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Abstract

Driving is a complex task that includes a series of interdependent decisions. In many
situations, these decisions are based on a specific plan. The plan is however unobserved
or latent and only the manifestations of the plan through actions are observed. Examples
include selection of a target lane before execution of the lane change, choice of a merging
tactic before execution of the merge. Change in circumstances (e.g. reaction of the
neighboring drivers, delay in execution) can lead to updates to the initially chosen plan.
These latent plans are ignored in the state-of-the-art driving behavior models. Use of
these myopic models in the traffic simulators often lead to unrealistic traffic flow
characteristics and incorrect representation of congestion.

A modeling methodology has been formulated to address the effects of unobserved plans
in the decisions of the drivers and hence overcome the deficiency of the existing driving
behavior models and simulation tools. The actions of the driver are conditional on the
current plan. The current plan can depend on previous plans and be influenced by
anticipated future conditions. A Hidden Markov Model is used to address the effect of
previous plans in the choice of the current plan and to capture the state-dependence
among decisions. Effects of anticipated future circumstances in the current plan are
captured through predicted conditions based on current information. The heterogeneity in
decision making and planning capabilities of drivers are explicitly addressed.

The methodology has been applied in developing driving behavior models for four traffic
scenarios: freeway lane changing, freeway merging, urban intersection lane choice and
urban arterial lane changing. In all applications, the models are estimated with
disaggregate trajectory data using the maximum likelihood technique. Estimation results
show that the latent plan models have a significantly better goodness-of-fit compared to
the 'reduced form' models where the latent plans are ignored and only the choice of
actions are modeled.

The justifications for using the latent plan modeling approach are further strengthened by
validation case studies within the microscopic traffic simulator MITSIMLab where the
simulation capabilities of the latent plan models are compared against the reduced form
models. In all cases, the latent plan models better replicate the observed traffic
conditions.
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Chapter 1

Introduction

1.1 Motivation

Traffic congestion is a major problem in urban areas that adversely affects mobility,

air quality and safety. According to the Urban Mobility Report (Schrank and Lomax

2005), congestion caused 3.7 billion vehicle-hours of delay and 2.3 billion gallons of

wasted fuel in major US cities alone, resulting a total loss more than $63 billion.

California Air Resources Board estimates that emissions are 250% higher under

congested conditions than during free-flow conditions (Schiller 1998). Increased driving

stresses resulting from congestion have led to aggressive driving and unsafe driving

behaviors (NHTSA 1997). All these factors cause direct economic losses due to delays

and accidents, and indirect economic losses due to increased stress, health and

environmental impacts. Moreover, with the rapid growth of population and car

ownership, the extent of traffic congestion is spreading both spatially and temporally.

These concerns make congestion alleviation a major transportation priority.

Congestion reduction primarily involves increasing the roadway capacity: either

through building new roads to increase the physical capacity or by improving the

operational capacity of the existing network by adapting optimum traffic management

and control strategies. Additional congestion management mechanisms include demand

management techniques and planning measures to reduce urban sprawl. The optimum

strategy often includes the combination of multiple measures of congestion reduction and

is difficult to deduce theoretically. Field tests of these congestion management techniques

are also generally prohibitively expensive and not feasible.

Microscopic traffic simulation tools, which mimic individual drivers to deduce real

world traffic situations, are ideal tools to analyze and test different congestion
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management strategies in a controlled environment. These tools analyze traffic

phenomena through explicit and detailed representation of the behavior of individual

drivers. Driving behavior models are thus an important component of the microscopic

traffic simulation tools. These models include route choice models, speed/acceleration

models and lane changing models. Speed/acceleration models describe the movements in

the longitudinal direction and lane changing models describe drivers' lane selection and

gap acceptance behaviors.

Driving decisions are influenced by a wide range of factors. These include

neighborhood conditions, features of the vehicle and characteristics of the driver,

attributes of the network, overall traffic situation etc. The relative speed, position and

type of vehicles in the vicinity of the driver have a direct effect on the lane changing and

acceleration decisions. The features of the vehicle like acceleration and deceleration

capabilities and the characteristics of the driver, such as the path-plan and schedule, the

network knowledge and driving capabilities can also significantly influence driving

behavior. The speed and acceleration of the driver can also be affected by the network

attributes: grade, curvature, surface quality and speed limit for example. Further, in the

same network, drivers can behave differently in different traffic situations. In particular,

the level of congestion can have a significant impact on driving decisions. For example,

in heavily congested situations, there can be significant cooperation among the drivers;

they are likely to be more alert and conscious about their actions, and their driving

decisions can involve substantial planning and anticipation. It is essential to address these

factors in the corresponding driving behavior models for proper simulation of congested

traffic.

The existing driving behavior models address many of these factors: either fully or

partially. The effects of neighborhood conditions on the decisions of the driver in

particular have received considerable attention from researchers. However, in most cases

the models do not adequately capture the sophistication of driver behavior and the causal

mechanism behind their observed decisions. Specifically, the existing models represent

instantaneous decision-making and assume drivers to be myopic. These shortcomings are

more evident in congested and incident affected scenarios where the observed driving

behavior is actually the result of a conscious planning process. These plans may evolve
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dynamically and an initially chosen plan may not be executed in the end. The plans are

however unobserved and only the actions (e.g. maneuvers like acceleration, lane changes,

route choice etc.) are observed. The behavioral predictions based only on myopic

considerations are therefore bound to contain significant noise as a result of the models'

structural inability to uncover underlying causal mechanisms. Implementation of these

models in traffic micro-simulation tools can lead to unrealistic traffic flow characteristics:

underestimation of bottleneck capacities and incorrect representation of congestion

(Abdulhai et al. 1999, DYMO 1999). This was reflected in the findings of the Next

Generation Simulation (NGSIM) study on Identification and Prioritization of Core

Algorithm Categories where congested, oversaturated and flow breakdown scenarios

have been identified by the users as weak points of traffic micro-simulation tools

(Alexiadis et al. 2004). Using these tools to evaluate congestion management planning

and policy scenarios can result in bias in the analysis.

Therefore, in order to properly simulate congested scenarios in a microscopic

simulator, it is essential to develop more realistic driving behavior models that will

capture the complexity of human decision making processes.

1.2 Planning in Driving Decisions

According to the NGSIM Core Algorithm Analysis Report (Hranac et al. 2004a),

travel decisions can be classified into the following categories based on the time scale of

application (shown in Figure 1.1):

1. Pre-trip traveler decisions: These strategic decisions are taken before starting a trip

and constitute the pre-trip plan of the traveler. Examples include, deciding whether or not

to travel, selecting the time of departure, destination, mode of transportation and route

etc.

2. Strategic en-route traveler decisions: Once the pre-trip decisions are made, the

traveler either executes the originally selected plan without any change, or makes one or

more modifications to the initial plan. This category of decisions includes modification of

destination, mode or route, parking choice etc.

The decisions in category 1 and 2 take over 30 seconds (and in most cases much

longer) to make and execute.
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3. Tactical route execution decisions: This category deals with traveler decisions that

take between 5 and 30 seconds to make and execute. While executing a route from an

origin to a destination, a series of tactical maneuvers are performed by drivers based on

sub-goals generated from a variety of factors. Examples include, maintaining a desired

travel speed, making up lost time from a previous delay, avoiding large trucks, pre-

positioning to get into the appropriate lane, etc. These broad set of route execution

decisions result in a combination of lower-level tactical plans.

1. Pre-trip

2. Strategic
En-route

30 sec

3. Tactical Route
Execution

5 sec

4. Operational
Driving

5. Vehicle
Control

Figure 1.1: Classification of traveler behavioral algorithms

(adapted from NGSIM Core Algorithm Analysis Report, 2004)

4. Operational driving decisions: The operational behaviors of travelers include

decisions to control their vehicle at a time scale of less than five seconds. These include

lane shifting, gap acceptance for executing a lane change or for maneuver at an

unsignalized intersection, acceleration/deceleration, queue discharge behavior etc.

5. Vehicle control decisions: This category deals with driver decisions related to

controlling the vehicle at a nanoscopic time-scale level, steering the wheel of the vehicle

or pressing the accelerator for example.

Driving behavior models encompass the tactical route execution and operational

driving decisions. It should be noted that only the actions associated with the operational
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driving decisions and sometimes the vehicle control decisions are observed. The strategic

and tactical plans that lead to that action are generally unobserved or latent.

snt pPosiv

t=t+1 Plan:
target lane
t etarget gap

lane changing tactic
passing

Action:
lane choice
acceleration ac eletn

Figure 1.2: General framework of driving behavior

A general framework of the driving behavior model is presented in Figure 1.2. As

seen in the figure, in the initial position, the driver makes a plan: selecting a target lane

for example. Depending on the traffic situation and the driver characteristics, the plan can

consist of various additional levels: the choice of target gap, the choice of tactic for

execution of the lane change, choice of gaps for making a passing maneuver etc. The

choice of action depends on the choiceof plan and consists of lane choice and

acceleration decisions. The chosen action is reflected in the updated position of the

driver.

An example of choice of plans of the driver is shown in Figure 1.3. The pre-trip and

en-route strategic plans of the driver (illustrated in Figure 1.1) may lead to the tactical

plan to reach a target lane to take an exit for example. The subsequent actions of the

driver involve looking for an acceptable gap to maneuver to the target lane in order to

execute the plan. In this process, the driver may also target forward or backward gaps and

adjust the acceleration to avail those gaps. In congested situations, where normally

acceptable gaps may not be available, the chosen plan can also involve selection of an

alternate lane changing tactic (e.g. courtesy or forced gap acceptance). The chosen plan is
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unobserved and manifests itself through the chosen lane actions and accelerations.

However, the plans may be updated due to situational constraints and contextual changes

and the observed actions may not be the ones that were originally intended. Failure to

change to the target lane, for example, may lead to an observation of no change from the

current lane.

Current
Lane

Lane 1 Lane 2 ... Lane t ... Lane L Trget

Target
Forward Backward Adjacent Gap

Lane
Normal Courtesy Forced Changing

Tactic

Accept Reject Accept Reject Accept Reject GapAcceptance

Figure 1.3: Framework of choice of plan

Further, the strategic and tactical plans and actions can take place in a dynamic

environment where a driver's goals, resulting plans, and external conditions are all

subject to change. The driver may consider several alternatives to come up with a plan,

but the actions that he/she ends up executing might be different from those initially

planned. This evolution in plans could be due to several factors. First, situational

constraints or contextual changes might lead to revision of the plan. For example, an

unusual level of congestion might lead a driver to revise the planned time of travel or

route. Or non-cooperation of a driver in the target lane may lead to reevaluation of the

lane changing tactic to that lane. Second, the driver's current plans are influenced by the

past experiences so that as the history evolves, the plan can also evolve. For example, the

choice of an action with an unfavorable outcome might lead one to abandon the plan that

led to this action in future choice situations. Third, drivers might eventually adapt to
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conditions in their environment so that they might exhibit inertia in the choice of their

plans and actions. For instance, drivers may have a preference to stay in the current lane.

There can be considerable difference in aggressiveness, driving skills, intelligence

and planning ability of drivers. Drivers may also have different levels of familiarity with

the network. These driver-specific characteristics (generally unobserved) can have

significant impact on the latent plans.

The strategic and tactical choices comprising the latent plans can also be influenced

by the geometric and traffic attributes. The effect of latent path-plan for example may be

more evident in an urban arterial with closely spaced turns compared to a freeway

network where exits are far apart. Similarly, there can be higher propensity to target a

distant lane if there is a large difference in level of service (LOS) among different lanes.

Again, the underlying plan for executing a lane change in a congested freeway can differ

significantly from the choice of plan in an uncongested situation where acceptable gaps

are readily available.

Thus the inclusion of the effect of plans in the behavioral framework is more

important in certain scenarios. Examples include urban arterials, traffic situations with

significant congestion and/or high differential in level of service, work zones, incident

spots etc.

1.3 Modeling Approach

The models presented in this thesis address the planning behaviors described in the

previous section in the behavioral framework of drivers to increase the reliability of

microscopic traffic simulations. The methodology for modeling behaviors with

unobserved or latent plans is developed first and then demonstrated through empirical

studies of lane changing behaviors of drivers in different scenarios. The overall model

development approach is summarized in this section.

1.3.1 Theoretical Framework

Drivers are assumed to conceive plans that are unobserved (latent) and execute

actions based on the plans (as shown in Figure 1.2). These latent plans are defined by the

chosen target/tactic of the driver. The actions are represented by driving maneuvers. The
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interdependencies and causal relationships between the choice of plan and choice of

action of the same driver are captured through individual-specific latent variables.

The plans depend on past decisions as well as anticipated future conditions. The

interdependencies between successive plans lead to state-dependence in the decisions. A

Hidden Markov Model (HMM) based methodology is adapted to capture the dynamics of

the plans.

The heterogeneity in planning capability and aggressiveness of the drivers is also

captured in the model framework. Two different approaches: a discrete latent class based

technique and a continuous latent 'plan-ahead' distance based approach, have been

proposed and demonstrated to address the heterogeneity among drivers in terms of

planning. The aggressiveness of the driver is captured through continuous latent variables

that enter successive decisions across all choice dimensions of the same driver (agent

effect).

1.3.2 Empirical Studies

As discussed in the previous sections, the decisions leading to the selection of plan,

and the choice of action given the selected plan, differ depending on the driving scenario

and the effect of planning is more evident in urban arterials, congested and incident

affected traffic situations, traffic streams with high differential in level of service etc.

This was also reflected in the findings of the NGSIM study on Identification and

Prioritization of Core Algorithm Categories (Alexiadis et al. 2004), where the urban

arterial lane selection, oversaturated freeway behavior, freeway lane changing and

weaving section behaviors topped the list of prioritized scenarios chosen for

improvement. Based on the priority ranking of this NGSIM study and guided by data

availability (Hranac et al. 2004b), four lane selection scenarios have been selected to

demonstrate empirically the effect of latent planning in observed driving decisions. These

selected scenarios are as follows:

* Freeway lane changing,

* Freeway merging,

* Urban intersection lane choice, and

" Urban arterial lane changing within sections.
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The general decision framework is the same in all cases: latent plans followed by

observed actions. However, the type of plan and the causal relationship among plans and

actions of drivers can differ depending upon the scenario and is often dictated by the

level of congestion. For example, in a relatively uncongested freeway lane changing

situation, if acceptable gaps are readily available, the target gap is always the adjacent

gap and the lane changing tactic is always normal. Therefore, the target gap choice and

lane changing tactic selection levels are redundant and the latent plan is manifested only

through the selection of target lanes. On the other hand, in freeway on-ramp merges in

congested situations, the target lane is always the rightmost lane of the mainline and the

target gap is restricted to the adjacent gap (due to maneuverability constraints). The latent

plan in such situations thus constitutes only the choice of merging tactic. Again, in urban

intersection lane choice and lane changing in urban arterial sections, the motivation

behind the lane selection and the implementation of the latent plans differ significantly

from the freeway scenarios.

The models in all scenarios have been developed using the process shown in Figure

1.4, which involves using both disaggregate and aggregate data. Disaggregate data,

which are detailed vehicle trajectories at a high time resolution are used in the model

estimation phase. In this phase, the model is specified and explanatory variables, such as

speeds and relations between the subject vehicle and other vehicles are generated from

the vehicle coordinates extracted from the trajectory data. Parameters of all model

components: the plan selection, the plan transition (for the state-dependent case) and the

action choice are estimated jointly using a maximum likelihood technique to match

observed lane changes of the drivers that occurred in the trajectory data (panel data).

In this study, the statistical estimation software GAUSS (Aptech Systems 2003) has

been used to program the log-likelihood for the model estimation. The likelihood

function is not globally concave. For example, if the signs of all the coefficients of the

individual-specific error term are reversed, the solution is unchanged due to its symmetric

distribution function. To avoid obtaining a local solution, different starting points are

used in the optimization procedure. Statistical tests are performed to refine the models

and to determine the best model specifications. It may be noted that the estimation
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approach does not involve the use of any traffic simulator, and so the estimated models

are simulator independent.

Data collection

Model estimation Model refinement
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Figure 1.4: Model development framework

The value of inclusion of the latent plans is demonstrated in two ways:

* Goodness-of-fit of the estimated model

* Model validation using simulation runs

The latent plan models are compared against corresponding 'reduced form' models

that have no latent plan mechanisms. Both models are estimated with the same data.

These reduced form models however cannot be viewed as nested within the latent plan

models. Therefore 'adjusted' goodness-of-fit measures are used to statistically compare

the non-nested models.

In model validation, the simulation capabilities of the latent plan models are

compared against the replications of the reduced form models. The validation results

demonstrate the benefits that can be derived from using the modified models. For this, the
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improvements must be demonstrated within a microscopic traffic simulator using data

that has not been used for model estimation. The microscopic traffic simulator

incorporates not only the lane changing models being studied, but also other driving

behavior models, such as acceleration models. MITSIMLab (Yang and Koutsopoulos,

1996) has been used for validation of the models presented in this thesis. A brief

description of MITSIMLab and its model components is presented in Appendix A. In the

validation case studies, aggregate data has been used.

The key parameters of the behavior models of the simulator need to be adjusted

before the validation runs. These parameters are often identified through sensitivity

analysis where the impact of an individual factor on the overall predictive quality of the

simulator is measured by allowing the corresponding parameter to change while keeping

all other parameters at their original values. Part of the aggregate data is first used for

aggregate calibration of behavioral parameters of MITSIMLab as well as for estimating

the travel demand on the case study network. This aggregate calibration problem is

formulated as an optimization problem, which seeks to minimize a function of the

deviation of the simulated traffic measurements from the observed measurements and of

the deviation of calibrated values from their a-priori estimates (Toledo and Koutsopoulos

2004). The formulation is detailed in Appendix B.

The remaining part of the aggregate data (not used for calibration of the model) is

used for the validation runs. The measures of performances are calculated from the

remaining validation data and compared with the corresponding outputs from the

simulator for both the proposed and the reduced form models. The measures of

performances include sensor speeds and flows, the distribution of vehicles among the

lanes, frequency and locations of lane changes etc.

1.4 Thesis Contributions

The objective of the thesis is to improve the simulation of congested traffic situations

by developing more realistic driving behavior models that capture the unobserved plans

behind the observed driving maneuvers. A latent plan based modeling approach for

driving behaviors is proposed that differs significantly from the state-of-the art driving
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behavior modeling procedures which adopt a 'black-box' approach based on a limited

field of view and instantaneous decision making of drivers.

The effectiveness of the new approach has been demonstrated in the thesis through

modeling lane changing behaviors in different scenarios (freeway lane selection, freeway

merging, urban intersection lane choice and urban arterial lane changing). The usefulness

of capturing the underlying causal mechanism in each scenario has been presented

through comparison of goodness-of-fit of estimation results and validation case studies

within traffic simulators. In both cases, the latent plan models outperform the

corresponding reduced form models that do not have any latent mechanism establishing

the supremacy of the approach.

The developed lane changing models have bridged some of the significant gaps in the

existing simulation tools. The specific contributions of each empirical study are listed

below:

In freeway lane changing scenario, the new lane changing model with explicit

choice of target lane gives the flexibility to accommodate lane changing

behavior with exclusive lanes (e.g. High Occupancy Vehicle Lanes, High

Occupancy Tolled Lanes, and Heavy Vehicle Lanes etc.). These lanes are

characterized by high level of service differential. Traditional modeling

approaches tend to fail in such situations. The new model, with its agility to

address choice of distant targets, performs substantially better.

* In the freeway merging model, latent plans in terms of lane changing tactics of

the driver (normal, courtesy and forced) are integrated in a combined decision

framework for the first time. The combined decision framework gives the

flexibility to model the transition between the three merging tactics. This

enables the model to better capture merges that occur earlier in the merge

section.

" The urban intersection lane choice and arterial lane changing models

constitute the first rigorously estimated behavior models for urban arterials.

These models replace the existing rule-based lane assignment models used for

modeling urban arterial lane choices.
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Thus, implementation of the new models in micro-simulation tools can contribute to

simulation of more realistic traffic flow and better representation of congestion, and

hence result in better planning and policy analysis tools.

1.5 Thesis Outline

The remainder of this thesis is organized in six chapters. In Chapter 2, a literature

review on state-of-the-art driving behavior models is presented. Chapter 3 provides the

generic model structure for latent plan models and presents the modeling methodology.

The application of the latent plan models in different scenarios: freeway lane changing,

freeway merging and lane selection in urban arterials (both intersection lane choice and

lane changing within sections) are presented in Chapter 4, Chapter 5 and Chapter 6

respectively. Each chapter presents the detailed model structure, description of the data

used for model development, and the model estimation and validation results.

Comparison of the latent plan models against reduced form models are also shown in

each chapter: both in terms of goodness-of-fit of model estimation and in terms of

simulation capabilities within MITSIMLab. Finally, conclusions and directions for

further research are summarized in Chapter 7.
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Chapter 2

Literature Review

Existing literature on driving behavior models focus on several key aspects:

longitudinal maneuvers or acceleration and lateral movement decisions involving lane

selection and gap acceptance. These behaviors have been modeled both as disjoint

models and integrated models combining multiple aspects. The significant disjoint and

integrated driving behavior models are described below with their overall limitations

highlighted in the end.

2.1 Lane Changing Models

The first lane changing model intended for micro-simulation tools was introduced by

Sparmann (1978). In this model, a distinction is made between the desire to change lanes

and the execution of the lane change. The model also distinguishes between changes to

the nearside (in the direction of the exit) and to the offside (in the direction away from the

exit). Changes to the nearside are motivated by not having obstructions in that lane.

Changes to the offside are motivated by an obstruction in the current lane (e.g. slow

vehicles) and/or better conditions on the offside lane. The model implements psycho-

physical thresholds on the relative speed and spacing to define obstructions to which

drivers will respond. The possibility of execution of a lane change is determined by the

space available in the selected lane.

Gipps (1986) developed a rule based zone dependent model that addresses the

necessity, desirability and safety of lane changes. Drivers' behavior is governed by two

basic considerations: maintaining a desired speed and being in the correct lane for an

intended turning maneuver. The distance to the intended turn defines which zone the
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driver is in and which of the considerations are active. When the turn is far away it has no

effect on the behavior and the driver concentrates on maintaining a desired speed. In the

middle zone, lane changes are only considered to the turning lanes or lanes that are

adjacent to those. Close to the turn, the driver focuses on being in the correct lane and

ignores other considerations. The zones are defined deterministically, ignoring

heterogeneity among drivers and variations in the behavior of a driver over time. When

more then one lane is acceptable, the conflict is resolved deterministically by a priority

system considering locations of obstructions, presence of heavy vehicles and potential

speed gain. The limitation of the rule based models is that the lane selection rules are

evaluated sequentially, and therefore less important considerations are only evaluated if

more important ones did not yield a lane choice. The deterministic rule priority system

thus ignores trade-offs among the considerations (e.g. drivers would always avoid lanes

with heavy trucks and avoid lanes away from their exit, even if these lanes offer

immediate speed advantage and overtaking provisions etc.). No framework for rigorous

estimation of the model parameters has been proposed.

Several micro-simulators implement lane changing behaviors based on Gipps' model.

In CORSIM (Halati et al. 1997, FHWA 1998) lane changes are classified as either

mandatory (MLC) or discretionary (DLC). MLC is performed when the driver must leave

the current lane (e.g. in order to use an off-ramp or avoid a lane blockage). DLC is

performed when the driver perceives that driving conditions in the target lane are better,

but a lane change is not essential. A similar distinction between MLC and DLC is also

considered by SITRAS (Hidas and Behbahanizadeh 1999), Yang and Koutsopoulos

(1996), Ahmed (1999) and Zhang et al. (1998).

In SITRAS (Hidas and Behbahanizadeh 1999), downstream turning movements and

lane blockages may trigger either MLC or DLC, depending on the distance to the point

where the lane change must be completed. In this model, MLC is also performed in order

to obey lane-use regulations. DLC is performed in an attempt to obtain speed or queue

advantage, defined as the adjacent lane allowing faster traveling speed or having a shorter

queue. Model parameters were not rigorously calibrated and no framework to perform

this task has been proposed.
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Unlike the deterministic rule based models, in Yang and Koutsopoulos' model

(1996), lane selection is based on a random utility, which captures trade-offs between the

various factors affecting this choice (e.g. speed advantage, the presence of heavy vehicles

and merging traffic). In Ahmed's model (1999), a more rigorous discrete choice

framework is used to model the lane changing decisions in three steps: decision to

consider a lane change, choice of a lane and acceptance of gaps in the chosen lane. The

model framework is presented in Figure 2.1 with unobserved decisions shown in ovals.

start

MLC Non MLC

UnsatisAactory Satsfactory

conditions conditions

Other Current

Left Right Left Rightlane lane lane lane

Accept Reject Accept Reject Accept Reject Accept Reject
gap gap gap gap gap gap gap gap

ILe Current Right Current Left Current Right Current Current Current
lane tane ~~~lane tn ae ln aeln aeln

Figure 2.1: Structure of the lane changing model proposed by Ahmed (1999)

When an MLC situation applies, the decision whether or not to respond to it depends

on the time delay since the MLC situation arose. DLC is considered when MLC

conditions do not apply or the driver chooses not to respond to them. The driver's

satisfaction with conditions in the current lane depends on the difference between the

current and desired speeds. If the driver is not satisfied with driving conditions in the

current lane, neighboring lanes are compared to the current one and the driver selects the

most desirable lane. Lane utilities are affected by the speeds of the lead and lag vehicles

in these lanes relative to the current and desired speeds of the subject vehicle. Gap

acceptance models (detailed in the next sub-section) are used to model the execution of

the lane changes. The parameters of this model are estimated using second-by-second
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vehicle trajectory data. The model however does not explain the conditions that trigger

MLC situations and the parameters of the MLC and DLC components of the model have

been estimated separately. The MLC model has been estimated for the special case of

vehicles merging to a freeway, under the assumption that all vehicles are in MLC state.

