
User Interfaces Supporting
Casual Data-Centric Interactions on the Web

by

David F Huynh

S.M. Computer Science and Engineering, Massachusetts Institute of Technology (2003)
B.A.Sc. Computer Engineering, University of Waterloo (2001)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

A u th o r ...
Department of E 1 1 1m nce

August 27, 2007

C ertified by
David R. Karger

,ineering
tpervisor

C ertified by
Miller
eering
rvisor

Accepted by..........

MASSACHUSgTTS INSTIiUTE
OF TECHNOLOGY

OCT 12 2007

LIBRARIES

.....................%
Authur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

User Interfaces Supporting
Casual Data-Centric Interactions on the Web

by

David F. Huynh

Submitted to the Department of Electrical Engineering and Computer Science

on August 31, 2007, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract
Today's Web is full of structured data, but much of it is transmitted in natural language

text or binary images that are not conducive to further machine processing by the time it

reaches the user's web browser. Consequently, casual users-those without programming

skills-are limited to whatever features that web sites offer. Encountering a few dozens of

addresses of public schools listed in a table on one web site and a few dozens of private

schools on another web site, a casual user would have to painstakingly copy and paste

each and every address into an online map service, copy and paste the schools' names, to

get a unified view of where the schools are relative to her home. Any more sophisticated

operations on data encountered on the Web-such as re-plotting the results of a scientific

experiment found online just because the user wants to test a different theory-would be

tremendously difficult.
Conversely, to publish structured data to the Web, a casual user settles for static data

files or HTML pages that offer none of the features provided by commercial sites such as

searching, filtering, maps, timelines, etc., or even as basic a feature as sorting. To offer a rich

experience on her site, the casual user must single-handedly build a three-tier web applica-

tion that normally takes a team of engineers several months.

This thesis explores user interfaces for casual users-those without programming

skills-to extract and reuse data from today's Web as well as publish data into the Web in

richly browsable and reusable form. By assuming that casual users most often deal with

small and simple data sets, declarative syntaxes and direct manipulation techniques can be

supported for tasks previously done only with programming in experts' tools.

User studies indicated that tools built with such declarative syntaxes and direct ma-

nipulation techniques could be used by casual users. Moreover, the data publishing tool

built from this research has been used by actual users on the Web for many purposes, from

presenting educational materials in classroom to listing products for very small businesses.

Thesis Supervisors: David R. Karger and Robert C. Miller

Titles: Professors of Computer Science and Engineering

3

4

to my parents

who are my constant source of courage

5

6

Acknowledgements

I would like to thank my thesis advisors, David R. Karger and Robert C. Miller, for

guiding me when I was lost and for trusting me to explore freely on my own when

I found my direction. I could not have had better supervision for every step of this

arduous journey, or more gratification and pride at the end.

The SIMILE project members have also been instrumental. I thank Stefano

Mazzocchi, Ryan Lee, Andrew Plotkin, Ben Hyde, Richard Rodgers, V Alex Bren-

nen, Eric Miller, and MacKenzie Smith for their continuing encouragement and

support in various forms as well as their perspectives, insights, and wisdom that

bring practicality to my research. Without SIMILE, my research would not have

had the same impact and reach.

The Haystack group and User Interface Design group members have provided

tremendously insightful feedback on my research, and many of them have been my

travel companions throughout this long journey. Many thanks go to Vineet Sinha,
Jaime Teevan, Karun Bakshi, Nick Matsakis, Harr Chen, Yuan Shen, Michael

Bernstein, Adam Marcus, Sacha Zyto, Max Goldman, Greg Little, andJones Yu.

I have also enjoyed many exchanges with users of my software published

through SIMILE. I thank Johan Sundstrbm, Josh Aresty, and Keith Alexander for

their thoughts as well as their code patches, not to mention their enthusiasm in

singing to their friends more praises of my work than it deserves. There can be no

more satisfaction to a tool builder than to see his tools used for real.

Many people have participated in my user studies. I am grateful for their time

and their insightful feedback. I also would like to thank those who have helped

recruite subjects for my studies: William Reilly, Robert Wolfe, Ann Whiteside, and

Rebecca Lubas.

Over the years, I have enjoyed stimulating conversations with many other

people regarding my research. I thank Paolo Ciccarese, Steven Drucker, Mira

Dontcheva, Eric Neumann, Daniel Tunkelang, Kingsley Idehen, Ivan Herman,
Michael Bergman, Jon Crump, Danny Ayers, Vinay Mohta, Ian Jacobs, Sandro

Hawke, Wing Yung, Lee Feigenbaum, Ben Szekely, Emmanuel Pietriga, Chris Bi-

zer,Justin Boyan, Glen McDonald, Michael Bolin, Alex Faaborg, Ora Lassila, Dee-

pali Khushraj, Ralph Swick, Daniel Weitzner, Ann Bassetti, Chao Wang, Gregory

Marton, Boris Katz, and Steve Garland.

continued on next page

7

8

continuedfrom previous page

My friends have made the journey much more fun. I thank Sayan Mitra, Vineet

Sinha, Han-Pang Chiu, Harold Fox, Agnes Ng, Rui Fan, Karun Bakshi, Stefano

Mazzocchi, Ryan Lee, Paolo Ciccarese, Heidi Pan, Max van Kleek, Gregory Mar-

ton, Michael Bernstein, Olya Veselova, Brooke Cowan, and Jimmy Lin. Special

thanks go to for keeping my company everyday throughout.

Whereas my colleagues asked many deep questions, my family asked a very

simple one, 'Are you done yet?!" It was deceptively simple: while I could often

provide clear responses to my colleagues, I always had to mumble some answer to

my family. But now the reply is a resounding "Yes." I've come to the end of my

seemingly quixotic journey, and I'm grateful to my family for being so caring and

anxious to always ask, "Are you done yet?" but also for being so understanding to

never question why.

9

10

Whateveryou do will be insigmficant, but it is very important thatyou do it.

Mahatma Gandhi -

11

12

CONTENTS

1. INTRODUCTION 17

1.1 The Case for Data-Centric Interactions. .

1.2 A pproach..........................
1.2.1 Assumptions and Limitations
1.2.2 Publishing Data
1.2.3 Extracting Data
1.2.4 Integrating Data

1.3 Implications for Semantic Web Research.

1.4 Contributions

. 19

... 21
21
22
26
28

... 30

... 31

1.5 Thesis Outline

2. RELATED W ORK

. 32

.33

2.1 User Interfaces for Browsing................................ 33

2.2 Publishing D ata.. 34

2.2.1 Rationales for Using Data Technologies in Publishing
2.2.2 Flexibility of Data Modeling and Presentation
2.2.3 Costs of Using Data Technologies
2.2.4 Client-side Data Technologies
2.2.5 Presentation Templating Technologies

2.3 Extracting D ata.......................................
2.3.1 Goals for Web Data Extraction
2.3.2 Supervised vs. Unsupervised Extraction
2.3.3 Web Content Augmentation
2.3.4 Facilitating Web Data Extraction

34
36
38
38
39

... 40
40
41
42
42

13

2.4 Integrating D ata ... 42
2.4.1 Data Integration and Warehousing 43
2.4.2 Ontology Alignment 43
2.4.3 Data Integration User Interfaces 44

2.5 Toward a Data-Centric Browser 45
2.5.1 Data Models 45
2.5.2 Data-Centric Features 45
2.5.3 Deployment Paths 46

3. PUBLISHING DATA ... 47

3.1 Interface D esign ... 49
3.1.1 User Interface 49
3.1.2 Publisher Interface 52

3.2 Data Model ... 55
3.2.1 Items 55
3.2.2 Types 57
3.2.3 Properties 58
3.2.4 Expressions 58
3.2.5 Data Import/Export 61

3.3 U ser Interface M odel 62
3.3.1 Collections 62
3.3.2 Facets 62
3.3.3 Views 63
3.3.4 Lenses 63
3.3.5 UI Contexts and Formatting Rules 64
3.3.6 Coders 67

3.4 Im plem entation .. 68
3.5 Evaluation .. 70

3.5.1 Performance 70
3.5.2 Usage 75

3.6 Summary ... 76

4. EXTRACTING DATA .. 89

4.1 U ser Interface D esign 90
4.1.1 Extraction User Interface 90
4.1.2 Augmentation User Interface 92

4.2 D ata Extraction.. 95
4.2.1 Item Detection 95
4.2.2 Subsequent-Page Detection 97
4.2.3 Field Detection 99

14

4.3.1 Evaluation of Data Extraction 100
4.3.2 Evaluation of User Interface 100

4.4 Sum m ary.. 106

5. INTEGRATING DATA 107

5.1 Scenario .. 108

5.2 U ser Interface .. 109

5.2.1 Creating columns and facets 112
5.2.2 Merging fields 113
5.2.3 Simultaneous editing 114
5.2.4 Faceted Browsing 115
5.2.5 Visualizations 116
5.2.6 Miscellany 116

5.3 Implementation ... 116

5.4 Evaluation ... 118

5.4.1 Design and Procedure 118
5.4.2 Participants and Apparatus 119
5.4.3 Results 119

5.5 Sum m ary.. 121

6. CONCLUSION. .. 123

6.1 Future W ork ... 124

6.1.1 Publishing Data 124
6.1.2 Extracting Data 124
6.1.3 Integrating Data 125
6.1.4 Toward a Data-Centric Browser 125

6.2 D iscussion ... 126

6.2.1 Data Publishing as Empowerment 126

6.2.2 The Data Market 128
6.2.3 Data as Common Goods 128
6.2.4 Data as Culture 129

7. BIBLIOGRAPHY 131

15

4.3 Evaluation .10 0

16

1. INTRODUCTION

When we encounter data on the Web, most of the time it can only be read on the

original page, at the original site, and in its original form. For example, if a few

dozen names and addresses are found in a list on a web page, then it is very difficult

to plot these addresses all on a map (to visually compare their relative distances to

some location) or even just to store their contact information into one's address

book. The publisher of that site has decided to present the names and addresses in

a list and there is nothing the site's users can do to use that data differently without

incurring a great deal of time and effort.

Similarly, it is difficult to publish data to the Web beyond making the data ac-

cessible as a spreadsheet or a text file, or encoding the data in hand-written HTML

that offers no advanced browsing features or rich visualizations. Consider the

home-made site in Figure 1.1 that show breakfast cereal characters. The publisher

of that site, Topher, has organized the characters by brand. If Topher decided to

let his users browse the characters by year of introduction to market-a reasonable

choice, then he would have to completely reorganize his web site. In contrast, the

commercial site in the same figure offers several ways of browsing for cameras, and

in order to offer more ways, the site can just formulate more queries to its existing

database. To catch up with commercial sites, Topher would have to acquire many

skills: setting up a database, designing a data schema, designing the user interface,
implementing the user interface, implementing the application logic, and testing

the resulting three-tier web application on many browsers.

My thesis demonstrates that tools can be built to let casual users-those with-

out programming skills-interact with today's Web in more data-centric ways, to

effortlessly retrieve and reuse data from the Web as well as publish data into the

Web in a browsable and reusable form. These tools can be built and used today

without needing the Web to become more data-centric first by itself.

17

1. INTRODUCTION

A home-made web site
offers only one way to
browse the data, and it
would be extremely hard
for the publisher to offer
other ways, as that requires
complete reorganization of
the we b site,

* f~ _____ Thpvz reakfast Cereal Character GuIde ____cs

Welmn to Tophtr's Umi tl - A Grit Site for Ewryuaets

Topher's Breakfast Cereal Character
Guide

This guide was cread as a fun and educatlonal refrrce on all your favrie cemal
box cheren imt de early lOMUs to the present is ftfll of great images and

linmaiston on rver 75 cermal charamzes. (No sugar added). Just seleet a boxiop to
begin. Enjoy!

Olgatal cameras; comare digt a carrera revIews o find the best a" for ymu CNC

at 0 ibsnn/reaeus nr omnraeras'2nni-5L7-hzm1' * " C * 0

A commercial web site
otters many ways to
browse the data, and
more ways can be added
just by formulating new
queries to the database,

SREVMIW S: eartf:

Cell phones Desktops Digital cameras Laptops MPI players TVs . All Categoras

- il d >tagIt

s a uta
al bue

Digital cameras
tour os st- ' center for deigia ca-eras

By price: By resolution Or find by:

0 ess (ts9) 4 s nw55 p'sts (14 manuxaca
'5000 - s200 (21.1 * Ormegstaiai81) *Dwal camratype
.0201 -$300 (01) 0f6 Mregscsul (105) 'Z7om range
'$300 - S400 142) ' 7 megepxi(is (0/3) 'CD swe

S40P - 500 121) k1 mneaupmsi 'Ind wp Pmag roxic itr
Al1 p50s f ',Se nilI

2 x 3 mnegliads

,22)

Today on digital cameras

o.. alursii ' 11

DIGITAL CAMERA VIDEOS

Te Samsung S15

dtal carC-W at
lace-cetecoas

'saeataantem

Figure 1.1. Using just HTML, a small publisher cannot match the advanced

browsing features and rich visualizations offered by commercial and institutional

sites, or compete with the flexibility and speed at which such features can be

implemented by those sites.

18

t4erl',d n& men' t Pj>t WQujjr;'J

RzSlaoizJteMkL m Naigu zjihr craJ ~oa ee

Ci.t 1d s V ltrs I uII it 1 n

[OSCeAmMLk lKellsahang I kke Osa gaguudeak ntaa I
(OdaeCsCal klluasa mi unda4ddiSkdf OzdnlPubkaatuaI)

I izrsuanasiurl Cer salladsu I YsatJl (ZiathIse~jaaek sai I

1. INTRODUCTION

1.1 The Case for Data-Centric
Interactions

Being able to reuse data on the Web creates new opportunities:

- The same data can show different insights when it is presented differently.

Plotting the US presidents on a time line color-coded by their political parties shows

the interleaving pattern of Democrats and Republicans coming into power, where-

as plotting the presidents on a map by their birth places reveals that all except one

were born in eastern United States. Listing the presidents in a table sorted by their

surnames highlights two Adams and two Bushes. If a web site provides only one

of these presentations and no means to retrieve and reuse its data so that it can be

visualized differently, its audience has been denied some of these insights.

- Several sources of data can provide more insights when combined than they

can individually. Plotting wars, economic performance, artistic movements, scien-

tific discoveries, etc., alongside the presidents' terms on a time line can reveal each

president's and each political party's effects on the country. Plotting cholera cases

and water pumps on the same map did bring insight toJohn Snow, suggesting obvi-

ous actions that would stop the cholera epidemic in London in 1854 [72]. As long

as it remains hard to combine data from several sources, such insights can easily

be missed.
- One important source of data is a user's own information. Seeing several po-

tential houses to buy on a map is useful, but seeing on that same map where one's

friends and relatives live and where one's workplace is located can be even more

useful in making a house purchasing decision. As often a user's own information is

private and cannot be made known to any web site, the data on web sites (which

the user is already allowed to see) must leave those sites and come to the user's com-

puter where it can be combined with the user's own information.

These opportunities make the case for getting data on the Web into a form

conducive to reuse for casual users' benefits. Once reusing data is just as easy as us-

ing data, there will not be a need to distinguish the two cases. In that future, casual

users will always have at hand whatever functionality is appropriate to apply on

whatever data encountered wherever on the Web. Such an experience with the

Web can be said to be more data-centric than text-centric.

Not only should casual users be able to easily reuse data from the Web, they

should also be able to easily publish data into the Web in ways that satisfy their

publishing requirements. For example, if a casual user with no programming ex-

perience has gathered all the data about her genealogy and wishes to share that

data for her living relatives' enjoyment, she should be able to publish a web site

presenting that data. If her family is dispersed geographically, a map would be

an appropriate visualization. A timeline can superimpose the lives of her ances-

tors against a historical backdrop with certain events that she deems important.

A thumbnail view shows everyone's portrait together and highlights facial feature

resemblance. Grouping or filtering by artistic abilities might reveal which side of

19

1. INTRODUCTION

her family is more artistic than the other. If many of her kindred have had military
careers, browsing and sorting by their military ranks and plotting the military bases
where they have served might appeal to her. How the data is displayed and browsed
should be left entirely to her-the data owner's-discretion. Just as she can struc-
ture and lay out a text document however she wishes using HTML, she should also be
able to present her data however she likes.

But that is easier said than done. Even to support as basic a feature as sorting a
few hundred people by name immediately requires database setup, schema design,
and server-side programming-skills that a casual user does not possess and would
take years to acquire. Whereas it was easy to become a first-class citizen of the early
Web by authoring HTML in a text editor, it is no longer easy on today's Web to pos-
sess the same publishing power as large companies who have teams of engineers
dedicated to building three-tier web applications.

That it is difficult to publish data into the Web and reuse data from the Web is
not surprising. The Web was designed for publishing hypertext-text-rather than
data. Web standards (HTML) were specified for publishing text, and web browsers
were built for viewing text. Thus we find the majority of web content to be text
documents written in natural human languages, unfavorable to data-centric inter-
actions.

This text-centric Web is showing its limits as the demand for data-centric inter-
actions rises. In response, the Semantic Web project [31, 42] holds out the vision
of a future Web wherein most if not all data encountered on the Web is described
in a standard data model and data-centric interactions can be easily supported.
Getting the Web to such a state is a grand challenge, and the slow adoption of
semantic web technologies keeps that vision elusive even after a decade of the ef-
fort's existence.

In this thesis, I demonstrate that existing tools designed for experts to publish
data to the Web and extract and reuse data from the Web can be adapted for casual
users by taking into consideration the casual users' needs and abilities. These tools
allow them to interact with today's Web in data-centric ways without having to wait
for the coming of the Semantic Web.

20

1. INTRODUCTION

1.2 Approach

My research approach to providing data-centric interactions on today's Web to ca-

sual users-those without programming skills-can be divided into three aspects:

- publishing data into the text-centric Web and providing data-centric features

on that data;

" extracting data from the text-centric Web so that missing data-centric fea-

tures can be applied; and
- integrating data from several sources to gain value that no single source alone

can offer.

1.2.1 Assumptions and Limitations

To scope the research in these three aspects, I have made two assumptions:

Casual users most often deal with small data sets, each containing at most about a thousand

records. That is, when a casual user publishes data to the Web, her data most prob-

ably consists of no more than a thousand records. When she extracts data from

existing web sites, she only extracts from similarly limited data sets. And when she

combines data from several sources, she only combines a few sources and each

source contains a small data set to begin with. This size limit does not tremendously

reduce the benefits of data-centric interactions. For instance, finding the winner

in a race among as few as 20 runners is most efficiently and effortlessly done by

sorting them by their timings rather than visually scanning over a list of unordered

timings. We can also look to the fact that commercial spreadsheet programs have

kept their limit of 65,536 rows for over two decades as evidence that up to some

size, scale is not relevant to casual users.

- Casual users most often deal with simple data made up of records consisting of property/

value pairs and binary relationships rather than complex class hierarchies with n-ary relationships.

The popularity of commercial spreadsheet programs is evidence that simple tabu-

lar data models can carry the usefulness of data-centric interactions a long way for

casual users. For instance, being able to align the "home address" field in one table

of records with the "residential address" field in another table of records is already

useful, such as for plotting all records together on a single map.

In making these assumptions, I have clearly imposed some limitations on my

research results. My research contributions may not immediately apply on large,
complex data sets, which I argue are rarely encountered by casual users.

21

1. INTRODUCTION

1.2.2 Publishing Data

A typical web application consists of three layers: data, presentation, and applica-
tion logic that connects them. This separation of data from presentation has two
advantages.

- First, it allows mixing and matching data with presentation. The same pre-
sentation template can be applied to many different data records, making the pro-
cess of presenting data very efficient. The same data can be shown in different
presentations-say, as a list in one case and on a map in another, increasing the
richness of the user interface.

- Second, the separation of data from presentation makes it easier to build
tools specialized for dealing with either data or presentation rather than both at
once. Databases and query languages are designed for manipulating data en-masse
while WYSIWYG editors and templating languages are tailored toward specifying
visual layouts and styles. It would be much harder to design a piece of software and
a standard for manipulating both data and presentation together.

This principle of separating data from presentation has been built into tools
and frameworks designed for large publishers-online retailers and institutions-
who were the first to run into the need for publishing large data sets and offering
advanced features. Built to meet the needs of these large publishers, such as to ac-
commodate complex site structures, to allow for heavily customized looks and feels,
and to handle secured online transactions, these technologies are far too complex
for casual users to adopt. However, the benefits of separating data from presenta-
tion embodied in these technologies are applicable to casual users. Unfortunately,
such users have so far only been offered HTML as the generic web publishing tech-
nology, and in HTML, data and presentation are mixed together.

To let casual users benefit from the separation of data from presentation, the
costs of authoring data, authoring presentation, and connecting them up must be
lowered.

The cost of authoring presentation can be lowered in two ways by assuming
that the presentation needs of casual users are not so complex:

- First, a variety of common features such as sorting, grouping, searching, fil-
tering, map visualization, timeline visualization, etc. can be provided out-of-the-
box so that the user does not need to re-implement them herself (As her presenta-
tion needs get more sophisticated, she can plug in more and more third parties'
extensions.)

- Second, customization to the presentation can be specified in an HTML-
based syntax right inside the HTML code used to layout the web page. This is so
that the publisher can work on every part of the page's presentation inside a single
file in a single syntax. (As the publisher's needs to customize the presentation get
more sophisticated, the HTML-based syntax will no longer satisfy her.)

22

1. INTRODUCTION

The cost of authoring data can be lowered in two ways by assuming that casual

users publish only small data sets:
- First, if a publisher is already editing her data in some particular format and

some particular editor convenient to her, she should not need to load that data into

a database and then maintain the data through the unfamiliar and inconvenient

user interface of the database. She should be able to keep managing her data how-

ever she likes, and the data only gets loaded into the database when it needs to be

rendered. This is realizable if the data is small and loading it into the database is

quick. (As the data gets larger, there is a point when the data should already be

loaded into a database to ensure a responsive web site.)

- Second, data schemas can be made optional if their benefits do not justify

their costs. While schemas are advantageous on large data sets for database opti-

mizations and for managing data at a higher level of abstraction, their benefits on

small data sets are much less apparent. (As the data gets larger or more complex,
there is a point when schema abstractions benefit both the publisher as well as the

publishing engine.)

Finally, all the costs of setting up software (database, web server, and appli-

cation server) can be eliminated if the software is packaged as a Web API to be

included into a web page on-the-fly. Such a Web API can also easily allow for exten-

sions, which accommodate the increasing sophistication in a casual user's publish-

ing needs.

I have built a lightweight publishing framework called Exhibit based on these

ideas. To publish an exhibit-a web page powered by Exhibit-a publisher uses any

text editor to lay out her web page in an HTML file (Figure 1.2) and to enter her

data into one or more JSON files (Figure 1.3). The end result is a richly interactive

web page such as the one shown in Figure 1.4. If the publisher already has data in

some other format, then she can continue to maintain it in that format. Currently,
Exhibit can import Bibtex, Excel files, live Google Spreadsheets feeds, RDF/XML,
and N3.

When a casual user publishes to the Web using Exhibit, she herself benefits
from the separation of data from presentation. Moreover, anyone who visits her

web site can easily extract her data for reuse because her data is already in struc-

tured form and as publicly accessible as her HTML code. Exhibit kills two birds

with one stone: addressing the data publishing need as well as making available in

reusable form data that would otherwise be encoded in text-centric HTML.

23

1. INTRODUCTION

<html>
<head>
<title>Presidents</title>

Oce or more inks to data

<link type="application/json" rel="exhibit/data" href="presidents.json" />

<script src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"></script>
<script src="http://static.simile.mit.edu/exhibit/extensions-2.0/

map/map-extension. js?gmapkey=. . . "></script>
</head>
<body>

<div ex:role="lens" ex:itemTypes="President">

<a ex:href-content=".url">
<div>

Birth: ,

</div>
<div ex:if-exists=".death">

Death: ,

</div>
</div>

<table width="100%">
<tr valign="top">

Exhibit API and extensions

!ens template specifying
how to render each
president

text search and filters (facets)

<td width="25%">
<div ex:role="facet" ex:facetClass="TextSearch"></div>
<div ex:role="facet" ex:expression=".religion" ex:label="Religions"></div>

</td>

<td ex :role="viewPanel ">

<div ex:role="view"
ex:viewClass="Map"
ex:label="Birth Places"
ex: latlng=" .birthLatLng"
ex:icon=" .imageURL"

ex: iconScale="0 .7"
ex: shapeWidth="60"
ex:shapeHeight="60">

</div>

</td>
</tr>

</table>

</body>
</html>

view whose settings
are configured in
HTML-based syntax

Figure 1.2. An HTML-based syntax is used for configuring the user interface of
an Exhibit-powered web page.

24

1. INTRODUCTION

"items": I
f "label": "George Washington",
"type": "President",
"birth": "1732-02-22",
"birthPlace": "Westmoreland Country, Virginia, USA",

},
// ... more presidents

"properties": {
"birth": { "valueType": "date" },
// ... more properties

"types":
"President": { "pluralLabel": "Presidents" },
// ... more types

Figure 1.3. Exhibit provides by default a simple JSON syntax for specifying data,
but it has an extensible importer architecture for importing other formats includ-

ing Excel, Bibtex, RDF/XML, N3, and live Google Spreadsheet feeds.

@0SIMI0 1 Exhibt I Pesidens (select Birth Pflaces vew

*hL, z;t/127 0 0.1,8888/exhbttlsne/examples/presidents/presdertsVam '
Search

US Presidents
Heme Is the ExhMb JSON daa Ale,

BIRTH PlACES * DEATH PLACES. TERMS * TABLE - DETALS. PHCYIS

4- - M e O.

K2Pesdnt oaa a''p tm t'm

Washmn tn Montana Dak ota

Wyoming
WrmaosgSant

sColordo Kana

Tew

" Elam ,,, *' Gr

LoAs J.G O

Mexco

StlmtdoCuruch of Chvist
coungagationalist

Deim
Dest

25

Figure 1.4. A web page powered by Exhibit provides text search and filtering

features as well as rich visualizations such as maps and timelines.

}

1. INTRODUCTION

1.2.3 Extracting Data

Just like conventional publishing technologies, conventional web data extraction
technologies are unsuitable for casual users as they also have been designed for
large data sets and complex use cases. If a casual user encounters a few dozen
street addresses on a site that offers no map feature, she will not spend much effort
to learn these advanced technologies to scrape the data and then build a "Web 2.0
mash-up" site just to map those few dozen addresses.

Web data extraction has been mostly employed by web sites that scrape other
web sites for data, aggregate the data, and then offer new services on that data.
It makes sense that the scraping be tailored to each source web site to ensure the
quality of the result, and that the scraping then be automated to keep the data up-
to-date in an efficient manner. As the data is offered again in completely new web
sites, there is no need to retain the presentation elements of the original sites.

Although casual users also make use of web data extraction technologies for
repurposing data on the Web, their requirements differ from those of large data
aggregation sites. The typical task of, say, an online flight reservation site is to ac-
cumulate as complete and up-to-date as possible flight information from several
airlines, amounting to thousands of records. In contrast, a casual user might just
want to pull out street addresses of a few dozen of private schools from their school
board web site, plot them on a map, make a one-time printout, and not bother to
update the map ever again. That is, the user deals with a lot less data, cares only
for a few fields (e.g., street address) rather than all fields, and does not need to keep
the extracted data up-to-date since she only needs the printout once. Thus, casual
users might put less demand on web data extraction algorithms with respect to scal-
ability, accuracy, and automation.

In other aspects, however, casual users might have more demands than large
sites. Skills and resources that a data aggregation site has at hand to repurpose
scraped data into a new three-tier web application are not available to casual users:
no casual user can be expected to set up, design, and maintain a database, to design
and implement a rich user interface, and to connect them with application logic,
especially just to plot afew dozen street addresses on a map. Thus, web data extraction tools
built for casual users must offer as complete an experience as possible. Instead of
simply returning raw data, they must behave like web applications themselves, of-
fering appropriate presentations and features that casual users need to accomplish
their tasks. That is, it is more about adding in missing features rather than taking
out data.

