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Abstract

Current predictors of speech intelligibility are inadequate for making predictions of
speech confusions caused by acoustic interference. This thesis is inspired by the need for
a capability to understand and predict speech confusions caused by acoustic interference.
The goal of this thesis is to develop models of auditory speech processing capable of
predicting phonetic confusions by normally-hearing listeners, under a variety of acoustic
distortions. In particular, we focus on modeling the Medial Olivocochlear efferent
pathway (which provides feedback from the brain stem to the peripheral auditory system)
and demonstrate its potential for speech identification in noise. Our results produced
representations and performance that were robust to varying levels of additive noise and
which mimicked human performance as measured by the Chi-squared test.

Co-thesis Supervisor: Prof. Louis D. Braida
Title: Professor of Electrical Engineering, MIT Research Laboratory of Electronics

Co-thesis Supervisor: Dr. Oded Ghitza
Title: Senior Research Scientist, Sensimetrics Corporation, Somerville, MA

2



Acknowledgements

I thank all the members of the Sensory Communications group of MITs Research
Laboratory of Electronics for their support and help. In particular, I thank Louis Braida
and Oded Ghitza for the many hours they spent meeting with me, their guidance, advice,
and instruction. I also thank Professors Kenneth Stevens and Jim Glass for being on my
committee and providing me input.

Thanks also go to my former office mates and coworkers Joe Desolge, Theodore
Moallem, Joshua Bernstein, Michael Qin, and Courtenay Wilson for advice, numerous
stimulating discussions, support, and conversation.

Special thanks go to Edward Bruckert for generating our synthetic speech stimuli.
Without his generous donation of personal time, much of this work would not have been
possible.

Special thanks also go to Lorraine Delhorne for helping conduct and recruit
human subjects for the psychoacoustic tests we conducted.

I thank my parents and two brothers for their support of my work and
involvement at MIT.

Lastly, I thank the Airforce Office of Scientific Research and also the NIH for
supporting this work.

3



Table of Contents

1. Introduction .................................................................................. 7

2. B ackground............................................................................... 10
2.1 The Human Peripheral Auditory System .................................. 10

2.1.1 T he O uter E ar ............................................................. 11
2.1.2 The Middle Ear ....................................................... 12
2.1.3 The Inner Ear - Anatomy and Mechanics..........................12
2.1.4. The Hair Cells, Neural Innervation, and Transduction.............16

2.2 MOC Efferents and possible role in discrimination in noise..............17
2.2.1 MOC Efferents: morphology and physiology.........................17
2.2.2 Psychophysics: Evidence for Efferent involvement in noise........20
2.2.3 Summary and Link to Thesis Work......................................21

2.3 Speech: Characteristics and Acoustic Features ................................ 21
2.3.1 D iphones ................................................................ 22
2.3.2 Categorization of Phones ............................................. 23

2.3.2.1. Voicing........................................................24
2.3.2.2. Nasality........................................................27
2.3.2.3. Sustention........................................................29
2.3.2.4. Sibilation.........................................................32
2.3.2.5. Graveness......................................................34
2.3.2.6. Compactness..................................................36

2.3.3. Speech: Summary ...................................................... 38
2.4 Current predictors of speech intelligibility .................................. 38

2.4.1 A l ....................................................................... 39
2.4.2 STI ...................................................................... 39
2.4.3 Al and STI Shortcomings ........................................... 40

2.5 Human Phonetic Confusions: past studies ................................. 41
2.6 Recap and Tie Back to our Approach .......................................... 42

3. Human Psychoacoustic Experiments..............................43
3.1. Overview and Goals......................................43
3.2. Background: Acoustic Features used in Database.....................................44
3.3. CVC Database description.................................................................45

3.3.1. Natural Spoken Corpus....................................................... 46
3.3.2. Synthetic Corpus with time-aligned speech................................46

3.4. Human DRT task................................................................................ 50
3.4.1. O verview ............................................................................... 52
3.4.2. Task Specifics.......................................................................... 53
3.4.3. DRT Results and Comparison........................................55

3.5 C onclusion.......................................... ..................................................... 61

4. Machine Model Description..............................................................................62
4.1 Front E nd ................................................................................................... 63

4.1.1. Overview of Components...........................................................63

4



4.1.2. M iddle Ear.................................................................................. 64
4.1.3 Filterbank..................................................................................... 65

4.1.3.1. Gamm a filterbank......................................................... 65
4.1.3.2. M BPNL Filterbank....................................................... 67

4.1.4. IHC m odule................................................................................ 72
4.1.5. Rate Limiter................................................................................ 73
4.1.6. Sm oothing to find Average......................................................... 74
4.1.7. Stretching.....................................................................................75

4.2 Back End..................................................................................................... 76
4.2.1. DRT Template matching operation - 2 Template Comparisons....77
4.2.2. DRT Template matching operation - Multiple Template Tokens... 81

4.3 Sum m ary..................................................................................................... 84

5. M achine Experiments: Open-loop DRT M imics.............................................. 86
5.1. Goals..............................................................................................................86
5.2. M etrics Used to Gauge Performance......................................................... 87

5.2.1. W ithin-1-std M etric.....................................................................88
5.2.2. Chi-squared metric.................................................................... 90
5.2.3. Comparison of M etrics............................................................. 92

5.3. Overview of Open-loop Parameters adjusted............................................ 94
5.3.1. DRW Rate Limiter..........................................................................94
5.3.2. Stretching................. ....................... 95
5.3.3. Smoothing window size post filter-bank.................................... 96
5.3.4. Template chosen......................................................................... 96

5.4. Gamma Open-loop Mimic: without Normalization..................................97
5.4.1. Displays.................................................................................... 97
5.4.2. Data - Results...............................................................................102

5.5. Gam m a Open-loop M imic: with Norm alization..........................................106
5.5. 1. Displays.........................................................................................107
5.5.2. Data - Results...............................................................................110

5.6. M BPNL Open-loop M im ic..........................................................................113
5.6. 1. Gain Profile and Settings..............................................................114
5.6.2. Displays ....................................................................................... 115
5.6.3. Data - Results..............................................................................118

5.7. MBPNL Open-loop Mimic: with input Normalization.......................120
5.7. 1. Displays ...................................................................................... 121
5.7.2. Data - Results..............................................................................124

5.8. Summ ary.....................................................................................................127

6. M BPNL Closed-loop M imic.............................................................................128
6.1. Description of Closed-loop System Parameters..................128

6.1.1. Noise Energy..............................................................................129
6.1.2. Template chosen..........................................................................131

6.2. Early M odel Description............................................................................134
6.2. 1. Gain Profile and Settings............................................................135
6.2.2. Displays.......................................................................................136

5



6.2.3. Data - Results.............................................................................139
6.3. Best Perform ance.......................................................................................141

6.3.1. Parameter Settings......................................................................142
6.3.2. Displays........................................................................................142
6.3.3. Data - Results..............................................................................145

6.4. Best Human M atch.....................................................................................148
6.4.1. Parameter Settings ...................................................................... 148
6.4.2. Displays.......................................................................................149
6.4.3. Data - Results..............................................................................151

6.5. Recap / Conclusion.....................................................................................155

7. Additional Psychoacoustic Tests: Vowel or Consonant Only Experiments.....157
7.1. Vowel + Final Consonant Only.................................................................160
7.2. Consonant Only..........................................................................................162
7.3. Consonant and Vowel Error Rates.............................................................164

7.4. Conclusion..............................................................................................................166

8. Concluding Thoughts........................................................................................167

A. Stretching ......................................................................................................... 169

B. M ultiple Template Tests..................................................................................172
B.1. Min Distance;70, 60, 50dBSPL x 10, 5, OdBSNR Templates.................175
B.2. Average Distance;70, 60, 50dBSPL x 10, 5, OdBSNR Templates.........179
B.3. Min Distance; Centered Around 60dBSPL x 1OdBSNR..........................183
B.4. Average Distance; Centered Around 60dBSPL x 10dBSNR...................187
B.5. Conclusion................................................................................................191

C. Blind Identification Tests ................................................................................ 192
C. 1 Natural Blind Test Data.............................................................................192
C.2 Synthetic Blind Test Data..........................................................................196
C.3 Comparison of Data and Summary............................................................201

References........................................................................................202

6



Chatper 1: Introduction and Organization

Current models of speech intelligibility are inadequate for making predictions of

speech confusions caused by acoustic interference (even for normal-hearing listeners) and

by combinations of hearing loss and hearing aids. The Articulation Index, or Al (French

and Steinberg, 1947; ANSI 1969) and related measures, STI (Houtgast et al., 1980), and

SIl (ANSI, 1997) characterize hearing in a manner geared to the specific task of

predicting speech intelligibility. But such measures only predict average speech

intelligibility, not error patterns, and they make predictions for only a limited set of

acoustic conditions (linear filtering, reverberation, additive noise).

The performance of current speech recognition systems such as the Mel-Filter

Bank (MFB), Mel-Filtered Cepstral Coefficient (MFCC), and the Ensemble Interval

Historgram (EIH) models degrades significantly in the presence of noise. At the same

time however, human performance on speech recognition is more robust to noise

[Lippmann, 1997; Sroka and Braida, 2005]. Researchers such as Lippman (1997)

suggest that this human-machine performance gap can be reduced by improving low-

level acoustic-phonetic modeling, on improving robustness with noise and channel

variability, and on more accurately modeling spontaneous speech.

This thesis is inspired by the need to understand, predict, and mimic human

speech confusions caused by acoustic interference. The goal of this thesis is to formulate

a template-matching operation, with perception-related rules of integration over time and

frequency at its core, in the context of human perception of degraded speech. In

particular, we aim at developing models of auditory signal processing capable of
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predicting phonetic confusions by normally-hearing listeners, under a variety of acoustic

distortions. We will focus on modeling the signal processing of the auditory periphery.

Our model of the auditory periphery will include the effects of MOC efferent feedback,

which is thought to aid speech recognition in noise environments.

The main objective of this thesis is to develop a machine that will use a state-of-

the-art biologically-inspired non-linear peripheral auditory model (PAM) connected to a

perceptually inspired model of template matching to predict the phonetic confusions

made by normally-hearing listeners. Success in this project will contribute to and have

significance for the following:

" Revising models of auditory periphery by including the role of the descending pathway in

making the cochlear response to speech sounds robust to degradation in acoustic conditions.

" Establishing models of template-matching in the context of human perception of degraded

speech. These models will provide guidance to physiological studies of cortical processing.

- Enabling diagnostic assessment of speech intelligibility by using MOC efferent feedback

models of the auditory periphery integrated with perception-based template matching.

" Better understanding and improving the performance of automatic speech recognition systems

in acoustically adverse conditions.

This thesis is divided into the five main chapters, chapters 2 - 6. Chapter 2 lays

the framework and background of this work. It reviews the biology of the human

peripheral auditory system, discusses the characteristics and classification of speech

sounds, and reviews modem predictors of intelligibility in noise. Chapter 3 discusses our
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work in collecting human psychoacoustic data which is used to obtain error patterns

which are used to tune our algorithm and model development. Chapter 4 discusses the

components of our efferent-inspired non-linear model of the human auditory periphery.

Chapter 5 discusses experiments that were conducted on open-loop peripheral models

(models of the periphery that do not include efferent feedback). Chapter 6 covers

experiments that were conducted on closed-loop peripheral models (models of the

periphery that do include efferent feedback). Chapter 7 evaluates the machine results and

compares them to a modified psychoacoustic task. Finally, in Chapter 8, we summarize

and discuss possible future research directions and applications.

9



2. Background

This chapter provides background for the major topics to be covered in this thesis.

It begins with a review of models of the mammalian peripheral auditory system. Next, it

discusses the qualities and characteristics of speech, and describes in detail a system of

speech classification developed by Jakobson, Fant, and Halle [1952] which is used in this

thesis and in other intelligibility tests, particularly for intelligibility of speech vocoders.

This chapter then discusses and reviews current modern predictors of speech

intelligibility. Finally it concludes by discussing studies on speech confusion patterns,

similar to what we are trying to mimic and model.

2.1 The Human Peripheral Auditory System

The human peripheral auditory system is depicted in figure 2.1 and is composed

of 3 parts: the outer, middle, and inner ear. This section reviews each of these parts.

10
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Figure 2.1: Diagram of the Human Auditory Periphery. The three parts of the system are the outer, middle, and inner
ear. The outer ear consists of the pinna (which is visible on the outside of the head) and the ear canal. The middle ear
consists of the eardrum and three bones named the malleus, incus, and stapes. The middle ear is responsible for
transforming sound waves into waves in the fluid filled chamber of the inner ear. The inner ear consists of the
vestibular apparatus (which is responsible for the sensation of balance) and the cochlea, the fluid filled chamber that
processes sounds from the middle ear and sends information to the higher levels of the auditory system [Moore, 1989].

2.1.1 The Outer Ear

The outer ear collects sound waves traveling through the air and can be modeled

as a linear system. It is composed of the pinna (the part visible of the ear on the outside

of the head in figure 2.1) and the auditory canal (also called the meatus). The pinna

modifies the spectra of incoming sounds and is used to aid in sound localization [Butler,
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1969; Batteau, 1967; Freedman and Fisher, 1968; Hofman et al. 1998]. The meatus

allows sound to propagate to the middle ear.

2.1.2 The Middle Ear

The middle ear consists of the ear drum, or tympanic membrane and the ossicles,

three small bones (see figure 2.1). Sound causes the tympanic membrane to vibrate.

These vibrations are transmitted through three small bones - the malleus, incus, and

stapes which are collectively called the ossicles - to the oval window, a membrane-

covered opening in the bony wall of the cochlea. The main role of the middle ear is to

efficiently transfer sound waves from the air to the waves in the fluids in the cochlea.

Transmission of sound through the middle ear is most efficient at mid frequencies (500-

4000 Hz) [Moore, 1989].

2.1.3 The Inner Ear - Anatomy and Mechanics

The inner ear is composed of the cochlea and vestibular apparatuses (the latter is

used for balance). The cochlea is a fluid filled chamber inside the ear surrounded by

bony rigid walls. The length of the cochlea is roughly 35mm in humans and it is coiled

up like a snail shell around the 8 1 cranial nerve. It is divided along its length by two

membranes, Reissner's membrane and the basilar membrane, and contains two types of
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hair cells, inner hair cells and outer hair cells. These hair cells are located on top of the

basilar membrane and are separated by an arch called the tunnel of Corti. Outer hair cells

are the more numerous of the two groups, with up to roughly 25000 hair cells in humans,

each with about 140 hairs protruding from them, arranged in up to five rows. Inner hair

cells number about 3500, each with roughly 40 hairs [Moore, 1989]. A diagram of the

anatomy of the inner ear and cochlea is shown in figure 2.2. Section 2.1.4 discusses the

hair cells in more detail.

Sound waves traveling through the fluid compartment of the cochlea cause

motion of the basilar membrane. The part of the cochlea near the oval window is referred

to as the base or basal end and the part farthest from the oval window is the apex or

apical end. The base of the basilar membrane is relatively narrow and stiff while the

apex is wider and much less stiff. As a result, high frequency sounds produce a

maximum displacement of the basilar membrane near the basal end which decays

abruptly. Low frequency sounds produce a maximum displacement closer to the apical

end of the membrane [von Bekesy, 1960]. Hence the basilar membrane can be thought of

as a tonotopically organized hydromechanical frequency analyzer, and can be modeled as

a bank of overlapping bandpass filters.

Unlike the outer ear system, the inner ear is nonlinear: the Basilar membrane

vibration response does not grow proportionally to the magnitude of the input [Rhode,

1971; Rhode and Robles, 1974; Sellick et al., 1982]. Instead, as the level of a sound

input decreases, the basilar membrane vibration gain function becomes increasingly

sharper. The gain increases in the vicinity of the characteristic frequency (CF), and is

13



SV

Sm

Figure 2.2: A diagram of the anatomy of the inner ear and cochlea. The main anatomical features of interest in our
discussion are the inner hair cells (IHC), the outer hair cells (OHCs), and the Tactorial Membrane (TM) which sits
above the OHCs. The liquid in the cochlea creates shearing forces on the Tactorial Membrane which excite the hair
cells. The IHCs are thought to convey most of the information to the higher levels of the auditory system. The basilar
membrane (labeled BM and colored black) and Reissner's membrane (labeled RM) enclose the liquid-filled chamber of
the cochlea.
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independent of level for frequencies less than an octave below CF. Hence the response

reflects a band-limited nonlinearity around the CF [Rhode, 1971]. Upon death, however,

this nonlinear gain difference disappears and the tuning becomes independent of level.

An example of the nonlinear basilar membrane response to pure tones of varying sound

pressure level is shown in figure 2.3. In this figure, the basilar membrane gain (expressed

as BM amplitude that is normalized and divided by the input level) to tones of 20, 40, 60,

and 80dB are depicted. The gain is greatest for stimuli near threshold and gradually

decreases with larger inputs, exhibiting a level dependence.

40

Figure 2.3: Example basilar membrane amplitude (normalized to input level) at the sound pressure levels indicated.
The normalized BM amplitude increases in the vicinity of the CF, and frequencies less than an octave below CF the
gain is independent of level. This figure is from Ruggero and Rich (1991).
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2.1.4. The Hair Cells, Neural Innervation, and Transduction

As stated in section 2.1.3. there are two populations of hair cells, inner hair cells

(IHCs) and outer hair cells (OHCs). These cells have flat apical surfaces that are

crowned with ciliary, or sensory hair, bundles that are typically arranged in a W, V, or U

shape. The tectorial membrane, which has a gelatinous structure, lies above the hair cells

and comes into contact with the outer hair cells. The tectorial membrane is hinged at one

side so that when the basilar membrane moves up and down, a shearing motion is created

between the basilar membrane and the tectorial membrane which directly displaces the

cilia at the tops of the hair cells or displaces the flow of endolymph around the cilia,

again causing the cilia to be displaced as well. It is thought that this displacement opens

transducer ion channels (likely K+ channels) at the base of the cilia, hence exciting the

hair cells and leading to the generation of action potentials in the neurons of the auditory

nerve [Dallos, 1992].

Innervating the hair cells are two types of neurons: afferent neurons and efferent

neurons. Afferent neurons carry information from the cochlea to higher levels of the

auditory system. The great majority of afferent neurons, 90-95% of the total population

[Dallos, 1992], connect to inner hair cells, and each inner hair cell is contacted by about

20 neurons [Spoendlin, 1970]. Hence it is believed that most, if not all, of the

information about sounds is conveyed via the inner hair cells. Direct measurements of

the cochlear afferent fibres that innervate the IHCs in mammals [Palmer and Russel,

1986; Johnson, 1980] have shown a phenomenon known as phase-locking: in response to
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a pure tone, the nerve firings tend to be phase locked or synchronized to the stimulating

waveform. A given nerve fiber does not necessarily fire on every cycle of the stimulus

but, when firings do occur, they occur at roughly the same phase of the waveform each

time. It has been shown [Palmer and Russel, 1986; Rose et al., 1968] that phase-locking

begins to decline at about 600 Hz and is no longer detectable above 3.5-5 kHz. It is

suggested that the cause of this decline is the low-pass filtering of the a.c. component by

the hair-cell membrane [Palmer and Russel, 1986]. Both efferent and afferent nerves

exhibit a spontaneous firing rate and also a saturation firing rate; no matter how

stimulated a nerve becomes, it can not fire faster than the saturation rate.

Efferent neurons have spikes that travel towards the cochlea, and thus carry

information from the higher levels of the auditory system, specifically the superior

olivary complex, back to the cochlea. Lateral olivocochlear efferents terminate on the

afferent dendrites coming from the IHCs. Medial olivocochlear efferents terminate in

granulated endings that dominate the neural pole of the OHCs. A more detailed

discussion of both types of efferents is included in the next section (for MOCs) and

Appendix A (for LOCs).

2.2 MOC Efferents and possible role in discrimination in noise

2.2.1 MOC Efferents: morphology and physiology

17



Detailed morphological and neurophysiological description of the medial

olivocochlear (MOC) efferent feedback system is provided in Gifford and Guinan, 1983;

Guinan, 1996; Kawase and Liberman, 1993; Liberman, 1988; Liberman and Brown 1986;

May and Sachs, 1992; Warr, 1978; Winslow and Sachs, 1988. MOC efferents originate

from neurons medial, ventral and anterior to the medial superior olivary nucleus (MSO),

have myelinated axons, and terminate directly on Outer Hair Cells (OHC). Medial

efferents project predominantly to the contralateral cochlea (the innervation is largest

near the center of the cochlea) with the crossed innervation biased toward the base

compared to the uncrossed innervation (e.g., Guinan, 1996). Roughly two-thirds of

medial efferents respond to ipsilateral sound, one-third to contralateral sound, and a small

fraction to sound in either ear. Medial efferents have tuning curves that are similar to, or

slightly wider than, those of AN fibers (e.g., Liberman and Brown 1986), and they

project to different places along the cochlear partition in a tonotopical manner. Finally,

medial efferents have longer latencies and group delays than AN fibers. In response to

tone or noise bursts, most MOC efferents have latencies of 10-40ms. Group delays

measured from modulation transfer functions are much more tightly clustered, averaged

at about 8ms (Gummer et al., 1988).

Current understanding of the functional role of the MOC efferent feedback

mechanism is incomplete. Few suggestions have been offered, such as shifting of sound-

level functions to higher sound levels, antimasking effect on responses to transient

sounds in a continuous masker, preventing damage due to intense sound (e.g., Guinan,

1996). One speculated role, which is of particular interest for this thesis, is a dynamic

regulation of the cochlear operating point depending on background acoustic stimulation,

18



resulting in robust human performance in perceiving speech in a noisy background (e.g.,

Kiang et al., 1987). Several neurophysiologcal studies support this role. Using

anesthetized cats with noisy acoustic stimuli, Winslow and Sachs (1988) showed that by

stimulating the MOC nerve bundle electrically, the dynamic range of discharge rate at the

AN is partly recovered. This is depicted in figure 2.4. Measuring neural responses of

awake cats to noisy acoustic stimuli, May and Sachs (1992) showed that the dynamic

range of discharge rate at the AN level is only moderately affected by changes in levels

of background noise. Both studies indicate that MOC efferent stimulation plays a role of

regulating the AN fiber response in the presence of noise.