The DLC model has been estimated with offside lane changing data collected from a

freeway section (to ensure that the lane changes are discretionary).

Zhang et al. (1998) use similar definitions of MLC and DLC and the gap acceptance

logic. The authors validate the model but do not suggest a framework for its calibration.

The separation between MLC and DLC in the above mentioned models imply that

there are no trade-offs between mandatory and discretionary considerations. For example,

a vehicle on a freeway that intends to take an off-ramp will not overtake a slower vehicle

if the distance to the off-ramp is below a threshold, regardless of the speed of that

vehicle. Furthermore, in order to implement MLC and DLC models separately, rules that

dictate when drivers begin to respond to MLC conditions need to be defined. This point is

however unobservable, and judgment based heuristic rules, which are often defined by

the distance from the point where the MLC must be completed, are used.

Toledo et al. (2003) developed an integrated lane shift model that allows joint

evaluation of mandatory and discretionary considerations. In this model, the relative

importance of MLC and DLC considerations vary depending on explanatory variables

such as the distance to the off-ramp. This way the awareness to the MLC situation is

more realistically represented as a continuously increasing function rather than a step

function. The structure of the model is shown in Figure 2.2.

The model consists of two levels: choice of lane shift and gap acceptance decisions

for execution of the lane change. Variables that capture the need to be in the correct lanes

and to avoid obstacles and variables that capture the relative speed advantages and ease

of driving in the current lane and in the lanes to the right and to the left are all

incorporated in a single utility model that captures the trade-offs among these variables.

Estimation results indicate that path-plan related variables play an important goal in the

lane changing behavior of drivers. Path-plan effects are captured by a group of variables

like the distance to the point where drivers have to be in specific lanes and the number of

lane changes that are needed in order to be in these lanes. The parameters of the lane shift
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and gap acceptance models have been estimated jointly using second by second trajectory

data collected from a freeway situation.

Lane
Left Crren RightShf

No Change No Change No Gap
Change Left Change Right Change Acceptance

Figure 2.2: Structure of the lane shift model proposed by Toledo et al. (2003)

Most of the existing lane changing models have been developed for freeway

scenarios. Wei et al. (2000) developed a deterministic rule based model for a two-lane

urban arterial based on observations from Kansas City, Missouri. Lane selection is

determined by the location and direction of intended downstream turns and classified as

mandatory, preemptive or discretionary. Drivers who intend to turn at the next

intersection are in an MLC situation and try to move to the correct lane. Drivers who

intend to turn farther downstream try to move to the lane that connects to their planned

path and attempt preemptive lane changes. Vehicles already in the correct lane may

undertake a discretionary passing maneuver (double lane change to the other lane and

back) in order to gain speed advantage only if the maneuver is perceived to be possible.

The model requires that both the adjacent gap in the other lane and the gap in the current

lane between the subject's leader and its leader are acceptable for passing maneuvers to

take place.

Hunt and Lyons (1994) used neural networks as an alternative method of modeling

driver behavior within road traffic systems. Their main approach makes use of a learning

vector quantization classification type of neural network. A driver is assumed to make a

decision based on vehicle movements within a zone of influence, i.e., the activity within a

certain distance behind the vehicle and a certain distance in front. Their model uses visual

pattern based input to describe the driving environment around the vehicle about to make
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a lane change. The model is calibrated by exposure to a large number of representative

example inputs and corresponding decisions or answers.

2.2 Gap Acceptance Models

Gap acceptance models have been studied in the context of intersection crossing and

within merging and lane changing models. The definitions of terms used in this section

are illustrated in Figure 2.3 with an example of a lane changing scenario.

Adjacent gap

Lag Lead
vehicle Lag gap Lead gap vehicle

--- -- -- -- -- --- -- t - -- --- -- -- - -----------
Subject
vehicle Traffic direction

Figure 2.3: Relation between subject, lead and lag vehicles

Gap acceptance models are formulated as a binary choice problem. The driver either

accepts or rejects the available gap, based on comparison of the gap with an unobserved

critical gap (minimum acceptable gap). This can be expressed as follows:

I1 if G, c,
Y , = (2.1)

0 if GI < G

Where,

Y= choice indicator variable with value 1 if the gap is accepted and 0 otherwise

Gn,= available gap

G,=critical gap

The definition of critical gap varies among different models. In Highway Capacity

Manual (1997), the critical gap for a two-way stop controlled intersection, is defined as

the minimum time interval in the major-street traffic stream that allows intersection entry

to one minor-stream vehicle. In CORSIM (Halati et al. 1997), critical gaps are defined

through risk factors. The risk factor is defined by the deceleration a driver will have to

apply if the leader brakes to a stop. The risk factors are calculated for every lane change

based on the relative speed and position of the lead and lag vehicles and compared to an
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acceptable risk factor, which depends on the type of lane change to be performed and its

urgency. Yang and Koutsopoulos (1996) and Ahmed (1999) define critical gaps as

minimum space gaps.

For critical gap, Herman and Weiss (1961) assume an exponential distribution, Drew

et al. (1967) assume a log-normal distribution, and Miller (1972) assumes a normal

distribution. Daganzo (1981) proposes a framework to capture critical gap variation in the

population as well as in the behavior of a single driver over time. He uses a multinomial

probit formulation appropriate for panel data to estimate parameters of the distribution of

critical gaps. Mahmassani and Sheffi (1981) assume that the mean critical gap is a

function of explanatory variables, and so could capture the impact of various factors on

gap acceptance behavior. They estimate the model for a stop controlled intersection and

find that the number of rejected gaps (or waiting time at the stop line) , which captures

drivers' impatience and frustration has a significant impact on critical gaps. Madanat et

al. (1993) use total queuing time to capture impatience. Cassidy et al. (1995) differentiate

the first gap from subsequent gaps, and gaps in the near lane from gaps in the far lane.

These variables significantly improve the fit of the model. Other parameters that may

affect critical gaps include the type of maneuver, speeds of vehicles on the major road,
geometric characteristics and sight distances, the type of control in the intersection, the

presence of a pedestrian, police activities, and daylight conditions (e.g. Brilon 1988,
1991, Adebisi and Sama 1989, Saad et al. 1990, Hamed et al. 1997). However, most of

the discussion is qualitative and addresses macroscopic characteristics rather than

microscopic driver behavior.

In congested situations, acceptable gaps are often not available and more complex

gap acceptance phenomena may be observed. For example, drivers may change lanes

through courtesy of the lag driver in the target lane or decide to force their way in and

compel the lag driver to slow down. Existing microscopic traffic simulators, such as

AIMSUN, Paramics and VISSIM, use basic or modified versions of their normal gap

acceptance models to model freeway merging behavior (TSS 2004, Quadstone 2004,
PTV 2004). These models consider gaps created by adjacent vehicles, and in some cases

model reduced gap acceptance thresholds during congested conditions, but they do not

explicitly consider the anticipatory aspect of cooperation among drivers and aggressive
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merges by impatient drivers. Further discussion about gap acceptance in merging

conditions is presented in Section 2.4.

2.3 Acceleration Models

Acceleration models can be broadly classified into two groups: car following models

and general acceleration models. Car following models describe the behavior of drivers

reacting to the behavior of their leaders and the general acceleration models include

behaviors in both car following and non car following situations.

The concept of car following was first proposed by Reuschel (1950) and Pipes

(1953). Pipes assumes that the follower wishes to maintain safe time headway of 1.02 s

from the leader. This value was derived from a recommendation in the California Vehicle

Code. Using Laplace transformations, he develops theoretical expressions for the

subject's acceleration given a mathematical function that describes the leader's behavior.

Researchers at the GM Research Laboratories introduced the sensitivity-stimulus

framework that is the basis for most car following models to date. According to this

framework a driver reacts to stimuli from the environment. The response (acceleration)

the driver applies is lagged to account for reaction time and is given as follows:

responsen (t) = sensitivityn (t) x stimulusn (t - rn (2.2)

Where,

t=time of observation

rn =reaction time for driver n

The reaction time includes perception time (time from the presentation of the stimulus

until the foot starts to move) and foot movement time. The GM models assume that the

stimulus is the leader relative speed (the speed of the leader less the speed of the subject

vehicle) and the response is linear. Over the years, several extensions to the GM model

were proposed to overcome its limitations (Chandler et al. 1958, Gazis et al. 1959, 1961,

May and Keller 1967, Ozaki 1993). Herman and Rothery (1965) and Bexelius (1968)

hypothesized that drivers follow vehicles in front of their leader as well as the immediate

leader and assumed different sensitivities to the relative speed with respect to each of

these leaders.
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Lee (1966) developed a variation of the GM model that takes into account the past

observations of the driver in the current acceleration decision by means of considering

the relative leader speed over a period of time rather than the instantaneous speeds. The

mathematical model is expressed as follows:

a, (t) = M (t - t') AV""' (t')dt' (2.3)
0

Where,

AVf"onh (t) =relative speed offront vehicle at time t

M (.)=memory (or weighting) function, which represents the way the driver

acts on information that has been received over time.

Lee proposed several functional forms of the memory function and analyzed the

stability of the resulting response to periodic changes in the leader speed. Darroch and

Rothery (1972) empirically estimated the shape of the memory function using spectral

analysis.

Helly (1961), Bekey et al. (1977), Gabard et al. (1982), Koshi et al. (1992) developed

acceleration models assuming that the driver tries to attain some desired measure, for

example: minimizing both the leader relative speed and the difference between the actual

and desired space headway.

Gipps (1981) developed the first general acceleration model that applies to both car

following and free flow conditions. The maximum applicable acceleration is determined

based on two constraints: the desired speed may not be exceeded and a safe headway

must be kept. Models with similar structure are developed by Benekohal and Treiterer

(1988) and Hidas (2002). Yang and Koutsopoulos (1996), Ahmed (1999) and Zhang

(1998) extended these models by including additional driving regimes (e.g. emergency

regime, uncomfortable car following regime etc.).

Multiple driving regimes require definition of boundaries to determine which regime

the driver is in. For example, headway thresholds are used to determine whether a vehicle

is in the car following or free-flow regimes. However, in most of the above models

(except Ahmed 1999), these thresholds are modeled deterministically. Similarly, reaction

time is explicitly represented in acceleration models, but is often assumed to be

deterministic and assigned arbitrary values.
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Moreover, many of these model developments do not involve rigorous estimation of

model parameters. Most models either completely ignore the issue of estimation or

assume values for some parameters and use ad-hoc procedures to determine values for

others.

2.4 Combined Models

Several models have been developed that incorporate multiple model components in a

single framework and capture the planning behavior of the drivers to some extent.

Hidas (2002) developed a merging model with components essential for lane

changing under congested traffic conditions. In this model, if a vehicle cannot merge by

normal gap acceptance, it evaluates the flow conditions in the target lane, and attempts to

set an acceleration which may lead to a more favorable situation for lane changing. These

decisions constitute the lane changing plan of the driver. Hidas (2005) extended this

model and included cooperative merging by explicit modeling vehicle interactions using

intelligent agent concepts. In the extended model, drivers in a merging scenario have

individual goals and they interact and cooperate with each other to solve the conflicting

goals. Lane change maneuvers are classified as free, forced and cooperative based on the

relative gaps between the leader and follower. In free lane changes there is no noticeable

change in the relative gap between the leader and follower during the whole process,

indicating that there is no interference between the subject and the following vehicle. In

forced lane change, the gap between the leader and follower is either constant or

narrowing before the merge, but starts to widen after the subject vehicle enters, indicating

that the subject vehicle has forced the follower to slow down. In cooperative lane change

the gap between the leader and follower is increasing before the entry point and starts to

decrease afterwards, indicating that the follower has slowed down to allow the subject

vehicle to enter. However, it is postulated in this model that each vehicle involved in a

lane changing maneuver has perfect information about the lane changing plans of other

vehicles and vehicles are able to communicate with each other in order to cooperate,

coordinate and resolve conflicts. Video data was used to develop the model, but details of

the calibration methodology were not available.
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Several other models have been developed specifically to model the cooperative

and/or forced lane changing plans of the driver (Ahmed 1996, Wang et al. 2005). Ahmed

(1996) estimated a forced merging model that captures drivers' lane changing behavior in

heavily congested traffic as shown in Figure 2.4. A driver is assumed to evaluate the

traffic environment in the target lane to understand whether the driver's right of way is

established and a forced merge is possible. If a driver intends to merge in front of the lag

vehicle and right of way is established the decision process ends and the driver gradually

moves into the target lane. Once the forced merging has started the driver is assumed to

remain in this state, persisting till the merge to the target lane is completed. However, the

model assumes that once a driver initiates a forced merge, he/she completes it. There is

no gap acceptance level after the decision to initiate a forced merge is taken. In other

words, the probability of completion of the merge is 1 if the driver has initiated a force

merge. Normal lane change and voluntary cooperation among drivers is ignored.

MLC

Start forced Do not start
merging orced mergin

Same Target Same
lane lane lane

Figure 2.4: The forced merging model structure proposed by Ahmed (1999)

Wang et al. (2005) consider the merging plan of the driver with the possibility of

courtesy from the lag driver in the mainline. The model framework is presented in Figure

2.5. The probabilities of the lag driver providing courtesy are drawn from binomial

distributions with parameters calibrated using video observations. The merging vehicle

selects a target gap and accelerates or decelerates to adjust speed and position with

respect to that gap. The merge is executed if the target gap is acceptable. The model

however ignores the possibility to force merge and if the merging vehicle has not found

an acceptable gap before reaching the end of the merging lane, the vehicle is removed
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and a merge failure is registered. Moreover, heterogeneity among drivers is not explicitly

considered in this model.

Merging Vehicle

xistence of Lea No
or Lag

Yes Merge In

Ys Closing of Lead or Lag

, , No

Acceleration Adjustment Acceleration Adjustmen t] Car-following Model

Figure 2.5: The merging model structure proposed by Wang et al. (2005)

Toledo (2002) presented a framework based on the concepts of a short-term goal and

short-term plan for a driver. Driving behavior consists of three main elements: the short-

term goal, the short-term plan and the driver's actions. The short-term goal is defined by

the driver's target lane. The driver constructs a short-term plan, which is defined by the

target gap in the target lane that the driver wishes to use in order to accomplish the goal.

The accelerations and lane changes are the driver's actions used to execute the short-term

plan. The conceptual framework of the model is illustrated in Figure 2.6.

Short term

Goal Lane Choice ~
(Target lane) L

Lane Changing
(Gap acceptance)

Plan Gap Choice

(Target gap) Acceleration

Actions

Figure 2.6: Conceptual framework for the driving behavior process (Toledo 2002)
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When the adjacent gap is rejected by the driver, the driver creates a short-term plan

by choosing a target gap in the target lane traffic. The alternatives in the target gap choice

set include available gaps in the vicinity of the subject vehicle. A gap which may not be

acceptable at the time of the decision may still be chosen in anticipation of becoming

acceptable in the future.

However, due to the computational difficulty of modeling all possible combinations

of states of the short-term goal and short-term plan (which are unobserved), a partial

short-term plan was hypothesized. It is assumed that the driver executes one step of the

short-term plan, re-evaluates the situation and decides the next action to be taken. Thus, it

is assumed that a driver formulates a plan at every instant and the effect of previous plans

is not fully captured. The structure of the combined lane changing and acceleration model

proposed by Toledo is presented in Figure 2.7.

Target Left Current RightLane

Gap No Change Change No
acceptance Change Left Right Change

Target Gap Gap Gap Gap
Gap L1 ... LM R1 ... RK

Acceleration Acc. ... Acc. Acc. Acc. Acc....

Figure 2.7: Structure of the driving behavior model (Toledo 2002)

The model captures both lane changing and acceleration behaviors. The driver selects

the best lane among the current and adjacent lanes and if a lane shift is required, looks for

an acceptable gap to make the lane change. Drivers who wish to change lanes but cannot

change lanes immediately, select a short-term plan to perform the desired lane change.

Short-term plans are defined by the various gaps in traffic in the target lane. Drivers adapt

their acceleration behavior to facilitate the lane change using the target gap. The scope of

the partial short-term plan thus only captures variables associated with the immediate
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surroundings. For example, the choice set for lane selection only includes the current and

adjacent lanes, and lanes beyond the adjacent lanes do not affect the lane selection.

Similarly, the choice set for target gap selection only includes the adjacent and immediate

forward and backward gaps. The model therefore does not address the sequence of

maneuvers to achieve a distant target and can fail if there are significant differences in

level of service among different lanes.

Rao (2006) formulated a theoretical framework for a dynamic programming based

approach to modeling lane changing decisions where expectations of future conditions

are explicitly addressed. The solution of the dynamic program takes the form of an

optimal decision rule that specifies drivers' optimal utility based decisions as a function

of their current information. The computational complexity of applying such a model

however prohibited model estimation.

Webster et al. (2007) proposed a tactical lane change model using the forward search

algorithm. The completed forward search tree enumerates a complete set of subject

vehicle maneuver sequences, and each sequence is evaluated in terms of how it improves

the distance traversed over the planning horizon. The model however makes several

simplifying assumptions. For example, the decisions are based only on distance traversed

and effects of path-plan; the inertia in the decision making process and effects of other

variables are ignored. Also, it imposes restrictions on lateral movements of other vehicles

and ignores the heterogeneity of the planning horizon of drivers. It is mentioned that the

model parameters are calibrated with trajectory data using simulation runs but the

computational burden associated with the forward search is not detailed.

2.5 Limitations of Existing Models

It is apparent from the critique in the previous sections that although there have been

many advances in driving behavior models over the years, the existing models still have

significant limitations as described below:

Tactical and strategic planning

Most models assume that drivers make instantaneous decisions based on current

traffic conditions. In reality, drivers may conceive a plan and perform it over a length of
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time. The notion of planning is ignored in most of the existing models. The few models

that address the effect of planning in driving decisions have a limited extent and/or make

simplifying assumptions. For example, as described in Section 1.2, the planning process

is likely to be affected by strategic trip planning and navigation decisions such as selected

trip schedule and path. Drivers may adjust their speeds according to the trip schedule;

they may pre-position themselves in correct lanes to follow their path. The effect of path-

plan is considered in some of the lane selection models but the effect of the trip schedule

has not been incorporated in the existing models.

Anticipation

Anticipation of future conditions has a significant effect on the plans involving the

driving decisions. Drivers tend to anticipate the downstream traffic conditions, the

behavior of other vehicles etc. and make their decisions to facilitate their plans. Drivers

familiar with the network can pre-position in specific lanes in order to avoid delays

caused by turning or merging traffic. Drivers may avoid following a bus or delivery

vehicle that is likely to make frequent stops. This is more evident in congested and

incident affected traffic conditions where consideration of the anticipated conditions can

substantially minimize travel delays. The effect of anticipation in strategic driving

decisions has not been adequately represented in most of the existing models.

Interdependence

The decisions of a driver over time and choice dimensions are interdependent. For

example, a driver's gap acceptance and acceleration decisions can depend on his/her

initial decision to change lanes. Interdependencies among decisions, particularly over

the time dimension for the same driver are not captured in detail in most of the existing

models. For example, the persistence of drivers to follow their originally chosen plans,

which can lead to state-dependence, has been ignored in the state-of-the-art models.

Choice set

In most cases, existing models explain driving behaviors using variables related to the

subject's immediate driving neighborhood, such as the relative speeds and positions of

42



neighboring vehicles in the adjacent lanes. But in reality drivers are not myopic and are

likely to select their targets based on a broader set of factors.

Mixed traffic

Mixed traffic streams, with vehicles having distinct differences in size and speed

sharing the same right of way, exhibit behavior significantly different from

homogeneous, lane based traffic streams and are generally characterized by 'weak lane

discipline'. The state-of the art driving behavior models have focused on modeling

homogeneous lane based traffic conditions and are not applicable in heterogeneous traffic

conditions.

Heterogeneity among drivers

The heterogeneity in driver behavior is ignored in most of the existing models, mostly

due to data limitations. The heterogeneity in aggressiveness and reaction time of the

drivers has been considered in some of the models through estimated distributions. But

heterogeneity exists in many other aspects of driving and includes traits of the driver like

intelligence, planning capability, risk averseness etc. The effects of socio-economic

characteristics of the driver (e.g. age, education, driving experience etc.) on driving

behavior have also not been explored.

2.6 Summary

With these limitations, application of the state-of-the-art models in a simulation

environment can result in unrealistic traffic flow characteristics. This can result in errors

in the corresponding analysis and bias planning and policy decisions. According to the

NGSIM study for Identification and Prioritization of Core Algorithm Categories

(Alexiadis et al. 2004), the scenarios with highest priority include urban arterial lane

selection, oversaturated freeway behavior, freeway lane distribution and decisions at a

weaving section. As discussed in Section 1.2, a common link between all these scenarios

is that the decisions in all these cases involve significant planning and anticipation by the

drivers. Success in bridging the existing gaps in the traffic simulators therefore depends

on an efficient modeling technique to address the plans behind the observed decisions.
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Chapter 3

Modeling Methodology

This chapter presents a general methodology and framework for modeling behaviors

with unobserved or latent plans. The planning behavior of decision makers have been

modeled by researchers in many different fields. A short review of these research

methodologies are also presented in this chapter.

The chapter is structured as follows: we first present an overview of approaches that

are used in different fields to capture the planning behavior of individuals. The features

of latent plan models are then presented. The general model frameworks are presented

next: first for a basic case with only serial correlation and no state-dependence, and then

extended to include state-dependence. The chapter concludes with comparisons of the

modeling methodology with the state-of-the-art discrete choice modeling approaches. 1

3.1 Modeling Planning Behavior

The problems regarding modeling planning and decision making under uncertainty

have been addressed by researchers in many different fields, including artificial

intelligence, economic analysis, operations research and control theory.

Artificial intelligence planning algorithms are concerned with finding the course of

action (plans or policies) to be carried out by some agent (decision maker) to achieve its

goals. In the classical case, the aim is to produce a sequence of actions that targets to

guarantee the achievement of certain goals when applied to a specified starting state.

Decision-theoretic planning (DTP) (Feldman & Sproull 1977) is an attractive extension

of the classical artificial intelligence planning paradigm that selects courses of action that

I Earlier versions of parts of this chapter have been presented in Ben-Akiva et al. (2006, 2007a and 2007b)
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have high expected utility. These models capture the risks and tradeoffs of different plans

rather than guaranteeing the achievement of certain goals. However, in many practical

cases, calculation of expected utility involves evaluation of numerous possible plans and

it is usually not feasible to search the entire space of plans to find the maximum utility

plan. With increasing planning horizon, computing the expected utility of a single plan

can also be prohibitively expensive since the number of possible outcomes from the plan

can be very large (Blythe 1999). Some other assumptions in artificial intelligence

planning algorithms such as complete knowledge of the initial state and completely

predictable effects of actions have also been challenged by researchers, for instance, in

conditional planning (Peot and Smith 1992) and probabilistic planning (Kushmerick et al.

1994).

Dynamic programming techniques have been applied to model the planning behavior

in partially observable settings (Smallwood and Sondik 1973). In cases with partially

observable current states, past observations can provide information about the system's

current state and decisions are based on information gleaned in the past. The optimal

policy thus depends on all previous observations of the agent. These history-dependent

policies can grow in size exponentially with the length of the planning horizon. While

history-dependence precludes dynamic programming, the observable history can often be

summarized adequately with a probability distribution over the current state, and policies

can be computed as a function of these distributions (Astrom, 1965).

Markov Decision Processes (MDP) (Bellman 1957) assume that current state

transitions and actions depend only on the current state and are independent of all

previous states. This significantly improves the computational tractability. MDP have

two kinds of variables: state variables s, and control variables a, . According to Rust

(1994) a decision-maker can be represented by a set of primitives (U, p, p) where

U (s, ,a,) is a utility function representing the preferences at time t, p (s,+1 I s,, a,) is a

Markov transition probability representing the subjective beliefs about uncertain future

states, and 8 e (0,1) is the rate at which the individual discounts utilities in future

periods. Recent research on DTP has explicitly adopted the MDP framework as an

underlying model (Barto et al. 1995, Boutilier and Dearden 1994, Boutilier et al. 1995,
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Dean et al. 1995, Simmons and Koenig 1995, Tash and Russell 1994), allowing the

adaptation of existing results and algorithms for solving MDPs from the field of

operations research to be applied to planning problems. The tradeoffs using MDP based

utility discounting methods have been reviewed in detail by Rao (2006).

In the artificial intelligence context, the utility of a plan is based on the reward and

cost values associated with the actions constituting the plan (Boutelier et al., 1999).

Boutelier et al. describe two approaches for calculating the utility function: the time-

separable approach and the additive approach. In the time-separable approach, the utility

is taken to be a function of costs and rewards at each stage, where the costs and rewards

can depend on the stage t, but the function that combines these is independent of the

stage, most commonly a linear combination or a product (see Luenberger 1973 for

details). The addition of rewards and action costs in a system with time-separable value

is illustrated in Figure 3.1, where at time t, the cost (C,) is a function of the previous state

(s,.j) and previous action (a,-.) and the reward R, is a function of the current state (s,). A

value function is additive if the combination function is a sum of the rewards and cost

function values accrued over the history of stages. Thus, in both cases, the derivation of

the utility functions associated with the plans and actions do not involve any rigorous

calibration framework.

st-, s t

Ct Rt

Figure 3.1: Framework for reward and action costs (Boutilier et al. 1999)

Baum and Petrie (1966) proposed the Hidden Markov Model (HMM) framework

where the system being modeled is assumed to be a Markov process with unknown

parameters. The challenge in this framework is to determine the hidden parameters from

the observable parameters. This is illustrated in
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Figure 3.2 where latent plans / affect observed actionsj and evolve over time t.

