approach where
the objective value is known for each candidate design cannot be followed in this case. As a
result, portfolio optimization takes the form of a two objective problem. The first objective is the
portfolio's expected return, which we seek to maximize. The second objective is the portfolio's
risk, which we seek to minimize.

The portfolio optimization problem is far from simple to solve. The first source of its complexity
is the fact that the pool of available assets is large - it may be in the order of hundreds or even
thousands of different bonds, stocks and other kinds of investments. Hence simply processing the
data that leads to the estimation of the objectives (risk and expected return) requires some form of
computational tool. Furthermore, the large number of available assets also enlarges the sample
space of the problem - there is a multitude of different alternative solutions to the portfolio
optimization problem, each one with its own unique asset allocation. At the same time, the
measures used for the estimation of risk and return may be complex, non-convex objective
functions. Finally, the market data used for the calculation of risk and return constantly changes
in time, making the design of financial portfolios a time-changing problem.

This complexity and nonstationarity make the portfolio optimization problem a natural
application for multi-objective time-changing optimization. This work is focused on the
application of multi-objective time-changing evolutionary algorithms to this problem.

1.1 Outline

In chapter 2, a discussion on the portfolio optimization problem is given. The problem is defined
and the various measures of risk and return used in this work are described. Two different risk
measures are used, the sample standard deviation of returns and the Value-at-Risk. The sample
average of returns is used as a return measure. The general statement for the optimization
problem solved in this thesis is given, followed by a description of the data sets used in the
numerical experiments of the following chapters.



In chapter 3 the computational tool used to solve the optimization problem is described. A general
introduction to Evolutionary Algorithms as heuristic optimization methods is given first, followed
by a description of the Dynamic Queuing Multi-Objective Optimizer (D-QMOO) which is the
algorithm used in this work. The chapter concludes with some useful details on the solution
process of the portfolio optimization problem with D-QMOO, such as the performance measures
used.

In chapter 4 the static version of the problem is treated. Here, the fact that market conditions
change in time is momentarily ignored and the problem of discovering a set of efficient portfolios
corresponding to a fixed instance of the market is explored. Since, in this work, the time-changing
form of the problem is seen as a sequence of discrete instances, the static problem constitutes a
building block for the nonstationary problem. Both resulting optimization problems, (with
standard deviation or Value-at-Risk as risk measures) are solved and the algorithm's behavior is
discussed.

In chapter 5 the time-changing portfolio optimization problem is solved. The D-QMOO algorithm
is applied in its nonstationary form, as developed by this author during his doctoral research. One
of the most interesting attributes of the portfolio optimization problem is the lack of predictability
in the way the optimal solution moves in the decision space. This lack of predictability inspired
the development of new heuristics for the efficient solution of the problem which are described in
this chapter.

The thesis closes with conclusions and recommendations for future work in chapter 6.



2 Portfolio Optimization

A portfolio can be defined as a collection of investments. Investors have at their disposal an
amount of capital and a range of assets on which to invest. These assets may include bonds,
stocks, derivatives or real estate; in the context of shipping, they may for example include vessels
or freight-forward agreements. The investor's goal is to create the maximum amount of return on
their capital with the minimum amount of risk. The problem that arises is how to allocate the
capital among the different assets in order to accomplish this goal. Solving this portfolio
optimization problem provides the investor with an optimal decision for the allocation of her
assets.

The two underlying objectives in this problem are the expected return and the risk that
characterize investments and portfolios. Formulating and solving the portfolio optimization
problem is far from simple given that in a global market there are hundreds or thousands of assets
to select from, and that there exist numerous options for the definition and estimation of risk and
expected return. The portfolio design process consists of two stages:

* A quantitative definition for the measures of risk and expected return, which expresses
the investors' beliefs about the future performance of the various assets.

* Given the quantitative measures for the two objectives, an optimization process
producing a set of portfolios that have a maximum expected return with a minimum
amount of risk.

A seminal approach to the portfolio optimization problem was mean-variance analysis by Harry
Markowitz (Markowitz 1952, Markowitz 2000), where the previous staging of the portfolio
selection process is maintained.

In terms of the first stage, a major categorization of risk and expected return measures is between
statistical methods and methods which also rely on the investor's personal views about the future
performance of assets. According to the first class of methods, the past history of asset returns
provides an estimate of their future performance. This history is usually cast into the form of a
time series, and its statistics are calculated in order to provide risk and return measures.
Markowitz's initial approach (Markowitz 1952) which has been followed in various forms by
several researchers (Hirschberger, Qi & Steuer 2004) is such an example. However, a sample of
past returns does not necessarily allow us to predict the future. For example, economic



fundamentals might have changed or external developments affecting asset performance might be
expected. For this reason researchers have developed methods which also take in account the
investor's views regarding future performance. The approach by Black and Litterman (Black,
Litterman 1992, Litterman 2003), where the equilibrium returns for securities provided by the
Capital Asset Pricing Model are used as starting points to which the investor's views are added, is
such an example. Other cases of such hybrid methods can also be found in literature (see for
example Ehrgott, Klamroth & Schwelm 2004).

The majority of the present work is concerned with the second part of the process - the creation
of methods that allow the optimal selection of portfolios given a set of risk and expected return
measures. However, we briefly dwell on the first stage when the use of two different risk
measures, the variance and the value-at-risk, is discussed. The approach we follow regarding the
quantitative measures of risk and return is statistical; the time history of asset returns is the only
source of information that determines risk and expected return for each asset. However, the
techniques described in this thesis aim to provide the investor with a helpful computational tool
that can potentially be extended to include investor views as well.

Next we discuss the risk and return measures as applied in this work, and then provide the
portfolio optimization problem statement.

2.2 Statistical Measures for Risk and Return.

The statistics of asset returns are the sole determinants of the risk and return measures. These
statistics are calculated using past samples of data, as we can see in the sketch of Figure 1. In this
paragraph the exact definitions for each measure are given, as implemented in the numerical
experiments of chapters 4 and 5.
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Figure 1. Sample statistics are used for risk and return estimation.
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2.2.1 Expected Return.

The expected return of a portfolio is derived from the weighted expected returns of the assets it
includes. The measure of expected return for an asset is the un-weighted arithmetic average of a
sample of past returns.

Let us assume there is a total of n assets on which to invest. The investor makes a decision about
the allocation of her wealth at the t point in time. At time t > 1, the history of asset returns up to t
is:

R(t)= (r, (k)), i=, ... n, k= ... t-1. (2.1)

A portfolio at time t describes an allocation of the investor's capital to the investment
opportunities. It is denoted by a real vector:

, where Vie {1,..., n}:xi 0 (2.2)

where xi is the fraction of the total capital allocated to asset i.

Then, the expected return of a portfolio x is:

1 1-1 n

return(x, R(t), t) = E[R(t)x(t)] = - 1 ri (k)xi (t) (2.3)
t 1 k=1 i=1

In practice, the expected return is calculated using a rolling one-year historical sample (250
trading days) behind the current time t, as shown in Figure 2. In this work, the timestep t denotes
one trading day. At the end of each day, the closing market data is gathered. Then a portfolio is
designed, and deployed on the market the next day.

poriifoltom•la

portfolio 0 ul I Wl

return time

t-T time window length T t
'ti" t ' .'• ,

0

0

0

T I O days

77

0 0
0

* 0

I A t4i
er a ze re urns 

ns 
e

time

time window are used to
calculate the statistics

Figure 2. A rolling time window of 250 trading days behind the current timestep is used as a sample
for the asset performance estimation.



2.2.2 Standard Deviation of Return (first risk measure).

The first risk measure used in this work is the standard deviation of the portfolio return.
Following the conventions in the previous paragraph, this can be defined:

risk(x,R(t),t) =

=- (2.4)

= - ri(k)xi(t) 1 r (k)xi ( t )
t k=1 i=1 t 1 k=1 i=1

where a, is the portfolio standard deviation and Q is the sample covariance matrix of asset
returns. Portfolio standard deviation and variance are well established risk measures'. Markowitz
treated the portfolio optimization problem using variance as the risk measure. Variance, as an
objective, has an important computational advantage since it is a quadratic function. This
provides a continuous, smooth and convex optimization problem for the solution of which many
well-established gradient algorithms exist today, such as Sequential Quadratic Programming
(SQP - see for example Papalambros, Wilde 2000).

An objection against using standard deviation as a risk measure lies with its ability to model the
actual risk of losing money. Standard deviation expresses an asset's volatility in both directions,
hence it only implicitly relates to loss. However from the investor's point of view, risk quantifies
the probability of a small or negative return - the probability of losing money.