200- I== In Quiet

182- With Efferent Stimulation
18 -- No Efferent Stimulation

164-

146-,--------

128-

110 --92

e 74-
6e

56/

200

0 8 16 24 32 40 48 56 64 72 80
Tone Lewi, dB

Figure 2.4: Illustration of the observed efferent-induced recovery of discharge rate dynamic range in the presence
of background noise (e.g. Winslow and Sachs, 1988). Discharge rate versus Tone level is cartooned in quiet
condition (full dynamic range, black); In an anesthesized cat (much reduced dynamic range, red) and with electrical
stimulation of COCB nerve bundle.
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2.2.2 Psychophysics: Evidence for Efferent involvement in noise

A few behavioral studies indicate the potential role of the MOC efferent system in

perceiving speech in the presence of background noise. Dewson (1968) presented

evidence that MOC lesions impair the abilities of monkeys to discriminate the vowel

sounds [i] and [u] in the presence of masking noise but have no effect on the performance

of this task in quiet. More recently, Giraud et al. (1996), and Zeng et al. (2000) showed

that the performance of human subjects after they undergo a vestibular neurectomy

(presumably resulting in a reduced MOC feedback) deteriorates phoneme perception

when the speech is presented in a noisy background. These speech reception

experiments, however, provide questionable evidence because of surgical side effects

such as uncertainties about the extent of the lesion and possible damage to cochlear

elements. Ghitza (2004) attempted to explore the effects of the MOC efferent system by

presenting combinations of speech and noise in various configurations (gated/continuous,

monaural/binaural). His results showed a gated/continuous difference analogous to the

"masking overshoot" in tone detection: the results with gated noise were worse than the

results with continuous noise. He thus suggested that these results could be due to

efferent inability to activate quickly for the gated condition compared to the steady-state

efferent activation in the noise continuous noise condition. However, he also

acknowledged that these results might also be due to high-order auditory and cognitive

mechanisms such as those observed in the fusion of perceptual streams. Despite the

20



concerns in all of the above studies, these results can be interpreted to support the

hypothesis of a significant efferent contribution to initial phone discrimination in noise.

2.2.3 Summary and Link to Thesis Work

Mounting physiological data exists in support of the effect of MOC efferents on

the mechanical properties of the cochlea and, in turn, on the enhancement of signal

properties at the auditory nerve level, in particular when the signal is embedded in noise.

The current theory on the role of MOC efferents in hearing is that they cause a reduction

in OHC motility and change of OHC shape which results in increased basilar membrane

stiffness which in turn produces an inhibited IHC response in the presence of noise that is

comparable to the IHC response produced by a noiseless environment. The main goal of

this thesis is to develop this theory into a closed-loop model of the peripheral auditory

system, a model that adaptively adjusts its cochlear operating point. To evaluate our

model, we try to match machine performance to human performance along acoustic

speech categories. This process is described in Chapters 3 and 5. The next section

provides background on speech and these speech categories.

2.3. Speech: Characteristics and Acoustic Features
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Speech is a very important part of everyday human life. It is essential for

communications, exchanging ideas, and interacting. Much research has been conducted

on speech production and speech modeling which has led to understanding of various

speech sound classes. Roughly speaking, speech can be broken down into two main

parts: consonants and vowels. The basic unit of speech is the phone. In this thesis

however we focus on the diphone as a basic unit for recognition. As the name suggests, a

diphone consists of two phones, a consonant followed by a vowel or a vowel followed by

a consonant. This section describes the diphone and discusses the different categories of

speech in detail.

2.3.1 Diphones

As stated, a diphone consists of a consonant and a vowel. Vowels are characterized

by voicing due to vibration of the vocal folds and typically have a harmonic spectrum.

Typical examples of voiced speech include vowels such as /a/, /A/ (as in "up"), /e/, /i/ (as

in "eve"), /I/ (as in "it"), /o/, /u/ (as in "boot"), and /U/ (as in "foot"). Consonants are

characterized by air flow through a constriction in the vocal tract. Examples of

consonants are unvoiced fricatives such as /f/, /s/, / f / (as in the "sh" in "shag"), and /0/

(as in the "th" in "thin"), whispers such as /h/, unvoiced affricates such as /t f/ (as in the

"ch" in "choose"), plosives such as /p/, /k/, and /t/, voiced fricatives such as /v/, /z/,

voiced affricates such as /d3/ (as in the 'j" in "just"), voiced plosives such as a /d/, /b/,

/g/, glides such as /w/ and /y/, liquids such as /r/ and /1/, and nasals such as /m/ and /n/.
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We focus on the diphone because of the important role it plays in speech perception;

for example in his tiling experiment, Ghitza (1993) studied the effects of presenting

consonants or vowels alone (without noise) and compared this to the effects of presenting

them together in a diphone (again without noise). He showed that the consonantal and

vocalic information had a synergistic effect on speech recognition, with the diphone

presentations outperforming what would be expected if the consonant and vowel

information contributed to scores in a linear, independent manner. Hence he concluded

that diphone information is more important than the consonant or vowel phone

information alone.

2.3.2 Categorization of Phones

This section covers differences between consonants, focusing on Jakobsonian

dimensions of categorization [Jakobson, Fant, and Halle, 1952]. In our work, we used

the Jakobsonian dimensions of voicing, nasality, sustention, sibilation, graveness, and

compactness as features. These are used as categories in the Diagnostic Rhyme Test

(DRT) task [Voiers, 1977]. This test will be further described in Chapter 3. This

sections focuses on consonantal differences and categories. For example the words

"daunt" and "taunt" shown below in figures 2.4 and 2.5 differ only along the acoustic

dimension of voicing and share all other acoustic features. Hence in the above example,

"daunt" and "taunt" differed in the voicing dimension but were categorized as having the

23



same nasality, sustention, sibilaiton, graveness, and compactness features. This section

describes each of these acoustic dimensions in detail and gives examples of each.

2.3.2.1. Voicing

Voiced speech is speech that requires the use of the vocal folds. Typical

examples of voiced speech include vowels and voiced consonants (our focus here).

Voiced consonants can further be divided along other dimensions such as voiced

fricatives such as /v/, /z/, voiced affricates such as /j/ (as in the "j" in "just"), voiced

plosives such as a /d/, /b/, /g/, glides such as /w/ and /y/, liquids such as /r/ and /1/, and

nasals such as /m/ and /n/. Each of these examples of voiced speech are produced

differently, yet they all share some similarities. In all of these examples and all voiced

speech in general, air passes through the throat while the vocal folds vibrate, causing

added excitation of the vocal tract and resulting in a vibrant and harmonic sounding

speech.

According to Jakobson, Fant and Halle (Jakobson et al., 1952), the tell-signs of

the"voicing" feature is the nature of the source, being periodic or non-periodic. This is

often manifested in the spectrum of sonorants by striations and formants which are due to

the harmonic source. Another voicing cue that is sometimes present and sometimes

absent is the presence of low frequency energy preceeding the plosive burst in a voiced

consonant. This is commonly referred to as a voice bar. Jakobson, Fant and Halle refer

to this cue stating: "the most striking manifestation of 'voicing' is the appearance of a
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strong low component which is represented by the voice bar along the base line of the

spectrogram." A third cue for the presence of a voiced stop consonant is the voice onset

time, the time between the plosive burst of a stop consonant and the beginning of voicing

of the vowel. Summerfield and Haggard (1977) show that this voice onset time and the

onset frequency of the first formant are important perceptual cues of voicing in syllable-

initial plosives in quiet. Jiang, Chen, and Alwan (2006) also show that the onset

frequency of the first formant is critical in perceiving voicing in syllable-initial plosives

in additive white Gaussian noise; however unlike the Summerfield and Haggard study in

quiet, they show that voice onset time duration is not important in additive white

Gaussian noise. Table 2.1 lists all of the voiced and unvoiced consonant pairs, organized

according to vowel quadrant, that are used in our DRT experiments. Figures 2.5 and 2.6

are examples of a voiced and unvoiced pair-the voiced "daunt" and the voiceless

"taunt." The "daunt" token in figure 2.5 exhibits a low frequency voice bar at the base of

the spectrogram and a very short voice onset time between the burst in the 'd' and

voicing of the vowel. Conversely, the "taunt" token in figure 2.6 lacks a voice bar and

exhibits a much longer voice onset time between the initial burst in the "t" and the onset

of voicing of the vowel.
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Voice Onset Time

TU4 Formants

Figure 2.5: Spectrogram of naturally spoken voiced Daunt. This and the subsequent spectrograms of this thesis are
computed using Wavsurfer with a 256-point FFT window length, a 250Hz analysis bandwidth, a 64-point Hamming
window, and a 097 pre-emphasis factor. Note the short voice-onset-time, the presence of a low frequency voice-bar
proceeding the initial stop consonant burst, and the slight difference in vowel formants with taunt in figure 2.6.

Voice Onset Time

Formants

No Voice Bar

0_1".1 ' 0-120 0 -30

Figure 2.6: Spectrogram of naturally spoken voiceless Taunt. Note the long voice-onset-time between the initial
consonant burst and the vowel, the absence of low-frequency pre-voicing content before the consonant burst of
the stop, and the slight difference in vowel formants with daunt in figure 2.5.
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Vowel Quadrant Voiced Voiceless
HB Vole Foal

Dune Tune
Goat Coat
Zoo Sue

LB Bond Pond
Vault Fault
Daunt Taunt
Jock Chock

LF Zed Said
Dense Tense
Vast Fast
Gaff Calf

HF Veal Feel
Dint Tint
Bean Peen
Gin Chin

Table 2.1: Voiced vs Voiceless word pair examples, organized according to vowel quadrant. HB = high
back; LB = low back; LF = low front; HF = high front

2.3.2.2. Nasality

The "Nasality" feature indicates the existence of a supplementary resonator such

as the nasal cavity that is active in the production of the speech sound. Such additional

resonators add zeros to the transfer function of the vocal track and can hence change the

spectrum of a word without any influence on the other resonance features. For example,

nasal consonants such as /n/ and /m/ typically have spectrograms that are more low-pass

in nature with the higher harmonics attenuated by the zeros due to the nasalization.

Table 2.2 lists all of the nasal consonant pairs, organized according to vowel

quadrant, that are used in our DRT experiments. Figures 2.7 and 2.8 are examples of a
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Attenuation

No Voice Bar

0-10 0-1s 0.20

Figure 2.7: Spectrogram of naturally spoken nasal Meat. The addition of zeros to the transfer function greatly
attenuates the mid and high frequency components of the /m/; however the first formant and a strong baseline
fundamental frequency is visible. A voice bar before the consonant is absent.

Voice Bar

Figure 2.8: Spectrogram of naturally spoken non-nasal Beat. No attenuation due to zeros is present; however a
voice bar is present between 0.08 and 0.18 seconds.
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Vowel Quadrant Nasal Not Nasal (Oral)
HB news dues

moan bone
note dote
moot boot

LB mom bomb
knock dock
gnaw daw
moss boss

LF nab dab
neck deck
mad bad
mend bend

HF meat beat
mitt bit
nip dip
need deed

Table 2.2: Nasal vs Oral Word Pairs Examples

nasal and non-nasal pair-the nasal "moot" and the oral "boot." In the "moot" token

example, energy for the first few harmonics in the /m/ is present and visible however the

higher formants and harmonics are greatly attenuated. Conversely in the "boot" token,

only energy from the voice bar preceeding the burst is present in great abundance and the

plosive /b/ exhibits no attenuation at mid or high frequency.

2.3.2.3. Sustention

The term "Sustention" is due to Voiers. It corresponds to the continuant-

interrupted contrasts of Jakobson, Fant and Halle. The main attribute of this feature is the

gradual onset and presence of mid-frequency noise in the spectrogram - for example, the
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gradual onset of sustained continuants (constrictives) compared to the abrupt onset of

interrupted (stops); the smooth onset of /f/ in fill or /v/ in vill compared to the abrupt

onset of /p/ as in pill or /b/ as in bill; and simiarly, /0/ in thill and /s/ in sill is opposed to

/t/ as in till. Several studies reported by Jakobson, Fant and Halle have demonstrated that

when the onset of a constrictive like /s/ or /f/ is erased from a recording, the sound

perceived is a stop: /t/ for the /s/; /p/ for the /f/.

Table 2.3 lists all of the sustained consonant pairs, organized according to vowel

quadrant, that are used in our DRT experiments. Figures 2.9 and 2.10 are examples of a

sustained and interrupted pair-the continuant "von" and the interrupted "bon." In the

"von" token example, the gradual onset of noise beginning at around 0.09 seconds and

culminating at about 0.20 seconds can be clearly seen. Conversely the "bon" token

example exhibits a crisp abrupt burst instead.

0.0 .LOOZ O.-25' 0-30 0-3

Figure 2.9: Spectrogram of naturally spoken sustained "von." The noise in the consonant begins at 0.09 seconds
and gradually culminates at roughly 0.20 seconds. This gradual onset of noise is characteristic of sustained
consonants.
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Figure 2.10: Spectrogram of naturally spoken interrupted "bon". Unlike the "von" example in figure 3.5 the noise
burst is abrupt, crisp, and not gradual. Like in previous examples, a voice bar is present from 0.08 to .17 seconds.

Vowel Quadrant Sustained (Continuant) Not Sustained (Interrupted)
HB those doze

foo pooh
shoes choose
those doze

LB shaw chaw
thong tong
von bon
vox box

LF than dan
fence pence
then den
shad chad

HF vee bee
thick tick
vill bill
sheet cheat

Table 2.3: Sustained vs Interupted Examples
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2.3.2.4. Sibilation

The term "Sibilation" is also partly due to Voiers. It corresponds to the strident-

mellow contrasts of Jakobson, Fant and Halle. These strident features are characterized

by higher-frequency noise (such as that in a /s/) that is long in duration and due to the

rush of air causing turbulence at the point of articulation.

Table 2.4 lists all of the sibilant consonant pairs, organized according to vowel

quadrant, that are used in our DRT experiments. Figures 2.11 and 2.12 are examples of a

sibilant and mellow pair-the sibilant "sole" and the mellow "thole." The "sole" token

in figure 2.11 exhibits a very strong high-frequency random noise component that

roughly 200ms in duration and is very typical of a strident consonant. Conversely, the

consonant in the "thole" token in figure 2.12 is much shorter in duration and less intense.

Figure 2.11: Spectrogram of naturally spoken strident "sole." Note the very strong noise with a duration of
roughly 200-ms. This is typical of a sibilant consonant.
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Figure 2.12: Spectrogram of naturally spoken non-sibilant "thole." The noise in this example is much shorter in
duration and weaker in intensity than that in the sibilant example.

Vowel Quadrant Sibilant Not Sibilant (Mellow)
HB sole thole

joe go
chew coo
juice goose

LB saw thaw
josh gosh
jaws gauze
chop cop

LF jest guest
jab gab
sank thank
chair care

HF cheep keep
zee thee
sing thing
jilt guilt

Table 2.4: Sibilant vs Mellow Word Pairs Examples
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2.3.2.5. Graveness

Graveness represents broad resonance features of the speech sound, related to

place of articulation. In general, this feature corresponds to the predominance of the low

frequency of spectrogram over the high frequency and can be thought of as similar to

third moment about the mean of the spectrum. Graveness is typically characterized by a

low second formant. The main graveness cue is the origin and direction of this formant

from the consonant to vowel transition.

Table 2.5 lists all of the grave consonant pairs, organized according to vowel

quadrant, that are used in our DRT experiments. Figures 2.13 and 2.14 are examples of a

grave and acute pair-the grave "pool" and the acute "tool." The "pool" token in figure

2.13 exhibits a large amount of consonantal energy in the lower frequencies, with the

lower frequencies dominating the spectrum. Conversely the "tool" token in figure 2.14

exhibits more energy at a higher frequency in the consonant, with the upper part of the

spectrum dominating.

Dominant Low
Frequency

o. 0..10 o~is0..20 0

Figure 2.13: Spectrogram of naturally spoken grave "pool." Lower frequencies dominate the spectrum of the
consonant.
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Dominant High
Frequency

OOS 0-1 0. 16 -2 0 1

Figure 2.14: Spectrogram of naturally spoken acute "tool." Higher frequencies dominate the spectrum of the
consonant.

Vowel Quadrant Grave Not Grave (Acute)
HB Moon Noon

Bowl Dole
Pool Tool
Fore Thor

LB Fought Thought
Wad Rod
Pot Tot
Bong Dong

LF Pent Tent
Bank Dank
Met Net
Fad Thad

HF Weed Reed
Fin Thin
Bid Did
Peak Teak

Table 2.5: Grave vs Acute Word Pairs Examples
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2.3.2.6. Compactness

Like graveness, compactness also represents broad resonance features of the

speech sound, related to place of articulation. In general, this feature corresponds to the

concentration of spectral energy at mid-frequency range. It is typically characterized by a

centrally dominant formant region and can be thought of as similar to the 2nd moment

about the mean or possibly even the 4th moment about the mean of the spectrum.

Table 2.6 lists all of the compact consonant pairs, organized according to vowel

quadrant, that are used in our DRT experiments. Figures 2.15 and 2.16 are examples of a

compact and diffuse pair-the compact "hit" and the diffuse "fit." The "hit" token in

figure 2.15 exhibits a dominant amount of consonantal energy in the mid frequencies.

Conversely, the "fit" token in figure 2.16 exhibits a much larger spread of energy in the

spectrum of the consonant and does not have a dominant central energy region.

Dominant Mid
Frequency

0-05 0.10 0_15 0

Figure 2.15: Spectrogram of naturally spoken Compact "hit." The noise exhibits a dominant
central mid-frequency component.
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Spread of
Frequency

A

Figure 2.16: Spectrogram of naturally spoken Diffuse "fit." The energy in the consonant is
spread and does not exhibit a dominant central component.

Vowel Quadrant Compact Not Compact (Diffuse)
HB you rue

show so
coop poop
ghost boast

LB yawl wall
got dot
hop fop
caught taught

LF keg peg
shag sag
yen wren
then den

HF hit fit
gill dill
key tea
yield wield

Table 2.6: Compact vs Diffuse Word Pairs Examples
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2.3.3. Speech: Summary

The speech categories described in the above sections are used in several

experiments described in Chapters 3-5 to measure and predict speech intelligibility. This

classification of speech sounds allows tabulation of detailed error patterns as well as

overall scores. As we will see in the next section, this gives advantages over other

current predictors of speech intelligibility.

2.4 Current predictors of speech intelligibility

Current predictors of speech intelligibility are inadequate for making detailed

predictions of speech confusions caused by acoustic interference (even for normal-

hearing listeners) and by combinations of hearing loss and hearing aids. The Articulation

Index, or Al [French and Steinberg, 1947; ANSI 1969] and related measures, STI

[Houtgast et al., 1980], and SII [ANSI, 1997] use models of hearing geared to the

specific task of predicting speech intelligibility. But such measures only predict average

speech intelligibility, not error patterns, and they make predictions for only a limited set

of acoustic conditions (linear filtering, reverberation, additive noise). The following

sections describes both the Al and STI in more detail.

38



2.4.1 Al

The main assumption and principle behind the Al is that the intelligibility of

speech depends on a weighted average of the signal-to-noise ratios in frequency bands

spanning the speech spectrum. By accounting for the contribution of different regions of

the spectrum to intelligibility, the Al successfully predicts the effects of additive noise

and simple low-pass, high-pass, and band-pass filters. However, the Al is unable to

represent the reduction in intelligibility scores due to reverberation [Houtgast, 1980].

2.4.2 STI

The speech transmission index (STI) measures the extent to which speech

envelope modulations are preserved in degraded listening environments. The STI differs

from the Al by using reduction in signal modulation rather than SNRs to compute

intelligibility scores. By including modulation reduction in the frequency band analysis,

the STI can predict the effects of reverberation as well as additive noise. The STI is

highly correlated with speech intelligibility in a wide range of listening conditions

[Houtgast and Steeneken, 1985; Humes et al., 1986; Payton et al., 1994]. These

conditions include additive noise, reverberation, and their combination. The STI in the

above studies was computed from measured changes in modulation depth of modulated

noise presented in an acoustic environment, or from acoustic theory, using signal-to-noise

ratios, room reverberation times, and/or room impulse responses. Payton and Braida
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[1999] used speech probe waveforms and the values of the resulting indicies to predict

intelligibility scores and showed that the results were comparable to those derived from

modulation transfer functions (MTFs) by theoretical models.

2.4.3 Al and STI Shortcomings

Although widely used, both the Al and STI have several shortcomings. Neither

predictor can account for the difference in intelligibility due to speaking style [Payton,

Uchanski, Braida, 1994]. Traditional STI uses modulated noise as a probe signal and is

valid for assessing degradations that result from linear operations on the speech signal.

Researchers have attempted to extend the STI to predict the intelligibility of nonlinearly

processed speech by proposing variations that use speech as a probe signal. However

most of these methods are not suitable for both conventional linear acoustic degradations

and nonlinear operations [Goldsworthy and Greenberg, 2004]. In general, both metrics

fail to predict intelligibility for subjects with combinations of hearing loss and hearing

aids.

The main shortcoming that we are interested in is that neither the Al nor STI

predict detailed confusion patterns between consonants. Both metrics only compute

average intelligibility.
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2.5. Human Phonetic Confusions: past studies

Several studies have been conducted that report observed confusions between

consonants. Perhaps the most notable and earliest of these studies is the Miller and

Nicely (1955) analysis of confusion patterns for 16 consonants in noise with and without

high-pass or low-pass filtering at -18, -12, -6, 0, 6, and 12 dBSNR. In this study 16

different consonants were spoken and followed by the vowel /a/ (as in father). Their

findings for the filtered speech (bandpassed at 200-6500Hz) at 12 dBSNR are shown in

figure 2.17. In this figure the horizontal abscissa corresponds to the listeners responses

to a stimulus; the ordinate corresponds to the stimulus that was presented. As the figure

shows, /f/ - /0/, /b/ - /v/ - /(/, /0/ - /3/, /p/ - /t/ - /k/ and /b/ - /d/ - /g/ form perceptual

confusion groups, ie groups of consonants that tend to be confused with each other.

Heard

p I k f 9 s S b d ?S s iS S

P 240 41 2 1
S 1 252 1 1 1
k 18 3 219

f 223 24 5 2
e 9 1 OR 185 3 1

232

b 1 242 24 12 1
d 213 22 1
g 1 33 203 3

6 171 30 1
1 1 3 22 208 4

z 2 4 1 7 23
244

1 274 1
252

Presented

Figure 2.17: Miller and Nicely example confusion matrix for filtered speech (bandpassed at 200-6500Hz) at 12
dBSNR. In this study 16 different consonants were spoken and followed by the vowel /a/ (as in father). The pairs /f/ -
/0/, fbI - /v/ - /(/, /0/ - /(/, /p/-/t/-/k/ and /b/-/d/-/g/ form perceptual confusion groups.
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2.6 Recap and Tie Back to our Approach

Like Miller and Nicely, we are interested in confusion patterns among consonant

and vowel diphone pairs. We focus on the Jacobsonian acoustic dimensions, as described

in section 2.3, to measure and predict error patterns. The overall objective of the thesis is

to model and use efferent feedback to regulate the processing of speech in noise and

mimic performance. The next few chapters will cover our efforts at measuring human

confusions on natural and synthetic speech in noise, will describe our machine model,

and will compare our machine model and its consonantal confusions in noise to that of

humans.
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3. Human Psychoacoustic Experiments

This chapter describes the set of psychoacoustic experiments conducted on human

listeners. These studies were used as a reference to tune the machine models that are

described in Chapters 4 and 5. In this chapter we describe the goals and background for

the human studies, then the details of the experiments, and finally the results.