10 i 12 1T

--Oc --- * C

i j2 j

Figure 3.2: First-order Hidden Markov Model (adapted from Bilmes 2002)

The HMM framework has been used in various applications including speech

recognition (Rabiner 1989, Baker 1975, Jelinek 1976), machine translation (Vogel et al.

1996), bioinformatics (Koski 2001), and the evolution of health and wealth in elderly

people (Ribeiro 2002, Ribeiro et al. 2003). However, its use in these applications has

generally been to model certain processes that do not involve behavioral states. In other

words, these applications do not involve choice or decision-making of individuals.

To summarize, planning models in different research fields address the dynamics of

planning through various approaches. While the assumptions and perspectives adopted in

these areas differ in substantial ways, Markovian approaches are widely used to capture

the model dynamics in a tractable manner. However, these models do not focus much on

the behavioral aspect of choice or decision making and the methods reviewed in this

section are not directly applicable to modeling the evolution of the unobserved driving

decisions. But they form the basis of the modeling methodology proposed in the next

section.

3.2 Latent Plan Models

The general framework of latent plan models is schematically shown in Figure 3.3. At

any instant, the decision maker makes a plan based on his/her current state. The choice of

plan is unobserved and manifested through the choice of actions given the plan. The

actions are reflected in the updated states.
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State

t=t+1

Plan

Action

Figure 3.3: General decision structure

The key features of the latent plan model are as follows:

1. Individuals choose among distinct plans (target/tactic). Their subsequent

decisions are based on these choices. The chosen plans and intermediate choices are

latent or unobserved and only the final actions (maneuvers) are observed.

2. Both the choice of plan and the choice of action conditional on the plan can be

based on the theory of utility maximization. The interdependencies and causal

relationships between the successive decisions of an individual result in serial correlation

among the observations.

3. The observed actions of the individuals depend on their latent plans. The utility of

actions and the choice set of alternatives may differ depending on the chosen plan.

4. The choice of the plan at a particular time may depend on previous plans. For

example, persistence and inertia effects may affect the choice whether or not to continue

to follow the original plan or to shift to an alternative one. Thus, the choice of plans can

lead to state-dependence in the decision process.

5. The current plan can also depend on anticipated future conditions and may include

expected maximum utility (EMU) derived from the decisions involved with the execution

of the plan.

In the following subsections, we first present the basic latent plan model that is

applicable for cases without state-dependence (only serial correlation). These include

situations involving one-time decisions, as well as panel observations where the

subsequent choices of plans (conditional on individual-specific characteristics) are
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independent. The basic model is then extended to explicitly capture the state-dependence

between subsequent plans and actions.

3.2.1 Latent Plan Model without State-dependence

In this section the basic latent plan model framework is presented. This framework

only addresses the serial correlation among the decisions of the individual across time

and choice dimensions but do not address the state-dependence among subsequent plans.

That is, conditional on individual-specific characteristics, the successive plans of

individuals are assumed to be independent. The overall model formwork is presented in

Figure 3.4. Variables or choices in rectangles are observable, while those in ovals are

unobservable or latent.

E xplanatory Driver's
Variables Characteristics

(Xn,) (on)

Plan
Ynt, )

Action

Figure 3.4: Latent plan model without state-dependence

The plan of an individual n at any instant t (1,t) is influenced by explanatory

variables and individual-specific characteristics. The attributes of the alternatives (X,,t)

are generally observed but the individual-specific characteristics associated with the

individual (v,) are generally unobserved or latent. For example, in case of lane selection

behavior, attributes of the alternatives (target lanes) like average speed, density, lead and

lag vehicle characteristics etc. are observed and driver characteristics like aggressiveness,

driving skills, planning horizon etc. are latent. These latent variables can be discrete or

continuous. Characteristics of the driver such as planning capability, for example, can be
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represented by discrete classes of drivers (e.g. drivers who plan-ahead and drivers who do

not). Continuous latent variables include attitudes, perceptions and personality traits of

the individual (e.g. impatience, aggressiveness, planning horizon etc.). The actions of the

individuals depend on the chosen plan as well as the observed and latent explanatory

variables. These individual specific variables remain the same for all decisions of the

same individual across time and choice dimensions (agent effect). However, it is assumed

that actions (j, ) and plans (1a) of individual n (conditional on vn) are independent over

time. This assumption is relaxed in Section 3.2.2.

The general model framework is presented in Figure 3.5. This framework consists of

two levels: choice of plan and choice of action conditional on the plan. The selection of

the plan (indexed by 1) in the upper level drives the selection of an action (indexed byj).

The action choice sets and corresponding utilities, shown in the lower level, may vary

depending on the plan.

Plan 2 L

Action 1 2 - j -- J, 1 2 ... j ... J2  1 2 -j --- J, 1 2 ... * ... JL

Figure 3.5: Basic model framework (without state-dependence)

Probability of a Trajectory

The trajectory of an individual includes a series of observed actions. For driving

behavior models, this corresponds to a series of lane actions and acceleration decisions of

the driver.

Let,

P, (1, I on) = probability of individual n selecting plan / at time t conditional on

individual-specific characteristics

P (j, 1 ,, on) = probability of individual n selecting actionj at time t given plan I

conditional on individual-specific characteristics
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P, (j, Ivu) = probability of actionj by individual n at time t conditional on

individual-specific characteristics

L, = the set of plans in the choice set of individual n

Tn = number of consecutive observations of individual n

At time t for individual n, the probability of observing a particular actionj is the sum

of probabilities that he/she is observed to execute actionj given that the selected plan is 1,

over all plans in the choice set of the individual.

P (i, I vt)= P, (i, l1 l,, V)P (l, 1vO) (3.1)
IEL,

Assuming that actions (i,) and plans (l) of individual n (conditional on vu) are

independent over time (relaxed in next section), the probability of observing his/her

sequence of decisions can be expressed as follows:

Tn Ln

Pn (i 2,-- nr 10 f n (i,\11,,Vn%0|. ) 3.21 )

The unconditional choice probabilities of observing the sequence of decisions by

individual n are given by the following equation:

P.(il2,--fr)= fP(Ai2,--Tr. 10 )f (o)dv (3.3)
V

Where, f (v) is the distribution of the individual-specific random term (e.g.

aggressiveness).

Specification

The probabilities of choice of plan and action can be calculated using a utility-based

choice framework. The specifications of these utilities are discussed below.

Choice of Plan

The choice of a plan can be based on utility maximization and may include expected

maximum utility (EMU) derived from the decisions involved with executing that plan.

The utility of latent plan 1 for individual n at time t can be expressed as follows:
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U,,= U ,, ,,v e,
U11tU (X'j il' U I Em )(3.4)

i,,, E ( max (Ul In,,U2 In,,..U,, ,,...UJ ,,,t

Where,

X,,=attributes ofplan / for individual n at time t, a subset of Xn

Int =expected maximum utility from actions associated with plan / of individual

n at time t

Ujint =utility of actionj under plan i to individual n at time t

On = individual-specific random effect

EInt =random utility component ofplan I for individual n at time t

Choice ofAction

The observed choices/actions depend on the chosen plan. The choice set, as well the

functional form of the utility of an actionj may vary depending on the chosen plan. The

utility of actionj under plan I can be expressed as follows:

Ujn, = U ( Xt ,,, , E jln (3.5)

Where,

X,,, = atttributes of actionj and plan 1 at time t, a subset of X.,

un= individual-specific random effect

Efn, random utility component of action j and plan I at time t

The conditional probabilities of selecting plan (P, (1, 1 va)) and action (P, (j, I 1,, v))

are based on the utilities discussed above (Un, and Uj,,,, respectively). The specification

of the probabilities will depend on the assumptions made regarding the distribution of the

random utility components of U,,, and Uj,,,,. For example, if the random components are

independently and identically extreme value distributed, then the kernel of the choice

model will be logit.

3.2.2 Latent Plan Models with State-dependence

In the model with explicit consideration of state-dependence, the previous assumption

regarding independence of successive plans of individuals (conditional on individual-
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specific characteristics) is relaxed. Selection of plan / by individual n at time t in this case

is influenced by his/her previously chosen plans and actions leading to state-dependence

in the choice process. The overall framework of latent plan models with state-dependence

is presented in Figure 3.6.

As shown in the figure, in the general case, the plan at time t is influenced by

previous plans (ln,2,---, in,4) and previous actions (j,,j2,-,42.. ) in addition to the

current attributes of the alternatives and individual-specific characteristics. The observed

choices/actions depend on the previously chosen plans and actions as well as the current

plan, attributes of the alternatives and individual-specific characteristics.

Explanatoe- Driver's

Variables Characteristics

(Xn,) (on )

Previous Plans Plan Future

(1an 2,.. n,1-1) 1nI ~~ Plans

Previous Actions Action

(j,,, j n2,---, jn ,-I ) (jnt)

Figure 3.6 : Model framework of latent plan models with state-dependence

Probability of Trajectory

As in the case presented before, the trajectory of an individual includes a series of

observed actions. But in this case the conditionality of current plans and actions on

previous plans and action are considered.

Let,

P (it I 1,:,, 1-1 1, 0 ) =conditional probability of individual n selecting plan 1 at time t

P (j, |I :,,9 fi:,_I,9 V ) = conditional probability of individual n selecting action j at time t

P,, (j, I on) = conditional probability of actionj by individual n at time t

Ln = plans in the choice set of individual n

Where, 1: t is shorthand for 1,2, ... , t-1, t.
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At time t for individual n, the probability of observing a particular actionj is the sum

of probabilities that he/she is observed to execute actionj given that the selected plan is 1,

over all sequences of plans that could have led to plan 1.

P (i, I jA, 0 1- = OnP (j, I '1:,, j i , On )PIn (i, 111:1,_9 , j -1, ,On (3.6)
(I9..4)

The number of possible sequences in the summation of Equation 3.6 is Ill', where ll

denotes the maximum cardinality of the set of discrete plans over all decision instances.

Except for degenerate cases with a very small choice set of plans or a very short

observation period, modeling all possible sequences is thus prohibitively expensive.

Application of a first order Hidden Markov Model (HMM) (Baum and Petrie 1966,

Baum 1972) based solution approach simplifies the problem of estimating the model with

a large number of latent plans and/or observation periods. HMM is represented

graphically in Figure 3.7, in which the upper level represents the evolution of the plans

from an initial plan at time 0 (denoted as lo) to a final plan at time T denoted as 1T. The

plan at every time period is determined only by the plan at the previous time period (first-

order Markov model) and may be affected by the action taken in the previous time period

(experience). The lower level represents the observed actions. An action at a given time

period is determined only by the plan during the same time period. Also, the dynamics in

the observed actions are explained by the dynamics in the underlying latent or

unobserved plans (Hidden Markov Model).

10 12 - -+ --. T

IT

Figure 3.7: First-order Hidden Markov Model

(latent plans 1 affect observed actionsj and evolve over time t)
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The first order HMM assumption thus enables us to simplify the choice of plan and

choice of action. This can be expressed as follows:

Plans. The plan at a given time period depends only on the plan of the previous time

period and all previous actions. The expression for the choice probability of a plan in the

current time period, under the above assumptions, is as follows:

P (1t11, 1 lt, j 5,_t, n ) = P. (11l,, 1 ,_- , 1-9 n) (3.7)

Actions. The dynamics in the observed actions are caused by the dynamics in the

latent plans. That is, the effects of past plans and past actions affect the current actions

through the choice of current plan and there is no direct causal effect of past plans and

past actions on the current actions. Therefore, conditional on the plan, the action observed

at a given time period is independent of the plans and actions observed at previous time

periods; it is only dependent on the current plan.

P (i, 111:,, j A,_11,9 O ) = P (i, I l,, IVn) (3.8)

The model framework is presented in Figure 3.8.

10 11 2 -- 17,

Plan 1 2 L

t=t+1

-Action F --... .. .. .... J] ... ... ...

Figure 3.8: Model framework with state-dependence
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Under these assumptions, the probability of observing a particular action j at time t

can be expressed as follows:

P (j, I j1,:,1- ) 9 P" ( , I it,, ), (it, li-, , jle,- , Vn (3.9)

The joint probability of a sequence of actions of an individual n over a time horizon

Tn can be expressed as follows:

P (i,., Zg|) P (j 111,1 )-- P, (AnIr ) n ) P (11 110 1Vn...- P , 'Tr) -1, A ,1 O ) (3.10)
IT )

= P( 1, , Vn n(1T T-I'j: It,) P n 0 ) (jTg_] -l I, .- P ('2 11 , ji n ) P AI'U , ( 11l,0 ) 1101 Vn)

Where, the initial plan 1, is assumed to be fixed or, if random, can be assumed to be

handled through specific methods designed for dealing with initial conditions problems in

this context (see for example Wooldridge 2005). The above simplification reduces the

order of complexity for computing the probability from O(IllT) to O(lT), where ll

denotes the maximum cardinality of the set of discrete plans over all decision instances.

The unconditional choice probabilities of observing the sequence of decisions are

given by:

P.(ij,-f )= En(i,2-jT |)f (v)dv (3.11l)

V

Where, f(v) denotes the distribution of the individual-specific random effect.

Specification

The probabilities of choice of plan and action can be calculated using a utility-based

choice framework. The specifications of these utilities are discussed below.

Choice of Plan

With HMM assumptions, the choice of the plan at time t in the state-dependent case

depends on the choice of plan in the previous time period (n 1,1) and all previous
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actions (j 1: 1). As in the case without state-dependence, the choice of the plan can be a

function of attributes of the plans and individual-specific characteristics, and may include

expected maximum utility (EMU) derived from the decisions involved with executing

that plan. The utility of latent plan 1 for individual n at time t can therefore be expressed

as follows:

Ulm U X~n1 n 11 i 1: -I ~nI9 OnI -Int(3.12)

In, E (max (U,, ,,U2 Int,. UjInt,...U

Where,

X,,, attributes ofpan ifor individual n at time t

UjIn ,=utility to individual nfrom actionj at time t under plan /

Ii, =expected maximum utility from actions associated with plan I of individual

n at time t

Ln = individual-specific random effect

E,, ,=random utility component ofplan 1 for individual n at time t

Choice ofAction

According to the HMM assumption, the action observed at a given time period

depends on the current plan. The plan and action of previous time periods affect the

current action through the current plan. The utility of actionj under plan 1 can therefore

be expressed as follows:

Uj,,, = U (X,l ., 1 ,, )nI I L~n I(3.13)

Where,

XJ1,,= atttributes of action i under plan / at time t

on= individual-specific random effect

Iln,,= random utility component of action j and plan 1 at time t

The specification of the conditional probabilities of plan (Pl, l,, I1,1 V)) and

action (P (j, v,, v)) will depend on the assumptions made regarding the distribution of

the random utility components of Un, and Uj,,,. For example, if the random components
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are independently and identically extreme value distributed, then the kernel of the choice

model will be logit.

3.3 Comparison with Other Discrete Choice Modeling

Approaches

The latent plan choice model presented in the previous section have similarities with

existing discrete choice models that are commonly used to model choice behavior from

multidimensional choice sets (see Ben-Akiva and Lerman, 1985 and the recent update in

Ben-Akiva and Bierlaire, 2003).

From the structural point of view, the latent plan models resemble the cross-nested

logit (CNL) model (McFadden 1978), where an alternative can share unobserved utility

components from different nests (Figure 3.9).

P, (1) 12 .-- IL.

P" U 1)1 2 ..... L

Figure 3.9: Cross-nested logit model

For the two-dimensional case presented in Figure 3.9, the probability of selecting an

alternative in the lower level can be expressed as follows:

L

P, Uj) = P, ( 11) P, (1) (3.14)

Where,

P (1) = probability of choosing 1

P. ( I 11) = probability of choosing j given /

L=number of alternatives in upper level
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A CNL model for the plan and action case thus assumes that the marginal probability

of choosing a particular action can be obtained by summing the joint probabilities of that

action and each plan leading to the action over all plans. However, in CNL models, the

systematic utilities of an alternative at the lower level are independent of the upper nest.

That implies that the utility associated with alternative J given 1 can be expressed as

follows:

U1 , = U(Xx,1 , m (3.15)
Where,

X = attributes of alternativej

Xn = characteristics of decision-maker

Ef]n = random utility component

Thus in CNL, the choice of an action is unaffected by the chosen plan that led to that

particular action. In latent plan models, on the other hand, the utilities of the alternatives

at the execution level depend on the plan that led to that decision. Moreover, CNL

models cannot capture the choice of individuals in complex situations where observable

choices are affected by dynamic planning.

Another existing discrete choice model that is similar to the latent plan model is the

Latent Class Choice Model (LCCM) where the factors 'generating' the heterogeneity

among individuals can be conceptualized as discrete or categorical constructs (Kamakura

and Russell 1989, Gopinath 1995). The latent class choice model can be expressed as

follows:

L

P () PU (11) P, (1) (3.16)

Where,

P (1) = class-membership model

Pn (j 1 1) = class-specific choice model

L =number of classes

The class-specific choice models are characterized by heterogeneity in taste variation

and/or choice sets associated with the class. If individual n belongs to class 1, his/her

utility associated with alternativej is as follows:
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Ujn = U(iXj,Xn,,Ej) (3.17)

Where,

Xi = vector of attributes of alternatives

X,,= vector of characteristics of decision-maker

However, the class-membership models are based only on characteristics of the

individuals and not on other variables that influence their attitude. The utility associated

with the probability of class-membership can be expressed as follows:

U 1n = U (Xn,, I) (3.18)

The membership of an individual in a class is thus static and do not change over time

with change in situations. The latent plan models on the other hand, are estimated with

panel data and the unobserved factor (the latent plan) can vary dynamically with change

in situation based on neighborhood variables. The latent plan models thus have a more

flexible structure and can therefore be inferred as an extension of LCCM that is

applicable in a dynamic case.

3.4 Summary

A general methodology and framework for modeling behaviors with unobserved or

latent plans has been presented in this chapter. The action at any time depends on the plan

at that time. For situations where the subsequent choices of plans conditional on

individual-specific characteristics are independent, the plan at any time can be affected

only by the attributes of plans, expected utilities of executing the plan and the

characteristics of the individual. However, in the state-dependent case, the current plan

can also depends on previous plans and actions as well as attributes of different plans,

expected utilities of executing the plans and the characteristics of the individual. The

computational tractability of the state dependent model is attained by using the HMM

approach. The HMM assumptions imply that the current plan depends only on the plan

and action of the previous time step, the attributes of alternative plans and the

characteristics of the individual.
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Structurally, the proposed latent plan model has similarities with CNL and LCCM.

The model comparison reveals that latent plan models can be viewed as a hybrid of these

models extended to a dynamic setting.
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Chapter 4

Freeway Lane Changing

In this chapter, the latent plan involving the lane changing decision of a driver in a

freeway is presented. The overall decision framework consists of the two stages

presented in the introductory chapters: choice of latent plans followed by selection of

action to execute the plan. However, the detailed structure is formulated based on the

geometric configuration and traffic attributes that characterize a typical freeway lane

selection scenario.

The chapter is organized as follows: the background of the research is presented in

Section 4.1. In Section 4.2, the structure of the latent plan lane changing model is

proposed. The details of the model estimation are presented in Section 4.3. This section

includes description of the data used to estimate the model parameters, the likelihood

function and the estimation results. This section also includes statistical comparison of

the goodness-of-fit of the latent plan model and a reduced form model (estimated with the

same data). The aggregate validation results are presented in Section 4.5. The calibration

and validation exercises within the microscopic traffic simulator MITSIMLab are

presented in this section followed by a summary of the validation results within the

commercial simulators. The chapter concludes with a summary of the findings.2

2 The model presented in this chapter has been developed as part of the NGSIM program of FHWA. The
results presented in this chapter have been reported in Choudhury (2005), Toledo et al. (2005) and
Choudhury et al. (2006, 2007). The validation exercises in AIMSUN, Paramics and VISSIM have been
performed by TSS (Barcel6 et al. 2006), Quadstone (Speirs 2006) and PTV (Vortisch and Rbssel 2006)
respectively.
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4.1 Background

A driver in a freeway is likely to choose the lane that he/she perceives to be the best

and construct a tentative plan to move to that target lane. However, because of the

neighboring vehicles, it may not be possible to execute this plan immediately. A lane

change occurs in the direction implied by the chosen target lane only if the available gaps

are acceptable. The plan that is the choice of the target lane is therefore unobserved and

the observed actions are the gap acceptance decisions in the direction of the target lane.

In highly congested situations, where acceptable adjacent gaps are not readily available,

the plan may also include selection of target gaps and involve alternative lane changing

tactics (e.g. courtesy/forced gap acceptance). However, the focus of this chapter is

modeling a freeway lane changing scenario with moderate congestion where the target

gap is always the adjacent gap and the lane changing tactic is normal gap acceptance. In

such situations, the lane changing maneuver of drivers is a two stage process:

" Choice of target lane (plan)

" Decision to accept available gaps and make the lane change (action)

This is illustrated with a hypothetical scenario of a four lane road in Figure 4.1. In this

example, Lane 1 is a High Occupancy Vehicle (HOV) lane with significantly higher level

of service compared to the other lanes. The lane utilities may be affected by various

variables but for simplicity it has been assumed in this example that the lane utilities are

fully captured by the average speed. It is further assumed that the subject driver (driver

A), is eligible to enter the HOV lane. Driver A is therefore likely to choose Lane 1 as the

target lane and look for gaps in Lane 2 to reach Lane 1 eventually. If the available gap is

acceptable, the driver is observed to make a lane change to Lane 2. If the gap is not

acceptable, he/she is still observed in the current lane (Lane 3). Therefore, an observation

of lane change to Lane 2 can result from the plan to move to either Lane 2 or Lane 1. An

observation of no lane change can be due to the fact that Lane 3 is indeed the best

available lane or another lane is the target lane but maneuver in that direction is not

possible. Thus the observed lane action can result from many possible plans.
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Figure 4.1: Illustration of myopic behavior in existing lane changing models

As mentioned in the literature review in Chapter 2, most lane changing models (e.g.,

Gipps 1986, Yang and Koutsopoulos 1996, Zhang et al. 1998, Ahmed 1999, Hidas and

Behbahanizadeh 1999, Hidas 2002, Toledo et al. 2003) are based on the assumption that

drivers evaluate the current and adjacent lanes and choose a direction of change (or not to

change) based on the attributes of these lanes only. The lane choice set is therefore

dictated by the current position of the vehicle, and in multi-lane facilities would be

restricted to a subset of the available lanes. Thus, existing models lack an explicit tactical

choice of a target lane, which may require a sequence of lane changes from the current

lane. Instead, these myopic models can only explain one lane change at a time. The need

to improve the existing freeway lane selection model is also reflected in the findings of

the NGSIM study on Identification and Prioritization of Core Algorithm Categories,

where development of freeway lane selection model was ranked as third in importance by

model developers and users (Alexiadis et al. 2004).

This deficiency of existing models is most evident in situations where there are large

differences in the attributes of the available lanes. An example of this is facilities with

HOV lanes or other types of exclusive lanes, where a particular lane may be significantly

more attractive compared to other lanes. Eligible vehicles may make several lane changes

in order to get to the exclusive lane. However, in existing models since only the adjacent

lanes are considered for each lane change, the influence of a non-adjacent exclusive lane

may not be captured. To illustrate this, consider the hypothetical situation presented in

Figure 4.1. With existing models, the driver only compares the current lane (Lane 3) with
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the left lane (Lane 2) and the right lane (Lane 4). Based on the lane speeds, Lane 4 is the

most desirable of the three and the model will indicate that the driver will try to change to

this lane. However, a more plausible model would be that based on the average lane

speeds the driver chooses the HOV lane (Lane 1) as the most desirable lane. Thus, driver

A is likely change to Lane 2 to reach Lane 1 eventually. In other words, the driver is

likely to move to a 'worse' adjacent lane (Lane 2) as the means of getting to a 'lot better'

target lane further away (Lane 1).

4.2 Model Structure

The discussion in the previous section demonstrates the need to introduce an explicit

choice of target lane in the lane changing model framework. The target lane is the lane

the driver perceives as the best lane to be in considering a wide range of factors and

goals. These factors may include attributes of specific lanes as well as variables that

relate to the spatial relations between the subject vehicle and neighboring vehicles, the

driver's path-plan and driver-specific characteristics. The choice of the immediate

direction for changing lanes is determined by the direction from the current lane to the

target lane.

Examples of the structure of this lane changing model are shown in Figure 4.2. The

decision structure shown on the top (Figure 4.2a) is for the driver of a vehicle that is

currently in the third lane (Lane 3) in a four-lane road. Lanes 1 and 2 are on its left, and

Lane 4 is on its right. At the highest level, the driver chooses the target lane. In contrast

with existing models, the choice set constitutes all four lanes in the road (Lanes 1, 2, 3

and 4). If the target lane is the same as the current lane (Lane 3 in this case), no lane

change is required (No Change). Otherwise, the direction of change is to the right if the

target lane is Lane 4, and to the left if the target lane is Lane 1 or Lane 2. If the target lane

choice dictates a lane change, the driver evaluates the gaps in the adjacent lane

corresponding to the direction of change and either accepts the available gap and moves

to the adjacent lane (Change Right or Change Left) or rejects the available gap and stays

in the current lane (No Change). The bottom decision structure (Figure 4.2b) is for the

driver of a vehicle in Lane 1 in a similar setting.
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The model hypothesizes two levels of decision-making: the target lane choice and

the gap acceptance. The target lane choice and the direction of immediate lane change

that is implied by the selected target lane are latent. Only completed lane changes (or No

Changes) are observed. In the figure latent choices are shown as ovals and observed

choices are represented as rectangles.