2.2.3 Value-at-Risk (second risk measure)

The second risk measure used is the Value-at-Risk (VaR). The Value-at-Risk is defined as a
quantile of the distribution of past returns:

risk(x,R(t),t) =VaR((t)x(r)) = q (R(t)x(t)), aE (0,1) (2.5)

where qa is the a-quantile of the past returns' distribution.

As a risk measure the VaR expresses the maximum loss a portfolio will suffer with a probability
of (1-a), as shown on the sketch of Figure 3. This makes the Value-at-Risk a potentially more
direct risk measure than standard deviation since it directly relates to portfolio loss.

There exist several methods for the estimation of VaR (Beder 1995, Hendricks 1996, Stambaugh
1996). VaR can be estimated either:

By assuming a parametric probability distribution for the portfolio return and calculating
the VaR analytically, with the estimated portfolio return and variance as parameters. For
example in the case of a normal distribution, the minimum VaR problem has the same
solution as the minimum variance problem under these assumptions, since the Value-at-
Risk for the 1-percentile is:

VaR = p - 2.3 2o (2.6)

where p is the mean and a is the standard deviation. (2.6) has been derived using the error
function, since a normal distribution is assumed.

1 Since the first is the square root of the second, standard deviation and variance can be considered as
equivalent measures from an optimization point of view. A decision vector (portfolio) which minimizes one
will also minimize the other.



By a direct historical simulation. For a specific portfolio, this translates to calculating its
past realizations and selecting the Fat] worse return value as the VaR, where qa is the
desired VaR percentile. In this case the VaR problem has, generally, a different solution
from the variance problem. The interesting point here is that a 'bad' day affects the VaR
of a portfolio directly, while with a parametric approach an extreme event has a smoother
and more indirect effect.

qo Realized Asset Return

a-quantile
Value-at-Risk

Figure 3. Value-at-Risk expresses the maximum amount of loss a portfolio will suffer with a (1-a)
probability. Note that although a probability density function is shown in the sketch, in this work the

VaR is not calculated by assuming that asset returns follow a specific distribution, but by direct
historical simulation.

In this work the second method, direct historical simulation, is employed. Specifically a 250-day
historical sample and the 1-percentile are used. Hence the [0.01.250]= 2.5]= 3rd worse

portfolio return inside the rolling time window is the portfolio VaR (see Figure 4). This approach
is justified on the grounds of accuracy, since it is the most direct method with the least number of
assumptions - there is no need to assume that asset returns follow a specific distribution, which
would lead to additional errors. It is also a standard procedure for risk estimation in financial
institutions like banks (Jorion 1997), and accepted by international banking supervision
authorities (Basel Committee on Banking Supervision 2001).

A basic characteristic of the VaR risk measure as used in this work2 is that it is an empirical,
'black-box' non-convex and non-differentiable objective (or Pflug 2000 for the non-convexity of
VaR, see for example Gaivoronski, Pflug 2005). A representative illustration of the non-
convexity of the VaR measure can also be seen in Figure 5 where the VaR of a portfolio of two
assets has been plotted. It is also obvious that the combination of the two assets reduces the
resulting VaR.

2 I.e. using a direct, historical simulation.
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Figure 4. VaR calculation.
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Figure 5. VaR for a combination of two assets x1 and x2. The problem's non-convexity is evident.

Hence it is not straightforward to solve the portfolio optimization problem with this risk measure
using conventional gradient optimization algorithms. This makes the VaR problem an ideal
candidate for evolutionary algorithms.
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In this work portfolio optimization is explored under both risk measures. However we concentrate
our efforts on the VaR as a risk measure, since it is a direct risk measure accepted in practice, and
at the same time difficult to approach with conventional algorithms.

2.3 Problem statement.

Since we have two risk measures, two separate portfolio optimization problems emerge: one for
the expected return and the standard deviation, and one for the expected return and the Value-at-
Risk. Both are two-objective optimization problems; their solution is a set of portfolios called the
efficient frontier. If a portfolio is on the efficient frontier, any portfolio with higher (better) return
also has higher (worse) risk 3, as we can see in the sketch of Figure 6.

Expected Return:
sample mean of

past returns

f2 max --

Maximize
Expected

Return

Maximum return
anchor point

Minimum r
anchor poii

A-
f, min Minimize Risk

fi min

fi

Risk: standard deviation of
past returns, OR

Value-at-Risk (quantile of
past returns)

Figure 6. The general portfolio optimization problem as solved in this work.

The definitions of the two problems as implemented in the algorithm can be seen in Table 1. The
solutions are subject to the capital availability constraint

1x =1
1

(2.7)

Note that the capital allocations x, which make up the decision vector may or may not be
negative, depending on the 1, bound. In the case when 1, is negative, short sales are allowed.

3 This is the general definition of Pareto optimality for multi-objective optimization problems (see for
example Deb 2001).
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When li is zero no short selling is allowed. The allowance of short sales does have a fundamental
effect on the problem, since the investor can short securities with a large expected loss and this
way greatly increase the portfolio's expected return. We will have a chance to see that in the
numerical experiments of chapter 4.

Table 1. Problem statements.

EXPECTED RETURN (MEAN) - STANDARD DEVIATION PROBLEM

Return measure: expected return from the un-weighted sample average

Risk measure: standard deviation from the un-weighted sample average

minimize f(x, R(t), t) [ risk(x, R(t), t), -return(x, R(t), t)f
where:

II'

nreiurni(x, R(t), t) E[Rs(t)x(t)) ,- (xR(k)x(t)f

risk(x, R(t), t)•...:.. ...:=( k) x (k .x, .(t).L h t 250 dI kay ipltile)
subject to;

1,8 x , for i 1..,n (if =0 and u =1, no short sales are allowed).
• 

.
; 

.  
.. .' xi, = I

EXPECTED RETURN (MEAN) -VALUE -AT-RISK PROBLEM

minimize f(xR(t),) )trisk(xR(t), t),-return(x, R(t),t)
where:

risk(x, R(t), I) .-- VaR (x, R t), t) = 3 ' worse return ofportfolo x



The complete optimization problem is time changing, as we can see in the problem statements.
Each day new market data arrives, changing the statistical risk and return measures for each asset
and this way changing the optimal asset allocations. The algorithm is called to discover an
approximation to these optimal asset allocations and to the efficient frontier at each time step.

We must note here that although we have a time-changing formulation with several timesteps, we
are solving a 'portfolio optimization problem' in the sequential single-period sense, as discussed
by Markowitz in the third chapter of his book (Markowitz 2000), not in the utility-maximization
dynamic programming sense. Numerous treatments of the latter exist in literature (see for
example Merton 1969, Pang 2004, Barro, Canestrelli 2005). The goal of this work is to equip the
investors with a tool that provides them with daily knowledge of the efficient frontier in a
computationally efficient way. Essentially, we are aiming to create a tool that, using a history of
asset returns up to the present time period (for example the current day, if the trading/allocation
happens daily), can approximate the optimal allocation front as closely as possible given the
available computational resources.

The performance of the portfolio - its actual return when deployed in the market - depends on
two factors:

* How good the derived optimal solution is, given the performance measures used for the
decision. I.e., how close the solution is to the efficient frontier of risk/return
combinations.

* How accurate the performance measures that are used as objectives are. I.e., how
accurate the arithmetic average of past returns is in predicting the next period's return for
each asset.

As we noted before in this work we are mainly concerned with the first issue. The solution of
problems such as the ones in Table 1 is computationally expensive, partly due to the fact that the
decision space is very large if in practice a portfolio manager wishes to find optimal allocations
among hundreds or thousands of assets. The use of a multi-objective evolutionary algorithm is
justified by:

* The inherent ability of EAs to handle multi-objective problems and discover non-
dominated fronts in a single run (Deb 2001).

* The problem size. EAs are known to be able to handle problems of very large size due to
their implicit parallel processing ability.

* The nature of the VaR risk measure as an objective function (non-linear, non-convex and
in cases discontinuous).

2.4 Data sets used for the numerical experiments

Throughout the experiments presented in this thesis we have used two sets of data, as shown in
Table 2. These are the collections of assets from which the investor can select in order to create
their portfolio.

The time period is two years (2004-2006). Since a rolling window of 250 days is used and one
year of data is needed behind each optimization timestep, the optimization process begins
halfway through the dataset . Hence the first calculation is for the 2 50 th trading day, aiming for
the 251st.

The static optimization results we present in chapter 4 are for the 250' day (first day is
considered 'zero' day, where the returns calculation begins), i.e. the data up to and including the



30h of December 2004 is used to create an efficient frontier for a portfolio with a horizon of one
day to the 31st of December 2004.