3.1. Overview and Goals

The overall goal of the human psychoacoustic studies was to obtain error patterns

for initial consonants in noise in spoken consonant-vowel-consonant (CVC) words for

human subjects. These error patterns are then later used as a reference to tune the signal

processing of our machine model to better match human performance and consonantal

confusion patterns. This procedure is developed and described in Chapter 5. Because the

underlying goal is to tune the signal processing of our machine model and mimic that of

the human auditory periphery, it is advantageous to simplify the task for the listener as

much as possible.

Ghitza (1993) and Ghitza and Sondhi (1997) simplified the speech task through

use of the Diagnostic Rhyme Test (DRT). Using the DRT test is advantageous because it

employs a highly constrained, two-alternative speech discrimination task between two

rhyming CVC words (differing in their initial C), which is advantageous for two reasons.

First, it reduces cognitive-level context effects, allowing the assumption that stimulus and
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peripheral factors are dominant. Second, the simplicity of the task reduces the recognition

process to a binary decision between a pair of initial diphones, hence allowing more

focus aspects of the peripheral auditory model (PAM).

Hant and Alwan (2003) describe their success using a functional auditory model

in predicting complex-signal discrimination in noise. Their tasks included discrimination

of spectro-temporal patterns such as formant sweeps and synthetic CV syllables.

Performance was measured for discrimination-task between two frozen stimuli (which in

a detection task is 'noise' or 'signal-plus-noise') by making predictions based on cell-by-

cell differences (in the L2-norm sense) between the two stimuli, where a 'cell' is a small

region in the time-frequency representation.

Inspired by Hant and Alwan (2003), we simplified Ghitza's (1993) approach by

using "frozen speech" stimuli, namely, the same acoustic token was used for training and

for testing, hence the testing token differed from the training token only by the acoustic

distortion. The reason for this is that it was hoped that this would reduce errors due to the

recognizer; therefore, the observed errors would be due primarily to the capability of the

PAM to exhibit perceptually important acoustic-phonetic cues of the acoustically

distorted test stimuli. These important acoustic-phonetic cues were categorized into 6

distinct acoustic features. The next section describes these 6 acoustic features.

3.2. Background: Acoustic Features used in Database
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Unlike the Al [French and Steinberg, 1947; Kryter, 1962] and STI [Steeneken and

Houtgast, 1980], our model was designed to predict detailed confusion patterns across

acoustic features: we used the Jacobsonian dimensions of voicing, nasality, sustention,

sibilation, graveness, and compactness as features in our studies (Chapter 2). To do this,

word pairs with initial consonants that differ along only one acoustic feature were

selected for processing and comparisons (as in this chapter and also Chapter 5). For

example the words "daunt" and "taunt" shown below in figures 2.4 and 2.5 (see Chapter

2) differ only along the acoustic dimension of voicing and share all other acoustic

features. Hence in this example, "daunt" and "taunt" differed in the voicing dimension

but were categorized as having the same nasality, sustention, sibilaiton, graveness, and

compactness features.

3.3. CVC Database description

The word pairs organized according to the Jacobsonian acoustic dimensions

described in the proceeding section and Chapter 2 were incorporated into two CVC

databases for studies of initial consonant human confusion patterns - a naturally spoken

corpus and a synthetically generated corpus (the synthetic corpus was used in most of our

experiments and the naturally spoken corpus was mainly used to evaluate the quality of

the synthetic corpus). Both corpora were composed of 192 Consonant-Vowel-

Consonant syllables. The CVC words included were selected for the specific DRT task

(described below in section 3.4) and chosen to span the Jacobsonian dimensions
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described above in section 3.2. The 192 words were organized according to 96 word

pairs (as per requirements for the DRT task described below), along 4 vowel quadrants,

and 6 Jacobsonian dimensions. Noise was added to each word to obtain test tokens at

various presentation levels and SNR: 70dB, 60dB, and 50dB SPL and 10dB, 5dB, and

OdB SNR. The rest of this section describes and contrasts both naturally spoken and

synthetic corpora.

3.3.1. Natural Spoken Corpus

The natural CVC database was recorded by one male and one female talker, each

of whom produced roughly half of the CVC tokens, in the form CVC. The syllables were

constructed using 13 initial consonants, 6 vowels, and 16 final consonants. The vowels

were the tense i, a, u, and lax I, c, U; the 12 initial consonants were p, t, k, b, d, g, f, s, ,

0, v, z, and 0; and the final consonants were p, t, k, b, d, g, f, 0, s, J, v, 6, z, dy, tJ, and 3.

The mean durations of the syllables spoken by each of the two talkers is 634 and 574 ms.

Materials were lowpass filtered at 9 kHz then converted to 12 bit digital samples at a

sampling rate of 20 kHz.

3.3.2. Synthetic Corpus with time-aligned speech
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The synthetic CVC database is composed of 4 repetitions of 192 consonant-

vowel-consonant syllables - the same CVC words as in the natural corpus. However,

unlike the naturally spoken corpus, the synthetic database is composed of words from

only a synthesized male talker (instead of male and female). The CVC words were

synthesized with the help of Ed Bruckert using HLSyn, a modification of the Klatt

synthesizer that was developed by Sensimetrics Corporation. As in the naturally spoken

corpus, the syllables for the synthetic corpus were constructed using the same 13 initial

consonants, 6 vowels (the three cardinal vowels together with their unstressed cognates),

and 16 final consonants. The initial consonant to vowel transition region for each word

was time aligned to 200-ms and DRT word-pairs were synthesized so that the formants'

final target values of the vowel in a given word-pair are identical past 400-ms into the

file, restricting stimulus differences to the initial diphones. This reduced the cognitive

load and hence the differences due to the pattern recognition systems that we used in our

machine model and that of a human. Like the naturally spoken corpus, materials were

lowpass filtered at 9 kHz then converted to 12 bit digital samples at a sampling rate of 20

kHz. Example spectrograms were computed using Wavesurfer with a 256-point FFT

window length, a 250Hz analysis bandwidth, a 64-point Hamming window, and a 0.97

pre-emphasis factor (this pre-emphasis factor determines the high-pass filtering of the

spectrum which is specified by the filter response h(n) = 5(n) - a5(n -1) where a is the

pre-emphasis factor; this pre-emphasis filter makes the high frequency components of the

spectrogram stand out more than they would otherwise, which is useful in many analysis

tasks). A sample of these spectrograms is shown in figures 3.13 to 3.16. These
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spectrograms are similar to the naturally spoken words displayed in Chapter 2 in figures

2.6 and 2.7, and 2.10 and 2.11. C to V transition

Attenuation

O. 10 -. is 00 20 0.25

Figure 3.13: Spectrogram of synthetic nasal "meat." Like the spectrograms in chapter 2, this was computed using
Wavsurfer with a 256-point FFT window length, a 250Hz analysis bandwidth, a 64-point Hamming window, and a
0.97 pre-emphasis factor. The consonant to vowel (C to V) transition occurs at 0.20 seconds into the .wav file. The
addition of zeros to the transfer function greatly attenuates the mid and high frequency components of the /m/, just
like in the naturally spoken speech. Lower formants are visible like those of the natural speech in figure 2.6;
however the formants of the two are not identical and the synthetic speech has a slightly buzzy or metallic sound.
The DRT word-pairs were synthesized such that the formants' target values of the vowel in the word-pair (see
"meat" in figure 3.14) are identical and the "steady-state" vowels are identical.

C to V transition

No Voice Bar

0 0-5 0..Z0 .Z

Figure 3.14: Spectrogram of human spoken non-nasal "beat." The consonant to vowel (C to V) transition occurs
at 0.20 seconds into the .wav file. The DRT word-pairs were synthesized such that the formants' target values of
the vowel in the word-pair (see "beat" in figure 3.13) are identical and the "steady-state" vowels are identical.
No attenuation due to zeros is present and a sharp burst is present before the vowel, like in the naturally spoken
speech in figure 2.7. Unlike the naturally spoken speech, a voice bar is omitted before the stop burst since it is
not always present in /b/s (the synthesizer was set to not include voice bars).
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C to V transition

4

Figure 3.15: Spectrogram of synthetic sibilant "sole." Like the natural speech token in figure 3.16, this synthesized
token exhibits very strong high-frequency noise typical of a sibilant consonant. The consonant to vowel (C to V)
transition occurs at 0.20 seconds into the .wav file. The DRT word-pairs were synthesized such that the formants'
target values of the vowel in the word-pair (see "thole" in figure 3.16) are identical and the "steady-state" vowels
are identical.

C to V transition

I

Figure 3.16: Spectrogram of synthetic non-sibilant "thole." Like the same naturally spoken token displayed in
figure 3.15, the noise in this example is much shorter in duration and smaller in intensity than that in the sibilant
example of figure 3.13. The consonant to vowel (C to V) transition occurs at 0.20 seconds into the .wav file. The
DRT word-pairs were synthesized such that the formants' target values of the vowel in the word-pair (see "sole"
in figure 3.15) are identical and the "steady-state" vowels are identical.
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For these synthetic words, the consonant to vowel (C to V) transition occurs at 0.20

seconds into the .wav file and is labeled in the figure.

3.4. Human DRT task

This section describes the human DRT (Diagnostic Rhyme Test) task that each

listener performed. For these tests, 6 different subjects participated and were presented a

DRT test based on real speech and then another based on synthetic speech (see section

3.3), both with speech-shaped Gaussian noise at signal-to-noise ratios of 10dB, 5dB, and

OdB and noise sound pressure levels of 70dBSPL, 60dBSPL, and 50dBSPL (levels were

calculated based on rms values). Human performance is evaluated based on percent

correct responses using Voiers' DRT paradigm, and scores are broken down according to

the DRT diphone dimensions of voicing, nasality, sustension, sibilation, graveness, and

compactness (see section 2.3). Examples and a discussion of synthetic speech tokens

with noise are displayed in figures 3.17 to 3.20.

C to V transition

000,15 0,.2002

Figure 3.17: Spectrogram of synthetic nasal "meat" at 70 dBSPL and 5 dBSNR. The speech is a scaled version of
the clean synthesized speech shown in figure 3.13. Notice that much of the low-frequency energy in the /m/ is
masked and barely visible. Scaling of the speech and noise is done to satisfy the presentation condition.
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C to V transition
I

Figure 3.18: Spectrogram of naturally spoken non-nasal "beat" at 70 dBSPL and 5 dBSNR. The speech is a
scaled version of the clean synthesized speech shown in figure 3.14. Scaling of the speech and noise is done to
satisfy the presentation condition.

C to V transition
M

Figure 3.19: Spectrogram of synthetic sibilant "sole" at 70 dBSPL and 5 dBSNR. Notice that some the energy of
the initial /s/ consonant is masked and some of the energy is visible. The speech is a scaled version of the clean
synthesized speech shown in figure 3.15. Scaling of the speech and noise is done to satisfy the presentation
condition.
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C to V transition

0.10 0-Ls 0,20 0_Z .0- .30

Figure 3.20: Spectrogram of synthetic mellow "thole" at 70 dBSPL and 5 dBSNR. Notice that the energy of the
initial /0/ consonant is masked. The speech is a scaled version of the clean synthesized speech shown in figure
3.16. Scaling of the speech and noise is done to satisfy the presentation condition.

3.4.1. Overview

Voiers' DRT task (1983) is a 2 Alternative-Forced-Choice task. It is used to

measure the intelligibility of processed speech and has been used extensively in

evaluating speech coders. From an acoustic point of view, Voiers' DRT database covers

initial dyads of spoken CVCs. The database consists of 96 pairs of confusable words

spoken in isolation. Words in a pair differ only in their initial consonants. The dyads are

equally distributed among the 6 Jacobsonian acoustic-phonetic distinctive features and

among vowel quadrants. In our version of the DRT the vowels are collapsed into 4

quadrants (High-Front, High-Back, Low-Front, Low-Back). The vowels [ee] and [i] are

grouped into the High-Front vowel quadrant; [eh] and [at], into the Low-Front quadrant;

[oo] and [oh] into the High-Back quadrant; and [aw] and [ah] into the Low-Back
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quadrant. This grouping according to vowel quadrants and Jacobsonian dimensions

results in 4 word-pairs per a [quadrantxfeature] cell. The feature classification (outlined

in Table 3.1 with examples) follows the binary system suggested by Jakobson, Fant and

Halle (Jakobson et al., 1952).

Voicing (VC) Nasality (NS) Sustention (ST)
(Voiced - Unvoiced) (N3sa1 - Ora) (Sustained -Interrupted)

veal - feel meat - beat vee - bee
zed - said neck - deck fence - pence

Sibilation (SB) Graveness (GV) Compactness (CM)
(Sibilatedl Assibilated) (Grave -Acute) (Com~pact D iffuse)

cheep - keep peak - teak key - tea

jot- got wad - rod got- dot

Table 3.1: Samples of word-pairs used in Voiers' DRT (1983).

3.4.2. Task Specifics

Our psychophysical procedure is carefully controlled to assure a task with low

cognitive load. As stated above, the synthetic speech is carefully created such that the

initial consonant to vowel transition is time-aligned and such that the long-term final

vowel formants are identical. Additionally, the listeners are well trained and are very

familiar with the database, including the voice quality of the individual speakers.

The experiment uses a one-interval two-alternative forced-choice paradigm. First,

the subject is presented visually with a pair of rhymed words that are selected in a

random order from the total list of DRT words. Then, one word of the pair (selected at

random) is presented aurally and the subject is required to indicate which of the two
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words was played. This procedure is repeated until all the words in the database have

been presented once. In our version of the DRT, words are played sequentially, one

every 2.5 - 3 seconds; the visual presentation precedes the aural presentation by 1 sec.,

and the decision (binary) must be made within Isec of the aural presentation.

Words in the database are divided into "runs" of 64 word-pairs, and the duration

of one run is limited to about 3 minutes (to avoid fatigue). Three runs of 64 word-pairs

make up a session which covers all 192 words in one repetition of one noise condition.

In total, data was collected for 9 different noise conditions. The noise was set to one of

three different presentation levels - 70dB, 60dB, or 50dB SPL - and the speech was

scaled to meet one of three target signal-to-noise-ratio values - 10dB, 5dB, or OdB SNR.

Data for each noise condition was collected in 4 repetitions, with the exact noise

condition and repetition number randomized, and with the same spoken token and a

different realization of the noise used in each session.

The scores of one complete DRT-session were tabulated with a cell granularity of

[quadrantxfeature], as illustrated in Table 3.2. A table-entry contains the number of

words per cell that where mistakenly identified; it is an integer between 0 and 4, since the

total number of words per cell is 4.

Our knowledge about the acoustic correlates of the Jakobsonian dimensions

provides diagnostic information about temporal representation of speech, while the vowel

quadrant identity provides information about the frequency range (i.e. location of the

formants in action). Hence, the integrated information can link phonetic confusions with
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High-Back 1 1 2 0 2 1 1 0 1 3 0 0
Low-Front 1 0 0 0 1 3 0 1 1 4 1 1
Low-Back 1 I 1 1 3 4 2 3 3 2 1 0
% Error 18 1325 13 38 75 31 38 44 62 1913

Table 3.2: A sample of the outcome of one DRT session, one stimulus condition, and one subject. A table-entry
contains the number of words per [quadrantxfeature] bin mistakenly identified (an integer between 0 and 4). The total
number of presented signals is 192 (4 repititions, x 12 acoustic categories corresponding to either the Jacobsonian
feature being present or absent, x 4 word pairs per category per vowel quadrant, x 4 vowel quadrants).

their origin in the time-frequency plane. We utilized the usage of such linkage to guide

the procedure of tuning the parameters of the auditory model. In the next section we

report our results for the DRT task on natural and synthetic speech.

3.4.3. DRT Results and Comparison

Human performance over all 9 SPL and SNR conditions with synthetic and

natural speech is shown in figures 3.21 and 3.22 (with a summary of results displayed in

tables 3.3 and 3.4). As one can observe in figures 3.21 and 3.22, overall, as SNR

decreases, human performance decreases for both natural and synthetic speech. For

naturally spoken speech, human performance moderately decreases as SPL is decreased

for all conditions. For synthetic speech, human errors moderately decrease as SPL is

decreased for all conditions but the OdbSNR cases. For both natural and synthetic,
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sustension was the dimension with the most errors. This means that humans had the

hardest time distinguishing words with sustension on the initial diphone from those

without it.

Overall and for each noise condition presented, humans performed better on

naturally spoken speech than on synthetic. In general, the natural and synthetic scores

per dimension matched each other within one standard deviation. The exceptions to this

are the categories of sustension and voicing; both had the majority of their natural and

human scores differ by larger than a standard deviation, with the synthetic speech scores

having more errors.

A correlation of the natural and synthetic scores per dimension is displayed in

figure 3.23. As the display shows, many of the scores are correlated linearly with an

equal error rate. The exceptions to this are clearly visible. The voicing minus (the solid

circles in the plot) category in particular is extremely biased towards more synthetic

errors and the voicing minus (empty circles) and sustension categories (upright triangles)

are slightly biased in the same manner. Conversely, the nasality plus dimension (the

empty squares in figure 3.23) are biased towards more natural errors. All of these

differences are most likely due to imperfections in the synthesis of the speech with the

bias towards synthetic errors outweighing the bias towards natural errors, hence making

the overall errors of the synthetic speech results larger than those of the natural.

As stated above, the number of errors for the nasality dimension of synthetic speech is

less than that of the nasality dimension of natural speech, particularly at OdB SNR (see

figures 3.21and 3.22). These differences are likely due to the synthesizer, and are not

fully understood. However, when listening to the synthetic nasals, several listeners

56



suggested that they heard artifacts that made the words sound mechanical or slightly

buzzy. This mechanical sound likely contributed to easier identification at the OdB SNR

condition for synthetic speech. Because of this, the nasality dimension was ignored for

much of the tuning of the machine model and hence is not mentioned in many of our

results. Despite this, it was concluded that the rest of the data provides the background

needed to develop our model because of the good fit between natural and synthetic

speech per acoustic dimension.

70dBSPL 60dBSPL 50dBSPL

1OdbSNR 5.77 4.84 3.93

5dbSNR 9.992 8.01 7.47

OdbSNR 14.37 13.93 12.54

Table 3.3: Grand Mean Errors per noise condition for human-spoken speech.

70dBSPL 60dBSPL 50dBSPL

1OdbSNR 9.27 8.64 8.62

5dbSNR 12.52 11.2 11.2

OdbSNR 16.6 17.77 17.99

Table 3.4: Grand Mean Errors per noise condition for synthetic speech.
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Figure 3.21. Human performance on Voiers' 2AFC DRT task using naturally spoken speech. Performance is
broken down into DRT dimensions having the attributes of voicing (VC), nasality (NS), sustension (ST), sibilation
(SB), graveness (GV), and compactness (CM). + indiciates diphones that have the attribute. - indicate diphones
that do not have the attribute. The grand mean is computed by averaging the percent correct over all dimensions and
+/- attributes. As SNR decreases, human performance decreases. Human errors moderately decrease as SPL is
decreased.
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Figure 3.22. Human performance on Voiers' 2AFC DRT task using synthetic speech created by the HLsyn
speech synthesis system. Performance is broken down into DRT dimensions having the attributes of voicing
(VC), nasality (NS), sustension (ST), sibilation (SB), graveness (GV), and compactness (CM). + indiciates
diphones that have the attribute. - indicate diphones that do not have the attribute. The grand mean is computed
by averaging the percent correct over all dimensions and +/- attributes. As SNR decreases, human performance
decreases. Human errors moderately decrease as SPL is decreased for all conditions but the OdbSNR cases.
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Correlation of Natural and Synthetic Speech DRT Error Rates
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Figure 3.23: Correlation of Human and Synthetic Error Rates. Scores are averaged across 6 subjects. Each mark
corresponds to the average subject score for a particular Jakobsonian dimension (Voicing, Nasality, Sustension,
Sibilation, Graveness, and Compactness) in a particular noise level condition (the conditions examined were noise
levels of 70, 60, and 50dBSPL with speech at 10, 5, and 0 dBSNR). Hence each Jakobsonian-plus and -minus
dimension has 9 points in the figure. The unfilled shapes correspond to the dimension-plus features. The filled
shapes correspond to the dimension-minus features. The grey dashed line corresponds to an equal error rate between
synthetic and natural scores. The voicing and sustension categories in particular are biased towards more synthetic
errors. Nasality-plus is biased towards more natural speech errors. The rest of the dimensions (nasality-minus,
sibilation, graveness, and compactness) have nearly equal error rates corresponding to a good correlation between
synthetic and human error rates.
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3.5 Conclusion

The human studies described in this chapter produced DRT results that were

sorted according to Jacobsonian acoustic dimension, and thus provided very detailed

error patterns for human listeners. In general, the error patterns for both naturally spoken

and synthetically generated corpora were very similar and both produced human listener

error rates that were stable over different noise SPL presentation levels with sustention

contributing more to errors than any other acoustic dimension. The exception to the

above trend was the nasal sounds. Hence these error patterns (with the exception of the

mechanical sounding nasals) were used as a baseline for a machine DRT mimic task that

is described in Chapter 5. Because the synthetic speech corpus was aligned in time at the

initial consonant-to-vowel transition and in frequency in the final vowel steady-state

formants, machine experiments focused on using the synthetic corpus.
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4. Machine Model Description

This chapter describes the machine model that was developed to mimic

performance of human speech discrimination. It is organized into two sections - one

covering the "front-end" component that represents the adaptive signal processing done

by the system, and another section covering the "back-end" component that represents

the pattern recognition used for decision making.

In our implementation, the "front-end" component is an efferent-inspired

phenomenological model of auditory periphery. The "back-end" component is an energy

based template-matching system'. The front-end system is a closed-loop system, i.e. one

that uses efferent feedback to adjust the point of operation and adjust the characteristics

of the filters such as bandwidth and amplitude of the frequency response of the cochlear

channels. Obviously, the ability of the overall system to predict human consonant

confusions depends on both components, the front-end and the back-end. Since the goal

of this thesis was to develop and model the signal processing of the auditory system, we

chose a simple time-aligned DRT task to reduce the cognitive load and hence the errors

due to the back-end pattern recognition.