Currently
in Lane 3

Target
Lane1 Lane 2 Lane 3 Lane 4 Lane

(Plan)

No Change No Change No No Change Acceptance
Change Left Change Left Change Change Right 4(Action)

a. For a four-lane road with the subject driver in Lane 3

Currently
in Lane 1

Target
Lane1 Lane2 Lane3 Lane 4 Lane

(Plan)

No No Change No Change No Change Acceptance
Change Change Right Change Right Change Right Action)

b. For a four-lane road with the subject driver in Lane 1

Figure 4.2: Examples of the structure of the proposed lane changing model

We now describe in detail the specification of the models to explain the two choices

drivers make within the latent plan lane changing model: the target lane choice and the

gap acceptance.
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4.2.1 Choice of Plan: The Target Lane Model

At the highest level of lane changing, the driver chooses the lane with the highest

utility as the target lane. The target lane choice set constitutes all the available lanes in

the roadway.

The total utility of lane 1 as a target lane to driver n at time t can be expressed as

follows

Ui, =Vn, + Ey,~ VleL. (4.1)

Where,

Vn, = systematic component of the utility

cnt = random utility component of target lane ifor individual n at time t

Ln= choice set of target lane of driver n

The systematic utilities can be expressed as follows:

V,, = V(Xl,,,/,a' , O) Vl E LL (4.2)

Where,

Xn,,= explanatory variables that affect the utility of lane I

8 = corresponding vector ofparameters

v = individual-specific random effect (e.g. aggressiveness).: v -N(O, 1)

a' parameter corresponding to individual specific random effect for lane 1

The choice of the target lane implies whether or not the current lane of the driver is

the most preferred lane and if not, which adjacent lane the driver needs to move to get to

the target lane. The target lane utilities of a driver may be affected by the following:

* Lane attributes

* Neighboring vehicle attributes

* Path-plan

General lane attributes, such as the density and speed of traffic in the lane, traffic

composition (e.g. percentage of heavy vehicles) etc. can affect the target lane utilities.

Apart from these, particular lanes may have special lane-specific attributes that enter the

utility function of that particular lane. For example, the exclusive lane-specific variables

are included in the utility if the lane in consideration is an exclusive lane. If the driver is

eligible to enter the lane, the exclusive lane is likely to have a very high utility for that
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driver. On the other hand, if the driver is not eligible to move to a particular lane, a very

high disutility is likely to be associated with that particular lane for that specific driver.

Thus, for a single occupancy vehicle, the HOV lane is likely to have a high disutility

capturing the penalty associated with moving to that lane violating the law. Similarly, for

high occupancy tolled (HOT) lanes, the associated value of tolls can enter the utility of

the exclusive lane for drivers of single occupancy vehicles.

The variables associated with the surrounding vehicles, such as speed, spacing and

type of the neighboring vehicles may affect the driver's target lane choice. For example,

if the front vehicle in the current lane has a very low speed compared to the driver's

desired speed, the current lane is likely to be less preferred by the driver, even if the

average speed in that lane is higher than that of the other lanes. It may be noted that the

value of these neighboring variables is denoted by the current position of the vehicle.

The driver usually has a pre-defined destination and schedule (e.g. desired arrival

time) for the trip and chooses a path accordingly. These path-plan variables have an

important effect on target lane choice. Variables in this group may include distance to a

point where the driver needs to be in a specific lane and the number of lane changes

required from the target lane to the correct lanes. For example, if the driver is very close

to the exit that he/she needs to take to follow the path, he/she is less likely to choose a

lane further away from the rightmost lane as the target lane.

Drivers have different intrinsic preferences, aggressiveness and level of inertia for

example. All else being equal, driver heterogeneity can lead to different target lane

choices by different drivers.

Thus the systematic utility of a lane can have up to five components at any instant:

" Utility component comprising the generic characteristics of the lane;

" Utility component comprising the exclusive/special characteristics of the lane;

* Utility derived from the relative position of the lane with respect to the current

lane;

* Utility component derived from the path-plan of the driver;

* Utility component derived from the individual-specific characteristics of the

driver which can have different specifications: linear or non-linear (e.g.

interaction with other variables in the utility).
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Assuming a linear specification of the individual-specific characteristics, the total

systematic utility of lane 1 for individual n at time t can be expressed as follows:

Vil, =V + V +V' +V +a'u Vl eLn (4.3)

Where,

V= general systematic utility component of the lane 1

V = exclusive/special lane-specific utility component

V, = utility component of lane 1 that depends on the current lane of the vehicle

V = ~utility component of lane l from the path plan p of the vehicle

It may be noted that Vn, is equal to zero if lane 1 is not an exclusive lane, has a

positive value if driver n is eligible to use the exclusive lane and a negative value if there

is a cost associated with using that lane (amount of toll, penalty associated with moving

to that lane violating the law etc.).

Different choice models are obtained depending on the assumption made about the

distribution of the random term , Assuming that these random terms are independently

and identically extreme value distributed, choice probabilities for target lane 1,

conditional on the individual-specific error term (v) are given by a logit model:

AP (1,, epV, ) = " V l,l' E= L,, (4.4)n n Iexp(V/,, i I O)
'EL,

The choice of the target lane dictates the direction of lane change, if one is required.

If the current lane is chosen as the target lane, no change is needed. Otherwise, the

change will be in the direction from the current lane to the target lane. For example, in

Figure 4.2a, the current lane is Lane 3. If the target lane is Lane 3, no change is needed. If

the target lane is Lane 4, a lane change to the right is needed. If the target lane is Lane 1

or Lane 2, a lane change to the left is needed.

4.2.2 Choice of Action: The Gap Acceptance Model

The direction of immediate lane changing is determined as a consequence of the

chosen target lane indicated by the target lane selection model. Next, the driver evaluates

the gaps in the corresponding adjacent lane to decide whether or not the desired lane
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change can be undertaken. Conditional on the target lane choice, the gap acceptance

model indicates whether a lane change is possible or not using the existing gaps.

The adjacent gap in the target lane is defined by the lead and lag vehicles in that lane

as shown in Figure 4.3. The lead gap is the clear spacing between the rear of the lead

vehicle and the front of the subject vehicle. Similarly, the lag gap is the clear spacing

between the rear of the subject vehicle and the front of the lag vehicle. It may be noted

that one or both of these gaps may be negative if the vehicles overlap.

I Adjacent gap

Lag Lag gap Lead gap Lead
vehicle G'la Glead vehicleInt Int

---- 0Subject

Subject
vehicle Traffic direction

Figure 4.3: Definitions of the lead and lag vehicles and the gaps they define

The structure of the gap-acceptance model is based on the one proposed, estimated

and validated by Ahmed (1999) and later by Toledo (2002).The model assumes that if the

adjacent gap in the target lane is acceptable the driver performs the lane change and does

not consider any other gaps. This assumption is consistent with satisficing behavior

theory (Simon 1955), which states that human behavior is not optimizing, but is

satisficing: if an available option (i.e. using the adjacent gap to change to the target lane)

is satisfactory the driver does not try to find a better one. The driver therefore compares

the available lead and lag gaps to the corresponding critical gaps, which are the minimum

acceptable space gaps. An available gap is acceptable if it is greater than the critical gap.

Critical gaps are modeled as random variables. Their means are functions of explanatory

variables (Mahmassani and Sheffi 1981). The individual-specific error term captures

correlations between the critical gaps of the same driver over time. Critical gaps are

assumed to follow lognormal distributions to ensure that they are always non-negative

and have been expressed as follows (Ahmed 1999, Toledo 2002):

G," =exp(p T X ±,+ v, +e~ ) ge {lead,lag} (4.5)

70



Where,

G,"r = critical gap g in the direction of target lane 1, measured in distance

units (e.g. meters)

X = explanatory variables that affect the critical gap g in the direction

of target lane 1

/8 = coefficients of explanatory variables

ag = coefficients of individual-specific latent variable v,, for gap acceptance

6n, =random term: e N(0,o )

The gap acceptance model assumes that the driver must accept both the lead gap

and the lag gap to change lanes. The probability of changing lanes at time t, (lane action

j,=1), conditional on the individual-specific term v,, and the choice of target lane l, is

therefore given by:

P (j, = I11 u,,) = P,(accept lead I|I,,un)P (accept lag |1,,V")
= lead n n G ["ag G, lag ( (4.6)

PinG,, In !I [I G Int o

Based on the assumption that critical gaps follow lognormal distributions (gln, is normally

distributed), the conditional probabilities that gap g e {lead, lag} is acceptable is given
by:

P(Glgn > G19"c ()

n(GL )t -('Xi g .
= in (Gf,,) > In (Ggcr(v))] (ln)( 9 nt + a vn (4.7)

-'Ig ~ N (0, o-g )

D[.] denotes the cumulative standard normal distribution.

Probability of no lane changes at time t (jt=O), conditional on the individual-specific

term on and the choice of target lane It, is therefore given by the following equation:

(it = 01l,,v) = 1- P (, = 1 l,,v)

_-_ In G ) X_ a_ L ) (4 .8)

Gap acceptance is affected by the interaction between the subject vehicle and the lead

and lag vehicles in the adjacent lane. This may be captured by variables such as the
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relative speed of the subject vehicle with respect to the lead and lag vehicles, type of lag

vehicle etc. In case of mandatory lane changes acceptable gaps can also be a function of

the distance to the mandatory lane changing point and/or the associated delay. For

example if the driver needs to take an exit to follow the path, acceptable gaps can reduce

as the driver approaches the exit or has become impatient after waiting for a suitable gap

for a considerable time.

4.3 Model Estimation

4.3.1 Data

Study Area

The dataset used in this study was collected in 1983 by FHWA in a four-lane section

of Interstate 395 (1-395) Southbound in Arlington, Virginia (Figure 4.4).

Figure 4.4: The 1-395 data collection site

It is 997 meters in length, one of the longest sites for which trajectory data is

available, and includes an on-ramp and two off-ramps. The section is shown

schematically in Figure 4.5. An hour of data at a rate of 1 frame per second was collected

through aerial photography of the section. A detailed technical description of the systems

and technologies used for data collection and reduction is found in FHWA (1985). The

dataset, smoothed by Toledo (2002) using the local regression procedure developed by
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Cleveland (1979) and Cleveland and Devlin (1988), contains observations of the position,

lane and dimensions of every vehicle within the section every 1 second.

This dataset is particularly useful for estimation of the proposed lane changing model

since the geometric characteristics of the site, with two off-ramps and an on-ramp, initiate

a lot of weaving and lane changing. Though there are no exclusive lanes, the drivers are

free to select the lane with the highest utility as the target lane and make subsequent lane

changes depending on availability of gaps along the stretch of collection site. The ramps

within the site provide path-plan information for the various drivers. However, the path-

plan beyond the section is not observable. Characteristics of the drivers such as

aggressiveness and level of driving skill are also unobserved.

Lane1

7-------------L-ne-

1st Off-ramp 2nd Off-ramp

815m 104m 76m 2m

Figure 4.5: Schematic diagram of the 1-395 data collection site

(not to scale)

Characteristics of Estimation Dataset

The vehicle trajectory data of the various vehicles in the section and the speeds and

accelerations derived from these trajectories are used to generate the required variables.

The resulting estimation dataset includes 442 vehicles for a total of 15632 observations at

a 1 second time resolution. On average a vehicle was observed for 35.4 seconds

(observations). All the vehicles are first observed at the upstream end of the freeway

section. At the downstream end, the majority of traffic (76%) remains in the freeway. The

8% and 16% of vehicles, which exit the section using the first and second off-ramps

(Figure 4.5) respectively, are useful to capture the effect of the path-plan on driving

behavior.
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Lane-specific variables including lane density, lane speed, and percentage of heavy

vehicle have been calculated from the raw dataset. The lane-specific variables across the

different lanes are summarized in Table 4.1.

Table 4.1: Lane-specific variables

Variable Lane 4 Lane 3 Lane 2 Lane 1 Segment
Average Density d/s, veh/km/lane 28.41 28.29 28.64 26.56 29.22
Average Density u/s, veh/km/lane 29.86 30.06 30.52 28.29
Average Speed, m/sec. 14.22 15.79 16.23 17.50 15.75

The same dataset was used by Toledo (2002) in estimating the integrated lane driving

behavior model. The detailed characteristics of the dataset documented by Toledo are

summarized below:

Speeds in the section range from 0.4 to 25.0 m/sec. with a mean of 15.6 m/sec.

Densities range from 14.2 to 55.0 veh/km/lane with a mean of 31.4 veh/km/lane. The

level of service in the section is D-E (HCM 2000). The vehicles the subject interacts with

and the variables related to these vehicles are shown in Figure 4.6.

Traffic direction

Lag Lag Lead Lead
vehicle spacing spacing vehicle

Subject Front Front
vehicle spacing vehicle

Figure 4.6: The subject, front, lead and lag vehicles and related variables

Relative speeds with respect to various vehicles are defined as the speed of these

vehicles less the speed of the subject. Tables 4.2 and 4.3 summarize statistics of the

variables related to the subject vehicle and the vehicle in front.

Table 4.2: Statistics of variables related to the subject vehicle

Variable Mean Std Dev Median Minimum Maximum
Speed (m/sec) 15.6 3.1 15.8 0.4 25.0
Acceleration (m/sec2) 0.05 1.21 0.05 -3.97 3.99
Positive 0.96 0.76 0.78 0 3.99
Negative -0.93 0.75 -0.74 -3.97 0
Density (veh/km/lane) 31.4 6.5 30.8 14.2 55.0
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Table 4.3: Statistics of relations between the subject and the front vehicle

Variable Mean Std Dev Median Minimum Maximum
Relative speed (m/sec) 0.2 1.7 0.2 -8.6 9.7
Spacing (in) 26.6 21.2 20.4 1.4 250.5
Time headway (sec) 2.0 1.4 1.7 0.3 27.3

The distributions of speed, acceleration,

Figure 4.7.

density and time headway are shown in
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Lane selection and gap acceptance behaviors are captured by observing lane changes

performed by the drivers. An important factor in these behaviors is drivers' desire to

follow their path. In this dataset drivers have three possible destinations, each with a

corresponding path-following behavior:

* Exiting the section at the first off-ramp.

* Exiting the section at the second off-ramp.

* Staying in the freeway at the downstream end of the section.
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The distribution of observed lane changes by direction (right, left) and by destination

is described in Table 4.4. It is worth noting that many of the vehicles that exit the section

through the off-ramps are observed in the right-most lane at the upstream end of the

section. This indicates that they may have started considering the path-plan constraint

earlier. As a result the coefficients of explanatory variables related to the path-plan may

be biased towards aggressive behaviors since the more timid drivers are discounted in the

dataset.

Table 4.4: Distribution of lane changes by direction and destination

Destination Right Left
Total 123 74
Freeway 71 71
1st ramp 12 0
2nd ramp 40 3

The relations between the subject and the lead and lag vehicles in the right and left

adjacent lanes affecting the gap acceptance and gap choice behaviors of the driver are

presented in Table 4.5. This table summarizes statistics of the accepted lead and lag gaps

(i.e. the gaps vehicles changed lanes into) both for the accepted gaps and for the entire

dataset (both accepted and rejected gaps). Statistics for the entire dataset are presented in

parentheses.

Table 4.5: Statistics describing the lead and lag vehicles

Variable Mean Std Dev Median Minimum Maximum
Relations with lead vehicle

Relative Speed (m/sec) 0.2 2.6 0.5 -17.3 8.1
(0.0) (2.9) (0.1) (-17.5) (15.5)

Lead spacing (m) 22.2 21.9 14.1 0.04 117.9
(19.6) (39.9) (13.0) (-18.1) (268.9)
Relations with lag vehicle

Relative Speed (m/sec) -0.4 2.2 -0.3 -6.7 5.2
(0.0) (2.7) (0.0) (-15.0) (14.1)

Lag spacing (m) 23.1 20.6 16.6 1.7 110.1
(18.6) (23.0) (12.0) (-18.1) (232.6)

Accepted lead gaps vary from 0.04 to 117.9 meters, with a mean of 22.2 meters.

Accepted lag gaps vary from 1.7 to 110.1 meters, with a mean of 23.1 meters. No

significant differences were found between the right and left lanes. Relative speeds are
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defined as the speed of the lead (lag) vehicle less the speed of the subject. Statistics for

the entire dataset are also shown in parenthesis. With these statistics, negative spacing

values indicate that the subject and the lead vehicle partly overlap (this is possible

because they are in different lanes). As expected, the mean accepted gaps are larger than

the mean gaps in the traffic stream. Similarly, lead relative speeds in accepted gaps are

larger than the mean of the dataset and lag relative speeds are smaller in the entire dataset

(i.e. on average, in accepted gaps the subject vehicle is slower relative to the lead vehicle

and faster relative to the lag vehicle compared to the entire dataset).
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Figure 4.8: Distributions of relative speed with respect to front, lead and lag vehicles

The distributions of relative speeds and spacing, with respect to the front, lead and lag

vehicles are shown in Figures 4.8 and 4.9 respectively.
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Figure 4.9: Distributions of spacing with respect to the front, lead and lag vehicles

4.3.2 Likelihood

In this section, the likelihood function used to model the trajectory of the driver is

presented. Important explanatory variables affecting the target lane choice are those
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related to the path-plan. For vehicles exiting the freeway within the data collection

section, the remaining distance to the exit (d,"'') is observed. However, for vehicles

exiting the freeway downstream of the observed section, this information is not likely to

be observed for some of the vehicles. In order to capture the effect of these variables, a

distribution of the distances from the downstream end of the road section being studied to

the following exit points (s,) is estimated. The alternatives considered are the first,

second and subsequent exits. For a driver taking the 1st downstream exit, the definition of

the remaining distance to the exit is illustrated in Figure 4.10.

d i

positio n, s,

- - 1s2"

Trajectory data collection site downstream downstream
exit exit

Figure 4.10: Definition of path-plan variables

The probability mass function of the distance beyond the downstream end of the

section to the off-ramps used by drivers is given by the following expression:

/ I for sn = S1

P(s) =r2 for sn = s 2  (4.9)

1 - ; - 7r2 for sn = s 3

Where,

sn = remaining distance to the exit point of driver n

s , s2 , s = distance beyond the downstream end of the section to the first, second

and subsequent exits, respectively

ll, 72 = parameters to be estimated

The first and second exit distances (s'and s') were extracted from maps and an

infinite distance was used for the subsequent exits (S3 = 00 ). This corresponds to an
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assumption that on the section being studied, drivers that use these subsequent exits have

path-plans that are not constraining.

The joint probability of a combination of target lane () and lane action (i) observed

for driver n at time t, conditional on the distance to the exit point (s,) and the individual-

specific characteristic (va) is given by:

P(, I S, I , ) = IP (tI s,, v )P,(, I l,, v ) (4.10)

Where, P, (1, I .) and PI (j, I.) are given by Equations 4.4, 4.6 and 4.8 respectively.

Only the lane changing actions are observed. The marginal probability of the lane-

changing action is therefore given by:

P (j,|Is.,,) I P" I (1,, jIsn, 0, )(4.11)
1eL,

The behavior of driver n is observed over a sequence of Tn consecutive time intervals.

Assuming that, conditional on s and on, these observations are independent, the joint

probability of the sequence of observations is given by:

P (ji i2, ..., Ir l S, t) = IIP (j, Isn, V.) (4.12)
t=1

The unconditional individual likelihood function ( 4, ) is obtained by integrating

(summing for the discrete variable sn) over the distributions of the individual-specific

variables:

Z4=nP (i j12 ' --- T = f , (u, 2 , --. ,j Is, v)p(s)f(v)du (4.13)
V

Assuming that the observations from different drivers are independent, the log-

likelihood function for all N individuals observed is given by:

N

= L ln(L,,) (4.14)
n=I

The maximum likelihood estimates of the model parameters are found by maximizing

this function.

In this study, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm

implemented in the statistical estimation software GAUSS (Aptech Systems 2003) has
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been used. BFGS is a quasi-Newton method, which maintains and updates an

approximation of the Hessian matrix based on first-order derivative information (see, for

example, Bertsekas 1999). GAUSS implements a variant of BFGS due to Gill and

Murray (1972), which updates the Cholesky decomposition of the Hessian (Aptech

Systems 1995). The integrals in the likelihood function were calculated numerically using

the Gauss-Legendre quadrature method (Aptech Systems 2003). The likelihood function

is not globally concave. For example, if the signs of all the coefficients of the individual-

specific error term are reversed, the solution is unchanged due to its symmetric

distribution function. To avoid obtaining a local solution, different starting points have

been used in the optimization procedure. It may be noted that the estimation approach

does not involve the use of any traffic simulator, and so the estimated models are

simulator independent.

4.3.3 Estimation Results

All components of the model were estimated jointly using a maximum likelihood

estimation procedure as described in the previous section. However, in order to simplify

the presentation, estimation results for the target lane choice and gap acceptance levels

are presented and discussed separately.

The summary of estimation results of the proposed lane changing model is presented

in Table 4.6.

Table 4.6: Estimation results of the target lane changing model

Final log-likelihood -875.81
Initial log-likelihood -1434.76
Number of drivers 442
Number of observations 15632

Number of parameters 31
Adjusted rho-bar square 0.37

To demonstrate the need to include the latent plans in the freeway lane selection

model by means of target lanes, the estimation results were compared against a reduced

form model with restricted latent targets (Toledo et al. 2003). In the reduced form model

(referred as the lane shift model in the subsequent discussion), only the adjacent lanes are
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considered for the lane shift. The model framework is illustrated in (Figure 4.11) and

detailed in Appendix C. 1.

Lane shift LEFT R RIGHT

Gap NO CHANGE NO CHANGE NO
acceptance CHANGE LEFT CHANGE RIGHT CHANGE

Figure 4.11: Structure of the lane-shift model (Toledo et al. 2003)

The myopic lane shift model cannot be viewed as nested within the model with

explicit target lane choice, and therefore classic statistical tests cannot be applied to select

between the two. For comparing the goodness-of-fit of non-nested models, the Adjusted

Rho-bar square (P 2) and the Akaike Information Criteria (AIC) have been used.

Adjusted Rho-bar square (P 2) measures the fraction of an initial log-likelihood value

explained by the model taking into account the model complexity. The measure is

defined as follows:

-2 LOW) - k
p =I - (4.15)

~ =1-L(0)

Where, L(*) is the maximum log-likelihood value, L (0) is the maximum log-

likelihood value, k is the number of estimated parameters.

Akaike (1973, 1974) developed the Akaike information criterion (AIC) as a tool for

selecting between competing model specifications. The AIC penalizes the maximum

likelihood value of each model to account for model complexity:

AIC=L(/3*)-k (4.16)
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In model selection, p 2 and AIC are computed for all candidate models and the model

with the larger AIC is selected (see Ben-Akiva and Lerman 1985 and Gourieroux and

Monfort 1995 for details).

The test statistics are presented in Table 4.7.

Table 4.7: Model comparison

Lane Shift Target Lane
Statistic (R) (U)
Likelihood value -888.78 -875.81
Number of parameters (k) 26 31
Akaike information criteria (AIC) -914.78 -906.81
Adjusted rho-bar square ( ;2 ) 0.362 0.368

For both statistics, the model with explicit target lane choice has larger values, which

indicates that it has a better goodness-of-fit even after discounting for the increased

number of parameters. The detailed estimation results are presented in the following

sections.

Choice of Plan: The Target Lane Model

The driver selects the lane that he/she perceives to be the best as the target lane. A

linear utility function is associated with each lane. The choice set of the driver includes

all available lanes in the freeway stretch. The utility of lane target lane 1 of individual n at

time t can be expressed as follows:

Ui, = /TX,,, + a'v + 6 Int (4.17)

Where,

Xn,= explanatory variables that affect the utility of lane 1

,8 corresponding vector ofparameters

on =individual-specific random effect (e.g. aggressiveness): v, -N(O, 1)

a' = parameter corresponding to individual specific random effect for lane I

As discussed in Section 4.3.2, the target lane choices are affected by the attributes of

the alternative lanes, the variables related to the path-plan and the neighboring vehicles as

well as driver-specific characteristics. However, not all of the candidate variables

mentioned in Section 4.3.2 were found to be statistically significant and/or have intuitive

signs. For example, the percentage of heavy vehicles in the lane and type of the
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neighboring vehicles were not found to be significant. In some cases, interactions of

multiple variables have been used to better capture a particular effect. These interaction

variables have been included only if there was an improvement in the goodness-of-fit.

For example, in case of path-plan effect, interaction of the remaining longitudinal

distance and lateral distance were found to yield an improvement in the likelihood and

led to the proposed functional form. The estimation results are presented in Table 4.8.