To offer a complete web application-like experience over extracted data, all
three layers of a typical web application must be automated as much as possible.

- First, the user interface can be "designed" with zero user intervention just by
reusing as much as possible the presentation elements already in the original web
site. In particular, when a data record is extracted from a part of an original web

page, that fragment of the web page is also extracted so that in order to show that
data record later on, we can simply show the fragment again. The rest of the web

26

1. INTRODUCTION

page, which does not contain data to extract, can also be kept as-is so to preserve

the original visual context. This is novel since existing web data extraction algo-

rithms throw away original presentation elements (because they are not needed for

the purposes of large data aggregation sites).
- Second, in the application logic layer, some set of commonly needed features

such as sorting and filtering can be provided out-of-the-box so that there is no need

for a casual user to implement them.

- Finally, the extracted data can be loaded immediately into a database with-

out any user intervention if the extracted data can be used as-is without further

processing by the other layers. The biggest roadblock to using the extracted data

as-is seems to be the need to label fields because field labels are used in convention-

al user interfaces to provide affordance for features like sorting and filtering (e.g.,

"sort by publication date"). Unfortunately, field labels can be hard to recover from

f- dt ee io L-aks Tods Hdel

- .it1. r Wo mai a,/gpws-rheft-n~eow03713139302604.-srcta-as%3hawsafed-rondt&W~fhCOde c~ -etG. 5 m- Gc

Exfore 13

2 items Iteed her. ana-4 iL~

Pas : 13 2 d>

Sdleettefftertemw. ua

False Impresson by Jeffrey Archer (Hardcover - Mar 7, 2006* c

-gnkmver a
Bay new: 527-96 $16.77 Used a new fronit12.40 us-1y ,hip m 24

The Eleventh Commandment : A Novel by Jeffrey Archer

Paperback - May 1, 19991
t

Clck to ot*"Ns!
Used & new fro$,01 3eQ

I x<erpt fron page 4 : .. F F*REkY ARCE * sadows for days; ed t siet4aorpeoe- - -

-eore ennetofehfy archeki the boo2k

S-rma oe! See a randorn ages this bock,

- t 2003 3
-2004 2

t~ac. 2005 1

Jody2005 ~42

Kane & Abel by Jeffrey Archer (Paperback Aug 1, 1993*

Used & new from$0.01

.

An asterisk is inserted after each field value.
Clicking on an asterisk adds sorting and filtering
controls for that field.

Figure 1.5. By keeping presentation elements from the original web site, Sifter

can apply direct manipulation techniques on the extracted data fields to support

sorting and filtering without requiring the user to label the fields.

27

1. INTRODUCTION

web pages. For example, in Figure 1.5, nowhere on the web page says that "Mar 7,
2006" is the "publication date" of "False Impression." However, direct manipula-
tion techniques can be applied to avoid the need for field labels altogether. If the
user can interact directly with the text "Mar 7, 2006" to invoke sorting and filtering
operations, it does not matter if "Mar 7, 2006" is the publication date of the book
or the birth date of the author. It isjust a date field and it can be sorted and filtered
mechanically without any regard for its actual semantics.

I have built these ideas into a browser extension called Sifter (Figure 1.5) that
can augment a web site in-place with filtering and sorting functionality while requir-
ing from the user as few as two clicks. The added features work inside the site's own
pages, preserving the site's presentational style, as if the site itself has implemented
the features.

1.2.4 Integrating Data

Data integration tools have also been built for a different audience than casual us-
ers. For a typical conventional data integration task, such as merging huge databas-
es of two institutional libraries together to serve the combined data through a new
web site, several experts and programmers are involved to handle different aspects
of the task, including aligning the schemas, cleaning up the data, and then build-
ing the web site. Each tool employed is specialized for one stage of the process and
designed to handle large, complex data sets. In contrast, a casual user might just
want to merge two lists of a few dozens of addresses from two web sites together to
plot them on a common map. There is much less data and the data is much simpler.
Power tools used by experts are too advanced for casual users.

Whereas a team of experts and programmers can work most efficiently by di-
viding a data integration task into stages and letting each team member specialize
on one stage, each casual user only has herself to deal with her own data integra-
tion task. She needs not a set of highly specialized tools like those for experts but a
single tool that lets her work on the whole task. Furthermore, unlike experts expe-
rienced in dividing a clearly defined task cleanly into stages, the casual user might
have to deal with different aspects of the task in an interleaving manner, switching
from cleaning up data to constructing presentation and back again, as she gains
more and more understanding of what she needs, of what the data is like, and of
how to handle the task.

Compared to experts, casual users lack both data modeling skills and program-
ming skills. However, for small, simple data sets, neither skill set may be crucial.
First, when the data set is small, schemas-useful for efficiently reasoning about
a massive quantity of data in the abstract-are not as useful and can introduce
overhead cognitive costs. Instead of having to learn about theoretical concepts like
schemas, casual users can manipulate data instances directly. Second, instead of
using programming to process data, casual users can just use direct manipulation

28

1. INTRODUCTION

techniques. For example, two fields can be aligned by dragging and dropping one
onto the other.

I have demonstrated these ideas in a tool called Potluck that lets casual users
pool together data from several sources, supports drag and drop for merging fields,
integrates and extends the faceted browsing paradigm for focusing on subsets of
data to align (Figure 1.6), and applies simultaneous editing [59] for cleaning up
data syntactically (Figure 1.7). Potluck also lets the user construct rich visualizations
of data in-place as the user aligns and cleans up the data. This iterative process of
integrating the data while constructing useful visualizations is desirable when the
user is unfamiliar with the data at the beginning'-a common case-and wishes
to get immediate value out of the data without having to spend the overhead of
completely and perfectly integrating the data first.

as....... -.o sas) m o set w~

Potluck

OEW AS: TAKLE -KAP
0.13 -1~0L32t expi.5 d~*-CQ adn

n-f1 b3*q85 I PMW0"

2 H'; al ~

-4 'J rm V '*- dMft Data&
C.k-

253-3355 ,: Abn Edebom

4,ft
twAe

--- ---

MI CAL aw5-6C;

ARA t eAr*w

Ao 1t355A5y A' u
- 15t5824 15355-28

82AIA1SOrAAnrtA.edA :~ -: 212 854-910 :

29

355505 ~ ~ ~ AA Oft.;3 9 21 5415

Figure 1.6. Potluck supports drag and drop for merging fields and construct-
ing visualizations. Faceted browsing is available at the same time to help the user
isolate subsets of interest or subsets that need further cleaning or alignment.

75

meyerntermda M: 253-6024 e

1. INTRODUC-TION

1,617), 253-6437 641 7

1167, M5:'7 2 .125Isa 2SS614 a- 64 7-((617} 253-1778 . 253 .2 212854-7MB6C752128545ES44"4-W2

(617)| 253-6016
58-222

(617A 253-1448 1''5-446 21244s4 020F 45.35402

(671 253-8828 :22 2538' 212 42

(2 52533 6- 212 44-67 25a-U

(617)1 253-5876

f617), 253-83005

Figure 1.7. Potluck applies the simultaneous editing technique to let the user

clean up data syntactically in an efficient manner.

1.3 Implications for
Semantic Web Research

In many ways my thesis aligns with the goal of the Semantic Web project [31, 42]:

both aim for a data-centric Web. The philosophies in my research approaches can

bring insights to the Semantic Web research community:
Before making data meaningful to machines, make it meaningid to people. In its early

days, the Semantic Web research community focused most of its efforts on issues in

data modeling, artificial intelligence and agent automation, neglecting to build user

interfaces for humans to use semantic web data. Even today, the latest semantic

web browsers show raw URIs that make no sense to casual users. In contrast, my

research starts out by examining the needs and characteristics of casual users so to

build data-centric interfaces that make sense to them.

- In addition to building a data-centric Wb that benefits humanity decades into thefuture,
build data-centric technologies that benefit some individuals right now. Addressing real needs

of people tight now motivates the creation of that future data-centric Web and

helps identify real needs in that future. If nothing else, this strategy allocates re-

sources to research on data-centric user interfaces, which are severely lacking in

Semantic Web research.
- Before making data reusable, make it useful. Whereas the Semantic Web research-

ers encourage people to publish data for the sake of future reuse by other people,
my Exhibit framework encourages people to publish data just because publishing

data separate from presentation makes the publishing process efficient and the re-

sults richly interactive. Immediate, concrete, personal usefulness drives adoption

more than prospective, uncertain benefits to someone else.

- While focusing on data, don't forget presentation. Exhibit uses rich presentation

(map, timeline, etc.) as the motivation for publishing data. Sifter keeps existing

presentation elements from original web pages to preserve visual context as well as

support direct manipulation on the scraped data, saving casual users from labeling

30

1. INTRODUCTION

fields. Potluck lets casual users use the presentation they are constructing to guide

their data integration process: if the aligned data "looks right" in the user interface,
it should be right in the data model.

- Even while aimingfor semantics, take care of syntax. Exhibit's HTML-based presen-

tation configuration syntax and its ability to import many data formats lower the

barrier to its adoption. Sifter's ability to recognize dates and numbers makes its

sorting and filtering features more useful. Potluck's simultaneous editing feature lets

casual users efficiently fix up data syntactically.

1.4 Contributions

My thesis statement is:

Data-centric interactions with today's Web are useful to and feasible for

casual users, and usable tools can be built to support such interactions by

gearing for small, simple data sets and common casual needs.

This thesis makes the following contributions:

- First, this thesis combines a simple graph-based data model with simple

extensions of the HTML syntax in order to let casual users-those without

programming skills-publish web pages offering advanced browsing features

and rich visualizations.
- Second, this thesis shows that the cost of using web data extraction technolo-

gies can be lowered for casual users by retaining presentation elements from

the original web pages. These elements preserve visual context and visual

semantics so that direct manipulation techniques can be applied to augment

the original pages with more features without requiring users to label fields

in the extracted data.
- Third, this thesis proposes that for simple data sets, direct manipulation tech-

niques can be used to let casual users integrate data and construct rich visu-

alizations from it without any need for programming.

* Finally, by letting casual users publish data to the Web in browsable form,
extract and reuse data from the Web, and integrate data from several sources

without any need for programming, this thesis demonstrates that data-cen-

tric interactions can be offered to casual users on today's Web without having

to wait for a semantic web.

31

1. INTRODUCTION

1.5 Thesis Outline

Following this introduction, chapter 2 surveys related work. Then, the main body
of this dissertation delves into the three areas identified in the approach:

* Chapter 3 details the experiences of using Exhibit to publish as well as using
Exhibit's features on Exhibit-based sites. The chapter also outlines Exhibit's archi-
tecture and analyzes its actual use.

- Chapter 4 describes how Sifter delivers web data extraction technologies
into the hands of users with no programming experience. Sifter was tested on real
web sites and real users, and the results indicated that people could use Sifter to
augment existing web sites and then perform sophisticated queries and high-level
analyses on sizable data collections.

- Chapter 5 motivates Potluck with a data integration scenario and then ex-
plains how Potluck's user interface design meets the needs in that scenario. The
chapter also details Potluck's implementation as well as reports the results of a user
study that identified usability successes and problems.

Finally, chapter 6 reviews the contributions of this dissertation and outlines
future directions for this research.

32

2. RELATED WORK

In every part of my research, browsing is a feature advocated to be useful to casual

users. Browsing is thus factored out and discussed first as a topic by itself. Following

this topic, three sections discuss work related to the three core components of the

thesis: publishing data, extracting data, and integrating data. Finally, this chapter

ends with a section on previous approaches to building a data-centric browser.

2.1 User Interfaces for Browsing

To allow users to browse through a data corpus, traditionally the data is organized

into a hierarchy of some forms and then links are shown for drilling down the hi-

erarchy. Such hierarchies were called "directories" on portal sites such as Yahoo! in

the early days of the Web.
Faceted browsing was pioneered by R.B. Allen [39] in 1995 for browsing docu-

ment collections that fall into several orthogonal sets of categories-or facets--

which do not naturally fit together to form a single hierarchy. For example, data

on schools can exhibit several facets: locations of the schools, subjects in which the

schools excel, sport team performance, special facilities, etc. Although most parents

looking for schools for their children probably start by filtering the schools by loca-

tion, a parent with a child gifted in Math probably wants to filter the schools by

subject instead; and a parent with a physically disabled child probably thinks first

about special facilities. Picking any one hierarchy will make it unnatural and inef-

ficient for some of the users to browse the data. In the faceted browsing paradigm,
all sets of categories-all facets-are offered simultaneously so that each user can

start filtering on any facet and continue to filter by any other facet subsequently.

33

2. REIATED WORK

In effect, faceted browsing lets each user build her own hierarchy on the fly as she
picks which facet to filter by at each step of her browsing process. Faceted browsing
has been adopted in many online shopping sites because different users have differ-
ent criteria for choosing products.

Faceted browsing was subsequently adopted for browsing data collections on
web sites by J. English, M. Hearst, R. Sinha, K. Swearinen, and K.P. Yee in an
unpublished manuscript in 2002 [47].

Faceted browsing is even more useful in tools intended for browsing arbitrary
structured data, as there is no way to create a organization hierarchy for that data
beforehand. This is why many generic semantic web browsers adopt faceted brows-
ing [53, 60, 64, 68].

All faceted browsing interfaces that I am aware of display preview counts next
to each choice in each facet. This is not novel in faceted browsing but a contri-
bution brought over from query preview interfaces [61]. These counts give users
information about the result set of each choice before the choice is clicked, saving
users from going down any obviously wrong path and having to back up. These
counts in each facet also serve to summarize the data by showing the distribution
of the data values in that facet.

My work extends the faceted browsing paradigm in a few ways. Sifter offers
faceted browsing without field labels and shows that it is workable. Potluck tailors
for data cleaning and integrating tasks by adding to each facet a way to filter down
to records that are missing data for that facet. Exhibit lets casual users create fac-
eted browsing interfaces by themselves.

2.2 Publishing Data

This section surveys the technologies for and research on data publishing from
several perspectives. First, the purposes of using data technologies in the publish-
ing process are discussed: data can make the publishing process more efficient and
the outcomes better, or data itself is the outcome that, for instance, serves policies
of open data access and visions of data interoperability. Understanding what a
data publishing technology is designed to do helps assess its effectiveness. Second,
data publishing technologies and research tools are analyzed by three criteria: the
flexibility they afford publishers to model data, the flexibility they allow publishers
to specify presentations, and the efforts required of publishers. The section then
concludes with the discussion of previous work related to specific components of
Exhibit, specifically its client-side database, its expression language, and its lens
templating facility.

34

2. RElATED WORK

2.2.1 Rationales for Using Data Technologies
in Publishing

People are either motivated to use data technologies in publishing because those

technologies make the publishing process itself better in some ways, such as more

efficient, or because those technologies produce data useful for some other pur-

poses.

2.2.1.1 Direct Benefits

By the principle of separation of concerns, database technologies, complemented

with server-side templating technologies such as ASP, PHP, andJSP, let online retail-

ers and institutional publishers publish large quantities of information efficiently

and offer data-centric features on their web sites. Database technologies are cru-

cial for implementing data-centric features such as sorting, searching, and filtering.

Templating technologies let the presentation of a whole web site be made coherent

easily and quickly. Recently, client-side templating technologies-XML together

with XSLT, JSON [13] together with mjt [18] and the like-are also used toward

the same goal. Data technologies are used in this common case as a means to make

the publishing process efficient and the outcomes visibly better. The motivation

is economic and well understood. Exhibit serves the same motivation but targets

casual users instead of large publishers, leading to different design criteria, such as

trading off scalability for ease of use.

2.2.1.2 Indirect Benefits

Another goal for using data technologies is to enable prospective uses of and ben-

efits from one's own data. In certain cases the prospective use is well understood:

RSS enables news articles and blog posts to be aggregated by topics to meet the

tastes of individual users. For another example, Mangrove [58] is a project that

aims to aggregate RDF annotations on web pages published by individuals within

a department to automatically construct departmental directories and calendars.

(RDFa [27] and eRDF [25] are also syntaxes for embedding RDF within web pages.)

Recently, microformats [17] are recommended for marking up semantic tidbits

within web pages so that microformat-aware browsers can provide additional fea-

tures on those tidbits, such as a contextual menu command for dialing phone num-

bers.
In other cases, prospective uses are more experimental: recently, many web

sites expose web APIs for users and third parties to explore potential mash-ups for

their data and services. Microformats could also be said to support experimental

prospective uses because until they are widely adopted, their actual use is still to

be determined. RDFa and eRDF, advocated to serve the same purpose as micro-

formats, are similarly experimental. In fact, being more general than microformats

and more cumbersome to write, the usefulness of RDFa and eRDF over microfor-

mats is still a debate.

In the rest of the cases, prospective uses for published data are highly specula-

tive: the Semantic Web project [31] and related efforts, such as the Linked Data

35

2. RELATED WORK

best practice [14], advocate publishing of interlinked semantic web data to enable
unexpected reuse, explaining that "it is the unexpected reuse of information which
is the value added by the web" [14]. While I do believe in the value of information
reuse, I doubt that many individuals can be easily persuaded to labor altruistically
for unpredictable future benefits to humanity. Thus, prospect for information reuse
cannot itself be an advocacy but must be a side effect of some other concrete and
near-term benefits. Failing that, the publishing of data must be enforced by policies
of some governing bodies, as is the case with the PubMed service offered by the
United States National Library of Medicine [24]. Still, publishing data for no par-
ticular use is challenging as there can be no practical criterion by which the quality
of the data and of the publishing process can be judged.

2.2.2 Flexibility of Data Modeling and Presentation

Data publishing technologies can be compared along two orthogonal dimensions:
flexibility of data modeling and flexibility of presentation. The former is a spec-
trum ranging from rigid schemas that cannot be changed to general data models
that can fit any information. The latter ranges from predetermined layouts and
styles to completely customizable presentations. Figure 2.1 lays out this space and
frames the discussion that follows.

2.2.2.1 Domain Specifc Approaches

Rigid schemas are often enforced by domain-specific applications and web ser-
vices. For example, web photo album generating tools and hosting services such
as Gallery [9] and Flickr do not allow any field beyond the typical EXIF headers,
date/time, title, description, tags, and geographical coordinates. If a chef wants a
schema to record the main ingredients and cuisines in the photos of her dishes, she
cannot extend Gallery's and Flickr's schemas properly but would have to coerce
the generic tagging mechanism for that purpose. However, the two fields "main
ingredient" and "cuisine" will be mixed together, with "Pork" and "Portuguese"
next to each other if the tags are sorted alphabetically by default.

Their lack of data-modeling flexibility aside, domain-specific tools do often of-
fer well-designed presentations suitable for their domains. Built on fixed schemas,
it can also be easy for them to provide a theming framework for third parties to
customize their look and feel. Theming might involve anywhere from overriding
CSS styles to editing HTML layouts to server-side programming.

2.2.2.2 Domain Generic Approaches

Domain-generic applications and services are built to support arbitrary schemas
from the ground up. Online spreadsheet services, such as DabbleDB [5], EditGrid
[21], and Google Spreadsheets, work just like desktop spreadsheet applications and
can hold any sort of data. As a one-size-fits-all online database service, Google
Base [10] holds topics ranging from local events to weight loss programs. Simi-
larly, Freebase [8] strives to be "a global knowledge base: a structured, searchable,

36

2. RElATED WORK

C;

+3 + +
0 + +Customized Exhibit custom
E Google Base. Semantic MediaWiki web app

DbDB extension
SDabbleOB.

Semantic MediaWiki
extension

Flickr HTML

flexibility of presentation

Figure 2.1. Flexibility of presentation and data modeling as well as the efforts

required to adopt and use (circle size) for various publishing frameworks.

writeable and editable database built by a community of contributors, and open to

everyone," which means that it has to hold data on any topic.

Domain-generic data modeling standards, specifically RDF [28] which is de-

signed for the Web, also strive to allow for arbitrary data models. The Semantic

MediaWiki extension [73] described previously is built on RDF and can thus power

wikis containing data on any topic. Various RDF-based browsers, such as mSpace

[64], /facet [53], and Longwell [15], provide advanced browsing and visualization

features on arbitrary data, albeit in generic ways. (Hildebrand [30] provides a sur-

vey of many existing RDF-based browsers.)

The flexibility in data modeling is often correlated with generic user inter-

faces: Freebase, Google Base, Semantic MediaWiki extension, online spreadsheet

services, and most RDF-based tools present their data in generic property/value

tables that are not optimized visually per domain. For example, when displaying

the information on a paper, it is sufficient and conventional to show:

Huynh, D., Miller, R., and Karger, D. Exhibit: Lightweight Structured
Data Publishing. WWW 2007.

but domain-generic tools would instead display:

type: Paper
title: Exhibit: Lightweight Structured Data Publishing

author:

type: List
element 1:

type: Person

title: Huynh, D.
element 2:

type: Person

title: Miller, R.
element 3:

type: Person

37

2. REIATED WORK

title: Karger, D.
venue:

type: Conference
title: WWW
year: 2007

The result is at best a waste of space and at worst a cognitive load on the reader
to visually parse unnecessarily spaced out and redundant information. Such pre-
sentations are often a concession that frameworks to support specifying custom
presentations on domain-generic information are hard to design and implement. If
customization is allowed, it often requires programming rather than WYSIWYG ed-
iting, such as in the use of Fresnel [44] in the Longwell RDF browser [15]. Fresnel is
a vocabulary for displaying RDF, and specifying presentations of RDF using Fresnel
involves coding in some RDF syntax such as N3. My Exhibit framework also re-
quires coding and its differences with the other frameworks will be discussed sec-
tion 2.2.5.

While presentations on domain-generic web services are impossible to cus-
tomize if the services do not offer a customization mechanism, as is the case with
Google Base and Freebase, domain-generic tools such as Semantic MediaWiki ex-
tension can be customized at the cost of some server-side programming.

2.2.3 Costs of Using Data Technologies

Data technologies for publishing can also be assessed by how much efforts they
require of publishers. Web services like Google Base and Freebase only require ac-
count registration and familiarization with their web interfaces. Faceted browsing
applications such as mSpace [64], /facet [53], and Longwell [15] require down-
loading the software, installing it (e.g., setting it up on a web server), configuring it
(e.g., setting up its database), and loading data into it possibly through program-
ming or command line interfaces.

2.2.4 Client-side Data Technologies

One of Exhibit's distinctive characteristics is its use of a client-side database to sim-
plify the publishing process, eliminating server-side setup and configuration as well
as allowing the data to be authored in any format and in any software, and then
imported at the last moment when the web page is loaded into the browser.

Client-side data technologies are not novel. In the simplest case, data can be
downloaded to the client side as XML documents and queried using XPaths. Tabu-
lator [43] is a web application designed to load more and more RDF data from
arbitrary web sites to let the user explore the Semantic Web by following RDF links
within data from site to site. Tabulator works by dynamically loading RDF data into
a client-side RDF store also implemented injavascript. TrimQuery [37] is another
client-side database that supports a SQL-like query language.

38

2. RElATED WORK

Exhibit's expression language, designed for retrieving data from Exhibit's data-

base and optionally performing calculations on that data, resembles many proposed

RDF path languages [26], which in turn mimic the XPath language. Compared to

these languages, Exhibit's expression language currently lacks conditionals within

paths-the ability to specify a boolean expression on a segment on a graph path to

filter the candidate result nodes on that segment to only those for whom the expres-

sion is true. Conditionals are useful for such a case as, given a person, querying for

her children under 20 years of age. However, Exhibit's expression language can

be extended with new functions to support domain-specific computations, such as

geographical distance calculations.

2.2.5 Presentation Templating Technologies

Presentation templating technologies range from straightforward substitution of

data values into forms (filling in the blanks) to recursive rule-based view resolution

to completely automated schema-based UI generation.

Server-side templating languages such as ASP, PHP, and JSP and their client-

side counterparts such as mjt [18] are used for straightforward form-based substi-

tution. To create the presentation for a data record, an HTML page or fragment

is written, laying out the structure of that presentation, and wherever data should

appear in the HTML, calls to the back-end database are inserted instead of actual

data values. Branching and looping constructs are supported for more involved

cases, such as for rendering a list of several authors of a paper. Such constructs

make these approaches less descriptive and more procedural.

The form-based substitution approach is simple to use but does not facilitate

reuse of fine-grained presentation logic. For example, if books and papers are to

be presented sufficiently different so to warrant different templates, then whatever

about books and papers that should still be shown in the same way must be dupli-

cated in both templates. For instance, if authors should be shown as "last name,
first initial" in comma-separated lists for both books and papers, then the code for

doing so must exist in both templates. To facilitate reuse, view systems, such as the

Haystack's user interface framework [62] and Fresnel[44] -based interfaces, stitch

together fine-grained presentation logic based on presentation rules that match

each piece of data to be displayed with the appropriate piece of presentation logic

in a given context. In the "book" and "paper" context, lists of authors will be

matched with the same presentation logic, resulting in the same presentation. That

piece of presentation logic needs to be written only once and then registered for

both contexts.
While view systems are more powerful than the form-based substitution ap-

proach, especially when applied on complex data models, they are also harder to

use. The presentation of a piece of data, embedding the presentation of other

pieces of data related to it, is not specified in a single block of code, but dynamical-

ly composed by evaluating possibly complex and conflicting rules, pulling together

different fragments of presentation logic.

39

2. RELATED WORK

As Exhibit is intended for small data sets, it adopts the form-based substitution
approach, trading off power for simplicity.

2.3 Extracting Data

There are many goals for extracting data from the Web. This section will first dis-
cuss those goals before diving into the two main families of approaches to web data
extraction: supervised and unsupervised. The section will then discuss the literature
related to the primary goal of web data extraction for casual users: augmentation
of web user experience. The section concludes with a survey of efforts that intend
to facilitate web data extraction.

2.3.1 Goals for Web Data Extraction

The most common goal for large-scaled web data extraction is to fuel some systems
with the data. Online flight booking services such as Expedia, Travelocity, Kayak,
etc., scrape airline sites for flight data and aggregate it to provide one-stop flight
shopping experience over many airlines. There are similar aggregation services for
commercial merchandise, such as Google Product Search. Research projects such
as START [33] scrape the Web for facts to answer natural language questions.

In other cases, what the extracted data will fuel is less clear. Swoogle [34] crawls
the Web for semantic web documents, purporting to be "Google for the Semantic
Web" but there is no investment in the usability of its user interface, making its
purpose unclear. DBpedia [7] scrapes templates in Wikipedia to accumulate an
RDF data set of millions of triples of facts, and YAGO [69] scrapes Wikipedia's text
to derive millions of relationships. Freebase [8] also scrapes Wikipedia in order to
bootstrap its own database. Without concrete uses for their data, it is unclear how
DBpedia, YAGO, and Freebase can objectively assess the data and their extraction
processes.

Web data extraction is also used for augmenting web user experience. Faaborg's
and Lieberman's Miro system makes use of data detectors to extract tidbits out of
web pages and then applies automations over them as have been demonstrated by
example through the complementary system called Creo [48]. Using Creo and
Miro, users can automate tasks that would require repeating the same sequences
of actions through web sites, such as ordering items on a grocery shopping list by
demonstrating how to order one of them. Marmite [75] specializes in letting casual
users build web mash-ups by visually stringing together data processing elements
and filling out their parameters.

Often the web user experience augmentation is simply the ability to bookmark
or save fragments of web pages. Hunter-Gatherer [65], the Internet Scrapbook
[70], and commercial tools like NetSnippets [19] let users clip out, collect, orga-
nize, and make reports out of web page fragments. Thresher [54], the browser

40

2. RELATED WORK

extension of Dontcheva, et al. [46], and the AdaptiveBlue browser extension [1]

even extract structured data from web pages, such as books' titles, authors, publish-

ing dates, and keywords.

2.3.2 Supervised vs. Unsupervised Extraction

Web data extraction approaches fall on a spectrum from entirely supervised to en-

tirely unsupervised algorithms. There are many unsupervised algorithms, relying

on partial tree alignment [78, 66], tree edit distance [63], and tabular structures

[57] to isolate data records from web pages. Wang et al. [74] claim to able to label

the extracted fields from web sites that offer complex search forms by watching

where the field values programmatically entered into the forms reappear in the

search result pages. In general, research efforts that yield unsupervised algorithms

are focused mainly on the algorithms themselves and are detached from how their

algorithms and resulting data can actually be used by human users.