'We assume that the boundaries of the input diphone are known (e.g. by manual segmentation).
How to extract a diphone by machine is beyond the scope of this thesis.
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4.1 Front End

4.1.1. Overview of Components

The front-end system is composed of several modules which are shown below in

the block diagram in figure 4.1. The first component is a middle ear module that mimics

the high-pass frequency response of the middle ear. This is followed by a filter bank,

which represents and models the processing of the cochlea, followed by an Inner Hair

Cell (IHC) auditory nerve model. The output of the IHC is then clipped by a dynamic

range window (DRW) rate limiter which mimics the rate limitations imposed by the rate

of spontaneous neural firing and saturation rate of neural firing. After the rate clipping

module, the signal is smoothed to find the short-term average nerve firing rate which is

used by the back-end system. The next few sections describe each of these components

in more detail.

- \ - IHC - Rate Clipping P Ave Rate -+

IHC Rate Clipping - Ave Rate -+

IHC Rate Clipping Ave Rate -+

-Mid.

IHC Rate Clipping Ave Rate -+

Figure 4.1: Overview of Front-end. A basic diagram of the front-end system. It is composed of a middle
ear module and filter bank followed by the front-end IHC nerve model. Then the Dynamic Range Window
is applied and the output is then smoothed with a trapezoidal window with Ims ramps that overlap to find
the average rate of nerve firing. The rate outputs from each channel are input to the back-end system.
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4.1.2. Middle Ear

Our middle ear module was designed to mimic the high-pass frequency response

of the middle ear. It consists of a high-pass filter with several specifications: a desired

gain of OdB at 1kHz, and a smooth roll-off below 1kHz with a slope that levels off to

20dB per decade. To achieve these specs we created a first-order high-pass filter with

frequency response defined by H(w)= A . . The parameters A=.0014 and
jW + 2O

m =1000 * 2z were selected to approximate the above specifications closely. The

designed frequency response is shown below in figure 4.2.

Actual Middle Ear Frequency Response
5

0 .
X: 1007

-5 Y: -0.1049
X: 100.6

- 10Y: -5.503

-15

5 -20

E -25
X: 10.74

-30- Y: -24.26

-35-

-40
101 102 103

Frequency in Hz
Figure 4.2: Middle Ear Frequency Response. Our model of the middle ear is a first order high-pass filter

with transfer function H(w) = A . + and a pole at 1 kHz. In the above plot X is the frequency in

Hz and Y is the amplitude in dB.
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4.1.3 Filterbank

The filter bank module is composed of 24 overlapping cochlear bandpass filters

with a width determined by the ERB scale (Moore and Glasberg, 1983) and an

approximately logarithmic spacing. That is to say, as we increase the characteristic

frequency, examining cochlear filters with a higher bandpass frequency response, the

filter width grows proportionally to frequency. This is illustrated in figure 4.1. In

creating our filter banks, we tested different models of cochlear filters, linear

[Gammatone filters (Patterson et al., 1995)] as well as nonlinear [MBPNL (Goldstein,

1990), and DRNL (Lopez-Poveda and Medis, 2001)]. The main filters we focused on

and describe here are the linear Gammatone and the non-linear MBPNL filters.

4.1.3.1. Gamma filterbank

A Gammatone filter bank is composed of a set of overlapping linear Gammatone

filters; hence the overall Gammatone filter bank is a linear system. The bandwidth of the

Gammatone filters increases proportionally with center frequency, such that the

equivalent rectangular bandwidth (ERB) matches psychoacoustic data. The ERB is a

psychoacoustic measure of the width of the auditory filter at each point along the cochlea.

The gammatone auditory filter can be described by its impulse response:
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n-i - 27bt
Y(t)=at e cos(2ft+p) ,t >0 (eq 4.1)

This function was introduced by Aertsen and Johannesma (1980) and has been used in

various computational models of human peripheral frequency selectivity (eg. Patterson et

al. 1995). The primary parameters of the filter are b and n. b largely determines the

duration of the impulse response; Patterson suggests using a value of b = 1.019xERB(f)

where ERB(f) is the equivalent rectangular bandwidth of the filter with CF = f . n is

the order of the filter and it largely determines the slope of the skirts of the filter; we used

an n = 4 order filter. The parameter a is chosen to normalize the gain to one at the center

frequency of each filter. The MATLAB code used to generate our gammatone filters was

developed by Malcom Slaney. Slaney's design process involves creating a continuous

time gammatone filter by taking the Laplace transform of equation 4.1 to solve for the

transfer function; then he carefully places poles and zeros in the S-plane to create the

transfer function and uses the impulse invariance method to obtain a discrete time

gammatone filter representation for use in MATLAB. For the ERB(f) calculation he

uses the parameters suggested by Glasberg and Moore [1990]. The frequency response

of one of his designed filters centered at 1kHz is shown in figure 4.3. For more details

about this code, the development of the gammatone filters, or the theory behind it,

readers are encouraged to view Slaney's report [Slaney 1993].
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Figure 4.3: Gammatone Filter Frequency Response designed using the approach and code

from Malcom Slaney [Slaney 1993]. The example filter has a maximal gain of OdB at 1kHz.

The gammatone auditory filterbank is considered by many to be a reasonable

trade-off between accuracy in simulating basilar membrane motion and computational

load. As such, it is used as a base-line to compare performance with the nonlinear

models we developed.

4.1.3.2. MBPNL Filterbank

The model we use to mimic the function of the human cochlea was based on

Goldstein's Multi Band Pass Non-Linear (MBPNL) model of nonlinear cochlear

mechanics (Goldstein, 1990). This model operates in the time domain and changes

67



its gain and bandwidth with changes in the input intensity, in accordance with

observed physiological and psychophysical behavior.

The MBPNL model is shown in figure 4.4. The lower path (Hl/H2) is a

compressive nonlinear filter that represents the sensitive, narrowband compressive

nonlinearity at the tip of the basilar membrane tuning curves. The upper path (H3/H2) is

a linear filter (expanding function preceded by its inverse compressive function results in

a unitary transformation) that represents the insensitive, broadband linear tail response of

basilar-membrane tuning curves (after Goldstein, 1990). The Gain parameter controls the

gain of the tip of the basilar membrane tuning curves, and is used to model the inhibitory

efferent-induced response in the presence of noise. For the open-loop MBPNL model the

gain parameter is set to 40dB, to best mimic psychophysical tuning curves of a healthy

cochlea in quiet (Goldstein, 1990).

Expanding
HA(w) Memoryless

Nonlinearity

SW
We Compressing

Memoryless H2(W)
Nonlinearity

S H1(w) A R.

Stapes We GAIN air
Velocity Membrane

Displacement

Figure 4.4: MBPNL filterbank. A parameter Gain controls the gain of the tip of the basilar membrane
tuning curves. To best mimic psychophysical tuning curves of a healthy cochlea in quiet, the tip gain is set to
Gain=40dB (Goldstein, 1990)
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The "iso-input" frequency response of an MBPNL filter at CF of 3600Hz is

shown in figures 4.5 and 4.6. For an input signal s(t) = Asin(wot), with A and coo fixed,

the MBPNL behaves as a linear system with a fixed "operating point" on the expanding

and compressive nonlinear curves, determined by A. For a given A, a discrete "chirp"

signal was presented to the MBPNL, with a slowly changing frequency. Changes in (0.

occurred only after the system reached steady-state, for a proper gain measurement. The

frequency response for the open-loop MBPNL model is shown at the upper-left corner

(i.e. for Gain = 40dB). Figure 4.5 and 4.6 shows the iso-input frequency response of the

system for different values of input SPL level. As the input level increases the gain drops

and the bandwidth increases, in accordance with physiological and psycho-physical

behavior (Glasberg and Moore, 1990). Figure 4.7 shows the effects of varying the gain at

3600Hz on the distance between the maximum and minimum peaks, corresponding to

inputs of 40 dBSPL and 120 dBSPL inputs respectively, shown in figure 4.5. As the gain

increases, this distance increases.

In this thesis work, the MBPNL model was developed into a closed-loop system

and then compared to the open-loop Gammatone filter bank model (see results and data

in chapter 5). The initial development of this model is described in section 4.2 (see

below). Both the MBPNL and Gammatone filter banks are used in the front-end model

to provide stimuli for the IHC models.
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Figure 4.5: MBPNL frequency responses Iso-input frequency responses of an MBPNL filter (at CF of
3641Hz) for different values of gain parameter. From Upper-left, clockwise: Gain=40, 30, 20 and 10dB.
Upper-left corner (Gain=40dB) is for healthy cochlea in quiet (Goldstein, 1990). Input sinusoids are
varied from 40dBSPL to 120dBSPL
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Figure 4.7: Difference in distance of the smallest and largest peaks (black dashed and solid lines) shown in
figures 4.5 and 4.6 vs Gain (labeled GI here).

4.1.4. IHC module

As stated, the output of each cochlear channel (using the Gammatone or MBPNL

filters) is followed by a generic model of the IHC. Our model of the IHC is composed of

a half-wave rectifier followed by a low-pass "Johnson" filter with poles at 600 Hz and

3000 Hz (see figures 4.1 and 4.8). The half-wave rectifier converts the input waveform

of a cochlear channel into a nerve firing response. The Johnson filter mimics the loss of

synchrony found in cats as the CF of the cochlear filters is increased [Johnson, 1980]; ie

as CF increases, the bandwidth of the cochlear filters increase and information on the fine

structure of the waveform is lost.
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Xf I x, if x>0 H(w)=
Z(x) = l 0, if x<0

A Yf (t)

(01 + W 2 O2 +W 2

Figure 4.8: Our model of the Inner Hair Cell (IHC). The model is fed the output from the cochlear filter bank

xf (t) . Each cochlear channel is processed by the same half-wave rectification followed by a low-pass

Johnson filter. The Johnson filter is a 2 "d order lowpass filter with poles at 600Hz and 3000Hz. A is chosen to
give the filter a unity gain in the pass-band. The combination of the two components produces an output that
reflects nerve firing patterns while also mimicking loss of synchrony found in humans and cats as the CF of
the cochlear filters is increased.

4.1.5. Rate Limiter

After rectification and low-pass filtering, the dynamic range of the simulated IHC

response is clipped and restricted - from below and above - to a "dynamic-range

window" (DRW), representing the observed dynamic range at the AN level (i.e. the AN

rate-intensity function); the lower bound and upper bound of the DRW stand for the

spontaneous rate and rate-saturation, respectively. A pictorial display of the DRW is

shown in figure 4.9.
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Figure 4.9: Dynamic-Range Window (DRW) Rate Limiter. Inputs with intensity below the Lower
Bound are clipped to the Spontaneous IHC output firing rate level. Inputs with intensity above the Upper
Bound are clipped to the Saturation IHC output firing rate level.

4.1.6. Smoothing to find Average

The average rate of nerve firings from the output of the IHC model is then found

by using overlapping 8ms trapezoidal windows with Ims cosine-squared ramps and a T

flat part (see figure 4.10). The length and shape of these windows could play a large role

in the performance of the front-end system, and thus T is a parameter that will be

investigated and modified in testing in the near future. This resulting averaged nerve

response rate can be used by the back-end system to perform the relevant template-

matching speech analysis.
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Figure 4.10: Smoothing Windows to find Average Rate. A N-ms window with 1-ms raised-cosine ramps
is used to smooth the rate output and find the average rate. N is varied and adjusted as a parameter in our
model. The overlapping windows sum to 1.

4.1.7. Stretching

After applying the DRW rate limiter and smoothing, the model had an option to

stretch the resulting rate response to the full dynamic range, i.e. to proportionally stretch

the ouput of the IHC such that the minimal response rate of the signal is stretched to the

spontaneous level and the maximal rate of the signal is stretched to the saturation level.

In many of our experiments stretching of the output yielded improved performance, and

hence for many of our results, stretching was used after clipping the rate of the output by

the DRW limiter. The motivation for normalizing the IHC output stems from

neurophysiological studies on anesthetized cats with noisy acoustic stimuli (Winslow and
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Sachs, 1988)2. Readers should consult Appendix A for more details on these studies and

reviews other publications on the same topic.

4.2 Back End

The back-end system can be represented in two main parts (as shown in figure

4.11): a template state component, and a matching operation component. Together,

these two parts allow speech recognition in our model. To accomplish this,

*

t s(t)

Figure 4.11: A schematic description of our conceptual system: cochlea with the back-end system.
The back-end takes diphones and compares them to template diphone "states" for speech recognition.

2 Concurring with this observation are measurements of neural responses of awake cats to noisy

acoustic stimuli, showing that the dynamic range of discharge rate at the AN level is hardly

affected by changes in levels of background noise (May and Sachs, 1992).
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segmentation of the diphone was done by hand for the speech input for the naturally

spoken corpus. For the synthetically generated corpus, the diphone segments were

predetermined by the synthesizer parameters. Diphones extracted in either manner are

stored as internal representations of sounds, as may be acquired during early stages of

learning (e.g., Iverson and Kuhl, 1996; 2000). These internal representations are used as

templates to perform diphone matching, and hence perform speech recognition in the

form of diphone identification. Our machine model used the L2-norm between template

and test tokens to find the match with the smallest mean-squared-error. This template is

chosen as the match for our machine identification task (see below for more information).

4.2.1. DRT Template matching operation - Two Template Comparisons

Since the long-term vowel characteristics past the consonant-vowel transition are

not necessarily the same in natural speech (i.e. the ending part of the vowel and final

consonant might not be exactly the same over multiple repetitions), a simple back-end

system could detrimentally be influencing the percent correct scores due to the

differences in the vowel long-term resting behavior (i.e. every naturally spoken repetition

of a word is not identically the same). Since the goal of this work was to focus on the

front end system, and reduce the effect of back-end imperfections, it was decided to use

synthetic, time-aligned speech instead of naturally spoken speech to remove one source

of variability and to better evaluate how well the various front-ends were performing with

the initial parameters.
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For our computer simulations, the DRT task (see Chapter 3) - deciding which

diphone was presented - was accomplished by having the computer compute the mean-

squared-error (MSE) distance between the presented diphone and the two possible

diphone templates, corresponding to each possible diphone in the test pair. This MSE

was computed according to the following formula:

Nn Ni

A/SEa (X) =n=1 i=1 N1 Nn (eq 4.2)

Z [ y (n, i) - Yb (n, i)]2

MSEb(x) - n=1 i=1

NN, (eq 4.3)

where n is the index of the time frame, i is the index of the cochlear channels, Ni is the

total number of frequency indices. Nn is the total number of time frames. Ya (n, i) is the

output of the front-end when the first template token is input to the system, Yb(n, i) is the

ouput of the front-end when the second template token is the input, and y, (n, i) is the

ouput of the front-end when the test token is the input. In our work, all diphone tokens

were processed by either the open-loop Gammatone model, open-loop MBPNL model, or

the closed-loop MBPNL model. Template token "states" were then selected from a

single SPL and SNR condition and used for each MSE computation. The test stimuli
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were the same diphone tokens in different noise intensity levels and different values of

SNR, or, for the case of the same SPL and SNR condition, were different realizations of

the noise. For a given test token the MSE distance between the selected test token and

the two template states was computed (see equations 4.2 and 4.3 above). The state

template with the smaller MSE distance from the test token was selected as the simulated

DRT response. For example if MSEa (x) > MSEb(x), then computer guessed that the

template word b was presented. Otherwise, it chose template word a.

Figure 4.12 shows the average percent correct responses as a function of noise

intensity level for an early version of the closed-loop MBPNL (with efferent gain chosen

in ~-IOdB increments between SPL levels) model (x) and the open-loop Gammatone

model (+). Average is over all DRT words and all SNR values. As the plot indicates, the

closed-loop MBPNL model behaved more consistently over all noise intensity levels than

the open-loop system. The performance of the open-loop system significantly degraded

as the noise intensity level varied further from the template noise intensity level (70

dBSPL in this example). Figure 4.13 shows a more detailed version of Fig. 4.12; errors

- averaged over all DRT words - are plotted as a function of SNR, with noise intensity

(in dBSPL) as a parameter. Figure 4.14 is yet another way of looking at the same data;

here, errors are plotted as a function of noise intensity, with SNR as the parameter.

Based on the results from figures 4.12-4.14 we see that the closed loop MBPNL system

performs much better and more robustly than the open-loop Gammatone based system

over all conditions examined. This increase in performance in noise and increased

robustness mimics the general observed behavior of humans.
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Figure 4.12: Percent correct responses as a function of noise intensity level for the open-loop Gammatone
(+) and the closed-loop MBPNL (x), using the 70dBSPLxSNR=lOdB condition as template. Average is
over all DRT words and all SNR values. The performance of the open-loop system significantly degraded as
the noise intensity level varied further from the template noise intensity level (70 dBSPL in this example).
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Figure 4.13. Same data as in figure 4.12, in more detail. Errors (in percent) are averaged over all DRT
words and plotted as a function of SNR, with noise intensity (in dB_SPL) as a parameter
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Figure 4.14. Same data as in figure 4.12, with the axis and parameters swapped. Errors (in percent) are
averaged over all DRT words and plotted as a function of SNR, with noise intensity (in dBSPL) as a
parameter

4.2.2. DRT Template matching operation - Multiple Template Tokens

We also designed our model to be able to use multiple templates for comparisons.

For these operations, the template matching operation was the same as for the single

template operation, the only difference being that the MSE distance metric was computed

for each template condition. The final template token is selected by picking the template

resulting in the smallest distance to the test token. An example of the internal multiple
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template scheme and the template comparison operation for multiple templates is

illustrated in figures 4.15 and 4.16.

Since humans may not be able to perfectly estimate what SPL and SNR a stimulus

is presented at, it is possible that a human might use multiple templates for an internal

representation and comparison of stimuli. Hence another method for conducting multiple

template comparisons is to average over templates. Results from this task would be

expected to be worse than the results for choosing the template with the minimum MSE.

Both methods were examined in our studies as a back-end parameter and are discussed in

Appendix B.
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Figure 4.15: Examples of multiple template comparison with 60dB SPL x 5dB SNR test token. The test
token is compared to each template (see arrows), and the template token yielding the smallest MSE is
selected as the final template. (a) Instantiations of all 9 SPL and SNR test conditions are used for template
tokens. (b) Instantiations of 13 SPL and SNR conditions around the test token are used for template tokens.
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Figure 4.16: Example of multiple templates used for a comparison with 60dB SPL x 5dB SNR test tokens.
Numer of times each template is chosen as the best template in the MSE comparison task.

4.3 Summary

This chapter described two open-loop models of the auditory periphery and the

MBPNL closed-loop model of the auditory periphery with efferent-inspired feedback.

The closed-loop model of the auditory periphery with efferent-inspired feedback was

developed to match observed efferent-induced recovery of discharge rate dynamic range

in the presence of background noise (e.g. Winslow and Sachs, 1988). A computer

simulation of a 2AFC DRT test was described using a minimum distance mean-squared-
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error metric with single templates or multiple templates. The initial results of these tests

showed that the closed-loop model performed more consistently across SNR and dB SPL

noise levels and are shown in figures 4.12 to 4.14. Further parameter adjustment and

model development was conducted on the systems described in this chapter. Data,

results, and parameter tuning details are described in chapter 5.
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5. Machine Experiments: Open-loop DRT Mimics

This chapter discusses the experiments conducted in the development of the open-

loop models (models without feedback to control the cochlear operating point). It begins

by discussing the main experimental goals and metrics used to analyze system

performance. It then gives an overview of the main parameters that were adjusted and

developed in these tests. It then reviews the performance of the two base-line systems

that were used for comparison and as starting points in algorithm design - the linear

open-loop Gammatone model and the open-loop MBPNL model (both of which are

described in chapter 4). Chapter 6 discusses development and performance of the closed-

loop (models with feedback to control the cochlear operating point) MBPNL systems,

which were based on and compared to the results from this chapter.

5.1. Goals

The main goal of the experiments in this chapter was to provide baselines for

comparison. In particular, we were interested in matching machine performance with

human performance per perceptual acoustic dimension of Voier's DRT task (see Section

3 of this thesis for the reported human performance). In the rest of this thesis this task

shall be referred to as the best match to human task. A second interest was to tune the

machine and see how well the machine could perform in terms of percent correct in the

DRT task, independent of human performance. In the rest of this thesis this task shall be
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referred to as the best machine performance task. The reason for spending time on this

secondary goal is that it has value for speech recognition. Also if machine performance

on this task is inferior to human performance then it would change our approach to model

development. We examined the performance of a system composed of linear open-loop

Gammatone filters since these filters used by the speech recognition community. We

also examined the open-loop MBPNL model that was modified in our model

development in chapter 6.

The corpus used in both sets of experiments was the set of synthetic, time-aligned

CVC waveforms used in the human experiments (see section 3.3 for details). Because

the initial consonant and vowel boundary was time aligned, the differences between DRT

test tokens were due to the initial consonant difference or the difference in formant

trajectories going from the consonant into the long-term vowel part of the waveform.

This was desirable because it allowed us to simplify our back-end pattern recognition

system and focus on the differences due to the signal processing of the front-end auditory

model.

5.2. Metrics Used to Gauge Performance

Three metrics were used to evaluate machine performance and tune the front-end

auditory model parameters. The raw percentage correct score was used in the best

machine performance task. For the best match to human task, two separate metrics were

used to evaluate performance. The first metric used is based on measuring the machine
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errors that differ from the human errors by more than one standard deviation of the

human performance. We call this metric the within-1-std metric. The second metric used

was a Chi-squared metric.

5.2.1. Within-1-std Metric

The idea behind the within-i -std metric is to compare the human and machine

errors per Voier's acoustic phonetic dimension and measure the difference in errors that

exceed more than 1 human standard deviation. The resulting differences that exceed a

human standard deviation are then measured and squared, then weighted by the machine

standard deviation, then summed, and finally square-rooted to find the final metric value.

Formally, this metric is computed according to the following equations:

W= (I M-H -ai,hman) 2 I i,achine 0 if I M -H> ai,human (eq 5.1)

= 0 otherwise

where ai,human is the estimated human standard deviation for the ith Voier's acoustic

phonetic dimension, computed over the number of repetitions a word was presented with

a different realization of noise (see subsequent sections); and aichine is the estimated

machine standard deviation for the ith acoustic dimension of Voier's, also computed over

the number of repetitions a word was presented with a different realization of noise (see

subsequent sections)
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W = I Wi where i is the ith acoustic dimension of Voier's.

The squaring in equation 5.1 penalizes larger differences more than smaller differences.

The weighting by the standard deviation of the machine in equation 5.1 decreases the

effect of machine responses that vary a lot and are less reliable, and increases the effect

contributed by machine responses that do not vary as much and are more reliable. An

example illustrating these quantities is displayed below with a table:

Number Correct Number Wrong % Error U
Human f11 =30 fl, 2 = 50 H =62.5% ahun =0.2

Machine f2,= 68 f2,2= 32 M = 32% amchine =0.4688

Table 5.1: Variables used for within-l-std metric computation example. f1, is the number of responses in

the ith row and jth column of the table. H and M are the errors of the human and machine respectively. a
is the standard deviation.

