
Scheduling Services and Security Ticket Token

Services in iLab Interactive Services

by

Tingting Mao

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

A uthor
Department of Civil and Environmental Engineering

August 10, 2007

Certified by

Class of 1922 Professor of Civil
Steven R. Lerman

and Environmental Engineering
Thesis Supervisor

7
Accepted by................

0'
Daniele Veneziano

Chairman, Department Committee on Graduate Students

BARKER

MASSACHUSETSINSTITE
OF TECHNOLOGY

NOV 0 9 2007

LIBRARIES

Scheduling Services and Security Ticket Token Services in

iLab Interactive Services

by

Tingting Mao

Submitted to the Department of Civil and Environmental Engineering
on August 10, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Civil and Environmental Engineering

Abstract

The iLab architecture allows students to execute laboratory experiments remotely
through internet. It supports three different kinds of experiments: batched, interac-
tive and sensor-based. The iLab Interactive Experiments architecture includes the
following servers and services: the Interactive Service Broker (ISB), the Experiment
Storage Service (ESS) and the Lab Server (LS). In addition, students execute inter-
active experiments by running a Lab Client (LC). In order to support interactive
experiments which require scheduled access, the iLab interactive architecture envi-
sions scheduling servers and services which enable students from different campuses
to reserve time periods to execute experiments. Since the user side and lab side re-
quire different scheduling functionalities, a user-side scheduling server (USS) and a
lab-side scheduling server (LSS) are introduced in the iLab Interactive Services to
manage reservations. In the first part of this thesis, the philosophy of the scheduling
services design and the implementation will be illustrated in detail. In dealing the
security issues in the iLab interactive architecture, the complexity of the higher level
authentication between iLab processes increases when one considers collaboration
between domains. In second part of this thesis, I present a Security Token Service
(STS) scheme for using WS-Security to optimize the cross-domain authentication in
the iLab interactive architecture. The scheme uses the brokered authentication with
a security token issued by the STS. The STS is trusted by the web applications and
web services in the iLab interactive architecture to provide interoperable security to-
kens. A security token is used to convey the credential information and the proof of
a relationship with the broker, which can be used by the service to verify the token.
A comparison between the STS scheme and the current General Ticket scheme is
summarized.

Thesis Supervisor: Steven R. Lerman
Title: Class of 1922 Professor of Civil and Environmental Engineering

2

Acknowledgments

The author would like to thank the myriad persons who provided support and encour-

agement throughout the pursuit of this project. In particular: Professor Steven R.

Lerman for his insightful advise and comments; Jud Harward, the principal research

scientist at CECI, for providing invaluable advice, as well as excellent instruction

through out all the stages of this project; Philip Bailey, Kirky DeLong,Imad Jabbour

and Rabih Zbib for being wonderful teamates and providing invaluable support and

help; Chris Felknor for being a technical "sounding board" and good friend.

No acknowledgement could be wholesome without extending my utmost gratitude

to my parents and sister. You love and encouragement remain the excess of a impulse

behind all that I am and all that I do.

3

Contents

1 Introduction 8

1.1 iLab project and interactive architecture 8

1.1.1 The Batched Experiment . 9

1.1.2 Interactive Experiment . 9

1.1.3 The Sensor Experiment . 9

1.2 Web services and Web application . 10

1.2.1 Web services . 11

1.2.2 Web Application . 12

1.3 Challenges in interactive architecture 14

1.3.1 Scheduling challenge in iLab 14

1.3.2 Security challenge in iLab . 16

2 Scheduling server design 18

2.1 Scheduling server design goal . 18

2.2 Interactive architecture and topology 19

2.3 Scheduling concepts and Rules . 21

2.4 Scenario . 22

2.4.1 Scenario 1 . 22

2.4.2 Scenario 2 . 23

2.4.3 Scenario 3 . 23

2.4.4 Scenario 4 . 24

2.4.5 Scenario 5 . 24

2.4.6 Scenario 6 . 25

4

2.4.7 Scenario 7 .

2.5 Functionality .

2.5.1 USS functionality provided by web application .

2.5.2 USS functionality provided by web services . . .

2.5.3 LSS functionality provided by web application .

2.5.4 LSS functionality provided by web services . . .

2.6 W ork flow .

2.6.1 Scheduling reservation work flow

2.6.2 Scheduling execution work flow

2.7 D ata m odel .

3 Scheduling server implementation

3.1 Scheduling algorithm

3.2 Data structure.

3.2.1 User-side Scheduling Server

3.2.2 Lab-side Scheduling Server

3.3 Web Service interface

3.3.1 User-side Scheduling Server

3.3.2 Lab-side Scheduling Server

3.4 Scheduling user interface......

4 Security in the iLab Interactive architecture

4.1 Introduction to security system

4.1.1 Authentication

4.1.2 Authorization

4.1.3 Confidentiality

4.2 Web service security

4.3 Threat analysis in the iLab Interactive architecture

4.4 Current solution .

5

. . . 25

. . . 25

. . . 25

. . . 26

. . . 26

. . . 26

. . . 27

. . . 27

. . . 29

. . . 30

34

. 3 4

. 36

. 36

. 38

. 4 1

. 4 1

. 4 2

. 4 5

47

47

48

49

50

51

52

53

5 Security Ticket Token Services (STS) design 56

5.1 D esign goal . 56

5.2 D esign of ST S . 58

5.3 Comparison between current solution and STS 62

6 Conclusion 64

6

List of Figures

1-1 Web services

Ilab topology

Scheduling reservation work flow .

Scheduling execution work flow .

USS Data Model

LSS Data Model

3-1 Time Intersection .

Security System

The direct authentication and the

Shared key system

Public key system

The General Ticket Scheme . . .

brokered authentication patterns

.

5-1 STS work flow .

7

2-1

2-2

2-3

2-4

2-5

4-1

4-2

4-3

4-4

4-5

. . . . 12

20

28

29

32

33

35

48

49

50

51

55

59

Chapter 1

Introduction

1.1 iLab project and interactive architecture

The MIT iLab Project is developing a distributed software toolkit and service in-

frastructure to support internet accessible laboratories and promote their sharing

among schools and universities. The project starts with the assumption that the

faculty teaching with online labs and the researchers that provide those labs are act-

ing in two roles with different goals and concerns. The iLab architecture focuses on

fast platform-independent lab development, scalable access for students, and efficient

management for lab providers while preserving the autonomy of the faculty actually

teaching the students. In the 28 months of iLab's operation using a standardized

software architecture, MIT experiment servers have executed approximately 38000

experiments in behalf of over 2600 MIT students and authorized guests as well as

over 400 anonymous Internet users. The ultimate goal of the project is to establish

an economy of shareable labs to enhance science and engineering education. In iLab

project, three categories of experiments are envisioned to be supported by the iLab

architecture: batched, interactive and sensor-based.

8

1.1.1 The Batched Experiment

In a batched experiment, the student specifies all parameters that govern the ex-

ecution of the experiment before the experiment starts. The lab session consists of

submitting an experiment protocol, executing the experiment, and then retrieving and

analyzing the results. Typically, batched experiments run quickly so that scheduling

is rarely necessary. The MIT Microelectronics WebLab (weblab.mit.edu) provides an

excellent example.

1.1.2 Interactive Experiment

In an interactive experiment, the student typically sets a series of parameters, ini-

tiates the experiment, and then monitors the experiment's course, changing control

parameters as necessary. Conceptually, an interactive experiment can be thought of

as a sequence of alternating control and monitoring intervals. In general, the control

intervals have many of the characteristics of a batched experiment, and the monitoring

intervals resemble sensor experiments. The record of an experiment session typically

includes both time-stamped control and sensor data as well as other forms of docu-

mentation that may include images or video. The Internet accessible heat exchanger

at MIT (heatex.mit.edu) provides a good example of this type of experiment.

1.1.3 The Sensor Experiment

In a sensor experiment, the student usually can not specify any parameters although

she may be able to select the particular sensor data that she wishes to receive. Run-

ning the experiment consists of subscribing to real time sensor data, usually presented

in a graphical user interface such as a virtual strip chart. The system may provide

options to filter the data or to transform it as well as to access archival data. Long

running sensor subscriptions may benefit from implementing trigger or alarm mech-

anisms. Imagine an online seismometer that notifies a student of a seismic event

through email or instant messaging. The detection of a seismic event that passed

a specified threshold might trigger more frequent sampling or complementary data

9

presentations. Sensor experiments frequently have very asymmetric data flows. It

takes few bits to subscribe to a sensor, but the resulting data stream from the sensor

to the student's client may require a great deal of bandwidth. Some sensors may

only provide best efforts to deliver continuous data with no guarantee that all sam-

ples will arrive. Other systems may provide archival quality data but perhaps with a

variable lag time. This category of experiment was represented at MIT by a flagpole

instrumented with accelerometers that stream continuous data (flagpole.mit.edu).

1.2 Web services and Web application

Web services and web application are the two techniques adopted to implement the

iLab project. This was decided based on the design requirement in the iLab project.

The students on one campus must be able to use labs housed on different campus.

The lab side services may need to run on different hardware and software platforms.

Moreover, the lab-side campus may enforce different networking policies (e.g., fire-

walls, directory and email services). The transparency of web services makes this

technology an obvious choice to integrate our distributed application framework..

Also, the loose coupling of web services makes it easy to reuse the preexisting code

to manage the lab equipment or to display results and control the lab equipment from

one or more client machines.