Supervised algorithms require user intervention and thus need user interfaces.

With users' help, they are also more accurate than unsupervised algorithms and are

more suitable for producing data that will actually be used immediately by users.

Thresher [54] allows a user of the Haystack system [62] to mark out a sample data

record within a web pages and label the fields within that record. Thresher then

learns the patterns for extracting the rest of the records on the page. The browser

extension by Dontcheva et al. [46] works in a similar way, but while Thresher al-

lows the user to use arbitrary schema to label fields, Dontcheva's system is limited

to only a dozen fields. On the other hand, Dontcheva's system lets an existing

extraction pattern be updated iteratively when the user returns to an old page and

marks up more fields. Dontcheva's system can also scrape detailed pages linked off

from the original page to scrape.

Recently, there are web applications such as Dapper [6] that let users scrape

existing web sites for data and serve that data up in structured formats as "feeds,"

or make use of data already scraped by other people. These web applications still

offer very limited capabilities for cleaning up data and constructing rich visualiza-

tions. Those that offer more capabilities, such as Ning [20], require programming.

While user supervision makes the extraction algorithm more accurate, it puts

more demand on the user and increases the cost/benefit ratio for using the extrac-

tion tool. Dontcheva et al. report that users of their system often forgot to label

fields.
In contrast to all of these supervised and unsupervised approaches, my tool

Sifter shows that field labels are not needed before some value can be added on

the extracted data. Sifter retains the presentation elements in the original web page

and uses them to visually bind augmentation features to the extracted fields without

needing field labels.

41

2. RELATED WORK

2.3.3 Web Content Augmentation

In the early days of the Web, there were several research projects, such as WBI [41]
and WebWatcher [55], that augment web pages with navigation recommendations
by watching the user's browsing actions. Microsoft's SmartTags were originally de-
signed for adding contextual menu commands to semantic tidbits detected in web
pages, letting users right-click on any piece of text that looks like a phone number
and choose the "dial" contextual menu command. All of these tools work by inject-
ing additional content into the original web pages or hooking into them contextual
menus.

Recently, Thresher [54] scrapes web pages and then offers appropriate contex-
tual menu commands whenever the user right-clicks on a data record on an already
scraped page. Thresher also delegate other augmentations to Haystack. For in-
stance, scraped data records can be browsed through Haystack's faceted browsing
interface.

There are also programming tools like Greasemonkey [12] and Chickenfoot
[45] that enable users to script modifications on web pages, but so far they lack a
rich data model to support augmentations more sophisticated than just cosmetic
changes (e.g., removing ads) and simple addition of third-party content to web
pages (e.g., injecting prices from competing sites).

Sifter is novel in its choice of faceted browsing as a useful augmentation and in
its ability to offer faceted browsing features in-place over sequences of web pages.

2.3.4 Facilitating Web Data Extraction

A few efforts have advocated the embedding of semantic markups within HTML
code so to facilitate web data extraction. The Mangrove project [58] "seeks to
create an environment in which users are motivated to create semantic content
because of the existence of useful semantic services that exploit that content and
because of the process of generating such content is as close as possible to exist-
ing techniques for generating HTML documents." Mangrove provides web services
such as a departmental calendar, a departmental personnel directory, a semantic
search service, etc., that are all fueled with data extracted from web pages an-
notated with RDF. RDFa [27], eRDF [25], and microformats [17] are standards
intended for the same purpose, but at the scale of the whole Web rather than one
department.

2.4 Integrating Data

This section starts by reviewing literature in the database field on data integration
and data warehousing, which are two families of approach for pooling data from
several sources and providing a coherent access point to all of them. One aspect of

42

2. RELATED WORK

data integration is ontology alignment, which will be discussed next. Finally, re-

lated work on data integration user interfaces is examined.

2.4.1 Data Integration and Warehousing

Pooling data together from several sources to create a coherent view can be done

in two main families of approach called data warehousing and data integration. Data

warehousing involves the Extract, Transform, and Load (ETL) process: extracting data

from external sources, transforming it to fit internal needs, and loading it into a

new database. Once loaded, applications can then be written on the new data-

base, which can be updated periodically to reflect changes to the original sources.

Data integration, also known as data federation, involves dynamically querying the

original sources and integrating the search results on-the-fly to fit a mediated schema.

Both approaches have their own advantages and disadvantages, such as whether

the data is kept up-to-date, how real-time queries can be answered, and how costly

it is to add more sources [51].
Since the 1990s, data integration approaches have developed into an industry

called Enterprise Information Integration (ElI). It also has a sister industry called

Enterprise Application Integration (EAI) which focuses on getting applications to

connect, rather than data sources to connect. The customers of these industries

are businesses rather than consumers. These industries are still not yet mature as

argued by a panel of experts at as recently as SIGMOD 2005 [50].

There is a related industry called Enterprise Analytics (EA) aimed to provide

tools for discovering insights over several sources of data internal to businesses.

For example, Spotfire [32] couples advanced browsing features such as dynamic

query filters with rich visualizations such as starfield displays to help detect outli-

ers and highlight trends. Compared to ElII and EAI, EA is also selling to business

but its products are positioned much closer to human users. All of these industries

produce tools for experts and make trade-offs that favor the experts' needs. For

instance, the ability to handle complex ontologies will be favored over the ease of

learning how to use the tools.

2.4.2 Ontology Alignment

One aspect of data integration involves aligning original ontologies with one an-

other, matching up classes and properties, or alternatively mapping each of the

original ontologies into a mediated ontology. This topic of ontology alignment

is also known as ontology mapping, ontology merging, and ontology integration.

Kalfoglou and Schorlemmer conducted a comprehensive survey of ontology map-

ping research in 2005 [56], reporting on a total of 35 works. These works are

either tools for data modeling experts or domain experts, or machine learning al-

gorithms, or combinations of tools and automation. They target large and intricate

ontologies for which data modeling expertise is desirable and for which automation

would give experts a head start.

43

2. RELATED WORK

Ede Ek pcs ed LM&Code V{ claw Tcala fu*

F t s ha Prt-g6 2 ae ta

advnce fo caualuses. heyreqireundrstndig otsrac toneps lik

stafo rdk ne fast lotou .
* OormrlwaaAoy aln e Aisnln one speMia.edtof dIaa

man d pecalize t Wl o ontlgalineteprs rmteprpcie

s exp erd l east 2 a at ea sr

aC requirement.
&tIt

a...........a.e.....a... ..

Frtherr, t ed a at i t e wk dn

tnsd basn hi interAace intratsl cpssc s lse Fgr .)

ti ns a dlitte te sart

2.4 el Destnat tgion U r I. terac

togthr o reae eronl ash-up wth as caedrtieieet.Nt2

Retkt-Deftu~c~114i

d Tona s r , s d

Fiea.2. Pofesinag ontologyes aignens toolsakec as mPrtct ass3]ptare thao

advanced...for casual..users...They ..require ..understanding.. of..abstract..concepts..like

these expertsssna ontology alignment isatedos aumeas Inog orderar too nyhn

usefule with thealnes oThges, rextienlstsnodbeoneeded.aI conetst fore

caulusrOntology alignment is not spcanized sand it ist likeyntevetin, knw ito be-

a requirement.
Furthermore, these data integration tools tend to work on ontological abstrac-

tions, basing their interface interactions on concepts such as classes (Figure 2.2).

Casual users have little knowledge about data modeling and ontological abstrac-
tions, and little interest in learning.

2.4.3 Data Integration User Interfaces

There has been some limited research on user interfaces for casual users to inte-

grate data. Tabulator [43] lets casual users import RDF data from multiple sources

together to create personal mash-ups with maps, calendars, timelines, etc. Not only

does Tabulator consume only RDF data and no other format, it also provides no

mechanism for aligning ontologies. It seems to make an implicit assumption that

44

2. RELATED WORK

there is a high chance of usefulness from simply pooling together data already in

RDF without doing any alignment.

WebScripter [76] lets casual users create coherent reports out of data collected

from several sources, offering data alignment features for that purpose. Although

the desired target audience is casual users, WebScripter's interface is still expert-

oriented, full of jargon such as "DAML", "class", "instance", etc. Unlike my Potluck

tool, WebScripter offers no feature for fixing data at the syntactic level (e.g., swap-

ping first name and last name) and it has not been formally evaluated on actual

users.

2.5 Toward a Data-Centric Browser

As there is more and more data in reusable forms on the Web, casual users will

encounter it more often and their use of the data will increase in frequency and in

sophistication. Where casual users meet the Web-the web browser-will need to

catch up. Designed for the text-centric Web for viewing hypertext documents, the

contemporary browser may no longer be suitable for the data-centric Web. There

is a need for a data-centric browser that addresses casual users' needs in interacting

with a future data-centric Web. This section surveys enhancements to the contem-

porary web browser that are data-centric in nature, intended for users to manage

data encountered on the Web.

2.5.1 Data Models

Most of the few works aimed to enhance the standard web browser in a data-

centric fashion adopt the RDF data model [28] for storing their data. They include

Thresher [54] (described previously) which is built on Haystack [62]. Haystack is

an RDF-based personal information management platform. The browser extension

Operator [22] uses RDF as its data model and adds contextual menu commands

to web page fragments marked up with microformats [17]. Tabulator [43] demon-

strates what Semantic Web browsing might be like by dynamically pulling in more

and more data into its client-side RDF store. The rest of the works, notably the

browser extension by Dontcheva et al. [46] and Faaborg's and Lieberman's Creo

and Miro [48], use their own data models.

2.5.2 Data-Centric Features

Four kinds of data-centric features are offered by these tools: browse data, act on

data, edit data, and store data permanently. Thresher plus Haystack offer faceted

browsing functionality, contextual menu commands to act on extracted data, a

generic mechanism for editing, and permanent storage for the data. Dontcheva

et al.'s browser extension supports permanent storage and browsing capabilities.

45

2. RELATED WORK

Tabulator offers only browsing features, and Operator offers mostly contextual
commands. Creo and Miro are only for automation.

2.5.3 Deployment Paths

These tools can also be compared by their deployment paths. At one end, Haystack
demands the full adoption of a whole new personal information management plat-
form, of which the augmented web browser is a small component. At the other
end, Tabulator is just a web page that can be loaded into any browser on demand

(unfortunately, cross site scripting security restrictions on web pages prevent it from
loading data from arbitrary domains). In the middle are the various browser exten-
sions previously mentioned, which require some efforts to adopt. Less effort and
less risk generally yield more adoption.

46

3. PUBLISHING DATA

When it came into existence, the Web was hailed for giving individuals the same

publishing power as large publishers. But over time, large publishers learned to ex-

ploit the structure in their data, leveraging databases and server-side technologies to

provide rich browsing and visualization features. People have come to expect from

professional sites features like searching, sorting, filtering, comparison, maps, etc.

Individual small publishers fall behind once more: neither old-fashioned static pag-

es nor domain-specific publishing frameworks (e.g., web photo album generators)

and services (e.g., Flickr) supporting limited customization can match full-fledged

database-backed web applications that cost thousands of dollars. Fortunately, ideas

embodied in tools that have made publishing so efficient for large publishers can

also help small publishers as long as the needs and abilities of small publishers are

taken into consideration. This chapter explains how.

A typical application consists of three layers: data, presentation, and applica-

tion logic in between. Separating data from presentation allows mixing and match-

ing data with presentation so that the same data can be shown in different ways. It

is also easier to build tools specialized for dealing with either data (e.g., databases)

or presentation (e.g., form editors) separately.
This principle of separating data from presentation has been built into tech-

nologies that target large publishers. Designed for scalability and flexibility, these

technologies are far too complex for casual users to adopt. Such users have so far

only been offered HTML as the generic web publishing technology, and in HTML,
data and presentation are mixed together.

To let casual users benefit from the separation of data from presentation, the

costs of authoring data, authoring presentation, and connecting them up must be

lowered.

47

3. PUBLISHING DMA

The cost of authoring presentation can be lowered in two ways by assuming
that the presentation needs of casual users are not so complex:

- First, a variety of common features such as sorting, grouping, searching, fil-
tering, map visualization, timeline visualization, etc. can be provided out-of-the-
box so that each casual user need not re-implement them herself (As her presenta-
tion needs get more sophisticated and unique, she will eventually need to program
her own features.)

- Second, customization to the presentation can be specified in an HTML-
based syntax right inside the HTML code used to layout the web page. This is so
that the publisher can work on every part of the page's presentation inside a single
file in a single syntax. (As the publisher's needs to customize the presentation get
more sophisticated, the HTML-based syntax will no longer satisfy her.)

The cost of authoring data can be lowered in two ways by assuming that casual
users publish only small data sets:

- First, if a publisher is already editing her data in some particular format and
some particular editor convenient to her, she should not need to load that data into
a database and then maintain the data through the unfamiliar and inconvenient
user interface of the database. She should be able to keep managing her data how-
ever she likes, and the data only gets loaded into the database when it needs to be
rendered. This is realizable if the data is small and loading it into the database is
quick. (As the data gets larger, there is a point when the data should already be
loaded into a database to ensure a responsive web site.)

- Second, data schemas can be made optional if their benefits do not justify
their costs. While schemas are advantageous on large data sets for database opti-
mizations and for managing data at a higher level of abstraction, their benefits on
small data sets are much less apparent. (As the data gets larger or more complex,
there is a point when schema abstractions benefit both the publisher as well as the
publishing engine.)

Finally, all the costs of setting up software (database, web server, and appli-
cation server) can be eliminated if the software is packaged as a Web API to be
included into a web page on-the-fly. Such a Web API can also easily allow for exten-
sions, which accommodate the increasing sophistication in a casual user's publish-
ing needs.

These ideas have been built into the Exhibit lightweight data publishing frame-
work, packaged as a Web API. This chapter will discuss the design of Exhibit's
user and publisher interfaces in section 1, its data model in section 2, and its user
interface model in section 3. Section 4 briefly describes Exhibit's implementation.
Finally, section 5 reports real-world usage of Exhibit and discusses its impact.

48

3. PUBLISHING DATA

3.1 Interface Design

As Exhibit is a publishing framework, it has two interfaces: one facing publishers

and one facing users of the published information. A web page published using

Exhibit will be referred to as an exhibit in lowercase.

3.1.1 User Interface

An exhibit looks just like any other web page, except that it has advanced features

mostly seen on commercial and institutional sites. Figure 3.1 and Figure 3.2 show

two exhibits covering different types of information. Each is styled differently, but

there are several common elements, as described below.

Exhibit's user interface consists mainly of views andfacets, whose locations on

the page are controlled by the publisher. The exhibit in Figure 3.1 is configured

by the publisher to support two different views of the same data: THUMBNAILS and

TIMELINE. THUMBNAILS is currently selected by the user and it is showing. The exhibit

in Figure 3.2 is configured to support six views, and the BIRTH PLACES view is cur-

rently showing. Each kind of view-map, timeline, table, thumbnail, tile, scatter

plot, bar chart, etc.-supports its own configuration settings. The Google Maps

[11] map in the BIRTH PLACES view is configured to embed the presidents' portraits

in the map marker, and the TERMS timeline view is configured to color-code the

presidents' terms by their political parties. Although these settings are specified by

the publisher, some can be changed dynamically by the user (e.g., sorting order in

Figure 3. 1). Exhibit's user interface can be extended by third-parties' views if the

publisher chooses to include them.

Items can be presented differently in different views. Where there is little space

to render sufficient details in-place (e.g., on a map), markers or links provide af-

fordance for popping up bubbles containing each item's details (e.g., map bubble

in Figure 3.2). The rendition of each item contains a link for bookmarking it indi-

vidually. Invoking this link later will load the exhibit and pop up a rendition of the

bookmarked item automatically.
The facets (left in Figure 3.1 and right in Figure 3.2) let users filter the cur-

rently displayed items. This is a conventional dynamic query interface with preview

counts.

49

3. PUBLISHING DATA

Topher's Breakfast Cereal Character Guide (tUnselect Nabisco in facet Brands) C~

*http//127.0.0. 18888/exhibit/site/examples/cereals/cereal V C

Please refer to Toper's original site for copyright information. We are grateful to
Topher for letting us host this data on our site.

Here is the Exhibit JSON data file.

Brands 2 THUMBNMALS T TIMELINE

General Mills 12 Characters filtered from 49 originally. (Reset All Filters)
Kelloggs
Nabisco sorted by: bra.ten by... (grouped as sorted

Post Post (8)
Quaker Oats Z
Ralston

Decades 39
1950

9 1960 -

1970 P 1
Sugar Bear Fred Flintstone SoHi Honeyomb Kid Mickey Mouse

2 1980
z 1990

Countries
Great Brntain
LSA

Forms
bear Bugs Bunny Alpha-bts Sailor Jimminy Cricket
beast Boy
boy

-on-e

Figure 3.1. A web page embedding Exhibit to show information about break-

fast cereal characters [36]. The information can be viewed as thumbnails or on a

timeline and filtered through a faceted browsing interface.

50

3. PUBLISHING DATA

e 0 _ SMLE I Exhib t i Presidents fsefect Birth NPlaces view} C
Gt(U t' *Nhap //127.0.0.1 8888/exh bn/s teexamoes/pres dents/presidens html G

US Presidents

BIXTH PLACES- DEATH PLACES - TE-MS TABLE. DErAILS. PHOTOS

Presidents total.

Norn
Montana Danota

Oregon a<

. cityska

tNevada
Utah Cowerdo

KenWuC

Armeona New
Men o Missisp

77 mrfGori

Search:

Anglican
BaptLst
Oho(Oeeit

Ceagrgatooaliat

Deism

Politlcal Panics
Detexrctic

1Deeatic-Rjpulican
Iederatist

Transering daafrommaps.google.com

Figure 3.2. A web page embedding Exhibit to show information about U.S.
presidents in 6 ways, including maps, table, thumbnails, and timelines.

51

es~aI~on-------------- 0

......e.........
."'as .sa .-

..........

US Preside.ts

Democratic (14)

U.... =- A

3. PUBLISHING DATA

3.1.2 Publisher Interface

Making an exhibit like Figure 3.1 involves two tasks: creating the data and creating
the presentation. Both are iterated until the desired result is achieved. This section
briefly describes the publishing process, leaving technical details to later sections.

3.1.2.1 Creating the Data

Exhibit supports its own JSON [13] format natively but can automatically import
a variety of formats including Bibtex, Excel, RDF/XML, N3, and Google Spread-
sheets feeds. The data file for those breakfast cereal characters looks something like
that in Figure 3.3. The items' data is coded as an array of objects containing prop-
erty/value pairs. Values can be strings, numbers, or booleans. If a value is an array,
then the corresponding item is considered to have multiple values for that property.
For instance, according to Figure 3.3, the Trix Rabbit character is released in both
the US and in Canada. The publisher is mostly free to make up the names of the
properties. We will discuss the specifics of the data model subsequently.

Data for a single exhibit needs not reside in a single file. It can be split into
multiple files for convenience. For example, a couple's recipes exhibit can pool its
data from two separate files: her-recipes . json and his-recipes. json.

3.1.2.2 Creating the Presentation

The web page itself is just a regular HTML file that can be created locally, iterated
locally until satisfaction, and then, if desired, uploaded together with the data files
to the web server. Figure 3.4 shows the initial HTML code needed to start making
the exhibit in Figure 3.1. This code instantiates an Exhibit instance, loads it with
the data file referenced by the first <link> element, and specifies where to embed
a view panel, which shows a tile view by default. Also by default, the tile view sorts
all items in the exhibit by labels and displays the top ten items using the default lens.
This lens shows property/value pairs for each item. Reasonable defaults are hard-
wired into Exhibit to give the publisher some result with minimal initial work.

items:
type: 'Character',
label: 'Trix Rabbit',
brand: 'General Mills',
decade: 1960,
country: ['USA', 'Canada'],
thumbnail: 'images/trix-rabbit-thumb.png',
image: 'images/trix-rabbit .png',
text: 'First appearing on

. .. more characters ...

Figure 3.3. An ExhibitJSON data file showing data for one breakfast cereal
character, which is encoded as property/value pairs.

52

3. PUBLISHING DAIA

The publisher does not even need to write this initial HTML code from scratch:

it is trivial to copy this code from existing exhibits or from online tutorials. This is

how HTML pages are often made-by copying existing pages, removing unwanted

parts, and incrementally improving until satisfaction. The declarative syntax of

HTML, the forgiving nature of web browsers and their reasonable defaults, and the

quick HTML edit/test cycle make HTML publishing easy and instantly gratifying.

Exhibit has been designed to afford the same behavior.

Figure 3.5 shows the final HTML code needed to render the exhibit in Figure

3.1 (logo graphics and copyright message omitted). The additional code, in black,
configures the facets, the two views, and a lens template in the THUMBNAILS view.

(Lens templates will be discussed in the User Interface Model section.)

Making the presentation look better can also involve filling in and fixing up the

data schema. Figure 3.6 shows how the plural label for the type Character is de-

clared so that plural labels in the UI, e.g., 12 Characters, can be generated properly.

The decade property values are declared to be dates instead of strings so that they

can be sorted as dates.
To change the schema, e.g., renaming a property, the publisher can simply

invoke the text editor's Replace All command. Or if the data is imported from a

spreadsheet, she can just rename the corresponding column header label. Saving

old versions of the data involves making copies of the data files. Changing schema

and keeping versions of the data might not be as simple if databases were used.

Thus, just by editing one or two text files in any text editor, and perhaps editing

data in a spreadsheet, a casual user with only basic knowledge of HTML and no

programming skills can create a richly interactive web page with sorting, searching,
filtering, maps, timelines, etc.-features that would otherwise take a whole team of

web engineers months to implement.

<htm]l>
<head>
<title>Topher's Breakfast Cereal Character Guide</title>

<link type="text/javascript"
rel="exhibit/data" href="cereal-characters.js" />

<script type="text/javascript"
src="http://static.simile.mit.edu/exhibit/api-2. 0/exhibit-api. js">

</script>
</head>
<body>
<div ex: role="viewPanel"></div>

</body>
</html>

Figure 3.4. To create the web page in Figure 3.1, the author starts with this

boiler plate HTML code, which displays the characters in cereal-characters. js

through the default lens that lists property/value pairs.

53

3. PUBLISHING DATA

One or more Inks to data2 <head>
3 <title>Topher's Breakfast Cereal Character Guide</title>
4 <link type="application/j son" rel="exhibit/data" href='cereal -charactersjson" />
5 <script src="http: //static. simidle.mit.edu/exhibit/api-2.0 /exhibit-api. js"></script>
6 <script src="http://static.simile.mit.edu/exhibit/extensions-2.0/
7 time/time-extension.js"></script>

<style>
.itemThumbnail {
width: 120px;

</style> custom styles
</head>
<body> facets

<table width="100%">
<tr valign="top">

<td width="20%">
<div ex:role="facet" ex:expression=".brand"
<div ex:role="facet" ex:expression=".decade"
<div ex:role="facet" ex:expression=".country"
<div ex:role="facet" ex:expression=".form"

</td>
<td>

<div ex:role="viewPanel">

Exhibit API and extensions

ex:facetLabel="Brands"></div>
ex:facetLabel="Decades"></div>
ex:facetLabel="Countries"></div>
ex:facetLabel="Forms"></div>

<div ex:role="view" ex:viewClass="Thumbnail"
ex:possibleOrders=".brand, .decade, .form, .country">

<div ex:role="lens" class="itemThumbnail">

<div ex: content="value"></div>

</div>
</div>

<div ex:role="view"
ex:viewClass="Timeline"
ex:start=" .year"
ex:colorKey=" . topic">

</div>
</div>

</td>
</tr>

</table>
</body>
</html>

lens templates
specifying
how to render
each
data item

VIews

Figure 3.5. The publisher starts with the code in gray (from Figure 3.4), in-
cludes more and more of the code in black, and tweaks until the desired result
(Figure 3.1) is achieved (logo graphics and copyright omitted). Tweaking involves
following online documentation or just copying code from other existing exhibits.

54

3. PUBLISHING DALA

types:
'Character': { pluralLabel: 'Characters' }

properties: {
'url': { valueType: "url" },
'decade': { valueType: "date" }

items:
// ... items ...

Figure 3.6. Schema information can be added to theJSON file to improve

Exhibit's user interface.

3.2 Data Model

An Exhibit data model is a directed graph in which the nodes are either items or

native values such as numbers, strings, and booleans, and the arrows are properties

(Figure 3.7). Each property has a property value type which specifies the types-

numbers, strings, booleans, items, etc.-of the nodes at the pointed ends of the

arrows. In the simplest case where there is no relationship between items (no blue

curved arrows in Figure 3.7), then the data model degenerates into a flat list of

items with native-valued properties. A casual user would normally start with such

a conceptually simple list of items and then when the need actually arises, link the

items up to form a graph.

3.2.1 Items

Each item has one or more properties, one of which is the mandatory label prop-

erty, which is a string naming that item in a human-friendly manner (friendliness is

subject to the publisher's discretion). This label is used to render the item whenever

a concise, textual description of that item is needed.

Every item is also mandated to have an id property, which identifies that item

uniquely within the containing exhibit. If no id property value is specified explic-

itly when the item is being loaded into the database of the exhibit, the item's label

property value is used as its id. Other items in the same exhibit can relate to this

item simply by having property values equal to the item's id.

The third mandated property is uri, which is the URI used to name the item

when it is exported to any RDF [28] serialization format. (The uri property helps

make exhibits' data readily available to semantic web applications.) If no uri prop-

erty value is specified when the item is being loaded, the URI is generated automati-

cally by appending its id property value to the URL of the containing exhibit.

The last mandated property is type. An item's type property value is just a

string, such as "President" and "Publication". If not explicitly specified, the item's

55

3. PUBLISHING DATA

type defaults to "Item". Types are introduced to divide the set of items within a

single exhibit into several subsets of conceptually different items, such as "Publica-

tion" vs. 'Author", or "Patient" vs. "Hospital Record". If the data within an exhibit

were to be stored in a relational database, there would logically be one relational

table for each type.

Although there are four mandated properties, a publisher is only burdened to

make up one-the label property-for each item. Note that in Figure 3.3, the

item has neither id nor uri property value; both values will be generated. An id

property value must be specified explicitly if another item with the same label has

already been loaded into the database. A uri property value must be specified

explicitly if the publisher intends the item to refer to some Web resource with an

existing URI. For example, in an exhibit that compares several web sites' traffic on

a bar chart, each item corresponds to one web site and the item's uri should logi-

cally be the web site's URL.

\abe\ David Huyrnh

ggemai/
dfhuynh

Figue 37. A Exibitdatamoel isa Drphinwich thre ndsartm

emain
karger(§mit.edu

\abe\ Rob Miller

ernai
ho rcm(§mit.edu

Faculty

\abel Eric Miller

emaii
em~azepheira.CO7m

Researcher

Figure 3.7. An Exhibit data model is a graph in which the nodes are items

(circles) or native values (rectangles) and the arrows are properties.

56

3. PUBLISHING DALA

3.2.2 Types

The information on types is schematic information. Each type has three mandated

schematic properties: label, id, and uri. Note that when the type property of

an item is specified, that type property value is the type's id, not the type's label

(Figure 3.8). Whereas usually an item's label is specified and its id is generated

from its label, a type's id must be specified first (by assigning some item that type

property value) and then the type's label is taken to be the same as its id, unless

overridden. Whereas for items, ids are primarily used to distinguish those with the

same label, for types, ids are used as short-hand notations. For example, in Figure

3.8, the types' ids save the publisher a lot of typing while the types' labels are easy

to comprehend for viewers.

