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Abstract

We present a biologically-motivated system for the recognition of actions from video

sequences. The approach builds on recent work on object recognition based on hi-

erarchical feedforward architectures and extends a neurobiological model of motion

processing in the visual cortex. The system consists of a hierarchy of spatio-temporal

feature detectors of increasing complexity: an input sequence is first analyzed by

an array of motion-direction sensitive units which, through a hierarchy of processing

stages, lead to position-invariant spatio-temporal feature detectors. We experiment

with different types of motion-direction sensitive units as well as different system ar-

chitectures. Besides, we find that sparse features in intermediate stages outperform

dense ones and that using a simple feature selection approach leads to an efficient

system that performs better with far fewer features. We test the approach on different

publicly available action datasets, in all cases achieving the best results reported to

date.
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Title: Professor
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Chapter 1

Introduction

1.1 The Action Recognition Problem

The problem we deal with is the recognition of actions from video sequences. We

are given training data, i.e. video sequences of several actions, then classify a test

video into one of the pre-defined actions. The applications include surveillance, video

retrieval and human-computer interaction.

Humans can robustly recognize actions under various conditions like moving back-

ground, clutter, co-occurrence of multiple actions, and variations of viewing angle,

position, appearance and scale. Humans can also recognize a wide range of action

types including human body, head, hand, and general animal actions. The existing

work on action recognition solves one or more of the challenges above, depending

on their applications, and is mostly restricted to the domain of human actions. In

this work, we focus on video sequences with slight background variations and differ-

ent foreground variations and with a single subject performing an action throughout

the video sequence. The action types are general, including both human and animal

actions.
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1.2 Motivation

Understanding the perception of actions in both humans and animals is an important

area of research crossing the boundaries between several scientific disciplines from

computer science to brain science and psychology. In this work we are interested in

addressing the action recognition problem by building a model that simulates some

well-known human visual capacities.

1.3 The Visual Processing System

The visual cortex appears to be organized into two functionally specialized pathways:

a ventral stream that is crucial for the processing of shape information and object vi-

sion, and a dorsal stream that is crucual for the processing of the spatial relationships

among objects, as well as for the analysis of motion information [72, 40]. Interest-

ingly, the organization of these two pathways is very similar. Their organization is

hierarchical; aiming, in a series of processing stages, to gradually increase both the

selectivity of neurons and their invariance to spatial transformations [21]. As one

proceeds from one area to the next, both neuronal response latencies and average sie

of the receptive field, i. e. the part of the visual field that if properly stimulated may

elicit a response from the neuron, increase along the hierarchy, and neuronal response

properties become increasingly complex.

These two pathways originate in the primary visual cortex (VI) where one can

find at least two populations of cells: cells which are tuned to spatial orientations

(e.g. a static vertical bar) and project to areas V2 and V4 of the ventral stream, and

cells which are sensitive to direction of motions (i.e. a bar at a specific orientation

moving in a direction perpendicular to its orientation) and project to area MT and

MST in the dorsal stream. The neurons in MT and MST are tuned to speed and

direction of motion [37, 2, 31]. The neurons in MST have also been found to have

substantial position and scale invariance and [22, 20], and respond to large flow field

stimuli.
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In this work, we speculate that neurons in intermediate visual areas of the dorsal

stream such as MT, MST and higher superior temporal polysensory areas are tuned to

spatio-temporal features of intermediate complexity, which pool over afferent input

units along space and time. This includes, but is not limited to, the optical flow

neurons described above. We assume that such spatio-temporal seneitivity neurons

might be found at different locations in the visual cortex such as STS, temporal cortex

and prefrontal cortex [24, 69, 47]. Finally, in higher polysensory areas (STSa), one

can find neurons that are responsive to the observation of biological motions [55].

Motivated by the recent success of biologically inspired approaches for the recog-

nition of objects in real-world applications [62, 44, 53], we extend a neurobiological

model of recognition of biological movements [21, 65]. The model has only been

applied so far to simple artificial stimuli.

Our work, based on the similar organization of the ventral and dorsal streams

in the visual cortex, applies computational mechanisms that have been proven to

be useful for the recognition of objects to the recognition of actions. The idea of

extending representations of object to that of actions has been successfully used in a

recent non-biologically motivated system [13].

1.4 Previous Work

Typically, computer vision systems for the recognition of actions have fallen into two

categories. One class of approaches relies on the tracking of object parts [75, 52,

5]. While these approaches have been successful for the recognition of actions from

articulated objects such as humans (see [19] for a review), they are not expected to be

useful in the case of less articulated objects such as rodents. The other common class

of approaches is based on the processing of spatio-temporal features, either global as

in the case of low-resolution videos [76, 14, 4] or local for higher resolution images

[59, 13, 16, 46].

Our approach falls in the second class of approaches to action recognition. It

extends an earlier neurobiological model of motion processing in the ventral/dorsal

13



stream of the visual cortex by Giese and Poggio [21]. While their model has been

successful in explaining a host of physiological and psychophysical data, it has only

been tested on simple artificial stimuli such as point-light motion stimuli [27]. In

particular, it is too simple to deal with real videos due to the use of a limited dictionary

of features in intermediate stages.
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Chapter 2

Background

2.1 Function of the Motion Pathway

Researchers have largely explored the properties of different cortical areas and con-

nections among them [72, 401. It is believed that there exists at least two functionally

specialized processing pathways, ventral stream and dorsal stream, each having the

primary visual cortex as the source of initial inputs. Dorsal stream, or motion path-

way, is dedicated to the transmission of motion information, i.e. visual signals our

eyes received during relative motion to the world. The motion pathway starts with

retina and LGN, reaching the primary visual cortex (VI), and goes through middle

temporal cortex (MT, V5) to medial superior temporal cortex (MST). (See Fig. 2-1).

It subsequently projects to higher cortical areas like STD, LIP, VIP, STS, where sig-

nals from different pathways are integrated and, due to their complexity, the neural

properties are less known.

2.1.1 Primary Visual Cortex (VI)

Starting from the retina, where large ganglion cells called magnocellular, or M cells,

are triggered when moving objects sweeps across their receptive fields. The M cells'

impulses travel along the optic nerve to a relay station in the thalamus, near the

middle of the brain, called the lateral geniculate nucleus (LGN). Then they go to the

15
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middle layer of neurons in the primary visual cortex. There, by pooling together the

inputs from many M cells, neurons become sensitive to the spatial orientation and

direction of motion. In the primate, most VI cells have small receptive fields, about

1 x 10. Such direction-sensitive cells were first discovered in the mammalian visual

cortex by Hubel and Wiesel, who projected moving bars of light across the receptive

fields of cells in the primary visual cortex of anesthetized cats and monkeys [26].