Web Services WSDL and UDDI provide a framework in which to help schools and

colleges to discover what online labs in their area of interest are available and to verify

whether those labs are compatible with the pedagogic goals of their courses. To carry

this one step further, one can imagine WSDL-based negotiation that will match an

Internet accessible lab with proprietary high end visualization and data analysis tools

that are licensed by the client-side campus.

Since we can expect tens of thousands users will be world wide distributed, the

ability to update and maintain Web applications without distributing and installing

software on potentially thousands of client computers is the key reason the web ap-

plication technology is one the foundations of the iLab architecture.

10

Because we based our shared software infrastructure for Internet accessible labs

on web services and web application, we give a brief introduction about web services

and web application techniques.

1.2.1 Web services

The W3C defines a Web service 1 as a software system designed to support interoper-

able machine to machine interaction over a network. Web services are frequently just

Web APIs that can be accessed over a network, such as the Internet, and executed

on a remote system hosting the requested services. The W3C Web service definition

encompasses many different systems, but in common usage the term refers to clients

and servers that communicate using XML messages that follow the SOAP-standard

[13]. Common in both the field and the terminology is the assumption that there is

also a machine readable description of the operations supported by the server, a de-

scription in the WSDL. The latter is not a requirement of a SOAP endpoint, but it is

a prerequisite for automated client-side code generation in the mainstream Java and

.NET SOAP frameworks. Some industry organizations, such as the WS-I, mandate

both SOAP and WSDL in their definition of a Web service.

The specifications that define Web services are intentionally modular, and as a

result there is no one document that contains them all. Additionally, there is neither

a single, nor a stable set of specifications. There are a few "core" specifications that

are supplemented by others as the circumstances and choice of technology dictate,

including:

SOAP- An XML-based, extensible message envelope format, with "bindings" to

underlying protocols. The primary protocols are HTTP and HTTPS, although

bindings for others, including SMTP and XMPP, have been written.

WSDL- An XML format that allows service interfaces to be described, along with

the details of their bindings to specific protocols. Typically used to generate

server and client code, and for configuration.

imany sources also capitalize the second word, as in Web Services

11

Servvice

Broker.-
UDDI

Service service
Requester Provider

Figure 1-1: Web services

UDDI- A protocol for publishing and discovering metadata about Web services, to

enable applications to find Web services, either at design time or runtime.

Most of these core specifications have come from W3C, including XML, SOAP, and

WSDL; UDDI comes from OASIS.[14, 6]

1.2.2 Web Application

In software engineering, a Web application, or "webapp", is an application that is

accessed with a Web browser over a network such as the Internet or an intranet. Web

applications are popular due to the ubiquity of the browser as a client, sometimes

called a thin client. The ability to update and maintain Web applications without

distributing and installing software on potentially thousands of client computers is a

key reason for their popularity. Web applications are used to implement Webmail,

online retail sales, online auctions, wikis, discussion boards, Weblogs, Massive multi-

player online role-playing game (MMORPG) and many other functions. In earlier

types of client-server computing, each application had its own client program which

served as its user interface and had to be separately installed on each user's personal

computer. An upgrade to the server part of the application would typically require an

12

upgrade to the clients installed on each user's workstation, adding to the support cost.

In contrast, Web applications dynamically generate a series of Web documents in a

standard format such as HTML/XHTML supported by common browsers. Client-

side scripting in a standard language such as JavaScript is commonly included to

add dynamic elements to the user interface. Generally, each individual Web page is

delivered to the client as a static document, but the sequence of pages can provide an

interactive experience, as user input is returned through Web form elements embed-

ded in the page markup. During the session, the Web browser interprets and displays

the pages, and acts as the universal client for any Web application. A significant

advantage of building Web applications to support standard browser features is that

they should perform as specified regardless of the operating system or OS version

installed on a given client. Rather than creating clients for MS WindowsTM, Mac

OS XTM, GNU/Linux TM, and other operating systems, the application can be writ-

ten once and deployed almost anywhere. However, inconsistent implementations of

the HTML, CSS, DOM and other browser specifications can cause problems in web

application development and support. Additionally, the ability of users to customize

many of the display settings of their browser (such as selecting different font sizes,

colors, and typefaces, or disabling scripting support) can interfere with consistent

implementation of a Web application. Another (less common) approach is to use

Macromedia FlashTM or JavaTM applets to provide some or all of the user interface.

Since most Web browsers include support for these technologies (usually through

plug-ins), Flash- or Java-based applications can be implemented with much of the

same ease of deployment. Because they allow the programmer greater control over

the interface, they bypass many browser-configuration issues, although incompati-

bilities between Java or Flash implementations on the client can introduce different

complications. Because of their architectural similarities to traditional client-server

applications, with a somewhat "thick" client, there is some dispute over whether to

call systems of this sort "Web applications"; an alternative term is "Rich Internet

Application". [9] Though many variations are possible, a Web application is com-

monly structured as a three-tiered application. In its most common form, a Web

13

browser is the first tier, an engine using some dynamic Web content technology (such

as ASP, ASP.NET, CGI, ColdFusion, JSP/Java, PHP, Python, or Ruby On Rails) is

the middle tier, and a database is the third tier. The Web browser sends requests

to the middle tier, which services them by making queries and updates against the

database and generating a user interface.

1.3 Challenges in interactive architecture

According to the different features of the three categories of experiments mentioned

in 1.1, the iLab project envisions three different architectures to support those ex-

periments, which are iLab Batched Architecture, iLab Interactive Architecture and

iLab Sensor Architecture. Each of the architecture has its own challenges. Since

this thesis only deals with the interactive architecture, the scheduling and security

challenges, the main challenges in the iLab Interactive Architecture will be discussed

in this chapter.

1.3.1 Scheduling challenge in iLab

The interactive architecture permits students to observe the progress of the experi-

ment and to interact with the experiment in ways that can change the experiment's

course. Such labs typically require more time to execute than batched experiments

because they proceed in human not machine time. A typical interactive experiment

requires 20 minutes to several hours to execute. Because users control the lab equip-

ment, they usually require exclusive access to it. Asking users to queue for their turn

to use the lab wastes their time.

Hence most interactive experiments require a scheduling application that allows

the users to sign up in advance for time on a particular piece of lab equipment.

Access to this scheduling application must be authorized by the Interactive Service

Broker (ISB) since only the ISB can authenticate a user and vouch for his identity.

The scheduling application must notify users if their reservation must be canceled

or changed. Finally certain labs have operating requirements that require actions

14

either before or after the execution of an experiment. For instance, a heat exchanger

experiment may require the apparatus to achieve thermal equilibrium before the start

of an experiment. A chemical diffusion experiment may require that the diffusion

apparatus be flushed at the end of the experiment. The scheduling application must

allocate time for these actions in scheduling experiment sessions.

Scheduling can be looked at from two perspectives. From the lab provider's per-

spective, the scheduling application coordinates reservations to use a lab from mul-

tiple campuses. The scheduling server is also the process that holds the information

required to "wake up" a lab server to perform required actions before a scheduled

experiment. The lab provider may want to allocate blocks or percentages of time

to different groups of users according to certain policies. For instance, Lab A may

want to permit use from universities B and C between 6 pm and midnight, Monday

through Friday, with university B allocated 60% of the time and university C the

remainder. On the other hand, the lab provider generally does not want to be aware

of the details of a user's reservation. If the lab server must be taken down for mainte-

nance, the lab provider would simply like to notify the scheduling application of the

down time and have the scheduling application take care of informing the affected

users and rescheduling their work.

From a teacher's and a student's perspective, the scheduling application must

act as their agent in scheduling time on lab servers. The application must accept

authorizations to schedule from the users' ISB and must record reservations in a way

that can be associated with individual users. If a reservation must be cancelled, the

scheduling application must take the responsibility for informing the user. Teachers

may want to stipulate policies that govern how their students may make reservations.

For instance, a teacher may decide that students can only sign up for two hours of

lab access per week with no single reservation lasting more than one hour. Different

teachers using the same lab may want to set different policies for their students.

Given the different requirements from the lab-side and the student-side perspec-

tives, where should the scheduling application be located?

What is more, different teachers want to represent different policies. For example,

15

some teachers want to set the maximum time their students can reserve for executing

the experiment, while some teachers want to set the minimum time their students have

to execute the experiment. When some lab manager assign time slots to the particular

groups, they prefer to assign whole continuous time block the those groups, while for

other groups, they prefer to assign recurrent time blocks such as from Monday to

Friday, 8:00am to 9:00pm. How to design user interface so that the teacher or the lab

manager can assign policy and time slots flexibly is another challenge.

The iLab architecture provides an infrastructure to allow world wide distributed

clients visit the remote online labs. It will always happen that a client wants to make

reservation for executing experiments on the labs in a different time zone. To the

user's convenience, the time represented to the user should always be the user's local

time. During the design of the scheduling algorithm, how to deal with the delta of

time input from different time zones is a major consideration.

1.3.2 Security challenge in iLab

To begin either an administrative or an experimental session with the iLab interactive

architecture, the user must authenticate himself to the ISB. The reference implemen-

tation supplies a simple user name and password scheme carried out using a standard

browser-based web application.