Beside id, uri, and label, a type can have other schematic properties that

help in the localization of the user interface. For instance, when a type has a plu-

ralLabel, that schematic property value is used in English-speaking locales to

generate user interface text for labeling several things of that type, e.g., 9 People

instead of 9 Person.
There is no need for the publisher to explicitly declare every type in the types

section. A type is added to the system whenever an item of that type is added. This

lets the publisher focus on the items-the main point of her exhibit-and only add

information on types and properties when they make the user interface better.

items:

type: "RCAct",

.atype's id
] ,
types: { '

"RCAct" : {
label: "Ribosomal Chaperone Activity",

pluralLabel: "Ribosomal Chaperone Activities",

uri: "http://www.geneontology.org/go#GO:0000005"
},
"RlR" : {

label: "Regulation of Mitotic Recombination",

pluralLabel: "Regulations of Mitotic Recombination",
uri: "http://www.geneontology.org/go#GO:0000019"

Figure 3.8. The types section in theJSON file specifies schematic properties of

types, such as their labels and uris.

57

3. PUBLISHING DNIA

3.2.3 Properties

Schematic information can also be given on properties. Properties have the same
three mandated schematic properties as types (label, id, and uri) plus two more:
reverseLabel and valueType. Together with label, reverseLabel lets a prop-
erty be described in both directions (e.g., child of in one direction and parent of in
the other).

A property's valueType hints at the nature of that property's values-whether
they are numbers, or booleans, or strings, or items' ids, etc. There is a fixed set of
value types, currently including: text, number, date, boolean, url, and item. All
values of type item are locally unique ids of items in the same exhibit. Figure 3.6
shows how property value types are declared in data files.

Note that such declaration of value types are hints only. Exhibit will try to
coerce property values into whatever types that are most appropriate for each par-
ticular use. For example, when a property foo with value type text is used to
specify the starting dates of items on a timeline view, then all foo property values
are automatically parsed into dates to render the timeline.

This design choice of tying value types to properties, rather than requiring
type declaration on each value, facilitates incremental improvements to the data.
For instance, brand property values in Figure 3.3 are initially, by default, of type
text. This might satisfy the publisher until she wants to record details about the
brands, at which time she can simply specify the value type for brand to be item
and add the data for the brands (Figure 3.9).

3.2.4 Expressions

Exhibit provides an expression language that makes it convenient to access its
graph-based data model.

Consider an exhibit whose data model is illustrated in Figure 3.10. The ex-
hibit contains information on some publications, their authors, the schools where
the authors teach, the countries where the schools are located, and perhaps more.
Evaluating the expression . written-by on some publications yields their authors;
evaluating written-by.teaches-at yields the schools where the publications'
authors teach; and so forth. The hop operator . traverses the graph along a given

property. To traverse against a given property, the hop operator ! is used. Thus,
evaluating ! teaches-at!written-by on some schools returns publications writ-
ten by authors at those schools. The two kinds of hop operator can be mixed:
evaluating .written-by. teaches-at! teaches-at! written-by on some publi-
cations returns all publications written by all authors teaching at the same schools
as the authors of the original publications.

A sequence of alternating hop operators and property ids, such as .written-
by. teaches-at, is called a path. Evaluating a path yields a collection of values
(with or without duplicates). Why duplicate values are allowed will become clear
subsequently.

58

___ - - ----- '-1

3. PUBLISHING DATA

properties: {
'brand':
valueType: 'item'

},
items:

type : 'Character',
label: 'Trix Rabbit',
brand: 'General Mills',
decade: 1960,
country: ['USA', 'Canada'],
thumbnail: 'images/trix-rabbit.png',
text: 'First appearing on

// .. more characters

type: 'Brand',
label: 'General Mills',
headQuarter: 'Minnesota',
founded: 1856

},
// ... more brands ...

Figure 3.9. Elaboration of brand property values by specifying the value type
for the property brand and adding Brand items.

Figure 3.10. In this sample Exhibit data model, evaluating the expression
.written-by.teaches-at.located-in on publications yields the countries in which the
schools where the publications' authors teach are located.

59

3. PUBLISHING DATA

In addition to paths, Exhibit expressions can also contain native values like
strings and numbers, andfunctions, operators and constructs. For example, concat (.
last-name, ' , ' , .first-name) computes a full name out of a last name and a

first name, and count (.parent-of) returns the number of children of a person.
Other functions include:

- union (for taking set unions of collections);
" contains (for testing if a collection contains a given element);
- exists (for testing if another expression returns any result, that is, if the

result collection is non-empty);
* add and multiply (for taking summations and products of elements in one

or more collections);
- and, or, and not (for combining boolean values);
- date-range for computing differences between two dates in a particular unit

such as in days or in years;
- distance for computing geographical distance between two latitude/longi-

tude pairs.
It is easy for third parties to implement more functions. Publishers just need to

link the third parties'Javascript code into their exhibits.

Exhibit's operators are the standard arithmetic operators (+, -, *, /) and bool-

ean operators (=, <>, ><, <, <=, >, >=).

There are two constructs at the moment:
- if, which evaluates its first argument to a boolean value and based on that,

chooses to evaluate either its second argument or its third argument;
- foreach, which evaluates its first argument into a collection; then for each

element in that set, evaluates the expression that is its second argument on
that element; and finally returns the union of all results.

The reason we need expressions to support duplicates in collections is as fol-
lows. Consider an exhibit about students and their assignments. To compute a stu-
dent's average, we divide the sum of the grades of her assignments by the number
of assignments: add(.assignment.grade) /count (.assignment). Say a student
gets 100 for two assignments. If the result of the sub-expression . assignment.
grade is a collection without duplicates, then the student's average is computed
incorrectly as 100 / 2 = 50. To fix this problem, Exhibit introduces two more hop
operators . @ and ! @ that prevent duplicates from being eliminated further down
the evaluation process. Thus, add(.assignment. @grade) /count (.assignment)
would compute the correct average.

The full production rules for Exhibit expression language is provided in Figure
3.11.

60

3. PUBLISHING DNIA

3.2.5 Data Import/Export

While the ExhibitJSON format is relatively readable and writeable, it might not be

the format of choice for some publishers. They might already have their data in an-

other format (e.g., BibTex), or they might be used to editing tools that do not export

to ExhibitJSON (e.g., Excel). These publishers can simply annotate the <link> ele-

ments referencing their data with the right mime-type (e.g., type="application/

bibtex") and Exhibit will import it automatically. Exhibit's importer architecture

allows for third parties to plug in their own importers.
Exhibit also has an extensible exporter architecture that can serialize its data

into several formats, ready to be copied off. The natively provided exporters can

generate RDF/XML, Exhibit JSON, Semantic MediaWiki extension wikitext [73],
and Bibtex. The purpose of these exporters is to facilitate and encourage propaga-

tion of reusable data by offering convenience to both users and publishers. For ex-

ample, being able to copy off the Bibtex of some publications that you have found

in an exhibit so that you can cite them is very convenient. You can also copy that

<expression>

<sub-expression>

<term>

<factor>

<construct>

<if-construct>
<foreach-construct>
<default-construct>

<function-call>

<expression-list>

<path>

<hop-list>

<hop>

<expr-op>

<subexpr-op>
<term-op>
<hop-op>

<sub-expression>
<expression> <expr-op> <sub-expression>
<term>
<sub-expression> <subexpr-op> <term>
<factor>
<term> <term-op> <factor>
<number>
<string>
<construct>
<function-call>
<path>

" (" <expression> "

<if-construct>
<foreach-construct>
<default-construct>
"if" "(" <expression> "," <expression> "," <expression> ")"

"foreach" "(" <expression> "," <expression> ")"

"default" "(" <expression-list> ")"

<identifier> "(" <expression-list>? ")"

<expression>
I <expression-list> "," <expression>

<hop-list>
I <identifier> <hop-list>
<hop>

I <hop-list> <hop>
<hop-op> <property-id>

: "<>" "<" I "<=" ">" "

:: I. "!" I ".@" | I @

Figure 3.11. Production rules for the Exhibit expression language.

61

3. PUBLISHING DX1A

data in Exhibit JSON format and incorporate it into your own exhibit to make an
archive of related work.

Exhibit's default exporters generate an origin property value for each item to
export. This value is the URL that, when invoked, returns to the original exhibit
and pops up the view of that item automatically. This is a lightweight mechanism
for attribution.

3.3 User Interface Model

Exhibit's user interface consists of several types of component:
- collections;
- widgets:facets, views, and lenses; and
- helpers: coders.

Exhibit also maintains a hierarchy of UI contexts that store inheritable UI settings
such asformatting rules. These components and the formatting rules can all be speci-
fied in HTML. The following subsections define these various UI concepts and de-
scribe how they can be specified in HTML.

3.3.1 Collections

A collection contains a subset of the items currently in the exhibit's database. Cur-
rently, a collection can be defined to contain items by some particular types, e.g.,

<div ex:role="collection" ex:itemTypes="Man; Woman" id="adults"></div>
<div ex:role="collection" ex:itemTypes="Boy; Girl" id="kids"></div>
<div ex:role="collection" ex:itemTypes="Man; Woman; Boy; Girl"></div>

Each collection has an ID, which can be specified using the HTML id attribute. The
ID of a collection is used to refer to it from other components, as wiln be discussed
in later subsections. If no id attribute is given, the ID is assumed to be "default"
and the effect of the definition is to redefine the default collection, which comes,
by default, with every exhibit. If not redefined, the default collection contains all
items currently in the exhibit's database.

What a collection originally contains is called its root set. This root set can be
filtered down to afiltered set by facets attached to the collection, as will be discussed
next.

3.3.2 Facets

A facet is a component whose purpose is to filter a collection's root set down to a
filtered set. Facets can be declared as follows:

<div ex:role="facet"
ex: expression=" . ethnicity"
></div>

62

3. PUBLISHING DATA

<div ex:role="facet"
ex: expression=" .profession"
ex: collectionID="adults"
></div>

<div ex:role="facet"
ex:expression=".height * 2.54"
ex:facetLabel="Height (cm)"
ex: collectionID="kids"
ex: facetClass="NumericRange"
ex:interval="10"

></div>

The ex: expression attribute is required and in the simplest case, it specifies the

property by which to filter the collection to which the facet is attached. In the first

example, the facet can be used to filter the attached collection by (people's) ethnic-

ity; in the second, by professions; and in the third, by heights. The expression does

not have to be a simple property; it can compute more complex values such as seen

in the third example. The ex: collectionID specifies which collection a facet is

attached to; if missing, the default collection is used (as in the first example).

The ex: facetLabel attribute gives a text label to the facet. If missing, and

if the expression is a simple property, Exhibit uses the property's label; otherwise,
Exhibit shows an error message where the label should be rendered.

The ex: facetClass attribute specifies which class of facet to instantiate.

There are two classes being supported: List and NumericRange (List is the de-

fault class). List facets show each value computed by the expression as a choice for

filtering while NumericRange facets convert each value into a number and group

values into intervals.

3.3.3 Views

A view is a component that renders the filtered set of items in a collection to which

it is attached. As the collection gets filtered by the facets attached to it, the views

attached to that collection update themselves to show the current filtered set.

Views can be specified much like facets. Each kind of view supports its own

settings that are appropriate to it. For example, a tabular view supports settings

pertaining to its columns, e.g.,

<div ex:role="view" ex:viewClass="Tabular"
ex:columns = ". label, . imageURL, .party, .age"
ex:columnFormats = "text, image, text, number"
ex:sortColumn = "2"
ex:sortAscending = "true"
></div>

3.3.4 Lenses

An Exhibit lens renders one single item. Lenses are not specified individually per

item, but they are instantiated from a few lens templates, which are specified in HTML.

63

3. PUBLISHING DAiA

A template is just a fragment of HTML that can be specified in-line, as in Figure
3.12, or in a different file.

Within a lens template, the content attribute of an element specifies what
content to stuff into that element when the template is instantiated for an item. For
example, in Figure 3.12, the <hl> element will be filled with the label property

value of the item.
Attributes that end with -content are assumed to contain Exhibit expressions.

These expressions are resolved into actual values when the lens is instantiated, and
the values are used to assert HTML attributes of the same name but without the ex:
namespace and the -content suffix. For example, the ex: src-content attribute
in Figure 3.12 is replaced with the image property value of the item being ren-
dered, generating the attribute src="images/trix-rabbit.png" in the generated
HTML element.

The ex: if-exists attribute of an element determines whether that element

and its children in the template should be included in the presentation of a par-

ticular item. For example, if an item does not have an image property value, the

template in Figure 3.12 will not generate a broken image. The ex: if attribute of

an element specifies an expression that evaluates to a boolean; if the boolean is

true, the first child element of the element is processed; otherwise, the second child

element is processed if it is present. The ex: select attribute of an element speci-

fies an expression that evaluates to some value which is used to select which child

element to process. The child element with the matching ex: case attribute value

is processed. Otherwise, the last child element that does not have any ex: case at-

tribute is processed.

The ex: control attribute specifies which Exhibit-specific control to embed.

There are only two controls supported at the moment: the item-link control and

the copy-button control; the first is a permanent link to the item being rendered

and the latter is a drop-down menu button that lets the user copies the item's data

off in various formats.

3.3.5 UI Contexts and Formatting Rules

Each component has a U1 context which gives it access to UI settings, such as how

dates should be formatted (e.g., "July 4" or "7/4" or "7y4H"). Such formatting

rules can be added to the UI context of a component through the ex: formats at-

tribute on the component's HTML specification, e.g.,

<di v ex:role="view"
ex:viewClass="Timeline"
ex: start=". birth"
ex: formats=

"date { mode: short; show: date } number { decimal-digits: 2 }"
></div>

In this example, whenever dates are rendered inside that timeline view, they are

displayed in short form without time of the day (e.g., "04/07/07" forJuly 4, 2007).
Whenever numbers are displayed, two decimal digits are shown.

64

3. PUBLISHING DiTA

<table ex:role="exhibit-lens" cellspacing=."5" style="display: none;">

<tr>
<td>

<div ex: control="copy-button"></div>
</td>
<td>
<hl ex:content=&".label"></hl>
<h2>

</h2>
<p ex:content=".text"></p>

<center ex:if-exists=".url">
<a ex:href-content=".url" target="new">More...

</center>
</td>

</tr>
</table>

Figure 3.12. Lens template for showing a breakfast cereal character in a pop-up

bubble as shown in Figure 3.13.

Please refer to Topher's original site for copyright infor

*

Trix Rabbit

General Mills Trix

First appearing on cereal boxes in
1960, this large white rabbit originally
raced around trying to get some
raspberry red, Lemon yellow, and
orange orange Trix corn-puffed cereal
to eat. 'Trix. The corn cereal with the
naturaL taste of fruit. Trix Rabbit was
originally voiced by Delo States.

Trix~biL Count Dracula

THUMI

Mdby: brand; th

Bu=Bee

Figure 3.13. Bubble showing a breakfast cereal character.

65

CK-UR-AL

.lle

3. PUBLISHING DAiA

Note that the resemblance in syntax to CSS is intended for familiarity. An
ex:formats specification consists of zero or more rules (cf. CSS rules). Each rule
consists of a selector which specifies what the rule applies to (cf. CSS selectors) and
then zero or more settings inside a pair of braces. In the example, there are two rules
and two selectors, date and number. Those two selectors select the value types to
which the rules apply.

For each selector there is a different set of allowable settings. For example, for
date there are time-zone, mode, and template. For each setting there is a set of

acceptable setting values. For example,
- time-zone takes a number or the keyword default;

- mode takes any one of the keywords short, medium, long, and full to spec-

ify how detailed to render dates and times;

- template takes a string that acts as a template for formatting dates and times

in case those four standard modes do not satisfy the publisher's needs; and

* negative-format (for currency) takes any combination of the flags red,
black, parentheses, no-parentheses, signed, and unsigned to specify

how negative currency values should be rendered.

As in CSS, URLs in formatting rules are wrapped in url (). Similarly, expres-

sions are wrapped in expression (). For example,

ex: formats=
"item { title: expression(concat(.full-name, ', ', .job-title)) }"

specifies that when a textual description of an item is needed, render the full-
name property value followed by a comma and the job-title property value.

The full production rules for Exhibit's format language is provided in Figure

3.14.
Other UI settings beside formatting rules can be specified through other attri-

butes, such as ex:bubbleWidth for the width in pixels of popup bubbles. Settings

not specified in a view's HTML specification are inherited from the view's outer

<rule-list> :: <rule>*
<rule> ::= <selector> ["{" [<setting-list> I "}"
<selector> :: "number" I "date" I "boolean" I "text" I "image" I

"url" I "item" I "currency" I "list"

<setting-list> : := <setting> I <setting-list> ";" <setting>
<setting> : := <setting-name> ":" <setting-value>

<setting-value> :: <number>

I <integer>
I <non-negative-integer>
I <string>
I <keyword>
| <url>
| <expression>
I <flags>

<flags> : := <keyword>+

Figure 3.14. Production rules for the Exhibit format language.

66

3. PUBLISHING DAlA

lexical scope, that is, from the settings specified on components whose HTML speci-

fications lexically contain this view's HTML specification.

3.3.6 Coders

A coder translates a piece of information to some visual feature, e.g.,
" from the political-party property value "Republican" to the color red,

and from "Democrat" to the color blue;

- from the service property value "Restaurant" to an icon showing a fork and

a knife, and from "Hotel" to an icon showing a bed;

" from the magnitude property value 5 (assumed to be the magnitude of an

earthquake) to the number 40, indicating how large the corresponding map

marker should be;
- from the temperature property value -30 (assumed to be in Celsius) to the

color code #OOQaa, a particular shade of blue indicating how cold it is.

For the four examples above, these are the coders' specifications:

<div ex:role="coder" ex:coderClass="Color" id="political-party-colors">
Republican
Democrat
Any other party

Multiple parties

No party

</div>

<div ex:role="coder" ex:coderClass="Icon" id="service-icons">

Restaurant
Hotel

<span ex:icon="question-mark.png"
ex: case="default">Other service

<span ex:icon="many-question-marks.png"
ex:case="mixed">Multiple services

<span ex:icon="x.png"
ex:case="missing">No service

</div>

<div ex:role="coder"
ex:coderClass="NumericGradient" id="earthquake-magnitudes"
ex:gradientPoints="1, 20; 10, 60"

></div>

<div ex:role="coder" ex:coderClass="ColorGradient" id="temperature-col-

ors"
ex:gradientPoints="-40, #000088; 0, #ffffff; 50, #ffOO00"
></div>

The ex: case attribute is used to specify special cases, such as when a single marker

on the map corresponds to several values to translate (e.g., because several politi-

cians belong to different political parties were born in the same city), or when there

is no data to translate (e.g., because there is no temperature recorded for a particu-

lar city). The ex: case="default" attribute value is used to code all remaining

cases (e.g., other political parties beside Democrat and Republican).

67

3. PUBLISHING DAiA

To connect a view or a facet to a coder, you need to specify on the view or
facet's HTML specification which coder to use and what data to feed it. To have a
map view plotting politicians colored by political parties, then we can specify that
map view as follows:

<div ex:roe="view" ex: viewClass="Map"
ex,1atlng=".1atlng"
ex:colorCoder="political-party-colors"
ex:colorKey=".party"
></div>

As another example, to construct a map view of buildings and the services avail-
able in them, write:

<div ex:role="view" ex:viewclass="Map"
ex: latlng=-" .latlng"
ex:iconCoder="service-icons"
ex:iconKey=".service"
></div>

Several coders could potentially be used in the same view. For example, on a map
plotting natural disasters, an icon coder can indicate whether a disaster is an earth-
quake, a volcano eruption, a tsunami, etc.; a marker size coder can show the mag-
nitudes of those disasters; and a color coder can show the casualties (e.g., more red
means more casualties).

3.4 Implementation

The Exhibit framework is implemented in severalJavascript, CSS, and image files.
It is available at a public URL where anyone can reference it from within his or her
HTML pages. Exhibit publishers do not need to download any software, and users
who view exhibits do not need to install any browser extension. This zero cost is the
signature of client-side Web APIs and is largely responsible for the explosion in the
embedding use of Google Maps [11].

Exhibit's source code is available publicly. Any of its parts can be overridden
by writing more javascript code and CSS definitions after including Exhibit's code.
Third parties can implement additional components to supplement Exhibit.

Exhibit's architecture is illustrated in Figure 3.15. At the bottom is the data
layer consisting of the database, the expression language parser and evaluator, and
importers and exporters. At the top is the user interface layer, which consists of
three sub-layers:

- UI contexts and localization resources-storage of presentation settings for
the rest of the user interface layer.

- collections and coders-components that do not render to the screen but
determine what data widgets should render and how to render it.

* widgets which perform the actual rendering and support interactions.

68

3. PUBLISHING DATA

HTML
configuratin

Figure 3.15. Exhibit's architecture

There are several points of extensibility. More views, facets, and coders can be

added. More importers, exporters, and functions (to be used in expressions) can be

registered. For example, a new facet class can be added to show a calendar or a

timeline supporting date range selection instead of just listing individual dates.

The localization component encapsulates localized UI resources, including text

strings, images, styles, and even layouts. This is only our early attempt-interna-

tionalizing a framework that generates user interfaces at run-time is very difficult.

We note that even HTML is biased for English. For example, bold and italics, which

have native syntax in HTML, are foreign concepts to most Asian scripts.

