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Abstract

We study three capacity expansion problems in contemporary long distance telecom-
munication networks.

The first two problems, motivated by a major long distance provider, address ca-
pacity expansion in national hybrid long distance telecommunication networks that
use both the traditional TDM technology and more recent VoIP technology to trans-
port voice calls. While network capacity expansion in general is known to be hard
to approximate, we exploit the unique requirements associated with hybrid networks
to develop compact models and algorithms with strong performance guarantees for
these problems.

For a single period single facility capacity expansion problem in a hybrid network,
using a decomposition approach we design a (2 + E)-factor approximation algorithm.
Generalizing this idea, we propose a Decentralized Routing Scheme that can be used
to design approximation algorithms for many variations of hybrid network capacity
expansion.

For the Survivable Capacity Expansion Problem in hybrid networks, in which we
are required to install enough capacity to be able to support all demands even if a
single link fails, we propose a compact integer program model. We show that this
problem is APX-Hard, and present two heuristics with constant worst case perfor-
mance guarantees.

Finally, we consider the capacity planning problem when peak demands occurring
at different times can share network capacity. We propose a general model for captur-
ing time variation of demand, and establish a necessary and sufficient condition for
a capacity plan to be feasible. Using a cutting plane approach, we develop a heuris-
tic procedure. Computational experiments on real and random instances show that
the proposed procedure performs well, producing solutions within 12% of optimality
on average for the instances tested. The tests also highlight the significant savings
potential that might be obtained by capacity planning with time sharing.
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Chapter 1

Introduction

We study capacity expansion problems that are of interest to a contemporary telecom-

munications service provider. It is hard to overemphasize the importance of optimal

long-distance capacity planning in the highly competitive telecommunication indus-

try, especially at a time when prices of long-distance services have been steadily

declining. And understandably, the literature abounds with models and methods for

a wide variety of network design and capacity planning problems. We add to this

body of work by studying three important capacity expansion problems that arise in

today's long distance telecommunication networks.

The first two problems we address are capacity expansion problems in a special

but now common kind of long-distance telecommunication networks called hybrid

networks. Hybrid long-distance networks use both the traditional TDM technology

and the more recent VoIP technology to transport voice calls. Capacity expansion

in a hybrid long-distance network has unique requirements, and we develop models

and algorithms that address these requirements, and at the same time, exploit the

problem's special structure.

The third problem we study seeks to identify a minimum cost capacity expansion

plan that explicitly accounts for capacity sharing possibilities across origin-destination

pairs. In a long-distance network spanning the entire country, peak demands between

locations do not all occur at the same time. Today's switching systems allow flexible

routing of calls with the possibility of using excess capacity in a different part of a



network to route a call. We model this variation in peak demands across the network

and develop an algorithm to produce a capacity plan that (heuristically) minimizes

expansion cost.

The main focus of this thesis is to develop models and fast heuristic solution

methods for these problems. Since capacity expansion in general is hard to solve,

and exact algorithms for these problems usually have large running times, there is a

need for tractable near optimal heuristics. We establish a priori guarantees on the

quality of the solution for some of our algorithms. We also develop compact integer

programming formulations that exploit the special structure of these problems that

can be solved as such when the network size is small.

While the primary motivation for the work in this thesis is telecommunication

network planning, we believe that some of the models and algorithms might be ap-

plicable in other contexts. We model some of our problems as optimization on hub

and spoke networks. The ubiquity of hub and spoke networks in airlines and logistics

suggests that our models might be applicable in those domains. Particularly, we be-

lieve that our models might be applied to airline network design, and to the logistics

of package shipments.

1.1 Motivation

1.1.1 Hybrid Network Capacity Expansion

The introduction of Voice over Internet Protocol (VoIP) in the 1990s marked a ma-

jor technological shift in the telecommunication industry. Voice calls are traditionally

routed using circuit switching by reserving a dedicated path for every call in progress.

Many voice streams are combined using Time Division Multiplexing (TDM) to be

transported between switches in a long distance network. VoIP, on the other hand,

uses packet switching: voice is converted into data packets and routed across the

network using the Internet Protocol. VoIP has emerged as a significantly cheaper

alternative to TDM based switching in long-distance telecommunication networks



while matching it in quality, reliability and security. VoIP is preferred by telecom-

munications providers for a number of reasons (see, for example, Dodd [21]): VoIP

equipment has a lower cost; packet-switched networks more easily offer many value

added services like voicemail, messaging, and internet access; and the provider can

exploit economies of scale by using the same underlying network to transport voice,

data, and video.

The idea of using the same network for both voice and data is referred to as the

convergence of voice and data. According to Green [25], "If the telecommunication

experts are unanimous on anything, it is the conviction that all forms of communi-

cation are gravitating toward a single unified IP network." For a detailed analysis of

the advantages of convergence and the barriers, see Green [25].

While telecommunication service providers would like to use a converged IP net-

work, the transition to this technology cannot be abrupt since the companies have

substantial investments in the existing circuit switched network. The softswitch is a

technology that makes a smooth and gradual migration possible. It communicates

with a TDM switch using circuit switching, while it uses packet switching to commu-

nicate with other softswitches. In addition to aiding convergence, softswitches also

have other advantages. In particular, they reduce capital costs as well as operating

expenses. As a result, most current long-distance networks are hybrids containing

both legacy (TDM) switches and softswitches.

We study the Capacity Expansion Problem (CEP) in these hybrid networks, seek-

ing to determine the amount of additional capacity to install on each trunk of the

network to be able to route a given demand forecast. While the CEP is well stud-

ied for general networks, hybrid networks have special characteristics that we exploit

to develop compact models as well as heuristic procedures with strong performance

bounds.

Reliability of the network and high quality of service have a direct impact on

customer retention, and consequently on the profitability of a telecommunications

service provider. In the telecommunication industry, a typical quality of service goal

is to have less than 1 percent blocked calls. However, failures in the network suddenly



reduce available capacity, and therefore could result in significant degradation in the

quality of service. A common approach for ensuring reliable service is to build a

network that can maintain an acceptable quality of service even when some part of

the network fails. Wang [53] and Ash [4] provide a more detailed introduction to the

importance of failure protection in a telecommunication network including instances

of network failure and some technologies to handle them.

Network planners need to decide which kind of failures the network needs to be

protected against, which we call survivability requirements. Since the cost of capacity

expansion depends on the survivability requirements, planners must make a tradeoff

between the level of protection and the cost of expansion. They make this decision

based on the likelihood of the different failures and the associated cost of protection. A

commonly used survivability criterion is protection against single link failures. When

a link fails, all the capacity on that link becomes unavailable. The motivation for

using single link failure protection is the assumption that failures are rare, that only

one link fails at a time, and the failed link can be repaired before another fails. We

study the problem of expanding capacity in a hybrid network when protecting against

single link failures.

1.1.2 Network Planning With Capacity Sharing

Traditionally, telecommunication network planners use a single demand forecast for

planning the network. A popular demand estimate is known as the busy hour peak

demand, calculated as the average number of calls that originate in the busiest hours

of the ten busiest days of the year (see Clark [19] for more details). This forecast is

also adjusted based on the outlook for demand growth.

However, the demand forecast for each origin-destination pair is arrived at in-

dependent of the other O-D pairs. Consequently, when sizing the network, service

providers plan for the peak demands of all the origin destination pairs occurring simul-

taneously. However, the busiest days of the year, and certainly the busiest hours, for

origin-destination pairs in different geographical locations do not necessarily coincide.

Clark [191 states that "In practice, telecommunication networks are found to have a



discernible busy hour" (for every origin destination pair). This busy hour depends on

the type of area (business or residential), time-zone of the locations, and any time-zone

differences between the origin and destination. For example, for a residential location,

busy hours usually occur in the evening, while business areas typically incur two busy

hours, one in the morning and another in the afternoon. Clark also observes that

traffic between locations in significantly different time zones (mainly international

calls) have a distinct peak time since they are limited by the time-zone difference.

In addition to intra-day traffic patterns, locations might have different busiest days

of the year because of large scale local festivals and other events. Therefore, for the

network as a whole, it is reasonable to expect a significant variation in the busy hours

of different origin-destination pairs.

Capacity Sharing is made possible by routers that employ Dynamic Routing (see

the books by Clark [19] and Ash [5]). In Dynamic Routing, call routes are not fixed

but change with the time of day as well as the current status of the network: the

number of calls between origin-destination pairs and the load on different trunks. This

capability permits providers to use capacity in a part of the network that currently

has less load to service calls of O-D pairs that have fully utilized their primary routes

and leads to better utilization of capacity across the network.

Clark [19] presents the following illustration of dynamic routing which we describe.

In Figure 1-1, calls between New York and Washington DC are routed primarily along

the direct trunk between the two cities. However, early in the morning (in the eastern

time zone), when the demands out of the west are low, (if required) dynamic routing

automatically supplements the New York to Washington DC capacity of the network

by routing some of these calls through Los Angeles. Later in the day, when traffic from

Los Angeles increases, the system no longer uses the additional route to supplement

capacity between New York and Washington DC.

AT&T implemented Dynamic Routing as early as 1987. Ash and Oberer [6] de-

scribe the implementation and measure the benefits of Dynamic Routing by evaluation

network blocking probabilities (fraction of calls not routed) on some of the busiest

days of the year including Christmas, Thanksgiving, Mothers day and Easter.



Eastern Time Zone

Primary Route

Supplemented Route

Figure 1-1: Dynamic Routing. (Source: Clark [19])

Since Dynamic Routing will employ unused capacity in the network to route calls,

from a network planning point of view, we need to ensure that we install enough

capacity on the trunks of the network so that for any given traffic pattern across the

network, and not just on any single trunk, there is a feasible routing of calls. This is

the Capacity Sharing problem that we study in this thesis.

One of the important aspects of this problem is how the set of all traffic patterns

(which we call the demand variation) that the network will be designed to meet. We

describe few different models for demand variations, and consider a general model

that assumes the set of all demand vectors belong to a polyhedron. In addition to

establishing theoretical results for the problem ( for example, necessary and sufficient

conditions for a capacity plan to be feasible), we present a heuristic procedure that

could be used to find near optimal capacity augmentation plans for the network,

thereby leading to significant savings when compared to designing the network for all

individual peak demands.

1.2 Organization Of The Thesis

The remainder of this chapter is organized as follows. In Section 1.3, we introduce

telecommunication network related terminology as well as a few well known concepts

and results that we use in this thesis. Section 1.4 provides a review of literature

Pacific Time Zone



relevant to each of the three problems that we study.

Chapter 2 addresses the Single Period Single Facility Capacity Expansion Problem

(CEP) in a hybrid network. We describe unique requirements associated with a hybrid

network, and present a model for the Capacity Expansion Problem that exploits these

requirements. We show that this problem is NP-Hard for very restrictive special cases.

However, when the problem is uncapacitated (that is, when the capacity is installed

in very large units), the problem is polynomially solvable. We then present a 2-

approximation algorithm for the CEP when the network has no initial capacity. The

main result of the chapter is a (2 + 6)-approximation algorithm for any positive e for

the CEP in its most general form.

In Chapter 3, we extend the idea used to design an approximation algorithm for

the CEP to variants of the CEP that address important practical constraints. We

refer to this general framework, which is applicable to a variety of hybrid network

Capacity Expansion Problems, as a Decentralized Routing Scheme. We then use this

scheme to obtain constant factor approximation algorithms for two problems: (i) CEP

with bounds on the amount of capacity that can be installed on each link, and (ii)

CEP with unsplittable flows. That is, the demand between each origin destination

pair must flow on a single path.

We study the Survivable Capacity Expansion Problem (SCEP) in Chapter 4. For

this problem, we are required to add capacity on the links of the network so that

all the demands can be routed even if a link in the network fails. We show that

this problem is APX-Hard implying that, unless P = NP, there is no Polynomial

Time Approximation Scheme for solving it. We then present two constant factor

approximation algorithms for this problem, both using the Decentralized Routing

Scheme that we presented in Chapter 3.

In Chapter 5, we examine capacity planning with time sharing. We present sev-

eral models for the variability of peak origin-destination demands in a national long-

distance network. We establish necessary and sufficient conditions for a feasible so-

lution to the problem of finding capacities that can support demands at any point in

time, and show that in its general form, this problem is NP hard. We identify and



develop algorithms for polynomially solvable special cases of this problem. We pro-

pose a heuristic solution procedure that solves a master problem iteratively by adding

more violated cuts at each stage. When the set of possible demands is a polyhedron,

we show that in a network with n nodes, the solution procedure we propose is an

n-factor approximation in the worst case.

In Chapter 6, we computationally evaluate the solution procedure we presented

for capacity planning with time sharing. We tested the heuristic on real telecom-

munication networks as well as randomly generated networks. For the instances we

tested, the heuristic was able to produce solutions within 10% of optimality. More

importantly, we show that as compared to optimal solutions without time sharing,

the heuristic solutions that share capacity over time can save as much as 50% of the

total expansion costs on average for the problem instances we tested.

We present conclusions and some directions for future research in Chapter 7.

1.3 Preliminaries

We introduce some terminology that will allow us to describe as well as provide a

context for the problems we address. Demands for voice traffic are measured in a

few different units. A DSO (Digital Signal 0) refers to a bandwidth of 64 kilobits per

second, and is the capacity used to route a single voice call. Twenty four DSO signals

can be multiplexed and carried over a higher capacity (1.5 Megabits per second) trunk

called a DS1. A DS3 refers to the capacity equivalent to 28 DS1s or 672 simultaneous

voice calls. Higher capacities are referred to as Optical Carrier (OC) signals. An

OC-N has capacity equivalent to N-DS3s.

Time Division Multiplexing (TDM) is the traditional technology used to route

calls in telecommunication networks in which many signals share a single medium

(of higher bandwidth) by taking turns in using the medium for short time slots.

Voice over Internet Protocol (VoIP) can also be used to route voice calls over a

telecommunication network. In this case, a voice stream is broken into data packets

that are transported to the call destination using packet switching.



A switch is the hardware that routes calls. Switches can be programmed to de-

cide the paths on which the calls between each origin destination pair will be routed.

Switches might also contain an Add Drop Multiplexer (ADM) that allows more effi-

cient use of capacity by combining calls (multiplexing) as well as other equipment. A

trunk is the medium connecting two switches. For long distance networks, the trunk

is an optical fiber. Generally, capacity installed on a trunk between two switches can

be used to route calls in both directions as long as the total number of calls routed is

within the capacity of the trunk. In the networks that we consider, switches are the

nodes and the trunks are the edges.

LATA Boundary

End Offices

Long uisiance DaCKoone ACCess Tandem

Figure 1-2: A telecommunication network

A telecommunication network (see Figure 1-2) consists of local access networks

and a long distance backbone. The United States is divided geographically into areas

called Local Access Transport Areas (LATA's). The part of the telecommunication

network that is within a LATA is called the local access network. User telephone lines

connect to End Offices which then connect to the long distance backbone through

the local access network. Each switch in the long distance backbone handles traffic

entering or leaving a large geographical area like a city. The long distance backbone

carries a call only when the call's origin and destination are in regions covered by

different long distance switches. This thesis addresses problems defined in the long

distance backbone.

An algorithm A that produces a feasible solution to any instance of an minimiza-



tion problem P is a p-factor approximation algorithm for some p > 1 if the cost of the

feasible solution produced by A is at most p times the optimal cost for every instance

of P. The number p is also referred to as the performance guarantee of the algorithm.

We can similarly define approximation algorithms for maximization problems.

An algorithm for P that runs in polynomial time and takes as input a positive

number c and produces a solution with cost at most (1+ e) times the optimal cost for

every positive e is a Polynomial Time Approximation Scheme (PTAS). In addition,

if the run time of the algorithm is bounded by a polynomial in 1/c, the algorithm is

a Fully Polynomial Time Approximation Scheme (FPTAS).

An optimization problem P belongs to the class APX if there it has a p-factor

approximation algorithm for some constant p > 1. An L-reduction (or linear re-

duction) is a special type of polynomial reduction that preserves approximability. In

particular, if an optimization problem P' belongs to APX, and P is L-reducible to P',

then P also belongs to APX. The toughest problems in the class APX are referred

to as APX-Hard. A problem that is APX-Hard (for example, Three Dimensional

Matching) does not admit a PTAS.

The Min-Knapsack Problem (MKP) is a minimization variant of the well known

(Integer) Knapsack Problem in which we are given n items along with a knapsack of

capacity W. Each item i has a size wi and a penalty pi if the item is not included in

the knapsack. The objective is to choose a set of items that will fit in the knapsack

so that the total penalty of the items left out is minimized. This problem allows an

FPTAS, and many of the known FPTASs for the Knapsack Problem can be modified

to obtain an FPTAS for the Min-Knapsack Problem. If we modify the FPTAS of

Ibarra and Kim [29] (as presented in Korte and Vygen [32]), we obtain an FPTAS

for the MKP with a running time of O(n 2/E) for an instance with n items.

Another variant of the Knapsack Problem of interest to us is the Bounded Knap-

sack Problem in which multiple copies (up to a given item dependent limit) of an item

could be included in the knapsack. Both this problem and its minimization variant

admit an FPTAS.

We introduce relevant notation as needed. In general, though, throughout this



thesis we refer to an undirected edge between nodes i and j as (i, j) and we denote a

link directed from i to j as (i,j).

1.4 Literature review

1.4.1 Capacity Expansion Problem

Capacity Expansion Problems in telecommunication networks have been well studied

in the literature. The survey paper by Luss [35] provides a summary of early work

on these problems.

Researchers have studied several variants of the Capacity Expansion Problem.

The expansion of the network could be carried out for a single period ([16, 12]) or for

multiple periods ([50, 48, 18]). While in the single facility variant, capacity on the

edges can be installed only in integral multiples of a base unit, in the multi-facility

CEP ([16, 50, 48]), capacity can be installed in multiples of a few different units.

Bienstock and Giinliik [16] consider the multifacility capacity expansion problem

in a general telecommunication network. They present three classes of facet defining

inequalities, and use them in a cutting-plane based solution procedure. Saniee [48]

presents a dynamic programming algorithm for multi-facility capacity expansion of a

single link.

Considerable attention has focused on capacity expansion on a special type of

telecommunication networks called the local access networks (see survey papers by

Gavish [23] and Balakrishnan et al. [9]). Local access networks contain a special sink

node to which all the demand is destined, and the topology of the built network is re-

stricted to be a tree. Shulman and Vachani [50] propose a decomposition approach for

the local access network multi-period capacity expansion problem with two facilities.

For the single period, multi-facility version of this problem, Balakrishnan, Magnanti

and Wong [12] provide a Lagrangian relaxation based heuristic that solves subprob-

lems using dynamic programming. They improve the heuristic by incorporating valid

inequalities of the model into the dynamic program.



A related subject of interest with an extensive body of work is network loading. In

the Network Loading Problem (NLP), also called the Buy-at-Bulk Problem, we seek

a least cost way of installing facilities of different capacities on the links to meet given

origin-destination demands. The NLP can be viewed as capacity expansion starting

with a network with no initial installed capacity.

One major component of the literature on network loading considers polyhedral

approaches ([15, 36, 37]): generating valid inequalities and using them in a cutting

plane procedure. For the single period, two facility variant, Magnanti, Mirchandani

and Vachani [37] present a cutting plane procedure that uses several families of valid

inequalities, and compare this approach with a Lagrangian based approach. Bienstock

et al. [15] address the single period, single facility variant, and propose two solution

methods, one following a cutting plane procedure, and another that uses a cutting

plane procedure followed by a branch and bound scheme.

Another approach in the NLP literature focusses on heuristics. For the single facil-

ity NLP, Mansour and Peleg [39] present an O(log n)-approximation algorithm using

light weight distance preserving spanners. The approximation ratio of their heuris-

tic is a constant for problems with Euclidean costs. Epstein [22] develops a family

of heuristics that generates a tree solution for the NLP. He also presents a greedy

heuristic with an O(n) performance guarantee for networks with n nodes. Hassin,

Ravi, and Salman [28], Salman et al. [47], and Gupta, Kumar, and Roughgarden [27]

provide approximation algorithms for different versions of the NLP on networks with

a single sink. Salman et al. [47] present a heuristic for a single sink multifacility

Network Loading Problem with a guarantee that is logarithmic in the total demand.

For the same problem, Gupta, Kumar, and Roughgarden [27] develop a 72.8-factor

approximation algorithm. Hassin, Ravi, and Salman [28] describe an approximation

algorithm for the single sink single facility NLP with a performance guarantee of 3.55.

They initially use an approximate Steiner tree to route demands, and improve the

cost by sending aggregated demands that are close to the facility capacity to the sink

along a shortest path. When all the nodes in the graph have demands to the sink,

their guarantee improves to 3.



1.4.2 Survivable Capacity Expansion Problem

Kennington, Olinick, and Spiride [31] provide a comprehensive survey of mathemati-

cal programming models for survivable capacity planning and expansion. Two kinds

of failure protection have been studied in the literature: link restoration (or line

restoration) and path restoration. Link restoration establishes alternative paths be-

tween the endpoints of the failed link to reroute demands using the link. Alternately,

path restoration uses new paths between the origin and destination of demands when

a primary path used by the demand has become unavailable due to some link failure.

Kennington, Olinick, and Spiride present models for both link restoration and path

restoration using either node-arc formulations or path flow based formulations.

Balakrishnan et al. [11] consider link restoration using a single facility type for

installing spare (restoration) capacity. They provide polyhedral results, and devise

a solution procedure using a cutting plane approach. They present computational

results showing that the procedure performs well on three real world instances. For

the multi-facility version of this problem, Balakrishnan et al. [10] present heuristics

and solve instances with up to 50 nodes and 150 edges.

Veerasamy, Venkatesan, and Shah [52] propose a path restoration heuristic that

computes alternate paths for demands when any link fails. They consider one edge

at a time, and heuristically assign alternate paths for all the demands that use this

link.

Each of the previous two papers considers network restoration applied to a network

with known current flows. A more general problem, which is the one we consider,

would be to simultaneously choose flows 'no fault' routing (or primary flows) and

restoration capacity. Lisser, Sarkissian, and Vial [34] propose a two stage solution

procedure for this problem. The first stage computes the primary routing of the

traffic assuming local rerouting. Fixing the primary routes, the second step identifies

a global rerouting strategy.

Stoer and Dahl [51] study the integrated planning of both the base and the spare

capacity under many failure scenarios (single node failure, single or multiple edge fail-



ures). Studying the projection of the formulation onto the capacity design variables,

they derive valid inequalities and use them in a cutting plane procedure.

Bienstock and Muratore [17] study the problem in which a fixed fraction of de-

mands must be transported even if a single edge or node fails. They present three

different models for this problem, and describe several classes of facet defining in-

equalities for these models.

A related problem is survivable network design in which we seek to build a network

with minimum cost so that there are at least a given number of alternate paths

between node pairs. Gr6tschel, Monma and Stoer [26] present a review of polyhedral

results for this problem. They also describe exact algorithms that use cutting-planes,

and present computational results.

1.4.3 Network Planning with Capacity Sharing

The book by Clark [19] and Cisco's Voice Design and Implementation Guide [1]

describe busy hour traffic estimation as well as traditional capacity planning in circuit

switched telecommunication networks.

The Capacity Sharing Problem we address has been studied in the literature in

a different context. The Robust Network Design Problem with demand uncertainty

is mathematically equivalent to the Capacity Sharing Problem. We seek to design

the network to support different demand vectors occurring at different points in time,

whereas the Robust Network Design Problem seeks a capacity plan that supports any

possible realization of a single uncertain demand vector. Due to this equivalence, we

use some ideas and terminology from the Robust Optimization literature.

One such idea is that of adjustable robust optimization. Ben-Tal et al. [13] consider

linear programs with uncertain parameters in which some variables, called adjustable

variables, can be chosen after the uncertain parameters have been realized. They

show that problem of choosing non-adjustable variables to minimize the worst case

cost is NP-Hard in most cases. When the adjustable variables can be expressed as

affine functions of the uncertain data, they show that these variables can be elim-

inated to obtain a robust linear programming problem (which can be written as a



linear program). In the context of capacity expansion, we can view the flow vari-

ables as adjustable variables as call routing can be done dynamically while capacity

installation must be done in advance.

Researchers have studied robust versions of several network flow and design prob-

lems. Bertsimas and Sim [14] solve network flow problems with cost uncertainty

(where each cost parameter is chosen independently from an interval) by solving a

polynomial number of minimum cost problems. Kouvelis and Yu [33] consider the

robust uncapacitated network design problem in which all parameters of the problem

are uncertain. Assuming a finite number of scenarios, they propose a near optimal

heuristic procedure using an adaptation of Benders decomposition.