For the above table, M = 32% and H = 62.5%. Hence

Wi = (I M - HI -Ci,human )
2 / ai,machine = (1.32 -. 6251-0.2)2 /.4688 = 0.0235

since |.32 -. 625 > 0.2 In other words this ith machine category varys larger than a

standard deviation of what we would expect from a human and hence adversely

contributes to the overall metric. Suppose all other W = 0 then the final overall metric

would be W = W = 0.0235 = 0.1533 (in the figures of this chapter this value is

labeled "Difference Metric")
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5.2.2. Chi-squared metric

The Chi-squared metric we used for comparisons was based on contingency table

analysis of data [Zar, 1999]. The basic question this test asks is whether or not the

frequencies of occurrences of categories of data are statistically similar or different. In

this case we used the human results and the machine results as two categories of data.

We then looked at the number of correct and incorrect responses for human and machine

per Voier's acoustic phonetic dimension and used the Chi-squared test to determine if the

overall human and machine DRT responses were statistically similar or different. A

sample contingency table is illustrated below:

# Correct
Human
# Correct
Machine

The Chi-squared metric for such a table is

# Wrong
Human
# Wrong
Machine

computed according to the formulae:

(f.. -Ej 2  (eq 5.3)

i E i

Where fj is the number of occurrences in the ith row and jth column of the contingency

table and E.. is the expected number of occurrences in the ith row and jth column if the

human and machine responses were identical. This expected number of occurrences is

computed according to the formula:
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RC R.C.
E. . ' Sx N = N

"N N N
(eq 5.4)

where R = fj is the sum for each row of the contingency table, Cj= f1 is the

sum for each column of the contingency table, and N is the total number of occurrences

in the contingency table. A table illustrating these quantities is displayed below with an

example:

Total C = 98 C 2 =82

Total
RI =80

R 2 100

N= 180

Table 5.2: Variables used for 72 metric computation example. f is the number of responses in the ith

row and jth column of the table. Eij is the expected number of responses in the ith row and jth column of

the table if the human and machine performed with identical error rates. R is the total number of responses
in a row. C is the total number of responses for a column. N is the total number of human and machine
responses.

For the above table, the Chi-squared metricX 2  , ( E 2 = 16.6695
j J ij
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Number Correct Number Wrong
Human f1,1 = 30 fl, 2 = 50

(E 1 = 43.5556) ( E1,2 = 36.4444)

Machine f2,1 = 68 f2,2 =32

(E 2 ,1 = 54.4444) ( E 2 ,2 = 45.5556)



The number of degrees of freedom for a table such as the one above is given

by D = (r - 1)(c -1) where r is the total number of rows (in this case 2) and c is the total

number of columns (in this case 2). Hence D = 1 for the above example.

For our purposes we used a significance level of 95% which, with one degree of

freedom, corresponds to a Chi-squared value of 3.841 [Zar, 1999]. Hence Chi-squared

metrics above 3.841 were considered as statistically different and metrics below that

value were considered acceptably similar. In the above example, since 16.6695 > 3.841

one would conclude that the human and machine responses are statistically different.

One goal in tuning the front end was to get the DRT results for human and machine tests

to be within the acceptable Chi-squared metric value (of 3.841 for one degree of

freedom) for all Voier's acoustic phonetic dimensions.

5.2.3. Comparison of Metrics

Both of the above Chi-squared and within-1-std metrics are capable of showing

detailed error patterns per Voier's acoustic phonetic dimension and presentation level.

Both also illustrate overall error patterns. However, each metric has advantages over the

other. The within-1-std metric shows if machine performance is within a standard

deviation of how a human may perform. This is a very desirable metric to have if

someone is trying to determine if the observed machine performance is dissimilar from

that of human, and lends itself rather easily to graphical representations: for example if

the machine errors exceed human for an acoustic category, that difference can be plotted
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as a negative bar; if machine errors are less than human, that difference can be plotted as

a positive bar (see subsequent sections of this chapter for examples). Hence the within-i-

std metric can graphically show the amount of difference and the direction of the

difference for each acoustic category. Since the Chi-squared metric measures the

magnitude of the difference from what is expected, it does not indicate which way the

machine errors are being biased - i.e. it does not tell you if the machine errors are better

or worse than human. To compensate for this we added a sign to the Chi-squared metric

in our plots (see subsequent sections of this chapter for examples), with positive bars

indicating that humans are outperforming machines, and negative bars indicating that

machines are outperforming humans.

Variations in human and machine data are not treated equally with the within-I-

std metric: the main parameters are the performance and how much the human responses

vary. These parameters produce scores that are weighted by the machine confidence

level, represented by the machine standard deviation. As the machine variations

approach zero, the standard deviation approaches zero and the metric score blows up.

This is an undesirable quality. Furthermore, the within-1-std metric treats response

variations between humans and machines differently.

The Chi-squared metric has a statistical meaning: it tells you the probability that

the human and machine results are from different distributions and are not statistically

similar. Unlike the within-1-std metric, the Chi-squared metric accounts for variations

between human and machine scores equally. Hence the metric is more stable and does

not blow up when the machine variations approach zero. However the Chi-squared

metric counts small variations that are with-in one human standard deviation, unlike the
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within-1-std metric. Hence, when trying to minimize this metric one may be minimizing

differences that are inconsequential - score differences that are already "close enough" to

what one would expect from a human.

5.3. Overview of Open-loop Parameters adjusted

In order to make the machine results similar to the human results (see section 3)

several parameters of the Gammatone filter model were adjusted. The main parameters

that were examined and adjusted for the open-loop Gammatone models were the

smoothing window used after the auditory filter bank, and normalization of the input (that

is to say either the rms of the input waveform was normalized like some speech

recognition systems do, or it was not). The main parameters that were adjusted for the

open-loop MBPNL model was the dynamic range window (DRW) rate limiter, the degree

of stretching the output after the DRW rate limiter, the target noise energy allowed inside

this DRW per frequency band, and the smoothing window used after the auditory filter

bank. The rest of this section discusses the parameters that were adjusted.

5.3.1. DRW Rate Limiter
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As described in chapter 4, the DRW rate limiter is related to the spontaneous rate

of neural firing and saturation rate of neural firing for the MBPNL model. Output rates

of the IHC module that were below spontaneous emission rate were clipped and brought

up to this lower rate bound. Likewise, output rates of the IHC module that were above

the spontaneous emission rate were also clipped and brought down to this upper rate

bound. The DRW upper and lower bounds were iteratively adjusted in 1dB increments in

our studies to find the values that yielded the best desired performance (either in terms of

overall percent correct in the best machine performance task or in terms of matching

human performance in the best match to human task). As the lower bound of the DRW is

increased, less and less noise energy is present above the lower bound saturation level,

however as this bound increases also more speech is clipped and brought to this level.

Hence too high of a lower bound can decrease machine performance because information

on the speech content is lost. Decreasing the upper bound of the dynamic range did not

have as large of an effect on the results (unless of course some of the speech information

was being clipped). Hence we used an upper bound that would just clip a 130 dBSPL

input signal.

5.3.2. Stretching

After applying the DRW rate limiter, the MBPNL model had an option to stretch

the resulting rate response to the full dynamic range. In many of our iterations and

experiments stretching of the output yielded improved performance, and hence for many
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of our results, stretching was used after clipping the rate of the output by the DRW

limiter. See chapter 4 and appendix A for a more detailed discussion on stretching.

5.3.3. Smoothing window size post filter-bank

Another parameter that was varied was the smoothing of rate at the output of the

DRW rate limiter (see chapter 4 for details of the smoothing window) for both the

MBPNL and Gammatone models. In our studies, overlapping rasied-cosine ramp

windows that summed to unity (see the red line in figure 5.1 or the discussion in chapter

4 for more details) were varied in length. The overall length of the window was varied

from 4-ms to 20-ms while preserving the 1-ms ramps. Tests were conducted on windows

of length 4, 6, 8, 10, 12, and 20 milliseconds.

5.3.4. Template chosen

The template condition used for the token comparison test was also varied as a

parameter for both the MBPNL and Gammatone models. Clean speech without noise,

and each of the 9 SNR and SPL conditions were used as a single template for the DRT

mimic comparison on the machine. In general, for the MBPNL models the 60 dBSPL

and 5 dBSNR condition yielded the best single-template results. For the Gammatone
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model the best template condition varied depending on whether the rms of the input to

the model was normalized or not.

5.4. Gamma Open-loop Mimic: without Normalization

As a baseline for comparison, several filter banks without efferent feedback were

tested. A linear Gammatone filter bank (Patterson, 1995), which represents a linear

filtering strategy, was first examined as a baseline both with and without rms

normalization of the input. For the Gammatone model without rms normalization at the

input, the 70 dBSPL and 0 dBSNR condition as a template with a 8-ms smoothing

window yielded the best single-template results.

5.4.1. Displays

Displays of the simulated IHC response were examined for noise intensity levels

of 70, 60, and 50dB SPL and for SNR values of 10, 5, and OdB. Figures 5.2 and 5.3

provide spectrographic examples. The figures contain a 3-by-3 matrix of images; the

matrix abscissa represents the intensity of the background noise, in dB SPL. The matrix

ordinate represents SNR, in dB. Each image represents the simulated IHC responses to

the diphone j-a or ga, each of duration of 309 ms, from the synthetic speech database.
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Figures 5.2 and 5.3 depict the simulated open-loop Gammatone IHC response, with a

smoothing window of 8-ms. A large inconsistency in the simulated IHC response

spectrum is observed across varying noise intensity and SNR levels. Note that for the

50dBSPL and OdBSNR condition the noise and speech are faintly visible whereas the

spectrum for the 70dBSPL and lOdBSNR condition is quite saturated and is much more

intense. Partly this
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Figure 5.2: Open-loop Gammatone displays for the word "jab"; token representation for each SPL x SNR
condition. A large inconsistency in the simulated IHC response spectrum is observed across varying noise
intensity and SNR levels.
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Figure 5.3: Open-loop Gammatone displays for the word "gab"; token representation for each SPL x SNR
condition. A large inconsistency in the simulated IHC response spectrum is observed across varying noise
intensity and SNR levels.
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saturated appearance is due to the graphical display that MATLAB uses to plot an image.

However the large difference in level of both the noise and speech is quite real and affect

template matching operations of a pattern recognition system. One of our initial main

goals in algorithm development was to create a model to produce displays of noisy

speech that are more consistent across presentation level and SNR and are more

consistent with displays of speech in quiet than are displays produced by open-loop

models such as the Gammatone filter model. The motivation is that this would reduce

errors for the template matching DRT operation due to noise.

As discussed above the template token was varied. An example token is depicted

in figure 5.4, which shows the two template tokens in a DRT comparison. A "jab" test

token at any of the nine SPL and SNR test conditions (such as the 70dB SPL noise and

10dB SNR condition shown in figure 5.5, the 60dB SPL noise and 5dB SNR condition

shown in figure 5.6, or the 50dB SPL noise and OdB SNR condition shown in figure 5.7)

is compared to both of these two template tokens for the DRT test. The distance between

the selected jab test token and the two template states is computed using the L2-norm (a

simple mean-squared-error computation). The state template with the smaller distance

from the test token is selected as the simulated DRT response (as described in chapter 4).

Results for such a template comparison are discussed in the next section.
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Figure 5.4: Example jab and gab tokens at 70dBSPL x OdBSNR used as template

jab gab
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Figure 5.5: Example jab and gab test tokens at 70dBSPL x 1OdBSNR
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Figure 5.6: Example jab and gab test tokens at 60dBSPL x 5dBSNR
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4391 4391

3359 3359L

2562 2562

Z 1938 1938
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time in ms time in ms

Figure 5.7: Example jab and gab test tokens at 50dBSPL x OdBSNR. The speech and noise is quite faint compared
to that of the 70dBSPL x 1OdBSNR condition, indicating a very large difference in level.

5.4.2. Data - Results

The settings that produced the optimal results (in the within-l-std metric sense)

used the 70dBSPL noise level and OdBSNR tokens as a template for the DRT task, with

an 8-ms smoothing window. These results are shown in figures 5.8 and 5.9. Figure 5.8

depicts the error patterns per Voier's acoustic phonetic dimension, averaged over all SPL

noise presentation levels and SNR conditions. Figure 5.9 depicts the error patterns and

within-l-std metric score for each of the nine SPL presentation levels and SNR

conditions. In both figures the difference in the machine minus human errors are shown

by bars. If a bar is positive, then the machine makes more errors than humans (i.e. the

human responds correctly more than the machine for that category). If a bar is negative,
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then the human makes more errors than machine (i.e. the machine responds correctly

more than the human for that category). Blue error bars indicate a standard deviation of

the machine. The red lines indicate one standard deviation of the human. Grey bars

indicate differences between human and machine errors that are more than one standard

deviation of the human. White bars indicate differences between human and machine

error patterns that are within one standard deviation of the human. In an ideal system, all

of the error bars would be white, and thus be within a standard deviation of the human

performance. In this ideal scenario, all of the machine differences from the human would

thus be within what could be expected for a typical human run.

Amwerage owr all conditions
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w -20-------------------------------------
_ Mimic - Human Grand Mean = 24.41
S-30Metric Total = 11.42
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Figure 5.8: Average (scores averaged over SPL and SNR conditions) Gammatone within- 1-std metric results per
acoustic dimesion. Labels correspond to the following: VC=voicing, ST=sustension, SB=sibilation, GV=graveness,
and CM=compactness. + indicates that the acoustic dimension is present; - indicates that the acoustic dimension is
absent. Postive bars indicate that humans are outperforming the machine; negative bars indicate that the machine
answers correctly more than humans. Red lines indicate +/- a human standard deviation. Blue error bars indicate
the machine standard deviation. Grey bars indicate the difference between machine and human errors that are
greater than a human standard deviation. These values contribute to the within-1-std metric. White bars indicate the
difference between machine and human errors that are less than a human standard deviation. These values have no
contribution to the within-1-std metric. Metric Total is the within-1-std metric value computed over the acoustic
dimensions. Mimic-Human Grand Mean is the mean of the difference between the machine error rate and human
error rate per acoustic dimension. Since all the bars are grey and positive here, machine errors exceeded human
ones by more than a human standard deviation in all acoustic dimensions, and the Mimic-Human Grand Mean is
positive.
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Figure 5.9: 3 SPL x 3 SNR condition results for the gammatone system. Postive bars indicate that humans

are outperforming the machine; negative bars indicate that the machine answers correctly more than humans.

Red lines indicate +/- a human standard deviation. Blue error bars indicate the machine standard deviation.

Grey bars indicate the difference between machine and human errors that are greater than a human standard

deviation. These values contribute to the within- l-std metric. White bars indicate the difference between

machine and human errors that are less than a human standard deviation. For a given SPLxSNR condition

panel, "Mimic-Human Grand Mean" is the mean of the difference between the machine error rate and human

error rate per acoustic dimension for that condition, and "Difference Metric" is the within-i -std metric

computed over the acoustic dimensions for that noise condition. The many grey bars in this figure adversely

impact the within-i -std metric of performance at matching human responses. The performance (in terms of

percent correct and within-1-std metric) is achieved at the 70dBSPL x OdBSNR condition, which corresponds

to the template that was used for comparisons.
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As seen in figure 5.9, the performance of the open-loop system significantly

degraded as the noise intensity level varied further from the template noise intensity

level. For the open-loop gammatone model, best performance (in terms of percent

correct and in terms of the within-1-std metric) occurs at 70dB SPL noise x OdB SNR -

the template noise condition. All other noise conditions have within-1-std difference

metrics that are roughly an order of magnitude larger.

Similar results were obtained by using the Chi-squared metric described in section

5.2.2. A plot depicting the information obtained by a Chi-squared test per Voier's

acoustic phonetic dimension is shown below in figure 5.10. In this figure, grey bars

indicate dimensions in which the human and machine differ significantly. The

significance level is marked by the larger black dashed lines. White bars indicate

dimensions in which the human and machine performance did not significantly differ.

Since all bars in this plot are grey, the human and machine differed significantly along all

acoustic dimensions. The average Chi-squared metric per acoustic dimension is reported

in the plot as 34.7214, which is a significantly large number.
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Figure 5.10: Average Gammatone Chi-squared results. Chi-squared metric values are computed for each
acoustic dimension and averaged over noise condition. The final average Chi-squared metric over all
dimensions is indicated in the plot. Note that Chi-squared values are always positive (and hence the overall
average Chi-squared metric value can only be positive), however in the plots we multiple the metric bars by
+ or - 1 to graphically indicate which direction the errors are being made. Positive valued bars indicate that
the human is outperforming the machine. Negative bars indicate that the machine is outperforming the
human.Grey bars indicate the difference between machine and human errors that are greater than the
significance threshold of 3.841 (see section 5.2.2). White bars indicate the difference between machine and
human errors that are less than the significance threshold. The dashed thick black lines indicate the
significance threshold. Overall, for the Gammatone model, machine errors significantly exceed human
ones in all acoustic dimensions.

5.5. Gamma Open-loop Mimic: with Normalization

Since many speech recognition systems can normalize the rms of the input to

improve consistency across presentation level and improve scores, we investigated the

effects of normalizing the rms of the input to the Gammatone filters. For these

experiments we calculated the rms value of a synthetic token in 60dBSPL noise at
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5dBSNR, and scaled all other input tokens to this rms value. For the Gammatone model

with this rms normalization at the input, the 70 dBSPL and 5 dBSNR condition as a

template with a 10-ms smoothing window yielded the best single-template results.

5.5.1. Displays

As was done for the Gammatone model without normalization, displays of the

simulated IHC response were examined for noise intensity levels of 70, 60, and 50dB

SPL and for SNR values of 10, 5, and OdB. Figures 5.11 and 5.12 provide spectrographic

examples. The figures contain a 3-by-3 matrix of images; the matrix abscissa represents

the intensity of the background noise, in dB SPL. The matrix ordinate represents SNR, in

dB. Each image represents the simulated IHC responses to the diphone j-a (duration of

309 ms) from the synthetic speech database. Figures 5.11 and 5.12 depict the simulated

open-loop Gammatone IHC response, with normalized input and a smoothing window of

10-ms. Unlike the non-normalized Gammatone results of section 5.4, the simulated IHC

response spectrum is much more consistent across varying noise intensity. However

there are still noticeable differences across SNR levels. For example the formants are

much more prominent and wider in frequency at 1OdBSNR than they are at 5dBSNR and
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Figure 5.11: Open-loop normalized-input Gammatone displays for the word "jab"; token representation for
each SPL x SNR condition. There is much less inconsistency in the simulated IHC response spectrum
across varying noise intensity and SNR levels.
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Figure 5.12: Open-loop normalized-input Gammatone displays for the word "gab"; token representation
for each SPL x SNR condition. There is much less inconsistency in the simulated IHC response spectrum
across varying noise intensity and SNR levels.
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OdBSNR. One might expect the overall large increase in consistency across noise level

to improve performance of the overall system, reducing errors for the template matching

DRT operation due to noise. As we see in the next section, this is in fact what is

observed.

5.5.2. Data - Results

Within-1-std and Chi-squared metrics were computed using all 9 SPLxSNR

templates, as in the previous tests. The settings that resulted in the optimal results (in the

within-1-std metric sense) used the 70dBSPL noise level and 5dBSNR tokens as a

template for the DRT task with a smoothing window of 10 ins. These results are shown

below in figures 5.13 and 5.14. Figure 5.13 depicts the error patterns per Voier's

acoustic phonetic dimension, averaged over all SPL noise presentation levels and SNR

conditions. Figure 5.14 depicts the error patterns and within-I-std metric score for each

of the nine SPL presentation levels and SNR conditions. Figure 5.15 plots the overall

Chi-squared metric values per acoustic dimension.

The performance of the open-loop system was much more similar across noise

intensity level, varying about 5% at most. This isn't surprising given the rms

normalization at the input; it should make all the DRT tokens of a given word and SNR

have nearly equal features and intensity with the noise realization being the only large

difference. For the open-loop normalized gammatone model best performance occurs at

70dBSPL noise x 5dBSNR - the template noise condition - followed by the 60dBSPL
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noise x 5dBSNR and the 50dBSPL noise x 5dBSNR conditions. The extent of

inconsistency is reflected by the poor (close to chance) performance at all other noise

intensities, for all SNR values.

The Chi-squared metric results were similar to the within-1-std metric results.

Both metrics showed that sibilation-minus had the largest miss-match of human and

machine performance. Both metrics report sustension-plus and compactness-plus as

being within target values. However unlike the within-1-std metric, the Chi-squared

metric also reports sustension-minus as being within the desired value range (the within-

1-std metric has it just outside of the desired value range) while the sibilation-plus results

are just larger than the significance level. The average Chi-squared metric per acoustic

dimension is reported in figure 5.15 as 6.5884. Although this is better, much better than

average Chi-squared metric value for the non-normalized Gammatone model, it still is a

significant difference except for the sustension category.
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Figure 5.13: Average normalized-input Gammatone within-1-std metric results. Machine errors exceed

human ones in all acoustic dimensions but sustension-minus and voicing-minus. Only the sustension-plus,
sibilation-plus, and compactness-plus dimensions produce average results that are within the desired 1
standard deviation of human listeners.
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Figure 5.14: 3 SPL x 3 SNR condition results for the normalized-input Gammatone system. Grey bars
indicate differences between the human listeners and the machine that are larger than a human standard
deviation. The many grey bars in this figure adversely impact the within-1-std metric of performance at
matching human responses. However, results are much more consistent across SPL and SNR than those of
the non-normalized-input Gammatone system of figure 5.9.
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Figure 5.15: Average normalized-input Gammatone Chi-squared results. Machine errors exceed human
ones in all acoustic dimensions but voicing-minus and sustension-minus. Only the sustention (ST) and
compactness-plus (CM+) dimensions produce average results that do not exceed the significance threshold.