Table 4.8: Estimation results of the target lane selection model

Variable Parameter t-stat

Lane 2 constant 0.0590 1.16
Lane Lane 3 constant -0.571 -1.68
Attributes Lane 4 constant (right most lane) -1.69 -3.03

Lane density, vehicle/km -0.0131 -1.21
Average speed in lane, m/sec 0.176 1.59

Neighborhood Front vehicle spacing, m 0.0240 3.86
Variables Relative front vehicle speed, m/sec 0.115 1.46

Tailgate dummy -4.94 -1.96
Inertia Current lane (CL) dummy 2.69 1.55
Variables 1 lane change from the CL -0.845 -1.15

Each additional lane change from the CL -3.34 -1.91
Path-plan impact, 1 lane change required -2.55 -4.57
Path-plan impact, 2 lane changes required -4.95 -2.19
Path-plan impact, 3 lane changes required -6.96 -1.65

Path-plan Next exit dummy, lane change(s) required -0.872 -1.35
Exponent of remaining distance, 0 MLC -0.417 -2.48

Probability of taking 1" exit, 7r 0.00102 0.68
Probability of taking 2nd exit, r 2  0.0860 1.38
Coefficient of aggressiveness: Lane 1, alane -1.41 -2.29

Heterogeneity Coefficient of aggressiveness: Lane 2, a'""" -1.07 -0.50
Coefficient of aggressiveness: Lane 3, alane3  -0.0710 -3.61
Coefficient of aggressiveness: Lane 4, a'""4  -0.0891 -1.56

The estimated values of the lane-specific constants imply that, everything else being

equal, the right-most lane is the least desirable. This may be the result of drivers'

preference to avoid the merging and weaving activities that take place in that lane. In

general lanes that are to the left are more desirable. However, lanes 3 and 4 have non-

negative constants, which may indicate that the advantage of being away from the slower

right lanes is balanced by the disadvantage associated with being in lanes that are further

away from the off-ramp, and by the increased interaction with vehicles traveling at higher
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speeds. The results indicate that drivers are more likely to choose lanes with higher

average speeds and lower densities, which is intuitive.

Some of the lane-specific variables are dependent on the current lane of the driver.

For example, the required maneuver to reach a specific lane is a function of the distance

of the lane from the current lane of the driver. The values of the coefficients of the
number of lane changes required from the current lane to the target lane denote the

disutility associated with choosing target lanes that require lane changing maneuvers.

This has been modeled as a step function and the results indicate that the disutility

associated with each additional lane change is much higher when more than one lane

changing maneuver is associated. The positive coefficient of the current lane dummy

captures the inertia preference to stay in the current lane. As expected, the sign of this

coefficient is positive. As apparent in Figure 4.12, the lane-specific part of the utility thus

changes depending upon the current position of the vehicle, being the highest for the
current lane and diminishing with the distance from the current lane.

Lane Dens Ity= 30 veh/km
Lane Speed=15 mis

101

5- m Lane 1

liii m Lane 2
0._

0. -0 o_________ _ Lane 4

CL=Lane 1 CL=Lane 2 CL= Lane 3 CL=Lane 4

Current Lane

Figure 4.12: Variation of lane utilities depending on the current lane of the driver

The interactions between the subject vehicle and the vehicles in front of it in the

current and adjacent lanes, also affect the target lane choice. Results show that lane

utilities increase with the relative front speed and the spacing between the vehicles. The

tailgating dummy variable captures drivers' tendency to move out of their current lane if
they are being tailgated. Tailgating is not directly observable in the data but tailgating

behavior is assumed if a vehicle is close behind the subject vehicle when traffic
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conditions permit a longer headway (i.e. free-flow conditions apply). Mathematically, the

tailgate dummy variable is defined by:

6 lailgate = I gap behind i 10m and level of service is A, B or C
"' 0 otherwise (4.18)

Levels of service definitions are based on densities (HCM 2000). The estimated

coefficient of the tailgate dummy is negative and its magnitude is large relative to the

coefficients of other variables. It implies a strong preference to avoid these situations.

This result is comparable with those of Ahmed (1999) and Toledo et al. (2002), who also

found tailgating to be an important explanatory variable.

The path-plan impact variables indicate that the utility of a lane decreases with the

number of lane changes the driver needs to perform in order to maintain the desired path.

This effect is magnified as the distance to the off-ramp dn," decreases. This has been

captured by the negative power of the distance to the off-ramp (9 MLC = -0.417) that

guarantees that at the limits, the path-plan impact approaches 0 when d"it -* ++co and

approaches -oo when d,," -> +0 . The disutility associated with being in a wrong lane is

larger when the driver needs to take the next exit. Figure 4.13 shows the impact of path-

plan lane changes on the utility of a lane as a function of the distance from the off-ramp.
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Distance from off-ramp (km)

Figure 4.13: Impact of path-plan lane changes on the utility of a lane

The combined effect of path-plan and lane-specific attributes is shown in Figure 4.14.
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c. Distance from exit=0.05 km

Figure 4.14: Combined effects of path-plan and lane-specific attributes
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In this example, the exits are on the right, Lane 4 is closest to the exit and Lane 1 is

the farthest. It is interesting to note the tradeoff between path-plan and inertia of the

driver. When the driver is very far from the desired exit, the lane utilities are affected

primarily by the position of the lane with respect to the current lane of the driver (Figure

4.14a). As the distance to exit decreases, the disutility of being in a lane far from Lane 4

becomes more and more pronounced and the relative utility of the lanes in the direction

of the exit (right in the example) gradually increase. When the driver is very close to the

exit the path-plan effect clearly dominates (Figure 4.14c) and the lanes far from Lane 4

have a very high disutility.

lanel le2 lane3 1ae4The heterogeneity coefficients, a', a', a and a capture the effects of the

individual-specific error term v, on the target lane choice. a'""' and a le' are more

negative compared to a lane' and a '"e4. Hence, vn can be interpreted as correlated with

aggressiveness implying aggressive drivers are less likely to choose the right lanes over

the left ones compared to more timid drivers.

In summary, the target lane utility can be given by:

Ui, =13' -0.0131D,, +0.1024AXI +0.115 A5,a"',"

-494i'"g"I"'8 + 2.69 5 -0.845 8 ,LJ - 3.34(ACLn, 1)S ,CL>

+[d (-2.5 59'| -4.95 9| -6.96 9|) -. 0.9872)n","'

-aIv + e,

Where,

P' =constant for lane /

D,,, =density of lane lvehicle/km

1V,",a = average speed in lane 1, M/s

X""' =spacing of the front vehicle in lane 1, m

SVfo'f = relative speed of the front vehicle in lane 1, m/s

'6 , 1 = current lane dummy, 1 if lane 1 is the current lane, 0 otherwise

n,a)/CL = current /adjacent lane dummy, 1 if lane 1 is the

current/adjacent lane, 0 otherwise

ag"e"' = tailgate dummy, 1 if vehicle n is being tailgated at time t, 0 otherwise
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6 ,CL = required change dummy, 1 if lane 1 involves one lane change from the

current lane, 0 otherwise

6AC,"' = required change dummy, 1 if lane 1 involves more than one lane changes

from the current lane, 0 otherwise

ACLn,, = number of lane changes required to get from the current lane to lane 1

dexi" = distance to the exit driver n intends to take

,,k = indicator with value ] if lane 1 is k (k=O, 1,2,3) lanes away from the

desired exit of individual n, 0 otherwise

ne,exit = indicator with value 1 if lane i is ] lane away from the desired exit

of driver n, 0 otherwise

AzExitn =number of lane changes required to get from lane 1 to the exit lane

of driver n

a' = heterogeneity coefficient of lane 1

Choice of Action: The Gap Acceptance Model

The direction of the target lane indicates the direction of immediate lane change and

the driver is assumed to evaluate the available adjacent gap in the target lane and decide

whether or not to change lanes immediately. In order for the gap to be acceptable both the

lead and lag gaps, must be acceptable. That is, the available lead and lag gaps must be

larger than the corresponding critical gaps. As presented in Equation 4.5, in order to

ensure that the critical gaps are always positive, they are assumed to follow lognormal

distributions:

ln(Glead cr) -T Xlead +alead n lead
n in, n a +61(4.20)

ln(G,',") = pX,," + a" v, + Elna

Where,

Ge"d cr 'ag = lead and lag critical gap in the direction of target lane 1, measured in

distance units (e.g. meters)

X|,ead ,X,a = explanatory variables that affect the lead and lag critical gaps respectively

in the direction of target lane 1

a g = coefficients of individual-specific latent variable v,, for lead and lag gap
acceptance

E ead ag = random terms: Ead l N(O,o-ead ), ,'ag - N (0, ag
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Similar to the target lane choice model, not all candidate variables were supported by the

data. For example, the remaining distance to the desired exit did not have any significant

effect on critical gaps. The estimation results of the gap acceptance model are presented

in Table 4.9.

Table 4.9: Estimation results of the gap acceptance model

Lead Critical Gap
Variable Parameter t-stat
Constant 1.54 5.59
Relative lead speed positive, Max(AVfadO) ,m/sec. -6.21 -3.60
Relative lead speed negative, Min(A V f, 0),m/sec. -0.130 -2.09
Heterogeneity coefficient of lead gap, ac"ad -0.00801 -3.17
Standard deviation of lead gap, -lead 0.854 1.29

Lag Critical Gap
Constant 1.43 5.35
Relative lag speed positive, Max(A V a, 0), m/sec. 0.640 3.36
Heterogeneity coefficient of lag gap, al"' -0.205 -0.48
Standard deviation of lag gap, o-lag 0.954 4.80

The lead critical gap decreases with the relative lead speed, i.e. it is larger when the

subject vehicle is faster relative to the lead vehicle. The effect of the relative speed is

strongest when the lead vehicle is faster than the subject. In this case, the lead critical gap

quickly diminishes as a function of the speed difference. This result suggests that drivers

perceive very little risk from the lead vehicle when it is getting away from them.

In the gap acceptance model, the lag critical gap increases with the relative lag speed:

the faster the lag vehicle is relative to the subject, the larger the lag critical gap. In

contrast to the lead critical gap, the lag gap does not diminish when the subject is faster.

A possible explanation is that drivers may maintain a minimum critical lag gap as a

safety buffer since their perception of the lag gap is not as reliable as it is for the lead gap

due to the use of mirrors.

Median lead and lag critical gap variations, as a function of the relative speeds are

presented in Figure 4.15.
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Figure 4.15: Median lead and lag critical gaps as a function of relative speed

Estimated coefficients of the unobserved driver characteristics variable, v, , are

negative for both lead and lag critical gaps. This is consistent with the interpretation of

v, as being negatively correlated with aggressive drivers, who require smaller gaps for

lane changing compared to timid drivers.

In summary the estimated lead and lag gaps are given by:

1.541-6.21OMax(O,AJVlad
Glead cr n t

-0. 13 0Min (0, An V'") .08 n+ ta

GJl"" =exp(1.426+ 0.640Max(0, A V")- 0.240v + E"t) (4.21)

8 lead ~ N(0,0.854 2) and "g ~ N (o, 0.9542)
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4.4 Aggregate Calibration and Validation in MITSIMLab

The aggregate validation demonstrates the benefits that can be derived from using the

modified models in traffic simulators. For this the estimated model (which is simulator

independent) is implemented within the microscopic traffic simulator MITSIMLab (Yang

and Koutsopoulos 1996) and calibrated and validated using data collected from a

different site. The details of the aggregate validation are presented below.

4.4.1 Data

The data for aggregate calibration and validation consists of sensor data and

aggregate trajectory data collected from a highly congested 1.5 miles section of 1-80, in

Emeryville and Berkeley, California. This freeway serves approximately 275,000

vehicles daily, and is one of the most vital transportation links in the San Francisco Bay

Area. South of the study area, 1-80 connects to the Bay Bridge and downtown San

Francisco, as well as freeway interchanges to 1-880 and downtown Oakland, and 1-580

East. To the north of the study area are residential East Bay neighborhoods and 1-580

West, leading to U.S. 101 and Marin County. Most of the drivers traveling in this area

are local commuters. The left-most lane is an HOV lane that can be accessed to and

exited from at any point in the section. The presence of this unlimited access HOV lane

results in high difference in the level of service among different lanes and is therefore

useful to test the target lane changing model.

1000 m 2100 m 1300 m 1600 m

Powell Ashby University Gilman 9

7 6 5 4 3 1

10

Traffic direction -

Figure 4.16: Schematic diagram of the 1-80 data collection section

(not to scale)
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The selected segment includes four on-ramps and three off-ramps (shown

schematically in Figure 4.16). The downstream end of the network extends beyond the I-

80/1-580 split, which is the major bottleneck in this area. These boundaries have been

selected in order to ensure that possible queues forming at this bottleneck could be

captured and explained in the model. The geometry of this section is particularly useful

for validation of the lane changing model for several reasons:

* The presence of the unlimited access HOV lane and the high level of service

differential associated with it.

* The section includes weaving sections that are required to test the lane

changing model.

" The multiple ramps that exist in this section provide the ability to verify the

path-plan based lane pre-positioning ('look ahead') effects that are

incorporated in the model.

" The selected network is a corridor and therefore complex route choice

situations do not arise. This is a desirable property for this study since it

eliminates route choice as a source of modeling error, and so results should be

more indicative of the effect of the driving behavior.

The data for aggregate calibration and validation consist of sensor data at the

locations shown schematically in Figure 4.16. The data is available for two weeks (10

weekdays) at 30-second intervals and includes lane-specific traffic counts, occupancies

and speeds. In addition trajectory data from the part of the corridor between the Powell

Street and Ashby Street interchanges (showed by a dotted rectangular in Figure 4.16) is

also available for one day between 2.35PM and 3.05PM. Aggregate statistics derived

from these trajectories, which provide richer information compared to the sensor data, are

also used in the validation (referred as trajectory data in the subsequent sections). The

traffic counts and speeds from 2:35PM to 3:05PM are used for calibration and validation.

The available sensor data has been split into two data sets with one week of data in each.

The first week of data is used for aggregate calibration of the MITSIMLab model (the

calibration methodology is detailed in Appendix B). The second week of data is used

only for validation of the calibrated model and therefore allows independent validation.
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4.4.2 Aggregate Calibration

MITSIMLab (Yang and Koutsopoulos 1996) is used to estimate the OD flows and

calibrate the sensitive behavioral parameters. To identify the sensitive parameters, each

candidate parameter was allowed to change over 10 iterations, while keeping all other

parameters fixed and the parameters that results the larger improvements in the objective

function were identified. The estimation data collection site (1-395) did not have any

HOV lane and the effect of the HOV lane has also been captured during the aggregate

calibration process by introducing an HOV dummy. This parameter was calibrated

simultaneously with other behavioral parameters. The parameters chosen for calibration

and their initial and calibrated values are shown in Table 4.10:

Table 4.10: Initial and calibrated values of the parameters of the target-lane model

Parameter Initial Value Calibrated Value

Car following Acceleration Constant 0.040 0.042

Deceleration Constant -0.042 -0.084

Desired Speed Mean 0.100 0.175

Variance 0.150 0.254

Rightmost Lane Constant -1.696 -1.052
Lane changing Current Lane Dummy 2.686 2.800

HOV Dummy 0.000 1.521

As seen in Table 4.10, many of the parameters changed significantly during

calibration. This is expected since the estimation dataset (collected from 1-395, VA) and

the aggregate calibration and validation dataset (collected from 1-80, CA) had substantial

differences in geometry and level of service as well as driver characteristics.

The model fit after calibration is presented in Figure 4.17. The lane shift model was

also calibrated with the same aggregate data in a similar manner.
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Figure 4.17: Calibration results for the target lane model

4.4.3 Aggregate Validation

The purpose of aggregate validation is to determine the extent to which the simulation

model replicates the real system. At this step, the behavior parameters obtained in the
aggregate calibration step are fixed and the model predictions are compared against the

second set of traffic measurements, which have not been used for calibration. A separate
OD matrix is estimated for the validation measurements.

The following measures of performance (MOPs) are selected based on their relevance

to the evaluation of the lane changing model:

* End lane distribution of vehicles with respect to the starting lane

" Lane-specific sensor speeds

* Number of lane changes by vehicles

" Lane changes 'From' and 'To' lanes
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A number of goodness of fit measures were used to evaluate the overall performance

of a simulation model. Root Mean Square Error (RMSE), Root Mean Square Percent

Error (RMSPE), Mean Error (ME) and Mean Percent Error (MPE). These measures are

defined below:

RMSE= Yim -bs) 2  (4.22)

N (ysim - obs 2

RMSPE= /os (4.23)
N n=l Yn

obs

1N
ME =--(Yj5 m -Yn" 5 ) (4.24)

MPE=- yiM - yobs" (4.25)
N Y

Where, Yos and Ys' are the averages of observed and simulated measurements at

space-time point n, calculated from all available data (i.e. several days of observations

and/or multiple simulation replications).

RMSE and RMSPE penalize large errors at a higher rate relative to small errors. ME

and MPE indicate systematic under-prediction or over-prediction in the simulated

measurements.

End Lane Distribution

The distribution of vehicles across lanes at the end of the section with respect to the

starting lane was extracted from the aggregate trajectory data and compared with the

simulated lane distributions of both the models. Figure 4.18 presents the results of the

comparison.
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Figure 4.18: Comparison of end lane distribution of vehicles
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Figure 4.18: Comparison of end lane distribution of vehicles (contd.)
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Figure 4.18: Comparison of end lane distribution of vehicles (contd.)

Overall, the model with explicit target lane matched the observations better and the

RMSE was calculated to be 0.032 for the target lane model and 0.041 for the lane shift

model denoting a 20.04 % improvement. A closer look at the results of the lane shift

model shows a significant proportion of the error is due to incorrect representation of the

HOV lane. The RMSE of the percentage of vehicles moving to the HOV from all starting

lanes is 4.8% for the lane shift model and 2.1 % for the target lane model. This result

indicates that the lane shift lane changing model is unable to correctly capture the

attractiveness of the HOV lanes and therefore underestimated its use. These

underestimations of the HOV flows is a potential source of discrepancy in the lane-

specific traffic speed outputs discussed next, since the reduced flow rates on the HOV

lane results in increased speeds on this lane.

Lane-specific Speeds

A separate set of lane-specific speed measurements from sensors (not used for

calibration) has been used for validation purpose. Comparisons of the goodness of fit

measures are presented in Table 4.11. As seen in the table, The target lane model

consistently performs better particularly in terms of Mean Error and Mean Percent Error.

The discrepancy in the lane distribution can be a potential source of the speed mismatch

in the lane shift model since the erroneously lower calculations of the flows in the HOV

lane result in increased speed outputs of the HOV lanes and reduced speed outputs in the

other lanes.
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Table 4.11: Goodness of fit statistics for the traffic speed comparison

Statistic Lane Shift Target Lane Improvement
Model Model

RMSE, m/sec 3.92 3.10 20.92 %
RMSPE (%) 14.89 12.15 18.40%
ME (m/sec) 1.59 -0.83 47.80 %

MPE (%) 5.17 -3.33 35.59 %

Lane Changes by Vehicles

The number of lane changes by vehicles as observed in the

compared against the simulated results of the target lane model and

with the results presented in Figure 4.19.

trajectory data was

the lane shift model

Figure 4.19: Comparison of number of lane changes by vehicles

The lane shift model under predicted the number of more-than-one lane changes

probably due to the lane shift model including only adjacent lanes in the choice set of the

driver and the higher level of service prevailing in lanes further away not being taken into

account. The target lane model performed much better than the lane shift model

particularly in terms of predicting the higher number of lane changes. The RMSE for the

fraction of vehicles in the lane shift model and the target lane model were 0.040 and

0.024 respectively indicating an improvement of 38.33 %.
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Lane changes 'From' and 'To' lane

The number of lane changes by 'From' (starting) and 'To' (ending) lanes was also

compared. As seen in Figure 4.20, the lane shift model has a significantly small number

of lane changes to the HOV Lane. The target lane model performs much better in this

respect.
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Figure 4.20: Comparison of lane changes 'From' and 'To' lanes

4.5 Model Validation in Other Simulators

As part of the NGSIM project of the FHWA, the new lane changing model was also

tested independently in three commercial simulators by the model development teams.

The results are summarized below. The detailed results are reported in Barcel6 et al.

(2006), Speirs (2006) and Vortisch and Rissel (2006)3.

3 The Target Lane model is referred as NGSIM Freeway Lane Selection Algorithm in these reports.
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AIMSUN

The target lane model was implemented in AIMSUN (AIMSUN Target Lane) and

compared against the default lane changing model of AIMSUN (AIMSUN Original). The

comparison results are presented in Table 4.12 and Table 4.13. In the tables, the first

rows denote the observed flows and speeds in the trajectory data and the simulated flows

and speeds of the AIMSUN Target Lane and the AIMSUN Original models are presented

in second and third rows respectively. The RMSE values for the two models compared

with the observed data are presented in the last columns.

Table 4.12: Comparison of flows (vph)

5 10 15 20 25 30 Avg. RMSE

Observed 9804 10344 10020 9216 9648 7764 9466

AIMSUN Target Lane 10281 10296 9972 9192 9432 7728 9484 216.28
AIMSUN Original 10320 10320 9948 9348 9204 7812 9492 285.44

Source: Commercial Validation of Freeway Lane Selection Model: Report on Testing the NGSIM

Lane Selection Model with AIMSUN (Barcel6 et al. 2006).

Table 4.13: Comparison of speeds (mph)

5 10 15 20 25 30 Avg. RMSE

Observed 58.28 58.62 58.76 57.5 41.62 35.77 51.76
AIMSUN Target Lane 58.53 58.32 58.45 58.56 44.42 36.9 52.53 0.31

AIMSUN Original 58.6 58.51 58.7 58.6 44 38.1 52.75 0.4

Source: Commercial Validation of Freeway Lane Selection Model: Report on Testing the NGSIM

Lane Selection Model with AIMSUN (Barcel6 et al. 2006).

As seen in these tables, the target lane changing model performed better than the base

model in terms of both flow and speed and has been selected to be incorporated in the

commercial version.

Paramics

In the validation study in Paramics, the general finding was the algorithm works

under a wide range of scenarios achieving its goal of encouraging drivers to consider

lanes other than those strictly adjacent as viable or desirable to travel in. Rigorous

comparisons against the default Paramics lane changing model were not conducted.
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VISSIM

In the validation study conducted within the simulator VISSIM (Vortisch and R6ssel

2006), the modeling of exclusive lanes was felt to be easier and more straight forward in

the target lane changing model compared to the existing model in VISSIM (Figure 4.21).

The RMSE for flow was reported to improve to 252 vph (VISSIM Target lane) from 288

vph (VISSIM Original). Although the speed was slightly worse though (6.7m/sfor

VISSIM Original and 7.0 m/s for VISSIM Target Lane).

Flow on HOV Lane

m VISSIM Original E VISSIM Target Lane
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Figure 4.21: Comparison of flow on HOV lane
Source: Commercial Validation of the NGSIM Freeway Lane Selection Algorithm in VISSIM

(Vortisch and R6ssel 2006).

4.6 Summary

A lane changing model with explicit choice of a target lane is developed to capture

the effect of latent planning in the immediate maneuvers of the driver. This approach

differs from existing models that assume that drivers evaluate the current and adjacent

lanes and choose a direction of change (or not to change) based on the relative utilities of

these lanes. While the proposed model is applicable to any general freeway situation, it is

most useful in cases where there exists a high difference in the level of service among the

lanes, e.g. with an HOV lane.

The target lane model parameters have been estimated using a maximum likelihood

estimator and detailed vehicle trajectory data. Comparison of goodness-of-fit test
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statistics indicates significant improvement over the lane shift model that ignores the

latent targets of the driver.

The improvement in the model performance was demonstrated through a detailed

validation study within MITSIMLab where the simulation capability of the target lane

model is compared against that of the lane shift model. Test statistics calculated in the

aggregate validation stage indicates that the target lane model provides significantly

better prediction for all measures of performance. The improvements in the modeling

capability are further strengthened by independent validation within three commercial

microscopic simulators AIMSUN, Paramics and VISSIM.

In the target lane model, the choice of target lane in subsequent instants is assumed to

be independent of each other. That is, the driver is assumed to re-evaluate the situation at

each time step and if required, change the latent plan by selecting a different target lane.

This indirectly captures the evolution of the latent plans and dynamicity of driving

behavior.

The data used for estimating the model was not from a highly congested situation and

the lane changes were assumed to be through normal gap acceptance and the target gap

were always the adjacent gap.

In this model, the heterogeneity in planning capability of the drivers has been ignored

and it is assumed that all drivers are aware of the location of their exit from the beginning

and choose lanes accordingly. This assumption has been relaxed in the arterial lane

selection models discussed in Chapter 6.
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Chapter 5

Freeway Merging

In this chapter, the latent plan involving the merging decision of drivers in a freeway

on-ramp is presented. The similar two-stage general decision structure presented in the

previous chapters, that is, choice of latent plans followed by selection of action to execute

the plan, is also applicable in this scenario. However, the geometric and traffic

characteristics associated with the merging situation lead to a model framework that is

different from that of the freeway mainline lane selection presented in Chapter 4.

The chapter is organized as follows: the background of the research is presented in

Section 5.1. In Section 5.2, the structure of the latent plan merging model is detailed in

three sub-sections: the model components are presented in 5.2.1, and the descriptions of

how these components lead to different plans and actions are presented in 5.2.2 and 5.2.3

respectively. The details of the model estimation are presented in Section 5.3. This

section includes description of the data used to estimate the model parameters, the

likelihood function and the estimation results. The comparison of the goodness-of-fit of

the latent plan model against a reduced form model is also presented in this section. The

chapter concludes with the validation results within the microscopic traffic simulator

MITSIMLab and a summary of the findings.4

5.1 Background

Freeway merging involves a complex decision process. The target lane for freeway

merging in right hand drive traffic is always the rightmost lane in the mainline. An on-

4 The model presented in this chapter has been developed as part of NGSIM program of the FHWA. The
results presented in this chapter have been reported in Choudhury et al. (2006, 2007a, 2007b). The results
of the simplified merging models have been developed by Lee (2006) and Rao (2006).
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ramp driver approaching the mainline seeks suitable gaps in the target lane for merging.