Mudchanatongsuk, Ordonez and Liu [42] consider the robust network design prob-

lem in which both the cost and the demand parameters are uncertain and pursue an

approach based on adjustable robust optimization by restricting the flow variables to

be a linear function of the realized demand.

Perhaps the work closest to ours is the paper by Atamtiirk and Zhang [7]. The

authors consider the minimum cost network flow problem as well as the network design

problem with uncertain demand in which some of the flow variables are adjustable.

They consider two demand uncertainty sets: a cardinality set in which the number

of demands that vary from the mean is limited, and a budget uncertainty set which

restricts a weighted sum of the deviations from the mean of all demands. They provide

a characterization for the optimal solution that includes an exponential number of cut

constraints, and show that separating these constraints is NP-Hard. Computational

results on a capacitated facility location problem indicates that their model could be

a good alternative to a stochastic programming approach.





Chapter 2

Single Period Capacity Expansion

In this chapter, we study a model of capacity expansion in a hybrid long-distance

telecommunication network that uses both TDM and VoIP technologies. Given the

current capacities on the links of the network, the objective is to identify the least

cost way to install additional capacity on the links to be able to route a determinis-

tic demand forecast. The model we consider in simple is two respects: we optimize

over a single period, and install capacity only in multiples of a single fixed inte-

ger. Both aspects of the model, however, are consistent with current practice. In

the telecommunication industry, due to the low availability of capital for expansion

causes network planners and the lack of adequate data to support dynamic analysis,

network planners typically plan over a single period. In addition, rapid changes in the

technology available to route calls restricts managers from planning for a long time

horizon. Telecommunication planners typically plan capacities using one of these fa-

cility types: type T1 lines (the bandwidth to carry 24 simultaneous voice calls), type

DS3 (672 calls) or type OC12 (8064 calls).

Our main result in this chapter is a constant factor approximation algorithm for

this capacity expansion problem. We provide a model for this problem that incorpo-

rates the special requirements of the hybrid network, and use it to design algorithms

with good performance guarantees. Our development is organized as follows: Sec-

tion 2.1 formally defines the CEP in hybrid networks, and models it as the Hub-and-

Spoke Capacity Expansion Problem (HSP). In Section 2.2, we prove that the HSP is



NP-Complete, and also show that, unless P=NP, there is no polynomial time approx-

imation scheme for this problem. When the capacity of the facility type is large, we

show, in Section 2.3, that the HSP is polynomially solvable by an efficient algorithm

that we present. Section 2.4 presents a 2-factor approximation algorithm for HSP for

situations with no initial capacity, and Section 2.5 presents a (2 + c)-approximation

algorithm for any c > 0 for the general case of HSP.

2.1 Modeling the Capacity Expansion Problem

A hybrid telecommunication network consists of a set of TDM switches and a set of

softswitches. The softswitches are connected to each other by IP links (that carry

voice as well as other IP traffic) and form a complete subnetwork, which we call the

IP subnetwork. A TDM switch is connected to other TDM switches or to softswitches

through a TDM trunk. Capacities on the TDM trunks or the IP links are given in

number of simultaneous voice calls, in multiples of the given facility capacity. The

current capacity on some of the TDM trunks might be zero.

Given a demand forecast, we seek to identify a capacity expansion plan and an

associated routing for the demand that minimizes expansion cost.

The capacity expansion problem in a hybrid network has many unique character-

istics. First, for several reasons, the optimization is carried out only for the TDM

subnetwork - which includes all the switches of the network but only the TDM trunks.

Organizationally, different planning engineers are usually responsible for the TDM

and IP subnetworks, and they plan the network capacities independently with min-

imum exchange of information. Economically, the cost of capacity in the IP sub-

network is much cheaper, and the capacity is usually added in large amounts every

several years. So, for the year in consideration, there typically is enough spare capac-

ity in the IP subnetwork to handle any possible increase in demand. Finally, the IP

subnetwork will also transport other types of traffic like data or video and hence ca-

pacity planning in that subnetwork should consider more than just the voice demand

forecast.



Second, a TDM switch cannot be used as an intermediate node in the call route

of any origin-destination demand. Since telecommunication companies want their

long distance networks to move away from TDM towards a fully VoIP network, they

would like to keep the expansion of their TDM network to a minimum. Using a TDM

switch as an intermediate switch requires an undesired increase in TDM subnetwork

capacity. Also, the ports, which are entry and exit points for demand, at TDM

switches are more costly than those at softswitches. So, it is quite likely that even

if TDM switches could be used as intermediate switches, an optimal solution would

not use any.

In addition, we make a few assumptions, without loss of generality, for this problem:

Assumption 1. The demand forecast is undirected.

If the demands were directed, we simply add the demands in both directions.

Assumption 2. The IP links have infinite capacity.

Assumption 3. Each TDM switch is connected to at least one softswitch.

Since demand between two TDM switches cannot be routed through any intermediate

TDM switch, if a TDM switch is not connected to any softswitch, then its entire

traffic must be routed directly to all of its destination TDM switches, and we can

eliminate the TDM switch from the network. Therefore, we assume each TDM switch

is connected to at least one softswitch.

For convenience, we also complete the network as follows: If it contains no link

between two switches, we create a link and set the initial capacity of this link to be

zero, and set the cost of a facility on this link to be infinity. For the rest of this

chapter we work with a complete graph, keeping in mind that the subgraph induced

by links with non-zero initial capacity or finite facility cost satisfies assumptions 2

and 3.

For notational simplicity, a parameter or a decision variable with subscripts ij (for

example, cij) corresponds to the undirected edge (i,j) between i and j. Therefore,

unless explicitly stated otherwise, cij and cji refer to the same parameter.



An instance of the Capacity Expansion Problem in hybrid networks is given by

a set T of TDM switches and a set S of softswitches, along with parameters cij and

uij that denote, respectively, the cost of a facility (or the hardware that increases the

link's capacity) and the initial capacity as measured by the number of simultaneous

calls on the trunk between switches i and j. If both i and j are softswitches, then

cij is zero and uij is infinity. The capacity of a single facility is C simultaneous

calls. The demand forecast for which the network has to be designed is given by

{dij : i, j E T U S}. We assume all demands are integral. Let n and m denote the

number of TDM switches and the number of softswitches.

Since demand from one softswitch to another can be routed within the IP sub-

network for free, we can ignore demands between softswitches. A demand between

a TDM switch and a softswitch can be routed to any softswitch, and subsequently

routed for free within the IP subnetwork from this softswitch to the destination.

Therefore, we can merge all the softswitches in the set S into a single switch called

the hub.

The merger creates parallel links between TDM switches and the hub. Since in

any optimal solution to the capacity expansion problem, we will add facilities only

to the link out of a TDM switch with the cheapest facility cost, we could replace the

parallel links with a single link with initial capacity equal to the total initial capacities

on all the links connecting the TDM switch to any softswitch. The cost of a facility

on this link is the minimum of the costs of facilities on all links between the TDM

switch and any softswitch.

We now have a network (see Figure 2-1) with a central hub and trunks connecting

the hub to each of the TDM switches. Note that our network also includes direct

trunks between TDM switches. We refer to this network also as a hub-and-spoke

network. We call the trunks between TDM switches direct links, and the trunks

to the hub radial links. Therefore solving the hybrid network capacity expansion

problem is equivalent to solving the following problem which we call the Hub-and-

Spoke Capacity Expansion Problem (HSP): Given a hub-and-spoke network with

nodes (T, hub), with costs cij, initial capacities uij, demands dij between the nodes



Figure 2-1: A hub-and-spoke network with direct links

and with facility capacity C, find a routing and the corresponding number of facilities

to add on the trunks that minimizes the installation cost.

In this network, we can route all the demand between any TDM switch and a

softswitch on the radial link, and adjust the initial capacity of that link accordingly.

If necessary, we will install additional capacity on the radial links. The remaining

demand is between pairs of TDM switches, and each of them can be routed in one

of two ways: on the direct link between the two switches, or through the hub using

two radial links. The HSP is essentially the problem of deciding, for each switch pair,

how much of their demand travels on the direct link, and how much through the hub.

Since a direct link can be used to route only the demand between its end points,

we first use the initial capacities on the direct links to route as much of this demand

as possible. This brings either the demand or the initial capacity between these end-

points to zero. If the demand becomes zero, then the remaining initial capacity on the

direct link is unusable. Therefore, we can assume, without loss of generality, that the

initial capacities of all direct links are zero in the given hub-and-spoke network. We

number the switches in the hub-and-spoke network (other than the hub) arbitrarily.

The rest of this chapter paper deals with the Hub-and-Spoke Capacity Expansion

Problem resulting from these modeling/preprocessing steps. We will establish the

following results:

1. The Capacity Expansion Problem (CEP) in a hybrid network, in its general



form, is NP-Hard, and even APX-Complete.

2. For the uncapacitated version of the problem (where the facility capacity C is

large), we present a fast polynomial time algorithm.

3. When there is no initial capacity on all the links of the network, we present a

2-approximation algorithm for the CEP

4. For the most general version of the CEP in a hybrid network, we present a

(2 + c)-approximation algorithm.

2.2 Complexity Results

Even though we are dealing with the capacity expansion problem on a fairly simple

network topology, the HSP is NP-Hard. We show that this is true even for very

restrictive special cases of the HSP. We provide a reduction from the weakly NP-

Hard number partition problem to prove that the HSP is NP-Hard even when the

network has a single source. As is well-known, the general single-source capacitated

network design problem (which is defined for an arbitrary network, as opposed to a

hub-and-spoke network for the HSP) is NP-Hard (see [47]), and our result shows that

this is true even when the network structure is very simple.

Theorem 2.1. The HSP is NP-Hard even when all initial capacities are zero and

when all the demands originated from a single node.

Proof. We polynomially reduce the well-known NP-Complete problem PARTITION

to our problem. An instance of the PARTITION problem consists of n positive

integers al, a2," • • , an. Let B = -i=l ai. The problem is to ascertain whether there

is a subset of these integers that sum to B.

Without loss of generality we assume that, in the given instance of the PARTI-

TION problem, an > 1. We now create an instance of HSP as shown in Figure 2-2.

In addition to the radial links shown in Figure 2-2, there are direct links between the

node 0 and nodes 1, 2,... , n. The facility capacity C is equal to B. The cost per



a2

ai
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Figure 2-2: Reduction of PARTITION to SNLP

facility on the link between node 0 and the hub is B - 1, while it is 2B for the link

(n, hub) and zero for all other links to the hub. The cost of each facility on the direct

link (not shown in Figure 2-2) from node 0 to node i is ai and the demands are:

di = aj ifi=0and jET, (2.1)
0 otherwise.

We now show that the given instance of PARTITION is a YES instance if and

only if the HSP has a feasible solution with cost not greater than 2B - 1. Let

A C {1,2, .. , n} and A' = 1, 2, ... , n} \ A with •-i, ai = EjEA, aj. Also, let

an E A'. We route d0i through the hub if i E A and on the direct link otherwise,

yielding a cost of 2B - 1.

Conversely, if the HSP has a feasible solution with cost not greater than 2B - 1,

the cost structure implies that the number of facilities on (0, hub) is at most one. But

sending all the demand on direct links would cost YEi coi = 2B > 2B - 1, so the

network must have exactly one facility on the link (0, hub). Set

A' = {ildoi is routed directly in the given solution}



and A = {1, 2, ... , n} \ A'. The capacity constraint on link (0, hub) implies that

doi = Za < B. (2.2)
iEA iEA

But since the total cost is at most 2B - 1,

Scoi = Z ai < (2B - 1) - (B - 1) = B. (2.3)
iEA' iEA'

Since -•iA ai + EiEA' ai = 2B, the inequalities (2.2) and (2.3) together imply that

E ai = ai = B,
iEA iEA'

that is, { A, A'} is a partition.

In the HSP instance we created, all the demands originate at the node 0. So the

HSP is NP-Hard even if all demands originate from a single source. O

Without the restriction that all demands originate from the same switch, the

problem becomes demonstrably tougher. One can show the following stronger result,

by an L-Reduction from the APX-Hard 3-dimensional matching (3DM) problem. A

proof of this result, due to Orlin [44], is given in Appendix A.

Theorem 2.2. (Orlin [44]) The HSP is APX-Complete even when all the initial

capacities are zero.

This result implies that unless P = NP, no polynomial time algorithm would give

solutions with cost arbitrarily close to the optimal cost. Therefore the best we can do

is to develop approximation algorithms with constant factor performance guarantees.

Before presenting approximation algorithms for the single period CEP (which reduces

to HSP), we describe a special case that is polynomially solvable.



2.3 The Uncapacitated Problem

In the special case of the HSP when the facility capacity C is sufficiently large with

respect to the given demands d, that is, for every TDM switch i of the network,

-jET\i)} dij < C, we never have to install more than one facility on any link. Suppose

further that the initial capacities on the links of the network are all zero. We show

that this special case is polynomially solvable by providing an integer programming

model whose constraint matrix is totally-unimodular. We also present a fast primal

dual algorithm for this special case.

Let D = {(i, j)i,j E T, dij > 0} be the set of all non-zero demands. Define 0-1

decision variables xij for all (i, j) in the set D which assume value 1 if a facility is

installed on the direct link between switches i and j. Similarly, define 0-1 variables yi

that take value 1 when a facility is installed on the radial link from switch i. We can

formulate the uncapacitated hub-and-spoke capacity expansion problem as follows:

(u-HSP) Minimize E c-ij j + c- y
i,jET; i<j iET

Xij + Yi 1 V (i,j) ED (2.4a)

x'j + yj >1 V (i,j) ED (2.4b)

Xij E {0, 1} V (i,j) E D (2.4c)

yi E {0, 1 V i T. (2.4d)

In this formulation, xij and xji refer to the same decision variable. The con-

straints (2.4a) and (2.4b) ensure that if xij is zero, both yi and yj are one. Therefore,

any solution (x, y) satisfying the constraints (2.4) is a feasible solution to the unca-

pacitated HSP.

Theorem 2.3. The uncapacitated HSP is polynomially solvable.

Proof. Consider the following polyhedron P defined by the linear programming re-



laxation of u-HSP:

Xij + Yi > 1 V (ij) ED (2.5a)

Xij + yj > 1 V (i,j) ED (2.5b)

> 0 V (i,j) E D (2.5c)

Yi > 0 V i T. (2.5d)

Let A* be the coefficient matrix in the matrix representation of the system of

inequalities defining the polyhedron P. We will show that A* is totally unimodular,

proving that P is integral (see, for example, [32]). First, since constraints (2.5c)

and (2.5d) are bound constraints, we can ignore them; let A be the matrix obtained

from A* by deleting the rows corresponding to constraints (2.5c) and (2.5d).

The transpose, A', of the matrix A has exactly two is in every column. It is

easy to see that A' is the node-arc incidence matrix of the undirected bipartite graph

G constructed as follows. For every decision variable in (2.5) (yij or yi), the graph

G contains a vertex. For every nonzero demand dij, it contains two edges {xyj, yi}

and {xij, yj}. Clearly, the node sets {xij : i < j E T} and {y : i E T} provide a

bipartition of G.

From Theorem 5.24 of Korte and Vygen [32], the incidence matrix of an undirected

bipartite graph is totally unimodular. This implies that A', and therefore A and also

A*, is totally unimodular. O

This result shows that the uncapacitated HSP can be solved in polynomial time by

solving the linear program (2.5). However, we algorithm for solving the linear program

needs to find a corner point solution. We now present an alternative polynomial time

algorithm that has a much better run time complexity bound.



2.3.1 An Efficient Primal-Dual Algorithm

Consider the dual linear program of (2.5):

Maximize E (p:j + p~j) (2.6a)
i<jET

pj + pj < cij V (i, j) E D (2.6b)

S p i ci V i E T (2.6c)
jET:dij >0

pj > 0 V (i,j) E D (2.6d)

>pj 0 V (i,j) E D. (2.6e)

The dual problem allows the following interpretation: Each pair (i, j) corresponds

to a supplier with capacity cij, and each switch i corresponds to a customer with

demand ci. Supplier (i, j) can supply only customers i and j. We would like to

clear as many items as possible in this market. This is a variant of the well-known

transportation problem.

We describe a simple primal-dual algorithm (see Dantzig et al. [20]) that uses

the unique structure of this problem, and hence is fast. We start with the dual

feasible solution {pýj = O,~j = 0|i < j E T with dij > 0}, and a set U of "unlabeled

variables" containing all variables. We increase all the unlabeled variables uniformly

until some dual constraint becomes tight. If this constraint is of type (2.6b), we set

the corresponding primal variable xij to 1. If, on the other hand, the tight constraint

is of type (2.6c), we set the corresponding primal variable y2 to 1. We label all the

variables that appear in the dual constraint that became tight, and remove them from

U. We repeat this procedure until all the variables are labeled. We show that this

algorithm solves the uncapacitated HSP.

Theorem 2.4. The primal-dual algorithm described above correctly solves the unca-

pacitated HSP. If the network has n switches, the running time of the algorithm is

O(n4).

Proof. Since we never alter the value of any variable once a constraint containing it



becomes tight, the dual is feasible throughout the algorithm. Next, we claim that

when the algorithm terminates, the primal solution obtained is feasible. All the dual

variables are labeled at termination. In particular, for each (i, j) in D, both pi and

pj are labeled. Consequently, either the constraint

Pij - Cij

is tight (implying xij = 1) or both constraints

S P~k<C i and 5 Pk•c i
kET:dik>O kET:djk>O

are tight (implying both yi and yj are equal to 1). Therefore the obtained primal solu-

tion is feasible. By construction, the primal and dual solutions satisfy complementary

slackness. Therefore, both solutions are optimal.

If the problem has n switches, the dual program has O(n2 ) variables and O(n2 )

constraints. Since in each iteration at least one new constraint becomes tight, the

algorithm requires at most O(n 2) iterations, and each iteration can be performed in

O(n 2) time. So the overall time complexity of this algorithm is O(n 4). El

Therefore the HSP without initial capacities is solvable in polynomial time if the

facility capacity is sufficiently large. We also know that if the facility capacity is 1,

we can solve the HSP efficiently (it is optimal to send all demands along the shortest

origin-destination path). But when the facility capacity is arbitrary, we have shown

that it is unlikely that the HSP has a Polynomial Time Approximation Scheme. So,

we seek approximation algorithms with constant performance guarantee.

2.4 Hub-and-Spoke Networks Without Initial Ca-

pacities

In this section, we allow the facility capacity to be arbitrary. However, we restrict

the initial capacity on each link in the network to be zero. In Section 2.2, we showed



that even this restrictive version of HSP is APX-Complete. We provide a 2-factor

approximation algorithm for this problem based on a simple rounding technique. This

algorithm is asymptotically optimal for large demands.

2.4.1 A Formulation For HSP Without Initial Capacities

We express the point-to-point demands dij as dsi = njC + rij, with 0 < rij < C. We

refer to nijC as the integral demand, and rij as the residual demand.

Lemma 2.5. The HSP without initial capacities has an optimal solution in which all

the integral demands are routed along a shortest path with respect to the facility costs.

Proof. Since a direct link (i, j) can route only demand between the nodes i and j,

if we install any facilities on the link (i, j), we would route as much of demand dij

on this link as possible. Consequently, the HSP has an optimal solution in which

the demand routed along every direct link (i, j) is either an integral multiple of the

facility capacity C or is equal to dij.

In such an optimal solution, all integral demands are routed along a shortest path.

If not, at least C units of demand dij are routed on a path that is not the shortest

origin destination path. We can strictly improve the solution by removing a facility

along this path and installing it on the shortest path. We could move the C units of

demand to the shortest path, contradicting the optimality of the solution. O

Lemma 2.5 implies that given a HSP with demands dij, we can route the integral

demands along shortest origin-destination paths, and concern ourselves only with

the residual demands. Since the total cost of network expansion is the sum of the

expansion costs for the integral and residual demands, a k-approximation algorithm

for the HSP with residual demands alone yields a k-approximation algorithm for the

original problem. For the rest of this section, we assume that there are no integral

demands, i.e., nij = 0 for every origin-destination pair (i, j).

As a result, the problem always has an optimal solution with the demand dij for

each node pair (i, j) routed on a single path. If we route any of the demand dij



directly, we will need to install one facility on the direct link (i, j), which would have

a capacity C > dij and so we could route all of the demand directly at no extra cost.

So the HSP has an optimal solution with the demand for each pair (i, j) routed either

directly or through the hub in its entirety.

The problem reduces to deciding for each pair (i, j) whether we should transport

the demand dij directly or through the hub. For each node pair (i, j) we define

variables

1 if dij is routed through the direct link,

0 if dij is routed through the hub.

Note that the decision variable xij also denotes the number of facilities to the built

on the link (i, j). For each node i, we let yi denote the number of facilities to be built

on the link between the node i and the hub, and ci the cost of installing a facility

on this link. We can now model the HSP without initial capacities as the following

integer program:

(HSPa) Minimize c. x ij + c• ciYi
i,jeT; i<j ieT

S diy - (1 - ij) < C yi V i E T (2.7a)
jET\{i}

xij E {0, 1} V i,j E T (2.7b)

yi E Z+  V i E T. (2.7c)

If we route a demand dij directly, we must install exactly one facility on the direct

link (i, j) incurring a cost cij. Therefore, the objective function correctly represents

the cost of loading the network. Constraint (2.7a) ensures there is enough capacity

on the radial links to accommodate all demand that is not routed directly.



2.4.2 A Constant Factor Approximation Algorithm

Recall that facilities on a link to the hub can carry different demands, but a facility

on a direct link (i, j) can carry only the demand dij. So, if for a node pair (i, j),
it is more expensive to install a facility on the direct link than to install a facility

along the origin destination path through the hub, i.e., if cij > ci + c, then it is

optimal to send the demand through the hub. The HSP without initial capacities is

trivial if the costs satisfy cij > ci + cj for every node pair (i, j). So we assume that
ci + C,p = max >1.

i,jET cij

Consider an optimal solution to the HSP, and let D be the set of demands dij

that are routed directly. If we now change the routes of all the demands in D to go

through the hub, we increase the cost of the solution by at most a factor of p.

Observation 2.6. A solution to the HSP without initial capacities that routes all the

demands through the hub has cost at most p times the optimal cost.

If for the given problem, p is very close to 1, then we could send all the demands

through the hub and obtain a near optimal solution. For problems in which this is

not the case, we now provide a constant factor approximation algorithm.

The main idea underlying the algorithm is very simple: we relax the constraint

that the number of facilities on the links to the hub should be integer, solve the relaxed

problem, and round up the solution. For this simple algorithm to give near-optimal

solutions, a few preprocessing steps are necessary. We describe these first.

If for some node i the cost of a single facility on the link between the node i and the

hub is more expensive than the cost of sending all the demand out of node i directly,

then in any optimal solution, we will send the demand directly. The following lemma

formalizes this observation. Let 6() be an indicator function, that is, 6(z) = 0 if z = 0

and 6(z) = 1 if z > 0. Then the cost incurred by sending all demands out of node i

directly is cij. 6(dij).
jeT\{i)

If in an instance of the HSP without initial capacities, cij 6(dij) < ci for
jET\{i)

some node i in T, then it is optimal to route all the demands out of node i directly.



Therefore, we could perform the following preprocessing step before solving the HSP.

If for any node i in T, cij - (dij) < ci, route all demand out of node i directly,
jCTr\{i}

and eliminate node i from the graph. Repeat this step until every node i in the

current graph satisfies the condition cij - 6(dij) > ci. For a reason that will
jET\{i}

become clear later, we do something stronger. We perform the preprocessing step

repeatedly for every node i that satisfies the condition cij - 6(dij) < 2ci until
jET\{i}

we obtain a graph with no such node.

In the integer programming formulation for the HSP without initial capacities,

if we relax the integrality constraints on the y variables alone, we can solve the

resulting problem easily. In this case, we can buy fractional capacity on the radial

links, and therefore the cost of sending a demand through the hub is proportional to

the capacity used (that is, the demand). So the optimal solution routes each demand

dij as follows: if cij is less than (ci + cj) - ý, route the demand directly; otherwise,

route the demand through the hub. More formally, when we relax the integrality

constraints on the y variables, in an optimal solution to the mathematical program

HSPa, the constraints (2.7a) must be satisfied as an equality. This result allows us

to eliminate y variables, and the problem reduces to:

Minimizexi(E{o,1} (ij - (Ci + Cj) C- xij.
i,jET;i<j

We set the value of xij to be 1 if its coefficient is negative, that is, if cij is less than

(cj + cj) - d.

Given an optimal solution to this relaxation, we can round all the y variables up

to the next integer to obtain a feasible solution to the HSP. We call this procedure

Relax And Round. If we performed this procedure on a hub-and-spoke network with

arbitrary costs, the cost of the solution it produces can be arbitrarily bad. However,

after performing the pre-processing steps we described, we show that this procedure

has a constant performance bound.