Table 2. Data sets.

# stocks Start date End date

The 30 Dow Jones Industrial Average (DJIA) 30 Jan 2 2004 Dec 30 2005
index members daily adjusted.

name: DJIA_daily_adjusted

From the Standard and Poor's 600 Small Cap 10 Jan 2 2004 Dec 30 2005
index members, the 10 first stocks with
expected EPS growth > 10%, daily adjusted.

name: 10_from_SP600_daily_adjusted

The time-changing results in the sixth chapter begin with that day (30 th December 2004) and
continue as long as the data lasts (to the 3 0th December 2005), using a rolling window of 250 days
behind the current trading day.

I
t = 0

time window length
T = 250 (for sample
statistics calculation)

period for which
efficient portfolios are
computed (period

-spannedby t)

tSTART = 250

-1
timeI

tEND 
= 503

Figure 7. Data time window.

In terms of the source data, the first set is the 30 DJIA index members. The second data set is
picked in order to use stocks with different behavior. We randomly (alphabetically) selected 10
stocks from the SP600 Small Cap index, under the constraint that the underlying corporation has
a positive profit margin and more than 10% estimated one-year earnings per share (EPS) growth.

2.5 Conclusion

The portfolio optimization problem as explored in this work was presented in this chapter. The
problem is treated in its time-changing form as a multi-objective problem under the conflicting
criteria of risk and expected return. Two different risk measures are used: standard deviation and
Value-at-Risk. Value-at-Risk is calculated using a direct historical simulation, without assuming

Data set

1 MMM



any parametric probability distribution for the portfolio returns. While standard deviation is a
convex objective, Value-at-Risk is a non-convex and often discontinuous function that naturally
lends itself to an evolutionary optimization approach. For this reason, this thesis is slightly more
focused on the Value-at-Risk problem. The statements of the two problems, with either standard
deviation or Value-at-Risk as risk measures, are given and the chapter concludes with the
introduction of the two data sets used for the numerical experiments of chapters 4 and 5.

Having just described the optimization problem, the computational tool used for its solution will
be presented in the next chapter.





3 Evolutionary Algorithms and the Dynamic Queuing Multi-Objective
Optimizer

The Dynamic Queuing Multi-Objective Optimizer (D-QMOO), the optimization tool used to
solve the asset allocation problem, is presented in this chapter. First, a brief introduction to
evolutionary algorithms is given, followed by some definitions from multi-objective optimization
which will be useful later. D-QMOO is described next along with a discussion on its application
to the portfolio optimization problem and the performance measures used.

3.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are heuristic optimization tools. Their goal is to discover globally
optimal solutions in single- or multi-objective problems. Their general principle of operation is
inspired by the selection and evolution process encountered in natural species.

In contrast with most conventional optimization methods (such linear programming),
evolutionary algorithms do not work with a single solution. A set of solutions called the
population is used by EAs and several solutions are being processed simultaneously at any given
time during the course of the optimization. In an abstract way, this population resembles the
population of a natural species. Each solution is referred to as an individual. During each iteration
of the algorithm, new solutions (usually called children) are derived from the existing individuals
using a set of assignment operators. There are two main classes of operators: crossover and
mutation. Crossover operators combine the characteristics of two or more existing individuals
(the parents) in order to create a new solution. Mutation operators alter the characteristics of an
individual by a random amount. Since an optimization problem is being solved, the individual's
characteristics that are defined and altered by the assignment operators are elements of its design
vector.

Each individual is characterized by its fitness measure which is derived from the objective
function(s) of the optimization problem. A solution with good objective value has a good fitness
measure. Continuing the analogy with the evolution of the species, a selection process exists in
the algorithm which favors fit individuals and helps them survive and procreate, much like the
survival of the fittest process one encounters in nature. The goal of this process is to start from a
random population of solutions and gradually create better individuals, finally converging on the
optimization problem's global optimum.



Evolutionary algorithms incorporate some randomness in their operators (e.g. in the mutation
operators). This randomness, the way their operators function, and their population-based nature
offers EAs some significant advantages over many conventional optimization algorithms. EAs are
global optimization tools in the sense that they explore the whole design space and have the
potential to discover a global optimum instead of being trapped in local optima - even if one part
of the population is converging to a local extremum, individuals might be exploring other areas of
the design space. This population-based nature provides the decision maker with a more
comprehensive overview of the design space and allows the discovery of several local optima
along with the problem's global solution, which might prove to be useful information. Another
vital attribute of EAs is that they are not restricted in terms of the nature of the objective function
- for example it may be discontinuous, multimodal or non-differentiable (Branke 2002), in
contrast to other approaches such as gradient-based methods.

3.2 Multi-objective optimization problems

Multi-objective optimization problems are characterized by the need to simultaneously optimize
several conflicting objectives. Portfolio optimization is such an example - minimizing risk
usually reduces the expected return as well (recall the problem definition in paragraph 2.3).

A general statement of a multi-objective optimization problem is:

Find x, E X c: R" which minimizes f(x,t) = [f(x,t),..., fm(X,t)]

subject to 1/ < x1 < u, i = 1,...,n
(3.1)

g,(x, t) 5 0, j=l,..., q

h,(x,t) = 0, j= q +1,...,l

where x is an n-dimensional design vector defined on a set X and f is an m-dimensional objective
function. The g and h functions express a total of I inequality and equality constraints. Variable t
represents a temporal dimension that advances in a continuous or discrete manner - it may
represent actual time or simply different stages of a problem. In the discrete case, time advances
through a series of time steps {..., t-2, t-l, t, t+l, ... }.

In order to compare solutions of multi-objective problems, the concept of dominance is used:

A solution x eX c R" dominates another solution y E X C R"

if f(x) K:J (y) forall i{1,...,m} (3.2)

and fi(x) < Jf(y) for at least one ie {l,...,m}

So a solution dominates another if it is better in at least one objective, and not worse in all the
other objectives. And we can define Pareto optimality:

A solution xE X C R" is Pareto optimal if it is (3.3)
not dominated by any other solution.

The optimal solution of a multi-objective problem is the set of Pareto optimal solutions (non-
dominated solutions).

In the multi-objective case (m > 1), the optimal solution x*, at time t belongs to the set of Pareto-
optimal solutions in variable space, which will be called Pareto optimal set (POS - see for
example Coello Coello, Lamont 2004). The POS maps onto the Pareto optimal front (POF) of
non-dominated points in the objective space. Hence, while in a single objective problem the



global optimum is a single solution (see Figure 8), in a multi-objective problem the optimum is
composed of a set of solutions, the Pareto-optimal set, as shown in Figure 9.

Objective

Variable (decision)

Figure 8. Single-objective problem. The global optimum is marked in red.
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Figure 9. Characteristics of multi-objective problems. In this two-objective problem where the
minimization of f1 and f2 are sought, solution a dominates solution b and all the other solutions in the

gray-shaded area. Solutions are shown both in the objective and the variable space.



The concept of Pareto optimality was first introduced by the Italian economist Vilfredo Pareto
(Pareto 1896). Being on the Pareto-optimal front essentially means that one cannot make one of
the objectives of the problem better, without making another one worse.

3.3 The Dynamic Queuing Multi-Objective Optimizer (D-QMOO)

The Dynamic Queuing Multi-Objective Optimizer (D-QMOO) is the evolutionary algorithm used
in this thesis. D-QMOO is based on the QMOO algorithm (Leyland 2002) developed by Dr Geoff
Leyland and other researchers at the Laboratory for Industrial Energy Systems (EPFL-LENI) in
Lausanne, as an evolutionary algorithm initially focused on the solution of computationally
intensive industrial energy problems. However, QMOO has proven to be a robust and well-
performing optimization algorithm, and as a result it has been implemented as a search tool in the
Distributed Object-based Modeling Environment (Wronski 2005). QMOO's robustness and wide
applicability have also been verified in further work by the author.

QMOO has been developed into Dynamic-QMOO (D-QMOO) in the course of the author's
doctoral research at MIT CADLab (Hatzakis 2007). D-QMOO has the ability to handle
constrained and time-changing optimization problems. A comprehensive description of the
algorithm can be found in the author's doctoral thesis. Here, some key characteristics of D-
QMOO are briefly listed:

* D-QMOO is an elitist algorithm. A Pareto-optimal (good) solution will never be eliminated
unless it is replaced by a better solution.

* D-QMOO is a steady-state algorithm. Its population is not characterized by generations
which are completely replaced by new ones. The population is in a constant state and
solutions are incrementally added and removed from it.