Most V1 cells respond to oriented moving bars or edges, and they are classified

into two types according to the receptive field structure. Simple cells respond linearly

due to the fixed excitatory and inhibitory subregions comprising their receptive fields.

Complex cells' responses are independent of the spatial position of the stimulus within

the receptive field. It is widely accepted that complex cells combine multiple simple

cells to gain position invariance and thus non-linearity [26]. Both simple and complex

cells are sensitive to direction of motion and spatial frequency [9, 39]. In addition,

complex cells were recently found to be sensitive to the speed of the moving stimulus

[51].

2.1.2 Middle Temporal Area (MT)

Area MT lies along the posterior bank of the superior temporal sulcus [18]. The

cells in this area inherit the direction and speed tuning properties from their direct

afferent inputs, VI complex cells [42, 3, 37, 39]. Inside the large receptive field, about

100 x 10 , of MT cells, integration of local sensed motion into the perception of a whole

moving object starts occurring, as supported by the finding of pattern-sensitive neu-

rons by Movshon et al., who presented a plaid containing two gratings with different

orientations and moving independently along the direction perpendicular to their ori-

entations [41, 36]. The direction of the plaid is thus the vector sum of the direction

of the two gratings. Relative to component-sensitive cells which respond when one of

the grating moves along the cells' preferred direction, pattern-sensitive cells respond

when the direction of the plaid matches the cells' preferred direction. Using more

complex moving patterns, pattern-sensitive cells are shown to be insensitive to the

exact shape of the moving stimulus [50].

16



2.1.3 Medial Superior Temporal Area (MST)

Area MST receives its input from the MT area [71, 67]. This area contains at least

two major subdivisions: a ventral-lateral one (MSTl), and a dorsal one (MSTd). The

cells in MSTl have been shown to have relatively small receptive fields, similar in size

to those found in area MT at the same eccentricity and also similar in terms of the di-

rectional selectivity and their preference for moving bars. The MSTd cells have larger

receptive fields and respond to flow-field stimuli. Most of the MSTd neurons respond

to radial (expansion/contraction), rotation (clockwise/counterclockwise), translation,

and spiral motions (the combination of radial and rotation, see Fig. 7A in [22]), pre-

sumably from the particular combination of multiple MT afferent cells [58, 23]. Since

these motions are associated with the flow-field patterns projected onto the retina

during observer locomotion, it has been suggested by several groups that the area

MSTd has a role in processing optical flow information used in the analysis of self

motion and visual guidance of movements in space. It has also been suggested that

MST may be important in analyzing the complex motions of objects. Similarly to MT

pattern cells, MST cells respond to the moving stimulus regardless of the form [20],

but opposed to the MT cells that respond to the position of moving stimulus, MST

cells are position invariant [30, 22]. This prominent position and form invariance, as

well as the large receptive field size, about one fourth the visual field, establishes the

role of MST area as further integrating of motion information from MT area.

2.1.4 Superior Temporal Sulcus (STS)

Several electrophysiological or fMRI studies have shown that there exist neurons in

STS that respond selectively to biological motions [24, 11, 47, 55]. Neurons in the

temporal cortex can learn to associate pairs of arbitrary geometrical stimuli [69]. This

is a key capacity to recognize different views of an action. In addition, the integration

of form (ventral) and motion (dorsal) pathways has been found in superior temporal

polysensory area (STPa) in macaque, and temporal coherence between form and

motion signals have been proven to subserve the recognition of biological movements

17



[48].

2.1.5 Summary

Along the motion pathway, the average receptive field size and the complexity of

their optimal stimuli increase steadily, suggesting that the cells receive convergent

input from multiple cells in the lower cortical area. In addition, much of the neural

mechanism reviewed above can be viewed as a 'bottom-up' process subserved by feed-

forward projections between successive pairs of areas within the motion pathway. The

motion pathway can therefore be modeled as a feedforward hierarchical architecture

[17, 33, 54, 21, 61].

The increasing selectivity (from moving edges to complex flow-field patterns) and

invariance (position invariance of Vi complex cells, form invariance of MT cells, and

from/position invariance of MST cells) observed in the dorsal stream have also been

observed in the ventral stream [21, 61], indicating similar organizations of the two

streams, and thus supporting the extension from model of object recognition to action

recognition.

2.2 Previous Models of Specific Motion Cortical

Areas

Several researchers have proposed computational models of individual or multiple

motion cortical areas based on different aspects of neuronal properties. In this section

we review this work.

2.2.1 V1-MT

Simoncelli and Heeger proposed a two stage model corresponding to neurons in cor-

tical area VI and MT [66]. Each stage computes a weighted linear sum of inputs,

followed by rectification and divisive normalization. The orientation and spatial fre-

quency selectivity of VI simple cells are modeled by a set of three-dimensional filters

18



which are oriented in the space-time domain. Following the previous finding that some

aspects of complex cells' responses can be obtained by combining subunits distributed

over a localized spatial region [15], they computed the responses of VI complex cells

as a weighted sum of simple cells with the same space-time orientation over a local

spatial region. In the second stage, MT pattern and component cells are modeled

as a weighted sum of VI complex cells. The speed and direction selectivity of MT

pattern cells are constructed via an implicit implementation of IOC (intersection-of-

constraints) by summing a set of VI complex cells over a local spatial region and

over orientation and spatial frequency. MT component cells sum VI complex cells

with the same space-time orientation over spatial position and spatial frequency. The

rectification is imposed to simulate the positive-only responses of neurons, and the

normalization accounts for nonlinear response, saturation and lateral inhibition.

2.2.2 V1-MT-MST

Grossberg et al. proposed a V1-MT-MST neural model to explain the flow-field pat-

tern sensitivity of MST cells by combining well-known neural mechanisms: log po-

lar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling

of motion-sensitive signals and subtractive extraretinal eye movement signals [23].

The mapping of visual information from retina to VI obeys a cortical magnification,

meaning the cortical resolution gradually increases from periphery to fovea [8]. The

property can be modeled by transforming the visual information in a cartesian coordi-

nate in the retina into a log-polar coordinate in VI [60]. The mapping was calculated

within a 45' x 450 visual field, the receptive field size of MST cells. MT cells are com-

puted as a summation of VI cells with the same preferred direction within a Gaussian

receptive field. MST cells are computed as a summation of MT cells with the same

preferred direction. (see the Fig 3. in [23]) This formulation transforms the spiral

motion in a cartesian coordinate into a oblique linear motion in a log-polar coordinate

in the cortex, therefore MST cells' flow-field selectivity simply results from local spa-

tial summation of MT cells with the same directional preferences, rather than from

complex and specialized interactions as the template model in [58].
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2.2.3 MT Speed Tuning Cells

Perrone proposed a mechanism to explain the speed tuning of MT cells by investi-

gating their properties in the frequency domain [49]. Considering one-dimensional

motion, an object moving in a constant speed has a spectrum that lies on a line in

the spatio-temporal frequency domain [73]. By measuring the neuronal responses to

moving sine-wave gratings of different combinations of spatial and temporal frequen-

cies, the spectral receptive field (SRF) can be mapped out. The SRF of speed-tuned

MT cells is typically oriented relative to the spatial and temporal frequency axes,

similar to that of a moving edge with a fixed speed. Conversely, the typical SRF of

a VI cell is parallel to the spatial and temporal frequency axes. Therefore, the speed

tuning of MT cells can be constructed by combining the non-oriented SRF of VI cells

into the oriented SRF of MT cells (a formulation is derived in Eq 1. in [49]).