Lemma 2.7. Suppose that for a given instance of the HSP without initial capacities,



E cij 6(dij) 2 2ci for every node i in T. Then, the Relax And Round procedure
jET \{i}
yields a solution to the HSP with cost at most two times the optimal cost.

Proof. Let ZOPT, ZRLX, and ZRAR denote the optimal cost, the optimal cost of the

relaxed problem, and the cost of the solution produced by the Relax And Round

procedure respectively. Obviously, ZRLx < ZOPT. Consider an arbitrary optimal

solution (x*, y*) to the integer program HSPa. We can write

ZOPT = C +2cy . (2.8)
iET jET\{i}

In any feasible solution (x, y) to HSPa, for each node i in T at least one facility is

loaded on the link between node i and the hub, or all the demands out of node i are

routed directly. In the former case, ci -yi > ci, while in the latter case,

Scij xj= = cij. 6(dij) > 2ci.
jET\{i} jET\{i}

So, in either case,

( c c-ij x +2ci yi) ý2ci. (2.9)
jET\{i)

Summing these inequalities for the feasible solution (x*, y*) over all nodes in T and

substituting in (2.8), we obtain

ZOPT 2c= ci. (2.10)
iET iET

Now, in the Relax And Round procedure, rounding the y variables to the next integer

increases the cost by at most -iET ci, implying that

ZRAR < ZRELAX + Cci < 0 OPT OPT = 2 ZOPT

iET

Given any instance, we route all integral demands along shortest paths, and re-



peatedly remove nodes that have a 'high' cost for a facility on the link to the hub.

After these preprocessing steps, we perform the Relax And Round procedure. The

complete algorithm is given below:

THE ROUNDING METHOD(G, c, C, d)
Input: Undirected hub-and-spoke network G, facility costs for links ci
and cij, facility capacity C, and demands between nodes dij.
Output: Feasible solution to the HSP on G with cost at most two
times the optimal cost.
(1) Routing integral demands:
(2) foreach node pair (i, j)
(3) if d2j > C
(4) (a) Let dij = kij -C + rij, with rij < C
(5) (b) if (ci + c3 < cj) then route kij - C units out of dij

through the hub
(6) else route it directly
(7) (c) Remove the routed demand, that is, set dj = dij -kj .C

(9) Network Pruning:
(10) while 3 node i s.t. EjEr\i} c ij dij < 2ci
(11) (a) Route all demand out of i directly
(12) (b) Remove node i from the network

(14) Relax And Round:
(15) foreach demand dij
(16) if ((ci + cj)% > cij) then route dij directly
(17) else route dij through the hub

(19) Cost Calculation:
(20) Using the routing obtained calculate the number of facilities to

be installed on each link, and the total network expansion cost

Theorem 2.8. The Rounding Method is a 2-approximation algorithm for the HSP

without initial capacities. For a network with n switches, the running time of the

method is O(n3 ).

Proof. Since routing integral demands, the relax and round procedure and calculat-

ing the cost each requires O(n 2) computations, and the network pruning procedure

requires O(n 3) steps (in a naive implementation), the algorithm has a running time

of O(n 3).



As routing integral demands maintains optimality, we assume that all demands

are less than the facility capacity C. Let 1, 2, 3,..., k be the nodes that were elimi-

nated by the network pruning procedure, and let G' be the hub-and-spoke network

after eliminating nodes 1, 2,..., i. Let ZRAR(Gi) and ZOPT(Gi) be the cost of solu-

tion produced by the Relax and Round procedure and the optimal cost of the HSP

restricted to the graph G' respectively.

For any feasible solution (x, y) to the HSP with cost Z(x, y), we can write

Z(x, y) = 1 (E cijxij + Ciy) + 1 ( 1E c2jxj + Ciyi)
i<k jEGi ieGk jEGk\{i}

> Zmin ( cij, ci) + ZOPT(Gk). (2.11)
i<k jEGi

The expression (2.11) provides a lower bound, ZLB, on the value of any feasible

solution to the given HSP. The network pruning procedure eliminates nodes i with

X:jEG cij < 2ci, implying that

E cij< 2. min ( cij, c) 0 < i < k. (2.12)
jEGi  

jEGi

The cost, ZRM, of the solution produced by the Rounding Method is

ZRM = Z: Cij + ZRAR(Gk) (2.13)
i<k jEGi

< E2 min ( cij, ci) + 2. ZOPT(Gk)
i<k jEGi

= 2 .ZLB.

We conclude that the Rounding Method always produces a solution with at most

twice the cost of an optimal solution. O



2.4.3 Asymptotic Optimality of the Rounding Method

The rounding method always produces a solution to the HSP with cost at most twice

that of an optimal solution. A factor of two might not be very attractive from a

practical perspective. However, if the demands are large compared to the facility

capacity C, this algorithm produces solutions with a performance guarantee much

better than 2. The following result specifies a worst case bound that depends on the

minimum demand to capacity ratio.

Theorem 2.9. Let k* = mini,jETL[#. The rounding method is an approximation

algorithm to the HSP without initial capacities with a performance guarantee (k* +

2)/(k* + 1).

Proof. Let kij - C and rij denote the integral and residual demands respectively. Let

Z' be the optimal cost with demands rij. And let ZC be the optimal cost when all

demands are equal to C. Since the optimal costs are monotonically nondecreasing in

the demand, Zr < Z c .

Let Z*, ZRM and ZID denote the optimal cost of the given HSP instance, the cost

of the solution produced by the rounding method and the cost of optimally routing

the integral demands respectively. Since for every node pair (i, Dij > k* . C,

ZID > k* Z C .

ZRM (ZID + Zr) + (ZRM - ZID - Z r )

Z* ZID + Zr

(ZRM - ZID - Zr)
=1+

ZID + Zr

(ZRM - ZID _ Z r )

<1+
k* • ZC + Zr

(ZRM - ZID - Z r )

<1+ 1 k* Zr + Zr
1 (ZRM" ZID) Zr

= Z1+
(k* + 1) Z r (k* + 1) Z r



2 1
+ (k* + 1) (k* + 1)

(k* + 2)

(k* + 1)

The final inequality uses the result in Theorem 2.8 and when k* = 0, we obtain the

performance guarantee of two as established in that result. As k* becomes large, the

performance guarantee becomes better, reaching 1 asymptotically as k* approaches

infinity.

2.5 An Approximation Algorithm For The Gen-

eral Case

We now allow the initial capacities on the radial links to be nonzero. We first consider

the case when these initial capacities are at most C. For capacity expansion problems

in which we start from an empty initial network, after performing the modeling steps

outlined in Section 2.1 we obtain a hub-and-spoke network in which each radial link

has an initial capacity of at most C. We provide a lower bound for this problem

using a decomposition scheme that involves solving a subproblem for each switch

in the network. We model the subproblem as a generalization of the minimization

version of the knapsack problem. With the help of this lower bound, we provide a

(2 + E)-approximation algorithm for any c > 0 for this problem. We then extend this

algorithm, with a slight increase in computational complexity, to situations when the

initial capacities can be arbitrary .

2.5.1 HSP With Small Initial Capacities

In this version of the HSP, we are given a hub-and-spoke network with a set T of

nodes, another (special) node called the hub, facility capacity C, facility installation

costs cij and ci for links (i, j) and links (i, hub). Each radial link has an initial



capacity ui which is at most the facility capacity C. The problem is to route the

given (undirected) demands dij to minimize the total cost of facility installation.

Since the initial capacity available along any path is less than C, routing C units

of demand along any path requires installation of one facility along the path. So,

retracing the proof for Lemma 2.5 for this case, we have the following lemma for the

HSP with small initial capacities:

Lemma 2.10. The HSP with small initial capacities has an optimal solution in which

all the integral demands are routed along a shortest path with respect to the facility

costs.

Given an instance of the HSP with small initial capacities, we could route the

integral demands along shortest paths. So, for the remainder of this section, we

assume, without loss of generality, that the given demands are less than the facility

capacity C. As in the case with no initial capacities, the problem reduces to deciding,

for each node pair (i, j), whether to route the demand dij directly or through the

hub. Therefore, we can write the following integer program for the HSP with small

initial capacities:

(HSPb) Minimize E j " xj " +E ci -yi
i,jeT,i<j iE'T

E dij (1 - j) ui+ C y Vi E (2.14a)
jrT\{i}

xij E {0, 1} V i,j E T (2.14b)

yi E Z+ .  (2.14c)

We now provide a method to calculate a lower bound for the HSP. For each

switch i in the hub-and-spoke network, consider the following (Expandable Knapsack)



optimization problem:

(EKP-i) Minimize -- xj + ci -y

j\ei\i)

xij E {0, 1} Vj E T \ {i} (2.15b)

Yi E Z+ .  (2.15c)

We interpret the problem EKP-i as a generalization of the 0 - 1 min-knapsack

problem (MKP) (see, for example, [30], [40]). In the MKP, we are given a knapsack

with size S, items with specified sizes, and penalties if the item is not included in the

knapsack. The objective is to identify the set of items to be included in the knapsack

in a manner that minimizes the total penalty of the items not included. In EKP-i,

each demand (i, j) is an item with size dij and penalty cj/2. The decision variables

xsj indicate whether the item (i,j) has been included in (xij = 0) or excluded from

(xij = 1) the knapsack. In this problem, the size of the problem is not fixed but can

be expanded from ui in integral multiples of C by paying a cost ci. Therefore, EKP-i

is a generalization of the MKP that allows expansion of the size of the knapsack and

the objective is to minimize the cost of expansion and the penalty for unselected

items.

If the optimal value yi' of the variable yi is known, the problem reduces to an MKP:

the size of the knapsack is ui + Cy*, and the penalty of not including an item (i, j) in

the knapsack is cij/2. The MKP is known to be NP-Hard, but, like the maximization

version of the knapsack problem, there is a polynomial time algorithm that will find

a (1 + c)-approximate solution for any given c > 0. In fact, it is possible to modify

almost all well-known fully polynomial time approximation schemes (FPTAS) for

the maximization version of the Knapsack Problem to produce an FPTAS for the

MKP (see, for example, Gens and Levner [24]). If we modify the fully polynomial

time approximation scheme of Ibarra and Kim [29] for the Knapsack Problem (as

presented in Korte and Vygen [32]), which, for a problem with n items, will solve the



MKP in O(n 2/E) steps.

To solve the EKP-i, we can solve a sequence of MKPs, one for each possible

value of the variable yi. Since we assume that the given demands dij are at most

C, the total demand out of any node is at most nC. Consequently, in EKP-i, yi E

{0,..., n}, V i E T. Therefore, the algorithm in which we (approximately) solve a

sequence of at most (n + 1) MKPs is an FPTAS for EKP-i.

Let Z' be the optimal cost of EKP-i. We will now show that ZLB = ZiT Z i is

a lower bound on the optimal cost Z* of the HSP with small initial capacities.

Theorem 2.11. ZLB is a lower bound to the optimal cost of the HSP with small

initial capacities.

Proof. Let (x*, y*) be an optimal solution to the HSP, i..e., x* and y* denote the

number of facilities to be installed on the direct link (i, j) and the radial link from

node i. Note that (yf, {x :j E T \ {i}}) is a feasible solution to EKP-i. Therefore,

- " X j + c i 
" Yi

j•T\{i}

implying that

ZLB = Zi

5 "  ij

= *.

Suppose we are given (approximate) optimal solutions to the EKP-i problems

for each node i in T. We can create a feasible solution to the HSP as follows: If

EKP-i and EKP-j both select an item (node pair) (i, j) in the knapsack, we route



the demand dis through the hub. We route all the other demands directly. This

procedure, which we call the Decentralized Routing Algorithm, produces a feasible

solution to the HSP. We show that the DRA solution has a constant performance

guarantee.

Theorem 2.12. The Decentralized Routing Algorithm for the Hub-and-Spoke Capac-

ity Expansion Problem with small initial capacities is a (2 + ) -factor approximation

algorithm for any e > 0. For a network with n switches, the running time of the

algorithm is O(n4 /c).

Proof. Consider how demand (i, j) is routed in the solution to the subproblems at

switch i and j. Note that if the item is not selected in both solutions, the cost cij of

routing dij directly is included in ZLB. Now consider the set I of all items (i, j) that

were included in the knapsack by either EKP-i or EKP-j but not both. Routing these

demands directly increases the cost of the solution by at most E(ij)EI cij/2. However,

since either EKP-i or EKP-j already paid the penalty for not including (i, j) in the

knapsack, we have ZLB > E•(i,j)EI ci/2, implying that the cost of the feasible solution

to the HSP is at most 2ZLB. If, however, we start from (1 + c/2)-approximate solu-

tions for each of the EKP-i problems, we obtain a solution to the HSP in polynomial

time with cost at most (2 + E)Z*. Therefore, the procedure we have just outlined,

which we call the Decentralized Routing Algorithm, is a (2+6)-approximation scheme

for the HSP with small initial capacities.

For each subproblem, the algorithm solves at most n + 1 min-knapsack problems.

Therefore, it solves a total of O(n2 ) min-knapsack problems with a total running time

of O(n4 /c). Obtaining a feasible solution from the solutions of the subproblems can

be done with a run time that is linear in the number of demands, or O(n2).

2.5.2 Arbitrary Initial Capacities

We now consider the Hub-and-Spoke Capacity Expansion Problem when the initial

capacities on the radial links are arbitrary. We note that if we apply the initial

processing steps outlined in Section 2.1, the most general form of the CEP in hybrid



networks reduces to an HSP in which the radial links can have arbitrary initial capac-

ities. Therefore, an (approximation) algorithm HSP with arbitrary initial capacities

yields an (approximation) algorithm for the CEP in a hybrid network.

It is no longer optimal to route the integral demands along shortest paths as in the

cases when the initial capacities were either absent or less than the facility capacity

C. However, we show that the idea from Section 2.5.1 in which we obtained a lower

bound by decomposing the problem into subproblems for each switch could still be

used to obtain a constant factor approximation algorithm.

We duplicate each undirected demand dij into two directed demands Dij and Dji

in opposite directions each with the same magnitude as dij. The demands Dij can

be either routed on the direct link between i and j, or can be sent to the hub (we

do not send it to the destination switch in this case). The idea is to route the two

demands Dij and Dji separately, ensuring that equal amounts of both is sent on the

direct link between switches i and j. Such a routing yields a feasible solution to the

underlying HSP. We provide an integer programming formulation for the HSP based

on this idea.

Let the decision variable f0 and fh denote the amount of demand Dij that is

routed directly and to the hub. Let yij and yi be the number of facilities to be

installed on the direct link between switches i and j, and the radial link out of switch

i. Consider the following integer program:

(HSPc) Minimize Z(ci . yi + i yij)

f + f = Dij, V i,j E T (2.16a)

Sf <u C yij V ij E T (2.16b)

fd V C yijeT (2.16c)



j = ji, V i < j E T (2.16d)

All variables are integer.

The constraints (2.16a) ensure that all of the demand is sent either directly or to

the hub. Constraints (2.16b) and (2.16c) size the facilities on the radial and direct

links. Note that yij and yji are two different variables denoting the number of facilities

on the direct link for the routing of Dij and Dji. Finally, constraints (2.16d) forces

the number of facilities installed on the direct link from either end to be the same.

Proposition 2.13. The integer program HSPc solves the Hub-And-Spoke Capacity

Expansion Problem with arbitrary initial capacities.

Proof. Let (y', f') be an feasible solution to (2.16). We can modify the solution,

without changing the y variables, to ensure that as much of each demand flows on

the direct link as possible. The new solution (y', f) has the same cost, and satisfies

either f = yý C or f = Dij for every i, j. Since y*j = yji, we have f = fd for every

pair of directed demands Dij and Dji, implying that the part of demands Dij and

Dji that go to the hub is also equal. If we use y' to install facilities on the links, and

route fd units of the undirected demand di on the direct link, we obtain a feasible

solution for the HSP.

The two directed demands Dij and Dji each pay half the cost for the facilities on

the direct link between switches i and j. Also, all the demands out of switch i pay for

the facilities on the radial link out of switch i. Thus the objective function correctly

accounts for the cost of added facilities.

Therefore, for each feasible solution of the integer program (2.16), we can obtain a

feasible solution to the given HSP with the same cost. The optimal solution to (2.16)

will give us the optimal solution to the HSP. O

We now relax the constraints (2.16d) to obtain a lower bound. In the absence of

constraint (2.16d), the problem decomposes into several subproblems, one for each

switch. We call the subproblem at each switch the Local Routing Problem (LRP).

For switch i the LRP is given by:



(LRP-i) Minimize ci . y + E Yi

fzd + fh = D%3, V j E T\ \(i (2.17a)

f~fh u + C.yi (2.17b)

fid< C.yj, V j T\ {i} (2.17c)

All variables are integer.

Lemma 2.14. LRP-i has an optimal solution in which for every demand Dij, the

amount routed on the direct link is either Dij or k -C, for some integer k.

Proof. We use the argument used in the proof of Proposition 2.13. Given an optimal

solution (y*, f*) to LRP-i, we can increase every demand fd until it either equals y! C

or Dij. Since we did not change y*, the cost remains same, implying that the new

solution, which satisfies the property stated in the lemma, is an optimal solution. O

Lemma 2.14 implies that we can convert every demand Dij = kijC + rij into

kij items of size C and one more item of size rij. If we know the optimal number

of facilities, yf, to add to the radial link from switch i, then the problem reduces to

solving a min-knapsack problem with knapsack size Cy* +ui, and items obtained from

the demands as described above. The penalty of not including an item from demand

Dij is cij/2. This problem can be solved using the (1 + )-approximation scheme of

Gens and Levner [24]. There are two issues that remain: First, we do not know yi.

Second, when we create items from demands, we end up with a pseudopolynomial

number of items.

To address the first issue, we observe the following: If an item has a penalty cij/2

that is at most the cost, ci, of expanding the knapsack, this item will be included in

the knapsack in an optimal solution. We can include all such items in the knapsack

a priori (by increasing the size of the knapsack if necessary), and adjust the initial

knapsack size ui accordingly. Therefore, we can assume without loss of generality



that all items have a penalty lower than the cost of expanding the knapsack.

Lemma 2.15. For the LRP-i problem in which the penalties are smaller than the

knapsack extension cost, let y! be the optimal number of times the size of the knapsack

is increased. Then y; E {0, 1, 2,..., n).

Proof. We observe that if in an optimal solution to the LRP-i, yj > 0, then all items

of size C are not included in the knapsack. If this is not true, one such item is in

the knapsack. We can remove this item from the knapsack incurring the penalty,

and reduce yj by 1. Doing so will reduce the cost since the penalty is lower than the

knapsack extension cost ci.

When yi is greater than zero, only the residual demands rij can be included in

the knapsack. The total residual demands is bounded by nC and, therefore, we never

have to consider expanding the knapsack more than n times. O

To avoid creating a pseudopolynomial number of items, we use a technique that

has been applied to the Bounded Knapsack Problem (see for example [40]). Let

Dij = kijC + rij and let t be an integer for which 2t- 1 < kcij < 2t . We split the

demand Dij into items of size C, 2C, 4C,... , 2t-1C, (kij + 1 - 2t)C and r 3j. Let D be

the largest demand between any two switches. Then the total number of items in the

LRP for any switch is bounded by n = nlog([ -]).

So to solve LRP-i we can solve at most n + 1 min-knapsack problems, with knap-

sack sizes ui, ui + C,.. ., ui + nC. Lemma 2.15 implies that one of these min-knapsack

problems will have at most ni items, and the others will have n items. If we use the

PTAS of Gens and Levner for the MKP, we can compute an c-approximate solution

to the LRP in O((n3 +n 2)/e) time. Computing the e-approximate lower bound, which

involves solving the LRP for each switch, would then require O(n(n3 + A2)/c)) time.

From solutions to the LRPs for all the switches, we can obtain a feasible solution

(f, f) to the HSP:

ij = max(yij, yji) and d = max(f, fd) V i,j E T.



Since this procedure is similar in overall structure to the one we described for

HSP with small initial capacities, we refer to this algorithm also as the Decentralized

Routing Algorithm (DRA).

Theorem 2.16. The Decentralized Routing Algorithm produces a feasible solution to

the HSP whose cost is at most (2 + E) times the optimal cost.

Proof. Let Z*, ZLB, and Z be the cost of the optimal solution, the lower bound, and

the feasible solution produced by the DRA respectively. Let (y, f) be the solution

corresponding to the lower bound. Then,

ijET jET\{i}

Z q> C c-- mxy,)5 -((yij + Yji)

i,jET:i>j

Therefore,

Z = ZLB + 5 (max(yj, yji) - min(yij, yji))
i,jET:i>j

< ZLB+ c _-max(yjyj)
i,jET:i>j

< 2ZLB

< 2Z*.

2.5.3 A Tight Example

As shown by the example in Figure 2.5.3, there are instances of HSP for which the

DRA produces solutions with cost twice that of the optimal solution. The per unit

facility costs are indicated along the links. The initial capacities of all the links are

zero. The facility capacity C is 1, and the demand between nodes 1 and 2 is also 1.



In the Decentralized Routing Algorithm for this example, we solve two subproblems,

one each at switches 1 and 2.

Figure 2-3: A bad example for the Decentralized Routing Algorithm

The subproblem at switch 1 seeks to send a total of a unit along the direct link

or to the hub. Since the cost of sending the unit along the direct link is 1 = (1) -2,

it is optimal to send the entire unit along the direct link. On the other hand, for the

subproblem at switch 2, it is optimal to route the demand to the hub at cost 0. In

order to obtain a feasible solution to the HSP, the Decentralized Routing Algorithm

will install a facility on the direct link. The cost of this solution is 2. However, the

optimal solution is to route the demand through the hub at a cost of 1 + 6, which

gives a performance ratio of 2 as c goes to zero.





Chapter 3

Extensions of Hybrid Network

Capacity Expansion Problem

The (2 +e)-approximation scheme for the Hub-and-Spoke Capacity Expansion Prob-

lem (HSP) described in the previous section decomposes the problem into several

subproblems, one at each switch, to compute a lower bound. This approach is quite

general, and can easily be applied even if certain additional practical constraints need

to be satisfied when solving the Capacity Expansion Problem for a hybrid network.

With the additional constraints, the structure of the subproblem obtained will be

different from the one we obtained for the HSP. However, we show that in several

situations, an a-approximation algorithm for the resulting subproblem will translate

into a 2a-approximation algorithm for the given problem when we use the algorith-

mic scheme proposed in the previous section.

In particular, we show that the Decentralized Routing Scheme is quite general

and can be used for a variety of capacity expansion problems on hybrid networks. In

Section 3.1, we describe several applications of the DR scheme, and show that the

DR scheme converts an approximation algorithm for the subproblem obtained by the

decomposition into an approximation algorithm for the original problem. We then

study extensions to the single period capacity expansion problem in a hybrid network,

and use the DR scheme to develop approximation algorithms for these problems. In

Section 3.2, we consider the CEP with link dependent bounds imposed on the number



of facilities that can be installed on any link. We then study (in Section 3.3.1) the

CEP in which each demand must be routed on a single path. After developing a

(2 + c)-approximation algorithm for the single facility type version of this problem,

we extend the algorithm to handle multiple facility types as well.

3.1 The Decentralized Routing Scheme

We proposed a decentralized routing scheme that decomposes the HSP into subprob-

lems and obtains a feasible solution with at most twice the sum of the costs of the

subproblems. In this Section, we show that this scheme, while applicable only to a

star network, is still very general. It can be used with almost any cost structure that

separates by link, and for both deterministic or stochastic demand. It can also be

used in a multi-period setting. The quality of the solution obtained based on this

scheme depends on how well the subproblems can be solved or approximated.

Consider a general Capacity Expansion Problem in a hybrid network. We assume

that the cost is a nondecreasing function of capacity, and it is separable by links. That

is, the total cost of capacity expansion is the sum of the costs for each link in the

network. Let cij(x) be the cost of purchasing x units of capacity on link (i,j). The

problem can have additional routing constraints (for example, unsplittability requiring

that each demand is routed along a single path), capacity constraints (limits on the

amount of capacity that can be installed on edges), or even survivability constraints

(for example, single link failure protection).

In the hybrid network we will be considering, in any solution, part of each demand

is sent on the direct link between its end points. The rest of this demand is routed

through a path that consists of a link between its origin and a softswitch, a sub-path

within the IP subnetwork, and a final link between a softswitch and its destination.

We assume that the IP subnetwork has excess capacity, and hence is free.