Because iLab interactive architecture is a multi-domain, multi-server environment,

in addition to user authentication on the Service Broker, the security challenges lie

in the other three sessions:

9 Single sign on (SSO) for multiple web applications sessions: For example, after

authentication, the user may indicate that he wishes to schedule a future lab

session and chooses one of the labs to which he has access. The ISB would then

redirect him to the web application of the User-side Scheduling Server (USS)

that handles the reservations for that lab. The redirection must be accompanied

by credentials sufficient to identify the user and to convince the USS to allow

him to schedule a future experiment session.

16

" Client to Web services security session: For example, when the time has come

for the student to execute the experiment, the ISB must launch the client with

credentials that the lab server will recognize. The client will usually try to con-

tact the lab server directly, and the lab server should only accept the connection

if the client can provide authentication information to the lab server.

" Web service to web service session: For example,when the lab server needs to

store experiment data, it must contact the user's ESS and present the forwarded

credentials that will allow the Experiment Storage Server (ESS) to recognize

who owns the data that is being stored and to decide whether the data should

be accepted.

17

Chapter 2

Scheduling server design

2.1 Scheduling server design goal

From the functionality view, in the interactive iLab architecture, the scheduling server

should provide the services to the lab server providers, the teaching faculties and the

students so that:

" Lab server providers are able to assign permissions to particular groups to exe-

cute certain kinds of experiment during defined time blocks. Providers are able

to define the time limit properties for the particular experiments which can be

executed in the lab server, such as the minimum executing time or recover time.

They are also able to set certain scheduling policies for different groups. They

can also revoke previously scheduled lab sessions for unexpected maintenance.

They can monitor the usage of their equipments by different resources.

* Teaching faculties are able to monitor the signups of their students and set

policies under which students can reserve lab sessions.

* Students are able to make reservations for future lab sessions, check on their

previously made reservations, and change or cancel these reservations. They

should also be reminded how much time earlier or how much time left for their

time slots executing the experiments.

18

From the system efficiency view, we expect that the lab server provider, the teach-

ing faculties and the students will access the scheduling server with low latency.

From the system flexibility view, we expect that the one group can chose mul-

tiple scheduling servers for different experiments. Also the intelligence housed in

the scheduling server can allow the teaching faculties and lab server providers to set

more complex scheduling policies. For example, instead of adopting first come, first

served policy, the lab server provider can set priorities to certain groups so that the

reservation from those groups will always be accepted first.

2.2 Interactive architecture and topology

The need to coordinate reservations from multiple campuses for a single lab server

argues that there should be a single scheduling application located close in network

terms to the lab server. But the requirement to accommodate the different policies

of individual teachers suggests the need for multiple scheduling applications, at least

one on each student campus like batched service brokers. We have decided that the

two perspectives require two related scheduling applications, a Lab-Side Scheduling

Server (LSS) and a User-Side Scheduling Server (USS). By polling the LSS, the USS

presents the available time slots to certain user.

As the result, the iLab Interactive Experiments architecture includes following

servers and services: the Interactive Service Broker (ISB) which authenticates users

and handles authorization and administrative issues, the Experiment Storage Service

(ESS) which provides storage for binary and text records associated with experiments,

and the Lab Server (LS) which actually executes experiments and typically stores the

results by invoking web service methods on the ESS. In addition, students execute

interactive experiments by running a Lab Client (LC). In order to support interactive

experiments which require scheduled access, iLab interactive architecture envisions

scheduling servers and services which enable students from different campus to reserve

executing experiments. Since the user side and lab side require different scheduling

functionalities, user sides scheduling server (USS) and lab side scheduling server (LSS)

19

ab Client

Lab Cient Servi

A dnai

User Side Lafy er

L Svter I

Scheduling

Lab Side

ts udge: Scheduling Se ic roker

kMr

Lab Server 2

Scheduling mo

Figure 2-1: Ilab topology

are introduced in the iLab Interactive Services to mutually manage reservations from

different students to execute different experiments.

The topology in the interactive architecture is as follows:

1. The relation between Service Brokers and USSs is many to many. In this way,

a group is able to use multiple USS to manage their reservation on different

experiment.

2. The relation between USSs and LSSs is many to many. This relationship allows

great flexibility for students to chose the labs in different campus.

3. The relation between LSS and lab servers is one to many. This relationship is

dictated by the unrepeatable nature of time. The time slots of one lab server

only can be managed by one LSS.

20

2.3 Scheduling concepts and Rules

Some scheduling concepts should be clarified before the further discussion.

Experiment- The combination of a lab client and a lab server. The lab client is

uniquely defined by lab client name and lab client version

Credential set- The combination of a Service Broker and an effective group accessed

through a USS.

Time block- A period of time during which particular group can execute particular

experiment.

Permitted experiment- Since multiple experiments can be executed in one lab

server, the experiments which are permitted to execute in a certain time blocks

are called permitted experiments.

Quantum- The minimum time unit for particular experiment.

Time slot- After dividing the time block by the quantum, we get number of time

slots.

Early arrival time- Students are allowed to access the lab server if they arrive in

a certain amount time earlier than his reservation. The allowed longest early

arrival time is defined as the early arrival time.

Prepare time- Before the execution of the experiment, the warm up time the equip-

ment needs is defined as the prepare time.

Recover time- After the execution of the experiment, the time the equipment needs

to return to the normal state is defined as the recover time.

Minimum time- The minimum time the experiment needs to be executed.

Recurrence- The time block assigned to particular group can recur in certain style.

Here we have four recurrence styles, which are daily, weekly, monthly and no

recurrence. The aggregation of the time blocks in a certain time period with

21

the same recurrence style is called a recurrence. For example, a recurrence can

include all the time blocks from 9am to 5pm every week day from June 1st 2007

to September 1st 2007.

Policy- The scheduling rule users need to comply with. Here we have user side policy

and lab side policy. The user side policy is set by the teaching faculty of the

particular group. The lab side policy is set by the lab server provider.

During the design of the scheduling servers, two rules are strictly complied with.

The first rule is that the LSS policy should not involve any decisions based on user

identity. All user-based policy should be implemented by USS policy and supported

by the USS data model. The web service API between the LSS and USS should not

have to communicate policy, only reservation information. In this way, the boundary

of USS and LSS is clearly defined. The second rule is that any scheduling user

interface should present times in the time of the current user. All times should be

recorded in UTC. In this way, the time information can be shared globally.

2.4 Scenario

During the design of the scheduling server, there are seven scenarios we considered.

2.4.1 Scenario 1

The Student makes a reservation to execute particular experiment:

1. The student log in the ISB in his campus. He or she selects the group that has

the permission to execute the experiment.

2. After the student click the Schedule/Redeem Session button, he is redirected to

the Make Reservation Page on the USS which manages the reservations from

the group the student selected from step one.

3. Through the calendar on the Make Reservation Page, the student selects the

date on which he plan to do the experiment. The available time blocks to

22

execute the experiment on the selected day are retrieved from the LSS which

manages the time slots of the lab server which provides the experiment. The

student selects the time block he is interested in. All the time slots in the

selected time block are retrieved from the LSS. At the same time the reservation

policy defined by the TA of the group is represented on the page. The student

selects the free time slots by clicking the check box next to them. After clicking

the Make Reservation button, the USS checks whether the reservation policy

is satisfied. If the reservation policy is satisfied, then the LSS checks whether

the selected time slots are still free. If the reservation passes the two checks,

the reservation will be represented in the Reservation window. Otherwise, the

warning will be rejected.

2.4.2 Scenario 2

The student executes the experiment:

1. The student log in the ISB in his campus.He or she selects the group that has

the permission to execute the experiment.

2. After the student click the Schedule/ Redeem Session button, he is redirected

to the Make Reservation Page on the USS which manages the reservations from

the group the student selected from step one.

3. After clicking the reservation showed in the reservation window to highlight the

reservation the student is going to redeem, the student clicks on the Redeem

Reservation button. If the current time is earlier than the start time of the

reservation, the USS will remind the student how long until the reservation is

valid. If the reservation is valid now, the student can launch the Lab Client of

the experiment.

2.4.3 Scenario 3

The teaching faculty set the scheduling policy for his group:

23

1. After signing in the ISB as the manager of his group, the Lab Server provider

is redirected to the policy management page of the USS which manages the

reservation for his group.

2. After selecting the experiment whose scheduling policy is going to be set, the

teaching faculty fills in the related text box to set the policy for his group.

2.4.4 Scenario 4

The Lab Server provider sets the experiment scheduling property and assigns the time

blocks to particular group:

1. After signing in the ISB as the manager of the Lab Server, the Lab Server

provider is redirected to the Manage page of the Lab Sever on the LSS.

2. In the experiment Information Management page, the Lab Server provider is

able to set up the scheduling properties such as quantum, prepare time and

recover time for particular experiment which is executable on his lab server.

3. In the TimeBlock Management page, the Lab Sever provider selects the group

he is going to assign time blocks to. Then the Lab Server provider can assign

the time blocks to the group by setting the recurrence style, the start time and

end time, the start date and end date.

2.4.5 Scenario 5

The Lab Server provider revokes the time blocks for the unexpected maintenance:

1. After signing in the ISB as the manager of the Lab Server, the Lab Server

provider is redirected to the Manage page of the Lab Sever on the LSS.

2. In the Revoke Reservation page, the Lab Server provider sets the start time and

end time of the time period during which the lab server is going to be down for

maintenance. All the reserved lab sessions during the time period are deleted

and related USSes are notified.

24

2.4.6 Scenario 6

The USS Superuser checks the USS server records:

1. After signing in the ISB as the Superuser of the USS, the Superuser of the USS

is redirected to the USS.