2.3 Related Feedforward Hierarchical Models

Our system consists of a feedforward hierarchical architecture which has been de-

veloped by several researchers. The main connection between hierarchical stages is

each unit in a stage receives inputs from multiple units in the previous stage. This

idea was inspired by Hubel and Wiesel [26] and subsequently the architecture was

constructed by Fukushima and applied on handwritten-digits recognition [17]. Le-

Cun et al. developed the convolutional network [33], also a feedforward hierarchical

architecture. With no attempt to model biology, Riesenhuber and Poggio developed

the HMAX model for the ventral stream [54]. Giese and Poggio extended it to in-

clude dorsal stream and applied it to the recognition of biological motion [21]. More

recently HMAX model was refined by Serre et al. and successfully applied to the

multiple object recognition tasks in real world scenario [62, 61]. In this section, we

briefly review recent work that are mostly related to our system.
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2.3.1 Object Recognition with Cortex-like Mechanisms

Serre et al. built a computational model accounting for several well-known facts: (a)

visual processing is hierarchical with increasing position and scale tolerance at each

stage. (b) along the hierarchy, the receptive fields of neurons and the complexity of

their preferred stimulus increase. (c)The first 100-200 ms visual information process-

ing is feedforward (d) plasticity and learning probably occur at all stages [62, 61].

The model is hierarchical with alternating simple S units and complex C units.

The S units combine their inputs with Gaussian-like tuning to increase selectivity, and

the C units pool their inputs through a maximum operation to increase invariance to

2D transformations. In the first stage, Si units model the spatial-orientation-selective

VI simple cells by Gabor filters with a range of orientations and spatial scales. In the

next complex stage, C1 units mimic the scale and position tolerant VI complex cells

by pooling Si units with the same orientation over a local spatial region and over

adjacent scales. In the next simple stage, S2 units are modeled as Gaussian functions

that are tuned to prototypes extracted from training examples. The S2 units are

similar to the view-tuned neurons in inferotemporal cortex (IT) , which are selective

to complex shapes. The input of each S2 unit is an image patch from the previous

C1 stage with all the orientations and at a particular scale. Therefore, S2 maps are

computed at all positions and all scales. In the next complex stage, C2 units pool

a global maximum from S2 maps over all scales and all positions. This results in a

vector representation of an input image, with each element corresponding to the best

match between the image and a prototype. A support vector machine (SVM) is then

trained to classify images based on these vector representations.

2.3.2 Neural Mechanisms for Biological Motion Recognition

Giese and Poggio built a model based on several experimental results relating to

the recognition of biological movements [21]. The model is divided into two parallel

processing streams, modeling the ventral and dorsal pathways. The model of ventral

pathway is a simpler version of the HMAX model [54] (also see Sec. 2.3.1).
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The model of dorsal pathway considers the tuning properties of VI, MT, and MST

cells by a four-stage model. The first stage consists of motion detectors corresponding

to Vi direction-selective cells and MT component cells. The second stage models

cells that are sensitive to local flow-field structure. Two types of cells are considered:

MT translation-flow-sensitive cells and motion-edge-sensitive (or opponent-motion

sensitive) cells in MT and MST. Positional and scale invariance of MST neurons

are modeled in this stage by pooling from position-specific motion-edge detectors

through a maximum operation. The third stage uses Gaussian functions to model the

flow-field-pattern-sensitive neurons found in STS and MST. The Gaussian functions

center at flow-field patterns extracted from training sequences. The last stage achieves

temporal order selectivity by adding the lateral connections between the flow-field-

pattern-sensitive neurons.
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cortical areas we model along the dorsal stream. Reproduced with permission from

[12].
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Chapter 3

The System

3.1 System Overview

Our approach builds on recent work on object recognition [62, 61] based on hier-

archical feedforward architectures and extends a neurobiological model of motion

processing in the visual cortex [21]. The system has a hierarchical structure and uses

as an input a gray value video and outputs a vector-form representation. In the first

stage, motion features are detected by motion-sensitive units which bear functional

similarity to VI simple cells and MT cells, and in the next stage, tolerance to spatial

translation is built by a maximum-pooling mechanism which simulates VI complex

cells. In the higher stages of the hierarchy, we predict the existence of neurons that re-

spond to spatio-temporal features and that may be similar to motion-pattern-sensitive

MST neurons and temporal-order-sensitive STP neurons. Such predicted neurons are

modeled by a template matching operation. By alternating the template matching

(simple) and maximum-pooling (complex) operations, the extracted features grad-

ually gain their complexity and invariance. In the last stage, features are selective

to complex motion patterns and temporal orders of sequences and tolerant of local

deformations in space and shifts in time. The system is illustrated in Fig. 3-1 (also

see Appendix for the detailed implementation).
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Figure 3-1: Sketch of the system (see text for details).

3.2 Representation

S1 units The first stage of the system contains a set of motion-sensitive Si units

which are similar to the V1 simple cells and MT cells in the motion pathway. Each

Si unit extracts one attribute of motion from the input video, a 2-8 second image

sequence with frame rate 25 (fps). The output of this stage is a video sequence with

several layers of frames (S1 frames). Each layer is the output of one S1 unit. We

will describe three kinds of S1 units and briefly review the related work that motivate

our choices.

Space-time-gradient-based Si units: The space-time gradients are three-

dimensional vectors containing gradients at each pixel along two spatial dimensions

and one temporal dimension. Several studies have shown that the space-time gra-

dients contain useful motion information. A statistical distance measurement based

on normalized space-time gradients is applied to event recognition [76]. The similar-

ity measurement between two space-time patches can be built through the statistics

of space-time gradients [63]. Several optical flow algorithms based on the constant-
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brightness assumption accumulate local motion information by computing space-time

gradients. In this work, we use two types of S1 units, each computing the ratio of

the temporal gradient to a spatial gradient. We compute the ratios, instead of using

the three gradients directly, to keep features in the same scale so as to avoid any

bias of the template matching in the higher stages. Also, to make features invariant

to contrast reversal between foreground and background, their absolute values are

taken.