We will decompose the problem into subproblems at each switch. At switch i,

for each demand originating or terminating at switch i, we need to decide how much

to route on the direct link, and how much to route on each link out of i to the IP



subnetwork. This routing is subject to all the additional constraints in the original

problem. That is, if the original problem had limits on the capacity that can be added

on certain links, we enforce these constraints in the subproblem. Finally, we set the

cost function on the direct links to be cij(x)/2, while leaving the cost function on the

other links unaltered.

When we have a feasible solution to all the subproblems, we can combine them

to obtain a feasible solution to the original problem. If for the demand dij, the

subproblems at i and j have routed unequal amounts on the direct link, we set the

amount of demand dij routed directly to be the larger of these two. We then use this

routing to obtain a feasible set of capacities to the original problem. We refer to this

general procedure as the Decentralized Routing (DR) scheme.

When we use the DR scheme on a problem, the subproblems for each node are

identical in the sense that they are different instances of the same problem. Also, this

new problem is significantly simpler than the original problem because it no longer

contains interaction between different switches.

Lemma 3.1. Let P be a capacity expansion problem defined on a hybrid network,

and let Pi be the subproblem at node i obtained by the Decentralized Routing Scheme.

If for some a, there is an a-factor approximation algorithm for Pi, then the problem

P has a 2a-approximation algorithm.

Proof. We show that the Decentralized Routing Algorithm for P that uses an a-

approximation algorithm for the subproblems is a 2a-approximation algorithm. Let

Z i be the cost of an optimal solution to the subproblem P', and let Z* be the optimal

cost of P. We first show that the sum •~ET Z i is a lower bound on the optimal cost

Z*. Let (x, y) be an optimal solution to P. By definition of the subproblem Pi, the

solution (x, y) restricted to the decision variables in Pi (we denote this solution by

(x,y)li) is feasible to Pi. Let Zi be the cost of the feasible solution (x,y)li to Pi.

Observe that

z = Z
iET



But, for every switch i, Z' > Z'. We conclude that

Szi z *.
iET

Now, let Z, be the cost of the solution returned by an a-approximation algorithm

for the problem P'. Then,

<a CZi < ao Z.
iET

(3.1)

The DR scheme generates a feasible solution to the problem P by setting the

number of facilities :ij on a direct link (i, j) to max(xij, ji), with xij and xji obtained

from the a-approximation algorithms to the problems P' and Pi respectively. Note

that

Zi > Cij ' xi\
j- Z{ 2
jET\{i}

iET

iET

> S ij(X +Xji)
i<jET

(3.2)- j 2

Let Z be the cost of the feasible solution to P produced by the Decentralized

Routing Scheme. Then,

2

iET i<jET

<5 Z + Z Z'
iET iET

i2 C- E

iET

* (max(xiy, xji) - min(xij, xji))

* max(xij, xji)

(from inequality (3.2))

(from inequality (3.1)).

ie ZiicT i•E zilET

max(xij, Xji).

Z = 1ZE +
iET

< 2a -Z*



Therefore, the Decentralized Routing Algorithm that uses an a-approximation

algorithm to obtain feasible solutions to the subproblems is a 2a-approximation for

the given problem P. O

To obtain a feasible solution to the problem, we transfer some of the demand

routed to the hub to a direct route. This might allow us to reduce the number of

facilities. We can postprocess the solution to ensure that only the required number

of facilities are installed on the radial links. In the proof above, we assumed that no

such postprocessing is done but the Lemma is obviously valid even when it is done.

We infer from Lemma 3.1 that the usefulness of the DR scheme in designing an ap-

proximation algorithm for a problem depends on the approximability of the obtained

sub-problem. In Sections 3.2, 3.3.1, and 3.3.2, we show that for some extensions of

the Single Period Capacity Expansion Problem, it is easy to approximate the sub-

problem when applying the DR scheme to within a small constant factor, implying a

constant factor approximation algorithms for these extensions. In Chapter 4, we con-

sider the CEP in a hybrid network with survivability requirements. For this problem,

applying the DR scheme directly does not give us subproblems that are easy to ap-

proximate. However, the DR scheme can still be useful as we can solve closely related

relaxations using the scheme, and design heuristics based on these relaxations. We

develop two constant factor approximation algorithms for this problem, both using

the DR scheme.

Finally, we note that the decentralized routing scheme can be applied even to

a multi-period capacity expansion problem in a hybrid network. In this context,

we are given a multi-period demand forecast, and we seek to identify a capacity

expansion plan (number of facilities to install on each link during each time period)

that will satisfy the forecasted demand for each period. We seek to minimize the

total (discounted) cost of expansion.

For the multiperiod problem, the decentralized routing algorithm would do the

following: After obtaining solutions to the switch subproblems, the number of facilities

on a direct link in each time period would be set to the maximum of the number of

facilities installed in the subproblem solutions of the endpoints of the direct link in



that period. It is easy to show that Lemma 3.1 is valid for the multiperiod problem.

3.2 Upper Bounds On The Number Of Facilities

The Capacity Expansion Problem we considered in Chapter 2 does not limit the

number of facilities that can be installed on links. The solution produced by the

algorithms we have proposed in Sections 2.4 and 2.5 could send considerable demand

on a few links, which could cause a huge disruption of service if one or more of these

links fail. For this reason, network planners to prefer to distribute the load on the

network as evenly as possible without increasing the cost of expansion very much. One

way to do this is to set limits on the number of new facilities that can be installed on

each link.

Also, until now we have been assuming that capacity in the IP subnetwork is free.

Though for a typical year, there might be enough spare capacity in the IP subnetwork

to handle increase in demand, routing lots of demand through this subnetwork would

eventually result in an increase in infrastructure cost to the company. Therefore it

is desirable not to send too much demand to the IP subnetwork. This could also be

ensured by limiting the number of facilities that can be installed on the links between

legacy switches and softswitches.

So, consider a hybrid network capacity expansion problem (G((SUI), E), u, c, C, d)

with bounds {nP : e E E} imposed upon the number of new facilities that can be

installed on the links. We assume, as we did earlier, without loss of generality, that

the initial capacities u, on direct links (between two legacy switches) is zero. We

show how to use the framework of the Decentralized Routing Algorithm to obtain a

(2 + c)-approximation scheme for this variant of the CEP.

3.2.1 Routing Demands To Softswitches

Demands between two softswitches will be routed entirely within the IP subnetwork

and therefore contribute nothing to the cost. We now consider demands between



legacy switches and softswitches. Since capacity inside the IP subnetwork is free, we

need to route these demands to some softswitch. For each legacy switch s, we route

the demands between switch s and all softswitches as follows: Let D8 be the sum of

all the demands between the switch s and any softswitch. Similarly, let u8 be the

sum of all initial capacities on links between switch s and any softswitch. We route

the demand D, to use up as much of the capacity uu as possible. If D, exceeds u,, we

need to buy additional capacity, and we start with the link with the cheapest facility

cost and move to more expensive ones as the links reach their bounds on number of

facilities added. We adjust the total initial capacity between the switch s and the IP

subnetwork appropriately.

As for the case with no bounds on the number of new facilities, we can shrink

the IP subnetwork to a hub node, and remove duplicate links to the hub to obtain

a star network. However, the cost function for facilities on the radial links is no

longer linear; it is a piecewise linear convex function in which the breakpoints occur

whenever we reach the upper bound for a link.

3.2.2 Bounds On The Number Of Facilities On Direct Links

We show that without loss of generality, we can assume no bounds on the number

of new facilities on direct links (between two legacy switches). If there is a bound

nT on a direct link e between legacy switches s and t, and the demand, dt between

s and t is no greater than neC, then we can ignore the bound. On the other hand,

if dt exceeds neC, we have to route at least A~t = d,t - nC through the hub in

any feasible solution. So we route A,t units of demand through the hub, and remove

the bound on the link e. To route Ast through the hub, we need only increase the

aggregated demands D, and Dt by At before routing the demands to softswitches.

This procedure can be applied for each direct demand, thereby eliminating bounds

on all the direct links.



3.2.3 A Model For CEP With Upper Bounds

We assume no bounds on the number of facilities added on direct links. As we did

for the HSP, we create two directed demands, Dij and Dji, for every pair i, j of

TDM switches. Each of these demands is equal in magnitude to the given demand

dij between the switches. For every softswitch 1, the decision variable yil denotes

the number of facilities to be installed on the link between the TDM switch i and

the softswitch 1. If the network does not contain a link (i, 1) to a softswitch 1, we

set nit to be zero. When we carry out the preprocessing steps to route demands to

softswitches, or to eliminate upper bounds on direct links, we might add as many

facilities on some links (i, 1) as we are allowed. For these links, we also set nil to

be zero. We now formulate the CEP with upper bounds as an integer program. All

other decision variables in this model are as in formulation HSPc (Section 2.5.2).

(B) Minimize Z( c~i Yil + Ci Yij)
iET IlS jCT\{i}

fi + fh = Dij, V i,j E T (3.3a)

ES fi < ui + C . ( yil) ViE T (3.3b)
jEr\{i} lES

f < C yij V i, j E T (3.3c)

Yil < nil, Vi E T, 1E S (3.3d)

Yij Yji, Vi < jET (3.3e)

All variables are integer.

We now apply the DR scheme to this problem: we relax the constraints (3.3e), to

obtain a lower bounding problem. This problem decomposes into subproblems, one

for each switch. The subproblem is similar to the LRP obtained when we decomposed

the formulation HSPc (Section 2.5.2), except that the cost of the radial link out of

each TDM switch is piecewise linear and convex. We continue to represent these

piecewise linear costs by using the variables {Yil : 1 E S} for each TDM switch i.



The subproblem for switch i, which we call B-i, is given by:

(B-i) Minimize Eci yit + - Yij
leS jeT\{i)

S+ f = Dij, V j E T \ {i} (3.4a)

5 f u + C ( yil) ViET (3.4b)
jiET\{i} ES

f 5 C. yj, V i,j E T (3.4c)

Yil 5 nil, V eS (3.4d)

All variables are integer.

3.2.4 A Decentralized Routing Algorithm For CEP With Up-

per Bounds

We note that Lemma 2.14 is valid for the B-i. So for each demand Dij = kijC+ri we

create kij items of size C and an item of size rij. We interpret B-i as an expandable

minimum knapsack problem: The initial size of the knapsack is us, but it can be

expanded, and the cost of expansion is piecewise linear and convex. Each item created

out of demand Dij has a penalty cii/2. The objective is to identify the size of the

knapsack and the items to include in the knapsack to minimize the total of the

knapsack expansion cost and the penalties of items not included in the knapsack.

For ease of exposition, we assume that the cost of facilities on direct links out

of the node i are all distinct. All the results we establish under this assumption are

valid even when multiple direct links have the same facility cost.

Lemma 3.2. In an optimal solution to the B-i, the items of size C are included in

the knapsack in descending order of their penalties.

Proof. Let i and j be two items of size C, and assume the penalty of item i be greater

than that of item j. If in any feasible solution, item j is included in the knapsack

and item i is not, we could exchange the two. The resulting solution is feasible and

has lower cost. So in an optimal solution, if item j is in the knapsack, then item j



must also be in the knapsack.

Lemma 3.2 implies that in any optimal solution to B-i, we route the integral

demands in descending order of the cost of installing a direct facility.

Property 3.3 (Link Tightness Property). A solution to B-i is said to satisfy the link

tightness property if it satisfies one of the following conditions:

* (Radially tight) For every softswitch 1, either yi, = nil or yil = 0.

* (Directly tight) For every TDM switch j, fd = 0, rij or Dij.

We show that B-i has an optimal solution that satisfies the link tightness property.

For each switch j, let Uj (resp., Lj) denote the set of switches 1 with direct link facility

cost cil greater (resp., lesser) than cij.

Theorem 3.4. There is an optimal solution to the B-i that satisfies the link tightness

property.

Proof. Let (yi, fi) be an optimal solution to B-i that satisfies Lemma 2.14, but does

not satisfy the link tightness property. Lemma 3.2 implies that some switch j in

the solution (Ii, fj) sends all of the integral demand to switches in Uj to the hub,

and all of the integral demand to switches in Lj directly. So, for each switch 1 other

than j, fiz is either 0, ril or Dil. Since we assumed that (iI, fi) does not satisfy the

edge tightness property, we conclude that fij must be equal to pC for some integer

0 < p < kij. We also conclude that 0 < ilj < niz for some softswitch 1.

Since we can shift C units of demand Dij from the direct link to the radial link

(i, 1) or vice versa, the optimality of (ni, fi) implies that cij/2 = cil. We can now shift

as much demand from the direct link (i, j) to the radial link (i, 1) until we either have

no demand being sent on the direct link, or the number of facilities on the radial

link has reached its bound nil. This solution has the same cost as (yi, fi), and so is

optimal. It also satisfies the link tightness property. O

To obtain an optimal solution to B-i, we evaluate all solutions that are either

radially tight or directly tight, and select the best solution among them. Since facil-

ities on the radial links will be added in ascending order of facility cost, we need to



consider at most m possible radially tight solutions. Also, for each of these cases, we

know the number of facilities to be installed on each radial link. We can solve the

B-i in this case by solving at most m minimum knapsack problems.

We now consider the directly tight solutions. Lemma 3.2 implies that in any such

solution some TDM switch j satisfies the property that for all TDM switches k with

cik • cij the entire integral part of the demand Dik is sent directly, and for all other

demands, the entire integral part is sent through the hub. Now, only the residual

demands are left to be routed. Since the number of additional facilities on the radial

links in any solution is at most n, we solve at most n+ 1 minimum knapsack problems,

varying the number of additional facilities on the radial links from 0 to n. Selecting

the best solution among these would give us the directly tight solution. We also note

that there are at most n possible directly tight solutions.

We can use the PTAS for the minimum knapsack problem as a subroutine in

this procedure to obtain an 6-approximate solution to B-i. This, when used in the

framework of the Decentralized Routing Algorithm, gives a (2 + E)-approximation

algorithm for the CEP with upper bounds.

3.3 Unsplittable Demands

We study a variant of the Hub-and-Spoke Network Capacity Expansion Problem

(HSP) in which we are required to route every demand on a single path. That is,

every demand in its entirety must be routed either directly or through the hub. Tra-

ditionally, calls in a telecommunication network were routed along a single 'primary'

path for every origin-destination pair. When the primary path does not have suffi-

cient capacity to route a call (that is, it is 'blocked'), the system will use an overflow

path. Some network routers do not support percentage routing which is required if

we were to allow splitting of the demands along different paths. Also, having a single

primary route for each demand eases implementation and troubleshooting in case of

failures. Owing to these two factors, network planners prefer to use a single path for

each demand in certain situations, motivating our study of the Unsplittable HSP.



We are given a hub-and-spoke network with a set T of switches along with a hub

switch, and demands dij between switches i and j in T. We initially study the single

facility version in which capacity can be installed on each link in multiples of the

facility capacity C. The cost of installing a facility is cij on the direct link (i,j), and

ci on the radial link between the switch i and the hub. Later, we extend the algorithm

to multiple facility types as well. Let xij be the indicator decision variable that takes

the value 1 when the demand dij is routed directly. We formulate the Unsplittable

HSP as the following integer program:

(U) Minimize Eci . i x E + cij C xij
iET i<jET

dij - (1 - XiS) < ui + C i V i E T (3.5a)
jEr\{i)

xi E Z+ ,  Vi E T

Xij E {0, 1}, Vi < j E T.

Constraint (3.5a) ensures that enough capacity is installed on radial links to support

demands that are routed through the hub.

We design an approximation algorithm for this problem using the Decentralized

Routing Scheme. We duplicate each demand dij into two directed demands Dij and

Dji, and for each directed demand, we need to choose between routing the demand on

the direct link or sending the demand to the hub. For a hub-and-spoke network with

n nodes, this decomposes the problem into n subproblems. The difference between

this subproblem and the one obtained from the splittable HSP (2.17) is that the

demands must now be routed in their entirety along one of the two paths. Here is

the subproblem obtained for node i:

(U-i) Minimize ci" x ± + > ij 1i
jET\{i}

Dij - (1 - xij) <_ ui + C - xi (3.6a)

jE T\fi)



xi E Z+

j E {0, 1}, Vj \ {i}.

We interpret this problem as a generalization of the min-knapsack problem. The

demands are items with size equal to the magnitude of the demand. The radial link is

the knapsack with capacity ui. The penalty of not including an item in the knapsack

(that is, routing the corresponding demand on the direct link) is (c 3j/2). [djj/C]. The

size of the knapsack, however, can be increased in multiples of C, and the cost per

expansion is ci. We refer to this problem as the Expandable Min-Knapsack Problem.

Given this interpretation, we are interested in designing an approximation al-

gorithm for the Expandable Min-Knapsack Problem. From Lemma 3.1, we know

that an a-approximation algorithm for the problem U-i can be used to obtain a 2a-

approximation algorithm for the unsplittable HSP. In Section 3.3.1, we develop an

FPTAS for the Expandable Min-Knapsack Problem, implying a (2+E)-approximation

algorithm for the Unsplittable HSP for any positive c.

3.3.1 The Expandable Min-Knapsack Problem

In the Expandable Min-Knapsack Problem, we are given a set of items {1, 2,..., n}

with sizes wi and penalties pi. We are also given a knapsack with initial size W that

can be expanded in multiples of a given expansion size C for a cost cK per expansion.

The goal is to decide the size of the knapsack, and the items to include that will

minimize the total of the expansion cost and the penalties for items not included.

Let the decision variable xi be 1 when the item is not included in the knapsack and

0 otherwise. Letting y be the number of times we expand the knapsack, we can write

this problem as the following integer program:

(E) Minimize cKY+ E Pi'XiZ<i<n
w (1- 4)< W + C -y (3.7a)

1<i<n



yE Z÷

xi E f0.1}, V 1 < i < n.

We show that the problem does not become harder by allowing expansion of the

knapsack.

Theorem 3.5. The Expandable Min-Knapsack Problem is equivalent to the Min-

Knapsack Problem. There is a Fully Polynomial Time Approximation Scheme for the

Expandable Min-Knapsack Problem.

Proof. Rewrite the constraint (3.7a) as follows:

C.y +E w -xi 2 Ž w -W. (3.8)
1<i<n 1<i<n

The constraint (3.8) allows us to interpret the knapsack expansions also as items.

The problem is to choose a set of items of minimum 'cost' whose total size is at least

F1<i<n wi - W. This is exactly the min-knapsack problem, except that the variable

y is allowed to assume integer values larger than 1. We create 'expansion items' of

size C, 2C, 4C, ... , 2tC, with (2t+1 - 1)C > El<i<n wi - W. The cost of these items

are ci, 2ci,..., 2tci respectively. We can then expand the knapsack to any allowable

size by choosing the right set of expansion items. It is easy to verify that the number

of items created is polynomially bounded.

We conclude that the Expandable Min-Knapsack Problem is as easy as the Min-

Knapsack Problem. We can use the indicated transformation to convert any Expand-

able Min-Knapsack Problem to the Min-Knapsack Problem. Therefore, any FPTAS

for the min-knapsack problem yields an FPTAS for the Expandable Min-Knapsack

Problem. [

3.3.2 Multiple Facility Types

When the demands are unsplittable, it is easy to extend the prior algorithm to be

applicable to the HSP with multiple facility types. Now we would be able to in-



crease capacity in several different sizes. We are given k facility types with capac-

ities C 1, C2,..., Ck, and we can install one or more facilities of each type on every

edge of the network. The cost ct of the facilities depends on the type f and the

edge e. Usually, the costs of the facility types exhibit economies of scale; that is, if

C 1 < C2 < ... < Ck, le/ C 1 > C0/C2 > ... > /ClCk. We assume that k is a small

number. In telecommunication applications, k could typically be 2 or 3.

Since the demands are unsplittable, if we decide to route a demand dij on the

direct link (i,j) between switches i and j, we need to install facilities of different

types on the direct link to minimize the total cost of facilities installed. Since k is

a small number, it is easy to determine the optimal installation. Let the cost of

this installation be cij. We can then formulate the problem as the following integer

program:

(M) Minimize > -c x4 + > cij -x.
iET 1<t<k i<jET

Z dij*(1-xi3 )•_ui+ >J C, 2 ViET
jET\{i} 1<1£<k

x4 E Z+, V i E T,V 1 < e <k

xij E {0, 1}, Vi < j T.

The variable xf is the number of facilities of type e installed on the radial link out

of switch i, and xij assumes the value 1 if the demand dij is routed directly. We note

that this problem is the same as U, except that facilities of more than one type can be

installed on the radial links. As for the single facility case, we apply the decentralized

routing scheme to obtain subproblems for each node of the network. Again, the

subproblems differ from U-i only with respect to the facility types available to install

capacity on the radial link.

Consider the subproblem for switch i. We can interpret the subproblem as an

expandable knapsack problem, but in this case, the knapsack's capacity can be

expanded using more than one facility type. However, this does not change the

problem. For each facility type e, we create items with size C1, 2C,... ., 2tC , with



(2 t+ 1 - 1)Ce > ZjET\{i} di - ui. The cost of these items are cý, 2cf,...,2(t)cý re-

spectively. We now need to solve a min-knapsack problem with these items as well

as the demand items. Again, the total number of items is polynomially bounded.

Therefore, using the FPTAS for the min-knapsack problem, we obtain an FPTAS for

the subproblem, and thereby a (2 + e)-approximation algorithm for the Multi-facility

Unsplittable HSP.



Chapter 4

Capacity Expansion with Single

Link Failure Protection

In the Survivable Capacity Expansion Problem (SCEP), we are given a hybrid telecom-

munication network with costs of facilities (of a given capacity) on the links, and a

single year demand forecast. We seek to identify primary routes (or "no-fault" routes)

for the demand, i.e., paths on which calls are routed under normal conditions, as well

as secondary routes that can be used to send demand whenever a link in one of the

primary paths fails. The objective of the SCEP is to identify primary and secondary

routes for all origin destination pairs, and decide how many facilities to add to each

of the links of the network so that all demand can be carried even when any link of

the network fails, rendering the capacity of the link unavailable.

This chapter is organized as follows: We develop a compact integer programming

formulation for the SCEP in Section 4.1, and show that the problem is APX-Hard.

In Section 4.2, we introduce the Bounded Network Restoration (BNR) problem that

is useful for developing approximation algorithms for the SCEP. We provide a poly-

nomial time algorithm for the BNR. We enumerate four lower bounds for the SCEP

in Section 4.3. Finally, in Section 4.4, we develop two constant factor approximation

algorithms for the SCEP. The first algorithm has a performance guarantee of (5 + E),

and the second algorithm improves this ratio to (4 + E).



4.1 Modeling the SCEP in a Hybrid Network

We make a few assumptions associated with a hybrid network: A TDM switch cannot

be an intermediate switch in routing demands, and the IP subnetwork has a large

amount of spare capacity. For the Survivable Capacity Expansion Problem, the latter

assumption implies that protection against IP link failures is guaranteed within the

IP subnetwork, i.e., whenever an IP link fails, the IP network has a large amount of

excess capacity, including an alternate path between the endpoints of the failed link.

Therefore, we can ignore failures of IP links.

Also, for the same reason, we can transport demand from any softswitch to any

other softswitch for free. So, as we did for the CEP, we can merge the entire IP

subnetwork to a single hub node. This possibly creates parallel links between TDM

switches and the hub node. Since we would like to protect against single link failures,

we are interested in scenarios in which at most one of these parallel links fails. If we

replace the parallel radial links by single links as we did for the CEP, we will not be

able to analyze these scenarios separately. Therefore we do not replace parallel links.

Figure 4-1 shows the hybrid network after this preprocessing.

Figure 4-1: A star network with parallel radial links

We also assume, without loss of generality, that each TDM switch has at least two

radial links to the hub. If there is demand between a TDM switch i and softswitches,

feasibility (single link failure protection) dictates that there be at least two radial

links incident to switch i. In the absence of any demand to softswitches, if a TDM



switch i had just one radial link, then the switch can be removed from the network.

In this case, the radial link is used to reroute traffic if a direct link out of switch i

fails. We install enough capacity on the radial link to ensure that we can reroute any

of the direct demands out of switch i. We can then remove the switch i from the

network.

We now provide a compact formulation for this problem. We introduce the fol-

lowing notation: dij is the demand between switches i and j, C is the capacity of

a facility, and cij is the cost of a facility on the link between switches i and j. The

initial capacity (in number of facilities) of the link between switches i and j is uij.

For each TDM switch i, we denote the set of radial links out of the switch i to

the hub by R(i). Let di be the total demand between the TDM switch i and any

softswitch. TDM switches cannot be intermediate switches in routing, implying that

the direct link (i,j) between TDM switches i and j is available to route only the

demand dij. Therefore, any additional capacity to protect against link failures must

be installed only on the radial links. Since any of the radial links can transport

demand to the hub, we need to know only the total demand that is carried from a

TDM switch to the hub to decide how many facilities to install on the radial links.