2. He can check information of the registered LSSes and registered Experiments

on his server.

2.4.7 Scenario 7

The LSS Superuser checks the LSS server records

1. After signing in the ISB as the Superuser of the LSS, the Superuser of the LSS

is redirected to the LSS.

2. He can check information of the registered USSes and registered groups on his

server.

2.5 Functionality

According to the scenarios described above, we define the functionality for the USS

and the LSS from the web application aspect and the web service aspect.

2.5.1 USS functionality provided by web application

" A user must be able to make reservations as well as to view, cancel or modify

previously scheduled reservations.

" The super user of the USS must be able to check a Lab-side scheduling server

(LSS) and the lab client on an USS.

* A teaching faculty should be able to review reservations made from his group.

He or she, with required permission, should be able to make, modify, or cancel

reservations for members of the group over which the staff member has authority.

25

* A teaching faculty should be able to specify a rule set that governs whether a

reservation request to execute an experiment at a certain time will be accepted

from a student with a particular credential set.

2.5.2 USS functionality provided by web services

" Allow an LSS to revoke a block of reservation (e.g., due to maintenance) and

assume the responsibility for informing the affected staff and users.

" Redeem the reservation, that is, check whether the reservation from a user for

a particular experiment is ready for execution.

" Allow the ISB in its domain to register the Groups and the Experiments.

2.5.3 LSS functionality provided by web application

* A lab administrator must be able to register the experiments provided by the

Lab Server on an LSS.

* A lab administrator must be able to offer a block of time for reservations to one

or more groups. A lab administrator must be able to specify rule sets (policies)

to determine whether a reservation from a particular USS for a particular time

should be accepted or not.

" A lab administrator should be able to check and revoke previously confirmed

reservations to accommodate maintenance or other unexpected requirements of

the lab server team.

* A super user of the LSS should be able to check the USSs and the Groups

registered on his server.

2.5.4 LSS functionality provided by web services

The LSS must be able to provide a listing of available reservation time blocks for a

given experiment and credential set within a particular USS specified interval.

26

The LSS must be able to provide a listing of time periods which are valid for a given

experiment and credential set within a particular USS specified time block.

The LSS must be able to confirm or deny a particular reservation request from a USS;

if the request is denied, the LSS should provide a brief explanation string.

The LSS must be able to invoke an alert method built into the interactive lab server

web service. The purpose of this method is to wake up a lab server that needs to

prepare for an upcoming scheduled reservation.

The LSS must be able to allow the USS to revoke the reservations.

The LSS must be able to register the USSs and Groups by the request of the ISB in

its domain.

2.6 Work flow

In this section, we illustrate what work flows happens when a student from one campus

schedules a reservation or executes an experiment on a different campus. Here, we

call the student's campus domain A, and the campus where the lab service is located

domain B.

2.6.1 Scheduling reservation work flow

1. The student logs in to the service broker through the student is web browser.

2. After the Interactive Service Broker in domain A (ISA) authenticates the stu-

dent, the ISA redirects the client with coupon in the http request to the USS.

3. The student enters the time period in which he wants to make reservation.

4. The USS retrieves from the LSS available time periods with coupon ID, an

identifier of the tickets collection, in the header.

5. The LSS called the the Interactive Service Broker in domain B (ISB) to retrieve

scheduling ticket by showing the coupon ID.

27

4: add, change or

cancel reservation

2rq3jf the ftVe

chwk in which

he wants to make

reservation

-u 0 4p9Mg to

Aelt Side

A danmain

with

Coupon in

5: confirm reservation or
delete mservation

3;MW, 1available fte -n

periods with coupon in header

Reservation Aet

5. 6&tv cket

reservation WM et

1111 scheduing Ucket
Li 1 side i

B dom11ain

Figure 2-2: Scheduling reservation work flow

6. The ISB in domain B called the ISB in domain A to retrieve the scheduling

ticket by showing the coupon ID

7. Once the ticket is received, the LSS sends the available time periods back to

the USS. The USS returns the time slots available to the student.

8. The student adds or changes the reservation from the USS.

9. The USS confirms the reservation on the LSS to check whether the time slot is

still available.

10. The LSS calls the ISB in domain B to retrieve the reservation ticket by showing

the coupon ID.

11. The ISB in domain B calls the ISB in domain A to retrieve the reservation ticket

by showing the coupon ID.

12. Once the ticket is received, the LSS adds or changes the reservation. The USS

adds or changes the reservation as well.

28

- .~ -

3: Redid kbeck W oxpon

3.5: Lab Men is faux? 6a

LSS

I.5:Irdieve 4.Ne alab sewer
I: Redo" ?WAI U: eae~xwiion

WI& ScJecdhul ' wmbootp

Jn ea* N ewi eks DXQM ke 5.5:Retellie reede'aakb Acpccepon W~ SBI ?e 5. :Uetnievek1Y coupon

= t-

47 eI?~0: Log in, LSD B Li&~Seer

A do rnaii

Figure 2-3: Scheduling execution work flow

2.6.2 Scheduling execution work flow

1. The student logins to the service broker through the student lab client.

2. After ISB A authenticates the student, the ISB A redeems the reservation on

the USS for the student with the coupon by making an the http request to the

USS. The USS retrieved the scheduling ticket from ISB in the domain A to

check whether the student is authenticated to redeem the reservation. The lab

client is launched.

3. Once the student is authenticated, and the USS finds the reservation for the

student to execute the requested experiment now. The USS calls the ISB in

domain A to create an execution ticket and storage ticket with the same coupon

ID.

4. The Lab Client connects to the Lab Server with the coupon in the header of

the SOAP.

5. The Lab Server calls the ISB in domain B to retrieve scheduling ticket by

29

showing the coupon ID.

6. The ISB in domain B calls the ISB in domain A to retrieve the execution ticket

by showing the coupon ID.

7. Once the execution ticket is received, the lab client gets connected to the lab

server.

8. At the same time, the LSS in domain B alerts the Lab Server and wake the Lab

Server up if the LSS knows there is a reservation is to be fulfilled.

2.7 Data model

Five entities can be extracted from the scenario related with the USS. They are

Reservation, Credential Set, Experiment Information, USS Policy and LSS Informa-

tion. The relations among them are as follows:

" The Reservation has a foreign key, Credential Set ID, which is the Credential

Set's primary key. This relation shows which group the reservation comes from.

" The Reservation has a foreign key, Experiment Info ID, which is the Experiment

Info's primary key. This relation shows which experiment the reservation is

made for.

* The Experiment Info has a foreign key, LSS Info ID, which is the LSS Info's pri-

mary key. This relation shows which LSS manages this experiment's scheduling

information.

" The USS Policy has a foreign key, Credential Set ID, which is the Credential

Set's primary key. This relation shows which group the USS Policy applies to.

* USS Policy has a foreign key, Experiment Information ID, which is the Experi-

ment Information's primary key. This relation shows which experiment the USS

Policy applies to.

30

The data model for the USS entities is shown in Figure 2-4.

Eight entities can be extracted from the scenario related with the LSS. They

are Reservation Information, USS Information, Credential Set, LSS Policy, Time

Block, Recurrence, Experiment Information and Permitted Experiment. The rela-

tions among them are as follows:

" The Reservation Info has a foreign key, Credential Set ID, which is the Creden-

tial Set's primary key. This relation shows which group the reservation comes

from.

" The Reservation Info has a foreign key, Experiment Information ID, which is

Experiment Information's primary key. This relation shows which experiment

the reservation is made for.

" The Credential Set has a foreign key, USS Information ID, which is the USS

Information's primary key. This relation shows which USS manages the reser-

vation information from the group with this credential set.

* The LSS Policy has a foreign key, Experiment Information ID, which is the

Experiment Information's primary key. This relation shows which experiment

the LSS Policy applies to.

" The LSS Policy has a foreign key, Credential Set ID, which is the Credential

Set's primary key. This relation show which group the LSS Policy applies to.

" The Time Block has a foreign key, Credential Set ID, which is the Credential

Set's primary key. This relation shows which group the time block is assigned

to.

* The Time Block has a foreign key, Recurrence ID, which is the Recurrence's

primary key. This relation shows which Recurrence the time block belongs to.

* The Permitted Experiment has a foreign key, Experiment Information ID, which

is the Experiment Information's primary key. The Permitted Experiment has

a foreign key, Recurrence ID, which is the Recurrence's primary key. These

31

PK NUMERIC(1S,0)-4 4. a
UserName
StartiTime
EndTime
Experiiment rfoI
CredentialSetID

FKI
FK2

4

VARCHAR(5O)
DATETIME
DATETIME
NURERJC(18,)
NUMERIC(18,0)

PK USf2Pihr.S jNUMERIC(1,O)

Figure 2-4: USS Data Model

two relations show the maps between multiple Recurrences and multiple exper-

iments. That means multiple experiments can be permitted to be executed in

the certain Recurrence, and multiple Recurrences can be assigned to execute a

certain experiment.

Given all the relation among all the entities in the USS and the LSS, we build up the

database according to the data model shown in Figure 2-5.