Optical-flow-based S units: The Si units model the direction-sensitive VI

neurons and the speed-sensitive MT neurons, as motivated by the work in [21]. The

directional tuning curve of VI neurons is modeled as a circular-Gaussian-like function

[6, 21, 57]. The speed-sensitive MT neurons can be classified as low-pass, speed-

tuned or broad-band, based on the characteristics of responses [31]. Low-pass cells

are characterized by large responses to slow speeds and a small upper cutoff speed.

Broad-band cells are characterized by large responses to slow speeds and a large upper

cutoff speed. Speed-tuned cells have a salient peak in the response curve, indicating

the cells' preferred direction. As opposed to previous work in which broad-band

cells are modeled by a band-pass function [6], we model the speed-tuned cells by an

exponential function. We use eight VI and MT neurons with preferred directions and

speeds chosen to be in the range of our motion sequences. We use eight Si units,

each combining the response of one VI and one MT neuron in a multiplicative way.

Space-time-oriented Si units: Most studies focus on the spatial structure

of receptive fields: VI simple cells' receptive field profiles were modeled by two-

dimensional Gabors or Gaussian-derivative functions in [28, 29]. However, the organi-

zation of the receptive field is not static: Mclean et al. analyzed the three-dimensional

first-order properties of simple cells in cat and found two classes of cells [38]. For one

class, the receptive field profiles are space-time separable, meaning the spatial and

temporal profiles can be disassociated. Receptive field profiles in the other class are

inseparable, meaning that the excitatory and inhibitory subregions comprising the
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receptive field are tilted in space-time domain (the two classes were also reported

in [10]). They found most of the simple cells with separable receptive fields are not

direction-selective, and for those with inseparable receptive fields, the preferred di-

rection can always be predicted by the oblique direction of the subregions, and the

preferred speed can be derived from the slope of the tilted subregions. Motivated

by their idea that the space-time tilted subregions of receptive fields underly veloc-

ity selectivity of VI simple cells, we model S1 units as a set of space-time-oriented

three-dimensional filters.

Several studies have used three-dimensional linear filters as motion detectors. The

energy model was built from two space-time separable filters whose spatial responses

are 2D Gabor functions and temporal responses are based on psychophysical experi-

mental results [1, 56]. A set of three dimensional Gabor filters were used to extract

image flow [25]. MT neurons were modeled by three-dimensional Gaussian derivative

filters in [66]. In this work, we use the directional (3rd) derivatives of three-dimensional

Gaussians as Si units, following the work in [66]. The size of the filters is chosen to

match that of the receptive field of a typical VI simple cell [62, 56]. The orientations

of the filers in space-time depend on the preferred directions and speeds of the Si

units.

C1 units Tolerance to local spatial translation is achieved in this stage by pooling

a maximum response from S1 frames over local spatial positions. The pooling mech-

anism has been widely used to model VI complex cells: some work computed the

V1 complex cells as a linear summation of VI simple cells [43, 66, 15], and others

computed the VI complex cells as a local maximum of VI simple cells [21, 62]. Com-

paring the two operations, maximum-pooling assures that the pooled features do not

lose their selectivity built by previous stages. In addition, maximum-pooling provides

robustness to the background clutter.

The pooling is performed for each layer of S, frame, meaning the invariance is built

upon each motion attribute. The resulting C1 frames are smaller than S1 frames

due to the pooling, while the number of layers and the number of frames remain the
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same. Note that the maximum-pooling operation is separately applied to each frame

without temporal pooling.

S 2 units This stage consists of motion-prototype-sensitive S2 units: their existence

is a prediction of the model. S2 units are similar to MST neurons in that they both

respond to complex motion patterns. The difference is that S2 units respond to class-

dependent prototypes extracted from the training data, while MST neurons respond

to patterns with general structures such as circular, radial, spiral or translational mo-

tion [23, 22]. The role of S2 units in the hierarchy is to increase the feature complexity

and selectivity by a template matching operation between the input features and the

stored motion prototypes.

The motion prototypes are extracted at a random spatial position and across all

the layers of a random training C1 frame. See Fig. 3-2 (a) for an illustration. Taking

the input as a C1 frame with all the layers, each S2 unit convolves the stored prototype

with the input frame. This results in a S2 map where each pixel represents a similarity

measurement between a patch of the input C1 frame and the stored prototype.

We consider two metrics of similarity measurements: the dense Euclidean distance

as used in [62] and the sparse normalized dot-product as used in [44]. The two

distance measurements differ in the amount of computation. Given a prototype with

size n(pixels) xn(pixels) x l(layers), and a patch of the same size, in the dense case, all

the In 2 values are taken. In the sparse case, based on the fact that weak features are

noisy and have only minute effects on the responses, at each pixel location, only the

strongest value among the I layers is taken, resulting in the size n(pixels) x n(pixels)

and thus only n 2 values are considered. Another difference is in terms of the form

of operation. Using the Euclidean distance, the response is simply the Euclidean

distance between the prototype and the input patch. Using the normalized dot-

product, the patch is firstly sparsified similarly to the prototype, meaning that at each

pixel location, the value of the patch is chosen from the layer used in the prototype's

corresponding pixel location. The response is the dot product of the n x n prototype

and the patch normalized by their norms.
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Figure 3-2: (a) The extraction of a S2 motion prototype. (b) The extraction of a S3

temporal prototype (see Appendix for the notations.)

C2 units Similar to the role of the C1 unit, the C2 unit adds position invariance by

a maximum-pooling operation. The C2 unit pools the global maximum across all the

pixel locations of an input S2 map, resulting in a scalar representing the best match

between the C frame and the motion prototype. By stacking all the C2 responses of

a frame, we get a vector representation (C2 vector).

S3 units Sequence selectivity is one of the neural mechanisms involving in action

recognition, meaning that neurons are tuned to a temporal order, and randomization

of the temporal order of the frames doesn't trigger neurons. It was previously modeled

as from asymmetric lateral connections of neurons [21]. In this work, to be consistent

with the use of motion-prototype-sensitive S2 units, we model the sequence-selective

neurons by temporal-prototype-sensitive S3 units. We firstly align the C2 vectors of

a video into columns, resulting in a C2 matrix. Each temporal prototype is then

extracted at a random column and across all rows of a random training C2 matrix.

See Fig. 3-2 (b) for an illustration.