Therefore, we define a decision variable fh as the total amount of demand dij routed

through the hub. Let the variable fd denote the amount of demand dij sent on the

direct link (i, j). Also, let xij and ye be the number of new facilities on the direct link

(i, j) and on the radial link e. fi is the total demand that is transported on all the

radial links out of TDM switch i. We formulate the SCEP as the following integer

program:

(SCEP) Minimize ci -x + Ce ye
i<jET iET eER(i)

f + f dij, Vi < j E T (4.1a)

fd < C (uj + x), Vi < j E T (4.1b)

Sf + di f, Vi E T (4.1c)
jET



C ( (u + ye) - (ue + Ye)) A f, V e E R(i),Vi E T (4.1d)
IER(i)

c -E (ul+ye)I fi + f•, vi, jE T (4.le)
IER(i)

ye > 0, and ye integer Ve ER(i), i E T

f/, fh 0>, Vi < jeT

f2 0, Vi E T.

This formulation ensures that even if one of the links incident to any TDM switch

i fails, the network has sufficient capacity to transport all the demands either to

their destination or to the hub. The constraint (4.1d) guarantees that the available

capacity on all the radial links is enough to carry the demand transported to the hub

if one of the radial links fails. The constraint (4.1e) ensures that the network has

enough spare capacity on the radial links to transport the extra demand when the

traffic on a failed direct link is rerouted to go through the hub. It is clear that a

solution to the integer program (4.1) satisfies the survivability requirement. We note

that even when one radial link incident on each TDM switch fail at the same time,

the solution will have enough available capacity to transport all demands.

Most models for survivability in telecommunication networks in the literature

contain multiple copies of the demand routing constraints, one copy for each possible

state (in our case, the failed link or the normal, no failure state) of the network (see

[2, 3, 31, 41]). The number of variables and constraints in these models is quadratic

in the number of links in the network, and since these models are multicommodity

formulations, the size of the model is also proportional to the number of commodities.

In comparison, the model we have proposed for the SCEP is compact: it grows linearly

with the number of links in the network. For reasonably sized networks, the model

in (4.1) could be solved as such using an IP solver.

To obtain primary and secondary call routes from a solution to the integer pro-

gram (4.1), we do the following. For primary routes, we solve a feasible flow problem

using origin-destination demands and the number of facilities available on each link



of the network. We could include an objective to reduce the splitting of demands

on several paths. To identify secondary routes under each link failure, we fix the

unaffected primary routes, and solve a feasible flow problem only for the demands

that are affected by the failure. In a network with m links, we need to solve a total

of m + 1 feasible flow problems to identify primary and secondary routes.

The SCEP is a computationally hard problem. A straightforward approximation

preserving reduction from the HSP proves the following for the Survivable Capacity

Expansion problem.

Theorem 4.1. The Capacity Expansion Problem with single link failure protection

in a hybrid network is APX-Hard.

Proof. We provide an L-reduction from the Hub-and-Spoke Network Capacity Expan-

sion Problem (HSP) which we showed to be APX-Hard in Chapter 2. In particular,

we show that given an instance of the HSP, we can create an instance of the SCEP in

polynomial time so that for every feasible solution to the instance of the HSP, there is

a corresponding feasible solution to the created instance of the SCEP with the same

cost.

Let the instance of the HSP be given by a hub-and-spoke network G = (V, E)

with hub node h, cost vector c and demand vector d. We create an instance of SCEP

by adding to the network G zero cost parallel links to every radial link (i, h) in G.

The new network G' is shown in Figure 4-2. The costs of all the other links are the

same as in G. The demands between switches are the same as in the HSP.

Let the vector y be the number of facilities installed on the edges of the network

G in an arbitrary feasible solution to the HSP. To define a feasible solution for the

SCEP, we need to specify the number of facilities on every link in G as well as the

newly created radial links. We define a solution x to the SCEP as follows: For every

link (i, j) in G, including the original radial links, we set xij = yij. For every new

zero cost radial arc (i, h), we set

x• = max(ui + C -yi, max C y .C' jES\{i)



Figure 4-2: The L-Reduction for the SCEP

The cost of this solution is obviously the same as the cost of the solution y to the

HSP. When a direct link fails, the zero cost alternate route through the hub will have

enough capacity to transport the demand. And when a radial link fails, the zero cost

radial link can be used to route the flow instead, showing that x is feasible for the

SCEP.

Conversely, let x = (y, z) be a feasible solution to the SCEP, with y denoting the

number of facilities on the links in G and x the number of facilities on the zero cost

radial links. We claim that y is a feasible solution to the HSP. Since x is feasible

to the SCEP, we know that even when a zero cost radial link fails, there is enough

capacity to route all demands. Mathematically, for every switch i in the network,

us + C . yi > min(dij,C -yij).

Consequently, y is a feasible solution to the HSP and, as in the previous case, it is

easy to see that the cost of this solution is the same as the cost of x.

Since we L-Reduced the APX-Hard HSP to the SCEP, we conclude that SCEP is

APX Hard. E

This result precludes the existence of a polynomial time approximation scheme

for the SCEP.



4.2 Parallel Path Network Restoration Problem

We consider the parallel path network restoration problem (NR) defined by Magnanti

and Wang [38] (also see [53]). In this problem, two nodes are connected by a number

of parallel links (see Figure 4-3). For each link e, we are given a 'demand' de, i.e., the

minimum number of facilities that must be present between the two nodes even if link

e fails. Note that the demand is specified in number of facilities (alternatively, we

can think of the facility capacity as being 1). The objective is to decide the number

of facilities to install on the links so that the demand requirements are satisfied with

minimum total installation cost.

Figure 4-3: A two-node parallel edge network

Let ce denote the cost of link e, and let E be the set of parallel links. The problem

can be formulated as the following integer program:

(NR) Minimize ••e Ye
eEE

E Y - Ye _ de,
feE

ye > 0, and Ye integer

(4.2a)VeEE

VeE E.

The variable Ye denotes the number of facilities to be installed on link e. Magnanti

and Wang provide a complete description of the convex hull for this problem. They

also present a fast polynomial time algorithm for the problem. Bienstock and Mura-

tore [17] consider a similar problem in which all the demands are the same, with an



additional constraint restricting the total number of facilities on all the link to be at

least a pre-specified number. They present several classes of facet defining inequalities

for this problem.

We seek to solve the NR in the presence of bounds on the number of facilities that

can be installed in each of the links. This problem, which we call the bounded network

restoration (BNR) problem, generalizes the problems studied by both Wang [53] and

Bienstock and Muratore [17]. We are interested in the problem because it appears

as a subproblem in our heuristics for the SCEP. Let ne be the maximum number of

facilities that can be installed on link e. We assume that with these values of n,, the

problem is feasible. A formulation for the Bounded Network Restoration problem is

just the integer program NR along with the constraints ye • ne for every link e.

However, for the purpose of developing an algorithm for the BNR, we define an

additional variable Y, and let it to be the total number of facilities installed on all

the links. This idea is similar to the one used by Magnanti and Wang [38] for the

Network Restoration problem. We modify the integer program (4.2) to obtain the

following formulation for the BNR problem:

(BNR) Minimize E c, y,
eE

ye < Y - d V e E E (4.3a)

ye < ne, VeEE (4.3b)

> Ye = Y (4.3c)
eEE

Ye, 0, and ye integer VeEE

Y > 0, and Y integer.

In this formulation, Y is a variable. If we know the value of Y in an optimal solution,

the number of facilities on each link can be easily obtained using the following greedy

procedure. Sort the edges in ascending order of the facility costs c,. In this order, we

install min(Y - de, n,) facilities on each edge e until we have installed a total of Y

facilities. It is easy to check that this procedure produces a solution with minimum



cost when total number of facilities is Y. For a network with k parallel links, the

greedy procedure requires O(k) time.

The greedy procedure can also identify if the problem is infeasible for a particular

value of Y. In this case, we will run out of edges before we can install a total of Y

facilities. That is, ZEeE min(Y - de, ne) < Y.

Now, let v(Y) equal the optimal cost of the linear relaxation of the integer pro-

gram (4.3) as a function of the total number Y of facilities installed. A simple argu-

ment (basic linear programming theory) implies that the function v(Y) is piecewise

linear and convex. Let Y* be the value of the variable Y in an optimal solution to the

linear relaxation of the integer program (4.3). We know that the integer program (4.3)

has an optimal solution with the total number of facilities Y equal to either [Y*J or

[Y*], and therefore we can check both and choose the solution with lower cost. Also,

we note that when Y is integer, the greedy procedure gives an integer solution to

the linear relaxation, that is, the ye variables are all integer. We can use the greedy

procedure after identifying an optimal Y to find the number of facilities y, on each

link e. This polynomial time algorithm for the problem is similar to the one Magnanti

and Wang [38] present for the Network Restoration Problem without bounds. They

also present a linear time combinatorial algorithm to solve the linear programming

relaxation, which cannot be extended to the case with bounds on the links.

We now give another polynomial algorithm for the Bounded Network Restoration

Problem with better worst case running time. We observed that the function v(Y) is

piecewise linear and convex in Y. Also, since the greedy procedure gives an integer

solution to the linear relaxation of the formulation (4.3) whenever Y is integer, the

optimal value of the integer program (4.3) and its linear relaxation coincide for integer

Y. We can, therefore, devise a binary search algorithm for the BNR problem.



v(Y)

Figure 4-4: Slope used by the binary search algorithm

Figure 4-4 illustrates the function v(Y). The grey vertical lines correspond to

integer values of Y. Since we are interested only in integer solutions, we could use the

slope shown with dotted lines for the binary search algorithm. The slopes are given

by v(Y) - v(Y - 1) for Y integer. For a binary search algorithm to work, we require

that the set of Y values that we must consider to form a 'small' finite continuous

interval. We show that this is the case.

Suppose there are k parallel links with nonnegative costs cl •< c2 < ... < ck,

upper bounds ni, n2,..., nk, and demands dj, d2,..., dk. Let d* = maxl<i<k di.

Lemma 4.2. The values of Y for which the linear relaxation of the integer pro-

gram (4.3) is feasible forms a continuous interval. Moreover, the value of Y that gives

the optimal solution lies within [max(d*, (El<i<k di)/(k - 1)), min(2d*, E1<i<k ni)].

The linear relaxation is feasible for Y = min(2d*, El<i<k ni).

Proof. Given two feasible solutions (yl, y1) and (y 2, y2) to the linear relaxation of

the integer program (4.3), it is easy to see that (y y)+ (Y2, y 2) is feasible for the

relaxation. Therefore, the set of values of Y for which the linear relaxation is feasible

is an interval.



Let i be the link for which di = d*. Then the constraint Y - yi 2 d* for the link

i along with the nonnegativity condition yi 2 0 implies that Y must be at least d*.

Also, summing constraints (4.3a) for all links gives

kY- Z yŽ Z- di.
l<i<k l<i<k

Since El<i<k yi = Y, we conclude that Y > (Zl<i<k di)/(k - 1).

Summing the constraints (4.3b) for all links gives Y < El<i<k ni and in any

optimal solution, yi < d* for every link i. Also, in an optimal solution, reducing Yi

for any link i must render the solution infeasible. Therefore, for some link i, the

constraint (4.3a) must be tight, implying that

Y = di +yi <• d* + d* = 2d*.

Our assumption that the given BNR instance is feasible implies that the linear relax-

ation is feasible for Y = El<i<k ni. Since the optimal value of Y is at most 2d*, the

relaxation is feasible for some value of Y not greater than 2d*. We know that the set

of feasible Y values forms an interval, therefore, if 2d* < El<i<k ni, we conclude that

the relaxation is feasible for Y = 2d*. O

From Lemma 4.2, we observe that the length of the interval that we need to search

is bounded by a polynomial in the size of the input. We also observe that if for some

value of Y in this interval, the linear relaxation is infeasible, the feasible interval lies

to the right of Y. We already established a greedy procedure to identify the slope of

the cost function at any integer value of Y. Therefore, we can perform binary search

on the interval to obtain an optimal solution to the Bounded Network Restoration

Problem. We present the complete binary search algorithm for the Bounded Network

Restoration problem below:



BOUNDED NETWORK RESTORATION ALGORITHM()

Input: Parallel links 1, 2,..., k, facility costs for links ci, bounds ni,

and demands di.

Output: Number of facilities yi on each link that minimizes total cost.

(1) Y := max(d*, [(El<i<kdi)/(k - 1)]), and :=

min(2d*, El<i<k ni)

(2) At := -1, and A, = -1

(4) while (As < 0 or A, < 0)

(5) Y := [(Y + Y)/2]
(6) Use greedy procedure to calculate v(Y) and yi, i = 1, 2,..., k.

(7) if Y is infeasible then A1 := 1, A, := -1

(8) else A, := v(Y - 1) - v(Y),

(9) Ar := v(Y + 1) - v(Y)

(11) if A, < 0 then Y:= Y

(12) else Y:= Y

(13)

(14) return {y, i= 1,2,..., k}

Theorem 4.3. The binary search algorithm solves the Bounded Network Restoration

Problem correctly. The running time of the algorithm is O(klogd*).

Proof. In this algorithm, we start with an interval that contains the optimal value

of Y. At each stage, we calculate right side slope Ar and left side slope A, at the

current value Y given by the dotted lines in Figure 4-4. We know that if the problem

is infeasible with current value of Y, the feasible interval for Y must be to the right.

The algorithm sets the slopes accordingly. We stop when the cost is increasing on

both sides, which implies that the current solution is optimal.

At each stage of the algorithm, we use the greedy procedure to calculate the



optimal solution with the current value of Y and also evaluate optimal costs at Y - 1

and Y + 1. For a two node network with k parallel edges, this requires O(k) time.

Since we reduce the search interval for Y by half each time, the number of stages

depends logarithmically on the size of the initial interval, which is bounded by 2d*,

giving an overall running time of O(k log d*). We note that checking both left and

right side slopes at every stage (as we do in our algorithm) will improve the speed of

the algorithm in practice, but does not change its worst case complexity. O

4.3 Lower Bounds For The SCEP

We provide four different lower bounds for the SCEP. The first two lower bounds are

used to develop a (5 + e)- factor approximation algorithm for the SCEP. The other

two lower bounds are straightforward, but useful as we develop another approximation

algorithm for the SCEP with a better guarantee.

Least Cost Radial Links Lower Bound

When all the initial capacities are zero, that is, when the given network is empty,

we can establish a simple lower bound that uses only the cost of the radial links. Let

ci be the smallest facility cost of all the radial links R(i) out of switch i, and di* be

the maximum direct demand out of switch i.

Lemma 4.4. -,eT ci* [ di/C] is a lower bound to the optimal cost of the SCEP with

zero initial capacities.

Proof. Consider a feasible solution y to the SCEP with cost Z. Let dij be an arbitrary

demand. When the direct link (i, j) fails, failure protection implies that all of the

demand dij will be carried through the hub. Therefore, the total number of facilities



on all the radial links out of switch i is at least [dij/C] and so

ye _[ , Vj E T\ {i}.
eER(i)

eER(i)

Consequently,

iET eGR(i)

iET

Since this is true for any feasible solution, it is true for any optimal solution. El

Fail Safe Direct Links Lower Bound

We obtain the second lower bound by relaxing the failure protection constraint for

the direct links, giving a version of the SCEP in which the direct links are fail safe.

As we show in Section 4.4.1, when we use the Decentralized Routing Scheme on this

relaxation, the obtained subproblems are more easily amenable to approximation.

Integral Demand Lower Bound

Given a demand dij and the facility capacity C, we can divide the demand into

two parts. The integral demand

di = C L- J

and the residual demand
d• = dij - dy.

We define the integral demand SCEP as the given SCEP in which we replace

the demands by their integral components. That is, for each origin-destination pair



(i, j), the demand in the new problem is dfi. The network and all other parameters

are the same. The optimal cost of this new problem is clearly a lower bound on the

optimal cost of the SCEP. Since in this relaxation, all demands are integral multiples

of the facility capacity C, we can scale all the demands by C and assume the facility

capacity to be 1. The resulting relaxation is significantly easier to solve.

Residual Demand Lower Bound

Finally, similar to what we just did, we define the residual demand SCEP to be

the problem in which the demands are the residual demands d while all the other

parameters are as in the given SCEP. The optimal cost of the residual demand SCEP

is also a lower bound to the given SCEP.

Let y, and yR be the number of facilities installed on link i by a feasible solution

to the integral demand SCEP and the residual demand SCEP respectively. We note

that if the initial capacities of all the links in the network are zero, the solution

ye = y + ye Ve eE

is feasible to the SCEP. In particular, if we choose an optimal solution for both the

integral and residual SCEP, we obtain a feasible solution to the SCEP with cost

Z I + ZR. Therefore, if we can solve the integral and residual SCEP, we obtain

a 2-factor approximation algorithm for the SCEP. We use this idea to develop an

approximation algorithm for the SCEP in Section 4.4.2.

4.4 Decentralized Routing Algorithms for Surviv-

able Capacity Expansion

Assuming we start from an empty network (that is, the initial capacities on the edges

are all zero), we provide two constant factor approximation algorithms for the SCEP.

The main idea underlying both the algorithms is the Decentralized Routing (DR)

scheme proposed in Section 3.1. The DR scheme decomposes SCEP into subproblems,



one for each TDM switch. A heuristic for the subproblem with a guarantee of ac

translates to a 2a-approximation algorithm for the SCEP. However, when the DR

scheme is applied to the SCEP, the resulting subproblem is difficult to solve (even

approximately). We use two different approaches to obtain subproblems that can

be approximated well, each one yielding an approximation algorithm for the SCEP.

The first algorithm has a performance guarantee of (5 + e) and the second algorithm

improves this worst case performance ratio to (4 + E).

4.4.1 A (5 + c)-approximation Algorithm

The outline of the algorithm we propose is as follows: We first solve the problem

assuming that the direct links never fail. So we need to protect only against the

failure of radial links. We call this problem SCEP with Failsafe Direct links (FD). We

develop a (4+ ) approximation algorithm for the FD problem using the Decentralized

Routing Scheme. Finally, we convert a feasible solution to the FD problem into a

feasible solution to the SCEP.

In our presentation of the algorithm, we first show how to convert a feasible

solution to the FD problem to a feasible solution to the SCEP without increasing the

cost very much. We then present our approximation algorithm for the FD problem.

Observation 4.5. Let (x, y) be a feasible solution to the SCEP with failsafe direct

links. Let the number of spare facilities on the radial links out of switch i, eER(i) Ye -

[fi/C1, be s(i). Then, for each switch i, if we add (maxjEr\{i} xij - s(i)) facilities

to the cheapest radial link out of i, the resulting solution is feasible for the SCEP.

Proof. We need to show that when any direct link (i, j) fails, the network has enough

additional capacity on the route i -+ hub - j. The available capacity (under the

failure of the direct link (i, j)) on the radial link out of switch i is

s(i) +( max Xiy - s(i)) =max xij > ij
(i)Therefore, when ( } fails, w e an route all the demand on the direct

Therefore, when the link (i, j) fails, we can route all the demand on the direct



link through the hub. Since this is true for any direct link, the resulting solution is

feasible for the SCEP. O

We can use this result to convert any approximation algorithm for the FD to

an approximation algorithm for the general SCEP. We show that the performance

guarantee becomes slightly worse.

Proposition 4.6. An a-approximation algorithm for the FD problem implies the

existence of an (a + 1)-approximation for the SCEP for any network with zero initial

capacities.

Proof. Consider the following algorithm for the SCEP: We first assume that the

direct links are failsafe, and obtain a feasible solution with cost Za by using the

a-approximation algorithm for the SCEP with failsafe direct links. By Observa-

tion 4.5, we obtain a feasible solution to the SCEP with cost Z by adding the requisite

number of facilities to the cheapest radial links out of each switch. Let c! be the cost

per facility of the cheapest radial link out of switch i. Let Z* and ZFD be the optimal

cost of the SCEP and the SCEP with failsafe direct links. Clearly, Z* > ZFD. Also,

if di' be the maximum direct demand out of switch i, we note that the number of

facilities installed by a solution to the SCEP with failsafe direct links on a direct link

out of switch i is at most [df/C]. Then,

Z = Za + C cC ( max ij - s(i))
iET jET\{il

SZa + c. ([d•/C] - s(i))
iET

" aZFD + c '[dC1
iET

_ aZ* + Z* (4.4)

= (a + 1) -Z*.

The inequality (4.4) is due to Lemma 4.4. Therefore the algorithm we outlined is

an (a + 1)-factor approximation algorithm for the SCEP. O



We now address the FD and develop an approximation algorithm for the problem.

In the integer program (4.1), if we remove constraints (4.1e) that ensure that the

network have enough capacity to route demands in case of the failure of direct links,

we obtain the following formulation for the FD problem:

Minimize E Cij -Xij
i<jGT

f+

iET eER(i)

= dj,

SC - xij,

jET\{i}

S-R(i) Ye fi,
fER(i)

xij E Z+,

Ye C Z+ ,

fj, f. > 0o,

Vi < jET

Vi <j E T

Vi ET

V e E R(i), Vi E T

VjE E \ {i}
V e E R(i)

Vi, jE T

fi > 0.

We use the Decentralized routing scheme to decompose the problem into a sub-

problem for each switch. In the subproblem for switch i, we would like to route the

demands out of switch i either on the direct link, or send them to the hub node. The

facility cost of the radial links are unchanged, but the cost of direct links are reduced

by half. The subproblem for switch i is the following integer program:

(FD-i) Minimize S Xi -+ Ce Ye
jEr\{i) eER(i)

= dij,

SC - xij ,

<if

f + f+d

f + \{i di
jET\fi)

(FD)

(4.5a)

(4.5b)

(4.5c)

(4.5d)

Vj ET\{i}

Vj E T \{i}
(4.6a)

(4.6b)

(4.6c)



C - 1 y y-•y) fi, VeE R(i) (4.6d)
fER(i)

xij E Z+, Vj E T\ {i}

Ye E Z+, V e E R(i)

f, f _ , Vi, E T

We now make two observations that enable us to design a (2 + ) -approximation

algorithm for the subproblem FD-i.

Observation 4.7. There is an optimal solution to the integer program FD-i in which

the decision variable fi is an integral multiple of the facility capacity C.

Proof. Given an optimal solution to the integer program, we can replace fi by C

[fi/C1 leaving all other variables unchanged. The new solution has the same cost.

Since we increase the value of the variable fi, the only constraint that could be violated

is (4.6d). However, since the lefthand side of this constraint is an integral multiple of

C, the constraint will be feasible for the new solution. The new solution satisfies the

statement of the observation. O

Let the cost of the Network Restoration problem on a parallel path network con-

sisting of the radial links R(i) with the demands of every link is d be cNR(d).

Observation 4.8. In an optimal solution to the integer program FD-i, the total cost,

ZeER(i) ce * Ye, of the facilities on the radial links R(i) equals cNR ( [fi/C]).

Proof. Given an optimal solution to the integer program FD-i, we first change the

variable fi to [fl/C1. The proof of Observation 4.7 implies that the new solution is

optimal too. Now, if we fix all the variables except the ye variables to this solution,

the integer program becomes a network restoration problem with demand [fi/C1 on

all the radial links. Since we started with an optimal solution to FD-i, the ye values

in this solution must be optimal to the Network Restoration problem. We conclude

that the total cost of all the facilities on the radial links in an optimal solution to



the FD-i must be equal to the optimal cost of the Network Restoration problem,
cNR([fi/CJ). O

Using Observations 4.7 and 4.8, we can write an equivalent formulation for FD-i

as follows: In the integer program (4.6), we replace the variable fi by C -y, where y

is an integer. We remove the constraints (4.6d), and modify the objective function so

that the total cost of the facilities on the radial links R(i) out of switch i is CNR(y).

The new formulation is:

Minimize C Xij + cNR(y)

fd + f = dij, Vj ET \ {i} (4.7a)

fd < C. -x, Vj ET \ {i} (4.7b)

Z f + di C-y (4.7c)

xzij E Z+, Vj ET \ {i}

yE Z+

f, f 0, Vi, j T.

The cost function in (4.7) is not linear since cNR(y) isn't a linear function of y. We

now approximate the cost function cNR(y) by a linear function. We establish linear

lower and upper bounds on cNR(y).

Lemma 4.9. Let cI and c2 be the least and the second least cost among links in a

(unbounded) Network Restoration problem with the same demand d for all the links.

Then c2d is a lower bound on the optimal cost CNR(d) of this Network Restoration

problem, and (c' + c2)d is an upper bound on the optimal cost.

Proof. Let the links {1, 2,..., k} be ordered in ascending order of facility cost ci , 1 <

i < k. Consider an arbitrary feasible solution y to the Network Restoration problem.