32

Credenti _Sut

PK Cden0al Set 1D NUMERIC(1,0)

GroupName VARCHAR(5O)
ServiceBroker_ID VARCHAR(50)
ServiceBroker_Name VARCHAR(50)

PK Exmerknent Info ID NUMERIC('8G,)

LabServer10 VARCHARSO)
LabServerfName VARCHAR(256)
Lab.CfienLVersIon VARCHAR(5Q)
Lab.CIIentNwm. VARCHAR(256)
Providerfiame VARCHAR(256)
LSS_1D VARCHAR(SO)

FK1 ExperlmentirdoJD NUMERIC(18.0)
Rule VARCHAR(28$)

P42 j CredenbialSet_ I NUMERIC(18,0)

PK NUMERIC(18,0)

LBSID VARCHAR(15)
LSSName VARCHAR12S6)
LSSURL VARCHAR(25)

Reservations

NUMERIC(18,0)PK

~~nj~t@

Reservation Info 1D NUMERqC(1.O)

Startjlme DATETIME
End Time DATETIME

Fm Experimentj nfol NUMERC(18,0)
FK2 CredantialSetj I NUMERIC(18A)

I~4

ExpemwrUmennfd

PK Exeiet n wDMMC118,O)

LabServerjD
LabServrName
Lab_CiAent_version
LabClIentName
ProvidAr_Name
Quantum
Preparejime
Recoverijne
MlnimumTme

VARCHAR(50)
VARCHAR(256)
VARCHAR(50)
VARCHAR(256)
VARCHAR4256)
INTEGER
INTEGER
INTEGER
INTEGER

Uss-wro
PK Ul jbin l NUMERIC418A)

USSJD VARCHAR(50)
USSName VARCHAR(256)
USSURL VARCHAR(256)

I
PK Cedgnit IQ NUMERIC(18,0)

SevieBrkw-rD VARCHAR450)
SrvjckaBrokerjame VARCHAR(256)
Group-Hame VARCHAR(50)
USsJD VARCHAR(5O)

PK TUmt Blfik ID numerWO(8,O)

StarLTIme dttm
Ersdime datstime
Lb.ServeiID vurctwr(50)

FKI CredwntIaLSetJO numerc18,O)
FK2 Recuwreno.JD n.. erk13.0)

PK Recurens 10 ntumeric(16A)

Rscurrence Stwt _Dxte d&%dtMO
Reatrane-_EndDate datetim
RecwrrnceType varchOr5O)
ftecurrenceStaltTime numefie(C)
RecurrenceEndThIme numeuc(18,0)
LabServer 10 varchar(5)
CrodentiaL StjD nameno(1,O)

PernitodExpet s

PK Jfii Ex rmnt ID Inumerlc(1U80)

PK1 ExprImntjnfoIC
FK2 RecurrencejD

Figure 2-5: LSS Data Model

33

PK

PK LAS PClIM 1D NUMM~f(180)

RuWe VARCHAR(2W6
FK1 ExperimentInto 10 NUMERtC(18,0)
FK2 CredantdaLSetD a UMEROC(18,O)

numrde(11,O)
naMIMdI(6,C)I

Chapter 3

Scheduling server implementation

3.1 Scheduling algorithm

In this section, the Retrieve Available Time Periods algorithm as the main scheduling

algorithm will be introduced.

The goal of the Retrieve Available Time Periods algorithm is to retrieve sequential

available time periods (in local time of the LSS) which are the minimum available

time periods during which a particular group has permission to execute a particular

experiment.

During the design of this scheduling algorithm, we should keep three time axes

in mind, as the figure showed above, the first time axis (TA1) shows the time blocks

during which the user has the permission to execute the particular experiment. The

second time axis (TA2) shows the time chunk which is defined by the input parameters

of the start time and end time. The third time axis(TA3) shows the distribution of

the unavailable time which includes the reservations already made plus the cool down

and warm up times needed for those reservations. The basic idea is to first intersect

TAI with TA2 to get the time blocks during which the user has the permission to

execute the experiment in the time chunk. We then calculate the free time during the

time chunk, which is the time chunk minus the unavailable time. We then intersect

the time blocks retrieved from the first step with the free time retrieved from the

second step. After filtering the time periods which are shorter than the minimum

34

TAl (time blocks)

TA2 (time chunks)

TA3

(Unavailable time)

Figure 3-1: Time Intersection

execution time for the experiment, we get the available time periods on which the

user can make reservation.

The algorithm in detail is as follows:

1. Get the experiment configuration.

2. Get the time blocks which are the minimum time blocks set covering the time

chunk for the lab server where the experiment is executed.

3. Get the IDs time blocks in the time chunk for which the user's group has

permission.

4. According to the IDs of the time blocks retrieved in the step 3, get the time

blocks which are the minimum time blocks covering the time chunk, and for

which the user's group has permission.

5. Get the reservations made for the lab server whose experiment time, including

the warm up and cool down time, overlaps with the time chunk.

6. Get the unavailable time periods (in UTC) which overlap with the time chunk

defined by the start time and end time

35

7. Get the free time periods (in UTC) during the time chunk defined by the start

time and end time.

8. Get the available time periods (in UTC) For each available time block, get the

free time periods which are overlapping with each available time block, intersect

the time block with the corresponding free time periods, and convert the result

into local time.

9. Select the time periods from the available time periods from the previous step

which are longer than the minimum time the experiment needed.

10. Sort the time periods sequentially.

3.2 Data structure

During the implementation of the Scheduling Server, we defined following data struc-

tures:

3.2.1 User-side Scheduling Server

/* This structure describes the attributes of a group's credentials. */

public struct CredentialSet

{
int credentialSetID;

String serviceBrokerID;

String serviceBrokerName;

String groupName;

}
/* This structure describes the attributes of a reservation.*/

public struct Reservation

{

int reservationID;

36

String userName;

int credentialSetID;

DateTime startTime;

DateTime endTime;

int experimentInfoID;

}
/* This structure describes the attributes of a policy for user-side scheduling.*/

public struct USSPolicy

{
int ussPolicyID;

int experimentlnfoID;

String rule;

int credentialSetID;

}
/* This structure describes the attributes of an experiment.*/

public struct ExperimentInfo

{
int experimentlnfoID;

String labServerID;

String labServerName;

String labClientVersion;

String labClielntName;

String providerName;

String lssID;

}
/* This structure describes the attributes of a Lab-side Scheduling Server.*/

public struct LSSInfo

{
int lsslnfoID;

String lssID;

37

String issName;

String lssURL;

}

3.2.2 Lab-side Scheduling Server

/* This structure describes the attributes of a group's credential.*/

public structCredentialSet

{
int credentialSetID;

String serviceBrokerID;

String serviceBrokerName;

String groupName;

String ussID;

}
/* This structure describes the attributes of a reservation.*/

public struct ReservationInfo

{
int reservationlnfoID;

int credentialSetID;

DateTime startTime;

DateTime endTime;

int experimentInfoID;

}
/* This structure describes the attributes of a time block during which a particular

group has the permission to execute the experiment on a particular lab server.

public struct TimeBlock

{

int timeBlockID;

38

int credentialSetID;

DateTime startTime;

DateTime endTime;

String labServerID;

int recurrenceID;

}
/*This structure describes the attributes of a experiment.*/

public struct ExperimentInfo

{
int experimentInfolD;

String labServerID;

String labServerName;

String labClientVersion;

String labClielntName;

String providerName;

int quantum;

int prepareTime;

int recoverTime;

int minimumTime;

}
/* This structure describes the attributes of a Lab-side scheduling policy.*/

public struct LSSPolicy

{
int lssPolicyID;

int credentialSetID;

string rule;

int experimentInfolD;

}
/* This structure describes the attributes of a permission which a particular experiment

has to be executed in the recurrent time periods. */

39

public struct PermittedExperiment

{
int permittedExperimentID;

int experimentlnfoID;

int recurrenceID;

}
/* This structure describes the attributes of a set of time periods which are in the same

recurrent pattern. */

public struct Recurrence

{
int recurrencelD;

DateTime recurrenceStartDate;

DateTime recurrenceEndDate;

DateTime recurrenceStartTime;

DateTime recurrenceEndTme;

String recurrenceStyle;

int labServerID;

int credentialSetID;

}
/* This structure describes the attributes of a User-side Scheduling Server. */

public struct USSInfo

{
int ussInfoID;

String ussID;

String ussName;

String ussURL;

}

40

3.3 Web Service interface

3.3.1 User-side Scheduling Server

RedeemReservation

Purpose:

/*Returns a Boolean indicating whether the reservation identified by

reservationID is ready for execution */

Arguments:

int reservationlD

/* The ID identifying the reservations which need to be redeemed. */

Returns:

bool redeemed

/*True if reservation was redeemed. In order for this happen, the current

time needs to be covered by the time period defined by the startTime and

endTime of the reservation; false otherwise.*/

RevokeReservation

Purpose:

/*Remove all the reservation for certain lab server being covered by the

revocation time and send emails to the affected staff and users

Arguments:

string labServerID

/* The ID identifying the lab server whose time is being revoked */

DateTime startTime

/* The start time of the revocation period. */

DateTime endTime

/* The end time of the revocation period. */

Returns:

void none

41

3.3.2 Lab-side Scheduling Server

ConfirmReservation

Purpose:

/* Returns a Boolean indicating whether a particular reservation

from a USS is confirmed and successfully added to the database in LSS

If it fails, an exception will be throw out indicating the reason for

rejection.*/

Arguments:

string serviceBrokerID

/* The Global Unified Identity (GUID) identifying the service broker which is in

the same domain of the user

string groupName

/* The name of the group whose member made the reservation requested*/

string ussID

/* The GUID identifying the user side scheduling server which the

reservation is requested from*/

string labClientName

/* The name of the client of the experiment whose time is requested to be

reserved*/

string labClientVersion

/* The version of the client of the experiment whose time is requested to

be reserved*/

DateTime startTime

/* The startTime of the reservation requested. Note that startTime is the time

in UTC */

DateTime endTime

/* The endTime of the reservation requested. Note that endTime is the time

in UTC *7
Returns:

42

bool confirmed

/* If validated and successfully added to the database in LSS, true;

otherwise, false. Before the reservation is added to the database

of LSS, LSS needs to judge whether the reservation information is

confirmed. To validate the confirmation, all the following must be

satisfied.