* D-QMOO performs grouping. It separates the population into groups which independently
explore the design space.

* D-QMOO performs evolutionary operator choice in order to select crossover and mutation
operators. Four different option for crossover (sbx, blend, linear, uniform) and three different
options for mutation (uniform, normal, global) operators are available; the algorithm adapts
to each optimization problem by favoring the most successful operators.

A block diagram of the algorithm's basic iteration is shown in Figure 10.

3.3.1 Solving time-changing optimization problems with D-QMOO

Time-changing problems present a special challenge to evolutionary algorithms. Let us have a
look at the sketch of Figure 11. It is a two-objective problem, and the design vector has two
variables, x, and x2. If this was a static problem, the EA would only need discover the first
optimal solution: the first Pareto optimal set, shown with a black line as POSt. However at t+l the
objective landscape changes and the optimal solution moves to POSt+1. The EA now has to
discover the new optimal solution, after having converged on the previous one. In the next
timestep the optimal solution moves to POSt+2, and so on.

D-QMOO employs an algorithmic architecture for the solution of time-changing problem that
aims to provide it with a well-performing and at the same time robust solving ability. This
architecture is based on the simultaneous presence of two elements:
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Figure 11. Time-changing two-objective problem. The minimization off, (in red) andf 2 (in blue) is
sought.

* An anticipatory population which helps the algorithm discover the new optimum when the

objective changes in time. This is done by estimating the optimal solution's motion with a

forecasting model and placing anticipatory individuals at its estimated future location. As a

result the algorithm uses fewer function evaluations and its performance is increased. This

method is called Feed-forward Prediction Strategy (FPS).

* A balance between population convergence and diversity in the design space, through the

retention of an exploratory group of individuals. This means that apart from the non-

dominated individuals which converge on the current optimal solution, an additional group of

dominated individuals (called the cruft) exists. This group preserves diversity - it is scattered

over the design space and explores for new (better) solutions. Specifically, the balance of

convergence and diversity is provided by:

o The preservation of this dominated group of individuals whose goal is

exploration of the design space.

o The selection between different criteria for the elimination of individuals. These

criteria are age (oldest individuals are eliminated) and crowding (individuals in

more densely populated areas are eliminated). The crowding criterion promotes

diversity in the population.

This balance assists in the discovery of the new solution, even if the objective moves in an

unpredictable way and the anticipatory population cannot be accurately placed near the next

optima.
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Hence, the anticipatory population increases the algorithm's performance by discovering the new
solutions faster. The preservation of diversity on the other hand ensures that the new solutions
will eventually be discovered, even if the anticipatory population is not successful (also see
Figure 12).

The anticipatory population is created with the help of a forecasting model. The optimal
solution's past locations are cast into the form of a time series and used as input into a forecasting
method such as an Autoregressive model. The forecasting model produces an estimate for the
next location of the optimum, and this estimate is used to place individuals there in order to
discover the new optimum faster. The function and effect of the anticipatory population is
extensively described in various publications by the author (Hatzakis, Wallace 2006b, Hatzakis,
Wallace 2006a).

Figure 12. D-QMOO's concept for the solution of time-changing problems (Hatzakis 2007).

3.4 Solving the portfolio optimization problem with D-QMOO

The algorithm's goal when solving the portfolio optimization problem is to discover an accurate
approximation to the Pareto front - essentially, to place individuals as close to the efficient
frontier curve as possible (recall Figure 6).

Financial portfolio optimization has some characteristics that make it a very challenging multi-
objective time-changing problem. The most important one is the lack of predictability in the
objective's motion. Indeed, as we will discuss more thoroughly in chapter 5, the optimal solution
to the portfolio problem depends on the asset prices' motion. Asset prices are themselves
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impossible or very hard to forecast, making the optimal asset allocation very hard to forecast as
well.

The basic contribution of this work is studying how to solve this problem with an algorithm such
as D-QMOO, and developing specialized heuristics for the creation of anticipatory populations
since the standard forecasting approach does not work. These issues will be discussed in the next
two chapters.

Portfolio optimization with EAs has been studied in the past. The work by Frank Schlottmann
(Schlottmann, Seese 2004, Schlottmann, Seese 2005) in credit portfolio optimization has inspired
much of the present work, and the author and Dr Schlottmann have collaborated extensively on it.

Here we discuss the performance measures used in the next two chapters in order to compare
optimization results.

3.4.1 Performance measures

The first criterion by which we judge the merit of the various frontiers produced by the algorithm
is a visual inspection. Indeed, especially in a two-objective problem such as ours where solutions
can be plotted in a two-dimensional objective space, it is relatively straightforward to compare
two solutions with each other.

Apart from a visual inspection however we need some more 'macroscopic' measures by which to
judge and compare solutions. This is mainly because we are solving a time-changing problem
with hundreds of timesteps - it would be impractical to compare solutions for each timestep one
by one. Hence we need performance measures that can characterize an efficient frontier
approximation with a single number.

Two such measures are used in this work: anchor point location and non-dominated volume.

Anchor point location

The anchor points are the two extreme solutions on the efficient frontier approximation: the
solution with the minimum risk and the solution with the maximum return. They give the two
best possible scenarios in terms of risk or return, as shown in Figure 13.

According to this criterion, well performing solutions have high return and low risk anchor point
locations.

Non-dominated volume

The normalized non-dominated volume is a comparative performance metric (Zitzler, Laumanns
& Thiele 2001, Zitzler, Thiele 1999). This metric is shown graphically in Figure 14. The actual
volume dominated by a Pareto front approximation is the un-hatched part of the control volume
defined by the utopia and nadir points. The metric's value is the non-dominated hatched area,
normalized by the control volume. Hence between two solutions the one with a smaller metric
value is better, since it dominates a larger portion of the control volume. This is an appropriate
scalar metric since it incorporates both the distance of the Pareto front approximation from some
utopian trade-off surface, and its spread.

According to this criterion, well performing solutions have a low non-dominated volume value.
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Figure 13. Anchor points and numbering of individuals along the front, for an efficient frontier
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3.5 Conclusion

D-QMOO, the computational tool used for the solution of the portfolio optimization problem,
was described in this chapter. D-QMOO uses a combination of two algorithmic elements in order
to tackle time-changing multi-objective problems, an anticipatory population and a balance
between convergence and diversity. The anticipatory population is created with the help of a
forecasting model and increases algorithm performance by helping it discover the successive
locations of a moving optimum using less computational time. The balance between convergence
and diversity ensures that the moving optimum will be discovered even if the anticipation is not
successful.

Some intricacies of the portfolio optimization problem from the algorithmic point of view are
discussed next, followed by the performance measures used in this work. These performance
measures are the anchor point location and the non-dominated volume, which provide a way to
characterize efficient frontier approximations with a single number.

In the following chapter the solution of the static portfolio selection problem is presented.



4 Solving the Static Portfolio Optimization Problem

4.1 General.

In this chapter some sample results from the static portfolio optimization problem are presented,
before we discuss the time-changing problem in the next chapter. The static problem deals with
the solution of the multi-objective problem for a single timestep', given the history of stock
returns up to the previous timestep. The goal is to find the efficient frontier of portfolios in the
risk-return space for that instance.

Both versions of the optimization problem are solved, with either standard deviation or Value-at-
Risk as risk measures, in the following two sections.

4.2 Mean - standard deviation problem.

The mean-standard deviation problem (recall the definition in Table 1) is first solved without
allowing any short sales. The results can be seen in Table 3. The amount of computational time
used is 65 million function evaluations. If we look at the best obtained values for the risk and
return (the anchor points of the Pareto front) at the bottom right figure of the table, we can see
that the risk improves rapidly in the beginning (until 0.5 million evaluations, barely visible in the
graph) and then continues improving very slowly as the solution converges.

In order to obtain a validity check, the minimum risk portfolio was calculated as a solution to a
quadratic optimization problem. The minimum risk portfolio in the mean - standard deviation
problem is the portfolio with the minimum standard deviation (minimum variance). Hence it can
be discovered by solving the quadratic single-objective minimization problem of Table 4.

This is a common minimization problem, and there is a large number of established tools
available for its solution. We used Matlab's fmincon function, which applies the Sequential
Quadratic Programming (SQP) algorithm. The solution obtained was compared to the minimum
risk solution from D-QMOO, which is the top anchor point on the Pareto front (see Figure 13).
The two solutions can be seen in Figure 15. The two solutions are not identical but very close,
and their risk measure differs only by 0.000146 (around 3%). This comparison serves as a
practical validation that the D-QMOO evolutionary algorithm actually solves the 'correct'
problem in this region of the Pareto front.