We must have

Yi _> d,
2<i<k

implying that

cNR(d) = 6 cy
1<i<k

E C yi
2<i<k

> c2 .>_C2 " I Yi
2<i<k

> c2d.

Therefore, c2d is a lower bound to the optimal cost cNR(d).

We note that installing d facilities each on links 1 and 2 is feasible for the Network

Restoration problem, implying that (c' + c2)d is an upper bound on cNR(d). O

Figure 4-5 shows the optimal cost cNR(d) of the Network Restoration problem

along with the lower and upper bounds we just established as a function of the demand

d. An additional lower bound to the NR problem is the optimal cost cNR(d) of its

linear programming relaxation. When the yi variables are allowed to take fractional

values, it is possible to show (using results in Magnanti and Wang [38] and Wang [53])

that the optimal cost of the NR problem is a linear function of the demand d. Using

the same argument provided in Lemma 4.9, we can see that cNR(d) > c2d. Figure 4-5

reflects this observation. We also note that the optimal cost cNR(d) is neither convex

nor concave in the demand d. Since the variables yi are integer, we need be interested

only in integer values of d. So we show the values of cNR(d) only for integer d. The

equally spaced vertical lines in the figure correspond to integer values of d.

We can therefore linearize the objective function in the integer program (4.6) to

obtain the following approximate formulation:



(C1 ± c2)d

/C R(d)

c 2 d,

Figure 4-5: Optimal cost of the network restoration problems with upper and lower
bounds
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Minimize Xij + (ci + c) -y
jET\fi)

f + f = d, Vj ET \ {i} (4.8a)

fid <C . j, Vj ET \ {i} (4.8b)

~ f +disC .y (4.8c)
jET\{i}

xij E Z+, Vj ET \ {i}

y E Z

fi,f> 0, Vi, j T.

This is the Expandable Min-Knapsack Problem for which we developed a PTAS

in Section 2.5.2 with a running time of O(n3 /E). Given a feasible solution to Prob-

lem (4.8), we can obtain a feasible solution to Problem (4.7) by solving a Network

Restoration Problem on the radial links out of switch i with demand y. We set the

number of facilities on the radial links to be equal to the solution to the Network

Restoration problem. As we argued in the proof of Observation 4.8, this solution is

feasible for the FD-i. We present the complete algorithm below:

LINEAR COST APPROXIMATION ALGORITHM()

Input: Direct links (i,j), radial links R(i), facility costs cij, facility
capacity C, direct demands d2j, and hub demand di.
Output: Number of facilities xij on direct links and ye on radial links.
(1) Formulate an Expandable Knapsack Problem with initial knap-

sack size 0 and a knapsack expansion cost ci + ci
(2) Find an !-approximate solution (x, y) to the EKP
(3) Solve a Network Restoration problem on the radial links with

demand y on all links. Let 9 be the optimal solution obtained
(4) return {x,~}

Lemma 4.10. The Linear Cost Approximation algorithm is a (2 + e) -factor approx-

imation algorithm for the subproblem FD-i.
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Proof. Let (x*, y*) be an optimal solution to FD-i with cost Z*. We know that for

some y with (x*, y) is feasible for (4.8),

Z* cij
j·T\{i2jE r\{i}

-xij + c""(y).

Let ZLC be the optimal cost of the integer program (4.8). Then,

Z* 2 L +ij ()
jET\{i}

E Cij . * + C2> - . + cU •
jET\{i}

1 cij
> -( i- --.' + (c

-2 2 3
jET\{i}

> !ZLC
-2

(Lemma 4.8)

(since ci < c2)

( (x*, ) is feasible to the IP (4.8)).

Also, let Z be the cost of the solution (x, ^) returned by the Linear Cost Approxima-

tion Algorithm. And let (x, y) be the solution to IP (4.8) returned by the PTAS for

the Expandable Knapsack Problem during the run of the LCA. We have

+ C: , Ye
eER(i)

= • x ij + CNR (y )

j•ET\{i)

< L- i. + (c' + c
jET\{i)

< 1 +) Z+

Putting both together, we have

Z < (1 + )ZLC < (1
2

(Lemma 4.8)

((x, y) is 2-approximate).

+ ) 2 Z* = (2 + E)Z*.2
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Since we used the Decentralized Routing scheme on the problem FD to obtain

the subproblem FD-i, a (2 + e)-approximation algorithm for the FD-i implies a

(4 + c)-approximation algorithm for the FD (by applying Lemma 3.1). We can

obtain a feasible solution (X, Y) to the FD as follows: We set the number of facilities

on all the radial links out of switch i to be equal to the number of facilities in the

feasible solution to the subproblem FD-i produced by the Linear Cost Approximation

algorithm. For the facilities on direct links, if x!j and x4 are the number of facilities

installed on the direct link (i, j) by the Linear Cost Approximation algorithm on the

FD-i and FD-j subproblems, we set .ij = max(xj, j).

Finally, we can convert the feasible solution to the FD to a feasible solution to the

SCEP by using Lemma 4.5. We present the complete algorithm for the SCEP, which

we call Failsafe Direct Links Approximation Algorithm.

FAILSAFE DIRECT LINKS APPROXIMATION ALGORITHM()
Input: Direct links (i, j), radial links R(i) for all switches i, facility
costs for direct and radial links cij, facility capacity C, direct demands
dij, and hub demand di.
Output: Number of facilities xij on direct links and y, on radial links
that minimizes total cost.
(1) Ignore direct link failure conditions to formulate SCEP with Fail-

safe Direct Links (FD)
(2) Decompose the problem obtained. Create subproblem FD-i for

each switch i
(3) Solve each subproblem FD-i using the Linear Cost Approxima-

tion Algorithm
(4) Put solutions of subproblems together to obtain feasible solution

(x, y) to FD
(5) In this solution, let fh be the amount of demand dij routed

through the hub
(6) Let s(i) := ZeR(i) Cye - (di + fh)

jE•T\{i}
(7) foreach switch i
(8) foreach e in R(i)
(9) Let := ye + max yi - s(i)

3ET\{i)
(10) return (x,y)

Theorem 4.11. The Failsafe Direct Links Approximation Algorithm is an approxi-
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mation algorithm for the SCEP with a performance guarantee of (5 + e).

Proof. This theorem follows directly from Lemma 4.10, Lemma 3.1, and Lemma 4.5.

4.4.2 A (4 + E)-approximation Algorithm

In this Section, we describe another approximation algorithm for the SCEP with

zero initial capacities. This algorithm also uses the Decentralized Routing Scheme

and has a better worst case performance guarantee of 4 + C. We split each demand

into two parts: an integral component which is a multiple of the facility capacity C,

and a residual component that is less than the facility capacity C. We then solve

two SCEP instances, one with all the integral demands and another with just the

residual demands. We develop approximation algorithms based on the DR scheme

for both cases, and show that putting these solutions together yields an approximation

algorithm to the original SCEP.

Small Direct Demands

We assume that all the direct demands, i.e., demands between two TDM switches,

are less than the facility capacity C. Therefore, we will never install more than one

facility on a direct link. The total demand di between switch i and all softswitches

can be arbitrary. We formulate this problem as the following integer program:

(R) Minimize c cij xij + c c•- •
i<jET iET eER(i)

dj . (1 - xij) + di < fi, Vi E T (4.9a)
jET

C ( (Uf, +yf) - (Ue + Ye)) fi, Vee R(i), Vi ET (4.9b)
fER(i)

S(u + Ye) > 1, Vi ET (4.9c)
eER(i)
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f2 O, Vi E T

ij E {0,1, Vi < j E T

Ye E Z+ ,  V e E R(i), Vi E T.

We highlight the difference between the formulation (4.1) for the general SCEP

and the formulation (4.9) when the demands are small. First, the variable xij is

binary since we will never install more than one facility on a direct link between two

TDM switches. Second, we do not explicitly consider situations when a direct link

fails. Since the demands are less than C, the spare capacity required on the radial

links to handle traffic rerouted from a failed direct link is no more than C. It is easy

to see that the constraint (4.9b) ensures that the spare capacity on radial links out

of switch i is at least C if fi > 0. If fi = 0, all demands are routed on the direct

links, and constraint (4.9c) ensures that there is at least one facility on the radial

links incident to the TDM switch i.

We apply the Decentralized Routing scheme for this problem as follows: we dupli-

cate each demand dij between two TDM switches i and j into directed demands Dij

and Dji each with the same magnitude as dij. For each TDM switch i, we consider

the problem of routing all demands out of switch i either on the direct link to the

destination, or to the hub. This subproblem for switch i is the following:

(R-i) Minimize c j + ci +e
jET\{i} eER(i)

E dij - (1 - zxij) + di _ fi (4.10a)
jET\{i)

C . (uf + yf) - (Ue + Ye)) f, Ve E R(i) (4.10b)
feR(i)

S(Ue + Ye) > 1 (4.10c)
eER(i)
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xij E {0, 1}, Vj E T\ {i}

Ye E Z+ , Ve e R(i)

fi2 0.

For every switch i, let {fij, 9e I J E T \ {i},e e R(i)} be a feasible solution to

SPa - i. We consider the solution (x, y) with Xij = max(ij,/, si) for every pair of

TDM switches i and j . Lemma 3.1 shows that the solution (x, 9) is feasible for the

integer program R and has cost at most twice that of (±, y).

We can use an a-approximation algorithm for the subproblem R-i to obtain a

2a -approximation algorithm for the SCEP. We now provide a Polynomial Time Ap-

proximation Scheme for the subproblem R-i. This directly implies a (2+e) -approximation

algorithm for the SCEP with small demands.

We observe that in the subproblem R-i, the left hand side of constraint (4.10b) is

an integral multiple of C. Therefore, if we define a new integer variable zi and replace

fi by Czi in constraints (4.10b) and (4.10c), the optimal cost of the subproblem does

not change. We solve this modified subproblem instead of R-i.

Since the demands are all less than C, the set of values of the variable zi we need

to consider are Fdi/C], F[d/C1 + 1,..., Fdi/C] + n. We provide a solution procedure

for the subproblem when the value of zi is known, and solve the subproblem for each

of the n + 1 possible values of zi.

We observe that when zi is fixed, the subproblem decomposes into two problems.

After rearranging the variables and parameters in the constraints, we write the first

problem as the following min-knapsack problem:

(X) Minimize xi
jEr\{i}

di -xij di) + di - Czi (4.11a)
jET\{i} jET\{i}

xij E {0, 1}, Vj ET \ {i}.

While the min-knapsack problem is known to be NP-Hard, we can use a polynomial
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time approximation scheme for the problem (see Gens and Levner [24]) to obtain an

6-approximate solution for any positive e. We noted in Section 2.5.1 that this can

be done in O(n2/E) time.

The second subproblem is the following mathematical program:

(Y) Minimize c c ye
eER(i)

Yf - Ye zi U-( ) - Ue Vee R(i) (4.12a)
fER(i) f R(i)

E (ue + Ye) > 1 (4.12b)
eER(i)

e E Z+, V e ER(i).

Constraint (4.12a) is a rearranged version of constraint (4.10b). We can ignore

constraint (4.12b) when we solve this problem, and if the resulting optimal solu-

tion y violates this constraint (this will happen only if all the Ue's and all ye's

are zero), we set Ye = 1 for the edge e with the cheapest cost ce. We let de =

max (0, zi - (-fER(i) Uf) + ue). Solving the problem (Y) is equivalent to solving a

Network Restoration Problem with demands de on the edges. Using the algorithm

presented by Magnanti and Wang [38], we can solve this problem in O(n) time.

Putting everything together, the complexity of our procedure for obtaining an

E-approximate optimal solution to the subproblem R-i is O(n3 /6). By using this

procedure in the Decentralized Routing scheme, we obtain a (2 + E)-approximation

algorithm for the SCEP when the direct demands are all less than the facility capacity

C.

Integral Direct Demands

We now study the Survivable Capacity Expansion Problem in which every demand

dij between two TDM switches i and j is an integral multiple of the facility capacity

C. We do not restrict the demands between a TDM switch and a softswitch to be

integral multiples of C. Without loss of generality, we assume that the initial capacity
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Uij on the links between two TDM switches i and j satisfy the constraint dij > Cuij.

We show that in this case, the demands can be scaled down in such a way that the

facility capacity can be assumed to be 1. We first make the following observation:

Observation 4.12. The SCEP with integral direct demands has an optimal solution

in which the amount of demand dij between every pair of TDM switches i and j routed

on the direct link (i, j) is an integral multiple of C.

Proof. In any feasible solution, the total capacity (initial + added) is an integral

multiple of C. If in the given optimal solution, for any demand (i, j), the amount

of demand dij routed directly is not a multiple of C, we can increase this amount to

next multiple of C without increasing the overall cost. O

Consider a solution to the SCEP that satisfies the property stated in Observa-

tion 4.12. Since all the direct demands are integral multiples of C, in this solution

the amount of direct demand dij routed through the hub is also an integral multiple

of C. Therefore, for every TDM switch i, we can round the total demand di between

the switch i and all the softswitches up to [di/C]C without increasing the optimal

cost.

Proposition 4.13. In the SCEP with integral direct demands, for every TDM switch

i, the total demand di between switch i and all the softswitches can be increased to

the next integral multiple of C without increasing the optimal cost.

In this problem, all the demands are integral multiples of C, so we can scale them

down by the factor C and reduce the facility capacity to 1. Let dij and di be the
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scaled demands. We can formulate the SCEP as the following integer program:

(I) Minimize Cii .- j + E Ce Ye
iET eER(i)

uji + xz + fh = dA,

Z f + di) > z,
JET\{i}

+ yf) - (Ue + Ye) Ž Zi,

Vi <j E T (4.13a)

Vi E T (4.13b)

V e E R(i),Vi E T (4.13c)

E (uf + yf)
f ER(i)

> Zi + uij + xij, Vi,j E T (4.13d)

Ye E Z+,

xj E Z+, fh > 0,
zi E Z + ,

V e E R(i),Vi E T

Vi <j E T

Vi e T.

We can use the Decentralized Routing scheme on formulation (4.13) to obtain the

following subproblem for TDM switch i:

E i xij + Ce* Ye
jET\{i} eER(i)

ij + xij+ f h = dij,

jET\{i}

Vj ET \ {i}

E (u + Yf)
fER(i)

S(uf + yf)
fER(i)

- (Ue + ye) _ zni,

> zi + uij + xij,

E Z + ,

zij E Z + , fh 0,

zi E Z+ .

V e E R(i) (4.14c)

Vj ET \ {i}

V e E R(i)

Vj E T \ {i}

(4.14d)

We now formulate the subproblem (4.14) as a Bounded Network Restoration prob-
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lem. It is possible to eliminate the variables fi and zi in the integer program (4.13)

to obtain a formulation that can be interpreted as a BNR problem. However, we

take a more intuitive approach. We observe that the objective of the subproblem

is to route all the demands on one or more of the links incident to switch i. For

the purpose of routing demands, we do not differentiate between a radial link or a

direct link even though radial links can carry any demand, while direct links can only

carry the demand between its endpoints. We address this difference by specifying

an upper bound, equal to the demand dij, on the number of facilities that can be

installed on any direct link (i,j). Let Di = di + •ETr\{i) dij. Also let Ue be the

sum of the initial capacities on all the links out of switch i except the link e. That

is, Ue = ZfER(i) Uf + •jjE'\{i} Uij - Ue. The following is a BNR formulation for the

SCEP:

(BNR-i) Minimize - x ij + ± Ce 'Ye
jECT\{i} eCR(i)

SYf+ Xij- Ye > Di - U, V e R(i) (4.15a)
fER(i) jET\{i}

Yf + ~ ik - i Di - Uij, VjET \ {i} (4.15b)
fER(i) k•T\{i}

0 < Xij _ dij -uij,xij E Z +  v E 7{i}

Ye > 0, Ye E Z +  V e E R(i).

Proposition 4.14. The formulation (4.15) solves the subproblem (4.14).

Proof. It is easy to verify that the constraints (4.15a) and (4.15b) are obtained from

constraints (4.14a), (4.14b), (4.14c), and (4.14d) by eliminating the variables fh and

zi. The constraint fh 0 implies that xij dij - uij. We include this in the new

formulation. E]

We can solve the problem (4.15) using the binary search algorithm presented in

Section 4.2. Let {?ij,i&e 7I J \ {i},e E R(i)} be a solution to the integer program

I-i produced by the binary search algorithm. The Decentralized Routing Algorithm
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returns the solution (x, ^) with xij = max(yij, iji) for every pair of TDM switches

i and j. We show that this solution is feasible to the SCEP with at most twice the

optimal cost.

Theorem 4.15. The Decentralized Routing Algorithm is a 2-approximation algo-

rithm for the SCEP with integral direct demands.

Proof. This follows directly from Lemma 3.1 since we have developed a polynomial

time algorithm for the subproblem I-i. O

SCEP With Zero Initial Capacities

For every (i, j), let dij = qjjC+rij with qij _ 0 and rij < C. Let P(d),P(q), and P(r)

refer to the Survivable Capacity Expansion Problems on the graph G with demands

dij, qijC, and rij, and let Zd, Zq, and Zr denote the optimal cost of these problems.

Clearly, Zd 2 Zq and Zd 2 Zr. Let (xe, yq) and (Xr, yr) be feasible solutions to P(q),

and P(r). Let (xd, yd) be such that Ax = Ay + x4 for every pair of TDM switches

i and j, and yd = ye + ye for every radial link e. It is easy to see that (xd, yd) is a

feasible solution to P(d).

This suggests the following heuristic for the SCEP on a graph G with zero initial

capacity on all links. Split each demand into an integral multiple of C and a residual.

Using the approximation algorithms presented in Sections 4.4.2 and 4.4.2, solve two

subproblems, one with all demands as integral multiple of C, and another in which

every demand is smaller than C. Let (x q, yq) and (Xr, yr) be the solutions to the two

subproblems returned by the approximation algorithms. The solution to the SCEP

returned by the algorithm is (xd = x q + Xr, yd = yq + yr).

The cost of the solution (xd, yd) is

cost(xd, yd) = cost(xq, yq) + cost(xr, Yr)

<2. Z q + (2 + '). Zr
2

_(2+ )·(Z d + Z d)

= (4 + E) . Z d
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implying that the procedure we just outlined is a (4+) -approximation for the SCEP

on a graph with no initial capacity.

Note that the algorithms we designed for both special cases (small demands and

integral demands) are applicable even for problems with initial capacities on the links.

However, in the presence of initial capacities, we cannot combine the solution of these

two problems to obtain a feasible solution to the SCEP. Therefore, our approximation

algorithm would not be applicable to SCEP with initial capacities on the links.
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Chapter 5

Network Planning With Capacity

Sharing

Current telecommunication networks measure demand data independently for each

origin-destination pair. Consequently, when providers plan the network, they might

overestimate the required capacity. This possibility becomes especially prevalent if

the network is equipped with advanced routing technologies like Dynamic Routing

that decides call routes as the call arrives based on the conditions of the network. We

consider the Capacity Sharing Problem (CSP) that allows a planner to use temporal

demand information (for example, which demand peaks occur simultaneously) in

designing the network. We develop a general model to capture demand information,

and present theoretical results for the CSP. We also propose a cutting plane based

heuristic for the CSP.

5.1 The Capacity Sharing Problem

Consider a network G = (V, E), with a set V of nodes and a set E of edges. Consistent

with telecommunication applications, we assume that the network has undirected

edges. Capacity installed on an edge could be used to send flow in both directions as

long as the total flow on the edge in both directions is within the installed capacity

on the edge. We also assume, for the sake of simplicity, that capacity can be installed
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only in multiples of a single facility type of size C, and the cost per facility on edge

e is ce. The set of all origin destination pairs (or commodities) is K, and dk is the

demand of commodity k. Under these assumptions, we can formulate the Capacity

Expansion Problem (CEP) as the following mathematical program:

(CEP) Minimize c, ye
eEE

dk if i = o(k)

Z f _- Z fk= -dk if i = 6(k) V i E V,Vk E K (5.1a)
(i,j)EA (j,i)EA 0 otherwise.

Z(f + f) < Ue + C y, Ve = (i,j) E E (5.1b)
kEK

Ye E Z+, Ve EE

f , > 0, Ve = (i,j) E E, Vk E K.

In this integer program, A is the set of all arcs. That is, A contains two directed

arcs for every edge in E. K is the set of all origin destination pairs with demand, and

the demand for O-D pair k with origin o(k) and destination 6(k) is dk. The parameter

Ue is the current available capacity on edge e. The decision variable Ye is the number

of facilities to be installed on the edge e.

The Capacity Sharing Problem (CSP) seeks to plan the network for a set of

demands U that occur at different points in time. If we are to plan based on a

single demand vector, we must use the peak demand for each origin-destination pair.

Planning for more than one demand allows for more economic allocation of capacity

since we might be able to exploit negative correlations between demands. In this

problem, we are not concerned with the actual routing of the demand. We assume

a network processor will use capacity in the network to dynamically find a feasible

routing. This assumption is consistent with the 'Dynamic Routing' technology now

prevalent among telecommunication companies.

Therefore, in the Capacity Sharing Problem, the objective is to identify a least

cost capacity expansion plan so that all demands in a given set U have a feasible

114



routing. Since the set U is intended to represent the demand (of all origin destination

pairs) at all points in time, we refer to the set U as the demand variation set. We

consider several models for the demand variation set U, and propose a general realistic

model. To solve this problem, we present a necessary and sufficient condition for a set

of edge capacities to have a feasible routing for every demand in a given variation set

U. We then use this condition to develop a computational procedure using a cutting

plane approach for heuristically solving the Capacity Sharing Problem.

The so called Network Loading Problem is a special case of the Capacity Expansion

Problem when the initial capacity ue of all the edges in the network is zero. If there is

a fixed cost for adding capacity, the CEP becomes the Capacitated Network Design

problem. We collectively refer to all three problems as Network Planning problems.

The results we establish for the capacity expansion problem are valid for all Network

Planning problems and our cutting plane heuristic can be adapted for a capacity

sharing version of the network design problem. Whether the procedure works well

for network design problems must be ascertained through computational experiments

that we will not undertake in this thesis.

The capacity sharing problem is closely related to the Robust Capacity Expansion

problem under demand uncertainty. In the latter problem, we attempt to solve a

Capacity Expansion Problem with a given, but uncertain, nominal demand. The

set of possible values this demand can assume is given as an uncertainty set. The

objective is to find a minimum cost capacity expansion plan that admits a feasible

routing for all the demands in the uncertainty set. Mathematically, both the Capacity

Sharing problem and the Robust Capacity Expansion problem are the same. But,

as we discuss in Section 5.2, the demand variations (or uncertainty sets) that make

practical sense differ for the two problems.

Finally, we also make note of the similarity between the Capacity Sharing problem

and the Network Restoration Problem (NRP). In the NRP, the objective is to add

spare capacity in the network to protect against single link failures. In a variant of

the NRP called line restoration, when a link fails, the flow on the link is rerouted

using spare capacity on a path from the tail to the head of the failed link. That is, the
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failure of a link creates a 'demand' whose origin and destination are the tail and head

of the link respectively. In this instance, since we are protecting against single link

failure, we are assuming that no two demands are positive at the same time. In this

respect, the NRP is a special case of the Capacity Sharing problem. However, when

viewed as a Capacity Sharing Problem, the NRP has a crucial additional requirement:

the demand due to the failure of a link (i, j) cannot be routed on the link (i, j). In

spite of this difference, we believe that some of the ideas that are useful for addressing

one of these problems, would be useful for the other. In fact, the heuristic we propose

for the Capacity Sharing Problem is similar to the heuristic of Sakauchi, Nishimura,

and Hasegawa [46] for the NRP.

5.2 Modeling Time Variations of Demand

In a telecommunication network the call demand between origin destination pairs

varies with time. Let d(t) be the vector of all origin-destination pair demands at

observation time t, and let T be the set of all observation times. If we want to plan

the network so that no demand is lost, we would then have to ensure that the network

has enough capacity so that there is a feasible call routing for the demand d(t) for all

observation times t in T. The input for the network planning problem must include

the set of all demands for which we would like to plan. One possibility is to use

a list of viable demands, which we call 'discrete demand variation'. In situations

when it is not practical to use a list of all viable demand vectors, we seek a compact

representation that is also flexible enough to allow us to capture all the demands with

reasonable accuracy.

We list a few possible models for demand variation.