1. The reservation is in the currently available time periods for the

group that the reservation comes from.

2. All the corresponding lab server side policies which the reservation

comes from should be satisfied.

3. All the scheduling properties for the experiment which the

reservation is made to should be satisfied. */

RemoveReservationInfo

Purpose:

/* Remove reservation information. */

Arguments:

string serviceBrokerlD

/* The GUID identifying the user side scheduling server which the

reservation is requested from*/

string groupName

/* The name of the group whose member made the reservation removed*/

string ussID

/* The GUID identifying the user side scheduling server which the

reservation removed is requested from */

string labClientName

/* The name of the client of the experiment whose time is reserved*/

string labClientVersion

/* The version of the client of the experiment whose time is reserved*/

DateTime startTime

/* The startTime of the reservation removed. note that startTime is the time

43

in UTC */

DateTime endTime

/* The endTime of the reservation removed. note that endTime is the time

in UTC */

Returns:

bool removed

/* True if the reservation is successfully removed; false otherwise *7

RetrieveAvailableTimePeriods

Purpose:

/* Retrieve all the available time for a given experiment and credential

set within a particular USS specified interval *7

Arguments:

string serviceBrokerlD

/* The GUID identifying the service broker which is one of the properties

of the credential set*/

string groupName

/* The name of the group which is one of the properties of the credential

set */

string ussID

/* The GUID identifying the user side scheduling server which is one of

the properties of the credential set *7

string labClientName

/* The name of the client of the experiment whose available time is

requested*/

string labClientVersion

/* The version of the client of the experiment whose available time

is requested*/

DateTime startTime

/* The start Time of time the particular USS specified interval *7

DateTime endTime

44

/* The end Time of time the particular USS specified interval */

Returns:

ArrayList availableTimePeriods

/* ArrayList containing available time periods for a given experiment

and credential set within a particular USS-specified interval */

3.4 Scheduling user interface

The Cascading Style Sheets (CSS) was adopted to unify the style of all the web pages

in the scheduling server.

CSS is a stylesheet language used to describe the presentation of a document

written in a markup language. CSS is used by both the authors and readers of web

pages to define colors, fonts, layout, and other aspects of document presentation. It is

designed primarily to enable the separation of document content (written in HTML

or a similar markup language) from document presentation (written in CSS). This

separation can improve content accessibility, provide more flexibility and control in the

specification of presentational characteristics, and reduce complexity and repetition

in the structural content. CSS can also allow the same markup page to be presented

in different styles for different rendering methods, such as on-screen, in print, by

voice (when read out by a speech-based browser or screen reader) and on braille-

based, tactile devices. Similarly, identical HTML or XML markup can be displayed

in a variety of styles or color schemes by using different CSS. CSS specifies a priority

scheme to determine which style rules apply if more than one rule matches against a

particular element. In this so-called cascade, priorities or weights are calculated and

assigned to rules, so that the results are predictable.

Advantages of using CSS include:

9 Presentation information for an entire website or collection of pages can be held

in one CSS file, allowing sweeping changes to be propagated with quick changes

to this one file.

45

" Different users can have different style sheets: for example a large text alter-

native for visually-impaired users, or a layout optimized for small displays for

mobile phones.

" The document code is reduced in size and complexity, since it does not need to

contain any presentational markup.

Also we use the user control technique in ASP.Net[8] to make customized Banner

and Footer for each pages in the scheduling server. So when different campus install

the Scheduling Server, they can customized their banner according to their preferred

feeling and look easily. Web user controls define controls easily as desired for the ap-

plication, using the same programming techniques as used to write Web Forms pages.

Web Form pages can be converted into a Web user control with a few modifications.

To make sure that a user control cannot be run as a stand alone Web Forms page, user

controls are identified by the file name extension. ascx. A Web user control is similar

to a complete Web Forms page, with both a user interface page and a code-behind

file. The user interface page differs from an .aspx file in these ways:

o The extension must be .ascx.

o The user control does not have <HTML>, <BODY>, and <FORM> elements

in it (these elements must be in the hosting page).

In every other way, a user control is like a Web Forms page. Similar HTML elements

and Web controls can be used on a user control as done on a standard Web Forms

page. For example, if you are creating a user control to be used as a toolbar, you can

put a series of Button Web server controls onto the control and create event handlers

for the buttons.

46

Chapter 4

Security in the iLab Interactive

architecture

4.1 Introduction to security system

A typical implementation of the protection model is layered as shown in Figure 4-1.

The bottom layer contains cryptographic transformations: ciphers, pseudo-random

number generators, and cryptographic hashes. The transformations can be used to

protect against attacks on a message. These transformations can be used to im-

plement security primitives, which are the next layer up. Operations such as sign

generate the signature for a message and Verify, using the signature, checks that the

message has not been modified. Encrypt transforms the message so that it can not

be read by attackers, and Decrypt untransforms the message so that the recipient can

read it.

Access control lists and capabilities can be used to implement authorization. Cryp-

tographic protocols, the top layer, combine the security primitives to implement secure

client/server applications such as setting a secure communication path from a web

browser to a web server. In this section, how to realize authentication, authorization

and confidentiality will be elaborated.

47

application

Function

Security primitive

cryptography

Figure 4-1: Security System

4.1.1 Authentication

As computer systems have increased in complexity, the challenge of authenticating

users has also increased. As a result, there are a variety of models for authentication.

There are two models for web service authentication, which are referred to as direct

authentication and brokered authentication. Both the Direct Authentication pattern

and the Brokered Authentication pattern focus on the relationships that exist between

a client and service participating in a Web service interaction. When both the client

and service participate in a trust relationship that allows them to exchange and

validate credentials including passwords, direct authentication can be performed. In

a situation where the client and service do not share a direct trust relationship, broker

authentication can be performed. In a multi-server environment, the authentication

broker can manage trust centrally. As for the brokered authentication, there are

three brokered authentication design patterns that illustrate authentication using the

Kerberos protocol [10], X.509 [8], and a Security Token Service (STS) respectively.

As Figure 4-2 shows, there are two ways to implement the patterns described

above using Microsoft technologies. Transport layer security represents an approach

where the underlying operating system or application servers are used to handle

security features. For data confidentiality, Secure Sockets Layer (SSL) [5] is a common

transport layer approach that is used to provide encryption. Message layer security

represents an approach where all the information related to security is encapsulated

48

Cryptographic protocols

authentication authorization confidentiality

Sign and verify Access control lists Encrypt and

and capabilities decrypt

Ciphers, pseudo-random number generators, and

cryptographic hashes

.. -_ _ - _ - ---- _ _.....

Figure 4-2: The direct authentication and the brokered authentication patterns

in the message [i].

4.1.2 Authorization

Authorization answers the question: is the principal authorized to request the spec-

ified operation? There are three primary operations in authorization systems: au-

thorization, mediation and revocation. Authorization is the operation granting a

principal permission to perform an operation on an object. Mediation is the opera-

tion checking if a principal has permission to perform an operation on a particular

object. Revocation removes a previously granted permission from a principal. The

authority can increase or decrease the set of principals that have access to a particular

object by authorizing or revoking respectively their permissions.

There are three different models to keep track of who is authorized and who is not.

They are the simple guard model, the caretaker model and the flow control model. In

the simple guard model, the service conceptually surrounds each object with a wall

that has only one door providing access to the object. The service posts a guard at

the door who decides whether a principal has access or not. The principal and the

guard both have a token. If the token presented by the principle is the same with the

one the guard has, the principal is granted access. In the caretaker model, objects are

only accessible through the caretaker. There is only a mail slot for communicating

49

Message Message & MAC 11W I Message

Sender Create MAC Verify MAC Recipient

Same key is used to
create and verify MAC

Shared Secret Key

Figure 4-3: Shared key system

with the caretaker. The caretaker is intelligent. It can enforce arbitrary constraints

on access, and it may even interpret the data stored in the object to decide what to

do with a given request. In flow control model can provide both nondiscretionary and

discretionary control. It allows untrusted programs to work with sensitive data, but

confines all program output to prevent unauthorized disclosure.

4.1.3 Confidentiality

Using the Encrypt and Decrypt primitives, the Sender and Recipient can ensure the

communication between them is confidential. The Encrypt and Decrypt primitive

can be implemented using cryptographic transformations. Encrypt and Decrypt can

be either shared-secret systems or public key systems. In a shared-secret system, the

Sender and the Recipient share a key that only they know. In a public key system,

the Recipient has a key pair (public key, private key). The Recipient gives his public

key through an existing channel. Given the Recipient's public key, the Sender can

encrypt the message with the Recipient's public key and send the encrypted message

over an insecure network. Only the Recipient can decrypt the message[8].