Taking as an input a C2 matrix, each S3 unit convolves the stored temporal

prototype with the input C2 matrix. This results in a S3 map where each pixel

represents a similarity measurement between a patch of the input C2 matrix and the

stored temporal prototype.
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C3 units Similar to the role of the C and C2 units, the C3 unit adds invariance

to shifts in time by a maximum-pooling operation. The C3 unit pools the global

maximum across all the pixel positions of an input S3 map, resulting in a scalar

representing the best match between the C2 matrix and the temporal prototype. By

stacking all the C3 responses of a video, we get a vector representation (C 3 vector).

3.3 Feature Selection

The S2 stage is the most time-consuming part of the system because it performs

template matching between each C1 frame and each motion prototype. We perform

feature selection on the C2 features [74]. Firstly, we compute the C2 vectors of a small

subset of the training frames by matching them to all the motion prototypes. Then we

apply feature selection on these C2 vectors to identify relevant features, which come

from the matching to class-dependent prototypes, and select these motion prototypes.

The S 2 maps of the remaining training and test frames are then computed by matching

to the selected motion prototypes. See Fig. 3-3 for an illustration.

3.4 Classification

The classification stage uses a support vector machine (SVM). Frame-based and video-

based classification are both used to evaluate our system. In the frame-based case,

the C2 vectors are used to train and test an SVM. In the training phase, each frame is

assigned the label of the video it belongs to. In the test phase, we obtain a predicted

label for each frame of a video, and combine these predictions to get a label for the

video by a majority voting scheme. In the video-based case, the C3 vectors are used

to train and test an SVM, and a single label is obtained for each test video. See Fig.

3-3 for an illustration of the two classification approaches.
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Figure 3-3: The upper part (blue) shows the building of C2 vectors through repeated
matching/pooling mechanisms in the SI-C 2 stages, and the lower part (green) shows
that, stacked C2 vectors go through another matching/pooling mechanism to generate
C3 vectors. The upper dashed box is modified by adding feature selection, as shown in
the lower left dashed box. We randomly extract 500 frames for each action category
to generate C2 vectors, and select prototypes by applying feature selection on the C2

vectors. The remaining frames are then matched to the selected prototypes.
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Chapter 4

Experiments

We have conducted an extensive set of experiments to evaluate the performance of the

proposed action recognition system on three publicly available datasets: two human

action datasets (KTH and Weizmann) and one mice action dataset (UCSD).

4.1 Methods

4.1.1 Datasets

KTH Human The KTH human action dataset [59] contains six types of human

actions: walking, jogging, running, boxing, hand waving and hand clapping. These

actions are performed several times by twenty-five subjects in four different conditions:

outdoors (si), outdoors with scale variation (s2), outdoors with different clothes (s3)

and indoors with lighting variation (s4). The sequences are about 4 seconds in length.

The sequences were down-sampled to a spatial resolution of 160 x 120 pixels. The

dataset is shown in the Fig. 4-2.

Weizmann Human The Weizmann human action dataset [4] contains eighty-one

low resolution (180 x 144 pixels) video sequences with nine subjects performing nine

actions: running, walking, jumping-jack, jumping forward on two legs, jumping in

place on two legs, galloping-sideways, waving two hands, waving one hand, and bend-
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Figure 4-1: Sample videos from the mice dataset (1 out 10 frames displayed with a
frame rate of 15 Hz) to illustrate the fact that the mice behavior is minute.

ing. The size of the subject in this dataset is about half the size of the subject in the

KTH human action dataset. However, we run experiments on the two sets using the

same parameters.

UCSD Mice The UCSD mice behavior dataset [13] contains seven subsets, each

being recorded at different points in a day such that multiple occurrences of actions

within each subset vary substantially. There are five actions in total: drinking, eating,

exploring, grooming and sleeping. The sequences have a resolution of 240 x 180

pixels and a duration of about 10 seconds. This dataset presents a double challenge.

First the actions of the mice are minute (see Fig. 4-1 for examples) and second the

background of the video is typically noisy (due to the litter in the cage).

4.1.2 Methodology

Splits We divide each dataset into groups: each condition of KTH Human is divided

into 25 groups, one per subject; Weizmann Human is divided into 9 groups, one per

subject; UCSD Mice is kept 7 groups as the original setting. We report the recognition

rate of our system as the average of 5 rounds. Each round, we train on randomly

drawn 9 groups and test on the rest groups. The detail is as follows: each condition

of KTH Human contains 16 training groups and 9 test groups; Weizmann Human

contains 6 training groups and 3 test groups; UCSD Mice contains 4 training groups

and 3 test groups.
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Preprocessing We preprocessed the datasets to speed up our experiments: for

the KTH human and UCSD mice datasets we used the openCV GMM background

subtraction technique based on [68]. In short, a mixture of Gaussians model was

used to identify the foreground pixels of each frame. From the foreground mask,

we extracted a bounding box (full height, half the width of the frame and centering

at the mass center of the foreground pixels) for each frame. For the Weizmann

Human dataset, the bounding boxes were extracted directly from the foreground

masks provided with the dataset.

Performance Measurement Having represented each video as a vector, we are

going to deal with a multi-class classification problem. The most common perfor-

mance measure is the confusion matrix. Let the number of action categories be n.

The confusion matrix is a n x n matrix, where each row represents a true label, each

column represents a predicted label, and element (i, j) is the percent of label-i exam-

ples which are classified as label j. The value of the element (i, j) directly reflects the

confusion between the two classes, i and j. We compute the overall recognition rate

by averaging over the diagonal terms (i, i), i = 1, .. , n.

4.1.3 Benchmark Algorithm

For benchmark we use the algorithm by Dollar et al [13] which has been compared

favorably to several other approaches [76, 14] on the KTH human and UCSD mice

dataset described earlier. Based on the assumption that a behavior(or action) can

be fully described in terms of the types and locations of interest points, a space-time

separable filter is applied to detect interest points:

R= (I*g* he,) 2 + (I*g* hod) 2  (4.1)

where g is a 2D spatial Gaussian function, and he, and hod are quadrature temporal

Gabor functions. The local behavior is characterized by a cuboid, i.e., a spatio-

temporal window of pixel values around each point detected. A dictionary of cuboid
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prototypes is built by clustering cuboids extracted from all the training sequences

using K-means algorithm. In the training stage, each cuboid is assigned a type by

matching it to the cuboid prototypes, and a vector representation of a sequence

is obtained by computing the histogram of its cuboid-types. Each element of the

vector denoted the frequency of the occurrences of each cuboid prototype. In the

classification stage, a linear SVM classifier is used. The code was graciously provided

by Piotr Dollar.

4.2 Results

We have studied several aspects and design alternatives for the system. First we

showed that zero-norm feature selection can be applied to the C2 units and that the

number of features can be reduced from 12, 000 down to ~ 500 without sacrificing

accuracy. We then proceeded to apply feature selection for all the remaining exper-

iments and compared different types of motion-direction sensitive input units. We

also compared the performance of sparse vs. dense C2 features and present initial

preliminary results with the addition of a high-level C3 stage.