5.6. MBPNL Open-loop Mimic

After the linear Gammatone filter bank was examined as a baseline, an open-loop

(without efferent feedback) MBPNL filter bank was used for comparisons. As stated in

chapter 4 of this thesis, this open-loop MBPNL model operates in the time domain and

changes its gain and bandwidth with changes in the input intensity, in accordance with

observed physiological and psychophysical behavior.
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5.6.1. Gain Profile and Settings

The parameter G controls the gain of the tip of the basilar membrane tuning

curves, and is used to model the inhibitory efferent-induced response in the presence of

noise. For the open-loop MBPNL model, the tip gain is set to a maximum of 40dB with a

roll-off that starts at the channel with center frequency of 1016Hz, and decays to -30 dB

at the first channel (the first channel has a center frequency of 266 Hz). This was chosen

to best mimic psychophysical tuning curves of a healthy cochlea in quiet (Goldstein,

1990). This gain profile is shown in figure 5.16.
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Figure 5.16: Efferent Gain Profile for Open-loop MBPNL. 50dBSPL, 60dBSPL, and
70dBSPL gains are identical.
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5.6.2. Displays

As with the open-loop Gammatone model, displays of the simulated IHC response

were examined for noise intensity levels of 70, 60, and 50dB SPL and for SNR values of

10, 5, and OdB. Figures 5.17 and 5.18 provide spectrographic examples. For the open-

loop MBPNL the template the produced the best within-i -std metric result was the 60dB

SPL noise and 10dB SNR condition templates. Like the displays for the Gammatone

system, figures 5.17 and 5.18 contains a 3-by-3 matrix of images; the matrix abscissa

represents the intensity of the background noise, in dB SPL. The matrix ordinate

represents SNR, in dB. Each image represents the simulated IHC responses to the

diphone j.a from the synthetic speech database. Figure 5.17 depicts the simulated open-

loop MBPNL IHC response, with lower bound DRW=65dB. The position of the DRW

was set to produce as close of a match to human performance as possible in terms of the

within-1-std metric. The upper bound of the DRW was chosen to be 130dB to correspond

roughly with the human threshold of pain. Like the displays produced by the non-

normalized Gammatone model, the open-loop MBPNL displays show a large

inconsistency across varying noise levels.
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Figure 5.17: Open-loop MBPNL displays for the word "jab"; token representation for each
SPL x SNR condition. The upper bound of the DRW was chosen to be 130dB to correspond roughly
with the human threshold of pain. The lower bound was chosen to minimize the within-1-std metric and
is 65dB. Notice a more consistent representation in the displays across SPL level than the open-loop
Gammatone model displays.
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Figure 5.18: Open-loop MBPNL displays for the word "gab"; token representation for each SPL x SNR
condition. The upper bound of the DRW was chosen to be 130dB to correspond roughly with the human
threshold of pain. The lower bound was chosen to minimize the within-1-std metric and is 65dB. Notice a
more consistent representation in the displays across SPL level than the open-loop Gammatone model
displays.
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5.6.3. Data - Results

Results using the 60dB SPL noise level and 5dB SNR tokens as a template for the

DRT task performed best (in the within-1-std metric sense) and are shown below in

figures 5.19 and 5.20. Figure 5.19 depicts the error patterns per Voier's acoustic phonetic

dimension, averaged over all SPL noise presentation levels and SNR conditions. Figure

5.20 depicts the error patterns and within-1-std metric score for each of the nine SPL

presentation levels and SNR conditions. Figure 5.21 shows the Chi-squared results.

For the open-loop MBPNL model, best performance occurs at 60dB SPL noise.

The performance of the MIBPNL open-loop system significantly degraded as the noise

intensity level varied further from the template noise intensity level (60dB SPL).

Although results for the open-loop MBPNL model were more consistent across SNR

levels than for the Gammatone model, results for both vary significantly across SPL and

Average over all conditions

c 30-------------- --------------------
2T

1L 20----------- - -- --- -

0
-10-- -- ---- ----- -
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E J-T] -

W -20 - - - 6 - -m-HumanrGrandVIean= 1=2.44
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Figure 5.19: Average open-loop MBPNL within-1-std metric results. Overall, the open-loop mbpnl
yielded a within- 1-std metric score that was better than that of the non-normalized Gammatone system,
however the open-loop mbpnl also produces responses that differ significantly from human responses.
Sustention and voicing minus are the only categories with responses within one standard deviation of

humans.
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Figure 5.20: 3 SPL x 3 SNR conditions: detailed within- 1-std metric results for open-loop MBPNL. Like the

open-loop gammatone systems, overall, scores per acoustic dimension were different from human and adversely

contributed to the within-1-std metric score.
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Figure 5.21: Average open-loop MBPNL Chi-squared results. Only the sustention-plus (ST+) dimension
produces results that do not exceed the significance threshold.

neither model matched human performance in the within-1-std metric nor Chi-squared

sense. Both of these open-loops systems provided a baseline for comparison with later

closed-loop MBPNL iterations.

5.7. MBPNL Open-loop Mimic: with input Normalization

After the linear Gammatone filter bank with input rms normalization was

examined, an open-loop MBPNL filter bank with input rms normalization was also

examined. This experiment was conducted in order to obtain a comparison that was as

close to the setup of the open-loop Gammatone system with input normalization. The

gain profile used for this experiment was the exact same gain profile as that used in
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section 5.6 (see figure 5.16) - ie the gain profile for a healthy cochlea according to

Goldstein's MBPNL model.

5.7.1. Displays

As with the previous models, displays of the simulated IHC response were

examined for noise intensity levels of 70, 60, and 50dB SPL and for SNR values of 10, 5,

and OdB. Figures 5.21 and 5.22 provide spectrographic examples. For the open-loop

MBPNL with input normalization, the template the produced the best within-1-std metric

result was the 70dB SPL noise and OdB SNR condition templates. Like previous

displays, figures 5.21 and 5.22 contain a 3-by-3 matrix of images; the matrix abscissa

represents the intensity of the background noise, in dB SPL. The matrix ordinate

represents SNR, in dB. Each image represents the simulated IHC responses to the

diphone j-a from the synthetic speech database. Figure 5.21 depicts the simulated open-

loop MBPNL IHC response. The position of the DRW was chosen to be the same as that

for the test in section 5.6. Hence the lower bound of the DRW was 65dB and the upper

bound of the DRW was 130dB. Like the displays produced by the normalized
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Figure 5.22: Open-loop MBPNL with input normalization displays for the word "jab"; token
representation for each SPL x SNR condition. The upper bound of the DRW was chosen to be 130dB to
correspond roughly with the human threshold of pain. The lower bound was chosen to match the lower
bound for the Open-loop MBPNL without input normalization and is 65dB. Notice a more consistent
representation in the displays across SPL level than the open-loop models without input normalization.
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Figure 5.23: Open-loop MBPNL with input normalization displays for the word "gab"; token
representation for each SPL x SNR condition. The upper bound of the DRW was chosen to be 130dB to
correspond roughly with the human threshold of pain. The lower bound was chosen to match the lower
bound for the Open-loop MBPNL without input normalization and is 65dB. Notice a more consistent
representation in the displays across SPL level than the open-loop models without input normalization

123

0

Cr
I.D

4-



Gammatone model, the open-loop MBPNL displays show much more consistency across

varying noise levels.

5.7.2. Data - Results

Results using the 70dB SPL noise level and OdB SNR tokens as a template for the

DRT task performed best (in the within-1-std metric and Chi-squared metric sense) and

are shown below in figures 5.23 and 5.24. Figure 5.23 depicts the error patterns per

Voier's acoustic phonetic dimension, averaged over all SPL noise presentation levels and

SNR conditions. Figure 5.24 depicts the error patterns and within-1-std metric score for

each of the nine SPL presentation levels and SNR conditions. Figure 5.25 shows the Chi-

squared results.
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Figure 5.24: Average open-loop MBPNL with input normalization within-1-std metric results. Machine
errors exceed human ones in all acoustic dimensions but voicing-minus, sustension-minus, and
compactness-plus. Only Voicing-plus, sustension-plus, graveness-minus, and compactness dimensions
produce average results that are within the desired 1 standard deviation of human listeners.
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Figure 5.25: 3 SPL x 3 SNR conditions: detailed within-1-std metric results for open-loop MBPNL with input
normalization. Like the open-loop gammatone system with input normalization, the results as a function of SPL
were much more stable.
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Figure 5.26: Average open-loop MBPNL with normalized input Chi-squared results. Machine errors
exceed human ones in all acoustic dimensions but voicing-minus and sustension-minus. Only the
sustention-plus (ST+) and compactness-plus (CM+) dimensions produce average results that do not exceed
the significance threshold.

In general, the open-loop MBPNL model with input normalization produced

results that were much more consistent than the open-loop systems without input

normalization. The final Chi-squared metric indicates that on average the difference

between human and machine performance is significant. Both the Chi-squared and

within-1-std metric tests indicate that the open-loop MBPNL system with input

normalization performs worse than the open-loop Gammatone system with input

normalization.
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5.8. Summary

In this chapter we discussed the open-loop systems (systems without efferent

feedback) that were used as comparisons for our closed-loop (systems with efferent

feedback) model development. In general, the open-loop Gammatone and MBPNL

models produced spectral differences across presentation and SNR level that may

adversely affect performance. Normalizing the input to either open-loop system helped

stabilize performance. Consequently, stabilizing the spectral representation across

presentation conditions in a biologically-inspired way was a major effort in our closed-

loop MBPNL model development. This and other issues in model development are

discussed in the next chapter.
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6. MBPNL Closed-loop Mimic

After the open-loop models were examined, tests and optimizations were

conducted using efferent feedback to develop a closed-loop MBPNL model to mimic

human performance better than the open-loop models of the previous chapter. This

chapter discusses development and performance of the closed-loop MBPNL systems.

The goal of these tests was to minimize the within- 1 -std metric and chi-squared metric

results, hence making the machine model mimic human performance as much as

possible. The chapter begins by discussing an early version of the closed-loop MBPNL

system and introduces the key differences between it and the open-loop MBPNL model.

It then reviews our best closed-loop MBPNL results in terms of percent correct, and then

in terms of mimicking human performance (as measured by the within-1-std and chi-

squared metrics). In all of these tests, the parameters discussed in chapter 5 were also

used and iterated upon - the dynamic range window (DRW) rate limiter, the degree of

stretching the output after the DRW rate limiter, the target noise energy allowed inside

this DRW per frequency band, the smoothing window used after the auditory filter bank,

and the noise condition used as a template.

6.1. Description of Closed-loop System Parameters

For the most part, the components of the closed-loop MBPNL system are the

same as those for the open-loop MBPNL system, as described in chapter 4. The key

128



difference however is the gain profile that is determined by the efferent response to noise.

This section describes how the efferent gain was determined for our tests and discusses

the token template parameters in depth.

6.1.1. Noise Energy

The amount of noise allowed per frequency band was adjusted iteratively along

with the DRW parameter (the DRW was adjusted exactly like it was for the open-loop

models in chapter 5). For a fixed DRW lower and upper bound, the noise energy per

band can be changed by adjusting the gain parameter of figure 4.4 (see Chapter 4).

Hence the amount of noise energy allowed per band dictates the efferent gain profile per

channel. Figure 6.1 illustrates an example of how the efferent gain can be adjusted to

regulate the noise above the lower bound of the DRW rate limiter. In the above figure

three separate speech-shaped Gaussian noise conditions are considered. The efferent gain

per channel is selected for each noise condition - 50 dBSPL (black dotted line), 60

dBSPL (grey dashed line), and 70 dBSPL (solid lighter grey line) noise - in the absence

of speech. The output of the MBPNL filters yield a response rate with energy per

channel that fit the profile in
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Figure 6.1: Example of efferent gain regulating noise allowed above the DRW rate limiter. (a)
shows the efferent gain profile per cochlear channel for 3 different noise presentation levels (without
speech). (b) indicates the resulting noise energy per channel at the output

figure 6. lb. The average noise energy per channel is then compared across noise

conditions. If the resulting energies are not within a specified desired difference, the

efferent gains are then iteratively adjusted and the resulting energies per condition are

recomputed. This process is repeated until the average noise energies per channel are

within a desired difference of each other. For our studies a difference of 0.1 percent was

tolerated.

For initial studies, the amount of noise allowed over the lower bound of the DRW

was incremented in 1dB steps. For later studies the amount of noise allowed over the
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lower bound of the DRW was set to 2dB, 6dB, or 10dB, with different combinations of

level per frequency band. The frequency bands examined were divided roughly

according to the first formant, second formant, and third formant regions for clean

speech. Specifically, the first frequency band had channels with center frequency of 266

Hz to 844Hz; the second frequency band had channels with center frequency of 875 Hz

to 2359 Hz; and the final frequency band examined had channels with center frequency

of 2422Hz to 5141Hz.

6.1.2. Template chosen

Once again, the template condition used for the token comparison test was also

varied as a parameter. Clean speech without noise, and each of the 9 SNR and SPL

conditions were used as a single template for the DRT mimic comparison on the

machine. The 60 dBSPL and 10 dBSNR condition yielded the best single-template

results for the closed-loop MBPNL models. Performance using several different single

templates is shown below in figures 6.2 - 6.5. In each of figures, the plot on the left

depicts the within-I-standard deviation metric results. In these, the red lined boxes

indicate the human standard deviation measured for that acoustic dimension. The bars

indicate the difference between the human and machine scores per acoustic dimension,

with white bars indicating a difference that is within one human standard deviation and

grey filled in bars indicating a difference greater than one human standard deviation. The

error bars attached to each bar represent the machine standard deviation.
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In each of the figures, the plot on the left depicts the chi-squared values per

acoustic dimension. The red horizontal line represents the chi-squared value that

corresponds to a significant difference between the human and machine scores (see
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Figure 6.2: Average Results using a 60dBSPL x 1OdBSNR token as template. (A) displays the within-1-std metric details
per acoustic dimension. (B) displays the chi-squared metric details per acoustic dimension. The 60dBSPL x 1OdBSNR
token as template yielded the best results in terms of within- 1-std and chi-squared metrics.
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Figure 6.3: Average Results using a 60dBSPL x 5dBSNR token as template. (A) displays the within-1-std metric details
per acoustic dimension. (B) displays the chi-squared metric details per acoustic dimension. Results using the 60dBSPL x
5dBSNR templates were worse in terms of within-1-std and Chi-squared metrics than those of figure 6.2.
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Figure 6.4: Average Results using a 60dBSPL x OdBSNR token as template. (A) displays the within-1-std metric details
per acoustic dimension. (B) displays the chi-squared metric details per acoustic dimension. Results using the 6OdBSPL x
OdBSNR templates were worse in terms of within-1-std and Chi-squared metrics than those of figure 6.2 and 6.3. In
particular the compactness-minus and graveness-plus categories were very bad matchs to human scores, however voicing-
minus and sustension-minus were better matchs to human scores than the other template conditions of figure 6.2 and 6.3.
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Figure 6.5: Average Results using a clean speech token as template. (A) displays the within-1-std metric details per
acoustic dimension. (B) displays the chi-squared metric details per acoustic dimension. Results using the clean templates
were worse in terms of within-1-std metric than those of figures 6.2 and 6.3. Results using the clean templates were better
in terms of within-1-std metric than those of figure 6.4. Results using the clean templates were worse in terms of Chi-
squared metric than those of figure 6.2. Results using the clean templates were better in terms of Chi-squared metric than
those of figures 6.3 and 6.4.
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section 5.4.2). The white bars indicate the chi-squared values that are below this

threshold, while the filled-in grey bars indicate a chi-squared value above the significance

threshold. Average chi-squared metric values are indicated at the top of the plot.

As illustrated above in figures 6.2 - 6.5, performance was best in terms of the

within-1-std metric for the 60dBSPL and 1OdBSNR template condition. Although the

machine performance of the majority of the acoustic categories for the 60dBSPL and

10dBSNR template condition are within a standard deviation of the human performance,

the voicing minus and sustension minus categories for the machine yield a performance

outside of a human standard deviation. Conversely, when using the 60dBSPL and

OdBSNR condition as a template, we find that the voicing (VC) and sustension (ST)

categories match well in the within-I-std sense whereas the other three acoustic

categories do not. This inspired several multiple template experiments (see Appendix B).

Unfortunately, the single template results were better in terms of the within-1-std metric

as well as the chi-squared metric. Hence the template that was chosen for the model was

the 60dBSPL and IOdBSNR template condition.

6.2. Early Model Description

This section describes our early MBPNL model and introduces many of the

factors that were relevant to our model tuning.
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6.2.1. Gain Profile and Settings

For our tests, the efferent gain for each SPL condition was determined by

examining the noise energy over a 300-ms interval and scaling the gain profile from the

open-loop model (see section 5.6.1) such that the average noise energy per channel was

consistent across SPL presentation level. The amount of noise energy allowed above the

lower bound of the DRW was iterated as a parameter in our tests as described in chapter

5. An example gain profile for an intermediate closed-loop MBPNL model is shown

below in figure 6.6. Here the efferent gain is set to allow an average of 2dB noise over a

lower bound of 65dB. The resulting noise energy per channel is shown in figure 6.7.

Gains

40-

35- ... m.m.. . umm. Nesmen We.ndmu

30-

25

v20- 0

15

10

5- ow.= 60 dBSPL Noise
----70 dBSPL Noise

0
10 20 30 40 50 60 70 80 90

channel

Figure 6.6: Example Efferent Gain Profile for Closed-loop MBPNL. Noise
target = 2dB of noise per band. DRW = 65-130dB. Gains per noise condition
are chosen to make the average total energy per channel constant across noise
condition (see figure 6.7).
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Figure 6.7: Energy of output for speech-shaped Gaussian noise input. The average energy
per channel per noise level condition is constant.

6.2.2. Displays

Unlike the open-loop systems of chapter 5, displays for the closed-loop MBPNL

were much more consistent and stable across SPL and SNR condition. Figure 6.8 shows

all nine test conditions for the diphone ja in "jab." Figure 6.9 shows all nine test

conditions for the diphone g-a in "gab." The gain profile was the one used in figure 6.6

with a target of 2dB noise allowed above the DRW lower bound of 65dB. In all SPL and

SNR conditions the first three formants are clearly visible. However more speech

information is seen in the 10dB SNR conditions than in the other two SNR conditions

tested. For the selected DRW window and noise setting, the 60dB SPL x 10dB SNR

template condition produced the best results, as shown in the next section.

136



60dBSPLx1OdBSNR

0
C

U-

time

C
a)

time

7OdBSPLx5dBSNR 60dBSPLx5dBSNR

C
ci

C
a)

time

70dBSPLxOdBSNR 60dBSPLxOdBSNR

C:

U)D

time time

C

.D

50dBSPLx5dBSNR

0
C=)

time

50dBSPLxOdBSNR

time

Figure 6.8: Closed-loop MBPNL displays for the word "jab"; token representation for each
SPL x SNR condition. Note a much more consistent and stable spectrum representation than
that of the open-loop MBPNL model of chapter 5.

137

C
a-)

time

0
Cr
2)

50dBSPLxl0dBSNR70dBSPLxl0dBSNR



70dBSPLx1OdBSNR 6OdBSPLx1OdBSNR

C

50dBSPLx1QdBSNR

0
C
U)

0~
U)

time time

7OdBSPLx5dBSNR

Cr

time

7OdBSPLxOdBSNR

0
C
U)

0*
U)

time

6OdBSPLx5dBSNR

time

6OdBSPLxOdBSNR

time

5OdBSPLx5dBSNR

C
(D

0D
%I.

time

5OdBSPLxOdBSNR

0
Cr

time

Figure 6.9: Closed-loop MBPNL displays for the word "gab"; token representation for each SPL
x SNR condition. Note a much more consistent and stable spectrum representation than that of the
open-loop MBPNL model of chapter 5.
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6.2.3. Data - Results

For the closed-loop MBPNL model with a DRW lower bound of 65 and a target

of 2dB of noise above the lower bound, the 60dB SPL noise x 10dB SNR template

condition yielded the best within-1-std metric. Results using this condition as a template

token for the DRT mimic task are shown in figures 6.10 and 6.11. Chi-squared metrics

per acoustic dimension are displayed in figure 6.12.

In contrast to the open-loop MBPNL and Gammatone models, the closed-loop

MIBPNL model is much more consistent across all conditions. Additionally, far fewer

errors are made when the closed-loop MBPNL is used, and average error patterns are

much closer to human. For the 10dB SNR and 5dB SNR conditions, machine

performance was better than human for most acoustic dimensions (the exceptions being

graveness and compactness in the 60dB SPL x 5dB SNR and 50dB SPL x 5dB SNR

conditions). For OdB SNR machine performance was worse than human for most

acoustic dimensions.

Average owr all conditions

c 30 -------------------------------------
Mimic - Human Grand Mean = -1.31

20 Metric Total = 3.13

0

0 --

-0---------------- -------------- ----

VC ST SB GV CM
Figure 6.10: Average results for the initial example closed-loop MIBPNL system. Note that unlike the

open-loop systems, the closed-loop MBPNL responses produce a within-1-std metric score that is
smaller, implying that this system mimics human response much better. Only the sibilation plus and
sustention categories produced differences between human and machine responses that were greater than
one human standard deviation.
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Figure 6.11: 3 SPL x 3 SNR conditions: detailed results. This shows the same information as in figure
5.29 but in more detail. Overall scores produce a smaller within-1-std metric value per condition in
comparison to those of the open-loop systems which are depicted in figures 5.21 and 5.13. Despite this a
fair number of grey bars, indicating differences between machine and human performance that are greater
than one human standard deviation, exist. These adversely contribute to a larger metric value.
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Figure 6.12: Overall Chi-squared results for the initial example closed-loop MBPNL system. Note that
unlike the open-loop system MBPNL, the closed-loop MBPNL responses produce a Chi-squared metric
score that is much smaller, implying that this system mimics human response much better. Results are
also better than those of the normalized-input Gammatone (see figure 5.15). The sibilation-plus,
sustention, voicing-minus, and graveness-minus categories produced differences between human and
machine responses that were greater than our significance threshold. The other 5 dimensions were below
the significance threshold.

6.3. Best Performance

One of the questions of interest in this thesis is how well can the system perform

in terms of percent correct. This is a significant question because it could be quite useful

for automatic speech recognition and for other applications involving speech processing

at varying SNRs. To answer this question, we methodically varied the parameters

discussed in this chapter to find the best percent correct. The lower bound of the DRW

was iteratively changed in 1dB increments, the amount of noise above the DRW per

frequency band was varied between 2dB, 6dB, and 10dB, the results with stretching and
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no stretching were compared, and the size of the smoothing window was varied between

8-ms, 10-ms, and 12-ms.

6.3.1. Parameter Settings

The settings that yielded the best performance in terms of overall percent correct

were a DRW lower bound of 65dB, with noise allowed per frequency band according to

table 6.1 below, with stretching, and with a 10-ms window.

Frequency Band CF
266-844 Hz

875-2359 Hz
2422-5141 Hz

Noise Above DRW Lower Bound
10 dB
10 dB
6 dB

Table 6.1: Noise allowed above the lower bound of the DRW per frequency bin for the system with the
best percent correct. Three frequency bins were chosen with center frequencies of 266-844Hz, 875-
2359Hz, and 2422-5141 Hz. These frequency bins were chosen to correspond roughly to the frequencies
that each of the first, second, and third formants span over various phones.