1. Discrete Demand Variation: We are given a set with many different demand

vectors. Each vector in the set could correspond to the peak demand for some (pos-

sibly more than one) origin destination pair.
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2. Cardinality Restricted Demand Variation: Every commodity (origin - des-

tination pair) k has a mean demand dk > 0 and a possible excess hk Ž 0 beyond the

mean. At any time at most F commodities could have a demand in excess of their

mean. That is, the set of all viable demands is given by

UC {d e RK : d kdk l/hkl • r7 d d+h}.
kEK

Here, K is the set of commodities k with hk > 0.

3. Budget Restricted Demand Variation: As in the cardinality restricted case,

every commodity has a mean as well as a possible excess. However, the excess

demands must satisfy a constraint limiting a weighted sum of the excesses. Let

vk, k E K and w be nonnegative integers, then the budget variation set UB is given

by

UB = d e RK: Uk(d - dk) <w, d< d < d+ h.
keK

Variations 2 and 3 are popular models for demand uncertainty in the robust

optimization literature (see [14] and [7]). While modeling uncertainty, these models

usually allow the uncertain parameter (in this case, the demand) to vary both above

and below the mean. However, for a network planning problem, we can ignore the

variation of demand below the mean. These demands are dominated by the mean

demand and are therefore irrelevant for planning the network.

While the Cardinality Restricted Demand Variation is a good model for random

uncorrelated demand, it is not realistic for modeling the variation of demand in a

telecommunication network. This model treats all commodities as being independent

of each other. But when we model time variation of demands, we expect a correlation

between the demands of two commodities whose origins as well as destinations are in

the same geographical area. The Budget Restricted Demand Variation suffers from

the same drawback, but we can slightly improve the model by imposing a budget
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constraint for each source node in the network.

UB = dE RK: R Kk (dA-dk) •WiVi EV d<d< d+h}
kEK:o(k)=i

The following model explicitly captures the correlation between demands.

4. Subset Demand Variation: Each commodity k has a mean demand dk and

a peak demand dk + hk. We are given a collection of subsets K 1, K 2 ,..., Kt of the

commodity set K. All commodities in a single subset peak at the same time, and all

other commodities remain at or below their mean at this time. Therefore, the subset

demand variation set Us consists of t demands, and the demand d' for the subset Ki

is given by

dk =k if k e Ki
dk otherwise.

We now seek a general, more realistic, and practical model that includes these

three as special cases. We start with the following two straightforward observations.

Observation 5.1. If a solution {ye : e E E} to a network planning problem is feasible

for a demand vector d1, then it is feasible for all demands in the K-dimensional box

{0 < dk d,_ Vk E K}.

Proof. The observation follows from the fact that if {ye : e E E} is feasible for d1 ,

then it is feasible for all demands d < d'. O

Observation 5.2. If a solution {ye : e E E} to a network planning problem is feasible

for two demand vectors d' and d2 , then it is feasible for all demands in the convex

combination of d1 and d2.

Proof. Let {(fl)k : (i,j) E A} and {(f 2 )k : (i,j) E A} be the flow variables that are

feasible for the demands d' and d2 respectively and for any 0 < A < 1 consider the

demand vector dA = Ad1 + (1 - A)d2. Define fA as follows:

(fA) = A(fl) + (1 - A)(f 2 )k, V(i,j) E A, Vk E K.
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It is easy to verify that fA satisfies flow conservation with the demand dA. Also, for

any edge e = (i, j),

E (f ) + ( =f)3 > + (A(f 1) + (- A)(f) + f 1 A)(f2),)
kEK kEK

= A. ((f) + (f 1)) + (1 - A) ((f2)i + (2)
kEK kEK

• Aye + (1 - A)ye (5.2)

Ye-

The inequality (5.2) follows from the fact that the flows f' and f 2 are feasible

for the solution {Y: e E}. Since this is true for any A in the interval (0, 1), the

observation follows. ]

Given a discrete set U, let conv(U) be its convex hull. We have the following

consequence of Observation 5.2.

Corollary 5.3. The network planning problem with capacity sharing with a discrete

demand variation set U is equivalent to the problem with the demand set conv(U).

Corollary 5.3 implies that we can replace any given demand variation set by the

convex hull of all the points in the set. This leads us to the following more general

model of demand variation, that includes as subcases all the three models outlined

above.

5. Polyhedral Demand Variation: The set of all demands to be considered

is given by a polyhedron. We make two assumptions about the polyhedron, both

without loss of generality in our problem context.

1. Whenever a demand vector d' is in the variation set, all the demands d < d'

are also in the set. In particular, the zero demand vector, {dk = 0, Vk E K}, is

always in the variation set. Observation 5.1 allows us to make this modification

to the demand variation set if required without changing the problem.
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2. The given polyhedron is bounded. If not, the network planning problem will be

infeasible.

For some positive integer t, a IKJ x t matrix V, and a k-dimensional vector w, the

demand variation polyhedron Up is represented by

Up = {dE RIK : Vd < w}.

We can assume that the coefficient matrix V is nonnegative. This assumption

restricts the set of all polyhedra that we consider for the following reason: we are

confined to the space R iJ of the commodities and we allow only less than or equal to

constraints. It is easy to verify that we can represent all polyhedra that satisfy the

two assumptions in this form.

In addition to being a very general model to capture time variation of demand,

the polyhedral model is also practical. A telecommunication company could use

the demand vectors from a limited number of measurements (possibly only during

expected busy hours on some of the busiest days of the year). We could then use

the convex hull of these demand vectors as our variation set. We note that when the

number of such measurements is small, we could use all these demand vectors directly

as a discrete demand variation. However, a polyhedral model allows a planner to

impose additional constraints on the viable demands. For example, the planner could

limit the total demand out of a switch, or the total demand within a region.

Hereafter, we assume that the demand variability is given as a polyhedron. The

results we establish, and the heuristic we propose are also applicable when the demand

variability is given as a discrete set.

5.3 Capacity Sharing: Modeling and Complexity

5.3.1 A Condition For Feasibility

We present a necessary and sufficient condition for a vector of edge capacities to have a

feasible flow for every demand in a given variation set. This characterization is useful
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because the condition could be used as constraints in a mathematical programming

model for the Capacity Sharing Problem.

We use the following feasibility condition for the existence of a multicommodity

flow (see Schrijver [49]). In the statement of this result, e is an integer (length)

function defined on the edges of the network and diste(i, j) is the shortest distance

between nodes i and j with respect to the length function f.

Theorem 5.4. (Onaga [43]) A set of edge capacities {u, : e E E} has a feasible

multicommodity flow for a demand vector {dk : k E K} if and only if

E 4eu 2 1 dk -dist,(o(k), 6(k)) (5.3)
eEE kEK

for each length function e : E - Z+.

In the context of the Capacity Sharing Problem, we have the following variant of

this result.

Theorem 5.5. A set of edge capacities {ue : e E E} has a feasible call routing for

every demand vector in the variation set Vd < w if and only if

eZ ue d d<max dk -dist(o(k), 6(k))) (5.4)
eEE c kEK

for each length function £ : E -+ Z+.

Proof. Clearly, u is feasible for all demands d in the polyhedron Vd < w if and only

if the relationship (5.3) is satisfied for the maximum righthand side. O

Let ue be the initial capacity on edge e and ye to be the number of additional

facilities to be installed on edge e. Then the total capacity on edge e is u, + Cy,. We
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use Theorem 5.5 to formulate the CSP as the following mathematical program:

(CSP) Minimize c c- y
eEE

e(ue + Cye) > d ax( Z dk * dist(o(k), 6(k)) V : E -- Z+ (5.5a)
eEE kIEK

Ye E Z+, Ve E E.

Clearly, the number of possible length functions are infinite. So, as stated, this

integer program is not useful for solving the CSP. We first examine the complexity of

separating the constraints (5.5a). Then, we consider special cases for which a 'small'

subset of these constraints are sufficient to ensure feasibility.

5.3.2 The Separation Problem

We consider the separation problem associated with the necessary and sufficient con-

dition we established for the CSP. That is, given a vector of arc capacities u, we

must either show that the capacities satisfy all of the constraints (5.4) or present a

constraint that is violated. We show that this problem is NP-Hard.

First we identify an important subset of these constraints that allows a physical

interpretation. Given a subset S of the node set V, let S be the set of nodes not in

S. A cut, denoted by (S, S), is the set of edges that have one of their endpoints in S

and the other in S. Consider a length function ts that is 1 for all the edges in a given

cut (S, 3) and 0 otherwise. For this length function, the condition (5.4) becomes the

"cut constraints":

Ze U> max dd).( (5.6)d:Vd<w
(i,j)EE:iES,jOS iES,jOS

That is, the capacity across the cut must be at least the maximum total demand

across the cut. For convenience, we have slightly changed notation by denoting dk

with o(k) = i and 6(k) = j by dij. There is one such constraint for each cut. Cut

constraints are a subset of the feasibility condition (5.4). Therefore, cut constraints

are necessary but not sufficient for the feasibility of the capacity sharing problem.
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We now show that separating constraints 5.5a is NP-Hard. Since the cut con-

straints are a subset of the feasibility condition, it will suffice if we show that sepa-

rating cut constraints is NP-Hard.

Theorem 5.6. Separating cut constraints for the capacity sharing problem is strongly

NP Hard.

Proof. We provide a polynomial reduction from the strongly NP-Hard Set Cover

problem. In the Set Cover problem, we are given a set U of s elements and a collection

C1, C2, ... , Ct of subsets of U whose union is U. Each subset Cj has a cost cj. We

seek to identify a minimum cost collection of subsets so that each element of U is

contained in at least one of the selected subsets.

Given an instance of Set Cover, we create a network as follows: We create a node

for each element ui of the set U, and a node for each subset Cj. We also create an

additional node 0. The only edges are those between the node 0 and every other node.

The capacities on the edges are as shown in Figure 5-1. We choose M > n El<j<t cj.

Figure 5-1: Reduction from Set Cover Problem

We impose a demand between an element ui and a subset Cj if Cj contains ui.

The demand variation is the following polyhedron: {d: Ej:cj3u, dij < L, 1 < i < s}.

We choose L to be large, L > Ei-<jt cj.
Assume that 0 E S. Therefore, the capacity of the cut S is given by Ej:-i.s M +

Ej:.cjs cj . We claim that the given instance of Set Cover has a cover with cost at
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most - if and only if the network has a cut S, and for some demand d in the given

variation Ei:uis M + Ej:c3 s cj - (ZiESjs dij + -Eis,jES dij) is at most 7 - nL.

This result directly implies the NP-Hardness of the separation problem.

Given a cover with cost 7, we choose all nodes to be in the set S except the nodes

corresponding to the subsets in the cover. For the cut S, the capacity across the cut

is just the cost of the subsets in the cover, that is, 7y. For every element ui in U,

we choose a subset Cj in the cover containing ui and set dij to be L. We set dij to

be zero for all other demands. The demand across the cut in this case is nL, which

yields the 'only if' part of the claim.

Now suppose that the difference of the total demand across some cut from the

capacity of the cut is y - nL, for some y7 1S<j<, cj. Since we chose M to be large,

none of the arcs with cost M can be part of the cut. So, all the element nodes must

be in S. The capacity of the cut S is at most El<jt cj. Since y < L, the demand

across the cut must be nL. Since each element node has a total demand of at most

K, we conclude that the nodes that are not in S is a cover of U. Also, the cost of

this cover is y, establishing the 'if' part of the claim. O

5.3.3 When Cut Constraints Are Sufficient

The general necessary and sufficient condition 5.4 for a edge capacity vector to be

feasible for all demands in a variation set contains an infinite number of inequalities,

and therefore is not useful for designing a solution procedure for the CSP. A model

restricted only to cut constraints, which are finite but still exponential in number,

will be more manageable. Although we showed that separating cut constraints is NP-

Hard, cut constraints have been successfully used in a variety of network design and

capacity expansion problems, and we can heuristically identify violated cuts. If for a

network, cut conditions are sufficient to ensure that a given capacity vector is feasible

for the CSP, we can use this restricted model, and develop a heuristic procedure to

solve it. We seek the conditions under which the cut constraints are sufficient for the

CSP.
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Definition 5.1. The demand graph H = (T, R) associated with a capacity expan-

sion problem is the undirected graph with node set T and edge set R for which

* T contains all the nodes that are either the origin or the destination of some

nonzero demand

* R contains an edge between the origin and destination of every nonzero demand.

For example, if there is demand between every pair of nodes in the network, the

demand graph is a complete graph on the nodes of the network. If all the demands

originate at the same node s, then the demand graph is a star network with node s

as the hub.

The following theorem, due to Papernov [45] (see Schrijver [49]), states the con-

ditions under which cut constraints are sufficient for feasible multicommodity flow

to exist for a given demand. The condition is independent of the network G, and

depends only on the demand graph H.

Theorem 5.7. (Papernov [45]) For a network G with a demand graph H, the cut

conditions imply the existence of a multicommodity flow if and only if H = K4 , or

H = C5, or H is the union of two stars.

Here, K4 is the complete graph on 4 nodes and C5 is the cycle with 5 nodes.

Figure 5-2 illustrates the three demand graphs of Theorem 5.7.

(a) (b) (c)

Figure 5-2: Demand graphs for which cut conditions are sufficient. (a) K4 (b) Cs (c)
Union of two stars.

This condition obviously extends to the Capacity Sharing Problem. The righthand

side in the cut conditions for a multicommodity flow problem is the total demand

125



across the cut. For the Capacity Sharing Problem the righthand side is the maximum

total demand across the cut among all the demands in the given demand variation

set.

Theorem 5.7 suggests the following approach to solve the CSP. Partition the set of

all commodities K (that is, edges in the demand graph) into subsets K 1 , K 2 ,... , K ,

each of which forms one of the three demand graphs in Theorem 5.7. We then

introduce variables zz for each subset Ke and every edge in E for the amount of

capacity 'reserved' on the edge e for transporting the commodities in the set Ke. We

can now approximate the CSP as the following alternate integer program:

(CSP) Minimize Ce -y
eEE

e Z Ue + Cye, Ve E E (5.7a)
1< £<p

2 > max ( d), VS C V,1 < < p (5.7b)
e d:Vd<w

e=(i,j)EE:iES,jOS kEKR,o(k)GS,6(k)ýS

S>0, Ve E E, 1 <_ <_ p

Ye E Z+, Ve E E.

This integer program is an approximation of the CSP and not always an exact

formulation because when we partition the set of commodities into subsets, two com-

modities in different subsets can no longer share capacity (since we reserve capacity

for each subset separately). We now examine the tightness of this approximation.

Given a polyhedral demand variation set U, and a subset of commodities Ke, let

7ru(Ke) be the projection of U to the commodities in Ke.

Theorem 5.8. The formulation (5.7) is equivalent to the Capacity Sharing Problem

with the demand variation set 7U(K 1) x iru(K 2) X ... X 7u(KP).

Proof. Consider the cut constraints associated with the commodity subset Ke. For

any cut S, the righthand side of the cut constraint is max ( 5 dk).
d:Vd<w

keKC ,o(k)ES,6(k) S

We are interested only in the commodities across the cut that are in the set Ke.
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Equivalently, we can write this cut constraint as

E z' > max ( E dk). (5.8)
dEn•U(K )

e=(i,j)EE:iES,jOS keK t ,o(k)ES,(k)OS

Note that demand for a commodity k occurs only in the cut constraints corresponding

to the subset K1 that contains k. Therefore, in the integer program (5.7), if two

commodities kI and k2 are in different subsets, they vary independent of each other.

Therefore, the set of all demands that will be feasible for the capacity plan produced

by the integer program (5.7) is the polytope iru(K1 ) x 7ru(K 2) X ... x 7ru(KP). O

So, in effect, the cut constraint approximation to the CSP changes the demand

variation set from U to iru(K1 ) x 7ru(K 2) x ... x 7ru(KP). Since 7ru(K1 ) x 7ru(K 2) x

•.. x 7ru(KP) contains U, the integer program (5.5a) is an approximation to the CSP.

Figure 5-3 illustrates the change in demand variation set on a three commodity

CSP. The polytope on the left hand side is the initial demand variation set U. When

we partition the commodity set {dl, d2, d3} into two subsets {dl, d2} and {d 3}, and

reserve capacity for each subset separately, the effective demand variation set changes

to the figure in the right hand side.

Figure 5-3: The original demand variation and the approximation by the partition
{dl, d2}, {d 3}.

We now establish a worst case bound for this approximation.
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Theorem 5.9. Let P be a Capacity Sharing Problem with demand variation set

U, and commodity set K. Given a partition of the commodity set K into subsets

K1 , K 2,..., Kp , let P' be the integer programming problem (5.7) with these subsets.

Then the optimal cost of P' is at most p time the optimal cost of P.

Proof. Let Z and Z' be the optimal cost to the problems P and P'. Now consider the

Capacity Sharing Problem Pi defined on the same network but containing demands

only from the subset K i . In Pi, all other demands are zero. Let Zi be the optimal

cost of P'. Clearly, Z i < Z. Also, since the number of new facilities ye on every edge

e is required to be integer, we have

SZi > Z'.
1<l<p

Therefore, Z' < pZ. O

Since the solution for P' is feasible for P, if we can solve P', we have a p-

approximation algorithm for the CSP. Since the approximation ratio depends on the

number of partitions, we obtain a tighter approximation guarantee by partitioning

the commodities into smaller subsets (ensuring that the demand graph for each sub-

set is K4, C5 or the union of two stars). The approximation ratio we established is

independent of the demand variation set U. We will use this idea of partitioning the

commodity set to design a heuristic procedure in Section 5.4.3.

5.4 Solving The Capacity Sharing Problem

We consider a single facility Capacity Sharing Problem in an arbitrary network G =

(V, E). Assume that the capacity cost is edge-dependent and linear in the number

of facilities. Finally, the demand variation set U is given as a polytope Vd < w. We

present three heuristic approaches for solving the CSP. The first two approaches are

known algorithms that could be used to approximate the CSP, and we establish some

bounds for their performance. We develop a third heuristic, based on a cutting plane

approach, that addresses demand variation directly.
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5.4.1 Single Demand Optimization

In this model, for each commodity k, we evaluate the maximum demand dk =

max{dk : Vd < w, d > 0}. We then use the maximum demand vector d to solve

a single demand forecast capacity expansion problem. From Observation 5.1, we

know that the resulting capacity vector will be feasible for all demands in the poly-

hedral variation set Up. Figure 5-4 illustrates Single Demand Optimization for a

Capacity Expansion Problem with two commodities and a polyhedral variation set.

d2

Figure 5-4: The Single Stage Model

In the figure, dl and d2 are the demands of the two commodities. The variation

set is the polytope shown in the figure by solid lines. Solving the capacity expansion

problem for the demand d gives a capacity plan that is feasible for all the demand

vectors in the square (shown in Figure 5-4 by dashed lines), and therefore feasible to

all points in the variation polytope too.

The single demand optimization essentially 'relaxes' the demand variation poly-

tope to a box (or a cube). So we can view this method as an approximation to the

Capacity Sharing problem. This method is the current state of the art of telecommu-

nication network planning. The difference between the demand variation polytope

and the box polytope provides an opportunity for cost savings.

Let k be the number of commodities in the CSP, and let K i be the commodity

subset containing only commodity i. Then the box polytope {d E Rk : 0 < d < d},

which is the effective demand variation for the Single Demand Optimization, can
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be expressed as iru(K1 ) x wru(K 2) X ... X 7ru(Kk). That is, the Single Demand

Optimization is equivalent to the cut constraint approximation with the partition

K 1, K 2 ,..., K k.

Observation 5.10. If k is the number of commodities in a Capacity Sharing Problem,

then the optimal cost of the Single Demand Optimization problem is at most a factor

of k from the optimal cost of the CSP.

Proof. Follows from Theorem 5.9 and the observation we made above. O

Again, we note that the performance guarantee established above is independent

of the demand variation set U.

5.4.2 Fractional Flow Variables

The single demand optimization problem solves the capacity expansion problem for

the component wise maximum demand vector in the given demand variation set.

Another way to state the single demand optimization problem in the presence of

demand variation is to require that the capacity variables and a single vector of flow

variables be simultaneously chosen. The flow vector we choose must satisfy all the

demands in the variation set, so the flow is feasible to the component wise maximum

demand.

A slightly better approach than single demand optimization is to define fractional

flow variables Ak that denotes the fraction of the demand dk that flows on the arc

(i, j). We now require that the fractional flow variables be chosen along with the

capacity variables. The actual flow on the arc depends on the demand vector in

the variation that is currently active. We present a formulation for the Capacity

Expansion Problem with demand variation U with fractional flow variables.
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(CEP) Minimize ce - ye
eEE

1 if i = o(k)

A - • = -1 if i = (k) Vi E V, Vk E K (5.9a)

(ij)A ,i)A 0 otherwise.

dk( + Aj) u + C e, Ve = (i,j) E E,Vd E U (5.9b)
kEK

Ye E Z+, Ve EE

0 <Ak < 1, Ve = (i, j) E E, Vk E K.

We highlight the connection of the fractional flow variables CEP to a result for

Adjustable Robust Optimization by Ben-Tal et al. [13]. In Adjustable Robust Opti-

mization, the problem has two sets of variables. One set of variables are to be chosen

under uncertainty, and the other set, called 'adjustable variables,' can be chosen once

the uncertainty is realized. The Capacity Sharing Problem can be viewed as an in-

stance of Adjustable Robust Optimization: in the formulation (5.1), the arc capacity

variables y are 'fixed', while the flow variables f are adjustable and can be chosen

after a demand from the variation set U is realized. Ben-Tal et al. show that the

Adjustable Robust Linear Program is computationally tractable when the adjustable

variables can be expressed as an affine function of the realized uncertain parameters.

The formulation (5.9) with fractional flow variables is an approximation to the CSP

where we restrict the flow variables to be linearly related to the realized demand d,

i.e., fZ = dkA2.

Mudchanatongsuk et al. [42] consider this problem, and using duality theory,

propose an equivalent integer program with a polynomial number of variables for the

problem (5.9). The authors also observe that this approach produces conservative

solutions that do not realize much of the possible savings due to capacity sharing.

Since this approach produces a solution at least as good as the single stage op-

timization, we conclude that for a CSP with k commodities, the optimal cost of the
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fractional flow problem is at most k times the optimal cost of the CSP.

5.4.3 A Cutting Plane Heuristic By Partitioning Commodi-

ties

In Section 5.3.3, we proposed an idea for a heuristic for CSP: Partition the commodity

set K into subsets K 1, K 2 ,..., K p such that the demand graph for each Ke satisfies

Papernov's condition. We then heuristically solve the integer program (5.7) for the

partition K1 , K 2,..., Kp using a cutting plane approach.

We start with a number of cuts for each subset. At each iteration, we solve a

master problem: the integer program (5.7) in which cut constraints are included

only for the current cuts. Using the solution values of the capacity variables z2

in the solution to the master problem, we solve a separation problem (exactly or

heuristically) for each subset Ke . The separation problem is to identify a violated cut

constraint if one exists, and declare that none exists otherwise. When a violated cut

constraint is identified, we add the corresponding cut(s) to the master problem and

continue. The heuristic stops when there are no violated cuts.

We have not yet stated how we will partition the commodity set K. Theorem 5.9

suggests that it might be better to partition K into a small number of subsets.

However, we would also like to choose the partition so that the resulting separation

problem for each subset is reasonably simple. We will partition K into I VI subsets, one

for each node in the network, with the subset for node i containing all the demands

that originate at node i. The demand graph for each of these subsets is a star network

and hence satisfies Papernov's condition.

The performance of the heuristic depends also on how well we can solve the sepa-

ration problem for the commodity subsets we have created. We model this separation

problem in Section 5.4.3. While the problem is still NP-Hard, we found that it is not

difficult to solve in practice for real sized instances. We also propose a heuristic for

the separation problem that can be used to speed up the cutting plane procedure.

The heuristic procedure we propose for the (capacity sharing version of the) Ca-
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pacity Expansion Problem could also be applied for the more general Capacitated

Network Design Problem. In each iteration, we would solve a Network Design mas-

ter problem with the current set of cut constraints instead of a Capacity Expansion

master problem. The practical utility of the procedure would depend on how fast we

could solve the master problem with a reasonable number of cuts.

The Single Source Separation Problem

Since the cutting plane heuristic we will use partitions the commodity set by source

node, the separation problem for each source node s assumes the following form.

Given a vector of arc capacities zV, we want to find the cut whose demand from node

s to nodes on the other side of the cut most exceeds the capacity across the cut. We

call this problem the single source separation problem.

Since all the commodities originate at the source node s, the maximum demand

across a cut S is maxdEu -iS dsi. We assume that the source node s is always in the

selected cut S. Let xi be a decision variable that is 1 when the node i is not in the

selected cut S. The following integer program solves the separation problem:

Minimize Eze Ye- ds,
eEE iEV\{s}

Ye xi - x, Ve = (i,j) E E (5.10a)

Ye 2 Xj - Xi, Ve = (i,j) E E (5.10b)

,= 0 (5.10c)
Vd < w (5.10d)

d,• < Mxi Vi E V \ {s} (5.10e)

xi e {0, 1}, ViE V

ye E {0, 1}, Ve EE

dij 0, Vi,j E V.