The merge is executed when the gaps in the target lane are acceptable. However, in

congested situations, when acceptable gaps are often not available, more complicated

merging phenomena may be observed. For example, in highly congested situations, due

to restricted maneuverability in the longitudinal direction, it may not be possible for a

driver to preposition himself to a non-adjacent gap and he/she may decide to merge to the

adjacent gap through courtesy of the lag driver in the target lane or decide to force in and

compel the lag driver to slow down. In such situations, the chosen merging tactic dictates

the plan/state of the driver, which in turn affects the driver's merging behavior. The

execution of the plan involves acceptance of available adjacent gaps. The gap acceptance

behavior models may differ depending on the merging tactic. For example, the acceptable

gaps are smaller in case of courtesy merging compared to normal merging since there is

less risk associated with it. However, the chosen plan/state is unobserved and only the

action, that is the execution of the merge through gap acceptance, is observed.

Further, the plan/state may evolve dynamically as the immediate execution of the

chosen merging plan may not be feasible. For example, a driver may begin with a plan of

normal merging and then change to a plan of forced merging as the merging lane is

coming to an end. The probabilities of transitions from one plan to another are affected

by the perception of risk associated with the merge (anticipation), the inertia to continue

the previously chosen merging plan (state-dependence) as well as the latent

characteristics of the driver like impatience, urgency and aggressiveness.

Existing microscopic traffic simulators, such as AIMSUN (TSS 2004), Paramics

(Quadstone 2004) and VISSIM (PTV 2004), use basic or modified versions of their lane

changing models to model freeway merging behavior. These models consider gaps

created by adjacent vehicles, and in some cases model reduced gap acceptance thresholds

under congested conditions, but they do not explicitly consider all three merging tactics

in a single framework. Thus the existing models often fail to capture these phenomena in

the merging vicinity and represent congestion incorrectly.

The literature review (in Chapter 2) shows that several disjoint models have been

developed specifically to model the cooperative lane changing and forced merging

behaviors (Ahmed 1999, Hidas 2002, Wang et al. 2005), but none of these models
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integrate the three merging mechanisms into a single framework. Hidas (2005) developed

a merging model that includes both cooperative and forced merge components but the

cooperative lane change part only consists of modeling the decision of the lag driver

(whether or not to provide courtesy to the merging driver) and not the decision of the

merging driver (whether or not to initiate or execute the courtesy lane change based on

the behavior of the lag driver). The unified decision framework of the merging driver is

thus not addressed in any of these models. Therefore, these models fail to capture drivers'

transition from normal to cooperative or forced merge. The limitations of the existing

models and the need for improving them is also reflected in the findings of the NGSIM

study on Identification and Prioritization of Core Algorithm Categories, where

development of freeway merging and weaving model was ranked fourth in importance by

both model developers and users (Alexiadis et al. 2004).

5.2 Model Structure

The discussion in the previous section demonstrates the need to introduce the choice

of merging tactic in the decision framework of the driver. The merging driver may merge

through normal gap acceptance, merge through courtesy of another driver or decide to

force in. In the case of a courtesy merge, the lag driver decelerates voluntarily whereas in

the case of a forced merge, the lag driver is forced to decelerate. The execution of the

merge involves acceptance of available gaps. The plan and the decision process of the

driver are latent and only the end action of the driver (change to the lane in the mainline)

is observed. The framework of the proposed combined merging model is summarized in

Figure 5.1. Latent decisions are shown in ovals and observed actions are shown in

rectangles.

The choice of merging tactic is hierarchical. The model hypothesizes four levels of

decision-making: normal gap acceptance, decision to initiate courtesy merging, decision

to initiate forced merging and gap acceptance for courtesy or forced merging. The

merging driver first compares the available lead and lag gaps in the mainline to the

corresponding minimum acceptable gaps (critical gaps) for normal gap acceptance.

Critical gaps are functions of explanatory variables related to the subject driver and
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his/her neighboring conditions. If both the lead and the lag gaps are greater than the

critical gaps, the merge can be executed.
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Figure 5.1: Structure of the combined merging model

If the gaps are not acceptable, the merging driver evaluates the speed, acceleration

and relative position of the through vehicles and tries to evaluate whether or not the lag

driver is providing courtesy. The courtesy or discourtesy of the lag driver is reflected in

the anticipated gap. If the lag driver has decided to provide courtesy to a merging vehicle

and has started to decelerate, the anticipated gap increases. The anticipated gap of a

particular driver also depends on the length of the time horizon over which it is estimated.

Differences in perception and planning abilities among drivers are captured by the

distribution of the length of the time horizon. If the anticipated gap is acceptable, the

merging driver perceives that he/she is receiving courtesy from the lag driver and initiates

a courtesy merge. The immediate completion of the initiated courtesy merge however

may not be possible due to unacceptable adjacent gaps.

If the anticipated gap is unacceptable, the driver decides whether to force his/her way

to the mainline compelling the lag driver to slow down or not. This decision can depend

on the urgency of the merge, driver characteristics (e.g. risk averseness) and traffic

conditions. Similar to courtesy merge, the immediate completion of the initiated forced

merge may not be possible due to unacceptable adjacent gaps.
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If the driver does not initiate a courtesy or forced merge, the entire decision process is

repeated in the next instant. However, if the driver has initiated a courtesy or forced

merge, and is adjacent to the same gap, the subsequent decisions only involve evaluation

of the adjacent gaps for completion of the initiated merge. After deciding to initiate a

courtesy or forced merge, the choice of merging tactic is not reevaluated unless there is a

significant change in neighborhood conditions e.g. the lead and/or lag in the mainline

changes and the driver is adjacent to a new gap.

The decision tree of the driver thus differs depending on the previously chosen plan

and action. The driver may be in one of the following three states at any instant:

* Normal merging (l =M),

* Courtesy merging (l =C) and

Forced merging (1, =F).

If the driver has not initiated a courtesy or forced merge previously, the state is

normal. If the driver initiates a courtesy merge but the adjacent gaps are not immediately

acceptable for executing the merge, there is a transition to the courtesy merging state.

Similarly, if the driver initiates a forced merge but the adjacent gaps are not acceptable

for immediate execution of the merge, there is a transition to forced state.

normal state initial
State

adjacent gaps adjacent gaps Normal Gap
acceptable not acceptable Acceptance

anticipated gap nticipated gap
acceptable not acceptable Initiate

Time Courtesy

t Merging
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Figure 5.2: Decision tree for normal initial state
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If the driver is in the normal state at an instant, the full decision tree is in effect. That

is, the decision process starts from the top of the tree presented in Figure 5.1 and normal,

courtesy and forced merging plans are evaluated sequentially. The intermediate decisions

are detailed in Figure 5.2. As shown in the figure, while being in the normal state, the

driver may perform any of the following:

I. Change lanes and complete the merge through normal gap acceptance,

II. Change lanes by initiating a courtesy merge and immediately complete it,

III/VII. Initiate a courtesy merge but do not complete it immediately,

IV. Change lanes by initiating a forced merge and immediately complete it,

V/VII. Initiate a forced merge but do not complete it immediately, or

VI. Do not initiate a courtesy or forced merge.

A lane change (I, II or IV) denotes the end of the merging process. If there are no lane

changes, the decision process continues but there can be a transition to courtesy (III) or

forced (V) merging state or the state can remain the same (VI). Further, if a courtesy or

forced merge has been initiated but not completed from the normal state and the driver is

adjacent to a new gap, the state of the driver is reset to normal (VII).

In the courtesy lane changing state, if the driver is adjacent to the same gap, the

merging plan is not reevaluated and the full decision tree is not active. Rather, the

decisions only involve evaluation of the adjacent gaps to complete the courtesy merge

(Figure 5.3).

courtesy Initial
state State

Courtesy

change change Merging
Gap

same new Acceptance

adjacent adjacent
gap ap

t-t+1,
courtesy normal end of Updated

state state merge State

V

Figure 5.3: Decision tree for courtesy initial state
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Thus once a transition is made from the normal to courtesy merging state, the state

cannot change to forced merging or normal merging unless the driver is adjacent to a new

gap. If the driver is adjacent to a new gap, the state is however reset to normal.

Similar to the courtesy merging state, in the forced merging state, if the driver is

adjacent to the same gap, the entire decision process is not repeated. Rather, the decisions

only involve evaluation of the adjacent gaps to complete the forced merge (Figure 5.4).

Thus, once a transition is made from the normal to forced merge state, the state cannot go

back to normal and it cannot change to the courtesy merge state unless the driver is

adjacent to a new gap. The state of the driver is however reset to normal if the driver is

adjacent to a new gap.

forced Initial
state State

Forced

n change Mergingchange Gap

same new Acceptance

adjacent adjacent
gap ap

t=t+1
forced normal end of Updated
state state merge State

V

Figure 5.4: Decision tree for forced initial state

Thus when the driver is adjacent to the same gap in two subsequent time instants, the

following state transitions are possible:

" Normal to Normal (l,, = M 1 , =M)

" Normal to Courtesy (l, 1 = Cjl, =M)

" Normal to Forced (1, 1 = F11, = M)

* Courtesy to Courtesy (1,, = C 1, = C)

" Forced to Forced (l, 1 = F l, = F)

When the driver is adjacent to a new gap, the following transitions are possible.
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" Normal to Normal (l,1 = MI1, = M)

" Courtesy to Normal (l,, = M 11, = C)

" Forced to Normal (, 1 = M 11, = F)

The decision components affecting the state transitions and subsequent actions are

discussed in Section 5.2.1. These include normal gap acceptance, decision to initiate a

courtesy merge (anticipated gap acceptance), gap acceptance for completion of the

courtesy merge, decision to initiate a forced merge and gap acceptance for completion of

the forced merge. Descriptions of how these components lead to different plans and

actions are presented in Sections 5.2.2 and 5.2.3 respectively.

5.2.1 Model Components

Normal Gap Acceptance

The normal gap acceptance model indicates whether or not a normal merge is

possible using the existing gaps. In the model developed for this dataset, lead or lag

vehicles are defined as the closest vehicles in the corresponding adjacent lanes within the

current section of the subject vehicle (Figure 5.5). The lead gap is the clear spacing

between the rear of the lead vehicle and the front of the subject vehicle. Similarly, the lag

gap is the clear spacing between the rear of the subject vehicle and the front of the lag

vehicle. One, or both, of these gaps may be negative if the vehicles overlap.

Adjacent gap

Lag Vehicle Lead
vehicle Lag gap Length Lead gap vehicle

V,"g , ag G4 ,N Yt , a d

Subject
vehicle

V, ,,a

Figure 5.5: Vehicle relationships in a merging situation

An available gap is acceptable if it is greater than the critical gap. Similar to the

critical gaps for gap acceptance for freeway lane changing, the critical gaps for normal
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merging are assumed to follow lognormal distributions, the mean gap being a function of

explanatory variables. This can be expressed as follows:

In (G, 9 G (XJ,, Vn," PM9, am )+ : g c I{lead, lag} (5.1)

Where,

G," = critical normal gap, g e {lead, lag}

X,, =vector of explanatory variables

on = individual-specific random effect: -n ~ N(O, 1)

PMg aMg = parameters for normal gap acceptance

_C = random term for normal gap acceptance: c-, ~ N (0,o

Gap acceptance can be affected by the interaction between the subject vehicle and the

lead and lag vehicles in the adjacent lane. It can be also affected by the urgency of the

merge that can be captured through the variable remaining distance or time to the

mandatory lane changing (MLC) point. Candidate variables affecting normal gap

acceptance include speed and acceleration of the subject, lead and lag vehicles, distance

remaining to the MLC point on the ramp, type of vehicles etc.

The normal gap acceptance model assumes that the driver must accept both the lead

gap and the lag gap to change lanes. Probability of driver n in normal state (M) making a

lane change through normal gap acceptance at time t can be expressed as follows:

P, (accept lead gapj1, = M, v, ) P( (accept lag gapIl, = M,0)

= le(Gad >G M lead la =111)P,(i G,''l = M, t,ln (Gead 1 -GM " )n(G__-_a_ g -__

D In (/ead ( G M lag

- "Mlead - [ OMlag (5.2)

Decision to Initiate Courtesy Merge (Anticipated Gap Acceptance)

If the adjacent gaps are not acceptable, the merging driver evaluates the speed,
acceleration and relative position of the through vehicles and anticipates the gap that will

be available after rn seconds. Because of the difference in perception among individuals,

the anticipation time r, may vary among individuals. The anticipated gap for individual

n at time t is given by:
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Gn,(r, )= G', +G"+ + + +, -V a")-+ 2Tal -a" ) (5.3)ft 71 n n 2 n

Where, as shown in Figure 5.5 for individual n at time t,

Gni = anticipated gap

Y = length of the subject vehicle

Gled , laG = available lead and lag spacings respectively

V,ad la - lead and lag speeds respectively

ale"d, a" = lead and lag accelerations respectively

The anticipated gap is thus calculated based on the assumption that other drivers

maintain their current accelerations. Therefore, if the lag driver of the merging driver is

decelerating to provide courtesy, the anticipated gap is likely to increase.

If this anticipated gap is acceptable, the driver initiates a courtesy merge. The

anticipated gap is acceptable if it is larger than the corresponding critical anticipated gap.

Critical anticipated gaps are non-negative and assumed to be log-normally distributed 5.

The mean of the distribution is a function of explanatory variables.

In (G) = G (Xn,, un, 6 A, aA)+n (5.4)

Where,

G A=critical gap of individual n at time tfor anticipated gap acceptance

xn,=explanatory variables

vn =individual-specific random effect: on~N(0,1)

g,=random term for anticipated gap acceptance: En ~N (0, a
A A

fl',a =parameters for anticipated gap acceptance

Candidate variables affecting the decision to initiate a courtesy merge include:

* Status of the lag vehicle in the mainline: speed and acceleration of the lag

vehicle, type of the lag vehicle (heavy vehicle or not) etc.

* Traffic conditions: level of congestion in the mainline etc.

Probability of individual n initiating a courtesy merge at time t can be expressed as

follows:

5 Other non-negative distributions (truncated normal, truncated lognormal etc.) were also tested and the
log-normal distribution had better fit than other distributions.
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P, (initiate courtesy merge , = M,v,)

=P (Gni, >G,,l, =1 M, U, 
(5.5)

Decision to Complete the Courtesy Merge

After a driver initiates a courtesy merge, the completion of the merge depends on the

acceptance of the immediate adjacent gaps. An available gap is acceptable for courtesy

merge if it is greater than the corresponding critical gap (assumed to follow a lognormal

distribution).

ln(Gc,9)=G (X,,,vnc,8cg+g +c gE {lead,lag} (5.6)

Where,

G = critical courtesy gap, g c {lead,lag}

X n, =vector of explanatory variables

v, =individual-specific random effect: v, ~ N(O, 1)

#Cg ,acg = parameters for courtesy gap acceptance

_1 =random term for courtesy gap acceptance. ng - N (0, CT

Though the critical gaps for completion of courtesy merge have the same general

functional form as normal merge, the variables and the associated parameters can be

different. Also, the critical gaps are assumed to be independent of the initial state that is

the critical courtesy gap is assumed to be the same if the driver was in courtesy merging

state at the beginning of the decision step (l, =C) or was at normal merging state in the

beginning and have just initiated the courtesy merge (l =M). In other words, it is assumed

that the time elapsed after the driver has initiated a courtesy merge does not affect the

critical gap for execution of the courtesy merge.

The gap acceptance model assumes that the driver must accept both the lead gap and

the lag gap to change lanes. Probability of individual n executing a courtesy merge at

time t given initial state i can be expressed as follows:
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P (accept lead gap Il ,, v, ) P. (accept lag gap l,, v)

=P (Gn" >Gea It =1 in V) Pn (Gn >G, V

n") -Glead ~~la ) -GClag (5.7)

Clead Clag

Vi e M, C

Decision to Initiate a Forced Merge

If the current gaps are not acceptable and the driver perceives that a courtesy merge is

also infeasible (anticipated gap is not acceptable), the driver evaluates whether or not to

initiate a forced merge. By initiating a forced merge, the merging driver imposes a

deceleration on the lag vehicle in the mainline. The utility of initiating a forced merge can

be expressed as follows:

U= U(X,Vn,3F8 an F) (5.8)

Where,

t= is the utility of initiating a forced merge by individual n at time t

F F = parameters associated with initiating a forced merge
F

En, = random term for initiating forced merge

Candidate variables affecting the decision to initiate a forced merge include:

* Status of the merging driver: distance to the MLC point, delay (time elapsed

since the driver is in MLC condition, as a proxy for impatience), speed, type

of vehicle (heavy vehicle or not) etc.

* Status of the lag vehicle in the mainline: speed and acceleration of the lag

vehicle, type of the lag vehicle (heavy vehicle or not) etc.

* Traffic conditions: level of congestion in the mainline, queue behind (merging

vehicles waiting behind the subject vehicle) etc.

By assuming that the relationship between the influencing variables are linear and

that the random error terms Fi are independently and identically extreme value

distributed, the probability of initiating a forced merge can be modeled as a logit model

and can be expressed as follows:
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Pn (initiate forced merge 1l, = M,vn ) = (5.9)
1+ exp(-flXn, --aFv)

It may be noted that the individual-specific term on is assumed to have a linear effect

in the utility in this case. It can have other non-linear forms as well (e.g. interaction with

other variables in the utility).

Decision to Complete a Forced Merge

After a driver decides to initiate a forced merge, the actual merge is executed only

when the available gaps are acceptable in comparison with the critical gaps for the forced

merge. Similar to normal and courtesy merge the critical gap for forced merge is

assumed to be log-normally distributed, the parameters being different from the other

types of merge.

In (6Gi = G (Xt,,0 vYFg, Fg + E Fg g C{lead, lag (5.10)

Where,

FGn = critical forced gap, g e {lead,lag}

X = vector of explanatory variables

vn = individual-specific random effect: on N(0, 1)

jj g, an' = parameters for forced gap acceptance

eFg = random term for forced gap acceptance: et ~ N (0, Cjg

Further, similar to courtesy merging gap acceptance, the forced merging critical gap

is assumed to be independent of the time the driver has been in forced merging state and

all else being equal the probability of forced gap acceptance is the same if the initial state

at the beginning of the time period was forced (l =F) or normal (l =M).

Probability of individual n executing a forced merge at time t given initial state i can

be expressed as follows:

P, (accept lead gap, = i,v ) P (accept lag gap | It = i, O)

S ( lead > G F lead F = ., n ag lag |,
- In ent nt 4-t LLn)Pn (~Gag > G~ 11 = fjn

In (G"ad ) -FGlead Iln (G" )-GFlag.

- Flead j Flag

ieM,F
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5.2.2 Choice of Plan: Selecting the Merging Tactic

The driver first evaluates whether or not a lane change is possible using the existing

adjacent gaps without a courtesy or forced merge. So, the initial state and plan is always

normal. The driver then evaluates the courtesy merge and forced merge plans

sequentially. The transition probabilities from one plan/state to another are discussed

next.

Courtesy Merge

If the adjacent gaps are not acceptable under normal gap acceptance, the merging

driver evaluates the speed, acceleration and relative position of the through vehicles and

decides whether or not to initiate a courtesy merge (Equation 5.5). If the driver initiates a

courtesy merge but is unable to complete it immediately, there is a transition from the

normal merging to courtesy merging state. If the adjacent gap is the same, the probability

of a transition from normal to courtesy merge is therefore the combined probabilities of

not accepting the normal gap, initiating a courtesy merge and not completing the courtesy

merge and can be expressed as follows:

P ('I,a = C 1, = M, V"-r"

-P, (G'ad >G l M, V ) Pn (Gla >GLag | Mv

P, (P5l > GA ,l,1 =M,n,,r (5.12)

lead C lead M = M, ' lag M[1 (Gn > G II >GI -1 v)

Where, the probabilities of the components can be calculated using Equations 5.2, 5.5

and 5.7.

Once the driver has initiated a courtesy merge, as long as he/she is adjacent to the

same gap, the probability of being in the courtesy merge state is 1. On the other hand, if

the driver has already initiated a forced merge, and is adjacent to the same gap, the

probability of initiating a courtesy merge is 0. However, if a courtesy merge has been

initiated, but not completed, and the vehicle is adjacent to a new gap (i.e. the lead and/or

lag vehicle has changed), the state of the driver is reset to normal. The transition

probabilities to courtesy merge state or plan are summarized in the following equations:
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(1(,.1 =C11, = Mvnr.)

=(1-P,(Glead >GMlead , =M,v, ),J(Ga > Gm lag|,- M,v

P, (,>G ,|l, = M,vr

1 - Pr (Gead > G~lead Il nA n G| > GI| ,=Mv ,P n ( - t = C ~ n, =1 C, I, r )(513

FIiP lead C lead ,C a~
= ( -P, Giad G tea 11 = CM , Pn (G,' a > G ,ag 11I, = , C ,, 15 ,

P.(I,1 =C~, =(F.1,3)

= 0

Where,

gn, = 1 if the driver is adjacent to the same gap at time t and t+1, 0 otherwise.

Forced Merge

If the current gaps are not acceptable and the driver perceives that a courtesy merge is

also infeasible (anticipated gap is not acceptable), the driver chooses whether or not to

initiate a forced merge (Equation 5.9). However, if the driver initiates a forced merge, is

unable to complete it immediately, and is adjacent to the same gap, the driver remains in

the forced merging state. In case of the same adjacent gap, the probability of a transition

from normal to forced merge is therefore the combined probability of not accepting the

normal gap, not initiating the courtesy merge, initiating a forced merge and not

completing the forced merge and can be expressed as follows:

P,, = F|1, = M, t.,,rn)

=ri-P(Ge > lad I |i = MI O) P, (Gag > G , ag M,o

'e P a( , > G 1 Fl I I = M ,0, { On(.)4

1-P" (Gd >GJead |I, = M0)P, IGf >(Gag | i, n= Mn,

Where, the probabilities of the components can be calculated using Equations 5.2, 5.5,

5.9 and 5.11.

Similar to the courtesy merge, the probability that a driver is in the force merge state

depends on the previous state: the probability is 1 if the driver had already initiated a

forced merge to the same gap and 0 if the driver had already initiated a courtesy merge to
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the same gap. However, if the driver cannot complete a forced merge that has been

initiated while he/she is adjacent to the same gap, the state is reset to the normal state.

The probability of being in forced merging state can therefore be expressed as follows:

P (',,I '= F 11, = M, un, rn)

=- , (Glead > Gl$ead |i, = M,v, P (G * > G i, = M, G

I-nP (G. > G,, | G"a , = M, On]

1 -Pn n,> GntI I M" u, r I+ exp(-pXn, - aFvn

(i- ~P (G lead > GFlead |l, =M,, )p (G|" > Flag M,

P+ =F1, =C, o, r) (5.15)
=0

P(,, F 1l, =F, n,rn )
= (1 - P (G lead > G lead |i =F, o, ) P, (Ga > G'Fag | F,

Normal Merge

If the driver does not initiate a courtesy or forced merge, the state remains normal.

The probability of a transition from the normal to normal state is therefore the combined

probability of not accepting the normal gap, not initiating courtesy and not initiating a

forced merge and can be expressed as follows:

P (',+1 = M 11, = M, V,,, -r,,)

1 P(G lead > GMlead t = M, ,, )P,,(GXl >Gm'ag |l, M, .6

1-P ( Gnt >G,,ll = M, ,,, I -n F
I +exp(-BFXn, -aF n)

Where, the probabilities of the components can be calculated using Equations 5.2, 5.5

and 5.9.

Further, whenever the driver is adjacent to a new gap, the state is reset to normal. The

probability of being in normal merging state can therefore be expressed as follows:

120



Q.l,, = M , , n,

=[i-P, (G lead > GIMlead , = M, on )P,, (Gag > Gmag |I = M,v ]

1- P ,, > G An, Il, = M,Vffl)r 1X F nt + ) (5.17)
)][I+ exp(-#FXn, -a Un)

P" (/,., = A/l , = cv,rn) =1-5,

P, (1,.= Al 1, = F,vn,r,) =I-9,

5.2.3 Choice of Action: Execution of the Merge

The initial state of the driver can be normal, courtesy or forced. The observed action

involves execution of the plan. The decision tree of the driver and the critical gaps vary

with the initial state.

Normal State

If the driver is in the normal state at an instant, the driver can execute a lane change in

three ways (Figure 5.2):

1. Change lanes through normal gap acceptance,

2. Change lanes by initiating a courtesy merge and immediately completing it,

3. Change lanes by initiating a forced merge and immediately completing it.

The probability of observing a lane change conditional on the initial state being

normal can thus have the following three components:

Change lanes through normal gap acceptance:

A lane change through normal gap acceptance is possible if both lead and lag gaps are

acceptable for a normal merge and can be expressed as follows:

Component I = , (ead > G A1ead | = M,v,)Pn (Gia > Gnuag |, = M,un) (5.18)

These probabilities can be calculated using Equations 5.1 and 5.2.

Change lanes by initiating a courtesy merge and immediately completing it.:

These lane changes occur when the adjacent gap is not acceptable for normal merge

but the driver perceives that the lag driver in the mainline is providing courtesy to him,

initiate a courtesy merge and complete the courtesy merge in the same time step. The

probability of such a lane change is therefore the combined probability of not accepting
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the normal gap, initiating courtesy and accepting the adjacent gap for courtesy gap

acceptance, all at the same time step. This can be expressed as follows:

Component 2 =1- P,(Gadn > Gead 1i =Mv)P(G >) (5.19)

[,(bn, >G |, = M,vn,)]P,(Gad >cG ead |l, = MV ) P (G > Ga |, = M]

These probabilities can be calculated using Equations 5.2, 5.5 and 5.7.

Change lanes by initiating aforced merge and immediately completing it.

This category of lane change occurs when the adjacent gap is not acceptable for

normal merge, and the anticipated gap is not acceptable for initiating courtesy but the

driver decides to initiate a forced merge and the adjacent gap is acceptable for immediate

execution of the forced merge.