Selecting C2 features with the zero-norm SVM

The following experiment looks at feature selection and in particular how the perfor-

mance of the system depends on the number of selected features. For this experiment,

we used space-time oriented Si units and sparse C2 features. Performance is evalu-

ated on the four conditions of the KTH dataset.1 In the first iteration, all the 12, 000

prototypes extracted from the C1 frames of the training set were used to compute the

C2 features. In each of the following iteration, only features with a weight IwI > 10-3

were selected.

Table 4.1 compares the performance of each round. In agreement with previous

results on object recognition [44], we found that it is possible to reduce the number

of C2 features quiet dramatically (from ~ 104 down to ~ 102) with minimal loss in

'For computational reason the performance reported is based on a single split of the KTH dataset.

36



1 5 10 15 20
si No. feat. 12000 3188 250 177 158

accu. 91.7 91.7 89.3 88.9 90.3
s2 No. feat. 12000 4304 501 340 301

accu. 86.6 86.6 85.2 87.0 85.7
s3 No. feat. 12000 3805 392 256 224

accu. 90.3 90.7 89.4 88.4 88.0
s4 No. feat. 12000 3152 313 217 178

accu. 96.3 96.3 96.3 95.3 95.0
Avg accu. 91.2 91.3 90.1 90.0 89.8

Table 4.1: Selecting features: System performance for different numbers of selected

C2 features at rounds 1, 5, 10, 15 and 20 (see text for details).

[13] GrC2  Of C2  StC2

KTH si 88.2 94.3 / 92.7 92.8 / 93.3 89.8 / 96.0
sem. s1 ±1.9 ±1.7 / ±3.2 ±2.8 / +2.9 ±3.1 / ±2.1

KTH s2 68.3 86.0 / 86.8 80.7 / 83.1 81.3 / 86.1
s.e.m. s2 ±2.1 ±3.9 / ±3.9 ±4.0 / ±3.9 ±4.2 / ±4.6

KTH s3 78.5 85.8 / 87.5 89.1 / 90.0 85.0 / 88.7
s.e.m. s4 ±2.9 ±2.7 / ±3.3 ±3.8 / ±3.5 ±5.3 / ±3.2

KTH s4 90.2 91.0 / 93.2 92.9 / 93.5 93.2 / 95.7
se.m. s4 ±1.8 ±2.0 / ±1.9 ±2.2 / ±2.3 ±1.9 / ±2.1

Avg 81.3 89.3 / 90.0 88.9 / 90.0 87.3 /91.6
s.e.m. Avg ±2.2 ±2.6 / ±3.1 ±3.2 / ±3.1 ±3.6 / ±3.0

UCSD 75.6 78.9 / 81.8 68.0 / 61.8 76.2 / 79.0
s.e.m. ±4.4 ±4.3 / ±3.5 ±7.0 / ±6.9 ±4.2 / ±4.1

Weiz. 86.7 91.1 / 97.0 86.4 / 86.4 87.8 / 96.3
s.m. ±7.7 ±5.9 / ±3.0 ±9.9 / ±7.9 ±9.2 / ±2.5

Table 4.2: Comparison between three types of C2 features (gradient based GrC 2 ,
optical flow based Of C2 and space-time oriented StC2 ). In each column, the number

on the left vs. right corresponds to the performance of dense vs. sparse C2 features

(see text for details). 1,. . 84 correspond to different conditions of the KTH database

(see Section 4.1.1) and Avg to the mean performance across the 4 sets. Below the

performance on each dataset, we indicate the standard error of the mean (s.e.m.).

accuracy. This is likely due to the fact that during learning, the S2 prototypes were

extracted at random locations from random frames. It is thus expected that most of

the prototypes should belong to the background and should not carry much informa-

tion about each specific action. In the following, feature selection was performed on

the C2 features for all the results reported.
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GrC3  Of 3 StC3
KTH s1 92.1 / 91.3 84.8 / 92.3 89.8 / 96.0
KTH s2 81.0 / 87.2 80.1 / 82.9 81.0 / 86.1
KTH s3 89.8 / 90.3 84.4 / 91.7 80.6 / 89.8
KTH s4 86.5 / 93.2 84.0 / 92.0 89.7 / 94.8

Avg 87.3 / 90.5 83.3 / 89.7 85.3 / 91.7

UCSD 73.0 / 75.0 62.0 / 57.8 71.2 / 74.0

Weiz. 70.4 / 98.8 79.2 / 90.6 83.7 / 96.3

Table 4.3: Comparison between three types of C3 units (gradient based GrC3 , optical

flow based Of C3 and space-time oriented StC3 ). In each column, the number to the

left vs. the right corresponds to the performance of C3 features computed from dense

[62] vs. sparse [441 C2 features. The results are based on the performance of the

model on a single split of the data.

Comparing different C2 feature-types

Table 4.2 gives a comparison between all three types of C2 features: gradient based

GrC2 , optical flow based Of C2 and space-time oriented StC2 features. In each col-

umn, the number on the left vs. the right corresponds to the performance of dense

[62] vs. sparse [44] C2 features (see Section 3.1 for details). s1,. . .84 corresponds to

the different conditions of the KTH database (see Section 4.1.1).

Overall the sparse space-time oriented and the gradient-based C2 features (GrC2

and StC2 ) perform about the same. The poor performance of the Of C2 features on

the UCSD mice dataset is likely due to the presence of the litter in the cage which

introduces high-frequency noise. The superiority of sparse C2 features over dense C2

features is in line with the results of [44] for object recognition.

Comparing different C3 feature-types

We have started to experiment with high-level C3 features. Table 4.3 shows some

initial results with three different types of motion-direction sensitive input units (see

caption). Overall the results show a small improvement using the C3 features vs. C2

features on two of the datasets (KTH and Weiz) and a decrease in performance on

the third dataset (UCSD).
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Running time of the system

A typical run of the system takes a little over 2 minutes per video sequence (KTH

human database, 50 frames, Xeon 3Ghz machine), most of the run-time being taken

up by the S 2 + C2 computations (only about 10 seconds for the S1 + C1 or the

S 3 + C3 computations). We have also experimented with a standard background

subtraction technique [68]. This allows us to discard about 50% of each frame thus

cutting down processing time by a factor of 2 while maintaining a similar level of

accuracy. Finally, our system runs in Matlab but could be easily implemented using

multi-threads or parallel programming as well as General Purpose GPU for which we

expect a significant gain in speed.
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(a)

(b)

(c)