6.3.2. Displays

Displays for the best percentage correct system are shown in figures 6.13 and

6.14. As in previous closed-loop MBPNL tests, the 60dB SPL x 10dB SNR template

condition yielded the best results.
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Figure 6.13: Token representation for each SPL x SNR condition; closed-loop MBPNL displays for
the word "jab" that yielded the best performance in terms of percent correct. The average noise
allowed over the lower bound of the DRW (corresponding to spontaneous activity of the nerve) is
varied for 3 frequency bands as depicted in table 6.1. The template condition that yielded the best
performance results was the 60dBSPL x 1OdBSPL condition (top middle panel).
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Figure 6.14: Token representation for each SPL x SNR condition; closed-loop MBPNL displays for
the word "gab" that yielded the best performance in terms of percent correct. The average noise
allowed over the lower bound of the DRW (corresponding to spontaneous activity of the nerve) is
varied for 3 frequency bands as depicted in table 6.1. The template condition that yielded the best
performance results was the 60dBSPL x 1OdBSPL condition (top middle panel).
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6.3.3. Data - Results

Results for the DRT mimic task are shown below in figures 6.15 and 6.16. For

the majority of Voier's acoustic phonetic dimensions and SPL and SNR conditions, the

machine performed better than the human results. For the overall average, the machine

performed 5.66 percent better than the human tests.

Chi-squared analysis of the results was also conducted. The results per acoustic

dimension are depicted in figures 6.17 and 6.18. From the figures one can conclude that

the dimensions that were consistently significantly different from human performance

were voicing minus and sustension minus. In addition to these a few other dimensions

were significantly different than human in various SPL and SNR conditions, such as

graveness minus, compactness plus, sibilation plus, and sustension plus.

AMrage owr all conditions

c 30 ----------------------------------
0D Mimic - Human Grand Mean = -5.66
20 Metric Total = 2.01
a. 20 ------------ -- --------------- - -

10 -------------- ---- ------------ - -- -

E r

0
+- - + - - + - + -E -3 0 -- - ------ --- -------- - - - -- - -

VC ST SB GV CM
Figure 6.15: Average within-1-std metric results per acoustic dimension for the system that yielded
the best machine performance in terms of percent correct. Machine performance on voicing-minus
and sustension-minus categories is much better than that of human and significantly contributes to
the overall within-1-std metric. Compactness-plus machine performance is also superior to that of
humans, however it contributes less to the overall within-1-std metric.
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Figure 6.16: Detailed within-1-std metric results per each noise condition for the system that yielded the
best machine performance in terms of percent correct. The noise condition is specificed in each panel by
the SPIJSNR levels. Results are much more consistent over each condition than the results from the open-
loop MBPNL model shown in chapter 5. Several acoustic dimensions, especially voicing-minus and
sustension-minus do not match human performance well and are indicated by grey bars. Sustension-plus
does better than and does not match human performance well for the 1OdBSNR conditions.
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Figure 6.17: Overall Chi-squared results for the system that yielded the best machine performance in terms of percent
correct. Similar to the within-1-std metric case, the performance on voicing-minus and sustension-minus categories is
much better than that of human and significantly contributes to the overall Chi-squared metric.
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Figure 6.18: Detailed Chi-squared metric results computed separately for each noise condition for the system that yielded the
best machine performance in terms of percent correct. The noise condition is specificed in each panel by the SPL/SNR
levels. The machine performance on several acoustic dimensions, especially voicing-minus and sustension-minus and
sustension-plus in the 1OdBSNR conditions, is significantly better than human performance.
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6.4. Best Human Match

After obtaining the best machine performance, we varied the same parameters to

obtain the best match to human performance in terms of the within-1-std metric and the

Chi-squared metric. As before, we methodically varied the parameters discussed in this

chapter to find the best percent correct. The lower bound of the DRW was iteratively

changed in 1dB increments, the amount of noise above the DRW per frequency band was

varied between 2dB, 6dB, and 10dB, the results with stretching and no stretching were

compared, and the size of the smoothing window was varied between 8-ins, 10-ms, and

12-ms.

6.4.1. Parameter Settings

The settings that yielded the best match to human results in terms of both the

within-l-std metric and the Chi-squared were a DRW lower bound of 65dB, with noise

allowed per frequency band according to table 6.2 below, with stretching, and with a 10-

ms window.

Frequency Band CF Noise Above DRW Lower Bound
266-844 Hz 10 dB

875-2359 Hz 6 dB
2422-5141 Hz 6 dB

Table 6.2: Noise allowed above the lower bound of the DRW per frequency bin for the system with the
best match to human.
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6.4.2. Displays

Displays for the best match to human system are shown in figures 6.19 and 6.20.

As in previous closed-loop MBPNL tests, the 60dB SPL x 10dB SNR template condition

yielded the best results. Also like other closed-loop MBPNL systems, the displays over

various SPL and SNR conditions were much more consistent with each other than those

from the open-loop systems that were first examined.
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Figure 6.19: Token representation for each SPL x SNR condition; closed-loop MBPNL displays for
the word "jab" that yielded the best match to humans. The average noise allowed over the lower
bound of the DRW (corresponding to spontaneous activity of the nerve) is varied for 3 frequency
bands as depicted in table 6.2. The template condition that yielded the best performance results was
the 60dBSPL x 1OdBSPL condition (top middle panel).
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Figure 6.20: Token representation for each SPL x SNR condition; closed-loop MBPNL
displays for the word "gab" that yielded the best match to humans. The average noise allowed
over the lower bound of the DRW (corresponding to spontaneous activity of the nerve) is varied
for 3 frequency bands as depicted in table 6.2. The template condition that yielded the best
performance results was the 60dBSPL x 1OdBSPL condition (top middle panel).
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6.4.3. Data - Results

Results for the DRT mimic task are shown below in figures 6.21 and 6.22. Chi-

squared analysis of the results was also conducted. The Chi-squared results per acoustic

dimension are depicted in figures 6.23 and 6.24. Like other iterations of the closed-loop

MBPNL model (shown in previous sections in this chapter), both metric tests suggest that

the acoustic dimensions of voicing minus and sustention minus were significantly

different from human for the majority of the conditions tested. When examining figure

6.24, the negative bars for the voicing minus and sustention minus categories imply that

the machine is performing better than the human for each. All other categories however

matched human much better with a few exceptions. The sustention plus category varies

significantly from human results for the 70dB SPL conditions and the 50dB SPL x OdB

SNR condition according to the plots. The graveness plus category significantly differs

for the 60dB SPL x 5dB SNR condition, and the graveness minus category significantly

differs for the 50dB SPL x 10dB SNR condition.

Despite the differences of a few acoustic categories for a few presentation

conditions, the average Chi-squared metric of 2.3731 suggests that machine performance

was close to human.

Performance with different noise conditions used as the template condition is

displayed in tables 6.3 and 6.4. As these tables show, the 60dBSPL and 1OdBSNR

condition produced the best results. However all 9 template choice results did not vary

largely, reflecting the stability of the closed-loop MBPNL representation.
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Figure 6.21: Average within-1-std metric results per acoustic dimension for the system that yielded the
best match to humans. Machine performance on voicing-minus and sustension-minus categories is much
better than that of human and significantly contributes to the overall within-1-std metric. All other
categories matched human performance well and differed by less than a human standard deviation.
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Figure 6.22: Detailed within-1-std metric results per each noise condition for the system that yielded the best match to humans. The
noise condition is specificed in each panel by the SPUSNR levels. Like the other closed-loop MBPNL systems, voicing-minus and
sustension-minus do not match human performance well over most noise conditions examined. Sustension-plus does better than and
does not match human performance well for the 1OdBSNR conditions.
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Figure 6.23: Overall Chi-squared results for the system that yielded the best match to humans. Similar to the within-
1-std metric case, the performance on voicing-minus and sustension-minus categories is much better than that of
human and significantly contributes to the overall Chi-squared metric.
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Figure 6.24: Detailed Chi-squared metric results computed separately for each noise condition for the system that yielded the

best match to humans. The noise condition is specificed in each panel by the SPIUSNR levels. The machine performance on

a few acoustic dimensions, especially voicing-minus and sustension-minus, is significantly better than human performance.

Overall the Chi-squared metrics here indicate that this system was a much better match than any other we had evaluated.
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60dBSPL

1OdBSNR 2.0700 1.5700 1.6100

5dBSNR 1.7600 2.0500 1.7200

0dBSNR 3.5800 4.0500 3.7700

Table 6.3: Optimal within-1-std metric values as a function of template condition (70,60,50 dBSPL x
10,5,OdBSNR) with smoothing window length set to lOms. The 60x10 condition yields the best within-i-
std metric value.

70dBSPL 60dBSPL 50dBSPL

10dBSNR 3.9069 2.3731 2.7834

5 dBSNR 2.8635 3.2876 2.9221

0 dBSNR 7.5620 7.5822 8.1114

Table 6.4: Optimal Chi-squared metric values as a function of template condition (70,60,50 dBSPL x
10,5,OdBSNR) with smoothing window length set to lOms. The 60x10 condition yields the best Chi-
squared metric value.

6.5. Recap / Conclusion

In this chapter, we discussed the initial closed-loop MBPNL systems, and

discussed the iterations we performed to create our final closed-loop MBPNL system.

We also evaluated the results which suggest that overall the MBPNL system does not

significantly differ from human response in the Chi-squared sense and in the within-i -std

metric sense. Since the best performance of the system exceeded that of humans on the

presentation levesl and SNRs evaluated, it may have the potential to aid in speech
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recognition and other various tasks that currently are not robust to noise. Despite this, the

system did significantly differ for the voicing minus and sustention minus categories.

These results inspired us to conduct further psychoacoustic tests that are discussed in the

next chapter.
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7. Additional Psychoacoustic Tests: Vowel or Consonant Only Experiments

A few tests were conducted on the synthetic speech corpus to gain insight on the

errors made by humans and our machine model. The outcomes of these tests have

important implications for the notion of developing a mimic. In these tests, three

experiments were conducted that focused on the 60dBSPL noise and 5dBSNR noise

condition only.

In the first experiment, we took the synthetic CVC tokens and removed the initial

consonant (up to the diphone midpoint at 200-ms in each waveform file); an example

token with the initial consonant extracted in quiet is shown in figure 7.1. We then were

careful to scale the rms of the remaining word and noise by the same amount as previous

tests (see chapter 3) to obtain the desired noise condition; an example scaled speech +

noise token with excised initial consonant is shown in figure 7.2. Although the condition

is labeled 60dBSPL and 5dBSNR the actual SNR of the speech may differ (since the

initial consonant is missing); however the rms of vowel in the speech for these chopped

tokens would be identical to those of the tests in chapters 3, 5, and 6. Once we obtained

the tokens, we ran the exact same DRT task as was given in chapter 3. Simultaneously

we also ran the DRT mimic tests from chapters 5 and 6 on the machine with the same

stimuli.

In the second experiment, we took the synthetic CVC tokens and removed

everything past the initial consonant (from the diphone midpoint at 200-ms to the end of

the waveform file), retaining the initial consonant (up to the diphone midpoint at 200-ms

in each waveform file). Like in the first experiment, we then were careful to scale the
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remaining word and noise by the same amount as previous tests (see chapter 3) to obtain

the desired noise condition; an example token is shown in figure 7.3. Thus although the

condition is labeled 60dBSPL and 5dBSNR the actual SNR of the speech may differ

(since only the initial consonant is present); however the rms of initial consonant in the

speech for these chopped tokens would be identical to those of the tests in chapters 3, 5,

and 6. Once we obtained the tokens, we ran the exact same DRT task as was given in

chapter 3. Simultaneously we also ran the DRT mimic tests from chapters 5 and 6 on the

machine with the same stimuli.

In the final test, we took the synthetic CVC tokens and simply added the tokens to

noise, as we did for the tests in chapter 3, 5, and 6. This was done because the subjects

for this experiment were different and we needed a baseline for comparison. In the next

few sections the results this experiment and the other 2 are discussed.

C to V transition

1 4

Figure 7.1: Spectrogram of synthetic sibilant "sole" in quiet with only the initial consonant. Notice that only the
initial /s/ consonant is kept. Everything past the initial consonant is excised.
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C to V transition

Figure 7.2: Spectrogram of synthetic sibilant "sole" at 6OdBSPL and 5dBSNR with only the initial consonant.
Notice that some the energy of the initial /s/ consonant is visible. Everything past the initial consonant is excised.
The noise and speech scaling factors are computed from the rms of the noise and the full CVC word before
excising.

C to V transition

Figure 7.3: Spectrogram of synthetic sibilant "sole" at 60dBSPL and 5dBSNR with only the vowel onward
remaining . Notice the initial /s/ consonant is excised and not visible. The noise and speech scaling factors are
computed from the rms of the noise and the full CVC word before excising.
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7.1. Vowel + Final Consonant Only

DRT tests were performed on synthetic diphones with the initial consonant

excised at the 60dBSPL and 5dBSNR condition (the other SPL and SNR conditions were

not examined for this test). Hence in these tests, the only differences between words

were due to the variations in noise and the differences in initial vowel formant transitions,

moving out of the consonant before they settle to the long-term vowel formant targets.

We called this experiment the NVC experiment. The machine results using the 60dBSPL

x 10dBSNR condition as template (which resulted in scores that matched humans best in

the within-1-std and Chi-squared metric sense - see Chapter 6) are shown below in figure

7.4. Human tests were also conducted on 4 subjects and are shown in figure 7.5. The

average human subject error rate was 34.5 %. The machine on the other hand performed

better for the same synthetic tokens, scoring an average of 9.0 % error, significantly

better than the human. Overall, the humans scored much worse (more than a standard

deviation in difference) on every acoustic dimension but graveness-plus. The difference

in machine and human performance and patterns for the tests with the vowel only

suggests that the cues from the vocalic regions of speech that are used by our machine

model and humans are different.
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Figure 7.4: Machine scores for the NVC experiment for the 60dBSPL and
5dBSNR noise condition.
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Figure 7.5: Human scores for the NVC experiment for the 60dBSPL and
5dBSNR noise condition. Scores are averaged over 4 subjects. Human scores
are significantly worse than machine scores for this task.
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7.2. Consonant Only

DRT tests were also performed on synthetic diphones with the vocalic region

onward excised at the 60dBSPL and 5dBSNR condition. We call this test the CNN test.

The machine results using the 60dBSPL x 10dBSNR condition as template (which

resulted in scores that matched humans best in the within-i -std and Chi-squared metric

sense - see Chapter 6) are shown below in figure 7.6. Human tests were also conducted

on the same 4 subjects and are shown in figure 7.7. The average human subject error was

23.7 %. Overall, the machine performed worse on the synthetic tokens, scoring an

average of 39.8% error. Sustension-plus, and graveness-plus were similar between

human and machine. All other categories differed by at least a standard deviation of the

other. These results suggest that the cues from the initial consonant of speech that are

used by our machine model and humans are different
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Figure 7.6: Machine scores for the CNN experiment for the 60dBSPL and
5dBSNR noise condition.
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Figure 7.7: Human scores for the CNN experiment for the 60dBSPL and
5dBSNR noise condition. Scores are averaged over 4 subjects. Human scores are
slightly better than machine scores for this task.
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7.3. Consonant and Vowel Error Rates

Finally, DRT tests with the full word were re-examined and compared to the

chopped tests of section 7.1 and 7.2. We call this experiment the CVC task. Figures

showing raw error percents per acoustic dimension are shown below. The machine errors

are shown in figure 7.8. The human errors for the same presentation level condition and

for the same 4 subjects from sections 7.1 and 7.2 are shown in figure 7.9. The average

human errors for the subjects were similar to those of the human DRT results from

chapter 3.

When examining figure 7.9 and comparing it to figures 7.5 and 7.7 one can see a

small effect of having both parts of the word present for the human listener, with human

performance increasing by 3.7% over the results with only the initial consonant

presented. This suggests that the human integrates information from the vowel and the

consonant regions together, which slightly benefits performance in noise.

The opposite effect is seen in the machine scores, with machine performance

decreasing by about 1.6% over the NVC results. This suggests that the machine is

confused by the consonant region, which slightly hinders performance in noise.
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Figure 7.8: Machine scores for the CVC experiment for the 60dBSPL and
5dBSNR noise condition.
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Figure 7.9: Human scores for the CVC experiment for the 60dBSPL and 5dBSNR
noise condition. Scores are averaged over 4 subjects. Human scores are worse
than machine scores for this task.

165

----- -- -- -

--- - -- - - -

----- - -

-- --------

-----------

-- - -- ----

------------



7.4. Conclusion

The human psychoacoustic tests and machine mimics presented in this chapter

illustrate some of the fundamental similarities and differences between machine and

human behavior. The results for each of the experiments are summarized in table 7.1.

As the table shows, these results suggest that both human and machine perform close to

whichever task (NVC or CNN) performs better: the human CVC task performs close to

the performance of the CNN task; the machine CVC task performs close to the

performance of the NVC task. Examining the numbers closer, one notices that the

machine is confused by the addition of the consonant while the human integrates the

vowel and consonant information and obtains a small synergistic effect. Also, these

results show that humans are not using the information present in the vowel as well as the

machine is. Future research should focus on understanding this behavior and these

differences.

Human Mean Error Rate Machine Mean Error Rate

NVC Task 34.5 8.96

CNN Task 23.7 39.8

CVC Task 20.0 10.62

Table 7.1: Summary of mean error rates for human and machines for the 3 experiments presented in this
chapter. The human benefits from both the consonant and the vowel. The machine is confused by the
addition of the consonant.
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8. Concluding Thoughts

This thesis attempted to model the signal processing of the human peripheral

system and predict human error patterns. The objectives of this thesis were mostly met.

Overall trends of words in a DRT paradigm matched in terms of the within-i -std and

Chi-squared metric comparisons per Jakobsonian acoustic dimension. However the

acoustic dimensions of voicing-minus and sustension-minus (where the minus denotes

the lack of that trait) differed significantly. Further analysis of our model and human

performance on a DRT task with either the initial consonant or the vocalic part of the

diphone missing showed that the information present in the vowel matters more for our

machine model whereas the information present in the initial consonant matters more for

human listeners. These results also show that humans are not using the information

present in the vowel onward as well as the machine is. Hence future algorithm

development should focus on understanding and mimicking this behavior.

Due to the fact that humans were not using the information present in the vowel

onward as well as the machine was for the NVC task of chapter 7, several questions arise.

The first involves why this is so. One possible experiment would test whether or not a

similar trend was observed for the same tests of chapter 7 with bandpass filtering.

Another similar experiment that could be conducted would be to rerun Ghitza's

(1993) tiling experiment, focusing on interchanging or dropping frequency-time spectrum

tiles with a noisy background (instead of in a quiet, noiseless background). This might

also shed light on understanding what parts of speech affect human performance in noise

and why we observed the results we obtained in chapter 7.
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Other than introducing additional psychoacoustic questions and encouraging

additional psychoacoustic tests, this work has a potential for additional tasks. For

example an initial effort was made to predict CVC identification scores of humans. This

task is a much more complicated one than the 2-alternative-forced-choice DRT

experiment that we used. Matching CVC identification scores would be an essential first

step for additional applications of this work.

Such additional applications may be of great interest for the speech recognition

community. For example, an interesting idea would be to use our closed-loop MBPNL

model as a front-end for a speech recognition system. The idea here is that the beneficial

non-linear and efferent-feedback from our system might help improve recognition by

providing a more stable front-end that better mimics the human periphery. However to

do this one would have to break away from the synthetically generated "frozen-speech"

paradigm that we used, which may introduce several challenging yet exciting

possibilities.
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Appendix A: Stretching

In many of our experiments stretching the output yielded improved performance,

and hence for many of our results, stretching was used after clipping the rate of the output

by the DRW limiter. This appendix describes stretching and gives a rationalization for its

use. The explanation for normalizing the IHC output stems from neurophysiological

studies on anesthetized cats with noisy acoustic stimuli (Winslow and Sachs, 1988)3. In

these studies, Winslow and Sachs show that, by stimulating the MOC nerve bundle

electrically, the dynamic range of discharge rate at the AN is recovered as is illustrated

below in figure A.1.

200u-r In Quiet

182- With Efferent Stimulation
18 -- No Efferent Stimulation

164-

A146-,,..m m m m

128

110-

~92

S74-

56/

38-

20 .ee,~mmmm"'
I iI I I I I

0 8 16 24 32 40 48 56 64 72 80
Tone Level, dB

Figure A.1: Illustration of the observed efferent-induced recovery of discharge rate dynamic range in the presence
of background noise (e.g. Winslow and Sachs, 1988). Discharge rate versus Tone level is cartooned in quiet
condition (full dynamic range, black); In an anesthesized cat (much reduced dynamic range, red) and with electrical
stimulation of COCB nerve bundle.

3 Concurring with this observation are measurements of neural responses of awake cats to noisy

acoustic stimuli, showing that the dynamic range of discharge rate at the AN level is hardly

affected by changes in levels of background noise (May and Sachs, 1992).
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A potential biological mechanism for stretching and regulating the rate output of

the auditory nerve innervating the hair cells may involve the Lateral Olivocochlear

(LOC) efferents. Because the LOC efferents terminate at the synapse of the auditory

nerve that connects to the Inner Hair Cells (IHCs), the LOCs are anatomically ideally

positioned to modulate activity in type I afferent auditory nerve fibers and hence may

play a role in regulating the dynamic nerve response. Dopamine, one of the lateral

olivocochlear neurotransmitters, has been shown to decrease auditory nerve activity

[Jdrome Ruel, Rdgis Nouvian, Christine Gervais d'Aldin, R6my Pujol, Michel Eybalin,

Jean-Luc Puel (2001)][Colleen G. Le Prell, KArin Halsey, Larry F. Hughes,

David F. Dolan and Sanford C. Bledsoe Jr (2005)]. Additionally, Darrow and Liberman

[MIT PhD Thesis, 2006] found two cytochemical subgroups of LOC neurons - a majority

cholinergic population and a minority dopaminergic population - and suggested that

these two LOC subgroups are consistent with reports that LOC activation can either

excite or inhibit auditory nerve activity. Despite the ideal location and potential

importance of the LOC efferents in the auditory system, not much is known about their

exact functioning because they are unmyelinated and small, and hence they are very

difficult to record from using conventional electrophysiological methods. Based on their

recent studies, Darrow and Liberman (2006) speculate that a key LOC function is to

bilaterally balance ascending inputs to olivary complex neurons, which are responsible
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for computing sound location based on the interaural level differences coded in the

response rates of auditory nerve fibers.
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Appendix B: Multiple Template Tests

Since humans may not be able to perfectly estimate what SPL and SNR a stimulus

is presented at, it is possible that a human might use multiple templates for an internal

representation and comparison of stimuli. Hence, several multiple template schemes

were examined in our experiments. This appendix describes these tests and reviews the

results.