The probability of this type of lane change thus refers to the joint probability of not

accepting the normal gaps, not accepting the anticipated gap, deciding to initiate a forced

merge and accepting the lead and lag gaps through forced gap acceptance. This can be

expressed as follows:

Component 3 =
1 n(Glead > G Aleadjl Mvi
(1 - n( d>Gtea 11, = M,v O) P (GIag > Glagn, |11, = M, O)

_____>G"__n9_(5.20)

1 - , K Il = M 1 I I+ exp (- ,BFX n, - a F

[P, (G lad > G ead , = M,v O) P, (Gla > GFag \ - Mv ]

This can be calculated using Equations 5.2, 5.5, 5.9 and 5.11.

Probability of making a lane change given the initial state is normal is the sum of the

above mentioned components.

P, (i, = 1l, =M, v,,r) (5.21)
= Component 1 + Component 2+ Component 3

Where, the three components are given by Equations 5.18, 5.19 and 5.20 respectively.

Probability of no lane change conditional that the initial state is normal merge can be

expressed as follows:

P ,t =1t M,vL) = 1- Pn (j, = 11l, = M, v) (5.22)
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Courtesy Merging State

In the courtesy merge state, if the driver is adjacent to the same gap, the entire

decision process is not repeated. Rather, the decisions only involve evaluation of the

adjacent gaps to complete the courtesy merge (Figure 5.3). Probability of a lane change

conditional on the initial state is courtesy merge can therefore be expressed as follows:

P' (it = 1|I, = C, ) (a (5.23)
= (n (ead > G lead | i = c, )P ( Gag > GCag

nt ntn nI t = C onn)

This can be calculated using Equation 5.7.

Probability of no lane change conditional on the initial state is courtesy merge can be

expressed as follows:

Pn (it = 011, = C,v ) = 1- P (j =11t = C,v) (5.24)

Forced Merging State

Similar to the courtesy merge state, in the forced merge state, if the driver is adjacent to
the same gap, the entire decision process is not repeated. Rather, the decisions only

involve evaluation of the adjacent gaps to complete the forced merge (
Figure 5.4).

Probability of a lane change conditional on the initial state is forced merge can

therefore be expressed as follows:

Pn (il =1 1t = F,v )
= G ead > G lead 5 F,Vn)P, (G ag > G 4 = F,vn)

This can be calculated using Equation 5.11.

Probability of no lane change conditional on the initial state is forced merge can be

expressed as follows:

Pn (j, = 01, = F,0n) = I- P(it = 11 = F,vL) (5.26)

Depending on the chosen plan and decision state, the lane action can thus have

different probabilities.
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5.3 Model Estimation

5.3.1 Data

Study Area

The data used in the estimation of the driving behavior model represents travel on a

502.9 meters northbound section of Interstate 80 (1-80) in Emeryville, California (Figure

5.6).

Figure 5.6: Estimation data collection site

The data was collected and processed as part of the FHWA's NGSIM program. The

data was collected using video cameras mounted on a 30-story building adjacent to 1-80.

The University of California at Berkeley maintains traffic surveillance capabilities at the

building and the segment is known as the Berkeley Highway Laboratory (BHL) site.

1650 ft = 502.92m

- - -- - - - - - I - - - - - - - - - --I - - - -

EBI1-80 2 - 4- 2
3 3

1124ft = 3.6m

N4

7 Powell St Study Area 8 Ashby
On-Ramp of Trajectory Data Off-Ramp

Figure 5.7: Schematic of the estimation data collection site

(not in scale)
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Complete vehicle trajectories were recorded at a resolution of 10 frames per second.

45 minutes of data were collected on April 13, 2005 at a resolution of 0.1 second during

the time intervals 4:00 to 4:15 p.m., 5:00 to 5:15 p.m., and 5:15 to 5:30 p.m. The 4:00 to

4:15 p.m. period is representative of a transitional traffic period in the build up to

congested conditions, and the 5:00 to 5:30 p.m. period is representative of congested

conditions.

For data handling tractability, the combined dataset was sampled at the rate of 1 in 10

observations, meaning the locations of vehicles were known at one-second time steps.

The resulting dataset had 540 merging vehicles with 17,352 observations.

Characteristics of the Estimation Dataset

As shown in the schematic representation of the study area in Figure 5.7, there are no

physical lane markings separating the on-ramp vehicles from the mainline vehicles. The

absence of a physical lane demarcation over a long stretch made it difficult to specify

when a lane change has occurred, and necessitated the definition of an imaginary lane

boundary.

The mandatory lane changing (MLC) point, as shown in Figure 5.8, is defined as the

point where the width of the rightmost lane assumes the single lane width (3.6 meter).

The definition of this point is important as it defines whether or not a merge has occurred.

A merge is classified as completed when the center point of the vehicle has crossed

this imaginary line/lane-mark (X in Figure 5.8).

Lane 5

24 ft=7.3 m

11.8 ft=3.6 m Lane 6 11.8 ft=3.6 m

Lane 7 X center point of vehicle

- - imaginary lane demarcation

On-ramp

Figure 5.8: Definition of merge point
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The vehicle trajectory data containing the coordinates of the merging and mainline

vehicles in the section were used to derive the required variables for estimation of speed,

acceleration, average density, etc.

Speeds in the merging section (the on-ramp and part of lane 6 as defined in Figure

5.8) vary from 0 m/sec to a maximum of 20.7 m/sec with a mean of 4.2 m/sec. There are

many stop-and-go situations present in the dataset. Densities calculated 150 meters

downstream of the merging vehicles in lane 6 range from 0 veh/km/lane to

126.7 veh/km/lane with an average of 61.9 veh/km/lane. 1.4 percent of the merging

vehicles in the dataset are heavy vehicles (trucks in this case).

The distributions of speed, acceleration, and density in lane 6 and distance to the

MLC point in the entire dataset are shown in Figure 5.9.
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Figure 5.9: Distributions of speed, acceleration, density, and distance to MLC point

As defined earlier in this chapter, the lead gap is the distance between the front of the

subject vehicle to the rear of the lead vehicle in the target lane, and the lag gap is the

distance between the rear of the subject vehicle and the front of the lag vehicle in the
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target lane (Figure 5.2). Negative gaps imply overlap between the subject and the

lead/lag vehicle. The statistics relating to the subject vehicle are shown in Table 5.1.

Table 5.1: Statistics of variables related to the subject vehicle

Variable Mean Std Dev Median Minimum Maximum
Speed (m/sec) 4.2 3.11 3.34 0 20.7
Average Density 61.9 15.3 60.0 0 126.7
d/s (veh/km/lane)

Distance to MLC 0.13 0.04 0.13 0 0.20(km)

Acceleration 0.61 1.03 0 0 3.41(m/sec2)
Deceleration -0.65 1.07 -0.006 -3.41 0(m/seC2 ) _________________________________

Table 5.2 presents the descriptive statistics

subject vehicle. Relative speeds are defined as

for the lead and lag vehicle relative to the

the speed of the lead (lag) vehicle less the

speed of the subject vehicle. The table summarizes statistics of the lead and lag gaps (i.e.

the gaps vehicle changed lanes into) both for the accepted gaps and for the entire dataset

(both accepted and rejected gaps). Accepted lead gaps vary from 0.13 meters to

102.9 meters, with a mean of 9.92 meters. Accepted lag gaps vary from 0.48 meters to

172.9 meters. Statistics for the entire dataset are presented in parentheses.

Table 5.2: Statistics for the lead and lag vehicles of merging vehicles

Variable Mean Std Dev Median Minimum Maximum
Lead Relative 0.24 1.26 0.24 -6.21 5.60
Speed (m/sec) (-0.29) (2.15) (0.01) (-16.80) (8.13)
Lead Gap (in) 9.92 9.01 7.57 0.13 102.9

(4.83) (8.83) (2.94) (-19.43) (160.6)
Lag Relative -0.55 1.56 -0.51 -10.98 5.38
Speed (m/sec) (-0.41) (2.15) (-0.15 (-14.25) (18.09)
Lag Gap (m) 11.35 11.58 8.43 0.48 172.9

(5.25) (8.85) (3.39 (-19.9) (178.25)

As expected, the mean accepted gaps are larger

stream for both the lead and lag gaps. Similarly,

than the mean gaps in the traffic

mean lead relative speeds in the

accepted gaps are higher than those in the entire dataset and mean lag relative speeds in

the accepted gaps are lower than those in the entire dataset. This implies that when a gap

is accepted, the subject vehicle is traveling slower than the lead vehicle and faster than
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the lag vehicle. The distributions of the speeds and spacing with respect to the lead

lag vehicles for the entire dataset are shown in Figures 5.10 and 5.11, respectively,

those for the accepted gaps are shown in Figures 5.12 and 5.13, respectively.
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Figure 5.10: Distributions of lead relative speed and spacing in the full dataset
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Figure 5.12: Distributions of lead relative speed and spacing for the accepted gaps
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Figure 5.13: Distributions of lag relative speed and spacing for the accepted gaps

From the dataset, it was observed that more than 80 percent of the merges occur when

the distance to the mandatory lane changing point, as defined by the imaginary lane

boundary, is less than 100 m. Figure 5.14 shows the distribution of the number of merges

with distance to the mandatory lane changing point in the section.
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Figure 5.14: Distribution of number of merges with distance to MLC point
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5.3.2 Likelihood of the Trajectory

All model parameters were estimated jointly using a maximum likelihood technique.

The likelihood function that was maximized is presented in this section.

At any time t, an individual can be in one of the following states:

* Courtesy merging (1, = C),

* Forced merging (1, = F ), or

" Normal lane changing (1, = M).

The lane changing decisions of the driver depends on the state. The state of the driver

at any instant depends on his/her previous state(s).

According to the first-order Markov assumption:

* The state at a given time period t depends only on the state at time (t-1) and

action of all previous time periods (1: t-1).

* The lane action at a given time period t depends only on the state at time

period t.

Further, in the merging data, the observation of a driver ends when he makes a lane

change. That is, there is always a sequence of 'no changes' followed by a lane change in

the last time step. Therefore, the fact that the driver is in state 1, at time t conditional that

the previous state was i,- indicates the following:

* The lane action in the previous state i,- was 'no change' ( 0, =0) and

* There has been a transition to state 1, from state lti at (t-I)th time step, where,

1,,t-Ie M,C, F .

The probability of being in state 1, is therefore the product of the probability of being

in state ,_, at time (t-1), and the joint probability of no change at the previous time period

= 0 ) and probability of a transition from state i,-, to state 1, at time (t-1).

The lane actions at time t (j,) are conditional on the state at time t (i,). As discussed

in Section 5.2.3, many decision state sequences can lead to the same state at time t. At

time t for driver n, the probability of observing a particular lane action j is the sum of
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probabilities that he/she is observed to execute lane action j given that the selected

merging plan is 1, over all sequence of plans that could have led to plan 1,.

PIIUIliI:,-Po ,rJ)= P(j, llt,,0 )P(l,, j,_lI ll,jlt,-2,9,, rn)

(5.27)

=n P (i, I l,,9 Un)Pn (, I l,_,, 9jA ,_ Io, I ,, )P(jI-I lt-,_I,0n)
(I..)

The probability of observing the entire trajectory of driver n can be calculated

recursively and is given by the following equation:

Pn (i,, Jr 0, r)

P ( T (iT 'jT,, I
1
T IJI:T 2 ,Vn,Tn)*P'n (13 ,.i12 2  ,Vn,rn )Pn ( 2 ,J11 1,0n,rn)

PI (IT ,Tnvfl P) ('T.,u;-1 lT-, iI: Tn - 2, On, n)" P (1,i 2 12 ,i,On,rn)Pn (12 , il11,Onrn) (5.28)
IT l , 1 P n r P ( g 1|2 _1v

IIn 13112, i2 n n n 2, i 2I1,n1 V )Pn (2 1, Inn )n l 1 1,n
/2

11 =M; 11 E CM,C,F; ]T =1; j. _ =0

Where, the state transition probabilities are given by Equations 5.13, 5.15 and 5.17

and the lane action probabilities are given by Equations 5.21 through 5.26.

The unconditional individual likelihood is given by:

4 = ff( i,-, u |i Io, vr)f(v)f(r) dv dr (5.29)

Where,

f (u) = standard normal probability density function

f (r) = probability density function of a doubly truncated normal distribution

with mean u, and variance c- 2
T

Assuming that the observations from different drivers are independent, the log-

likelihood function for all N individuals observed is given by:

N

L = ln(4,) (5.30)
n=I

The maximum likelihood estimates of the model parameters are found by maximizing

this function.
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5.3.3 Estimation Results

All model parameters: the parameters of the gap acceptance models, the plan/state

transition models and the agent effect are estimated simultaneously with detailed vehicle

trajectory data using maximum likelihood estimation technique as described in the

previous section. However, in order to simplify the presentation, estimation results for the

various components of the model are presented and discussed separately. The

presentation order follows the hierarchy of the hypothesized decision-making process: the

normal gap acceptance model is presented first, followed by the initiation and execution

of courtesy merge models, and initiation and execution of forced merge models.

The summary of estimation results is presented in Table 5.3. Table 5.4 presents the

parameter estimates of the normal merge model, Tables 5.5 and 5.6 present the results of

the courtesy merge model and Tables 5.7 and 5.8 present the results of the forced merge

model.

Table 5.3: Estimation results of the merging model

Final log-likelihood -1609.65
Initial log-likelihood -13763.75
Number of cases 540
Number of observations 17352
Number of parameters 42
Adjusted rho-bar square 0.88

The state-dependent merging model is compared with a reduced form model with no

latent mechanism (Lee 2006). The instantaneous model aims at capturing the normal,

forced and courtesy behavior of drivers through a single gap acceptance level by

including variables relevant to all three types of merges in a single critical gap function.

The model structure is shown in Figure 5.15. The model is estimated with the same

trajectory data.

The latent plan model is an extension of the single level model. The summary

statistics of the estimation results for the two models, presented in Table 5.4, show an

improvement in the fit of the model, even when accounting for the larger number of

parameters in the latent model.
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Figure 5.15: Framework of the single level merging model (Lee 2006)

Table 5.4: Model comparison

Statistic Single Level Combined
(R) Merging (U)

Likelihood value -1639.69 -1609.65

Number of parameters (k) 17 42

Akaike information criteria (AIC) -1622.69 -1567.65

Adjusted rho-bar square (P2) 0.87 0.88

The model with explicit target lane choice has larger values in terms of both AIC

and P2 (detailed in Chapter 4). This indicates that the inclusion of the latent plans in the

decision framework results in an improved goodness-of-fit even after discounting for the

increase in the number of parameters.

The detailed estimation results of the model components are presented below:

Execution of Normal Merge

In the hypothesized decision making process, the driver first evaluates the adjacent

lead and lag gaps to decide whether or not to merge through normal gap acceptance. In

order for the gap to be acceptable both the lead and lag gaps, must be acceptable.

The critical lead and lag gaps are functions of the relative speeds and accelerations of

the adjacent vehicles and the remaining distance to the mandatory lane changing point.

The estimated coefficients are presented in Table 5.5.
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Table 5.5: Estimation results of the normal gap merging model

Normal Lead Gap

Variable Parameter t-stat

Normal lead constant -0.230 -0.33

* Relative average speed (positive) (m/sec) 0.521 0.81

* Relative lead speed (negative) (m/sec) -0.505 -3.13

Distance to MLC point (10 m) 1.32 3.64

* Remaining distance Constant 0.420 0.89
function

Heterogeneity coefficient, a RemDistLead 0.355 1.68

Standard deviation for normal lead gap, aMlead 3.42 9.67

Heterogeneity coefficient for normal lead gap, aM lead -0.819 -3.12

Normal Lag Gap

Normal lag constant 0.198 2.87

* Relative lag speed (positive) (m/sec) 0.208 1.78

* Relative lag speed (negative) (m/sec) 0.184 1.63

Distance to MLC point (10 m) 0.239 5.09

* Remaining distance Constant 0.0242 0.03
function

Heterogeneity coefficient, aRemsLag 0.0180 0.03

* Lag acceleration (positive) (m/sec2) 0.0545 0.61

Standard deviation for normal lag gap, o-Mlag 0.840 3.03

Heterogeneity coefficient for normal lag gap, aMlag -0.0076 -0.01

* same coefficients in normal, courtesy and forced gap acceptance levels

The lead critical gap is a function of the average speed in the mainline relative to

the subject vehicle's speed, the relative speed of the lead with respect to the subject and

the remaining distance to the mandatory lane changing point and can be expressed as

follows:

-0.230+ 0521V' -0.505Mn(0 AVead 1.32 d
Gm lead = exp - + 0+exp(0.420 +0.355un)

O.8l9v + M lead

(5.30)
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Where,

G"1,"d = critical lead gap for the normal gap acceptance level (m)

VJ, =relative average speedfactor (m/sec)

Av,',"d =relative speed of the lead vehicle with respect to the subject (m/sec)

dn, =remaining distance to the mandatory lane changing point (10 m)

O = individual-specific random effect

CMlead= random error term associated with normal lead gap : lea - N (,3.832

The lag critical gap is a function of the subject vehicle speed relative to the lag

vehicle, the remaining distance to the mandatory lane changing point and the acceleration

of the lag vehicle. This can be expressed as follows:

Gmlg =exp0. 198 +0.208Max (0, A V,',a) +0. 184Min (0, A V,,ag)(.1~Mlag _ (5.31)
S exp 0.239 d, +O.0545Max (0, a,) -0.0076n +E"'agJ

I+exp(0.0242+0.018vn) n

Where,

GA "a =critical lag gap for the normal gap acceptance level (i)

A -a,"=relative speed of the lag vehicle with respect to the subject (m/sec)

d, =remaining distance to the mandatory lane changing point (10 m)

a" =acceleration of the lag vehicle (m/sec2 )

o = individual-specific random effect

EMlag =random error term associated with normal lead gap: EMlag ~ N (0, 0.532 2)

The lead critical gap increases with the average speed of the mainline. As the

mainline average speed increases, the driver needs larger critical gaps to adjust the speed

to the speed of the mainstream. However, critical gap does not increase linearly with

increasing average speeds in the mainline (Figure 5.16), rather it increases as a

diminishing function /"av,', , where, v, , AVn" being the

relative speed between the average mainline and the subject vehicle (m/sec).
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Figure 5.16: Lead critical gap as a function of relative average speed in the mainline

The lead critical gap is larger when the lead vehicle is moving slower than the subject

since the driver perceives an increased risk when the lead is slowing down and he/she is

getting closer to the lead vehicle (Figure 5.17).
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Figure 5.17: Lead critical gap as a function of relative lead speed

The lag critical gap increases with the relative lag speed: the faster the lag vehicle is

relative to the subject, the larger the critical gap (Figure 5.18).

The lag critical gap increases as the acceleration of the lag vehicle increases (Figure

5.19), due to the higher perceived risk of merging into the mainstream when the lag

vehicle is accelerating.
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Figure 5.18: Lag critical gap as a function of relative lag speed
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Figure 5.19: Lag critical gap as a function of lag vehicle acceleration

Both the lead and lag critical gaps decrease as the distance remaining to the

mandatory lane changing point decreases. This is because as the driver approaches the

point where the ramp ends, the urgency to make the merge increases and he/she is willing

to accept lower gaps to merge. To capture drivers' heterogeneity, an individual-specific

random term has been introduced in the coefficient of the remaining distance. Aggressive

and timid drivers can thus have different critical gaps, the remaining distance being

equal. The aggressiveness/timidity of the driver captures the heterogeneity among the

driver population and is assumed to have a continuous distribution (truncated normal in

this case) rather than discrete having a discrete class membership. All other variables

having no effect, the lead and lag critical gaps as a function of remaining distance for

aggressive drivers are much smaller than the gaps for timid drivers. Thus, aggressive

drivers can find lead and lag gaps to be acceptable even when they are far from the MLC
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point. On the other hand, timid drivers have large critical gaps till they reach the end of

the ramp. The sensitivity of the lead and lag critical gaps as a function of the remaining

distance according to the individual characteristics of the driver is shown in Figure 5.20

and Figure 5.21 respectively. As seen in Figure 5.20, the timid drivers have an unusually

large critical lead gap till they are closer to the MLC point, implying that they do not

consider lane changes at the beginning of the on-ramp. It may be noted that the sign of

the unobserved driver characteristics is consistent for both gaps as well as other choice

dimensions. The t-statistics for the linear part of the coefficient of remaining distance is

found to be very significant both for lead and lag gaps.

Figure 5.20: Lead critical gap as a function of remaining distance to

Figure 5.21: Lag critical gap as a function of remaining distance to MLC point
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Estimated coefficients of the unobserved driver characteristics (v,) are negative for

both the lead and lag critical gaps. This implies that an aggressive driver requires smaller

gaps for lane changing compared with a timid driver.

Initiation and Execution of Courtesy Merge

If the available lead and lag gaps are not acceptable for normal merge, the merging

driver evaluates the speed, acceleration and relative position of the through vehicles and

tries to evaluate whether or not the lag driver is providing courtesy to him/her. The

courtesy or discourtesy of the lag driver is reflected in the anticipated gap which is

defined as the total gap after time r,, (anticipation time):

5,(,)= '"" + '?+ , ,Vlead_ lag 2 lead _ ea lag 3(.2Gn(T)Gt +_~ +a -'a - (5.32)
2

Where, for individual n at time t,

Gn, = anticipated gap, m

Y = length of the subject vehicle, m

Gn 5" G'a = available lead and lag spacing respectively, m

V,'ad ,a" = lead and lag speeds respectively, m/sec

alead lag = lead and lag accelerations respectively, m 2seC2

The anticipated gap is compared against the critical anticipated gap and if deemed

acceptable, the merging driver perceives that he/she is receiving courtesy from the lag

driver and initiates a courtesy merge. The anticipated gap is acceptable if it is larger than

the corresponding critical anticipated gap. Critical gaps are assumed to be log-normally

distributed (a better fit than other non-negative distributions). The mean of the

distribution is a function of explanatory variables: the relative lag speed, remaining

distance, and density of the traffic stream. The estimated parameters are presented in

Table 5.6.
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Table 5.6: Estimation results of the initiate courtesy model

Initiate Courtesy Merge

Variable Parameter t-stat

Anticipated gap constant 1.82 1.00

Relative average speed (positive) (m/sec) 1.82 2.13

Relative lead speed (m/sec) -0.153 -0.97

Distance to MLC point (10 m) 0.244 1.50
Remaining distance Constant 0.449 0.49
function

Heterogeneity coefficient, aRemDistA 0.360 0.18

Standard deviation for anticipated gap (o-A) 0.0106 0.07

Heterogeneity coefficient for anticipated gap (a ) -0.231 -1.90

Mean of anticipation time (u) 1.87 9.51

Standard deviation of anticipation time (a-,) 1.44 17.71

The estimated functional form of the critical anticipated gap is given by:

1.82+1.82Max(0, A V'") -0.153p, + 0.244 d
Gj = exp " ' +exp(0.449 + 0.360v,)

-0.23 1v, + ,

Where,

G^ critical anticipated gapfor the initiating courtesy merge (i);

A V,' =relative speed of the lag vehicle with respect to the subject (m/sec);

dn, = remaining distance to the mandatory lane changing point (10 m);

p1, = density in the rightmost lane of the mainline (veh/10 m); and

v, =unobserved driver characteristics.
A N(0,0.0106 2En random error terms Ni0,0.10

(5.33)

Similar to normal critical gaps, the critical anticipated gap is higher at higher lag

speeds. It decreases as the remaining distance decreases and it is smaller for aggressive

drivers than timid drivers. Courtesy yielding/merging more commonly occurs in dense

traffic conditions and hence the probability of merging through courtesy increases with

the density of mainline traffic. The critical anticipated gap therefore decreases with
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density of traffic in the rightmost mainline lane. Median critical anticipated gap as a

function of density is presented in Figure 5.13.
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Figure 5.22: Median critical anticipated gap as a function of density in target lane

On initiating a courtesy merge, the driver decides whether to complete the merge by

accepting or not the available gap based on the respective lead and lag critical gaps. For

identification purposes, except for the constant and the unobserved driver characteristics,

the coefficients of variables in these levels are restricted to be the same as for the normal

gap acceptance level (Table 5.7).

The estimated functional form of the lead and lag critical gaps for courtesy can be

expressed by the following equations:

K Vll, ) +1.32
-0.582+0.521V -0.505Min(0,AV ad 1 d,

G.Clead exp nt 1 +exp(0.420 + 0.355v) (5.34)

-0.054v, + Clead

Clead N(0,0.01092)

-1.23 + 0.208Max (0, A V," )+0.184Min (0, A V,,)

Gc'"i = exp + 0.439 d + 0.0545Max(00, - + ,' (5.35)
-I+exp(0.0242 + 0.00018vn) d, 0.