Figure 4-2: (a) KTH Human. First row: outdoor condition. Second row: outdoor
with scale variance. Third row: outdoor with different clothes. Fourth row: indoor
with lighting variation. Six actions from left to right: walking, running, jogging,
boxing, handwaving, and handclapping. (b) Weiz. Human. Actions in the first row
from left to right: bending, jumping-jack, jumping forward on two legs, jumping in
place on two legs, running, galloping-sideways, walking, waving one hand, and waving
two hands. (c) UCSD Mice. Five actions from left to right: drink, eat, explore, groom
and sleep.
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Chapter 5

Conclusion

5.1 Main Contributions

Our approach is closely related to the feedforward hierarchical architectures with

alternating template matching and maximum-pooling, used for the recognition of

objects in still images [61]. We list the main extensions as follows:

Using motion-direction sensitive S1 units In the work [61], a still gray-value

input image is first analyzed by an array of Gabor filters (Si units) at multiple orien-

tations for all positions and scales. To extend from the system of object recognition

to action recognition, we empirically searched for a suitable representation for the Si

units. We compared three types of motion-sensitive Si units: a) Space-time-gradient-

based units; b) Optical-flow-based units; c) Space-time-oriented units, which have

been shown to be good models of motion-sensitive simple cells in the primary visual

cortex [66]. Interestingly, we found that the optical flow features previously used in

[21, 6, 65] lead to worse performance than the gradient-based and the space-time-

oriented features.

Learning sparse spatio-temporal motion S2 features In the work [61], a

Gaussian-like function is used to compute the responses of dense S2 features. A

more recent work found that using the same Gaussian-like function, the S2 features
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can be sparsified leading to a significant gain in performance on standard object

recognition databases [44]. In this work, instead of using a Gaussian-like function,

we directly use the Euclidean-distance as a similarity measurement, and we compare

the performance of both dense and sparse S 2 features.

Introducing feature selection to the S2 stage As opposed to video-based pro-

cessing [59, 13], our system, inherited from object recognition model. is a frame-based

processing, in particular, from S1 to C2 stage. Using a frame-based processing sys-

tem, action recognition is time consuming in that each data point is a video sequence

containing up to 100 frames. Introducing feature selection can lead to an efficient

system with better performance but with less features, as shown in [44]. Motivated

by these findings, we experiment with the AROM feature selection technique [74] in

the S2 stage to select relevant motion prototypes, and thus facilitating the template

matching. We find that a more compact S2 feature representation can lead to signifi-

cant decrease in the computation time taken by the overall system without sacrificing

accuracy.

Adding new S 3 and C3 stages Finally we experiment with an extension of the

hierarchy which is specific to motion processing, i.e. to include time invariant S 3

and C3 units. Preliminary experiments suggest that these units sometimes improve

performance, but not significantly.

5.2 Role of the System in the Motion Pathway and

Action Recognition

Rather than sorting out a "biologically realistic" model from the wealth of anatom-

ical, physiological and biophysical evidence to provide a functional explanation and

quantitative simulations of experimental data concerning cells in the dorsal stream,

we built a "biologically inspired" system based on two ideas. (1) Simple features

processed in low-level cortical areas are transformed into complex features in high-
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level cortical areas. (2) Selectivity and invariance are key mechanisms underlying

recognition. The two ideas are realized through a hierarchical system with basic

simple/complex stages to achieve selectivity/invariance, and by successive use of the

simple/complex stages, low-level features also gain their complexity.

The system outperforms state of the art computer vision techniques, regarding

the real world action recognition problem. The work illustrates a new approach for

action recognition and encourages the move towards a biologically inspired computer

vision architecture.

5.3 Future work

(a) Computational complexity of our system is significant. Using the feature selection

to choose a small amount of motion prototypes, the running time can be reduced

to two minutes per video sequence (about 50 frames). However, in the training

phase, computing the C2 features of the pre-drawn training frames using all the

motion prototypes (See Appendix for implementation details) still takes up to several

hours. Moreover, for each training/test split, similar training frames and prototypes

are repeatedly drawn and used to compute S 2 maps, causing a lot of redundant

computation. A possible solution is to build a dictionary containing the selected

motion prototypes of a variety of action categories, which are independent of the

particular training/test splits. Therefore in each split, the system directly computes

the C2 features based on the prototypes stored in the dictionary, eliminating the

matching to similar prototypes in multiple splits.

(b) Adding the scale-invariance by using space-time-oriented Si units with multi-

ple filter sizes, as used in [61].

(c) Our system is a feedforward model which takes the segmented actions, single

action with background subtraction, as an input. We can achieve visual attention

and thus foreground segmentation by taking into account the backprojections known

to be numerous in the cortex [70, 64].

(d) Towards a biologically-realistic system. In this work, we model cortical areas
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based on the well-known neuronal properties while paying less attention on matching

to data of biological experiments. For example, we don't consider scale invariant

neurons, and don't explicitly model the MT pattern/component cells and MST cells.

Moreover, it remains unclear the model of sequence-selective STPa neurons.

(e) The model accounts only for part of the visual system, the dorsal stream of

the visual cortex, where motion-sensitive feature detectors analyze visual inputs. It

has been found the integration of form and motion pathway in cortical area STS and

their significance for the recognition of biological movements [55]. Giese & Poggio

have combined the motion features in the ventral stream with the shape features

in the dorsal stream for the recognition of biological movements. A recent work in

computer vision has shown the benefit of using shape features in addition to motion

features for the recognition of actions [45]. Our system will also move towards this

integration.

5.4 Summary

Our main contribution is the application of a neurobiological model of motion pro-

cessing to the recognition of actions in complex video sequences and the surprising

result that it can perform on par or better than existing systems on varying datasets.

Indeed none of the existing neurobiological models of motion processing have been

used on real-world data [21, 34, 6, 65, 32]. As recent work in object recognition

has indicated, models of cortical processing are starting to suggest new algorithms

for computer vision [62, 44, 53]. Conversely applying biological models to real-world

scenarios should help constrain plausible algorithms.

In order to convert the neuroscience model of [21] into a real computer vision sys-

tem, we alter it in two significant ways: We propose a new set of motion-sensitive units

which are shown to perform significantly better and we describe new tuning functions

and feature selection techniques which build on recent work on object recognition.
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Appendix A

Detailed Implementation and

Parameters

This section gives a quantitative description of each stage of the system.

Si units Given an input video with frames {I, | i = 1, 2, ..., nf}. For each frame I,

each Si unit computes one layer of motion features, resulting in a three dimensional

S1 frame, denoted as Sl1.