For multiple template comparisons, the template matching operation was the same

as for the single template operation (see chapter 4), the only difference being that the

MSE distance metric was computed for each template condition. Two separate tests were

conducted on two different multiple template schemes (see chapter 4 for a rationale for

each). The tests were: 1) a minimum distance multiple template test, where the template

token is selected by picking the template resulting in the smallest distance to the test

token (one would expect this to improve percent correct scores because the best template

is selected), and 2) an average distance multiple template test, where the MSE distance

between all possible template tokens and the test token is averaged. These two

operations are shown in figures B I and B2. The template schemes either involved using

the 9 noise conditions as templates (70, 60, 50dBSPL x 10, 5, OdBSNR) or 5 templates

centered around 60dBSPL and 1OdBSNR (61dBSLP x 1OdBSNR, 60dBSPL x 11dBSNR,

60dBSPL x 1OdBSNR, 60dBSPL x 9dBSNR, and 59dBSPL x lOdBSNR). These 2

template schemes are depicted in figures B3 and B4. The results of each test are

described below.
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MSE (x)

MSEN(x)

i=N

MSEFinal (X) NMSE (x)
Si=1

- N
Figure B.1: Details of the average distance template operation. The final mean-squared-error (MSE) is
computed as the average of the MSEs between the ith template noise condition and the test token x. For
example if the template token is "daunt" at 9 different noise conditions, N=9, and the final MSE used is the
average MSE of the 9 daunt templates. This final MSE is then used as MSEa(x) in the comparisons done in
chapter 4. Similarly, the same computation is done for the DRT pair template (such as "taunt") at the same
N=9 noise conditions. The final MSE from these comparisons with taunt is used as MSEb(x) in the
comparisons done in chapter 4.

MSEI(x) * 0 @ MSEN(x)

MSEFinal (x) = min(MSE (x),...MSEj (x),..., MSEN (x))

Figure B.2: Details of the min distance template operation. The final mean-squared-error (MSE) is
computed as the minimum of the MSEs between the ith template noise condition and the test token x. For
example if the template token is "daunt" at 9 different noise conditions, N=9, and the final MSE used is the
minimum MSE of the 9 daunt templates. This final MSE is then used as MSEa(x) in the comparisons done in
chapter 4. Similarly, the same computation is done for the DRT pair template (such as "taunt") at the same
N=9 noise conditions. The final MSE from these comparisons with taunt is used as MSEb(x) in the
comparisons done in chapter 4.
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Figure B.3: Examples 9 template comparison scheme. Each of the 9 templates represents the same template
word, "daunt" for example, at a different noise condition. The test token is compared to all 9 templates and
the MSEs are computed for each according to equations 4.2 and 4.3 in chapter 4.

61/10

60/11 60/10 60/9

59/10

Template Conditior
dB SPL / dB SNR

Test

s: Test condition compared to
templates

Figure B.2: Examples 5 template comparison scheme. Each of the 5 templates represents the same template
word, "daunt" for example, at a different noise condition. The test token is compared to all 5 templates and
the MSEs are computed for each according to equations 4.2 and 4.3 in chapter 4.
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B.1. Min Distance; 70, 60, 50dBSPL x 10, 5, OdBSNR Templates

The best match to human for the multi-template task depicted in figure B 1

(the min distance task using the 9 templates centered around 60dBSPL and 5dBSNR)

used a 10-ms smoothing window with noise per frequency band according to table B.1

below, with stretching.

Frequency Band CF Noise Above DRW Lower Bound
266-844 Hz 6dB
875-2359 Hz 6dB

2422-5141 Hz 2dB
Table B.1: Noise allowed above the lower bound of the DRW per frequency bin for the multi-template
system depicted in figure B 1. Three frequency bins were chosen with center frequencies of 266-844Hz,
875-2359Hz, and 2422-5141 Hz. These frequency bins were chosen to correspond roughly to the
frequencies that each of the first, second, and third formants span over various phones.

The results for this system are shown in figures B5-B8. The within-1-std metric

for the system matched the best within-i -std metric using a single template. Overall,

voicing-minus matched human better for this system while sibilation-minus was worse

than for the single-template tests. The overall Chi-squared metric was worse than for the

single-template best-match test and had performance per acoustic dimension that matched

the within-1-std metric task.
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Figure B.5: Average results for the min-distance multi-template task described in figure B 1. The
results match the best with-in-1-std metric results with a single-template. Voicing-minus is within a
human standard deviation, unlike the case for the single-template tests. However sibilation-minus
now deviates larger than a human standard deviation.
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Figure B.6: Overall Chi-squared results for the min-distance multi-template task described in figure
B 1. The results are worse than the best chi-squared results for the single-template tests (see chapter
6). The metric patterns match those obtained from the within-1-std test of figure B5, with
sustention-minus and sibilation-minus categories being significantly different across human and
machine.
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Figure B.7: Detailed results for the min-distance multi-template task described in figure B 1.
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Figure B.8: Detailed Chi-squared results for the min-distance multi-template task described in figure B 1
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B.2. Average Distance; 70, 60, 50dBSPL x 10, 5, OdBSNR Templates

The best match to human for the multi-template task depicted in figure B2 (the

average distance task using the 9 templates centered around 60dBSPL and 5dBSNR) used

a 10-ms smoothing window with noise per frequency band according to table B.2 below,

with stretching.

Frequency Band CF Noise Above DRW Lower Bound
266-844 Hz 2dB

875-2359 Hz 6dB
2422-5141 Hz 2dB

Table B.2: Noise allowed above the lower bound of the DRW per frequency bin for the multi-template
system depicted in figure B2. Three frequency bins were chosen with center frequencies of 266-844Hz,
875-2359Hz, and 2422-5141 Hz. These frequency bins were chosen to correspond roughly to the
frequencies that each of the first, second, and third formants span over various phones.

The results for this system are shown in figures B9-B 12. In general performance

was worse than for the single-template best-match test and the multi-template task of

section B. 1.
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Figure B.9: Average results for the average-distance multi-template task described in figure B2.
Voicing-minus, sustention-plus and sustention-minus, graveness-minus, and compactness-plus all

have machine performance that differs by more than a human standard deviation. Overall, the

within- 1-std metric is worse than that of figure B5 and the single-template task of chapter 6.
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Figure B.10: Overall Chi-squared results for the average-distance multi-template task described in

figure B2. The results are worse than the best chi-squared results for the single-template tests (see

chapter 6) and the multi-template results shown in figure B6. The machine sustention category in

particular does not match human performance.
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Figure B.11: Detailed results for the average-distance multi-template task described in figure B2.
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Figure B.12: Detailed Chi-squared results for the average-distance multi-template task described in figure B2
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B.3. Min Distance; Templates Centered Around 60dBSPL x 1OdBSNR

The best match to human for the multi-template task depicted in figure B3 (the

min distance task using the 5 templates centered around 60dBSPL and 1OdBSNR) used

an 8-ms smoothing window with noise per frequency band according to table B.3 below,

with stretching.

Frequency Band CF Noise Above DRW Lower Bound
266-844 Hz 6dB

875-2359 Hz 2dB
2422-5141 Hz 6dB

Table B.3: Noise allowed above the lower bound of the DRW per frequency bin for the multi-template
system depicted in figure B3. Three frequency bins were chosen with center frequencies of 266-844Hz,
875-2359Hz, and 2422-5141 Hz. These frequency bins were chosen to correspond roughly to the
frequencies that each of the first, second, and third formants span over various phones.

The results for this system are shown in figures B 13-B 16. In general performance

was worse than for the single-template best-match test and the multi-template task of

section B. 1.
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Figure B.13: Average results for the min-distance multi-template task described in figure B3.
Sustention-plus, sibilation-minus, graveness-plus, graveness-minus, and compactness-minus all have

machine performance that differs by more than a human standard deviation. Overall, the within-i-
std metric is worse than that of figure B5 and the single-template task of chapter 6.
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Figure B.14: Overall Chi-squared results for the min-distance multi-template task described in
figure B3. The results are worse than the best chi-squared results for the single-template tests (see
chapter 6) and the multi-template results shown in figure B6. The machine sibilatio-minus and
graveness categories in particular do not match human performance.
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Figure B.15: Detailed results for the min-distance multi-template task described in figure B3.
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Figure B.16: Detailed Chi-squared results for the min-distance multi-template task described in figure B3.
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B.4. Average Distance; Templates Centered Around 60dBSPL x 1OdBSNR

The best match to human for the multi-template task depicted in figure B3 (the

average distance task using the 5 templates centered around 60dBSPL and 1OdBSNR)

used a 8-ms smoothing window with noise allowed per frequency band according to table

B.3 below, with stretching.

Frequency Band CF Noise Above DRW Lower Bound
266-844 Hz 6dB

875-2359 Hz 2dB
2422-5141 Hz 6dB

Table B.1: Noise allowed above the lower bound of the DRW per frequency bin for the multi-template
system depicted in figure B 1. Three frequency bins were chosen with center frequencies of 266-844Hz,
875-2359Hz, and 2422-5141 Hz. These frequency bins were chosen to correspond roughly to the
frequencies that each of the first, second, and third formants span over various phones.

The results for this system are shown in figures B 17-B20. In general performance

was worse than for the single-template best-match test and the multi-template task of

section B. 1.
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Figure B.17: Average results for the average-distance multi-template task described in figure B4.
Sustention machine performance differs by more than a human standard deviation. Overall, the
within-1-std metric is worse than that of figure B5 and the single-template task of chapter 6.
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Figure B.18: Overall Chi-squared results for the average-distance multi-template task described in
figure B4. The results are worse than the best chi-squared results for the single-template tests (see
chapter 6) and the multi-template results shown in figure B6. The machine sustention and sibilation
categories in particular do not match human performance.

188

-- - - - - - -~v 1hu-a -re- Maiti =~ 3~-5~12 - -- - -

----------- -------------- - ---- - -

MMM MMM . ... ... . .L. .

-20 ---------------- ---------------------



Condition=70/10

6

4

2

-2

-4

4

-2

S Mmic -birren Grand Mean=_ -9.53_
ifference Metric = 2.94

0 --------------------

0--------------------

+- - ----------- - --- -- -- -- --- --- --- - -

VC ST SB GV CM

Condition=70/5

VC ST SB GV CM

Condition=70/0

- Mnic -Htrran Grand Mean = 9.24
Ufference Metric = 3.26

0--------------------

0

.0-----------------------

0--------------------

VC ST SB GV CM

-2

-4

2

.2

E

2

0U

.2
4

2

-2

-4

Condition=60/10

_ Mrrmc - Htrrun Grand Mean =_ -9.61-
Difference Metric = 1.63

-----------------------

.0 - - - - - - - - - -

.0---- -----------

0--------------------

VC ST SB GV CM

Condition=60/5

M_ic -_kjmrn Grand Mean =_ -3.33_
iffterence Metric = 0.62

-------- ------------

0--------------------

0--------------------

0--------------------

VC ST SB GV CM

Condition=60/0

_ Mnic - -rbnrn Grand Mean =- 3.13
Ifference Metric = 1.53

0--------------------

0--------------------

0--------------------

VC ST SB GV CM

6

-2

-4

4

2

-4

4

2

-2

-4

Condition=50/10

- mic - _irran Grand Mean =_ -8.15_
- fference Metric = 2.21

0--------------------

0--------------------

or-----------------------

VC ST SB GV CM

Condition=50/5

Mrric -_Riffran Grand Mewn =_ -4.53
0-Dfterence Metric=1.2

0--------------------

0--------------------

0-

q---------------

0-------------------

VC ST SB GV CM

Condition=50/0

S __Mmnic -_ Hrffn Grand Mean_=_ 2.86_
0 -I:ference Maric =1.97

0--------------------

0---------------------

VC ST SB GV CM

Figure B.19: Detailed results for the average-distance multi-template task described in figure B4.
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Figure B.20: Detailed Chi-squared results for the average-distance multi-template task described in figure B4
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B.5. Conclusion

Since humans may not be able to perfectly estimate what SPL and SNR a stimulus

is presented at, it is possible that a human might use multiple templates for an internal

representation and comparison of stimuli. In this appendix we explored several multiple

template schemes with differing templates. None of the examined methods and setups

performed better on the within-1-std and Chi-squared metric tests, and hence it was

concluded that our single-template test results, described in chapter 6, are superior in

terms of matching human performance. Thus the final system we developed did not use

multiple templates.
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Appendix C: Blind Identification Tests

Before data was collected with human listeners, 3 subjects were presented words

from the natural and synthetic database and asked to perform an identification task. The

purpose of the blind tests was to compare the overall quality of the natural and synthetic

databases.

C.1 Natural Blind Test Data

Data was collected for the naturally spoken corpus. Subjects were presented a

stimulus word and asked to type what they thought the word was. The results (ie what

was typed) are shown in the following table:

Stimulus Subject Response Errors

CXY JTD TAL
gat gat gat gat 0
dan dan dan Dan 0
beat beet beat beat 0
thick thick thick thick 0
moss moss moss moss 0
need need need made 1
jilt jilt jilt gilt 1
deck deck deck deck 0
pent pent pent pent 0
taught taught taught taught 0
thee thee the thee 0
tong tong tong tong 0
wall wall wall wall 0
boss boss boss boss 0
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daw daw doll daw 1
bean bean bean bean 0
thought thought thought thought 0
tea tee tea tea 0
tool tool tool tool 0
dock dock dock dock 0

fad fad fad fad 0
mend mend mend mend 0
coat coat coat poat 1
cheat cheat cheat cheat 0
moon moon moon moon 0
so sew sew sew 0
zed zed zed zed 0
coo coup coup cout 1
juice juice juice juice 0
tune tune tune toon 0
box box box box 0
taunt taunt taunt taunt 0
chaw chaw jaw chaw 1

cop cop cop cop 0
bat bat bat bat 0
thing thing thing thing 0
rod rod rod rod 0
bone bone --------- bone 1
sue sue sue sue 0
yen yen yen yen 0
pool pool pool pool 0
noon noon noon noon 0
cheep cheap cheap jeep 1
said said said said 0
bon bon bon bon 0
gt got got got 0
news news news news 0
thole thoal fole full 2

pond pond --------- pond 1
pence pents pence pence 0
shoes shoes shoes shoes 0

peen peen peen peen 0
bee be bee be 0
bad bad bad bad 0
mad mad mad mad 0
dues dues dews dews 0

gill gill gill gill 0
josh josh josh josh 0
bomb bomb bomb bomb 0
bid did bid ------- 2
doze doze doze those 1
pooh pooh poo pooh 0
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thad thad thad fad 1
poop poop poop poop 0
mitt mitt mit mitt 0
saw saw saw saw 0
goat goat goat goat 0
bank bank thank bank 1
thor thor thor thor 0
pot pot pot pot 0
boot boot boot boot 0
gab gab gab gab 0
bowl bowl bowl bowl 0
reed reed read breed 1
bill bill bill bill 0
dot dot dot dot 0
gosh gosh gosh gosh 0
moot moot moot moot 0
dab dab dab dab 0
sheet sheet cheat cheat 2
tint tint tint tint 0
tot taught tot tot 0
sole sole soul soul 0
fast fast fast fast 0
meat meat meet meet 0
wad wad wad wad 0
thank thank thank thank 0
tent tent tint tint 2
dote dote dote dought 0
neck neck neck neck 0
hit hit hit hit 0
bit bit bit bit 0
chock jock --------- jock 3
yd yield yield yield 0
teak teak teck teek 1
thaw thaw --------- thaw 1
dip dip dip dip 0
keg keg keg keg 0
though though though though 0
goose goose goose goose 0
daunt daunt --------- daunt 1
den den den den 0
sank sank sank sank 0
chop chop chop chop 0
jab jab jab jab 0
zee zee zee zee 0
than then than than 1
show show show show 0
vole vole vole vole 0
deed deed deed deed 0
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note note --------- note 1
fault fault fault fault 0
chin chin --------- chin 1
bend bend bend bend 0
care care care tear 1
fop fop fop fop 0
tense tents tense tense 0
knock knock knock knock 0
mom mom mom mom 0
caught caught caught cau ht 0
sing sing sing sing 0
shaw shaw shaw shaw 0
shad shad shad shad 0
shag shag shag shag 0
dune dune dune doon 0
vee vee the v 1
moan moan moan moan 0
coop coop coop coop 0
veal veal veal veal 0
feel feel feel feel 0
gauze gauze gauze gauz 0
zoo zoo zoo zoo 0
von vaughn vaughn vaugn 0
go go go go 0
jest jest jest jest 0
vox vox vox vox 0
chad chad chad chad 0
chair chair chair chair 0
sag sag sag sag 0

Total Errors 48
% Correct 91.7%

Table Cl: Details of Natural Identification Errors
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C.2 Synthetic Blind Test Data

Data was also collected for the synthetic corpus. Only half of the subjects

conducted these test, mainly due to concerns for time. Like the naturally spoken task, a

stimulus word was presented and each participant listener was asked to type what they

thought the word was. The results (ie what was typed) are shown in the following table:

Stimulus Subject Response Errors

CXY JTD TAL
dint dent dent dent 3
then ven then then 1
met met met met 0
jaws jaws jaws jaws 0
jock vox jock dock 2
thin fin thin fin 2
dank dank dank dank 0
calf tiff tes ----- 3
peak peat peek peak 1

bong bong bong thong 1
boast boost boast boost 2
weed weed weed weed 0
fit fit fit fit 0
chew two chew too 2
did did did did 0
dense dance dance dense 2
joe joe joe Joe 0
choose choose choose choose 0

peg peg peg peg 0
net net net met 1
fought fought thought fought 1
rue rue rue rue 0

hop hop hop pp 1
fore four four for 0
those those those those 0
Gin gin gin gin 0
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nip knit nip nick 2
dong dawn dong dong 1
wield wield wield wheeled 0
foo foo foo foo 0
wren wren ran ran 2
nab neb neb nab 2
dole dole dole dull 1
dill dill dill dill 0
gnaw gnaw naw gnaw 0
vast messed messed vest 3
bond font font bond 2
vill vill m ill ville 1
foal foal fole full 1
gaff geff gaff deaf 2
fin fin fin thin 1
tick tick pick pick 2
guest guest guest guest 0
keep teep keep keep 1
dough doe doe do 1
you new do do 3
key tee tee tea 3
ghost ghost ghost ghost 0
thong thong thong thong 0
yawl yall ya'll y'all 0
guilt guilt guilt build 1
fence fence fance fance 2
vault vault vault vault 0
gat get get debt 3
dan den dan dan 1
beat deet beat beat 1
thick thick thick fig 1
moss moss moss moss 0
need need need mead 1
jilt jilt guilt guild 2
deck deck deck deck 0
pent pant pant pant 3
taught taught thought taught 1
thee vee be ve 3
tong tong thong gong 2
wall wall wall wall 0
boss voss boss boss 1
daw daw dall daw 1
bean dean bean being 2
thought thought thought thought 0
tea tea tee pea 1
tool tool pool pool 2
dock dock dock dock 0
fad fed fed fed 3
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mend ment meant meant 3
coat coat coat coat 0
cheat teat cheat cheat 1
moon moon moon moon 0
so so sew soul 1
zed zed ned zed 1
coo clue Poo poo 3
juice juice juice goose 1
tune toon loon spoon 2
box fox fox pots 3
taunt taunt taunt taunt 0
chaw shaw jaw jaw 3

cop cop cop cob 1
bat fet fat bet 3
thing thing then sing 2
rod wrought rod rod 1
bone boon phone boon 3
sue sue sue sue 0
yen bien yan yen 2
pool pool pool pool 0
noon noon noon noon 0
cheep teat cheap cheap 1
said set sat said 2
bon fawn fun bon 2
got got got got 0
news news news move 1
thole fool coal full 3
pond taunt pond pond 1
pence pants pants pants 3
shoes shoes shoes shoes 0
peen pean peen ------- 1
bee thee be be 1
bad fed fed bed 3
mad med met med 3
dues dues shoes booze 2
gill dill guilt dill 3
josh josh josh josh 0
bomb thong fun bomb 2
bid did bid bid 1
doze those doze those 2
pooh pooh poo pool 1
thad fed -- fed 3

poop poop poop poop 0
mitt mitt mitt mitt 0
saw saw saw saw 0
goat goat goat goat 0
bank bank thank bank 1
thor thor four thor 1
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pot pot pot bot 1
boot boot boot boot 0
gab geb gab deb 2
bowl foal fole bowl 2
reed reed read reed 0
bill fill build bill 2
dot dot dot dot 0
gosh gosh gosh gosh 0

moot moot moot moot 0
dab deg dab dead 2
sheet sheet sheet sheet 0
tint tint pant pint 2
tot taught tot tot 0
sole sole soul ------- 1
fast fest fast fast 1
meat meet meet meet 0
wad what wad rod 2
thank thank thank thank 0
tent tent pant pant 2
dote dote goat tote 2
neck neck neck neck 0
hit hit hit hit 0
bit fit fit bid 3
chock chock jock jock 2
yield build yield yield 1
teak teak peek peak 2
thaw thaw thaw thaw 0
dip dit dip did 2
keg tag tank tag 3

though though boat though 1
goose goose goose goose 0

daunt daunt dant daunt 1
den den than den 1
sank sank sank sang 1

chop chop chop chop 0

jab zeb nab jab 2
zee zee zee z 0
than zen than then 2
show show show show 0
vole vole fole vole 1
deed deed deed deed 0

note note note mode 1
fault fault fault fault 0
chin kin gin chin 2
bend bent bent bent 3
care tear sir tear 3

fop fop fop fop 0
tense tents pants pants 2
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knock knock knock knowk 1
mom mom mom mom 0

caught caught caught clot 1
sing sing sing seeing 1
shaw shaw shaw shaw 0
shad shed shed fed 3
shag sheg shag feg 2
dune dune done boon 2

vee vee me v 1
moan moon moan moon 2
coop coop poop coop 1
veal veal meal veal 1
feel feel feel feel 0
gauze gauze gauze jaws 1
zoo zoo zoo zoo 0
von von man von 1

go go go go 0
jest zest jest guest 2
vox vox box vox 1
chad ked chad chad 1
chair chair chair tear 1
sag seg sank sag 2

Total Errors 224
% Correct 61.11%

Table C2: Details of Synthetic Identification Errors
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C.3 Comparison of Data and Summary

Word errors were examined closely and separated into initial consonant, final

consonant, and vowel errors. The results for both the synthetic and natural database are

shown below in tables C3 and C4. Overall, there were 30% more errors for the synthetic

speech. Most of these errors were due to differences in identifying the initial consonant.

However there was also a 7% different in identification performance of the Final

consonant, and a 12.5 % difference in identification performance of the vowel. All errors

indicated that the natural speech was easier to identify than synthetic, as expected.

Table C3: Natural errors broken down into initial consonant, final

Synthetic

consonant, and vowel

Table C4: Synthetic errors broken down into initial consonant, final consonant, and vowel

Natural
Full Initial Final

Word Consonant Consonant Vowel
Number
Wrong 47 34 8 23

Correct 91.8 94.1 98.6 96.0

Full Initial Final
Word Consonant Consonant Vowel

Number
Wrong 224 146 47 95

Correct 61.11 74.65 91.84 83.51
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