69

~~~~1



3. PUBLISHING DArA

3.5 Evaluation

Exhibit was evaluated in two ways: by its performance in contemporary popular

browsers and by its actual usage by casual users.

3.5.1 Performance

Four platform/browser configurations were chosen for testing Exhibit version 2.0

as of July 26, 2007:
- MacBook Pro laptop, Mac OSX 10.4.10

2.16 GHz Intel® Core 2 Duo, 2 GB RAM
1. Firefox 2.0.0.5
2. Safari 3.0.2 (522.12)

- Dell Dimension 8200 desktop, Windows XP SP2
2.53 GHz Intel® Pentium® 4 CPU, 1.00 GB RAM

3. Firefox 2.0.0.5
4. Internet Explorer 7.0.5730.11

For Firefox, new profiles were created for testing. For the other browsers, their

caches were cleared.
Exhibit's performance was measured in two ways: by its load time and by its

interactivity time. The only independent variable was the number of items in the

test exhibit, which varied from 500 to 2,500. The results are shown in Figure 3.16
and Figure 3.17, which will be explained below.

3.5.1.1 Load Time

Load time was divided into two stages:
* Data loading: populating the database with data that has already been re-

ceived at the browser, thus excluding network traffic cost;
- UI rendering: constructing the initial presentation of the exhibit, which in-

cludes all the costs of computing the facets, querying the database for data to

construct the lenses, and actually generating DOM elements.

There were two variations of UI rendering:
- All items were sorted by label and rendered in a tile view.
- All items were sorted by label but only the first 10 were rendered.

Four platform/browser configurations combined with two variations of UI

rendering yielded the eight charts shown in Figure 3.16. These charts show that

UI rendering cost considerably more than data loading, and that by rendering only

the first 10 items, reasonable load time performance (under 5 seconds) could be

achieved in all tested platform/browser configurations for 1,000 item exhibits.

3.5.1.2 Interactivity Time

To test interactivity time, I measured the time it took from clicking on a facet value

with a count of 3 (after the test exhibit has finished loading and rendering) to when

70



3. PUBLISHING DATA

the exhibit has finished rendering the filtered set of items and updating the facets.

There were also two variations of initial UI rendering as in the load time test, pro-

ducing a total of eight traces in the two plots in Figure 3.17. Rendering all items at

the beginning did affect the filtering time substantially, perhaps because there was a

high cost for removing generated DOM elements. Responsive performance (within

half a second) could be achieved in all platform/browser configurations if only 10

items were rendered initially.

These test results yielded encouraging evidence that reasonable performance

is achievable by Exhibit's client-side approach. More browser optimizations and

faster hardware will soon make Exhibit scale better. Already we see that the latest

beta version of Safari double the speed of the latest released version of Firefox on

the same platform.

71



3. PUBLISHING DATA

Mac OSX 10.4.10,2.16 GHz Intel Core 2 Duo, 2 GB 667 DDR2 SDRAM

Rendering All Items

U Data Loading B UI Rendering

Rendering First 10 Items

3 Data Loading l UI Rendering

45

40

C
0
1
16'

10

500 Ono 2000 2600

items items
2000 2500

E Data Loading ON U1 Rendering U Data Loading MB U1 Rendering

60

40

V)

o 30

20

-m15ms

items items

Figure 3.16. Exhibit's load-time performance results on four configurations (two

operating systems, two browsers per operating system) with the number of items

as the independent variable. At 1000 items, by rendering only the first 10 items,
the data loading and UI rendering times combined take shorter than 5 seconds

on all configurations.

72

0
V4
h
0.

C
0

30

$3

C
0 10
FA2

C14

C14

La,

q
CO,

cc
LO



3. PUBLISHING DMrA

Windows XP SP2, Pentium(R) 4 CPU 2.53GHz, 1.00 GB RAM

Rendering All Items

U Data Loading IS UJ Rendering

Rendering First 10 Items

3 Data Loading 6 UI Rendering

'10 10

FA 35 -A 3 '5
c c
o 3 050
u u

20 20

10 10

S 0 00 1500 2000 2500 S50 100 1550 2000 2500

items items

N Data Loading 6 UI Rendering

60

50

45

40

P 35
V
o 30
u

FA 25

20

300 1000 1500 2f00 2500

items

U Data Loading NUI Rendering

50

*32

0

o,)c.(j 500 2000 250

items

60

50

0
x

IC

c0

x

0

73



3. PUBLISHING DATA

Rendering All Items

250

--E- IE7
- Firefox 2 (Win)
+ Firefox 2 (Mac)
*-- Safari 3

S200()

S15 00
00

E jf f --U-

---- ----

1000 1500

items

Rendering First 10 Items

2500

-IN- IE7
--+-- Firefox 2 (Win)
-+- Firefox 2 (Mac)

. Safari 3

~-0u U ---*-----------4-------4-.----------.-.----4

7Z4~

1000 1500

items
2000

U U

2500

Figure 3.17. The times taken to filter down to 3 items from the same initial

configurations in Figure 3.16. By rendering only the first 10 items initially, the

filtering times on all configurations can be reduced to below one second even for

exhibits containing 2500 items in total.

74

-0

------ - . , --

2000 2500

iA 2000

0

E 100

.. ........ -



3. PUBLISHING DXIA

3.5.2 Usage

Eight months after Exhibit 1.0 was released, server logs indicate that more than
800 web pages link to the Exhibit API. Note that deploying Exhibit as a Web API
serves two purposes: letting Exhibit authors do away with downloading and setting
up software as well as allowing us to track actual usage of Exhibit through referrals
in our server logs.

Table 3.1 shows usage of Exhibit at several top level domains. Many of them
are attempts to follow a tutorial for creating exhibits. Some are broken and aban-
doned attempts; some are duplicate versions of the same exhibits; and a few are in
foreign languages which I do not understand.

It is very difficult to categorize the rest as they are very unique and different
from one another, as much as existing web sites are unique. An early attempt to
group them by topics is shown in Table 3.2. Note the many esoteric topics that
form the long tail distribution. Even within a single topic such as "people" there
is diversity, ranging from university presidents, to army officers, to tavern keepers.
These exhibits can contain as few as three items, to as many as 1,700. A few have
been well designed visually, many have layouts and color themes copied off from
other exhibits, and the rest are bare. Out of those 700 or so pages, 175 make use
of the timeline view and 123 of the map view.

Figures 3.18 - 3.27 show ten exhibits created by real Exhibit authors. Figure
3.18 shows an exhibit that has been created by someone who claimed in an e-mail
message to me not to be a programmer. Even though there is plenty of informa-
tion online about music composers, he still felt compelled to create a "database" of
music composers.

Figure 3.19 displays information about historical figures. It is meant to be
classroom materials for grade six. Even though the same materials are available
elsewhere, this teacher wanted to present them to his students in a different way,
perhaps to match the rest of his own curriculum. Similarly, a Charmed TV series
fan put up Figure 3.20 even an official episode guide exists.

On the other hand, the information shown in Figure 3.2 1-information about
someone's ancestors-will unlikely be published anywhere else, as it is very per-
sonal information. Similarly, the data about sweet products of a small Spanish shop
shown in Figure 3.22 is unique.

Figure 3.23 shows an exhibit of banned books. By making it easier for end us-
ers to publish arbitrary data, Exhibit makes such information, shunned by official
sources, more likely to see the light of day. From this perspective, Exhibit serves as
a tool for empowerment.

Exhibit is also found to be a useful organization tool thanks to its faceted brows-
ing and flexible visualization features: Figure 3.24 shows information about little
league games and practices. Several tabular views are configured to show the same
data differently, perhaps to different groups in the exhibit's target audience. The
four digit numbering scheme in the events' labels indicates expected long-term
use.

75



3. PUBLISHING DATA

More interestingly, Exhibit has been found useful even by programmers. The

programmer responsible for implementing a browsing interface for the learning

resources in the Language Learning and Resource Center at MIT chose Exhibit

over building his own web application and have made several exhibits, including

the one shown in Figure 3.25.
Similarly, a database researcher has found it easier to make an exhibit of his

publications, seen in Figure 3.26, than to build his own database-backed publica-

tion site.
Finally, semantic web researchers have turned to Exhibit as a means to display

their data (Figure 3.27), especially because they have no tool to display their data in

such a usable and useful manner.

3.6 Summary

This chapter explored several ideas that made publishing data to the Web in brows-

able and reusable forms easy for casual users, those without programming skills.

Embodying these ideas, the lightweight publishing framework Exhibit has let a few

hundred people create richly interactive web sites with maps and timelines.

76



3. PUBLISHING DATA

exhibit count: item count
................ ................. .. ...... -........ .... ....................... --............

181 2647.
.............................................. ............................... -................ ...............

6: 2517.
..... .................................. ............

5: 477
41 899.

............... ............. .... .............. I
.......... .................................. ............. 1 2 3 7 .

3. 105.
3 162........ ...... .. ...... .... ........
3 128
21 957:........ ....

..................... ... .. .............. ... ........ ... 3 1 7 :
.......................................... .......... ................ : ........... ............

2: 127;
2 97:... .. ..... .... ..............
2: 12

441:
.................. .......... I .............. ........... ...............

1 280:........................... ...................... .............. ..............................................
............. ............... ...

U 203:.............. .......... .... ................. ........... ...................... -
1 97:
1 97................................... ................................. ......................................................

............ ........................................ .............. ...................... ..........................

........... ....................................................... ....................................................
.......... ... ........... - ........... ........................ ....

551
'50:

..................... .......... ............ .......... ... _5 0 .:
................. ....... ....

................................ ......................................... ...... ...................................................
............. ..........

i 24i
F 24

.......... .....................
......................... ................. ....................... ..................

................ ............. 1 4
1: 13:

81
L 71

.............................. 1 5

................... .................. ............... ................

P P A ........... ....... ...................
Dublications

te.scientific- ata-.......................... ..........
,photos-

assroom materials
:engineering timetables
.products ............. ...........
M ovies ... ... ..... ...
sports....................
events
Presentations
p ro j e c ts .................. .............................
;web sites...................books........... ............................................ ....................................:locations ......... .
T .......... .....
,,pers.onal.histories.play castings..............
gam es..... .................

......... .. .... ..............................................................
morld conffics...............
hqtels___
restaurants
M Q9-P As ..............................
.c a r s ............. ..............................
J i n k s ..................... ...............................................................

........... ...................
;breweries & distilleries
elections
activities

.......... .............
sounds.. ........... ... ... . ..... ....... .... .historical artifacts....... .............. ................
Characters
streets
eaijv cb.6504P..Perip.dsstate p or]pi.a.0................... ..................vocabuTary ... .. .... ... ..
.history ...... ..... .... .
materials
'documents
.wars-...................... ........... .................................

exhibit count
246.
215.

..... ........ ...... .................... ............91:
.............. ...........35.

20:............ ........................................
19;
18:
17:

......... .......... ..............
71

...................... ................. ..............
6
5
5

............. ............. ......... ... .... .......... ......... ..
................ ........................ 3 .

3............... ...... ...... ................................

2.
2

... ................I
......... ............................ .............I

.......... I
..........
V

.......... ........... ........... ............ ............... .........

........... .......... -............. .... ...........
........... ........ -

.TLD.,

:.edu

,.net........................
A...........

:.ca
.uk

in fo

:.ro

,.us

-.4 k ............

:.gov

.ar
au

.cz

u
............

...Jrit ..........
Is

i!.n.q
.pl
.1711
:.se.................

Table 3.2. A survey of real-world exhibits by topics

shows a long tail distribution.
Table 3. 1. A survey of real-world ex-
hibits by topics shows adoption in many
top level domains.

77



3. PUBLISHING DATA

M~usk Composer Researc! Databag eor Al0 Eras

* tt /vwruiemg omE~~/opsr~m

Music Composer Research Database
The information in this database Is intended to be a starting point for research and study into
the great composers of classical music.

The information about each composer is provided in a clean, visual format that will help you see the
relationships between the various composers of the Medieval Period, the Renaissance, the Baroque
Era, the Classical Era, the Romantic Era, and current Twentleth Century music. For more detailed
information on how to use this database please visit the instruction manual at MusicEdMagicrcom

Ads by Ggg& Dyvon Farm iy ty 30Mrset Gareat H 01T ealoN, _,

VIEW TIMEUE - VIEW ALL INFO - MAP PLACES OF BIRTH - PLACE OF DEATH - PLACE OF BURIAL

64 items

Only 55 can be plotted on the imelie.

-D

Search

Ads by G0409k

P y- ft Gtlda

Era
Baroque
cbgsi-a*

Ranarta U
T%*rth 1Cortury

Amweraw Fork

Blacifac Lmtreby
Cworz

BL-thCountry
AustkfBtsCOeiuy

Figure 3.18. An exhibit of 64 music composers from the eleventh century to the

present day The composers can be viewed on a timeline by their lifetimes, and on

maps by their birth places, death places, and burial places. They can be browsed

by the music eras, by their major genres, and by their countries of birth. Even

with all the information about composers already on the Web, someone still feels

compelled to create his own research "database" of composers.

78



3. PUBLISHING DXIA

<1666 1616 &~d. 601.

Important 6th Grade SOL Figures pore
I Journalist

This is more than a web page. This is an interadive site that allows you to manipulate and sort the data with Patriot
just a dick or two. If you'd like to see an example of the page in use clck here Philosopher

I.Poet
TABLE e DETAILS * PHOTOS a BIRTH PLACES * SITES OF DEMISE * LIVES

2 Politician
9People tot ----- - 6 President

as Civil War

Colonial
4 Exploration

New Nation

6 Revolutionary War

to o

Figure 3.19. An exhibit of 19 important figures in history that serves as edu-

cational materials in a grade 6 classroom. Even though the same materials are

available elsewhere, each teacher might want to present them to their students in

a different way, adding personal insights that match the rest of their curriculum.

79

iittp:l byrdmiddle.orgjsolht,.nI



3. PUBLISHING DATA

INatsed TV S.e (pitd" (2d'

. .tp e I ..w story hsrms. om/t.ser.eshtm .

C.I,
..................................... ........... I................

S" Chrms hom Charmed TV Series Episode Guide
See epsode details of Charmed, your favourite V series, right here. Ckk on the options to change the nformation being shovm on the

Chareind Episode Guide *
Charmed Tlmeilne

Charmed Series Auctior items
Charmed Series Links
Cried TV Litings

Charmed Series i Quiz

Chiermed Seaes 2 Quiz

Rate this page
4Exodiens

CGood
C Fair
Cpoor

pagt Therds a lot of information on this pe, so please allow time for the details to load.

178items to
sorted by: episode; then by., . grouped as sorted * : show duplicates

Something Wica this Way Comet Season: 1 1 Episode 1.01 1 Date 01/04/2000
Thetiffdf sist sare Iwated and desvfer rhmpe
mts* to ther dse.

I've Got You Under My Sida I Season: 1 j Episode: 1.02 1 Date 08/04/2000
P*WJsno togo h, a d t now$he &a m . Phoebemt&aphotographer
&thertafya utb-setg denon warlnmothtiy

Thanks for Not Moqpineg I Season 1 I Episode 1.03 1 Date: 15/04/2000
ThesstaerabsentWler anpars etvg a anti-teWwavAt And that ne*/iotws ae

towto dt&hbe awk ofoacts

Dream Sorcerer I Season: 1 I Episode: 1.04 1 Date. 22/04/2000
Pmuehasrxrtl dw m ons ofaman dvaatwJtg to A# hr ad he nsrvdon

Dead Man Dating I Season: I Episode: 1.0 I Date: 29/04/2000
A ghost &0s Ppfr to eree ha bAdy z burad1 teom hknt from a Lw5 demon.

6 The Wadding from Hel I Season: 1 I Episode: 1.06 I Date: 06/05/2000
Pw iettawh a nOwlg b&tthen thebM* ks&rddat4A for af Sraflg

l-, AgentiBrody
AkNdanist
Andras

2 Andy
2 Angel of Death

Angelof Destiny
Angel

221
2 2
22 3
22 4
23 S
t3 6

1.01
1.02
1.03
104
1.05

of Fortuine

] I
Figure 3.20. An exhibit of 178 episodes from the Charmed TV series.

80

....... .... .... .....lb;i ....... ...... - --- .......... ...........................



3. PUBLISHING DATA

S tti'p Jww.gageandtm.com/famity historylancestors.ht'-

Ancestral Map and Timeline
This Is a map and timeline showing how the Ives of my ancestors overlapped.

TIMEUNES - BIRTH PLACES - DEATH PLACES - VIEW ALL INFO

82 It,,,
5 roults out of 82 canrot be plotted.

SHoahkies 4 Leslie 9 Linebaugh Q Rilay Q Rising Q sharp 9 Snapp

TimWino: The top peanf s*ws ancertom' Hein
oo the decades The bottom peneishows tham
oes aefnties. Cick and drng to go back end

fortt tlwough htory. Cick onn ai vna to get we
W40 abowtthe punom
View Al Info; Cick to get a tWb1s view of t
ancetml 0bf.
' ane. below: Cick ot *. optbre hebw to s"the

tollite H Id ret s anoSd ancornin to that c &

Last Namw
Anderson
Baad

n Barker
Boriand

PC 1 Borrowmnan
_ Bumside
IChippey

2 Harman
15 Hotchkiss

SLeslie
Algnm, Linebaugh

Riley
Rising

Nter Sharp

Birth Region
mixed 2 Connecticut

|Utrnca. - _

Figure 3.21. An exhibit of 82 ancestors containing a timeline and maps of

birth places and death places. The people can be browsed by their last names,

lineage, birth regions, and death regions. The information found in this exhibit

will unlikely be on any other web site. That is, even with Wikipedia and Freebase

growing in size everyday, some information will just never find its way into such

public repositories.

81

..........
ej

4-1



3. PUBLISHING Dxx

http wbubtyso ncomlewdro rssBtm

____CATALOGO DE PRODUCTOSK

27, na.o 77 prododos
7 Sarra ?tasMue ordena

4 Cabello
1 Cremas Balo (27)

36 Jab6n

Jos por: catleorL v suwcatcgU ; LG p-..- . agrupar segun orden mostrar dup codos

Aoe.tUs a&6Idos 4e baIera (4)

4 Acoitb 8o&odm do buAira
a, Baho" de espuma s6idao
is Staques de jabn
4 Bombes de Woho
4 Ceemr e 96idO
1
9
9..
3
A.

Cremas at peso
Discos de jaboo
Llngotes de jab6n
Tratamientos de Seftra
Trufas

Buenas noches

Bow do empum. s6lodos (a)

5 Afrodislaco
I AMdsk.
1 Atowdtlitco
2 Anti-Inflamatorto
2
2
1
z
2
1

AnUDiO
ARotlarrugas

Awtibaierus
Antckada
Amtkcaapa
AftkUitco~.

$-nna estni

1 AntIdeprosIvo
12 Antiedad

1 Anitgrasa
1 Athongos

Figure 3.22. An exhibit of 77 sweet products in a Spanish shop. For such a

small business, investing in a full three-tier web application is costly.

82

Cocohetado

Lavanda

................



3. PUBLISHING DATA

S r C yracuvse Unievrity Library :: S ed Bok Week C3

-e e 7 *N:ire bra s.eu/inonaionbannedtmosIextithrt nii j t C-

Celebrate Your Freedom - Read a Banned Book
Syracuse University library observes Banned Books Week, September 29 - October 6, 2007, as a part of the
LLNew' e .scring _4 Public Cpnmm racapns year-long First Amendment Celebration. For more information
about Banned Books Week, contact Tasha Cooper, nac!oopq9s~r.edy or visit the resource pages hosted by the
American Library Association.

THUMBSAILS * DETAILS - TIMELINE

11 CternsvtItems : ------

sorted by: type; then by .. grouped as sorted * C show duplicates

Adult Book

sVwu a&#"y
by Mark Twain and

Lester Ralph
Banned/Challenged:

Illustrations

UJnr

Lo~ta
by Vladimir Nabokov
Banned/Challenged:

Sexual Situations

Dy oMnwrmwun
Banned/Challenged:
Sexual Situations,

Strong Language, and
Racism

type
Adult Book

- Children's Book
Essay
Pamphlet
Play

reason
Illustrations

I Political Views
Racism

2 Religious Views
Sexual Situations
Strong Language

1ear

1"48
1849
1906
1955
1962

Bir Ubrary

Bird Library Special
Collections
MLK library

Figure 3.23. An exhibit of I1 banned books. Certain materials may never find

their way into official discourse. Empowering end users to publish is even more

important a cause.

83

Children's Book

Dome

..........

..... ................................................................



3. PUBLISHING DATA

nh am Lttie Lague FEnts iselect Pracice and Care Table view

hnp:I/www.cheltenhamrlttleleague.

Cheltenham Little League Events

+ Instructions Select your team in 'AIlTeam.Events" below to get all of the events for your team

Date Sport Event Alljeamvents

01/02/07 baseball game CLL12

01/03/07 softball practice CU20

01/05/07 t-bat tournament CLLS

01/09/07 CLLA

01/10/07 EAlZ
01/22/07 ' EM
07/01/07 2JYM 4

PRACTICE AND GAME TABLE * UMPIRES TABLE - GAME, PRACTICE AND UMPIRE TILE

10 tem CAl

Label. Date Start Sport Event Location Field Home ' Away Practice All Teams

0001 01/02/07 09:00 baseball practce CAA CAA1 CLLIZ CLL12

0002 01/02/07 10:30 baseball practice CAA CAA3 CLL5 CLLs

0003 01/03/07 1i:O softball game CYRL. OYR1 CLL12 EM EAA and
CLL12

0004 01/03/07 13:30 t-bal 1 practice OYRLL OYR1 CLO CL16

OD05 01/05/07 14t00 softba game EA EAW EA12 CLL12 CLL12 and0005 JWSIEA3 I.AIECL12

0006 01/09/07 10:00 t-alt practice jYRLL OYR2 OPEN OPEN

OW 01/09/07 11:00 softball g CAA2 CLLS CLL6d

OWS 01/10/07115:30 baseball practice CAA CAA2 OPEN OPEN

0009 01/22/07 1400 softball tournament CAA I CAA1 CLL20 JYA4 JYMand
CLL20 :

0010 02/01/07 14:00 softball practice OYRLL OYR4  CLL6[CL6_

Done 0

Figure 3.24. An exhibit for organizing little league sport games. It is filled with

acronyms and is tailored for a very small audience, to whom it proves useful.

84



3. PUBLISHING DMxA

*Q htto:Jt/#arc.mt.edu/materialscatabcue

anI

SEARCH:

Arnsos oR DnECToRt

ABC News

Acunan, Andit
Adams, Thomas and
Kuder, Susan

4 Akin, Fatih
Alarcon, Ruiz de

Alassane. Mustanha

867 um=

CAT. No.

CH 077
FR 175

TrrE.

2046

A BATONS

MEDLAPTYPE LANGUAGE AREAS

I Audio CD fl 69
-4 Cassette 23 BilinguaLBicutura 64 Culum

CD-ROM Studies -74 Fms
Conmuterprogran C Films ;Cuture

I; DVD U ESL F Cuk
4 To 4:' FrenchText only 1to FIdE=

A -,rvmmCuhtwumehsCuliuxe
Video CD Gernan Film s

! I Italian

LLARC CATALOGUE * SHOW LONG DESCRIPTIONS

AAsts Aumuo/ThDaRaoa MEDIA COMs

Films Wong,Kar Wai DVD I

ROMPUS I annna Stsdy; FnntenberwGilbete Cassette
tectums, Speeches.

Figure 3.25. An exhibit of 867 teaching resources in the Language Learning

and Resource Center at MIT Its author is skilled in server-side programming but

he still finds Exhibit a quick way to build a browsable interface for his data.

85

A'.
'0'. .......... -..........................

,



3. PUB,1I1HING DATA

N I htp /imwei 't rdL/dfla/ /dsplypubs iiiI

Daniel Abadi's Publications

6 Publications tc publicationtype
iConference Paper

sorted by: year, publicationtype, and Yonti; then by. - grouped as sorted -2 show duplicates n p

Journal Article
2007 (5) 1 Technical Report

Thesis
Conference Paper (4)

VLDB (2)

Scalable Semantic Web Data Management Using - - venu
Vertical Partitioning 2 CIDR
Abadi, Daniel J., Marcus, Adam, Madden, Samuel R., and Hollenbach, Kate 1 ICDE
tnVt.DB 3 SIGMOD

Efficient management of RDF data is an important factor in realizing the VLDB
Semantic Web vision. Performance and scalability issues are becoming VLDB Joumal
increasingly pressing as Semantic Web technology is applied to real-world
applications. In this paper, we examine the reasons why current data
management solutions for RDF data scale poorly, and explore the fundamental
scalability limitations of these approaches. We review the state of the art for
improving performance for RDF databases and consider a recent suggestion,
property tables'. We then discuss practically and empirically why this solution
has undesirable features. As an improvement, we propose an altornative yer
solution: vertically partitioning the RDF data. We compare the performance of 2 2002
vertical partitioning with prior art on queries generated by a Web-based RDF - 2003
browser over a large-scale (more than 50 million triples) catalog of library data.
Our results show that a vertical partitioned schema achieves similar performance 2004
to the property table technique while being much simpler to design, Further, if a 2005
column-oriented DBMS (a database architected specially for the vertically 2006
partitioned case) is used instead of a row-oriented DBMS, another order of 6 2007
magnitude performance improvement is observed, with query times dropping
from minutes to several seconds.

[PDF 246 KB
authors

1 it.AbadiLDanletL.

Figure 3.26. An exhibit of a database researcher's publications, who finds it

easier to use Exhibit than to build a database-backed web site for his publications.

86



3. PUBISHING DATA

114 http /jaasw 3org/200l /swsveo/puauc/LseasesOverviewslrmi 7 -

Tehnloy nd$otySe mantic Web

Semantic Web Education and Outreach Interest Group:
Case Studies and Use Cases
Case studies include descriptions of systems that have been deployed within an organization, and are now being used within a production environment- Use cases
nclude examples where an organization has built a prototype system, but it is not currently being used by business functions.

The list is updated regularly, as new entries are submitted to the interest Group. There is also an R551.0feed that you can use to keep track of new submissions.

22 entry
sorted by: entrytype and labels; then by... ( grouped as sorted

Case study (13)

1. An Inteltilent Search Engine for Online Services for Public Administrations, Municipalty of Zaragoza (Case
study)
Contributed by: JesOs Fernndez Rutz

2. An Ontoogy of Cantabria's Cultural. Heritage, Fundaci6n Marcetino Botin (Case study)
Contributed by: Francisca Hernandez

3. Composing Safer Dnw Regimens for the Individual Patient usir Semantic Web Technolovies,
PharmaSURVEYOR Inc. (Case study)
Contributed by: Erick Von Schmeber

4. Enhancing Content Search UsIna the Semantic Web, Siderean Software and Oracle Corporation (Case study)
Contributed by' Mike DiLascic and Justin KesteLyn

5. Geographic efeentng Framework, Ordnance Survey (Case study)
Contributed by: Catherine Dolbear

6. improving the Reliability of internet Search Results Using Search Thresher, Segala (Case study)
Contributed by: David Rooks

7. Reaw Time Sugeestion of Related ideas in the Financiat Industry, Bankinter (Case study)
Contributed by: Jose Luis Bas Unbe

8. Semantic Content Description to imorove discovery. Vodafone Group Research & Development (Case
study)
Contributed by: Kevin Smith

9. Semantic Web Technology for Public Health Situation Awareness, School of Health Information Sciences,
University of Texas (Case study)

Done

Search facets:

Application
2 828 integration
S business organization

cultural heritage
8 data integration

eGovernment
geographic information
system

Country
&elgium
China
France
india
reland

italy
6 Spain

Institution's Activity area
aeronautics
automotive
financial institution

..... /..

Figure 3.27. An exhibit of Semantic Web case studies and use cases. Exhibit is

making Semantic Web data useful by making it viewable by end users.

87



3. PUBLISHING DATA

88



4. EXTRACTING DATA

Just as Exhibit has wrapped up much complexity in the conventional three-tier web
application architecture in order to making data publishing easy enough for casual
users, to bring web data extraction technologies to casual users we must also wrap
them up in a ready-to-use package.

- First, some set of commonly needed features such as sorting and filtering can
be provided out-of-the-box.

- Second, to keep the user's visual context from before to after extraction, and
to take advantage of already well designed visual elements from the original web

page, the presentation elements in the original page are reused as much as possible.
In particular, when a data record is extracted from a part of the original page, that
fragment of the page is also extracted so that in order to show that data record later
on, we can simply show the fragment again. The rest of the web page, which does
not contain data to extract, is kept as-is.

- Finally, direct manipulation "handles" can be inserted right into the web
page, next to each data value, so that the user can essentially grab a data value and
interact with it, such as invoking a sorting or filtering command. This application
of direct manipulation lets us do away with extracting field labels or with requiring
the user to label the fields herself.

These ideas have been built into a browser extension called Sifter that can
augment a sequence of web pages (typically search result pages) in-place with filter-
ing and sorting functionality while requiring from the user as few as two clicks.
The remainder of this chapter first describes the user interface of Sifter from the
extraction phase to the augmentation phase. Next, the data extraction algorithm is
explained. Finally, evaluations of the algorithm and the user interface are reported
and discussed.

89



4. ExiRACTING DATA

4.1 User Interface Design

User interaction with Sifter consists of two stages:
- extraction, when the system ascertains which parts of the web site to extract,

and gives the user feedback about this process; and
- augmentation, when the system adds new controls to the web page and the

browser that allow the user to filter and sort the extracted items in-place.

4.1.1 Extraction User Interface

Sifter's user interface resides within a pane docked to the right side of the web
browser (Figure 4.1). When the user first visits a web site, the Sifter pane shows
a single button that, when clicked, triggers the detection of items on the current
web page as well as links to subsequent pages, if any. An item is, for example, a
product as in Figure 4.1. Items are highlighted in-place, and the total number of
items spanning the detected series of pages is displayed prominently in the pane. If
the system has incorrectly detected the items or the subsequent-page links, the user
can correct it by clicking on an example item or a subsequent-page link in the web
page. Once the Continue button (Figure 4.1) is clicked, the extraction process starts
and Sifter pops up a dialog box showing the subsequent web pages being down-
loaded. Over all, getting the data extracted usually takes two button clicks.

During the extraction process, Sifter locates all items on all the web pages,
extracts field values from each item as well as its HTML code, and stores each item
as a record in a local database. For example, the local database accumulated from
extracting the 7 pages of 59 items in Figure 4.1 would contain 59 records, each
having one text field (title), two numeric fields (price and percent saving), and an
HTML code fragment representing the entire item. This code fragment is used as a
rendering of the item when the result set is filtered or sorted.

4.1.1.1 Making Corrections

If the items are detected incorrectly, the user can click on the Locate Items but-
ton (Figure 4.1) and the Sifter pane will change to highlighting mode (Figure 4.2).
In this mode, as the user moves the mouse cursor over the web page, the system
inspects the smallest HTML element under the mouse cursor, generalizes it to other
similar elements on the page, expands those elements to form whole items, and
highlights these candidate items with translucent overlays. When the user is sat-

isfied with the highlighting, she can click the mouse button and the Sifter pane
switches out of its highlighting mode.

There was consideration to eliminate the extraction UI altogether and provide