' For example, a single trading day.



Table 3. Mean - standard deviation solution. No short sales.

Risk measure standard deviation

Run length: 65 million evaluations

Time-changing: no (static)

Short sales: no short sales

Data set: DJIA_daily_adjusted

expected returns vector:

0.000009 -0.000471 0.000785 0.000691 0.000038 0.000072 0.000978
0.000742 0.000059 -0.000617 0.000437 0.000980 0.000800 -0.000966
-0.000276 0.000899 0.000403 -0.001156 0.000304 0.000919 0.000420
0.001136 -0.001177 0.000296 -0.001025 0.000526 0.000461 0.000663
0.000146 0.000726

Final solution obtained
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Table 4. Minimum risk problem.

5 10 15 20 25 30

Figure 15. Comparison of the minimum risk solution obtained with Matlab's SQP solver (blue) and
the evolutionary algorithm D-QMOO (red). Variables lie on the x-axis (each variable denotes an

asset), and the variables' value is on the y-axis (denoting the capital allocation for each asset). The
standard deviations obtained are up mn MATLAB = 0.00485, ap min D-QMOO = 0.00501.

In the second experiment, shown in Table 5, an amount of short-sales is allowed. These results
are shown here in order to demonstrate that this solution technique can handle short sales, in the
form of negative capital allocations.

The interesting thing to note here is that the inclusion of short sales allows the design of
portfolios with much larger expected return. Compare the efficient frontier of Table 5 with the
one on Table 3: The highest expected return without short sales is a little more than lx10 3 while
with short sales it is around 2x10-2, more than 10 times higher. This is because the inclusion of
short sales allows the algorithm to short assets with a large expected loss, and allocate more than
100% of the available capital to assets with large expected gains (since other assets can be shorted
and hence the total capital constraint satisfied). This way the portfolio expected return can be
much higher than the one of the asset with the highest expected return. On the contrary, when

Minimum variance (minimum risk) problem

minimizef (x, R(t), t) = risk(x, R(t), t)"
where:

risk(xR(t),t):= ri_(k)_x__(t)_r__(k)_x__(t)

tI- k=1 (i=1 k=1 i--]

subject to:

1B • x, : u4 , for i= ,...,n (if 1B = 0 and u = 1, no short sales are allowed).
n Xi =I ~ ii~~~~ ~~~~g
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short sales are not allowed, the asset with the highest expected return places a limit to the
portfolio's highest expected return.

Table 5. Mean - standard deviation solution. Some short sales allowed. Note on the efficient frontier
that the expected return is now an order of magnitude larger than when no short sales are allowed.

Risk measure standard deviation

Run length: 66 million evaluations

Time-changing: static

Short sales: Short sales allowed: XE [-1.0,2.0]
Data set: DJIA daily_adjusted

expected returns vector:

0.000009 -0.000471 0.000785 0.000691 0.000038 0.000072 0.000978
0.000742 0.000059 -0.000617 0.000437 0.000980 0.000800 -0.000966
-0.000276 0.000899 0.000403 -0.001156 0.000304 0.000919 0.000420
0.001136 -0.001177 0.000296 -0.001025 0.000526 0.000461 0.000663
0.000146 0.000726

Final solution obtained
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(o.0054355, ao0002402) (0 07843, 0.019829)
-- F------ "

I II-- I

" -'
1 1-0.5-, t - - -2 a e 2II -- -- - I ""---- -- - - I,. . " .

I

11

O 0.05 Q1 Q15
risk (poxrtfdio standard cdiation)

Durinated \durne fr run_0023 Rsk and retm anhor pairt cxgenew for n 0023
1 .Qi 0198

0.8

0.6

Q0198

0.4

0.2

0
0 1 2 3 4 5 6 0 0 0198

ew0uatios x 107 0 1 2 3 4 5 6 7

x 10

0.01-

0.005



4.3 Mean - Value-at-Risk Problem.

The mean - VaR problem (recall the definition in Table 1) is explored in its static form in this
section. No short sales allowed in the experiments shown here.

Compare the final solution obtained for the mean-VaR problem shown in Table 6, with the
solution for the mean-standard deviation problem in Table 3. First, while the same asset provides
the maximum return solution (asset 22, MCD), different assets provide the minimum risk
solution. Second, it is interesting to see how the mean-VaR solution is more fragmented and
discontinuous both in the variable and the objective space, since Value-at-Risk is a non-convex
risk measure.

Table 6. Mean-VaR solution.

Risk measure value-at-Risk, 1-percentile

Run length: 62.5 million evaluations

Time-changing: static

Short sales: no short sales

Data set: DJIA_daily _adjusted

expected returns vector:

0.000009 -0.000471 0.000785 0.000691 0.000038 0.000072 0.000978
0.000742 0.000059 -0.000617 0.000437 0.000980 0.000800 -0.000966
-0.000276 0.000899 0.000403 -0.001156 0.000304 0.000919 0.000420
0.001136 -0.001177 0.000296 -0.001025 0.000526 0.000461 0.000663
0.000146 0.000726

Final solution obtained
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4.4 Conclusion.

Some sample solutions of the static portfolio optimization problem were presented in this chapter.
Examples from both the mean-standard deviation and the mean-Value-at-Risk problems are
shown. The effect of allowing short sales is discussed, as it dramatically increases the optimal
portfolios' expected return. The difference between the two problems (std and VaR) is also seen,
partly caused by the non-convexity of VaR as a risk measure.

In the next chapter the time-changing portfolio optimization problem will be studied.

I- · · I



5 Solving the Time-Changing Portfolio Optimization Problem

The time-changing portfolio selection problem is addressed in this chapter. Recalling the problem
definitions in Table 1, which are instances of the general problem (3.1), the temporal parameter t
is allowed to change expressing the nonstationarity of the problem as trading days advance.

D-QMOO, the evolutionary algorithm described in chapter 3, is used as a solver. Furthermore
new heuristic techniques are developed and implemented here in order to solve the problem more
efficiently and address the intricacies of portfolio optimization as a time-changing multi-objective
problem, which mainly stem from the lack of predictability in the optimal solution's motion.

Recollecting the discussion of section 3.3.1, D-QMOO has two basic mechanisms for the solution
of time-changing problems (see for example Hatzakis, Wallace 2006a):

* Anticipatory individuals, placed where the optimal solution is expected to go during the
following timesteps. This method is called Feed-forward Prediction Strategy (FPS). The
forecasting method used to estimate the location of the next time step's solution is a very
important and problem-specific issue. This is especially true in this application, and will
be addressed later.

* A mechanism of balancing convergence and diversity in the population, in order to have
the exploration ability to discover and track the solution even it moves in an unstructured
manner or appears at a new location. This mechanism consists of two elements:

o The preservation of a dominated group of individuals (the cruft) whose goal is
exploration of the design space.

o The selection between different criteria for the elimination of individuals. These
criteria are age (oldest individuals are eliminated) and crowding (individuals in
more densely populated areas are eliminated). The crowding criterion promotes
diversity in the population.

In this chapter we start by solving the time-changing portfolio optimization problem with the
'pure' version of the D-QMOO algorithm, that uses only the convergence/diversity balance
mechanism. Subsequently various approaches and heuristics are evaluated in order to improve the
performance, i.e. to find better (non-dominated) efficient frontiers in every timestep using the
same number of function evaluations.



5.1 Anticipatory populations for the portfolio optimization problem and predictability of
asset returns

At this point we need to make an important note regarding the creation of anticipatory
populations for the portfolio optimization problem. Specifically, we must make a distinction
between forecasting the asset returns and forecasting the location of the optimal solution in the
decision space.

Although of varying accuracy, there is a number of methods which attempt to estimate the price
or the return of an asset, one or more time steps into the future. Remember that we are using the
one-step-ahead forecast as the objective function of our problem (i.e. we are optimizing a
portfolio for this forecast). Then, why not use the two-step-ahead forecast in order to create an
anticipatory population? The answer is that simply obtaining a two-step ahead forecast for the
asset returns and solving for it is just as expensive computationally as solving the current (one-
step-ahead) problem. The key here is that the forecast is for the asset returns; however, the feed-
forward prediction strategy needs a forecast for the location of the optimal solution.

Using a two-step-ahead forecast for the asset returns is, essentially, solving tomorrow's problem
with today's data. The goal of FPS is to achieve computational efficiency by directly forecasting
the motion of the optimum in the solution space. In this case, this optimum is the design vector of
the allocation for the optimal (efficient, non-dominated) portfolios. Hence, we need to find a way
to forecast the motion of the portfolios themselves in order to use the FPS effectively.