50

Plaintext Ciphertext Plaintext

Sender Encrypt Decrypt Recipient

t t
Different keys are used to

encrypt and decrypt message

Recipient's Recipient's
Public Private
Key Key

Figure 4-4: Public key system

4.2 Web service security

Getting Web Services off the ground means keeping them simple; however, provid-

ing security is seldom simple. Microsoft and IBM, among others, are working to-

gether to address this issue. Their efforts have resulted in a group of specifications

for providing Web Services security, which includes WS-Security, WS-Trust, WS-

SecureConversation and Web Service Security Profile for XML-based Tokens. Taken

as a group, these specifications lay the foundation for a usable, interoperable, and

quite complete approach to providing security for Web Services.[3] WS-Security is

the foundation for all the other specifications.

WS-Security defines no new security technology. Instead, it focuses on applying

existing effective mechanisms for distributed security, including Kerberos, public key

technologies, and others to SOAP [13] messages. The Web Service Enhancements

(WSE) is the Microsoft .NET implementation of WS-Security.

51

4.3 Threat analysis in the iLab Interactive archi-

tecture

iLab interactive architecture is an architecture to support interactive experiments that

are remotely accessed in a multi-domain, multi-server environment. The current iLab

interactive architecture envisions the following servers and services: the Interactive

Service Broker (ISB) which authenticates users and handles authorization and ad-

ministrative issues, the Experiment Storage Service (ESS) which provides storage for

binary and text records associated with experiments, the Lab-Side Scheduling Server

(LSS) and the User-Side Scheduling Server (USS) which mutually work to enable

students to reserve time for executing experiments during the time blocks registered

by the lab administrators for their lab server, and the Lab Server (LS) which actually

executes experiments and typically stores the results by invoking web service methods

on the ESS. In addition, students execute interactive experiments by running a Lab

Client (LC).[11] These services host both web applications and web services. The

security threats in iLab system can be classified into three categories:

Unauthenticated information release- This threat comes from malicious stu-

dents reading and taking advantage of information stored in the iLab system

or being transmitted over networks, such as eavesdropping on other students

experiments results.

Unauthenticated information modification This threat comes from unautho-

rized students making changes in the stored information or modifying messages

that cross a network, such as changing the experiment results in the Experiment

Storage Server, or modifying the grades given by the TA.

Unauthenticated denial of use This threat comes from an intruder preventing an

authorized students or TAs from reading or modifying the information. Causing

iLab servers "crash", flooding a lab service by replaying messages are examples

of denial of use.

52

Authentications play very important role in interactive iLab system. According

to the principle of the iLab architecture, authentications in the interactive iLab ar-

chitecture can be classified into direct authentication and indirect authentication.

The direct authentication is the credential management for the user to access the

Service Broker web application. The iLab interactive architecture assumes that the

user's identity is confirmed by the Interactive Service Broker (ISB) at the start of

every session. The ISB may accomplish this using a simple user name and password

scheme. The indirect authentication is necessary to bridge to web applications and

web services hosted on other servers after the user authenticates himself on the Ser-

vice Broker so that once the user has authenticated himself, he should not have to do

so again to perform any allowed action or to access any allowed resource within his

iLab environment.

The complexity of the higher level authentication between iLab processes only

increases when one considers collaboration between domains, e.g., authenticating a

user in one domain and making a reservation through her own USS to execute an

experiment hosted on a lab server in another domain. Incorporating a security token

service (STS) to the ISB is my proposed solution to this problem. The STS can issue

security tokens for the client on behalf of the ISB, which manages all the credential

information of the service providers and users in its domain. These security tokens

can be used by the target services, LSS, USS, ESS or LS to authenticate the client.

The security token is always verified, but the service does not need to interact with

the ISB to perform the verification. This is because the token itself contains proof of

a relationship with the Service Broker, which can be used by the service to verify the

token.

4.4 Current solution

The General Ticket scheme is used currently to deal with authentication cross multiple

domains. In the General Ticket scheme, tickets are small XML documents to convey

users' credentials. There are three parties in the General Ticket scheme which are the

53

ticket holder, the ticket redeemer and the ticket issuer. The process that is making

the web service request or page access is known as the ticket holder. The process to

which the holder directs its request is known as the ticket redeemer. The server that

creates the credentials to authorize the operation is known as the ticket issuer. The

ticket holder can be one of the distributed interactive services or web applications

such ac the User-side Scheduling Server (USS) or the user's lab client. The ticket

redeemer in an operation is always that part of the distributed iLab architecture

that controls or manages the resource that the user is trying to access. A lab server

acts as a ticket redeemer during the execution of an experiment, and the User-side

Scheduling Server (USS) acts as a ticket redeemer when confirming a user's reservation

to perform an experiment. The ticket issuer is always an Interactive Service Broker

(ISB). The ticket issuer creates and keeps the definitive copy of all tickets so that all

ticket redeemers must trust it. It must supply ticket holders with the ticket coupons

they need to authorize their access to resources. When a service provider, which is

always a ticket redeemer, receives a web service call from a client (which is usually the

ticket holder), the client has to show the ticket coupon ID which is provided by the

ISB (the ticket issuer) to the ticket redeemer. The ticket redeemer uses the coupon

ID to retrieve the whole ticket from the ISB. If the ticket can be retrieved from the

ISB, the action is authenticated by the ISB. Since ISB is the central manager for all

the service providers in the local domain, it is reasonable for the ticket redeemer to

trust the tickets issued by the ISB in its own domain. To deal with the cross domain

authentication issue, the current solution makes the ISBs from the two domain the

trust bridge between the clients from one domain and the services from the other

domain.

Consider the Scheduling scenario as an example. Once the USS which is in do-

main A wants to call the web method "confirm reservation" in the LSS in domain B,

it needs the Interactive Service Broker in domain A (ISB A) to create a "REQUEST

RESERVATION" ticket after being authenticated by ISB A. The coupon ID identi-

fying the scheduling tickets is attached to the SOAP request as part of the SOAP

header. When the LSS receives the web method call from the USS, it has to verify

54

,user

... " ---+1 Ise B
ise A

a a

r A a i 4-

USS

Figure 4-5: The General Ticket Scheme

the ticket by retrieving the full ticket from the Interactive Service Broker in domain

B (ISB B). ISB B must go back to ISB A to retrieve the full ticket and then forward
it to the LSS. This sequence of messages is illustrated in Figure 4-5.

55

Chapter 5

Security Ticket Token Services

(STS) design

5.1 Design goal

In the interactive architecture we have designed an integrated approach to system

management based on the following three principles:

9 All administrators should authenticate on the ISB, and if they must then be

redirected to another server, they should not have to authenticate again.

* All administrative functions that relate to iLab functionality should be carried

out as far as possible by reusable iLab modules.

9 The administrative interfaces of the iLab processes should be integrated in such

a way that administrators should never have to enter the same data twice. [7]

Based on the principles of the iLab architecture, once the user has authenticated

himself, he should not have to do so again to perform any allowed action or to access

any allowed resource within his iLab environment. This is possible because the ISB

will forward the user's credentials whenever the user wants to use an iLab service or

application. The following design requirements beyond this core functionality also

need to be satisfied.

56

" The design must bridge web applications and web services by providing coor-

dinated authentication for both technologies. For example, it should enable

an authentication performed by a login to a web application to authenticate

subsequent web service calls.

* The design must support authentications and authorizations that span internet

domains and academic communities.

" The design must be able to express transient, user specific rights, e.g., this

student can use your lab server for the next 60 minutes.

" The design can be implemented by WS-Security

Based on the principles and requirements of interactive iLab architecture, the bro-

kered design patterns that illustrate authentication using the Security Token Service

carried out by Message layer security was adopted as the solution to the cross domain

authentications of web service call. The reasons for this design decision are :

1. Securing the message using message layer security was adopted instead of using

transport layer security because message layer security has several advantages

such as increased flexibility, including support for auditing and supporting for

multiple protocols. In addition, in the iLab interactive architecture, a message

needs to go through multiple points to reach its destination. In transport layer

security, each intermediate point must forward the message over a new compu-

tationally expensive SSL connection, and the original message from the client

is not cryptographically protected on each intermediary.

2. The brokered authentication pattern is used because the interactive iLab archi-

tecture is a multi-domain, multi-server environment, which requires centralized

authentication management in each domain.

3. X.509 requires support for a Public Key infrastructure (PKI), which can be ex-

pensive to set up and maintain [8]. Kerberos Token Security requires an identity

provider that supports the Kerberos protocol, such as Active Directory. The

57

Kerberos protocol is used to authenticate clients within a domain. Cross-domain

trusts can be established but are typically limited with in an organization[10].

The iLab project is a world wide distributed project, so Kerberos token is not

a solution. A custom Security Token Service (STS) can provide authentication

across organization boundaries easily. Considering these reasons, the custom

security token service was chosen instead of X.509 and Kerberos Token.

5.2 Design of STS

The iLab architecture is designed to encourage the sharing of labs across institutions

and campuses, but it is also a principle of the architecture that the administration

of users should be as local as possible. All organizations should ideally run their

own ISB, and each such ISB defines its own domain and authentication realm. In

the General Ticket scheme used currently to deal with authentication cross multiple

domains, the authentication information has to be redeemed "backward" from the

ISB by the service provider.

In contrast, the authentication information is sent "forward" to the service provider

in the STS scheme. Here, I use the same scenario as the example as in Section 4.4.

Because the LSS only trusts ISB B, in order to obtain a security token to be authen-

ticated by a LSS, the USS must first get a security token for the STS in domain B

(STS B) from the STS in domain A (STS A) after being authenticated by SB A.