a correction UI after the extraction process has finished. However, as the extraction

process may be lengthy and not completely reliable, providing a preview of what

the system is going to do makes the wait more acceptable and gives the user a sense
of greater control over the system.

90



4. ExiuRAcTING DATA

A single button click triggers the
detection of items and pages.

0
Items are detected automati-
cally and then highlighted by
translucent overlays. Their
indices and count are shown.

0
Subsequent pages are auto-
matically detected. The number
of pages is used to estimate
the total number of items.

.... .. ..
/^

Pens &Desktop AshfordC

s .rttror Beuwt&Mworc____r

" 4" ''54~763items
Wth Dmaondfs flood Voot g Iow.My FHoeScoots $5wmghascs Ftgorm. s Pn& fe top ASoftet d

C- 5000 5250 500 Pad. FEns Borbsy<,Moseo Mao bm TAGQenM Coron Oaaue&Me

e - o - -eoute te

2510054 TE(5) 4 0 5 2y CSo H ttoasm LrtmeSoa k~ste a sor ges yslf

Ot ao Thur - - --- - turod 1e0. - - - o

Eoflreu6wOitenmosoo

2 ceA~fiturw mat-s a7igw&EDP ~ ~ ~ ~ ~ ~ ~ * Prad R*md Gzfr AmrPaa trsSucase

\ o .aoo15L rHY.Tt6 ror O. nP[.S 11,00 ,[,o., S13'.00

Y. -I
eM or I Z T V Item 3 O U

________ 0- N+~444N4,44 _ __ _ _ _

Item 4 of 9 Item 5 of 9

0

A second button
click starts the
extraction

G=tA 'K F process.

91

01

a2

Figure 4.1. Sifter provides a one-click interface for triggering the detection of
items and pages. One more button click starts the extraction process.

Item 6 of 9 1

2..M;e 4



4. EXTRACTING DATA

Candidate items are highlighted
and their indices and count are
shown as watermarks.

Position of mouse
pointer helps identify
items to be extracted.

The whole Web page is shown in miniature for an
overview of the highlighted items, bringing atten-
tion to misses evident as whitespace gaps, if any.

NM

Figure 4.2. Sifter's highlighting mode provides an interactive mechanism for the

user to correct the automatic detection of items by hovering the mouse pointer

over the web page and clicking once the items have been highlighted correctly.

4.1.2 Augmentation User Interface

Figure 4.4 shows Sifter in action as the user makes use of new filtering and sorting

functionality. An asterisk is inserted after each field value in the web page. When an

asterisk is clicked, a browsing control box is displayed in the Sifter pane, containing the

filtering and sorting controls for that field. Hovering the mouse pointer over either

a field's asterisks or its browsing control box highlights both synchronously, so that

the user can tell which browsing control box corresponds to which asterisk, and

hence, which field. By keeping the original presentations of the items, Sifter can

provide affordance for applying direct manipulation techniques on the field values

without ever knowing the field labels.

As the user invokes filtering and sorting commands, Sifter dynamically rewires

the web page to show the set of items satisfying the current filters in the current

sorting order, as if the web site itself had performed the filtering and sorting op-

erations. Sifter does so by removing the HTML fragment of each item on the page

and then injecting into the same slots (where those removed fragments previously

fit) the HTML fragments of the items satisfying the current dynamic query. These

HTML fragments are retrieved from the local database, so there is no need to make

a request to the original site when the dynamic query changes.

92

................................7

______________ ~.. CIC(K your ?pouse button it the items have
.________ .. _........3-F__S5, been pighlighted CorredtY.

'Of 9 2 of

t~ "et

--- -- -
V'~i

I



4. ExTRACTING DAtA

Items satisfying the current dynamic
query are inserted into the original
Web page as if the Web site itself
has performed the query.

Extraneous content (e.g., spon-
sor links) is faded away to avoid
confusion and distraction.

Sorting controls
for a field

Paging controls for the
whole collection.

Figure 4.4. After extraction is complete, the Sifter pane hosts filtering and sort-

ing controls, which when invoked, re-render the resulting items inside the same

web page (without needing to contact the original web server again).

Since exploring the collection of items may involve clicking a link to view de-

tails about an item, Sifter stores the query state and automatically restores it when

the user returns to the augmented page.

4.1.2.1 Filtering

The filtering controls for different field types (text, numbers, date/time) manage

the field values differently. For numbers and date/time fields the values are clas-

sified into ranges and sub-ranges hierarchically, while for text fields the values are

listed individually. Selecting a value or a range filters the current collection of items

93

7

Pages]s

Mar 70 2006 , Sdert -- it 86 e:e

X.\ False Impression by Jeffrey Arhr*(Hardcover - bar7 20e eon

Sae4H15r'over

Buy new: 52L96 4$163)' u & new from$2.40 Ualy ,p n 24

The Eleventh Commandment : A BakeS by Jeffrey Archer'

(Paperback' - ' May 1, 1999 ) --

(c~~h' ~ Used anew fro$0.01' aou~a

'.. ..... a .a m p a ge. .th. b a'. . . .. . .. . 1.

I' 20 d 40

- y 2005 2

Kane & Abel by Jeffrey Archer C(Paperback - Aug 1993

used anew frmyO.i' \

An asterisk is inserted after each field value. Clicking on
an asterisk adds a browsing control box to the Sifter pane.
Corresponding asterisks and boxes are co-highlighted when hovered.



4. ExTRACTING DATA

down to only those having that value or having values in that range. Multi-selection
in a single field adds disjunctive query terms. Filtering on more than one field
forms conjunctive queries. Selecting and de-selecting field values or ranges in a
browsing control box updates the available values and ranges in other boxes as in
any dynamic query interface [67].

Note that filtering in Sifter is equivalent to faceted browsing in Exhibit (the
different terminologies are an artifact of the evolution of my research). Whereas in
Exhibit each facet has a label (taken from the corresponding property's label or as-
signed explicitly by the publisher), in Sifter none of the browsing control boxes has
label. Furthermore, in Exhibit, a facet's class (list or numeric range) and placement
are determined by the publisher who knows the data and is interested in making
her exhibit look and behave however she feels appropriate. In contrast, a Sifter
user does not know a web page's data as well and is only interested in sorting or
filtering the items therein. For that reason, Sifter takes a more utility-focused than
creativity-focused approach: the user is not given control over how the browsing
control boxes look and their classes (list, numeric range, or date range) are chosen
automatically as much as possible.

4.1.2.2 Visual Context

While the user is using Sifter's filtering and sorting functionality, the rest of the
original web page is kept for three reasons:

" To maintain visual context so that the user does not have to orient herself in
a completely new view of the same information she was seeing before invok-
ing Sifter.

- To avoid throwing away vital information that helps the user understand the
items. For instance, the fact that the sale prices are only applicable to students
might not be embedded in every item's presentation but is isolated in another
part of the page. It would be hard to extract that piece of information.

- To make features offered by the original page still accessible to the user.
However, while preserved, the rest of the page is faded out to visually indicate a
disconnection between the features in the original page and the items under Sifter's
control. The original status indicators (e.g., number of items, number of pages)
are faded to imply that they no longer apply to the items inside the web page. The
original pagination, sorting, and browsing controls are faded to imply that invoking
them would switch out of Sifter's augmentation mode and let the user interact with
the original web site.

94



4. EXTRACTING DNIA

4.2 Data Extraction

Given the user interface design described above that requires minimal user inter-
vention during the extraction phase, this section explains how the data extraction
algorithm is designed to support that interface. The extraction algorithm consists
of three steps: locating items to extract; identifying subsequent web pages; and
parsing useful field values from each item.

4.2.1 Item Detection

Let us posit that for many sequences of web pages containing lists of items (e.g.,
search results, product listings), there exists an XPath [38] that can precisely ad-
dress the set of items on each page. Thus, our item detection algorithm involves
deriving such an XPath. (The cases where each item consists of sibling or cousin
nodes [78] will be addressed in future work.) Let us also posit that this XPath can
be computed just from the sample items on the first page in a sequence of pages.
These assumptions are expected to generally hold on database-backed web sites
that generate HTML from templates as opposed to hand-writing their HTML.

The algorithm is based on two observations. First, in most item collections,
each item contains a link, often to a detail page about the item. So, links are likely
to be useful as starting points for generating hypotheses for the XPath. Second, the
item collection is typically the main purpose of the web page, so the items them-
selves consume a large fraction of the page's visual real-estate. This gives us a way
to choose the most likely hypothesis, namely, the one that uses the largest area of
the page.

The item detection algorithm starts by collecting all unique XPaths to <A> ele-
ments on the current web page. For each element, its XPath is calculated by string-
ing together the tag names of all elements from the document root down to that
element. CSS class names are also included. The resulting XPath looks something
like this: /HTML/BODY/TABLE/TBODY/TD/DIV[@class='product'] /SPAN/A. Each
such XPath is general enough to cover more than just the original <A> element,
but restrictive enough to address only those elements similar to it. This is called the
generalization phase, as illustrated by the straight arrows in Figure 4.3.

Each of these <A> XPaths addresses a collection of <A> elements that could
correspond one-to-one with the collection of items to be detected. We wish to find
which of these <A> XPaths corresponds to a collection of items that take the larg-
est amount of screen space.

Next, each <A> XPath is expanded to fully encompass the hypothetical items
that the <A> elements reside within. To expand an XPath, we repeatedly append
/. . to it (see the curved arrows in Figure 4.3). As /. . is appended, the set of HTML
elements that the XPath addresses gets closer and closer to the document root. As
long as the cardinality of that set remains unchanged, each HTML element in that
set still resides spatially inside a hypothetical item. When the cardinality of the set
drops, the XPath has been expanded too much such that it now describes the par-

95



4. EX'RACTING DATA

/HTML/BODY/TABLE/TBODY/TR/TD/DIV[@class='product']/S

_-4 - 4- 4

~urn~
/

/

/

/

starting
element

F _
[I j

gAN/A/.......

generalization

Figure 4.3. Given a starting HTML element, an item XPath is constructed by

generalization to similar elements (straight arrows) and then expansion (curved

arrows).

ent node(s) of the hypothetical items. For example, in Figure 4.3, if we append

another /. ., the resulting XPath would address a single TBODY element rather than

two TR elements. We stop appending/. . just before that happens. The result is a

candidate item XPath.
Note that we append /.. rather than truncate ending segments because trun-

cation loses information. If the XPath in Figure 4.3 were instead truncated 4 times,

the resulting XPath, /HTML/BODY/TABLE/TBODY/TR, would have included the mid-

dle TR, which does not have a link inside and could be extraneous, intervening con-

tent. Using /. . guarantees matching only nodes that have the link inside them.

For each candidate item XPath, we calculate the total screen space covered by

the HTML elements it addresses. The candidate item XPath with the largest screen

space wins and is then used to add highlight overlays to the web page.

96

2. expansion
1



4. ExTRACTING DATA

4.2.2 Subsequent-Page Detection

Two heuristics are used to automatically detect subsequent pages. The heuristics

are run in the order presented below, and when one succeeds, its results are taken

as final.

4.2.2.1 Link Label Heuristic

Often, a web page that belongs in a sequence of pages contains links to the other

pages presented as a sequence of page numbers, e.g.,
Pages: 1 [2] [3] [4] [5] [Next] [Last]

Occasionally, such a sequence shows not the page numbers but the indices of the

items starting on those pages, e.g.,
Items: 1-10 [11-20] [21-30]

This heuristic attempts to pick out URLs from such a sequence of linearly increas-
ing numbers. First, the text labels of all <A> links on the current web page are

parsed. Only labels that contain numbers are kept. They are then grouped by the

XPaths generated from the <A> elements. For each XPath, the numbers parsed

from the labels are sorted in ascending order. Only those XPaths with linearly in-

creasing sequences of numbers are kept. These final candidates are then sorted by
the lengths of their sequences. The XPath with the longest sequence is then used

to pick out URLs to subsequent pages. If there is a tie, the XPath whose sequence

increases at the highest rate wins. This heuristic fails if no XPath has a linearly

increasing sequence of numbers.

4.2.2.2 URL Parameter Heuristic

URLs of pages in a sequence often encode the page numbers or the starting item

indices as numeric URL parameters. For instance, Amazon.com encodes page

numbers in the page parameter and Yahoo.com encodes starting item indices in
the b parameter (Table 4.1). This heuristic attempts to detect such parameters so

that URIs to subsequent pages can be generated. The URLs pointed to by all the
links on the current web page are parsed to extract out URL parameters. For each

parameter that has numeric values, its numeric values are collected in an array
and sorted in ascending order. Then, only parameters whose values form linearly
increasing sequences are kept. These final candidates are sorted by the lengths of
their value sequences. The parameter with the longest sequence is then used to

generate URLs to subsequent pages. If there is a tie, the parameter whose sequence
increases at the highest rate wins. This heuristic fails if no parameter has a linearly
increasing sequence of values.

If these heuristics fail then the user can intervene and point at the link to
one of the subsequent pages (not necessarily the immediately following page). The

XPath of that link is then computed, which describes a collection of <A> elements.

Given such a collection of <A> elements, the following heuristic is used to pick out

the one that points to the next page.

97



4. ExTRACTING DATA

4.2.2.3 Next Page Heuristic

Table 4.1 gives some sample URL spaces of contemporary web sites. Pages in a

sequence might not differ by only one URL parameter which encodes either the

page number or the index of the starting item. In some cases, more parameters are

inserted (e.g., %5Fencoding=UTF8 at Amazon.com) and some existing ones are re-

moved (e.g., search-alias=aps at Amazon.com). In other cases, URL parameters

are not used at all (e.g., at Dogpile.com). Rather, some segments of the URL are

used to specify the current page. Worse yet, the whole URL of the current page is

encoded as a single URL parameter to another domain for some tracking purpose

(e.g., at Yahoo.com).
The next page heuristic sorts candidate URLs together with the current page's

URL and picks out the URL immediately "larger" than the current page's URL.

Simple string sorting does not work as page=1O will be "less" than page=9. Instead,

each URL is broken into fragments separated by /, ?, and &. Then the URLs are

sorted by comparing corresponding fragments that contain numbers. (This heuris-

tic cannot handle Yahoo's URL space as shown in Table 4.1.)

Amazon.com (search for "metallica")

http: //www.amazon.com/gp/search/ref=brsshs/103-8791841-3931026?search-
Page 1 alias=aps&keywords=metallica

http://www.amazon.com/gp/search/103-8791841-3931026?%5Fencoding=UTF8&keywords=metal
Page 2 1ica&rh=i%3Aaps%2Ck%3Ametallica&page=2

Dogpile.com (search for "haystack")

Page 1 http://www.dogpile.com/info.dogpl/search/web/haystack/l/-/1/-/-/-/-/-/-/-/-/-/-/-/-

http://www.dogpile.com/info.dogpl/search/web/haystack/21/
2 0/ 2 /-//-/1/1/l/

Page 2 off/-/-/-/on%253A1142948788129/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-/-
/-/-/-/-/-/-/-/-/-/0/417/top/-/Moderate/O/1

Yahoo.com (search for "piggy bank")

Page 1 http: //search.yahoo.com/search?p=piggy+bank&sm=Yahoo%21+Search&fr=FP-tab-web-
t&toggle=1&cop=&ei=UTF-8

r C-. v ]

1.,' /http%3a//search.yahoo.com/search%3fp=piggy%2bbank%26sm=Yahoo%
252

1%
2
bSe

Page 2 arch%26toggle=1%26ei=UTF-8%26xargs=12KPjglhVSt4GrmvmnCOObHb%255F%252DvjOZlpi3g5UzTYR6a9
RL8nQJDqADN%255F2aP%255FdLHL9y7XrQOJOkvqV2HOs3qODiIxkSdWH8UbKsmJS5%255FIppC

7
fdaXlzO4Edh

Lu3xdZvcEwddl%252DCKIGrnZrMAebJ%26pstart=6%26fr=FP-tab-web-t%
2 6b=l1l

EA I 1436416. 4 / * *http%3a//search.yahoo.com/search%3fp=piggy%2bbank%26sm=Yahoo%
25 2

1%
2
bSe

arch%26toggle=1%26ei=UTF-8%26xargs=12KPjglwlSrYe9mvinCOOb~b%255F%252DvjOZlpi298gfUcw7Ct

Page 3 db8wZsHdFKaMee27khE7c73zzVzoPFrx4lLLvKhaK6UAbWdU%255F9KP537Zco%255FblIfv
7
yHZF8ny4dx

2
bJh

NJ%252DxEnwUSzgO%255FG96gL9PZrI51h56MlamFqDYcL67GOa3P8trJbq2yZ4717PQqtGvrUp
4
fyPAxY%

25 2
D

U6xkfKiODxZKVmB6%252Ddtzhe%252DiJlwigB%252DQ5WgZqFw2DDMLDZ3WaL4660bkmfuYSNPN%26pstart=1
1%26fr=FP-tab-web-t%26b=21

Table 4.1. The URL spaces of web sites are diverse and opaque. They present

difficulties in determining the "next page" link given a page within a sequence

of search result pages. URL fragments that vary from page to page are in bold

typeface. Fragments that might specify page numbers or starting item indices are

underlined.

98



4. ExIRACTING DAIA

4.2.3 Field Detection

Field values within the DOM fragments of items can be picked out if what vary
among the fragments can be isolated from what are common among many of them.
To detect what are common and what vary, any tree alignment algorithm [54, 63,
71] can be applied to these DOM fragments. The result of the tree alignment is a
DOM tree template with some nodes marked as variable and some nodes marked as
common, or non-variable. The non-variable nodes are decorative elements, and
the variable nodes correspond to fields. Generic field names (e.g., "fieldO", "field 1")
are then assigned to the variable nodes in the DOM tree template.

After field assignment is complete, the template is ready to be used. The DOM
fragment of each item to be extracted is aligned to the DOM tree template. If a
node in the item is aligned to a variable node in the template, its text content is
extracted and stored in the corresponding field.

4.2.3.1 Embedded, Typed Fields

Often, a field value does not take up a whole HTML text node. That is, you might
not find a price field value "14.99" to be the only text inside a DOM text node.
Instead, you might find that the text node contains "You save $14.99!" To handle
such cases, the tree alignment must work not at the granularity of HTML nodes, but
at the granularity of tokens within text nodes.

Care must be taken when parsing "You save $14.99!" into tokens lest "14" and
"99" be split into different tokens. Splitting "14" and "99" apart will cause two
different fields to be generated; sorting or filtering by a single price field is no lon-
ger possible. Similarly, splitting "Published on March 29, 1998" into tokens must
keep "March", "29", and "1998" together as a single date token. In other words,
tokenization must generate typed tokens for numbers and dates so that sorting and
filtering on the corresponding fields will be possible.

A side effect of tokenization is that paragraphs of text (e.g., product review
comments, publication abstracts) can cause too many fields to be generated as their
tokens don't align. To solve this problem, in the field assignment phase, if there are
too many variable tokens that are siblings of one another, then their immediate
parent is assigned a field name instead.

99



4.3 Evaluation

Sifter has been tested for robustness in its extraction algorithm as well as for usabil-

ity in its user interface. The two evaluations are presented separately below.

4.3.1 Evaluation of Data Extraction

Sifter's extraction algorithm has been tested on 30 collections of items from 30
common web sites, including Amazon, Best Buy, CNET Reviews, Froogle, Target,
Walmart, and Yahoo Shopping (Table 4.3). These collections contain from about

25 to 450 items each, spanning from two to 25 pages, with each page containing

from nine to 50 items. The results are shown in Table 4.4.

The item detection algorithm worked perfectly on the first pages of 23 col-

lections (out of 30, 77% accuracy). For the failure cases, Sifter's item highlighting

tool was used and four cases were corrected. Overall, item XPaths could be found

for 27 of the 30 collections (90%). In the remaining three cases, items consisted of

sibling nodes, which we do not currently handle.

Among the 30 sites, 24 (80%) displayed sequences of page numbers, also called

page tables of content (rather than just "Next Page" links). The Link Label Heu-

ristic detected 13 sequences, and the URL Parameter Heuristic detected two ((13

+ 2)/24 = 63%). The Next Page Heuristic (requiring users' intervention) worked

on 9 of the remaining 15 cases (9/15 = 60%). Overall, subsequent pages could be

identified for 23 out of 30 collections (77%).
There were 21 collections for which item XPaths could be found and subse-

quent pages could be identified accurately. Out of these 21 collections, 19 were

perfectly extracted, yielding precisely the original numbers of items. The overall

accuracy of extraction is 19/30 = 63%.
Note that accuracy was measured per collection rather than per item as in

other data extraction work. To put this in perspective, the latest work on data ex-

traction [78] processed 72 manually provided pages from 49 sites and achieved 40/49

= 82% collection accuracy. Over the 23 collections for which subsequent pages

could be identified, our algorithm processed 176 pages automatically and achieved

19/23 = 82.6% collection accuracy.
The fields extracted that could be useful for filtering and sorting included: cur-

rent price, original price, percent saving, author, artist, medium, date, shipping op-

tion, brand, number of store reviews, number of bids, container size, city, etc.

4.3.2 Evaluation of User Interface

Since augmentation of web sites is a novel concept even to experienced web users,
a formative evaluation of Sifter's user interface has been conducted to determine

whether it was basically usable and useful, assuming the automatic extraction algo-

rithm performed its best.

100

4. ExTRACTING DA



4. EXTRACTING DATA

4.3.2.1 Design and Procedure

This study consisted of a structured task (during which the subjects took simple
steps to familiarize with Sifter) followed by an unstructured task (during which the
subjects employed their own knowledge of Sifter for problem solving).

At the beginning of each study session, the subject was told that she would
learn how to use something called Sifter herself but was given no particular in-
structions on how to use it. This was patterned after the study on the Flamenco
system in which the subjects were not introduced to the system in order to better
mimic real world situations [77].

Task #1 required the subject to:
- follow a sequence of simple steps to use the Sifter pane to sort and filter a

collection of 48 items spread over 3 web pages obtained by searching Ama-
zon.com for 'jeffrey archer." The desired final result was the sub-collection
of only hardcovers and paperbacks published in 2004 or later, sorted in de-
scending order by their used & new prices. The sequence of steps consisted
of high-level "filter by date" and "sort by price" instructions, not low-level UI
"click this button" and "select that list item" actions.

- use the Sifter pane by herself to obtain the list of 3 cheapest (if bought used)
paperbacks byJohn Grisham in 2005 from Amazon.com.

- spend no more than 5 minutes using only the Amazon web site, but not
Sifter, to find the 3 cheapest (if bought used) hardcovers by John Grisham
in 2004.

Task #2 required the subject to:
- use the Sifter pane to decide whether the sale on Prada products on Ashford.

com was good or not.
- use the Sifter pane to list 2 or 3 products among those that the subject con-

sidered good deals.
- use only the Ashford.com web site to judge whether the sale on Gucci prod-

ucts on Ashford.com was good or not, using the same criteria that the subject
had used in judging the sale on Prada products.

Amazon.com was chosen for Task #1 as its search results were very structured,
containing many fields useful for filtering and sorting. Furthermore, Amazon.com
is popular and the subjects were more likely to be familiar with it. Ashford.com was
chosen for Task #2 as its search results contained only two fields (price and percent
saving), making it simpler to perform the high-level task of judging its sales.

At the end of the session, the subject rated her agreement/disagreement with
12 statements (on a 9-point Likert scale) regarding her experience learning and
using Sifter.

4.3.2.2 Participants

Eight subjects (4 male, 4 female) were recruited by sending an e-mail message to a
mailing list and posting paper ads around a local college campus. Six were in their
20s, the other two were 30s and 40s. All 8 subjects used the Web almost everyday,
and all subjects visited Amazon.com at least a few times a month. None had ever
visited Ashford.com.

101



4. ExTRACTING DATA

Web Site Collection within Web Site #Items/Page x #Pages Has Page TOC? Total #Items

1. acehardware.com Kitchen faucets (plumbing) 9 x 5 0 44

2. adesso.us Keyboards 16 x 2 0 26

3. alibris.com Search for "John Grisham" 25 x 4 0 96

4. amazon.com Search for "Jeffrey Archer" 16 x 3 0 48

5. ashford.com Prada products 9 x 7 0 59

6. bargainoutfitters.com Women's footware 12 x 25 0 290

7. bestbuy.com Point & shoot digital cameras 25 x 5 0 111

8. buy.com Box sets 12 x 6 0 72

9. cameraworld.com SLR lens over $400 25 x 4 0 95

10. reviews.cnet.com Dell desktops 10 x 10 0 93

11. compusa.com Search for "hard drive" 20 x 15 0 287

12. dealtime.com Lavender (flowers and plants) 21 x 9 0 179

13. drugstore.com Hand creams (lotions) 15 x 6 0 87

14. antiques.listings.ebay.com Globes (maps, atlases, globes) 50 x 9 0 444

15. essentialapparel.com Women's sportswear 10 x 6 0 55

16. froogle.google.com Search for "rebel xt" 10 x 10+ 0 >100

17. newegg.com Notebooks/laptops, $1500-$2000 20 x 3 0 42

18. nextag.com Hotels in Boston, 3* 15 x 4 0 58

19. nordstrom.com Women's wallets & accessories 21 x 4 0 74

20. officedepot.com Fully adjustable chairs 10 x 6 0 55

21. overstock.com Coins & stamps (collectibles) 24 x 3 0 58

22. radioshack.com All MP3 players & ipods 10 x 5 0 50

23. rochesterclothing.com Casual pants 20 x 3 0 53

24. shoebuy.com Adidas, womens, 6.5 12 x 3 0 26

25. shopping.com Stainless steel rings < $50 30 x 8 0 236

26. smartbargains.com Ties (men's apparel) 16 x 2 0 28

27. target.com Clearance "table" 20 x 14 0 276

28. tigerdirect.com Digital photo printers 10 x 4 0 38

29. walmart.com Houseware, $20-$50 20 x 4 0 76

30. shopping.yahoo.com PDA cell phones 15 x 15 0 222

3378

Table 4.3. Thirty popular retailer web sites were used to test Sifter's web data extraction algorithm. A

search or browse operation was performed on each site and the number of result items per page and the

number of result pages were noted. Whether the first search result page contained a table of content of

links to subsequent result pages (as opposed to "Next" links) was also recorded as it affected the algorithm.

102



4. ExTRACTING DATA

Pages Detected? - Correctable By Users?

Items Detected? - Correctable By Users?

Has Page TOC?

Web Site

Total Original #ltems

Total #ltemns Extracted - Perfect extraction?

Useful Fields

1. acehardware.com 0 0 0 44 44 / price

2. adesso.us 0 0 00 26 16

3. alibris.com * 0 0 96 96 / author, old price, new price, quick buy
price, signed copies?

4. amazon.com 0 0 0 48 48 / author, type, date, total # items, buy
new original price, buy new current
price, used & new price, shipping info

5. ashford.com 0 0 0 59 59 / price, percent saving

6. bargainoutfitters.com 0 0 00 290 290 / price

7. bestbuy.com 0 00 0 111 0

8. buy.com 0 0 00 72 72 V artist, price, saving

9. cameraworld.com 0 00 00 95 95 / price

10. reviews.cnet.com 0 0 00 93 93 / price

11. compusa.com 0 0 00 287 287 / brand

12. dealtime.com 0 0 00 179 179 / # store reviews

13. drugstore.com 0 00 00 87 15 price, size

14. antiques.listings.ebay.com 0 0 0 444 444 V # bids, price

15. essentialapparel.com 0 0 00 55 110 old price, current price

16. froogle.google.com 0 0 0 >100 100 V mininum price

17. newegg.com 0 0 00 42 20 shipping fee, # reviews

18. nextag.com 0 0 0 58 55 city, zip code, price 1, price 2

19. nordstrom.com 0 0 0 74 74 / price

20. officedepot.com 0 00 0 55 0
21. overstock.com 0 0 00 58 24

22. radioshack.com 0 0 0 50 50 V has ratings?, out of stock/in store/on-
I_ _ Iline, 1-2 or 2-3 days shipping

23. rochesterclothing.com 0 00 0 53 52 price

24. shoebuy.com 0 00 00 26 26 / on sale?, price, % off, original price

25. shopping.com 0 00 00 236 0

26. smartbargains.com 0 0 00 28 28 / retail value, our price, % saving, # left

27. target.com 0 0 0 276 276 / list price, our price, save amount, save
percent, shipping info

28. tigerdirect.com 0 0 0 38 38 V price, in stock or shipping info, brand

29. walmart.com 0 00 76 76 v/

30. shopping.yahoo.com 0 0 00 222 210 exact price

3378 2820

Table 4.4. The results of testing Sifter's web data extraction algorithm. Whenever the algorithm failed,

user intervention was attempted and the intervention's success was recorded. User intervention brought

the overall success of locating items to 9 0% and of locating subsequent pages to 7 7 %. The success rate for

recovering whole collections was 19/30 = 6 3 %.

103

77%, 90% 43%, 77%



4. EXTRACTING DAiA

All subjects had used the Web for more than just shopping. They had searched

for some combinations of the following types of information: news; images; con-

tact information of people and organizations; maps and driving directions; hobbies

(e.g., recipes, chess); reviews (on restaurants, movies, books, products); tutorials (e.g.,
languages, logics); and professional research (e.g., publications, scientific data).

4.3.2.3 Apparatus

Subjects received $10 each for participating in a 30 - 45 minute study session.

All sessions were conducted by one investigator on a single computer (Pentium 4

2.53GHz, 1.00GB) with an 18" LCD flat panel at 1600X 1200 resolution in 32-bit

color and a Microsoft Wireless IntelliMouse Explorer 2.0 (with mousewheel), run-

ning Microsoft Windows XP UI events were recorded in a timestamped log and the

investigator observed the subjects and took written notes.

4.3.2.4 Results

All subjects completed the parts of Task #1 involving Sifter. Only 5 out of 8 com-

pleted the parts involving using the Amazon web site without Sifter. The other sub-

jects could not learn how to use Amazon to perform sophisticated queries within

5 minutes. Among the 5 subjects who succeeded, only one made use of Amazon's

Advanced Search feature. The other 4, despite their previous experience with the

Amazon web site, could only sort the items by one criterion and manually scan the

list for items satisfying the other criteria. This indicates that advanced browsing

features implemented by the web browser in a unified manner across web sites may

be more discoverable, learnable, and usable than those same advanced features of-

ficially supported by individual web sites but have been suppressed in favor of more

commonly used functionality.
Seven subjects completed Task #2 and one refused to finish Task #2 as he said

he had no knowledge of Prada and Gucci products and thus could not judge their

sales. For the first part of Task #2, 6 out of the 7 subjects used Sifter to look at the

distribution of the percent saving. One subject could not understand how Sifter

would help her judge the sale.
Table 4.2 shows encouraging evidence that the subjects found Sifter powerful

yet easy to learn and use. However, the extraction process was thought to be slow.

Data extraction speed depends on network performance and web server respon-

siveness, but on average, each test collection of 50 or so items took 30 seconds to