Here we can distinguish a clear obstacle in using a conventional forecasting algorithm in order to
apply the Feed-forward Prediction Strategy with the portfolio optimization problem: Even though
some forecasting methods exist, asset returns are in general very hard or impossible to predict.
Hence the location of the optimal solution in the decision space, which is a direct product of asset
returns, is also very hard to predict. This precludes the use of forecasting methods such as
Autoregressive models, which have been used with the FPS on other problems.

5.2 Heuristics for the creation of anticipatory populations

However an anticipatory population for a time-changing algorithm need not necessarily be
created using a forecasting model. During the course of this work, 'non-forecasting' heuristics for
the creation of anticipatory populations for the portfolio optimization problem were devised and
implemented, some of which are shown to be successful. These techniques are summarized in
Table 7, and they will also be discussed in more detail later.

Table 7. Algorithmic versions of D-QMOO and heuristics for the time-changing problem. The
various heuristics are described in more detail later.

Algorithm versions and anticipation heuristics investigated

D-QMOO Base version.
No anticipatory population.
Only convergence/diversity balance used as a time-changing optimization
method.



Maximum Anticipatory population: At each timestep, the maximum return solution is
return solution used as an anticipatory individual, to 'seed' the rest of the population.
seeding.

The location of the maximum return solution is obtained through the asset with
the best expected return. Risk is disregarded, and the solution with the
maximum expected return is found from a single-objective linear problem:

x,,, = [0....x, = U....x = L.....]

where p = [a ...-/N ] and i = index(max(/)), j = index(min(u))

and U, L are determined by :
if(x. > 1 - xm ), then U = 1- xm, and L = xmmi
elseif(x , ,, < 1 - xm), then U = xm. and L = 1- x.

elseif(x• = 1-xm ), then U = x • and L = xmi
N

under the constraints x = 1 and Xmm X, - X<
i=1

This technique improved performance.

Minimum Anticipatory population: At each timestep, the minimum variance solution is
variance used as an anticipatory individual, to 'seed' the rest of the population.
solution
seeding. In the mean-std problem, this seed is exactly the minimum risk solution. In the

mean-VaR problem, this seed attempts to be near the minimum risk solution.
The two solutions do not coincide because the VaR is calculated using
empirical historical simulation (recall the discussion in section 2.2.3). The
minimum variance solution is found by solving the single-objective quadratic
problem of Table 4.

This technique improved performance.

Autoregressive Anticipatory population: Autoregressive models are used to estimate the
forecast location of the minimum risk and maximum return solutions, as was done in
seeding. the introduction of the Feed-forward Prediction Strategy (Hatzakis, Wallace

2006b). Due to the nature of the solution's motion in time (as discussed
earlier, and as it will be seen in results presented later), this forecasting
method fails to create a prediction that is accurate enough to be useful.

Linear Anticipatory population: A linear anticipatory population is used. Individuals
anticipatory are placed on a linear segment connecting the estimated anchor points
population. (seeds), under the rationale that in the Markowitz problem, the solution takes

the form of linear segment(s). This technique was not very successful either,
no matter which kind of forecasting we used for the seeds, mainly due to
strong inflexion points which drove the solution away from the 'chord'
segment.

Local search The anticipatory individuals, no matter how they have been created, are forced
for the to execute a few steps of local search (see for example the search strategy in
anticipatory Schlottmann & Seese (2004)). Here a 1+1 Evolution Strategy is used as a
individuals. local search mechanism.

The rationale is that there are only two anticipatory individuals, in a total
population of 100 or more. Hence they might benefit more from searching on
their own around their neighborhood for better solutions than mating with
distant unrelated solutions belonging to the previous time step's front.

This approach improved performance.



5.3 A note on the two problems (mean-standard deviation and mean-Value-at-Risk)

We must note here that the mean-standard deviation problem is quite straightforward, and has
also been treated numerous times in the past literature since it is a quadratic problem that can be
solved with existing rigorous methods (e.g. SQP).

For this reason, and recalling the discussion in section 2.2.3, in a large part of this work our
efforts are focused on the mean-VaR problem. Historical simulation Value-at-Risk, being an
empirical black-box non-convex and non-differentiable function (recall Figure 5 and see Figure
3(Pflug 2000)), lends itself naturally to an evolutionary approach.

5.4 Solving the time-changing problem with the base algorithm

In this paragraph sample results from the solution of the time-changing problem are shown, using
the basic form of the D-QMOO algorithm. Only one performance-improving heuristic is used: the
maximum return location seed (as described in Table 7), since it is straightforward to implement
and was found to increase performance in most cases. No other form of anticipation or
performance-enhancement technique is applied. The goal is to study the behavior and
performance of the basic D-QMOO on the mean-standard deviation and the mean-Value-at-Risk
problems.

The effect of the objective change frequency is specifically studied in this set of numerical
experiments. The change frequency is defined as the number of function evaluations per time
step. It expresses the computational time available to calculate the efficient frontier during each
trading day. Hence it is a vital parameter - if we had infinite evaluations available we would be
able to discover the efficient frontier by a crude random search, and a sophisticated algorithm
would not be required. The better performing an algorithm is, the fewer evaluations it needs to
discover the non-dominated solution. A convergence check for the algorithm is to decrease the
frequency (increase the evaluations per time step) until the obtained solution converges to a
constant value.

Since it is impractical to compare the obtained non-dominated fronts visually or timestep-by-
timestep, we use the anchor points and the non-dominated volume (as defined in section 3.4.1) as
macroscopic performance measures and occasionally do a visual comparison at specific time
steps.

For these results the DJIA_daily_adjusted data set is used. The time history of the asset prices and
the expected returns (arithmetic mean of the past 250 returns) can be seen in Figure 16 and Figure
17.

Sample results from the time-changing mean-standard deviation problem are shown in Table 8
and Figures 18 through 24. These experiments were done as a convergence study. The problem
was solved starting from a high objective change frequency (with few function evaluations
available per timestep), and this frequency was gradually decreased. As the frequency is
decreased the algorithm has more time available per timestep to converge to the solution, and the
accuracy is improved. At the convergence frequency the obtained solutions start to be similar to
each other.
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Figure 16. Asset prices time history (DJIA 30).
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Figure 17. Adjusted expected daily returns time history.
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In the first graphs (Figure 18 and Figure 19) the dominated volume metric time history is shown
for various objective change frequencies'. The period of 100k evaluations per time step is found
to be a satisfactory convergence period. Subsequently additional results from that period are
shown (asset allocation in Figure 20 and Figure 21, efficient frontier at different time steps in
Figure 22, time history of the maximum return and minimum risk solutions in Figure 23 and
Figure 24). It is interesting to observe how difficult it would be to forecast the motion of the
minimum risk solution in time, as shown in the last figure.

Results from the mean-VaR problem are shown in Table 9 and Figures 25 through 31.
Convergence happens between 100k and 500k evaluations per time step.

Table 8. Mean-standard deviation time-changing problem.

Risk measure Standard deviation

Run length: 254 timesteps (or less).

Time-changing: time-changing, various frequencies

Short sales: no short sales

Data set: DJIAdailyadjusted

Anticipation: Seeding with maximum return solution at each timestep (this was easy and
straightforward to do and has been used at every run in this report).

Tirrcharijrg DJIA 30asset dffrert frequencies

50 100 150 200 250
time

Figure 18. Non-dominated volume. We can see that convergence happens near the period of 100k
evaluations/timestep, since the solution accuracy as expressed by the dominated volume remains

almost the same up to that period and starts deteriorating above it. The next plots are from results
obtained at this period.

1 Note that we measure 'frequency' by evaluations per timestep which is strictly an objective change period
since less evaluations mean a faster rate of change and hence a higher frequency.



5 10 15 20 25 30 35 40 45
time

Figure 19. Non-dominated volume (zoom plot).
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Figure 20. Contribution of various assets along the non-dominated front at the first timestep. The

horizontal axis denotes the various solutions along the efficient front. Solution #1 is the minimum

risk solution (at the lower left end of the Pareto front) and solution #125 is the maximum return

solution. The 20th individual's asset allocations are noted.



Vaiables. t=1 and t=2. 30 assets. Meai-td. run_0003 100k exls/step
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Figure 21. Contribution of various assets along the non-dominated front at the first and second
timestep. The second time step is plotted as well, to show the change. Note that, in general, four

stocks dominate and the rest have a very small contribution.

x 10 Frcrt t=1, t=2 and t=50. 30 assets. Msarstd. run 0003 100k eds/step.
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Figure 22. Efficient (non-dominated) front at three timesteps (t = 1, 2 and 50). The
along the front is noted.
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Max return sclution
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Figure 23. Maximum return solution. A single asset, the one with the highest expected return,
comprises this solution. As time advances and new market data arrives, different assets take on this

role.