The constraints (5.10a) and (5.10b) set Ye to 1 if the edge e crosses the chosen cut. The

133



constraint (5.10c) forces the source node to be in the selected cut. Constraints (5.10d)

are the demand variation constraints and constraints (5.10e) ensure that the demand

of a commodity is positive only if the destination of that demand is on the other side

of the cut from node s.

We now show that even the single source separation problem is NP-Hard.

Theorem 5.11. The single source separation problem is NP-Hard

Proof. We present a polynomial time reduction from the weakly NP-Hard minimum

knapsack problem. In the minimum knapsack problem, we are given n items with

sizes wi and penalties Pi. The objective is to choose a set of items of total size at least

W to exclude from the knapsack that minimizes the penalty incurred by the chosen

items.

Given an instance of the minimum knapsack problem with n items, we create a

network with n + 1 nodes: one node for each item and a special source node s. There

is an edge from the source node s to each of the other nodes. The capacity on the edge

(s, i) is pi. Let P > -l<i<n Pi. The demand variation for the separation problem is

given by

O < dsi : wiP, di WP.
1<i<n

We show that there is a solution to the separation problem with cost at most

y - WP, if and only the minimum knapsack problem has a solution with cost at most

7. Given a solution to the separation problem with cost y - WP, we conclude that

•l<i<n di = WP. Since di can be positive only when xi is 1, Ejl<i< wixi > WP.

Therefore, we can choose all the items with xi = 1 to exclude, and the total penalty

of these items is just the capacity across the cut, which is (7 - WP) + WP = 7.

On the other hand, if we are given a solution with cost y to the minimum knapsack

problem, we can choose all the items that are not excluded along with the source nod

s to be a part of the cut S. It is easy to verify that the difference between total

capacity across the cut S (y) and the maximum demand across the cut (WP) is

- -WP.

This implies that the separation problem is NP-Hard. O
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A Heuristic For The Separation Problem

In our computational experiments, we observed that the single source separation

problem, when solved as an integer program, usually ran within a few seconds even

on networks with 50 nodes. Solving an integer program during each iteration of the

heuristic might not be possible for larger networks. Also, a heuristic can be useful if

it can find more than one violated cuts in each iteration (even if none of them is the

most violated cut) as this might speed up the heuristic by reducing the number of

iterations. We present one such heuristic for the single source separation problem.

We observe that if we fix the x variables, the integer program reduces to a linear

program in the demand variables, and can be solved easily. On the other hand, as we

show, if we fix the demand variables, the problem can be solved as a single minimum

cut problem. Given fixed demand di, we reformulate the separation problem as

follows:

Minimize ze y, -Y d,ixi
eEE iEV\{s}

Ye _ x - xi, Ve = (i,j) E E (5.11a)

Ye - i, Ve = (i,j) E E (5.11b)

x, =0 (5.11c)

X e {0,71}, Vi E V

Y E {0,1}, Ve e E

(5.11d)

We can rewrite the objective function as

eEE iEV\{s} iEV\{s}

Since the term iEV,\{(} d8i is a constant, we can ignore it. We now introduce a new

node t and create edges with capacity d,i from node t to every node i. The new

objective function is just the capacity of the chosen cut S in this network. Therefore,
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we can solve the separation problem for a fixed demand as a minimum cut problem.

We suggest the following heuristic for the Single Source Separation Problem:

1. Find demand d maximizing -iEV\,{s dsi.

2. Fixing d, solve problem (5.11).

3. Using the cut S obtained in Step 2, find demand d maximizing -ies dsi.

4. Repeat steps 2-3 until no improvement is possible.

At the end of step 3, we can check if the capacity of the cut S is more than the

maximum demand across the cut. If it is, we can add the cut to the master problem.

We can decide to either terminate the heuristic at this point, or continue to look for

more violated cuts.

An Improvement For The Cutting Plane Heuristic

In our solution procedure for the capacity expansion problem, we solve the master

problem with the current set of cuts. We use the resulting arc capacities and solve

a separation problem for each source node. We terminate the procedure when the

separation problem for every source has zero objective. However, in our computational

experiments, we observed that for many instances of the capacity expansion problem,

the objective of the separation problem for certain switches reaches a small value

relatively soon. Then, the cut generation procedure takes several more iterations

until the optimal cost of the separation problem becomes nonnegative. We propose

an approximation approach that will help reduce the time spent on iterations after

the separation objective has reached a small value.

Observation 5.12. Let the optimal solution to the current separation problem be -C

for some c > 0. If we add E to the capacity of every arc in a spanning tree of the

network, the resulting set of capacities will be feasible for all the cut constraints.

Proof. If the optimal cost of the separation problem is -c, the capacity across all

cuts in the network is at least the demand across the cut less c. Therefore, if we add
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E to the capacity of all cuts, the separation problem with the new capacities will have

nonnegative objective. If we add E to the arcs of a spanning tree, the capacity of

every cut in the network increases by at least E. O

For each source node, we stop adding cuts for a source node when the objective

of its separation problem reaches a prespecified (negative) number. Let the optimal

cost of the separation problem for source i be -ei when we stop adding cuts for the

source node. After the heuristic procedure stops (that is, when we stop adding cuts

for all the source nodes), we add Eiev Ec to the edges of a spanning tree of G to

obtain a feasible capacity vector for the CSP.

To do this with minimal increase in cost, we could compute, for each edge, the

cost of adding Ei-y Ei units of capacity. For the single facility case, it could be that

an edge has enough spare capacity that this capacity addition can be accomplished at

no cost. We compute a Minimum Spanning Tree with respect to these costs, and add

iEV• ci units of capacity on the edges of this tree. In our computational experiments,

we observed that this procedure improved the run time of the heuristic with a very

modest increase in cost.
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Chapter 6

Computational Experiments

We tested the cutting plane heuristic proposed in Chapter 5 computationally on

real and random telecommunication networks. We used network data from a long

distance service provider. For demand data, we created one problem set based on

the single point demand forecast of a long distance provider and another problem set

based on random demand variation. We also generated problems on random networks

comparable to real telecommunication networks. We implemented a version of the

cutting plane heuristic, and tested it on all the data sets. Our results show that

capacity sharing can reduce the network planning budget significantly with a savings

of 10-30% for real networks. The heuristic we propose performs well, producing

solutions within 10% of optimality for most of the instances tested.

6.1 Algorithm Summary and Implementation

We tested our heuristic on several Network Loading Problems with Capacity Sharing.

That is, in all our instances, the network has no initial capacity installed on the

arcs. We assumed a single facility type, which was a type DS3 (equivalent to 672

simultaneous calls) for all problem sets.

Our algorithm solves the linear relaxation of the network loading problem with

capacity sharing, and rounds the solution up to obtain integer number of facilities

on each edge. We partitioned the commodities by source and introduced an edge
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capacity variable for every commodity subset. In this case, since the initial capacities

are zero, the linear relaxation of the capacity sharing problem decomposes by source.

We solve for the capacity reserved for each source separately.

We start with a set of initial cuts. This set consists of all singleton and two node

cutsets. At each iteration, we solve the separation problem as an integer program. If

the optimal cost of the separation problem is negative, we add this cut to the master

problem and continue.

We implemented the improvement procedure for early termination that we dis-

cussed in Section 5.4.3. As before, let C be the facility capacity. For a n node

network, whenever the optimal cost of the separation problem exceeded -2 * C/n, we

terminated the master problem, and added the optimal cost to the edge capacities

of a minimum spanning tree at the end. We observed that this approach resulted in

slightly faster running times.

Finally, after solving n such problems, for each edge we added the capacities

reserved for each subproblem, and rounded it up to the next integer.

We conducted the computations on a Pentium IV 3.2 GHz machine, with 2 GB

Random Access Memory and running Linux Operating System. We implemented the

algorithm using Optimization Programming Language (OPL) 5.1 running CPLEX

10.0. Using OPL causes some additional overhead in the runtime, and so it possible

that implementing the algorithm directly using CPLEX libraries would improve the

runtime.

6.2 Test Problems

We used data from three real long distance networks. Table 6.1 specifies their dimen-

sion. We could not obtain demand variation data for the three networks from the

long distance service provider. Instead, we made reasonable assumptions to generate

demand variations for solving the Capacity Sharing Problem from single point peak

demand forecasts for the three networks.

For the first real data set, we made the following assumptions regarding the de-

140



mand variation that we use to solve the Capacity Sharing Problem. We assumed

that 70% of the single point demand forecast occurs at all times. That is no sharing

is possible for this part of the demand. The remaining 30% constitutes the peak

demand, and these peaks do not all occur at the same time. So we added a con-

straint restricting the total peak demand, that is the sum of all the demands above

the 70% base demand, is never more than one fifth of the maximum possible peak

demand (when all the demands are at their maximum possible value). That is, we

assume that the total demand in the network for all the O-D pairs is not more that

70% + (1/5)30% = 76% of the sum of the individual peak demands. This, we believe,

is a reasonable model consistent with real telecommunication traffic data.

For the second real data set, we used real network data, but we generated the

demand variation set randomly. We generated 10 constraints for each source node

for the demand variation. For each constraint, we specify a range [0, K] from which

the coefficients for each O-D demand would be randomly selected. For four out of

the ten constraints, we set K = 1 so that all the coefficients for these constraints are

0-1. For the other six constraints, we set K to different values between 10 and 50.

The righthand side of the constraints were selected depending on the value K for the

constraint so that the demands in the variation would roughly correlate with the real

demands in the network.

In addition to real networks, we generated random instances with three different

network sizes: 10, 20 and 30 nodes. We built and used a random network generator

that for a given number of input nodes and average node degree, creates a random

network. It will first generate a random spanning tree and chooses the remaining

arcs with equal probability that depends on the required average degree. While the

expected average degree of the created network is equal to the required average degree,

Instance R1 R2 R3
INI 27 29 50
|El 330 262 749
Average Node Degree 24.4 18.1 30.0

Table 6.1: Real problem instances
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a network generated by the procedure could have higher or lower average degree. We

randomly sampled edge costs from a range that is consistent with real world data.

Finally, for demand variation, we generated a 10 constraint polyhedron for each source

node in the same way as we did for the real networks with random demand data.

6.3 Computational Results

In our computational results for testing our heuristic, after running each instance,

we calculated the percentage gap of the solution we obtained from a lower bound

for the Capacity Sharing Problem. The heuristic solves the linear relaxation of the

Capacity Sharing Problem and rounds the solution. There are two contributors to this

gap. One gap arises if we terminate when the separation problem still has negative

objective (due to the early termination procedure). The other contribution to the

gap is caused by rounding the solution in the end to obtain an integer number of

facilities.

We also compare our solution to single demand optimization. That is, we cal-

culate the maximum demand for each destination and plan the network to support

all these demands simultaneously. Since, this approach is roughly indicative of cur-

rent practice, the difference in cost indicates the amount of savings due to capacity

sharing.

We sound a note of caution about savings figures especially for instances for which

the demand variation has been generated randomly. The polyhedral demand varia-

tions that we generate randomly might not portray a telecommunications network's

demand pattern accurately and therefore, the savings that we report in our compu-

tational results must not be interpreted as a percentage of a company's total budget.

We offer the following alternate interpretation of the savings figures presented in our

results for those problem instances with random demand variation. A telecommu-

nication network's demand has a more or less steady base demand (the amount of

capacity utilized on most days), and a peak demand, that occurs occasionally. We

believe that a random demand variation more accurately models the excess demand
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above the median. Therefore, the savings that we report should be considered per-

centages of the part of the budget that is allocated to meeting the excess demands.

As an example, if the median demands are on average 70% of the peak demand, our

reported savings of 50% would translate to roughly 15% of the budget.

Table 6.2 shows the results for three real instances with demand data generated

based on real single point demand forecasts.

Instance Gap Time I. Cuts T. Cuts Savings
R1 11.76% 57s 378 378.11 13.4%
R2 9.92% 51s 435 437.07 12.2%
R3 9.92% 20m 39s 1275 1276.16 28.7%

Table 6.2: Computational results for real problem instances

For this and other tables, 'Gap' is the percentage difference between the heuristic

solution and a lower bound for the capacity sharing problem. 'Time' is the total

runtime for the procedure. We report time in hour (h), minute (m), second (s)

format. 'I. Cuts' is the number of initial cuts added per source, and 'T. Cuts' is the

average total number of cuts added per source. Finally, 'Savings' is the percentage

reduction in cost due to the heuristic when compared to capacity plan produced by

the single demand optimization.

For all the three instances, the heuristic produced solution with a gap of less

than 3%. The initial cuts alone were enough to produce solutions that meet the

termination criteria for almost all the source node subproblems in each of the three

cases. We added less than 3 cuts per source node for all three problems. Finally, when

compared to single demand optimization, the heuristic was able to save between 10

and 30 percent.

Table 6.3 presents the results for the second data set, which used real network data

and random demand data. Since the demand variation set is more complicated than

in the previous case, the method added about 20 cuts (Total Cuts - Initial Cuts) per

source node for each of the three problems. In terms of run time, all three problems

took much longer with the problem R3 taking more than a day to complete. We

observed that the bottleneck was not solving the master or the separation problem,
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but generating the master problem during every iteration. Since the method required

only a few iterations, we believe that a better implementation (possibly directly using

CPLEX libraries) would significantly improve the speed of the heuristic.

Instance Gap Time I. Cuts T. Cuts Savings
R1 4.55% 1h 41m 378 399.60 61.7%
R2 4.52% 1h 23m 435 456.90 58.1%
R3 0.64% 25h 09m 1275 1298.22 67.2%

Table 6.3: Computational results for real networks with random demand

For this data set, the heuristic cost is 60% less than the single demand optimization

cost in all three cases.

No. IEl Gap Time I. Cuts T. Cuts Savings
1. 20 9.47% 11.3s 55 59.1 52.2%
2. 26 18.74% 18.0s 55 61.3 51.4%
3. 28 16.70% 11.0s 55 59.0 47.5%
4. 23 10.97% 10.7s 55 58.7 55.3%
5. 23 9.80% 8.5s 55 57.4 54.1%
6. 19 10.33% 10.3s 55 59.0 51.5%
7. 24 9.77% 12.5s 55 59.6 47.4%
8. 23 7.59% 9.5s 55 58.2 52.7%
9. 19 10.21% 9.9s 55 58.8 52.0%
10. 24 11.92% 14.5s 55 60.5 53.9%

Avg. 22.9 11.55% 11.6s 55 59.2 51.8%

Table 6.4: Computational results for random 10 node networks

Tables 6.4, 6.5, and 6.6 present our final results for random instances. We tested 10

instances each with 10 and 20 nodes, and 6 instances with 30 nodes. In all instances,

the average gap was less than 12%. The gap decreased with the instance size. With

random variation in demand, the heuristic saved around 50% for every instance tested.

As the problem size increases, the number of cuts required per source node also

increases. Since the complexity of solving each iteration also increases with problem

size, these two factors together cause a nonlinear increase in run time. In spite of

that, we believe the capacity sharing model as well as the cutting plane heuristic
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is still valuable, and can help telecommunication planners significantly reduce their

investments in network capacity.

No. I(E Gap Time I. Cuts T. Cuts Savings
1. 84 6.29% 36m 09s 210 300.25 63.4%
2. 101 7.14% 36m 06s 210 294.65 64.6%
3. 90 8.06% 31m 06s 210 290.90 64.3%
4. 93 6.92% 33m 33s 210 295.65 64.0%
5. 88 6.66% 29m 09s 210 289.65 65.3%
6. 89 6.80% 35m 31s 210 297.50 64.2%
7. 87 6.96% 28m 30s 210 287.60 63.7%
8. 96 7.46% 37m 07s 210 299.45 64.1%
9. 75 7.09% 24m 09s 210 287.95 64.4%
10. 96 8.23% 31m 06s 210 289.65 64.7%

Avg. 89.9 7.16% 32m 14s 210 293.33 64.3%

Table 6.5: Computational results for random 20 node networks

No. jIE Gap Time I. Cuts T. Cuts Savings
1. 150 2.40% 6h 08m 465 673.00 70.5%
2. 151 2.74% 6h 08m 465 673.73 71.1%
3. 147 2.85% 5h 56m 465 641.43 71.0%
4. 153 2.72% 5h 47m 465 667.43 71.8%
5. 140 2.78% 5h 29s 465 667.13 70.7%
6. 158 2.46% 5h 43s 465 677.13 71.7%

Avg. 149.8 2.66% 5h 52m 465 671.64 71.1%

Table 6.6: Computational results for random 30 node networks
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Chapter 7

Conclusions

We studied three problems faced by contemporary telecommunications network plan-

ners. The first two problems are motivated by real problems faced by a major long

distance carrier. Both problems address capacity expansion problems on hybrid net-

works that are prevalent today. The third problem, the Capacity Sharing Problem,

uses the fact that peak demands might occur at different times in deciding how much

capacity to add to the network. Planning the network using Capacity Sharing could

potentially lead to significant savings compared to current planning models that do

not take advantage of efficient call routing technologies. We summarize our contribu-

tion to the literature on telecommunication network capacity planning as follows.

Capacity Expansion Problem (CEP)

- We presented a (2+c)-approximation algorithm for the CEP in hybrid networks.

We developed algorithms with better performance guarantees for special cases

of the CEP.

- We extended the approximation algorithm to two capacity expansion problems

with additional practical requirements: limiting the growth of certain trunks in

one case, and forbidding demand splitting in another.

- For the CEP with survivability requirement, we presented a compact integer
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programming formulation that adds just one constraint for every failure sce-

nario.

- We proved that the Survivable CEP is APX-Hard, showing that the existence

of a Polynomial Time Approximation Scheme for the problem unlikely.

- Using a decomposition approach, we developed two approximation algorithms

with constant factor guarantees. We also developed approximation algorithms

with better guarantees for several special cases of the SCEP.

While developing algorithms for the CEP and its variants, we also studied two

combinatorial subproblems that are interesting in their own right.

- We studied the Expandable Minimum Knapsack Problem and showed that it is

equivalent to the Minimum Knapsack Problem.

- For the Bounded Network Restoration Problem on a two node network, we

developed a polynomial time binary search algorithm.

There are many questions that we believe could be the focus of further research.

We list some of them here.

- Is there a polynomial time algorithm for the hybrid network CEP with a per-

formance guarantee better than 2?

- Can the analyses and results we presented be extended to more general net-

works? In particular, can the Decentralized Routing Scheme, which is essen-

tially a cost sharing scheme, be used for approximating the CEP in other net-

work contexts?

- Are there comparable approximation results for the CEP in hybrid networks

when more than one facility type is available, i.e., when capacity can be installed

in combinations of facilities with capacities C1, C2,... , Ck?

- The approximation algorithms we developed for the SCEP assume an empty

initial network. Can our results be extended to the case when there are initial

capacities on the arcs of the network?
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- We showed that unless P=NP, the SCEP does not have a PTAS, i.e., there is no

(1+ e)-approximation algorithm for all c > 0. But the performance guarantee of

the best algorithm we developed is 4 + c. Is there an approximation algorithm

for the problem? Can we establish stronger inapproximability results?

Capacity Sharing Problem

We proposed a polyhedral model for capturing the variation of demand that is both

general and practical. We presented a necessary and sufficient condition for a vector

of edge capacities to have feasible flows for every demand in a given demand variation

set, and used it to present an integer program for the CSP with infinite constraints.

We showed that the problem of separating these constraints is NP-Hard, implying

that the CSP is also NP-Hard.

We developed a heuristic procedure for the problem, and evaluated the heuristic

computationally on real and random instances. Our experiments suggest that the Ca-

pacity Sharing Problem could help telecommunication companies significantly reduce

their expenditures for adding capacity. The heuristic we proposed is also effective,

producing solutions with cost within 10% of optimum for most instances.

Again, we list a few avenues for further research on the Capacity Sharing Problem.

- Can some of the known valid inequalities for the Capacity Expansion or the

Network Loading Problem be extended to the Capacity Sharing Problem? For

example, in the cut set formulation for the CSP, we believe valid inequalities

similar to residual capacity inequalities for the constraint defining Ye might be

used.

- The approximation ratio we established for the integer program with cut con-

straints was independent of the demand variation set U and therefore was weak.

Can we establish stronger bounds for certain specific but practical demand vari-

ations?

- For the cutting plane heuristic, we partitioned the commodities by source. But

we know that the cutset formulation is valid even if we had grouped two sources
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into one subset (union of two stars satisfies Papernov's theorem). Can we

develop fast heuristics for the separation problem associated with the two source

problem? Would the resulting heuristic be better than the one we proposed in

this thesis?

Our implementation of the cutting plane heuristic spends a substantial amount

of time generating the master problem during each iteration, even when we

are adding only a single additional constraint. A more efficient implementa-

tion, possibly directly using CPLEX libraries, could significantly speed up the

heuristic.
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Appendix A

APX Hardness Proof for CEP in

Hybrid Networks

We present the proof of APX-Hardness, due to Orlin 2005 [44], for the Hub-and-Spoke

Network Capacity Expansion Problem (HSP).

Theorem A.1. The HSP is APX-Hard even if the initial capacities on all the links

in the network is zero.

Proof. We provide a polynomial reduction from the Maximum 3-Dimensional Match-

ing (3DM) problem that is known to be APX-Hard (see Ausiello et al. [8]). In the

3DM problem, we are given three disjoint sets W, X, and Y each containing the

same number q of elements, and a set M C W x X x Y of triples with one item each

from W, X and Y. We seek to identify the largest subset M' of M such that no two

elements of M' agree in any co-ordinate.

Given an instance of 3DM, we create an instance of the HSP as follows. First we

describe the hub-and-spoke network. There is a node for every item i in W U X U Y

and for every triple mj in M. There are two special nodes denoted by s and t and the

hub node 0. Let the j-th triple, mj in M be (wj, xj, yj). We create edges (wj, mj),

(xj, mj), and (yj, mj), all with facility cost 1. We also create direct edges (mj, s) with

cost 2 between every triple mj in M and the special node s. There are no direct edges

out of the special node t. Finally, every node has a radial edge to the hub. For every
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item i E W U X U Y, the edges (i, 0) have cost 4. The radial edges (mj, 0) also have

cost 4 for all triples mj in M. Finally, the radial edges (s, 0) and (t, 0) out of s and t

both have facility cost 0.

The demands between the nodes are as follows. For every triple mj = (wj, xj, yj)

in M, there is a demand of 1 unit each between my and wj, xj and yj. For every

triple mj in M, there is a demand of 3 units between mj and the special node s, and

a demand of 1 unit between m s and the special node t. Finally, there is a demand of

3 units between every item i in W U X U Y and the node t.

The facility capacity C is 4.

We observe that since there are no direct links out of the node t, in any feasible

solution to the HSP, we must route all the demands out of the node t through the

hub. Therefore, we will buy one facility each on the radial edges out of the nodes

i E W U X U Y and one facility each on the radial edges out of the nodes mj E M for

a total cost of 4q + 41 M I. This leaves a residual capacity of 1 unit on the radial links

out of nodes i E W U X U Y and 3 units on the radial links out of nodes mj E M.

There are four demands out of the node mj = (wj, xj, yj) to the nodes wj, xj, yj,

and S. In any optimal solution to the HSP instance we created, these demands will

be satisfied in one of the following two ways:

1. Purchase a facility each on the direct edges (wj, mj), (xj, mi), and (yj, mj) for a

total cost of 3 and route these demands directly, and route the demand between

mj and S through the hub using the residual capacities.

2. Route the demands between my and the nodes wj, xj and y, through the hub

using the residual capacities, and purchase a facility on the direct link (mj, S)

for a cost of 2 to route the demand directly.

We refer to the first choice as a Type 1 purchase and the second choice as a Type 2

purchase.

Given an optimal solution to the HSP instance, let M' be the set of triples mj for

which we make a Type 2 purchase. Then the cost of this solution is (4q + 41MI) +
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(21M'I + 3(IMI - IM'I)). We note that the set M' is a feasible solution to the 3DM

problem.

On the other hand, given an optimal solution M' to the 3DM problem, we can

make Type 2 purchases for all the triples in M', and Type 1 purchases for all other

triples to obtain a feasible solution to the HSP with a cost of (4q + 41MI) + (21M'| +

3(MI - IM'D)).

We conclude that the 3DM problem has an optimal solution with k triples if and

only if the optimal cost of the HSP is (4q + 41M|) + (31M I - k). This completes our

reduction from the 3DM problem to the HSP without initial capacities. E
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