extract.
Although there was no show-stopper problem with the user interface, some

users were taken aback by the verification step (when the system announced its

estimate of the items to be extracted and asked for confirmation). As they saw no

other choice except clicking "Continue," they did so just to see what would happen

next, in hope but not certain that that route would ultimately allow them to sort

and filter. This behavior was not a surprise as web site augmentation was a new

experience and the necessity for extracting data before augmentation could take

place was poorly understood, if understood at all. To fix this problem, the accuracy

of the algorithms must be boosted, subsequent pages must be pre-loaded and pro-

104



4. EXTRACTING Dxi'x

cessed even before the user clicks "Filter/Sort Items," and the user must be allowed
to make corrections from the augmentation UI.

Sorting operations took very little time and the re-shuffling of items inside the
web page was too fast and subtle to shift the user's attention from the Sifter pane
where she just invoked a sorting command to the web page. The user often had
to double-check the resulting list of items herself To fix this, we can slow down or
animate the changes in the web page. Filtering operations produced more drastic
changes and did not suffer from the same problem.

One subject opened too many browsing control boxes and became confused
as to which field each box corresponded to. He was not able to notice the synchro-
nized highlighting of browsing control boxes and field asterisks. To fix this, we can
color-code the asterisks and the browsing control boxes as well as use a variety of
shapes rather than just asterisks.

Asked to filter for only items published in 2005, some subjects had to manu-
ally find one sample item published in 2005 in order to click on the asterisk next
to its publishing date. Other subjects simply clicked on the asterisk next to any
publishing date. If we are able to derive meaningful field names, this problem will
be resolved.

Five of the 8 subjects interacted with the faded areas of the web pages when
they needed to use the web sites' functionality (e.g., performing a search for 'john
grisham"). The other three subjects either refreshed the web pages or retyped their
URLs. In the future, Sifter's UI can be changed to let users feel more comfort-
able making use of the original web sites' features, knowing the difference between
those original features and the added functionality.

strongly strongly Sitrhd len tou.
disagree I. . ge 9 gre 1. is hard to learn how to use.

I li.-.m 9 2. Sifter is tedious to use.

11 ai . 9 3. The filtering and sorting features in Sifter are slow.

.I..-- 9 4. Sifter shows redundant information (easily found on the Web sites).

I Ii. 9 5. After clicking "Continue," I need to wait for a long time before I can use Sifter.

I - 9 6. Sifter is simple to use.

I -ul 9 7. Sifter is powerful (providing advanced features).

1 .I 9 8. Sifter displays interesting information.

.1.I 9 9. Sifter displays useful information.

I * II..- 9 10. Sifter is enjoyable to use.

1 i 9 11. Sifter adds value to the Web sites in this user study.
strongly strongly
disagree I 9 agree 12. I believe Sifter will add value to some other Web sites I have used.

Table 4.2. Results from the exit survey of the formative evaluation show en-
couraging evidence that the Sifter pane is usable (#1, #2, #6) and useful (#8, #9,
#11, #12) even when it is considered to offer advanced functionality (#7).

105



4. EXTRACTING DMnA

One subject-the only one who used Amazon's Advanced Search feature-

asked when she would be able to use Sifter in her own browser. She mentioned that

there were a number of sites she used frequently which did not offer the browsing

functionality that she needed. Another subject said that although he never had to

perform the kinds of task in this study on the Web, he had to perform similar tasks

in spreadsheets.

4.4 Summary

This chapter puts forth ideas in which presentational elements of web pages can

be retained and used in web data extraction toward saving users from the tedious

field labeling task as well as enhancing the usage of the extracted data. Advanced

browsing features can be added right inside the original pages, preserving visual

context and leveraging custom presentational designs on the original pages rather

than downgrading to a generic presentation template.

106



5. INTEGRATING DATA

As demonstrated in the last chapter, it is feasible today to let casual users with no
programming skills extract data from the text-centric Web for reuse. Such capabil-
ity is already useful for any single web site that does not offer the features that a
casual user needs. More empowering to casual users is the ability to combine data
from several sites to get values that no single site can offer by itself.

Like conventional data extraction tools, conventional data integration tools
have also been built for a different audience than casual users. For a typical conven-
tional data integration task, such as merging huge databases of two institutional li-
braries together to serve the combined data through a new web site, several experts
and programmers are involved to handle different aspects of the task, including
aligning the schemas, cleaning up the data, and then building the web site. Each
tool employed is specialized for one stage of the process and designed to handle
large, complex data sets. In contrast, a casual user might just want to merge two
lists of a few dozens of addresses from two web sites together to plot them on a
common map. There is much less data and the data is much simpler. Power tools
used by experts are too advanced for casual users.

Compared to experts, casual users lack both data modeling skills and program-
ming skills. However, for small, simple data sets, neither skill set may be crucial.

* First, when the data set is small, schemas-useful for efficiently reasoning
about a massive quantity of data in the abstract-are not as useful and can intro-
duce overhead cognitive costs. Instead of having to learn about theoretical concepts
like schemas, casual users can manipulate data instances directly. Visual semantics
are often enough: if the data "looks right" in the user interface, it most probably
has been edited correctly and there is no need to verify the data model.

107



5. INTEGRATING DrANx

Second, instead of using programming to process data, casual users can just

use direct manipulation techniques. For example, two fields can be aligned by drag-

ging and dropping one onto the other.

These ideas have been built into Potluck, a tool that lets casual users-non-

programmers-integrate data all by themselves. This chapter will next describe a

hypothetical usage scenario for Potluck. Using various challenges in that scenario

as motivations, the user interface of Potluck will be explained. Then Potluck's im-

plementation will be detailed. Finally, an evaluation of Potluck is reported.

5.1 Scenario

Before describing the user interface of Potluck, this section motivate it with a sce-

nario that illustrates various idiosyncrasies of data integration. Let us be optimistic

that within a decade, the Semantic Web will be prevalent and RDF data will be

everywhere. Even in this future world, users will still face problems integrating data

from different sources and tools such as Potluck are still needed.

In 2017, a historian named Henry is documenting the first cases of a rare ge-

netic disease called GD726. These first cases occurred in the Valentine family in the

1820s. He wants to include in his final report a genealogical tree of the Valentine

family, annotated with the disease's infliction, as well as a comprehensive table of

the Valentines' data in an appendix.
Like most historians, Henry is not a programmer but he is experienced in

collecting and managing data in his professional work. The proliferation of RDF

means that Henry does not need programming skills to scrape HTML himself: all

the information needed for his research has been converted into RDF by various

independent organizations and individuals, both professionals and enthusiasts.

Henry thinks it would be trivial to simply pool the RDF together and call it done.

Henry tracks down various birth certificate issuing offices and death certifi-

cate issuing offices where the Valentines lived for their RDF data. He notes that

some offices use dc: date in their data to mean "birth date," some to mean "death

date," and some "certificate issuing date." It would be disastrous to consider all the

dc: dates the same even if the same predicate URI is used.

Henry also tracks down hospital records, which contain hospital: tod (short

for "time of death"). Hence, hospital: tod is equivalent to some of the dc: dates.

It would be hard to match hospital: tod with dc: date based on string analysis

alone, yet match for some of the cases only.

The records all have geographical location names, but these names are not

fully qualified. Those responsible for digitizing them thought that since all loca-

tions were within their country, there was no need to include the country name.

As a consequence, Henry needs to append the country name to the many location

names in order to map them.

108



5. INTEGRAFING DIrA

People's names are encoded in two different forms: "first-name last-name" in
some data sets and "last-name, first-name" in others. Nick names are also present

(e.g., "Bill" instead of "William", and "Vicky" instead of "Victoria").
The hospital records also pose problems. While most of their admittance dates

are in ISO 8601 format, a few are of the kind "Easter Day 1824." Such sloppiness
has been observed in industrial and institutional databases, and should be expected
on the Semantic Web.

Despite all these problems, there is one good thing about the data: Henry can
reliably get the mother and father of each Valentine through the gen: mother and
gen: father predicates, which seem to be very widely adopted. This helps Henry
construct a genealogical tree visualization.

However, as males and females both have equal chance of passing on GD726,
Henry wants to treat gen: mother and gen: father the same while tracing the
disease through the family. Unfortunately, adding an owl: sameAs equivalence be-
tween those two predicates will break his genealogical tree.

While all parties involved in this scenario acted logically and responsibly, Hen-
ry still ends up with a mess of RDF. To fix up the data, Henry must be able to:

- Merge dc: dates into several groups (the birth dates and the death dates) even
though they all use the same predicate URI. This requires distinguishing the
fields by their origins rather than just by their URIs.

- Merge gen: mother and gen: father together in some situations while keep-
ing them separate in other situations. This precludes the simple approach
of adding owl: sameAs statements in the data model to implement equiva-
lences.

- Edit the data efficiently to unify its syntax.
- Fix up the data iteratively as he learns more and more about the data.

These are the tasks that must be supported by such a tool as Potluck in order for a
casual user such as Henry to be able to integrate data all by himself.

5.2 User Interface

This section describes Potluck's user interface, showing how it addresses the prob-
lems in the scenario above. The reader is encouraged to view this screencast to
understand Potluck's interactivity:

http://people.csail.mit.edu/dfhuynh/research/media/iswc2007/.

Figure 5.1 shows the starting screen of Potluck where the user can paste in
several URLs and click Mix Data. This results in Figure 5.2, which lists data records
from the original web pages. The records are interleaved by origins-the pages
from which they have been extracted-to ensure that some records of each data
set are always visible.

Fields are rendered as field tags: label, position, and title. Field tags are color-
coded to indicate their origins: blue from one source and pink from another in

109



ee Co-

Potluck
a toi for naing dta

Paste the addresses of Exhibit-powered pages containing data to mix, one address per line. Then click Mix
Data.

ttpt//Simile.Mit.edA/exbibit/exampies/CSAIL-PlO/CSATL-PIs.htCI
http.//cnci.col=bia.edu/draft/mauriceexibit/ccirttettafL.htm.

Mx Data Corot inn large odexhit Potuck oVy handle a few hundre tms

For a wolong enample, copy and pate tes two LOs below mtn the text box aiove and click Mix Data:

hap f/srAe-nt edlehbt/aomples/CSAl-PlCSLPlsttitri
nyp //ccnndl columbia edujdtaft/iniur ct/edhlb tccninifsaff ttml

For teing the Map vew, bry its URL

.rip //clel2 dce thvard adbletur.Mote2006E-1J2007(320/smnamtrsAndttl

If you wnt to pase in a l to aoer tet of dan. put its mie type oer its URL sparted by a pAm% eg.,

pjpeopSnit~eduldbhuynbpoject/iatS-datpdxient~ aS

Supported mm tye mdailude rifjwrJ r3, x4s6 Nrtx

Figure 5.1. The starting screen of Potluck. Clicking Mix Data yields the mixed

data in a screen like Figure 2.

Figure 5.2. Three core fields, label, type, and origin, are automatically assigned

to all records and their tags are colored gray. Fields from different origins having

the same name are considered different. For example, while phone means office

phone, pione might mean secretary's phone. Or more dangerously, dc: date in the

scenario (in section 2) has several distinct meanings. These semantic differences,
subtle or significant, might or might not be important to one particular user at

one particular moment in time. Keeping the fields apart rather than automatically

merging them together allows the user to make the decision whether or not to

merge.

5. INTEGRATING DATA

110



5. INTEGRATING DATA

e e 8. Po... c - f srowe C

~~' 7 nrm/smdrtedupoduckfsysemflarmplait/browei-

Potluck
Dae orgin: T CMSAIL Faculty Wet et- ani WMf*n.~ib5 (xporttsv Exportjson

VIEW AS: TABLE W MP

i condense details -anetall - collaad s

New Column Details alg n

SF,* Alan Edde CCbL $tOffw te
MIT CSAL Fauty web sat

r and ltd: Al aneima
dr a" MIT CSAR FWuliy web site

edelwranocoailmit.edu
6th floor

unknowo
Edebean
32-GEob
253-1355

htt:pjwww cal ir 42dpiedelmanyj
facilty
Gates

am:/wt t'l ntejpPaqplp1D25
Posot

dr4 and drep fds to
cisate Sts

I LMaurice Made

E

lt: A. Maunce Matiz
o"nn : CMTL Staff web site
~b: Maurice is a co-founder of the Coluanfa Center for New Media Teaching and Learing and curenfly pla ... 12) 1

Cowputer Science from the School of Engineeing and Appied Science at Columbia University.
building : Butler Library
campus Momingside
eam : maurice~colamble.edu

rlet: Maurice
g -u: Managerrent; Technology

10t- Matir
phoee: 212 054-2565
mmoe: 55A

te: ice Executive Director, Director of Technology

qoe: staff

Man Wlbsky

labd: Aln Wilicy

orn d lT TCsawFaculty mi site
&rai: wwlslyomit.edu

tlor .. Th floor - --

Figure 5.2. Potluck's user interface shows data that has just been mixed together

but not yet processed by the user. Fields are rendered as draggable "field tags,"

color-coded to indicate their origins. There are two drop target areas for creating

columns and facets.

111

Was
to Create
colones

email

aice :

photw:
posmton ;

rm-tor:

2.

D



5. INTEGRATING DAA

5.2.1 Creating columns and facets

A field tag can be dragged and dropped onto the gray column to the left (Figure

5.2) to create a new column listing that field, or onto the gray box to the right to

create a facet for filtering by that field. Figure 5.3 shows a newly created column.

A column or facet can be moved by dragging its field tag and dropping the tag

between other columns or facets. Deleting a column or facet (by clicking its )

removes the column or facet from the display but does not delete the correspond-

ing field's data.

~ l ~Potluck - grcwse iAdd coir towedi

rt, mte.,rtaedufpotluck systemte mplate/brwse .

toNfDetails dl

1L Gdt-e: Alan Ede5"m

.Wel : Alan EdEe man

ungin : MIT CSAIL Faltv web site

Tail : deilm(acsalt mit.edu

ftx: 6th four
grou: unknown

Lawtwnme Edelman

tnice 32-G606

phne: 2S3-1350

jhto : httPjwWvcsab nit- PV72dplJereman jpg

p rto faculty

tvi http://wwcsail.mit..- rint.phpPeopleD'75

typ: Perscn

2. :A. Mautice Matic

6W A. Murice Matiz

ot156 cCQ4M1. Staf
t 

Wte ste
R Maurice Is a co-founder of the Columbia Center for New Metia Teachng hud Learning and cuTnwCy p a

('2) in Compute Science from the Sch) uf Eugineedng and Apphed Science at Columbia
Universlty.

bunildim : uer Library

canpus Morringside

emritl : mauricefcilaritia.edu
tirt: Maurice
gro1p anagmift; Tectnology

rtegettL : hrtp/centVac t . el s ultstMaLx~q

last Mt

phone 212 854-2565

M1e : Vice Execitite DirectOr Director of Technolcqy

type hta1

3. Drey oOs A&n W llskiy

Ibe: Alan Willsky
Orgin MIT tAfl FwCulty web site

kteS; willcy nitedu

oor 5th f oar

prou: o:ochstac systems braup

letfwane Will sk

office 32-582

phoe 253-2356

photo http:fjwww csall.'t .. P72dpijwiy3)g

Figure 5.3. Potluck renders a new column to the left when is dropped into

the New Column drop target. Since the second record is not from the same origin

as the dropped field, its cell in that column shows

112



5. INTEGRATING DMA

5.2.2 Merging fields

A field tag can be dropped onto an existing column or facet in order to make that

column or facet contain data for both the original field and the newly dropped

field. Such an operation creates a mergedfield, whose field tag is rendered as a visual

juxtaposition of the original tags, taking on a pill-shaped form postion te . Figure

5.4 shows several columns and facets of merged fields. Merged field tags can be

dragged and dropped just like elemental field tags can in order to create new col-

umns and facets, or to merge into other existing columns and facets.

Creating a merged field does not disturb the elemental fields. Thus, in the sce-

nario, it would be easy to have gen:mother and gen: father merged together for

one purpose while keeping them separate for another purpose, all at the same time.

otfurk - Brws Iselec *Cnv

----- -----

Pot
V.8104

2.

3.

4.

uck
Mis rTCsA3L Facutyweb site ans CCM. SWbi S

II

#W* 4. .9.d -91b*tal Undo
VEW AS TALE - 1,AP

". s V1 c m. so adrs. coasa - co-ate a t.t k - '!Ap t11

U-Wr g -A&V -,

LOWI.so Hat -

edelmanfcsa4.rmILadu

acoxccrwtcosUMbnadu ' _)

ruyWPc3an.mtedu

agarVIm salol.mbedu fW

agqrwal-csaI1.mnIt-du

Pr- Ohone a- Dewls Orin
253-1355 aIm Smra i**A

212 854-1851 (

2534124 _:

212 854-1692 t ml,

tow" bu h S
A mory
Buder ULmry

v Lewisohn NMI

smuertA ieye gowm
comiedi

t
y 3ecry gmapC.1Wti4 StlltboS IL o ~p

cafmputatIon structures QMap
computatlonal biology gmup

group
camuttona genonnc gmup
Computer acture group

L I etti cryograpy an information
securt group
databae gmap
decentralind inforiation grop
Educaln,

haystack

253-1448

.I ..........- -

113

Export IS Export sa.

Figure 5.4. A screen shot of Potluck showing several columns and facets of

merged fields. The records' details have been collapsed to make space for the

columns.

..................... I ......................... - - -

(

Z



5. INTEGRATING DE-r\

Furthermore, the merging operation is not transitive, so that, say, merging fields

mother and father together (to mean parent) and then mother and grandmother

together (to mean female ancestor) does not force all three fields to be merged

into mother/father/grandmother.

5.2.3 Simultaneous editing

The edit link next to each field value opens up the Simultaneous Editing dialog box

where the values of that field can be edited en masse (Figure 5.5). The concept of

simultaneous editing originated from LAPIS [59], a text editor that displays several

keyboard cursors simultaneously on a text document, generalizes the user's editing

actions at one cursor, and applies them to the text at the rest of the cursors. Based

on the user's mouse clicks, IAPIS guesses how to divide the text document into re-

cords (often into lines or paragraphs) and where the cursors should be placed within

those records (e.g., after the second word of the third sentence in each paragraph).

Whereas LAPIS has to guess what a record is for the purpose of simultaneous edit-

ing, Potluck already has the field values conveniently separate. Potluck groups field

values into columns by structural similarity, e.g., the phone numbers in the second

column all have area code 212. These columns serve to visually separate out values

of different forms, call out outliers (such as "Easter Day 1824" in the scenario), and

let the user edit different forms differently. The user can click on any field value to

give it keyboard focus, and editing changes made to it are applied to other values in

the same column in a similar fashion. The multiple cursors in Figure 5.5 give visual

feedback of the simultaneous editing operations in progress.

If a value appears in several records it is shown in only one entry in the dialog

box. In the scenario, if the nickname "Bill" appears in three records, the user can

617) 253-6437
primary cursor (617 ) 253-1778

(617) 253-6016*
(617 2-3 14 82534437 212 854-181452 2:0 646 72 E3

(617) 253-1448 :ssr 212854-5 258-06W5
087 253-01106 212 831-7763 258-78%5 EA0 772-

(617)Y 253-8828 21 - 324 22
253-828 212 6540 220; 253-050

(617)1 25 -5B76 P-.7 '-8 21233 -402 452-37'

(617 253-5879 60 76302 4*0' 2128543 253-8471

s condary --_---_----

" 17)Y 253-8005 --- _____ __

Figure 5.5. Potluck's Simultaneous Editing dialog box lets the user change sev-

eral similar values simultaneously by editing any one of them. Multiple keyboard

cursors are shown and any editing change to the fbcused value is immediately

reflected in the other values.

114



5. INTEGRATING DATA

click on its single entry in the dialog box, set the checkbox Edit this value separately

from the others, and change it to "William" to correct all three records.

Simultaneous editing is useful for correcting inconsistencies between data sets

that occur many times, such as prefixing area codes to phone numbers and wrap-

ping existing area codes in parentheses. It is also useful for reformatting a field, such

as changing "first-name last-name" into "last-name, first-name", and for making

a new field out of an existing field, such as extracting building numbers (32) from

within office numbers (32-582).

5.2.4 Faceted browsing

Faceted browsing [77] is a browsing paradigm in which a set of records can be

filtered progressively along several dimensions in any arbitrary order. For example,
a set of recipes can be filtered by picking an ingredient first, a cooking method

second, and a cuisine finally, or by picking a cuisine first, then an ingredient, and a

cooking method finally depending on which order suits the user best. Because the

data Potluck handles is often multidimensional, faceted browsing is useful in Potluck

as it is designed for exploring multidimensional data in flexible, user-controllable

ways. Exploration is needed for identifying and selecting out just the subset of data

that is useful as well as for isolating on records that need cleaning up. All faceted

browsers so far work on single data sets. Potluck extends faceted browsing for the

data integration task in which data arrives from many sources.

If within a facet there are records for which the corresponding field is missing,
the facet explicitly shows a choice for filtering to those records (Figure 5.6). This

visual element, not present in conventional faceted browsing interfaces, also serves

group
13 missing this field

9 algorithms
3 complexity theory

group
4 computation

structures group

Figure 5.6. If inside a facet there are records

for which the corresponding field is missing, the

facet shows m as a choice so that the

user can get to those records.

Note: The data from this origin
has been filtered out comp"etety.

CCNMTL t web ske
MTCSAL Fawty web ste

Figure 5.7. The origin facet does not remove

choices for which there are no records. More-

over, it pops up messages to call the user's atten-

tion to those filtered out origins.

115



5. INTEGRATING DMA

to remind the user that, if that field is an elemental field instead of a merged field,

the field is not present for records in other data sets.

While working with multiple data sets at the same time, it can be easy to forget

that an elemental field from one data set does not exist in the others. Whenever

a facet choice causes all records from an origin to be filtered out completely, that

origin remains in the origin facet and a message is popped up drawing the user's

attention to it (Figure 5.7).

5.2.5 Visualizations

Potluck currently provides two visualizations: a tabular view and a map view. Figure

5.8 shows the map view in which any field containing street addresses or latitude/

longitude pairs can be dropped onto the map view to plot the records. The map

markers can also be color-coded using drag and drop. Faceted browsing is sup-

ported concurrently so that the user can construct a map while browsing through

the data at the same time.

5.2.6 Miscellany

Potluck provides drop down menus on left clicks as alternatives to drag and drop

in order to increase the likelihood that the user succeeds at finding some way to ac-

complish a task. The browser's Back and Forward buttons can be used to redo and

undo user actions. Like contemporary highly interactive web interfaces, Potluck

also shows the most recently done or undone action and provides a link to undo

or redo it.

5.3 Implementation

Potluck consists of two components: a server-side component implemented as a

Java servlet, responsible for retrieving the data within the Exhibit-embedding web

pages to mix; and a client-side component implemented injavascript on top of the

Exhibit API, responsible for all the user interface interactivity.

Merged fields are implemented as query unions: when the values of a merged

field are requested, the values of each elemental field in that merged field are re-

turned in a single result set. No equivalence is added into the data model so that

merging operations will not be transitive and so that the original elemental fields

can still be used in isolation even after they have been merged.

Simultaneous editing is implemented in Javascript. Each field value is parsed

into a sequence of features. Features are runs of digits, of letters, or of white spac-

es, or individual punctuation marks and symbols. For example, "733-3647" is bro-

ken down into three features: the run of digits "733", the symbol "-", and the run

116



5. INTEGRATING DATA

0 6 g Potick - Rmwse (select Roran Cathotic*C

Potluck
Data origins: UnitedStatde S t ste Export tsv J xport!-son

You oe tssit dwselodi ;ton Can tof" Undo

VIEW AS rAtLE * MAP

-~* Map Satellte Hyb

NetmskHM 
Faces pan

669itterDy 
ant

type

Maate U StDatatatyats fvsaue web
*Roo-Mane H

Utaien. I odtn

Da ktaW7JCer

WahaenPt 0

Fiue58 oluksmpve llowsn pottin tad lrcodinga rbeors b

map cnstrcton

genderN6 Chitan

_f diit "64".Fildvaue ae he cuserd nt clunsbygredlyalgnn

theseCs Qe Cfhfeatures.

Id

Asth ue1ve heAdm keyoad urorgmkedseeciosan eit thela textan ofo I t

hn , sse o be. reat ow Y e ofegi thee..

Figdue 5.8. P tdks (mag., viewaows plarati and color-cing reords thi

derp), faed tagsentosero tanrgiedsriin areasturosned isnalo absferee dur

sof digiton "367" Faho h teield values arethethlsteeamnt cluste abd greed appniy

thesed sueces offeurs.s a

As the userpboves Ct keyboast coeraks seleons, raby edtstetext oft

one-value, thst cursorppositein samegnealizedtbe relive to thek Wfetursofe te

fiel valurein edithtae p(eg.,"secxt harcerfom ten beetedin ofnte tird lsti,

A s sshed clpbardwCt a ae sactand-paste operations.antberlal detected, ct-i

trick works only for cut-and-paste, not copy-and-paste.

17



5. INTEGRNING DAIA

5.4 Evaluation

A user study on Potluck has been conducted to ascertain whether people could

learn how to use Potluck as well as to discover usability problems. Another purpose

was to observe how people use Potluck in an open-ended task using their own

judgement about which fields to merge and edit, and how to display them, so as to

determine if casual users could actually perform data integration themselves.

5.4.1 Design and Procedure

This study consists of two tasks: a structured task during which the subjects per-

formed simple steps to familiarize themselves with Potluck, and an unstructured

task during which the subjects performed an open ended task based on the skills

they had just acquired.
In Task #1, subjects browsed two web pages containing information about

92 people in a lab and 33 people in another lab, and answered questions about

these people in ways that required the pages' faceted browsing features (e.g., "how

many people are in the Gates tower?"). This warm-up exercise let the subjects

learn about the data and about faceted browsing. Then the subjects were asked to

use Potluck to mix the data in those web pages and to achieve the following goals

(quoted almost verbatim from the study's instructions):

- create a column listing the buildings where people work and make sure the col-

umn is filled in with information for people from both labs;

- create a column listing people's phone numbers and edit them to have the form

(xxx) xxx-xxxx, using 617 for phone numbers without area code;

- create a column listing people's job titles;
- create a facet of people's job titles, use it to filter for people in directing positions

(directors and co-directors), and determine how many such people there are in

each lab; and
- create a column of people's last names and sort it in ascending order.

These instructions were not worded in low-level details (e.g., click this button) so to

allow the subjects the opportunities to learn how to use Potluck's user interface by

themselves and to allow us the chance to discover usability problems.

In Task #2, the subjects were asked to use Potluck to mix data from two Ex-

hibit-powered web pages of 40 + 55 publications and then mock up a single web

page where hypothetical visitors could conveniently sort and filter through all of

those publications as if the data came from a single source. The subjects were left to

their own discretion to decide which columns and facets to create, although some

examples were given in case the subjects were not familiar with the domain.

118



5. INTEGRATING DATA

5.4.2 Participants and Apparatus

Six subjects (2 male, 4 female) from a university community were recruited by
sending an e-mail message to a mailing list and posting paper ads around our col-
lege campus. Four were younger than 30, and two older than 30. They were two
students (mechanical engineering and computer science), two researchers (applied
math and brain and cognitive science), a lawyer, and an applied math consultant.

Five subjects (1 male, 4 female) were also recruited from a local campus' librar-
ies, who worked with data in their daily job. Two were in their 20s, one 30s, and
two 40s. There was a desire to observe if librarians, who have more experience
working with data, would use Potluck differently.

There were a total of I1 subjects, referred to as G 1 to G6 from the general
university population and L 1 to L5 from the libraries. All browsed the Web at least
a few times a day and used Firefox as one of their primary browsers.

Subjects received $10 each for participating in a 30 - 45 minute study session.
All sessions were conducted by one investigator on a single computer (Pentium 4
2.53GHz, 1.00GB) with an 18" LCD flat panel at 1600X 1200 resolution in 32-bit
color and a Dell two-button mouse with wheel, running Microsoft Windows XP.
The study facilitator observed the subjects and took written notes.

5.4.3 Results

All subjects were able to learn Potluck's user interface with little guidance and to
complete the user study's tasks within 45 minutes. We now report the results in
more details and point out usability issues to address in the future.

5.4.3.1 Columns

Nine subjects out of I1 used only drag and drop to create columns. This indicates
that the relevant visual cues were sufficiently strong. One of the other two subjects,
G5, used the Create Column menu command at first but adopted drag and drop
later. LI used only the menu command.

G5 and L5 had difficulty understanding that dragging a field tag to create a
column automatically filled up the whole column with data wherever the field was
available. They continued to drag the same field tag out again and again for each
row, paying no attention to the data already shown in the column. The drag feed-
back can be improved to better indicate that the whole field is being dragged, such
as showing ghosted images of several field values near the mouse pointer.

All except one subject merged columns using drag and drop; G2 used the
corresponding menu command. G3 and G4 expected the phone fields from both