Mn risk (std) sdolution n _0003

time

Figure 24. Minimum risk solution (each color indicates a different asset). It becomes obvious even
from a simple visual inspection that it is not straightforward to forecast this motion.
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Table 9. Mean-Value-at-Risk time-changing problem.

Risk measure Value-at-Risk (1-percentile).

Run length: 254 timesteps (or less).

Time-changing: time-changing, various frequencies

Short sales: no short sales

Data set: DJIA_daily_adjusted

Anticipation: Seeding with maximum return solution at each timestep.

Tir charng 30 asset VaR - dtffaert frequencies

50 100 150 200
time

Figure 25. Non-dominated volume. Convergence happens after 100k evaluations, at around 500k
evaluations per timestep.
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Figure 26. Non-dominated volume (zoom plot).

Time charing 30 asset. irerert frequenies.

100 150 200 250
time

Figure 27. Minimum Value-at-Risk. Here we can see the minimum VaR (the objective value of the
minimum risk solution) in time, for various frequencies. It is apparent how much the solution

deteriorates for high frequencies (e.g. at 1k evals/timestep).
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Figure 28. Minimum Value-at-Risk (zoom plot).
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Figure 30. Pareto front (efficient frontier) at t=-8. The effect of frequency is shown.

These results serve as a demonstration of the ability of D-QMOO's basic version to solve each of
the two problems. Sections 5.6 and 5.7 of this chapter deal with trying to find a way of using
anticipation (through the Feed-forward Prediction Strategy) and other heuristics in order to
improve solution performance.

5.5 Market deployment of the designed portfolios - a real-world verification.

In order to verify whether the portfolios discovered by the algorithm would actually perform well
in the real world, we simulated their actual deployment in the market. Each trading day t, a set of
portfolios are designed. In this section some of these portfolios are deployed in the market the
next day (t+1) and their return is measured.

The results presented here are from portfolios derived from the solution of the mean-VaR
problem (with VaR as the risk measure). Specifically, we use the purple-colored run from Figure
25 at 100k evaluations per time step. The actual, realized returns of the two anchor-point
portfolios are measured (minimum risk and maximum return portfolios), together with their
expected returns. The time history of these returns can be seen in Figure 32 and Figure 33. We
note the following:

* The maximum return design (red) is more volatile. The minimum risk design (blue) is
much less volatile as expected. The VaR quantile function usually does not react
significantly upon the update of a single asset return if this return is not extremely
negative, while the sample mean reacts immediately to asset return updates.

* The actual returns are more volatile than the expected returns of the designed portfolios.
This is natural, since the expected returns on which the portfolios are designed are
smoothed statistics compared to the actual returns which are single day observations.

I



Both portfolios outperform the Dow Jones Index (black line), which contains exactly the
same stocks, but with the market allocation. The average daily returns of the minimum
risk and the maximum return portfolios are 1.2E-4 and 2.3E-4 respectively, while the
DJIA average daily return is -9.5E-6.

The last point serves as a practical demonstration that the portfolios designed using the
evolutionary algorithm perform better than the market, since they provide a higher average return
than the market portfolio. Also, the trade-off relation between risk and return is confirmed since
the maximum return portfolio is also more volatile.
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Figure 31. Variable (decision) space plots. The effect of frequency is shown (same color coding as the
Pareto plots).
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Figure 32. Comparison of the actual performance of the two anchor portfolios (minimum risk and
maximum return) discovered by the algorithm, with the performance of the DJIA market portfolio.
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Figure 33. Comparison of the actual performance of the two anchor portfolios (zoom plot).



5.6 Forecasting the location of the minimum Value-at-Risk solution.

In the mean-standard deviation problem, the minimum risk anchor point can be found by solving
the quadratic problem using a rigorous method like SQP as it was discussed in section 4.2. This is
a straightforward process since quadratic minimization for a single point is not very time
consuming and can be done at the beginning of the timestep, as soon as the new market data
arrives. This is performed in lieu of an actual forecast (which would have been done in the
previous timestep), in order to create an anticipatory individual.

However in the mean-VaR case it is not straightforward to discover the minimum risk solution.
Only the evolutionary algorithm itself can be used to globally minimize the non-convex Value-at-
Risk objective. Hence finding a suitable estimate for the minimum VaR location is a challenging
issue. If an estimate is somehow found however, it can be used to create an anticipatory
population and improve performance.

We have identified two approximation concepts for the estimation of the minimum VaR location.
Assume that the new time step has just arrived, and the fresh market data (returns for each asset)
is just in. Then, the minimum variance portfolio can be used as an approximation for minimum
VaR portfolio (this is one of the heuristics proposed in Table 7).

If we were using a parametric approximation for the portfolio returns (which we are not), the
minimum VaR solution would coincide with the minimum variance solution. For example in the
case of a normal distribution the 1-percentile VaR is

VaR = , - 2.32a

Hence, finding the solution for minimum a would also give the solution for minimum VaR in this
case.

In our case a direct historical simulation is used to calculate the VaR, and the minimum VaR
solution does not coincide with the minimum standard deviation solution2. It does, however,
provide an approximation. The question here is how good this approximation is. Our initial
experiments show that this depends on the case. In general the minimum variance point will not
move as abruptly as the minimum VaR point, since variance is an averaged statistic depending on
the whole history while VaR is wholly defined by a few single extreme events. Results from the
use of this method will be shown later.

It must be repeated here that we go through the trouble of trying to estimate the minimum VaR
location because forecasting models that use this location's past time history are hard to use for
its prediction. The nature of this point's motion is such that forecasting methods such as
autoregressive models have small chances of success. A simple visual inspection of Figure 34 can
give us an idea. We can see there that typically an asset stays in roughly the same level for a
period of time and then abruptly jumps to a different level, where again it remains for a while,
and so on. This sort of motion makes it hard to fit an autoregressive model. Initial experiments
using the Feed-forward Prediction Strategy with AR models verified this issue, as will be seen in
section 5.6.3; the FPS did not help performance because forecasting was so bad. Hence, heuristic
methods such as the minimum variance approximation described above have a bigger chance of
success in this problem.

5.6.1 Convergence results for the SP600 data set

The SP600 data set will be used later to study the minimum variance approximation for the

2 This is also evident in practice; see for example the difference in the variable space plot of the solutions in
Table 3 and Table 6 of the previous chapter.



minimum VaR solution location, as described previously, as well as other anticipation methods.
Here we present convergence results for this data set, before we continue onto numerical
experiments for the approximation heuristics.

In Figure 35 and Figure 36 we can see the time history of asset prices and returns for the SP600
data set. Convergence results for the mean-standard deviation problem are presented in Table 10
and Figures 37 and 38. Convergence results for the mean-standard deviation problem are
presented in Table 11 and Figures 39, 40 and 41.

#TiriaRpaOt conrdats, 30asts, 100k wastoi

Figure 34. Time history of the coordinates of the minimum VaR point. Each asset's allocation is
denoted with a different color.

SP600 ddly adjusted (first 10 stocks). Asset prices Jan 2004- Jan 2006.

tirme

Figure 35. Asset prices time history. SP600.
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Figure 36. Expected asset returns time history. SP600.

Table 10. Convergence experiment parameters for the mean-standard deviation problem with the
SP600 data set.

Risk measure Standard deviation.

Run length: Different lengths.

Time-changing: Static.

Short sales: No short sales

Data set: 10_from_SP600_daily_adjusted

Anticipation: Seeding with maximum return solution at each timestep.

expected returns vector:

-0.000068 0.002662 0.001338 0.001232 -0.000963

0.000322 0.002595 0.000182 0.003721 0.001664
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Figure 37. Convergence - non- dominated volume. The algorithm converges at roughly 65k
evaluations.
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Table 11. Convergence experiment parameters for the mean-Value-at-Risk problem with the SP600
data set.

Risk measure Value-at-Risk (1-percentile).

Run length: Different lengths.

Time-changing: Static.

Short sales: No short sales

Data set: 10_from_SP600_daily_adjusted

Anticipation: Seeding with maximum return solution at each timestep.

expected returns vector:

-0.000068 0.002662 0.001338 0.001232 -0.000963

0.000322 0.002595 0.000182 0.003721 0.001664
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Figure 39. Convergence - dominated volume. In this
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5.6.2 Results from using the minimum variance solution as a predictor for the minimum
VaR solution.