Then, with the security token for STS B, the USS can get a security token for the

LSS from STS B. With the verifiable security token for the LSS, the web method call,
"confirm reservation", from the USS in domain A can be authenticated by the LSS

in domain B.

The security token is the encryption of the symmetric key signed by the STS using

the public key of the target service. The symmetric key generated by the STS is for

the client and service to encrypt subsequent messages between them. The copy of the

symmetric key is returned to the client together with the security token. The target

service decrypts the security token with its private key and validates the token by

58

77q.uest (Security Token for LSS attached)

9. ResponseLS

Se curity Token. r
1. Request Security SSS(RSTR)

Token for STS B Security Token

(RST) for STS B (RSTR) 4. Request Sec 1

Token for LS S (T ken
or STS B att hed)

'RST)

omSTS B

2S Baid e\ aldt
ISB A IBB 5Vldt

token

Domain A

Figure 5-1: STS work flow

verifying the STS's signature. In this way, the target service can be sure that the call

from the client is authenticated by the trusted broker.

Here, the STS scheme is demonstrated in detail through the scheduling scenario.

Now let us describe the workflow in the scheduling scenario.

1. The user in domain A logs on the ISB A and requests to go to the USS to make

reservation for executing the experiment on the Lab Server in domain B.

During this procedure, the ISB A authenticates the user by verifying the user's

credential. After the user is authenticated by the ISB A, the ISB A starts a

scheduling session and redirects the user to the USS in the domain A. The

security during the redirection from the web application of ISB A to the web

59

application of USS is ensured by the General Ticket scheme.

2. After user makes a reservation on the Lab Server in Domain B, the USS checks

whether a valid (i.e. unexpired) security token for the LSS which manages the

time blocks for the Lab Server is cached. If it is cached, the USS can call the

web method "confirm reservation" on the LSS in domain B directly using the

cached security token to authenticate itself.

3. If the USS can not find the cached security token for the LSS, the USS requests

a security token from the STS A.

During this procedure, the USS first needs to initialize a Request Security Token

(RST) message for the STS:

The global unique identity (GUID) of the USS is attached to the RST message.

The USS sends the RST message to the STS A.

The communication between the USS and STS A is secured by SSL.

4. The STS A processes the RST sent by the USS and issues a security token in

response.

During this procedure, the processes are:

The STS A validates the credential of the USS, the GUID, attached to the RST.

If the credential is valid, the STS A initializes a security token that will be

returned to the USS.

The STS A generates a symmetric key, which can be used for the confidential

communication between the USS and the LSS, as a claim in the security token.

The STS A also includes a second copy of the symmetric key in a proof token.

The STS A signs the security token with its X.509 certificate private key to

provide the data integrity for claims within the token and to provide proof to

the USS that the token was issued by the STS A.

60

The security token is encrypted with the STS B's X.509 certificate public key,

which can ensure that the security token can not be read if it is intercepted by

others.

ThenSTS A returns both the security token and proof token back to the client

in the Request Security Token Response (RSTR).

5. The USS initializes and sends a request for the security token for the LSS to

the STS B.

During this procedure, the processes are:

The security token issued by the STS A is attached to the request message.

The USS generates a signing key from the symmetric key contained in the proof

token and signs the request message with it.

The USS encrypts the sensitive part of the request message with the symmetric

key contained in the proof token and sends the request message to the STS B.

6. The STS B processes the request from the USS and sends back the security

token for the LSS.

During this procedure, the processes are:

The STS B decrypts the security token with its X.509 private key and uses the

symmetric key contained in the security token to decrypt the request message.

The STS B computes the derived signing key from the symmetric key in the

security token and verifies the message signature. This provides data origin

authentication and integrity assurance. The STS B checks whether the security

token is signed by the STS A which is one of its trust token issuers. The STS

B trusts STS A. If the security token is validated from STS A which means the

USS has been authenticated by the STS A, the STS B will send the security

token for the LSS to the USS. The procedure for generating and sending the

security token for the LSS is similar to step 4.

61

7. After the USS receives the security token for the LSS, the USS caches the

security token for the LSS.

8. The USS initializes and sends a "confirm reservation" request to the LSS. The

procedure is similar to step 5.

9. The LSS authenticate the USS by validating the security token attached in the

SOAP message. If the security token is validated as coming from STS B which

the LSS trusts, the reservation can be confirmed. The procedure of validating

the security token for the LSS is similar to step 6. Now the cross-domain web

service process is completed.

As for executing experiment scenario, the only difference is that the attribute

assertions will be added to the security token in order to let the lab server know the

time period during which the user is authorized to execute the experiment.

5.3 Comparison between current solution and STS

The benefits of using the Brokered Authentication: Security Token Service (STS)

pattern include the following:

" This pattern provides a flexible solution for exchanging one type of security

token for another to accomplish a variety of goals in a Web service environment,

such as authentication, authorization, and exchanging session keys.

" The solution is not dependent on any one mechanism, such as the Kerberos

protocol or X.509, to secure messages. This makes it easier to enable different

authentication protocols to interoperate by adding a level of abstraction on top

of existing protocols.[3}

In addition, compared with the current iLab General Ticketing scheme, the ad-

vantages of STS scheme include:

62

* The security token can be cached by the STS. In this way, the overhead of

creating the security tokens can be avoided when talking to the same service

more than once. The latency of the cross-domain web service call is mainly

caused by the cross-domain communication due to the authentication in the

interactive iLab architecture. The STS scheme can reduce the latency greatly

because the number of the cross-domain communication is only half of that in

the General Ticket scheme.

" Confidential communication between client and service can be ensured by the

symmetric key assigned to the both sides by the STS.

" The service does not need to interact with the service broker to perform the

verification.

* In the General Ticket scheme, the communication between several points is done

via SSL. The STS scheme can provide end-to-end at the message layer security

which can avoid the unacceptable application response times due to the SSL

and the possibility that the message being tampered with on each intermediary.

However, the STS can not totally take the place of General Ticketing in the

interactive iLab architecture because the STS is implemented based on WS-Security,

which can only ensure the Client to Web services security. It does not provide a

solution for a single sign on (SSO) for multiple web applications, which is very common

scenario in interactive iLab architecture. So we only can use WS-Security to optimize

part of the General Ticketing scheme, such as the messages between the USS and

LSS. Currently, ADFS in Windows Server 2003 R2 uses SAML 1.1 tokens and the

WS-Federation passive client profile specification to enable SSO scenarios with web

applications. [4, 12, 2]Further support for active client scenarios (such as SSO support

for web services) is under development.

63

Chapter 6

Conclusion

In this thesis, a complete solution is provided for solving the reservation issue in

the interactive iLab project. The scheduling servers and services are implemented to

enable students from different campuses to reserve time on experimental apparatus.

Since the user side and lab side require different scheduling functionalities, user sides

scheduling server (USS) and lab side scheduling server (LSS) are introduced in the

iLab Interactive Services to mutually manage reservations from different students to

execute different experiments. In the first part of this thesis, the philosophy of the

scheduling services design and the implementation are illustrated. It is proved that

the two layer scheduling servers can satisfy the flexibility and scalability requirement

of the interactive iLab architecture.

I also present a Security Token Service (STS) scheme for using WS-Security to

optimize the cross-domain authentication in the iLab interactive architecture. The

scheme uses the brokered authentication with a security token issued by the STS.

The STS is trusted by the web applications and web services in the iLab interactive

architecture to provide interoperable security tokens. How to introduce the STS

scheme to the interactive iLab workflow is represented in detail. By comparing the

STS scheme and the current General Ticketing scheme, it can be concluded that the

STS scheme can optimize the General Ticketing scheme used currently in the iLab

architecture in term of the efficiency and security of the cross-domain authentication.

64

Bibliography

[1] Web Service Security: Scenarios, Patterns, and Implementation Guidance for

Web Service Enhancements(WSE 3.0). March 2006.

[2] Siddharth Bajaj, Giovanni Della-Libera, and Brendan Dixon. Web Services Fed-

eration Language (WS-Federation), July 2003.

[3] David Chappell. WS-SECURITY: New Technologies Help You Make Your Web

Services More Secure.

[4] Microsoft Corporation. Active Directory Federation Services: A Path to Feder-

ated Identity and Access Management, September 2004.

[5] T. Dierks, Certicom, C. Allen, and Certicom. The ts protocol, version 1.0. jan

1999.

[6] W3C Working Group. Web Services Architecture, February 2004.

[7] Jud Harward and Jedidiah Northridge. ilab internactive ticketing and integrated

management-overview. Technical report, MIT, April 2005.

[8] Housley. Internet x.509 public key infrastructure certificate and crl profilem.

Technical report, RFC 2459, jan 1999.

[9] http://en.wikipedia.org/wiki/Web application. Web-application.

[10] B. Clifford Neuman and Theodore Ts'o. Kerberos: An authentication service for

computer networks. IEEE Communications Journal, 39(9):33-38, July 1994.

65

[11] Jedidiah Northridge and Jud Harward. General ticketing. Technical report, MIT,

2002.

[12] OASIS. SAML Executive Overview, April 2005.

[13] W3C Recommendation. Soap version 1.2 part 0: Primer 24. Technical report,

W3C, 2003.

[14] W3C Recommendation. Web services description language (wsdl) version 2.0

part 0: Primer. Technical report, W3C, June 2007.

66