sources in Task #Il to be merged automatically. Potluck can be made to suggest
such merging if the field names match precisely.

Most subjects merged position and title together into one column, but one
subject also included group to more fully qualify position. This was because most
title values were more specific than most position values (e.g., "Codirector of
Marketing" vs. "professor"). This operation was actually not what the subject in-

119



5. INTEGRAFING DAiA

tended (as he verbalized): the operation performed a set union of two fields instead

of a string concatenation. But as Potluck rendered the group value after the posi-

tion value for each record (e.g., "professor, computer architecture"), the visual out-

come looked right and the subject was contented. However, sorting on this merged

field would produce random orders and a facet created out of this merged field

would list the group and position values separately, not paired together. Potluck

should support string concatenation and suggest it as an alternative to merging

whenever the two fields involved come from the same source. Note that in the

scenario in section 2, concatenation is probably not the desired choice when the

gen: mother field is dropped onto the gen: father field even though both come

from the same source. This is why heuristics should only be used to make sugges-

tions, not to automate.

5.4.3.2 Facets

All subjects used drag and drop to create facets. Two subjects initially created fac-

ets using the corresponding menu command, but they discovered the drag and

drop alternative and did not revert to the menu. Merging facets was done solely

using drag and drop. Note that the field tags on facets do not offer any menu (an

oversight in our implementation); only field tags in the details column and in the

column headers support menus.
Some subjects tended to drag already merged field tags from columns to cre-

ate facets while the others dragged elemental field tags from the Details column to

create merged facets. The latter behavior forced the user to re-merge fields she has

already merged; this is both inefficient and error-prone as some subjects did forget

to re-merge fields. Potluck should have automatically suggested or defaulted to the

merged field whenever an elemental field that has been merged is used.

G4 did not initially merge facets in Task #1 to filter for people in directing po-

sitions. Instead, he created two facets, position and title, from the two sources

separately and used to achieve the goal. In either facet, he selected

directing positions as well as so that records in the other source were

not excluded. This required on his part deeper understanding of how faceted

browsing worked. When asked to achieve the goal without using - f: : , he

discovered that he could merge facets.

5.4.3.3 Simultaneous editing

All subjects were able to edit several phone numbers using the simultaneous edit-

ing feature. G 1 anticipated this feature even before clicking edit, asking out loud,
"can I edit them all together?" She later used the feature to delete first names from

people's full names to get a field of last names. This action properly utilized the

simultaneous editing feature's power but destroyed data (the first names). Potluck

can be made to alert the user of this loss and offer a convenient way to apply the

edit on a copy of the original field instead.

G4 tried to move the leading 'A" from publication titles to the end (e.g., "Tale

of Two Cities, A') using simultaneous editing (a reasonable goal) but the facilitator

explained that the feature did not support that case. L2 and G6 tried to swap first

120



5. INTEGRATING DAJA

names and last names so that publications could be sorted by their authors' last
names. L2 selected a last name in the simultaneous editing dialog box and dragged
it to the front of the corresponding first name; unfortunately, a bug prevented this
from working. G6 used keyboard shortcuts for cut-and-paste and succeeded. These
subjects' actions indicated some intuitiveness in using cut-and-paste and drag-and-
drop for simultaneous editing.

G3 expressed that she did not want to see all phone numbers in the simulta-
neous editing dialog box but only their templates. G5 and L3 edited only the first
group of phone numbers, and L4 edited only the first and third groups, neglecting
the groups that were not scrolled into view. To avoid such oversight, which pieces
of data an edit does and does not affect must be made apparent.

5.4.3.4 Librarians vs. general subjects

Among the five librarians, four were catalogers (who characterize physical artifacts
such as books and enter their metadata into databases), and one was a programmer
responsible for integrating large data sets. While the catalogers showed no signifi-
cant difference with the general subjects in their use of Potluck, the programmer,
L1, was clearly an outlier: he created 10 columns and 7 facets in total. He was very
excited about the user interface of Potluck and described his data integration work,
consisting of manual data entry and Perl scripting, to be tedious and painful.

G6, who also needed programming skills to deal with some data for his work,
expressed equal enthusiasm for Potluck. He used simultaneous editing to swap first
name and last name. Thus, while there was no noticeable difference between the
subjects from the general population and the librarians, who purportedly work
with data and metadata on a daily basis, there was a difference between program-
mers and non-programmers in how much they appreciated Potluck. Programmers,
who have encountered difficulties in dealing with data even with their program-
ming skills, appreciated Potluck more. Non-programmers accomplished the tasks
in the study equally well, but were not equally excited perhaps because there was
not enough reusable data on the Web for them to feel the need to integrate data
themselves. However, when there will be more reusable data in the future, Potluck
will level the playing field for non-programmers, making them as effective as pro-
grammers for the task of integrating data.

5.5 Summary

This chapter presented several techniques embodied in a tool called Potluck for
letting for casual users-those without programming skills and data modeling ex-
pertise-integrate data by themselves and obtain usefulness from the integrated
data. Potluck is novel in its use of drag and drop for merging fields, its integration
and extension of the faceted browsing paradigm for focusing on subsets of data to
align, and its application of the simultaneous editing technique for cleaning up data
syntactically Potluck lets the user construct rich visualizations of data in-place as

121



5. INTEGRATING DMA

the user aligns and cleans up the data. This iterative process of integrating the data

while constructing useful visualizations is desirable when the user is unfamiliar with

the data at the beginning-a common case-and wishes to get immediate value

out of the data without having to spend the overhead of completely and perfectly

integrating the data first. A user study on Potluck indicated that it was usable and

learnable, and even solicited excitement from programmers who had experienced

great difficulties in integrating data even with their programming skills.

122



6. CONCLUSION

In this thesis I set out to explore user interfaces for supporting data-centric interac-
tions on today's Web. In doing so, I have shown that such data-centric interactions
are useful to and feasible for casual users, and usable tools can be built to support
such interactions by gearing for small, simple data sets and common casual needs.

This thesis makes the following contributions:
- First, this thesis combines a simple graph-based data model with simple

extensions of the HTML syntax in order to let casual users-those without
programming skills-publish web pages offering advanced browsing features
and rich visualizations.

- Second, this thesis shows that the cost of using web data extraction technolo-

gies can be lowered for casual users by retaining presentation elements from
the original web pages. These elements preserve visual context and visual

semantics so that direct manipulation techniques can be applied to augment
the original pages with more features without requiring users to label fields
in the extracted data.

" Third, this thesis proposes that for simple data sets, direct manipulation tech-
niques can be used to let casual users integrate data and construct rich visu-
alizations from it without any need for programming.

" Finally, by letting casual users publish data to the Web in browsable form,
extract and reuse data from the Web, and integrate data from several sources
without any need for programming, this thesis demonstrates that data-cen-
tric interactions can be offered to casual users on today's Web without having
to wait for a semantic web.

123



6. CONCLUSION

This chapter continues with possible future directions from this line of inves-

tigation and concludes with a discussion on larger contexts surrounding my re-

search.

6.1 Future Work

This section proposes future work items organized by the three core aspects of the

thesis. At the end, it draws together all three aspects and proposes a way to build a

data-centric browser for interacting with the future data-centric Web.

6.1.1 Publishing Data

Small-time publishers already benefit just to be able to publish 1,000 items using

Exhibit. However, over time, they might develop sophistication in their publishing

needs, wanting to go beyond that limit. A smooth transition path from 1,000 items

to tens of thousands of items is required to migrate this class of users.

Small-time publishers will also demand easier editing interfaces. While HTML

was good enough to bootstrap the Web, it was not until the arrival of blogs and

wikis that user content exploded. Various user interface ideas in Potluck can be

moved into Exhibit so that publishers can edit their data and their exhibit layouts

directly within the browser using direct manipulations.

Users of exhibits will also want more control over Exhibit. If an exhibit is

not configured in the way that best serves a user, such as not showing a map view,

the user will benefit from being able to reconfigure the exhibit in-place, adding a

map view. Again, Potluck's direct manipulation techniques can be adapted for this

purpose.

Another future direction can explore the benefits of embedding Exhibit in

online scientific publications. Currently, scientific papers are published as PDF files

and the data graphics they contain are just static images. If these papers were in-

stead published as web pages that embed Exhibit, their data graphics can be inter-

active and their data can easily be reused by their readers. Some technologies are

needed to migrate the class of scientific publishing users from their conventional

PDF publishing process over to data-centric web publishing.

If the use of Exhibit proliferates, and there are millions of data-rich web pages

created by casual users, search engines should be adapted to leverage the data

within these pages, providing search capabilities that go beyond keyword queries.

6.1.2 Extracting Data

Sifter lowers the cost to using web data extraction technologies by retaining much

of the original presentation. But more can still be retained. For example, if used

124



6. CONCLUSION

prices are shown in a gray, stroke out typeface on the original web page, the brows-
ing control box for used prices should also use that same typeface to display its facet
values. This will strengthen the connection between a browsing control box the
corresponding field values in the items.

The augmentation interface can be moved earlier in the process. For example,
even before extraction, Sifter can let the user right-click on any part of the web
page and invoke a sorting or filtering command, which would then trigger the
extraction process and show the browsing control box for the corresponding field.
The extraction over subsequent pages can also be done incrementally. That is, the
augmentation interface can be shown right away and the extraction process updates
it gradually as more and more pages are scraped. This change in the workflow lets
the user invoke the desired feature earlier and start to get the results earlier.

Sifter should also let the user cancel the incremental extraction process or
make correction at any point in time. Correction may involve, for example, split-
ting a field into several fields, merging several fields into one, and changing the
value type of a field.

6.1.3 Integrating Data

The idea of retaining original presentation can be carried over from Sifter into
Potluck so that the user will not be faced with raw data at the beginning. Research is
needed on how to compose the presentations from different sources. For example,
if one original site offers only a map view, and another offers only a timeline view,
what should Potluck show at the beginning? While an obvious answer would be
to juxtapose the views, as the views remain separate, this solution might actually
discourage the user from trying to mix the data together.

Once a user has integrated data from some sources and constructed visualiza-
tions for that data, the actions she took to align the data, to fix it up syntactically,
and to construct the visualizations can be stored and used to make suggestions to
other users who want to deal with the same sources.

6.1.4 Toward a Data-Centric Browser

As there is more and more data in reusable forms on the Web, casual users will
encounter it more often and their use of the data will increase in frequency and
in sophistication. Where casual users meet the Web-the web browser-will need
to catch up. Designed for the text-centric Web for viewing hypertext documents,
the contemporary browser may no longer be suitable for the data-centric Web. A
data-centric browser is needed to address casual users' needs in interacting with a
future data-centric Web.

One of the Web's greatest strengths is in its generality. Documents on any topic
can be published to the Web and viewed and interacted with in any web browser.
Each web browser provides a set of basic, generic features that are sufficiently use-
ful for browsing anywhere on the Web. Similarly, every data-centric web browser

125



6. CONCLUSION

should provide some set of basic, generic features sufficiently useful for interacting

with any data encountered on the data-centric Web.

The chief advantage of a data-centric Web over a text-centric Web is the pos-

sibility of repurposing data-using it in ways different from how it was originally

intended to be used. In order to repurpose data you must first be able to retrieve it,

which might involve screen scraping for web pages that have not become data-

centric. Then, as shown in the previous two chapters, repurposing data involves

browsing through it in ways not supported at the original sites, merging data from

several sites together, editing the data to clean it up and unify it syntactically, and

visualizing it in novel ways.

Repurposing data yields new data that is worth saving. Even original data can

be worth saving, just like some web pages are worth bookmarking to some users.

Once there is support for saving data, there is a need to interact with the saved data

in the long term. This involves browsing and searching through the data later, which

might warrant organizing it earlier on.

Finally, an ultimate goal for data collecting and repurposing might be publishing

it back into the Web.
Thus, a data-centric browser should support the following features:

- retrieve data from any web source;

- merge data from several sources;

- edit data efficiently;
- visualize data in many ways;

- browse/search through data;

- save data permanently;

- organize data;
- publish data expressively.

The various components in this thesis provide answers to how these features

can be supported. More research is needed to fit them all together into a coher-

ent whole and provide a seamless experience for moving data out of and into the

Web.

6.2 Discussion

Now at the end of the thesis, let me venture outside the realm of computer science

into the larger social, political, and economic contexts surrounding the idea of a

data-centric Web.

6.2.1 Data Publishing as Empowerment

The diversity of interests on the Web brings big profits to online retailers. On

Amazon, there are hundreds of thousands of unpopular books, each selling only a

few to a few hundred copies, whose combined profit rivals that of the few hundred

126



6. CONCLUSION

books that sell millions of copies. This observation is explored in "The Long Tail"

[40].
If we rank the various kinds of information that people want to publish on the

Web by their popularity, we should also get a long tail (Figure 6.1): a few dozens

of readily recalled kinds of information such as consumer products, news articles,
events, locations, photos, videos, music, and software projects populate the massive
head of the curve while hundreds of thousands of unpopular topics, such as sugar

package collection and lock picking, spread thinly over the long tail. Clustering
search engines such as clusty.com show dozens of sites of each unpopular topic.

Wikipedia's several thousand categories and DMoz's half a million categories show

how long the tail is.
Blogs have made publishing text articles even easier than writing HTML docu-

ments from scratch. Wikis let small to large communities collaboratively grow and
maintain reasonably-sized web sites of text articles. Multimedia publishing services

like Flickr and YouTube, complemented by the arrival of affordable consumer

cameras, also add to the publishing power of the mass population. These publish-

ing venues are now widely adopted and highly appreciated for giving the mass

population text-based and multimedia publishing power rivaling large, profession-

al, well-funded organizations. Wikipedia has grown large enough to be compared
against Encyclopedia Britannica [49]. "Citizen journalism" [2] can deliver news
faster and from more angles than news networks.

As blogs, wikis, and other publishing mechanisms spread, they become com-

monplace. A well-styled web site is now the baseline-the least to be expected. It

sparks no surprise nor delight, and does not carry any authority just by its look. To

set itself apart, a web site must differentiate against other sites by other factors, such
as the expensive features that it can afford or the perceived objectivity in which it

communicates its view. For example, to report a presidential election, a web site

might show a map plotting per-state support for each political party, and a timeline

coupled with the map to show how such support has changed over time. The site

might even make accessible the data that fuels the map and the timeline so that

head:
- consumer products + reviews
- news articles
- locations + events

photos + music + videos
- software projects tail:

- sugar packet collection
- lock picking
- breakffast Cerea 1 ch aracters
- itinerary of King John (12th century)
-Fore Cemetery burial chronology

information domains

Figure 6.1. The Long Tail of Information Domains.

127



6. CONCLUSION

its visitors can double-check the validity of its visualizations. In doing so, the site

builds its public image of being objective and open.

In my research, Sifter and Potluck, which allow casual users to repurpose and

mix data from the Web, can be seen as anticipation of such a future of data-rich

web sites. To complement, Exhibit gives the mass population ammunition to com-

pete against large content providers as the two sides co-evolve toward that future.

6.2.2 The Data Market

The motivations for publishing data mentioned in the previous section are based

on competition. Publishing data accessorizes one's web site and sets it apart from
the rest. Reputation can be accumulated if one's data is reused for some grand

purposes or by some reputable parties. If quality of data is a competitive advan-

tage-a reasonable assumption-then competition among publishers will drive

data quality upward. Perhaps economic theories can be applied to set the desirable
conditions that drive this data market to produce the desired data in the end.

If there will indeed be a market in which data is traded for reputation or sold
for money as small-time publishers try to differentiate among themselves, new in-
dustries will spring up to support their needs. Software and services for collecting,
editing, managing, and hosting data are in demand. Data needs to be verified and
certified by independent parties. Licenses are required to facilitate reuse. The right

tools and services produced by these industries can help develop the market.
There is already some infrastructure for and evidence of such a market. For

example, online consumer-oriented database and spreadsheet services like Dab-
bleDB [5] let people collect and share data. Many Eyes [16] and Swivel [35] let

people construct data visualizations. Sense.us [52] lets people collaboratively scru-

tinize data visualizations, pointing out anomalies and explaining trends. The Sci-

ence Commons [29] are working on licenses for scientific data.

6.2.3 Data as Common Goods

Building such a data-rich Web has long been advocated by the Semantic Web proj-
ect. Semantic Web researchers initially appealed to the vision in which software

agents could harvest information on the Web and perform information-centric
tasks on behalf of people. For that vision to work, the Semantic Web must be suf-

ficiently complete and coherent such that software agents have adequate and reli-

able data to work on. This strategy requires people to believe in the vision and then

to cooperate to build the Semantic Web for the benefits of all humanity in the fu-

ture. As there is no immediate benefit but much initial labor required, this strategy
mostly appeals to and brings together far-thinking, altruistic individuals. However,
if the labor required is small enough and the vision very appealing, this strategy

might even appeal to the mass population, as in many cases where crowdsourcing [3]

does work. For example, there have been efforts by Google and OpenStreetMap to

let web users edit street maps for countries in which street maps cannot be obtained

128



6. CONCLUSION

from the government. FreeBase [8] intends to let web users build a global database

equivalent to Wikipedia.
We can also imagine smaller efforts in which geographically small communi-

ties collaborate to maintain databases of their resources for emergency purposes.
Semantic MediaWiki [73] might be a good starting point toward this end. When a
natural disaster strikes, it is desirable to get a big picture of the situation as quickly
as possible. How many adults, children, elders, and physically disabled are in the

disaster zone? How many vehicles are available? Does anyone own a boat if the
disaster is a flood? Where do the doctors and nurses live? Where do mechanical
engineers and electricians live? Which buildings are most likely still standing and
capable of housing a certain number of people? Survivors can even help to collect
data on the fly wherever they are. People outside the disaster zone can help orga-
nize and analyze the collected data.

Even before disasters strike, these community-maintained databases can be an-
onymized and pooled together to give a big picture of the whole country. Through
incentive schemes, the population can be redistributed so that each region within
the country can be as autonomous as possible, having all the skills and resources
needed for disaster response.

6.2.4 Data as Culture

To engage the mass population for the purpose of building a data Web, usable
technologies may not be enough. Various media machineries might need to be
called upon to spread the meme of data appreciation to every corner of society.

Television shows such as "CSI: Crime Scene Investigation", which show unre-
alistic scientific capabilities and romanticize crime scene evidence in rich visualiza-
tions, have raised real-world expectations of forensic science [4]. More students
are enrolling in forensic science programs recently. A similar means can be used to
increase the public's expectation for the availability of data that helps during crises.
Such expectation might in turn increase the public's willingness to contribute to the
community-maintained databases suggested previously.

The seed of appreciation for data can also be sown early in grade school edu-
cation. Young children can be given tools and instructions for experimenting with
data so to develop skills and tastes for data. Just as science kits are sold to pique
children's interests in science and give them hands-on experience with scientific
experiments at an early age, "data kits" can also be made available to children.

What would it be like to live and grow up in a data-rich society? Would it be
different from the information-rich society in which we are currently living? We are
already facing the information overload problem. Would it not be worse to be
overloaded with raw data? These questions remain in the realm of media studies,
beyond the scope of this thesis.

129



6. CONCLUSION

130



7. BIBLIOGRAPHY

[1] AdaptiveBlue, Browse Smarter. http://adaptiveblue.com/.
[2] Citizen journalism. http://en.wikipedia.org/wiki/Citizen.journalism.
[3] Crowdsourcing. http://en.wikipedia.org/wiki/Crowdsourcing.
[4] CSI Effect. http://en.wikipedia.org/wiki/CSIEffect.
[5] DabbleDB. http://dabbledb.com/.
[6] Dapper: The Data Mapper. http://www.dapper.net/.
[7] DBpedia, Querying Wikipedia like a Database. http://dbpedia.org/.
[8] Freebase. http://freebase.com/.
[9] Gallery. http://gallery.menalto.com/.
[10] Google Base. http://base.google.com/.
[11] Google Maps. http://maps.google.com/.
[12] Greasemonkey http://greasemonkey.mozdev.org/.
[13] IntroducingJSON. http://www.json.org/.
[14] Linked Data - Design Issues. http://www.w3.org/DesignIssues/Linked-

Data.html.
[15] Longwell. http://simile.mit.edu/wiki/Longwell.
[16] Many Eyes. http://services.alphaworks.ibm.com/manyeyes/home.
[17] microformats. http://microformats.org/.
[18] mjt. http://mjtemplate.org/.
[19] NetSnippets. http://www.netsnippets.com/.
[20] Ning - Create your own Social Networks! http://www.ning.com/.
[21] Online Spreadsheets - EditGrid. http://www.editgrid.com/.
[22] Operator. https://addons.mozilla.org/en-US/firefox/addon/4106.
[23] Prot6g6 Ontology Editor and Knowledge Acquisition System, The. http://

protege.stanford.edu/.
[24] PubMed Home. http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed.

131



7. BIBLIOGRAPHY

[25] Rdf in Html :: Embedded RDF Wiki :: Talis. http://research.talis.
com/2005/erdf/wiki/Main/RdflnHtml.

[26] RdfPath. http://esw.w3.org/topic/RdfPath.
[27] RDFa Primer 1.0. http://www.w3.org/TR/xhtml-rdfa-primer/.
[28] Resource Description Framework (RDF) / W3C Semantic Web Activity.

http://www.w3.org/RDF/.
[29] Science Commons. http://sciencecommons.org/.
[30] Search-based User Interaction on the semantic web, a survey of existing

systems. http://media.cwi.nl/survey/.
[31] Semantic Web project. http://www.w3.org/2001/sw/.
[32] Spotfire. http://spotfire.com/.
[33] START, Natural Language Question Answering System. http://start.csail.

mit.edu/.
[34] Swoogle, semantic web search. http://swoogle.umbc.edu/index.php.
[35] Tasty Data Goodies - Swivel. http://www.swivel.com/.
[36] Topher's Breakfast Cereal Character Guide. http://www.lavasurfer.com/

cereal-guide.html.
[37] TrimQuery http://code.google.com/p/trimpath/wiki/TrimQuery.
[38] XML Path Language (XPath). http://www.w3.org/TR/xpath.
[39] Allen, R.B. Retrieval from facet spaces. Electronic Publishing, vol. 8 (2&3), pp.

247-257, 1995.
[40] Anderson, C. The Long Tail: Why the Future of Business is Selling Less of

More. New York: Hyperion, 2006.
[41] Barrett, R., P Maglio, and D. Kellem. How to personalize the web. CHI

1997.
[42] Berners-Lee, T,J. Hendler, and 0. Lassila. The Semantic Web. Scientific

American, May 2001.
[43] Berners-Lee, T, et. al. Tabulator: Exploring and Analyzing linked data on

the Semantic Web. SWUI 2006.
[44] Bizer, C., E. Pietriga, D. Karger, R. Lee. Fresnel: A Browser-Independent

Presentation Vocabulary for RDF ISWC 2006.
[45] Bolin, M., M. Webber, P. Rha, T Wilson, and R. Miller. Automation and

Customization of Rendered Web Pages. UIST 2005.
[46] Dontcheva, D., S. Drucker, G. Wade, D. Salesin, and M. Cohen. Summa-

rizing Personal Web Browsing Sessions. UIST2006.
[47] EnglishJ. M. Hearst, R. Sinha, K. Swearingen, and K.P. Yee. Flexible

Search and Browsing using Faceted Metadata. Unpublished manuscript,
2002. Available at http://flamenco.berkeley.edu/papers/flamenco02.pdf.

[48] Faaborg, A. and H. Lieberman. A Goal-Oriented Web Browser. SIGCHI

2006.
[49] Giles,J. Internet encyclopaedias go head to head. Nature, 2005. http://

www.nature.com/news/2005/051212/full/438900a.html.

[50] Halevy, A.Y (editor), N. Ashish, D. Bitton, M. Carey, D. DraperJ. Pollock,
A. Rosenthal, and V Sikka. Enterprise Information Integration: Successes,
Challenges and Controversies. SIGMOD 2005.

132



7. BIBLIOGRAPHY

[51] Hammer, J., H. Garcia-Molina,J. Widom, W Labio, and Y Zhuge. The
Stanford Data Warehousing Project. IEEE Data Engineering Bulletin, v.18,
n.2, pp. 41-48, 1995.

[52] HeerJ., E Vi6gas, M. Wattenberg. Voyaers and Voyeurs: Supporting Asyn-
chronous Collaborative Information Visualization. SIGCHI 2007.

[53] Hildebrand, M.,J. van Ossenbruggen, L. Hardman. /facet: A Browser for
Heterogeneous Semantic Web Repositories. ISWC 2006.

[54] Hogue, A. and D. Karger. Thresher: Automating the Unwrapping of Se-
mantic Content from the World Wide Web. WWW2005.

[55] Joachims, T, D. Freitag, and T Mitchell. WebWatcher: a tour guide for the
World Wide Web. IJCAI 1997.

[56] Kalfoglou, Y and M. Schorlemmer. Ontology Mapping: The State of the
Art. The Knowledge Engineering Review, Volume 18, Issue 1, 2003.

[57] Lerman, K., L. Getoor, S. Minton, and C. Knoblock. Using the structure
of Web sites for automatic segmentation of tables. SIGMOD 2004.

[58] McDowell, L., 0. Etzioni, S. Gribble, A. Halevy, H. Levy, W Pentney, D.
Verma, and S. Vlasseva. Mangrove: Enticing Ordinary People onto the
Semantic Web via Instant Gratification. ISWC 2003.

[59] Miller, R. and B. Myers. Multiple Selections in Smart Text Editing. IUI
2002.

[60] Oren, E., R. Delbru, S. Decker. Extending faceted navigation for RDF
data. ISWC 2006.

[61] Plaisant, C., B. Shneiderman, K. Doan, and T Bruns. Interface and data
architecture for query preview in networked information systems. ACM
Transactions on Information Systems, 17(3):320-341, 1999.

[62] Quan, D., D. Huynh, and D. Karger. Haystack: a platform for authoring
end-user Semantic Web applications. ISWC 2003.

[63] Reis, D.C., PB. Golgher, A.S. Silva, and A.E Laender. Automatic Web
news extraction using tree edit distance. WW 2004.

[64] schraefel, m. c., D. Smith, A. Russel, A. Owens, C. Harris, and M. Wil-
son. The mSpace Classical Music Explorer: Improving Access to Classical
Music for Real People. MusicNetwork Open Workshop, Integration of Music in
Multimedia Applications, 2005.

[65] schraefel, m.c., Y Zhu, D. Modjeska, D. Wigdor, and S. Zhao. Hunter
Gatherer: Interaction Support for the Creation and Management of
Within-Web-Page Collections. WWW 2002.

[66] Shen, Y, and D. Karger. U-REST: An Unsupervised Record Extraction
SysTem. Poster, WWW2007.

[67] Shneiderman, B. Dynamic queries for visual information seeking. IEEE
Software, 11:6, 70-77, 1994.

[68] Sinha, V and D. Karger. Magnet: Supporting Navigation in Semistruc-
tured Data Environments. SIGMOD 2005.

[69] Suchanek, EM., G. Kasneci, and G. Weikum. Yago: A Core of Semantic
Knowledge - Unifying WordNet and Wikipedia. WWW 2007.

133



7. BIBLIOGRAPHY

[70] Sugiura, A. and Y Koseki. Internet scrapbook: automating Web browsing
tasks by demonstration. UIST 1998.

[71] Tai, K.-C. The tree-to-tree correction problem. J. Association of Computing
Machinery, 26(3):422-433,July 1979.

[72] Tufte, E. Visual Explanations: Images and Quantities, Evidence and Nar-

rative. Graphics Press: Chesire, Connecticut, 1997.
[73] V61kel, M., M. Kr6tzsch, D. Vrandecic, H. Haller, R. Studer. Semantic

Wikipedia. WWW2006.
[74] Wang,J.-Y, and E Lochovsky. Data extraction and label assignment for

Web databases. WWW 2003.
[75] Wong,J. andJ. Hong. Making Mashups with Marmite: Towards End-User

Programming for the Web. SJGCHJ 2007.
[76] Yan, B., M. Frank, P Szekely, R. Neches, andJ. Lopez. XVebScripter:

Grass-roots Ontology Alignment via End-User Report Creation. ISWC

2003.
[77] Yee, P., K. Swearingen, K. Li, and M. Hearst. Faceted Metadata for Image

Search and Browsing. SIGCHI 2003.
[78] Zhai, Y, and B. Liu. Web data extraction based on partial tree alignment.

WWW 2005.

134