Using the space-time-gradient-based S1 units, each layer is the absolute ratio of

the temporal gradient to a spatial gradient computed at each pixel position:

Sij(x, y, 1)

Sli(x, y, 2) =

1i+1 (X, Y) -l(X, Y)
Ii( + 1, y) - Ii(x, y)

Ii+ 1(x,y) - I(x, y)
I(x, y + 1)- I(x, y)

Using optical-flow-based S1 units, we compute Vi and ej, the magnitude and

direction of motion at each pixel position using Lucas & Kanade algorithm [35].

Each layer is the response of a direction and speed-sensitive Si unit:

1
Sl(x,y, 1) = -{[1+ cos( (x, y) - xi(Xy) - V1)2
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where 01 is the preferred direction and v, is the preferred speed of the i-th Si unit.

q controls the width of the tuning curve, and is chosen as q = 2. ni = 8 layers are

computed as a combination of four preferred directions and two preferred magnitudes,

which are chosen as:

(01, vi) = {0 , 900, 1800, 270'} x {3, 6 (pixels per frame)} (A.4)

Using space-time-oriented Si units, we compute each layer as the response to a

space-time-oriented-filter FI:

S1 (X, Yl1) =Ec ES Ea F(a, b, c)Ii+(a + x, b + y) (A.5)
Sc Eb Ea Ij+c(a + x, b + y)

where [.]+ denotes the half-way rectification operation. We normalize the response

by the average brightness intensity over space and time, and apply half-way rectifica-

tion to model the positive-only cell responses. We synthesize nj = 8 filters at preferred

speeds and directions as Eq. A.4. (See appendix of [66] for the derivation of F).

C1 units The C1 unit pools the maximum response over a c x c grid of each Si

frame. The pooling is done on every ! pixels, resulting in a C1 frame with the same

number of layers but smaller spatial dimension than the SI frame:

Cli(x, y, 1) = max Sli(a, b, 1) a - Ex c, b - y < c

We choose c = 8 [61].

S2 units Let {P I p= 1,2..., nr} denote the set of extracted motion prototypes.

Each prototype, Pp, is obtained by extracting a s x s x nj patch from a random pixel

position and across all ni layers of a random training C1 frame. Four spatial sizes

are used: s = 4, 8, 12, 16 (pixels). nj depends on the type the Si units used. 500

prototypes are drawn from each action category and for each of the four sizes, yielding

the initial n, = 10, 000 - 18, 000 prototypes for a dataset containing 5 - 9 categories.

After feature selection, the number of selected prototypes is about nP = 1, 000.
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The S2 map, S2j,,, is computed by matching the i-th C1 frame, Cli, to the p-th

motion prototype, PP.

Using dense Euclidean distance, it can be expressed as:

S2i,p(x, y) = -|C1y - P 2

=- ZZ [C1((x+a,y+b,l)-P(a,b, l)] 2

1=1 a=1 b=1

where CITY denotes a s x s x nj patch centering at spatial position (x, y) of the

Cl frame.

Using sparse normalized dot-product

S2i,p(x, y) ciij XP p8l -Ci x p
Z1 Za=1[dx~ + a, y +I b) x P,(a, b)1

jzS=1 Z~= 1 C1((x + a, y + b)2 x '_ l Pp(a, b) 2

where Clj and P, are the sparsified Cl and Pp.

For each pixel (x, y)

F(x, y) - maxPp(x,y,l)

I* = argmaxPp(x,y,l)

Ci (x, y) = Cli(X,y,l*)

C2 units The C2 unit pools the global maximum response from each S2 map, S2j,p,

and the responses of the i-th frame can be stacked into a np-element vector:

C2j(p) = max a,bS2i,p(a, b)

where the p-th element corresponds to the best match between Cl and the pro-

totype PP.
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Feature selection on training C2 vectors The feature selection algorithm we

used is AROM (approximation of the zero-norm Minimization) [74]. To reduce com-

putation, we select features based on a subset of training frames instead of the whole

training set. Our method is to randomly draw 500 frames from each action category

of the training set, computing their C2 vectors, denoted by {C2}, and apply the

following steps:

1. Train a multi-class linear SVM on {C2j} and get a hyperplane w.

2. Update each C2 vector according to the coefficients of the hyperplane.

C2j +- C2j * w Vj

where * is the element-wise multiplication.

3. Iterate the first two steps until less than 1000 coefficients of the hyperplane w

are significant. We set the significance level as |wl > 10 3 .

The multi-class SVM is based on the implementation of libSVM [7]. Assume we

have n action categories, using the one-against-all method, we get n hyperplanes, and

we sum over the absolute value of each hyperplane to get a single w. The selected

prototypes are those who correspond to significant hyperplane coefficients. We then

compute the C2 vectors of the whole dataset based on the selected prototypes. By

selecting about 1, 000 patterns, we can speed up the S 2 computation by 2n times.

(From 2000n = 4 (sizes) x 500 (per action category) xn (action categories) to 1000).

S3 units Assume there are N video sequences, each having nf frames. (Note that

nf varies from video to video.) For each video sequence, by aligning its C2 vectors

into columns, we obtain a nP x nf matrix, denoted as MC2j.

Let {Q, I q = 1,2..., nq} denote the set of extracted temporal prototypes. Each

prototype, Qq, is obtained by extracting a np x nt patch from a random column and

across all nP rows of a random training matrix, MC2j. We choose the temporal size

nt = 7 because 300 (ms) (assume the frame rate is 25(fps)) matches the response

duration of a typical neuron. 50 prototypes are drawn from each action category,
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yielding nq= 250 - 450 for a dataset containing 5 - 9 categories.

The S 3 map, S3j,q, is computed by matching the j-th training matrix, MC2j, to

the q-th temporal prototype, Qq:

2

S3j,q(x) = MC2; - Qq|
flp nt

= -J S [MC2j(a,x + b) - Qq(a,b)]2

a=1 b=1

where MC2x denotes a n x nt patch centering at the x-th column of the matrix

MC2j.

C3 units The C3 unit pools the global maximum response from each S3 map, S 3 j,q,

and the responses of the j-th video sequence can be stacked into a nq-element vector:

C3j(q) = max aS3j,q(a)

where the q-th element corresponds to the best match between MC 2j and the

prototype Qq.

Classification We use the multi-class linear SVM implementation of libSVM [7.

Using the frame-based classification, there are totally N (videos) xnj (frames per

video) data points, which can be up to 60,000 for the largest dataset we use (KTH

Human). The label of each frame is the label of the video it belongs to. We train

a linear SVM on C2 vectors of 500 training points drawn from each action category,

and test on the C2 vectors of all the testing points. Each test video is predicted as

the majority predicted labels of its frames.

Using the video-based classification, there are totally N(videos) data points, which

is about 600 for the largest dataset we use. We train a linear SVM on C3 vectors of

all the training points, and test on the C3 vectors of all the testing points.
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