In order to see if the minimum variance solution provides a helpful predictor for the minimum
VaR solution within the context of the Feed-forward Prediction Strategy, both static and time-
changing experiments were carried out.

In the static optimization problem, using the minimum variance solution as a predictor for the
minimum VaR location had a positive effect on the solution performance. In this case
performance is expressed by how quickly the solution is discovered and the algorithm converges.
This can be seen on the non-dominated volume plot of Figure 42. We can see that the main effect
the minimum variance seed has is to place the solution immediately in the neighborhood of the
minimum VaR point, accelerating the initial exploration phase.

10 asset, rmeanVaR, seed vith nin \aiance
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Figure 42. Non-dominated volume for the static mean-VaR optimization problem. It is evident that
using the minimum variance approximation (blue curve) helps the algorithm converge faster.

In the time-changing problem, the effect of using the minimum variance point as a predictor in
the time-changing mean-VaR problem is evident; it is not, however, very strong. The dominated
volume plots in Figure 43 illustrate this effect for an increasing frequency of change. As
expected, the FPS benefits performance more in the high frequency case of lk evaluations per
timestep.

In Figure 44 we can see instances of the efficient frontier (Pareto front), with and without the use
of the FPS. The effect of the anticipatory population is evident at the minimum risk end of the
frontier (bottom left), where in general it produces solutions that dominate the ones without the
FPS.

--- seed wvth nin aeriance
-- no seed rin laiance
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Figure 43. Dominated volume time history. Solution of the time-changing portfolio optimization
problem with VaR as risk measure, with and without anticipatory populations. The positive effect of

anticipation is evident in the higher frequency of 1000 evaluations per time step.
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5.6.3 Autoregressive models as predictors of the optimal solution's motion

As noted earlier the solutions to the portfolio optimization problem move in time in a way that
makes it hard to successfully use a forecasting model. The use of autoregressive models with the
FPS did not manage to significantly improve performance. In the numerical experiments carried
out, the forecast for a solution's location was so bad that it practically followed the solution
instead of leading it. As an example, in Figure 45 we can see the best discovered solution
coordinates (asset allocations) and their forecasted motion, for the closest-to-ideal (CTI) point.
The CTI point is an intermediate point along the Pareto front that is sometimes used with the FPS
(Hatzakis, Wallace 2006b). Only assets 2, 7 and 9 are shown for clarity's sake. It is obvious that
the forecast does not predict changes, it rather just follows the solution's motion.

0 10 20 30 40 50 60
time

Figure 45. AR forecast and actual motion. The forecast is not successful - it only follows the
solution's motion.

5.7 Local search.

Anticipatory individuals, no matter with which method they have been created, are often close to
the actual solution for the next time step. In this paragraph a local search (local hill climbing)
technique is applied on the anticipatory individuals.

The rationale is shown in the sketch of Figure 46. Anticipatory individuals are usually one, two or
three. Often they are at a large distance in the design space from the existing population. Hence
they might produce a better result by searching on their own around their neighborhood for better
solutions, rather than being mated with distant unrelated solutions belonging to the previous time
step's front and trying to produce better individuals by crossover (recall section 3.1 for a
discussion on the function of crossover operators). The technique proposed here is to create the
anticipatory individuals and then have them perform a number of local hill climbing steps, before
inserting them into the population and allowing the evolutionary algorithm to continue solving.
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Figure 46. Local search concept.

A 1+1 Evolution Strategy (ES) is used as a local search mechanism 3 . Various local search options
arise since the Evolution Strategy has a number of parameters to be controlled. The most basic
ones are the number of ES steps to be performed and the local search radius. The minimum
variance seeds, as described in the previous paragraph, are used as anticipatory individuals for the
minimum risk point.

In the non-dominated volume plots of Figure 47 and Figure 48 we can see the performance of
various local search options. In general the local search seems to have a positive effect on
performance, compared to using no prediction (FPS) or using prediction without local search. A
local search radius of 0.02 had the best performance. Also, increasing the number of steps taken
by the local search to 30 had a slightly positive effect, compared to the 10 steps performed
normally.

3 Other, more sophisticated local search techniques can
problem - see for example (Schlottmann, Seese 2004).

also be used, which are tailored to the specific
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5.8 Conclusion

The initial numerical experiments of this chapter demonstrate the ability of D-QMOO's basic
form to solve the time-changing portfolio optimization problem. Subsequently, the lack of
predictability that characterizes portfolio optimization inspires the development of new heuristics
for the creation of anticipatory populations. While conventional forecasting with autoregressive
models does not help performance, estimating the location of the minimum VaR solution with the
minimum variance solution and using local search for the anticipatory individuals produce more
promising results and increase the algorithm's efficiency.



6 Conclusions and Future Directions

6.1 Conclusions

Overall, the potential for solving the multi-objective time-changing asset allocation problem
using evolutionary algorithms has been demonstrated. The main advantages of using evolutionary
optimization for this application lie with the inherent ability of EAs to solve, first, multi-
objective, and second, discontinuous, non-convex and non-differentiable problems. An initial
verification of D-QMOO's performance is given by creating a series of portfolios for a one-year
time period that outperform the average market return.

Solving the Value-at-Risk problem with EAs

The mean-Value-at-Risk problem in its sampling form' has such a non-convex and often
discontinuous nature (Pflug 2000, Gaivoronski, Pflug 2005). It naturally lends itself to an
evolutionary optimization approach. At the same time VaR is an established risk measure which
might be preferred over other risk metrics such as the standard deviation. This demonstrates the
applicability of EAs to the mean-VaR problem alongside other proposed methods such as the one
in (Gaivoronski, Pflug 2005).

Nature of the time-changing portfolio optimization problem and heuristics developed

As a time-changing problem, the discovery of efficient portfolios is characterized by a relative
unpredictability in the optimal solution's motion in the variable space. This creates a challenge
for evolutionary time-changing optimization methodologies such as the Feed-forward Prediction
Strategy (FPS - Hatzakis 2007) which exploit predictability. This challenge was addressed in this
work through the development of heuristics for the anticipatory population that do not require the
use of forecasting. These heuristics are based on the use of fast, single-objective optimization
methods for the discovery of the non-dominated front's extreme solutions utilizing data from the
current timestep. Other useful techniques that were developed in the context of this work
involved the use of a local search (in the form of a 1+1 Evolution Strategy) for the anticipatory

1 As opposed to its parametric form.



individuals. Such methods proved to perform well in the mean-VaR time-changing problem,
demonstrating that in the context of the FPS, anticipation is a stronger concept than forecasting.

6.2 Future directions

Comparative testing with actual portfolios and practical application

A natural next step for the verification and assessment of the methodologies proposed in this
work would be to compare them against the performance of professionally created portfolios
(such as mutual funds).

It is important to keep in mind that the methodologies proposed here are not intended to be
completely self-sufficient, 'automatic' portfolio selection techniques. They are meant to provide
what is hopefully a useful tool to the portfolio manager, to be used alongside other methods and
human skills. From this viewpoint, an interesting task would be to use the portfolio optimization
version of D-QMOO in order to assist experts in a real-world setting. The feedback derived from
such an experiment would be invaluable in improving the algorithm.

Forecasting the optimal solution's motion for the mean-VaR problem

The location of the mean-VaR optimal solutions is very hard to forecast, as discussed earlier in
the text. However, an opportunity may exist to derive accurate enough one-step-ahead forecasts
in order to create anticipatory populations, instead of using heuristics such as the ones developed
in this work. Such forecasting could be based on the nature of the historical sample VaR as a risk
measure. Specifically, it is interesting to note that VaR depends on the [tr th worse return in the
portfolio's history. Hence when the new market data arrives, it is relatively straightforward to
deduce whether this data will affect the VaR (comparing with the [at] - usually 3 - worse

returns). What remains is to develop a way of inferring some information on the expected motion
of the minimum VaR solution.

Including switching/trading cost as a third objective

In most practical optimization problems changing from one solution to a different one involves
some kind of cost. In the portfolio optimization problem this cost relates, for example, to trading
fees. An integrated portfolio selection environment could include a way of taking this cost into
consideration, for example by including it as a third objective.

Including fundamental information and investors' views in the portfolio selection
process

The statistical measures of risk and return used in this work are far from self-sufficient. Simply
speaking, there is no guarantee that the past history of an asset is a reliable index of its future
performance. For this reason, a rounded portfolio selection process may also take in account
external information, fundamental economic principles and even the investor's instinct on
different assets' performance. It follows that the selection tool presented in this work can be
enhanced by methodologies which take these factors in account and accordingly affect the asset
allocation.
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