En'tg N(0,0.5542)

Where,

GClead ,G'!""=lead and lag critical gaps for the courtesy gap acceptance level respectively
Cla, E Clag = random error terms
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Table 5.7: Estimation results of the courtesy gap acceptance model

Courtesy Lead Gap

Variable Parameter t-stat

Courtesy lead constant -0.582 -0.20

*Relative average speed (positive) (m/sec) 0.521 0.81

*Relative lead speed (negative) (m/sec) -0.505 -3.13

Distance to MLC point (10 m) 1.32 3.64

*Remaining distance Constant 0.420 0.89
function

Heterogeneity coefficient, a RemDistLead 0.355 1.68

Standard deviation for courtesy lead gap, '
T

Clead 0.0109 0.08

Heterogeneity term for courtesy lead gap, ac"lead -0.0540 -0.03

Courtesy Lag Gap

Courtesy lag constant -1.23 -0.07

*Relative lag speed (positive) (m/sec) 0.208 1.78

*Relative lag speed (negative) (m/sec) 0.184 1.63

Distance to MLC point (10 m) 0.439 5.09

*Remaining distance Constant 0.0242 0.03
function

Heterogeneity coefficient, aRemDisLag 0.000180 0.03

*Lag acceleration (positive) (m/sec 2) 0.0545 0.61

Standard deviation for courtesy lag gap, o7
Cag 0.554 0.05

Heterogeneity term for courtesy lag gap, aclag -0.0226 -0.04

* same coefficients in normal, courtesy and forced gap acceptance levels

The estimation results show that all other things held constant, a driver is more

willing to accept smaller lead and lag gaps when he/she is in the courtesy merging state

than in normal or forced merging states. This is intuitive since in case of courtesy

merging, the lag vehicle is slowing down and therefore, a smaller buffer space is

sufficient.
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Initiation and Execution of Forced Merge

If the driver perceives that a normal lane change is not possible and there is no

courtesy yielding of the lag driver (anticipated gap is not acceptable), the driver chooses

whether or not to initiate a forced merge. As described in Section 5.2.1, this is modeled as

a binary logit model.

Table 5.8: Estimation results of the initiate forced merge model

Initiate Forced Merge

Variable Parameter t-stat

Initiate force constant -6.41 -4.63

Heavy lag vehicle dummy -1.25 -0.63

Heterogeneity term for initiated forced merge(aF) 5.43 3.26

The decision to initiate a forced merge was found to be dependent on the

aggressiveness of the driver and whether the lag vehicle in the mainline is a heavy

vehicle or not. In particular, the coefficient of aggressiveness has a significant impact on

the decision to initiate a forced merge. If the lag is a heavy vehicle, the probability of

initiating a forced merge decreases, as the driver perceives a higher risk in undertaking

such a maneuver. The variable remaining distance (urgency of the merge) and delay

(impatience) of the driver were assumed to impact forced merge, but the estimated

coefficients of these two variables did not have the expected signs. This may be due to

the fact that in the estimation dataset, many of the forced merges actually occurred in the

beginning of the section as opposed to the end.

The probability of initiating a forced merge is given by the following equation:

PF -1(5.36)
1+ exp(6.41+1.258,nv -5.43vt)(

Where,

45V = heavy lag vehicle dummy, 1 if the lag vehicle is a heavy vehicle, 0 otherwise

Similar to courtesy merging, on initiating a forced merge, the driver decides whether

to complete the merge by accepting the available gap or not based on the respective lead

and lag critical gaps. For identification purposes, except for the constant and the
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unobserved driver characteristics, the coefficients of variables in these

restricted to be the same as for the normal gap acceptance level (Table 5.9).

levels are

Table 5.9: Estimation results of the forced merging model

Forced Lead Gap

Variable Parameter t-stat

Forced lead constant 3.11 2.11

*Relative average speed (positive) (m/sec) 0.521 0.81

*Relative lead speed (m/sec) -0.505 -3.13

Distance to MLC point (10 m) 1.32 3.64
*Remaining distance Constant 0.420 0.89
function

Heterogeneity coefficient, a RemDistLead 0.355 1.68

Standard deviation for forced lead gap, o-Flead 7.95 5.82

Heterogeneity term for forced lead gap, aFlead -0.0401 -0.07

Forced Lag Gap

Forced lag constant -2.53 -3.42

*Relative lag speed (positive) (m/sec) 0.208 1.78

*Relative lag speed (negative) (m/sec) 0.184 1.63

Distance to MLC point (10 m) 0.439 5.09
*Remaining distance Constant 0.0242 0.03
function

Heterogeneity coefficient, aRemDislLag 0.000180 0.03

*Lag acceleration (positive) (m/sec2) 0.0545 0.61

Standard deviation for forced lag gap, -Flag 0.465 2.49

Heterogeneity term for forced lag gap, aFlag -0.0239 -0.19
* same coefficients in normal, courtesy and forced gap acceptance levels

The estimated functional form of the lead and lag critical gaps for courtesy can be

expressed by the following equations:

ead r3.1 1+0.521VI - 0.505 Min(0, AV,,ad)+ 1.32 d ,,G.,ead = exp 1+exp(0.420+ 0.355v()
--0.0401v, ,Fead J (5.37)

eF/ad N(0,7.952)
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-2.53 + 0.208Max (0, A V,") +0.184Min (0, A V"a)
+ 0F55Mx0 laagx
G+" =0.439 d +0.0545Max(,a'" J-0.0239v, lag (5.38)

1 +exp(0.0242 + 0.00018vn) ) fi+

EFlag ~ N(0,0.4652)

Where,

GFead ,GF"a = lead and lag critical gaps for the forced gap acceptance level respectively

6Flead and Enta = random error terms

The constant term for the lag critical gap for forced merging is smaller than for the

normal and courtesy merges. However, the lead critical gap for the forced merging case is

found to be larger than the case of the normal merge. This reflects the fact that once the

driver has initiated a forced merge (pushed the front bumper establishing the right of

way), the lead gap plays a dominant role in the completion of the merge. Once initiated,

the forced merge is completed only when the lead gap is sufficiently large since the

maneuver involves significantly higher risk than for normal gap acceptance.

Distribution of Anticipation Time

The anticipation time is assumed to follow a doubly truncated normal distribution.

Estimation results indicated that it is normally distributed within 0 to 4 sec. 6 The

estimated distribution of anticipation time is

I r, - 1.87if0<r 4
f (r)= 0.833 1.44 ) (5.39)

t0 otherwise

6 Different values between 0 to 6 sec were tested as the upper limit of anticipation time and the selected
value (4 sec) provided the best goodness-of-fit.

145



04 .d e. ......ti..

5.4.1 Da2

210 0 64 m

& 0. 5 . 5 2 25 3 .35. 4
Mtici6all n f ( 3 ec)

Figure 523 Distribution of anticipation time

5.4 Model Validation

Both the latent plan model and the single level model were implemented in the

microscopic traffic simulator MITSIMLab (Yang and Koutsopoulos 1996) for aggregate
validation. In the validation process, part of the aggregate data was first used to calibrate

the overall behavioral parameters of MITSIMLab. The calibrated MITSIMLab outputs

were then compared with the remaining data.

5.4.1 Data

U.S. 10 1 dataset was collected on a 2 100 feet (640 meter) southbound section of U.S.
Highway 101, in Los Angeles (California) with five mainline and one auxiliary lane

connecting to the Ventura on-ramp and the Cahuenga off-ramp (Figure 5.24).

2100 ft (640 m)
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6 N

698 ft (213 m)
Ventura On -Ramp Study Area Lankerahim off. ramp

of Trajectory Data

Figure 5.24: Validation data collection site
This site has an auxiliary lane after the onramp, which was not the case for the 1-80

site. 45 minutes of data (7:50 a.m.-8:35 a.m.) were available. Based on the trajectory
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data, 'synthetic' sensor data was created in three locations (Figure 5.24). This sensor

data replicated counts and speeds (aggregated over every five minutes) that would have

been recorded by sensors located in these locations.

5.4.2 Aggregate Calibration

The aggregate calibration problem can be formulated as an optimization problem

which seeks to minimize a function of the deviation of the simulated traffic

measurements from the observed measurements (Toledo et al. 2004). The number of

behavioral parameters in the simulation model is very large and it is not feasible to

calibrate all of them. Based on previous experience and sensitivity test results, the

following parameters of the combined model were selected for calibration:

" Acceleration and deceleration constants

* Desired speed mean and sigma

" Intercepts (constants) and standard deviations (sigma's) of normal critical gap

* Anticipation time mean and sigma

* Probability of yielding of the mainline vehicle

* Constant for forced merging

* Individual-specific random errors in the remaining distance terms

The fit of the combined model to the calibration data are presented in Table 5.10.

Table 5.10: Calibration results of the combined model

Lane-specific Counts
Before After Improvement

Calibration Calibration

RMSE (vehicles/15 mins) 11.05 7.18 35.02%
RMSPE (%) 10.47 5.11 51.19%

Lane-specific Speeds
Before After Improvement

Calibration Calibration

RMSE (m/s) 8.22 5.59 32.00%

RMSPE (%) 32.34 20.09 37.88%
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5.4.3 Aggregate Validation

The validation process involved data that was not used for calibration. A comparison

of the following simulated and observed statistics was conducted:

" Lane-specific point speeds for the remaining 15 mins (8:20-8:35 am)

* Lane-specific flows for the remaining 15 mins (8:20-8:35 am)

" Distribution of location of merges (summarized from aggregate trajectory

data)

The measures of performance of the combined model were compared against the

performance of the 'reduced form' single level model. The OD flows used for this step

were calculated directly from the trajectory data.

Lane-specific Sensor Speeds

A separate set of lane-specific speed measurements from sensors (not used for

calibration) was used for validation purpose. The comparisons of the goodness-of-fit

measures are presented in Table 5.12. As is evident from the RMSE and RMSPE, the

performance of the models improved with complexity of the model: the latent plan

merging model performed better than the single level model.

Table 5.11: Comparison of lane-specific speeds

Single Level Combined Merging Improvement
Model Model

RMSE (m/s) 9.16 8.82 3.71 %

RMSPE (%) 24.27 22.26 8.28 %

Lane-specific Sensor Counts

The simulated lane-specific sensor counts of the latent plan merging model were

compared against the actual observations and the simulated counts of the single level

model. As observed in Table 5.13, the combined merging model had a significantly better

match with the actual observations.
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Table 5.12: Comparison of lane-specific counts

Single Level Combined Merging Improvement
Model Model

RMSE
(vehicles/5 mins) 19.18 13.22 31.07 %
RMSPE (%) 12.18 7.52 38.26%

Location of Merge

The simulated locations of merges were compared against the observed locations. The

latent plan model had a significantly better prediction of the location of merges than the

single level model (see Figure 5.17). In particular, the simpler model tends to over predict

merges occurring toward the end of the auxiliary lane since courtesy and forced merging

plans are not considered explicitly in this model.

Figure 5.25: Comparison of merge locations

5.5 Summary

The detailed structure, estimation results and validation results of a latent plan based

combined merging model has been presented in this chapter. The model integrates

normal, cooperative and forced merging types into a single framework. Parameters of the

models are estimated with detailed vehicle trajectory data collected from 1-80, in

California. The effect of unobserved driver/vehicle characteristics on the lane changing

process was captured by driver-specific random terms included in different model

components.
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Important explanatory variables were found to be the urgency of the driver (e.g.

distance remaining to the end of the merging section), the relation of the merging vehicle

with neighboring vehicles (e.g. lead and lag speed and position etc.), the traffic

conditions (e.g. average speed and density) and driver heterogeneity. Statistical

comparisons of estimation results indicate that the estimated combined model has

significantly better goodness-of-fit compared to a reduced form simpler model that does

not explicitly consider courtesy and forced merging. This was supported by a validation

case study where the performance of the two models was compared in a different network

setting. The combined model performed significantly better than the simpler models

across all measures.

In the current model, the latent plans were assumed to include only lateral decisions

involved with the merging decision. The extent of the improvements obtained with the

enhancements in the merging models presented in this application indicates that further

advances in merging models may lead to improvements in their ability to replicate

observed vehicle trajectories. In particular, including target gap choice and acceleration

in the model is a possible future direction of research. As observed in the validation

results, the combined model was better at replicating counts than speeds. Inclusion of

target gap choice and speed adjustment to reach a targeted gap in the decision framework

of the merging driver may improve the match of speed as well as ensuring a better

prediction of merge locations.
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Chapter 6

Lane Selection on Urban Arterials

The latent plans involving the lane selections of drivers on urban arterials are

investigated in this chapter. The specific models discussed here are the lane choice model

for urban intersections and the lane changing model for arterial mainline sections. The

general structure of both models is the same as presented in the previous chapters: latent

plan followed by observed actions. However, because of differences in geometric and

operational characteristics, the latent plans involving lane selection of drivers on urban

mainline and side streets are likely to be quite different than those of freeway mainline

(discussed in Chapter 4) and on-ramps (discussed in Chapter 5).

The chapter is organized as follows: the background of the research is presented in

Section 6.1. Description of the estimation data and the details of the model estimations

are presented in Section 6.2: the intersection lane choice model in Section 6.2.2 and the

mainline lane changing model in Section 6.2.3. Each section includes the model

structures, the likelihood formulations and the estimation results of each of the two

models. The chapter concludes with the aggregate calibration and validation results

within the microscopic traffic simulator MITSIMLab and a summary of the findings. 7

6.1 Background

Travelers on arterial networks face special challenges regarding lane positioning

strategies. Arterial corridors have a set of varied driving activities that differ by lane and

location. These activities encompass trip destination activities (parking, entering transit

7 The model presented in this chapter has been developed as part of the NGSIM program of FHWA. The
results presented in this chapter have been reported in Choudhury et al. (2007). A simplified version of the
mainline lane changing model has been developed by Ramanujam (2007).
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stops, right turns, left turns etc.), trip origination activities (exiting a parking spot, exiting

transit stops etc.), and complex routing behaviors (permissive left turns, pedestrian-

impeded right turns etc.). Drivers familiar with the network may be aware of these

activities and be mindful about how they vary by lane and location. These drivers often

make appropriate tactical lane positioning decisions to minimize their travel times and

driving efforts on these complex facilities. The familiarity and planning ability of the

drivers that is: how far they 'look-ahead' or 'plan-ahead' affect their tactical plans and

thus impact their driving decisions.

Due to situational constraints, immediate execution of the tactical lane selection plan

may not be possible. For example, at a particular instant, conflicts with other vehicles

can delay movement to the target lane. Further, changes in circumstances may lead to

changes in the tactical plan: a long queue build-up in the chosen target lane for example

can lead to amendment to the original target. The chosen target lanes are thus

unobserved and only the immediate choice of lanes is observed.

The lane positioning decisions generally manifest themselves inside lane changing

models in existing simulation systems. Lane changing models are often generalized

between freeway and arterial facilities. On arterial networks, existing models rely on

standard lane changing logic to determine vehicle positioning behavior. Some models

address the pre-positioning of drivers for path-plan considerations using rule based lane

changing models (Jin et al. 1999, Wei et al. 2000). But the complexity of the tactical

plans behind the immediate decisions of the drivers, as well as the heterogeneity in their

planning behaviors, is ignored in the existing models. Moreover, none of the arterial lane

selection models involve rigorous statistical estimation using detailed traffic data. These

weaknesses of the existing models often lead to unrealistic spillbacks and uneven queue

distributions across lanes. This has been also reflected in the findings of the NGSIM

study on Identification and Prioritization of Core Algorithm Categories, where

development of arterial lane selection model has been identified as the most important

research area by both model developers and users (Alexiadis et al. 2004).

Lane selections in urban arterials include lane changes within the arterial mainline

sections as well as lane choices at intersections. The lane changes in the arterial mainline

sections involve repeated decisions of drivers while intersection lane choices are
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intermittent decisions that are evaluated only when the driver is turning at intersections

(since changing lanes within the intersection are not permissible). Further, the nature of

conflict with other vehicles while turning at an intersection is distinctly different from

that of lane changing in a mainline section. These lead to differences in the detailed

frameworks of the intersection lane choice and mainline lane changing models in this

study.

A driver turning at a signalized intersection is likely to choose the lane that he/she

perceives to be the best and plans to move to that lane. However, because of conflicts

with other vehicles having the right of way, it may not be possible to execute the plan

immediately. The immediate lane choice of the driver, that is the lane where he/she is

observed just after turning, thus may not be the same as the originally targeted lane. The

plan of the driver is thus unobserved and only the immediate lane selection is observed.

The intersection lane selection is therefore a two level decision:

* Choice of target lane (plan)

* Choice of immediate lane (action)

In an unsignalized intersection, the choice may involve additional levels like gap

acceptance, target gap selection and/or decision whether or not to move towards the

target lane using alternate gap acceptance tactics (e.g. by courtesy of another driver or by

forcing in).

Once the driver gets on the main arterial, he/she is likely to have a latent plan based

lane changing decision structure similar as in the freeway mainline: target lane selection

followed by gap acceptance to reach the target lane. However, in urban arterials where

average speeds and headways are significantly lower than the freeway, duration of the

lane changing maneuver may be longer than that of a freeway. Drivers trying to reach

their target lane therefore are not instantaneously observed to complete the lane change in

the direction of the target lane even if an acceptable adjacent gap is available. Rather, a

lane change is observed in the direction of the chosen target lane in presence of an

acceptable adjacent gap when the execution of the lane change has been completed

(center point of the vehicle has passed the lane boundary).
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The simplest lane changing maneuver of drivers in the arterial mainline can thus be

defined as a three stage decision:

* Choice of target lane (plan)

* Decision to accept available gaps (plan)

" Execution of the lane change ( action)

The components of the chosen plan (target lane selection and gap acceptance) are

latent or unobserved and only the completion of the execution of the lane change is

observed. It may be noted that in congested urban arterials, the plan may include

additional levels like target gap selection and choice of lane changing tactics in the

decision framework.

As mentioned, in an urban arterial with closely spaced turns, the plan-ahead distance

of the driver generally has a strong influence on the lane selection. The tactical plans of

the driver are affected by influencing factors within the plan-ahead distance of the driver.

For a driver familiar with the network and turning in a subsequent section, this implies

that he/she does not consider the path-plan in lane selection until the desired turn is

within the plan-ahead distance. It may also imply that the driver does not look beyond the
plan-ahead distance while considering lane-specific variables such as average speeds,
density and queue lengths. The plan-ahead distance of the driver is expected to vary

among the driver population and can depend on different factors such as personal traits,
network familiarity, congestion level etc. While the continuous plan-ahead distance is

more appropriate for lane changing scenarios where the decisions are evaluated

continuously, a discrete approach (where plan-ahead distances are multiples of section

lengths) is more relevant in case of intersection lane choice since the decisions are taken

intermittently at distinct points in the network.

6.2 Model Estimation

6.2.1 Estimation Data

Study Area

The two arterial models in discussion: the intersection lane choice and the within

section lane change model are estimated from data collected from Lankershim Boulevard
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in Los Angeles, California. Vehicle trajectory data was collected in 2005 as part of the

FHWA's NGSIM project on a segment of the arterial located near the intersection with

US highway 101 (Hollywood Freeway) (Figure 6.1).

Figure 6.1: Lankershim Boulevard arterial section

The study site is approximately 1600 feet (488 m) in length. It consists of four

signalized intersections, and three to four through lanes in each direction in each section.

Five video cameras were used to collect the trajectory data for a 22 minute period (8:28

am to 9:00 am). These cameras were mounted on top of a 36-story building, 10

University Plaza, located adjacent to the US 101 and Lankershim Boulevard interchange.
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Figure 6.2: A schematic representation of the arterial stretch

(not in scale)

Figure 6.2 shows a schematic of the arterial segment constituting the study area. It

also provides details regarding the reference indices used for demarcating the
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intersections and sections. Lane numbering is assigned starting from the left most lane

(i.e. in a four lane section, the rightmost lane index is 4). Almost every section has

exclusive turning bays in the approach leading to the intersection.

The trajectory data have been split into two parts: one part containing observations of

vehicles between each set of intersections (2016 vehicles), and the other part containing

observations of vehicles in the vicinity of the intersections including the side streets. The

lane changing model for the mainline was estimated using the first part of the data. The

intersection lane selection model was based on observations of side street vehicles

entering the main arterial at the four intersections (703 vehicles). Intersection lane

choices of vehicles turning to side streets from the main arterial were excluded because of

lack of information of the downstream conditions in the side streets.

For estimation purposes, the dataset with the mainline section observations was

sampled randomly at the rate of 1 per every 5 vehicles, with the objective of establishing

a computationally tractable representative dataset for arterial lane changing behavior.

Sampling was also applied in the time dimension, at a rate of 1 per every 10 time

instances of each sampled vehicle. As the original dataset had a 0.1 second time

resolution, this sampling step converted the information to a 1 second resolution. Non-

conforming and erroneous observations (e.g. through vehicles positioned in the turning

bays, vehicles making turns from the wrong lanes etc.) were not used for estimation.

For the intersection lane choice, the variables were generated using the last

observations of each vehicle in the side street before entering the intersections (the

decision point for intersection lane choice). The first observations of these vehicles after

entering the main arterial section indicated their observed choices.

Characteristics of Estimation Dataset

The vehicle trajectory data of the various drivers in the study area and the speeds and

accelerations derived from these trajectories were used to generate the required variables.

The dataset used for estimating the intersection lane choice model included 703

observations (1 observation per vehicle): 629 northbound and 74 southbound. The

vehicles are mostly passenger cars with only a small percentage (3.5%) of trucks and

buses present. Of these vehicles 269 (38.1%) turn into the closest receiving lanes 435
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(61.9%) later change to different lanes within the section. The majority of the entering

vehicles are observed for more than one sections (80.2%) with more than half (55.9%)

observed for more than two sections. However, most of the vehicles observed for more

than two sections do not make any turn within the observed data collection area. The

distribution of directions is presented in Figure 6.3.
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Figure 6.3: Distribution of directions

The dataset of mainline vehicles within section consists of a total of 400 vehicles, of

which 160 are northbound and 240 are southbound. The average vehicle observation

duration is 51.3 seconds, with the maximum duration of observation being 170 seconds.

Out of the 400 vehicles in the sampled dataset, 150 vehicles (around 37.5%) exited from

the arterial within the study area, i.e. their destination is a side street at one of the four

intersections within the study area.

The arterial sections are mostly 3-lane and 4-lane roadways, with exclusive turning

bays widening the section at the approach to every downstream intersection. For data

analysis and estimation purposes, lanes have been categorized on the basis of permitted

vehicular movements. Statistics on the relevant aggregate lane-specific variables are

presented in Table 6.1. It may be noted that there were no shared through and left turn

lane in the data collection site.
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Table 6.1: Aggregate lane-specific statistics

Through Shared Right turn Left turn Extra turn
lane through bay bay bay

and right
turn lane

Average Speed (mI/s) 10.32 8.67 18.43 13.93 6.50
Average Queue Length (in) 1.07 1.93 0.18 1.44 2.08

Max Queue Length (m) 15.0 12.0 7.0 18.0 11.0

The presence of turning vehicles, and the conflicts arising due to their movements in

conjunction with through vehicles, provides a reasonable explanation for the low average

speeds observed in both through and turning lanes. The maximum queue length values

are observed during red intervals at traffic signals. The presence of the exclusive turn

bays and associated restrictions on turning vehicles has been considered while generating

from trajectory data the explanatory variables for the lane changing model.

In the sampled dataset, there are a total of 249 lane changes observed. Of these, 104

(41.8%) are made by turning vehicles, i.e., those exiting the arterial within the observed

stretch. A portion of these turning vehicles (19% out of the 104 turning vehicles) change

lanes before reaching the last section. It may be noted that the data collection site had a

mix of local commuters (familiar drivers) and tourists (unfamiliar drivers).

For vehicles going through the entire arterial stretch (also termed the through vehicles

in the subsequent discussion), the distribution of lane changes over different sections is

given in Table 6.2:

Table 6.2: Distribution of locations of lane change points for through vehicles

Northbound Southbound Total
Section 2 13 13 26
Section 3 56 16 72

Section 4 26 21 47

Total 95 50 145

In the model developed for this dataset, lead or lag vehicles are defined as the closest

vehicles in the corresponding adjacent lanes within the current section of the subject

vehicle (Figure 6.4). The lead gap is the clear spacing between the rear of the lead vehicle

and the front of the subject vehicle. Similarly, the lag gap is the clear spacing between the
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rear of the subject vehicle and the front of the lag vehicle. One, or both, of these gaps

may be negative if the vehicles overlap.

Traffic direction

Lag Lag Lead Lead
vehicle spacing 1 spacing vehicle
- - - - --- - - - - - -- - - -L- - - - - - - - - - - - - - - - - ---- --- - - - --.. . . . . .

Subject Front Front
vehicle spacing vehicle

Figure 6.4: Definitions of the lead and lag vehicles and the gaps they define

A notable aspect of the Lankershim dataset is a significant percentage of observations

in which a lead or lag vehicle is absent in adjacent lanes during the lane changes. The

effect of signals is a major factor behind this phenomenon. This aspect of the dataset is

summarized in Table 6.3.

Table 6.3: Vehicle observations without lead/lag vehicle in adjacent lane

All Observations Lane Changing Observations
(total 16696) (total 249)

No. % No. %

Lead Vehicle Absent 3749 22.45 155 62.24

Lag Vehicle Absent 3811 22.83 151 60.64

To accommodate observations without lead and/or lag gap, it is hypothesized that the

lead and lag gap lengths considered by the drivers in such instances are the distances

from the nearest intersection boundaries lying within either gap. This approach represents

a reasonable assumption given that traffic regulations do not allow vehicles to make a

lane change within an intersection. The definition of gaps in such situations is illustrated

in Figure 6.5.

Lag gap Lead gap

Intersection 1 Travel direction Intersection

Figure 6.5: Definitions of the lead and lag gaps in absence of lead and/or lag vehicles
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Table 6.4 presents the descriptive statistics for the lead and lag vehicle relative to the
subject vehicle. Relative speeds are defined as the speed of the lead (lag) vehicle less the
speed of the subject vehicle. The table also summarizes statistics for the accepted lead

and lag gaps. Accepted lead gaps vary from 0.22 meter to 118.73 meters, with a mean of

23.57 meters. Accepted lag gaps vary from 0.75 meter to 128.52 meters. Statistics for all

gaps in the dataset are shown in parenthesis in the same table (Table 6.4). In these

statistics, negative spacing values indicate that the subject and the lead vehicle partly

overlap (this is possible because they are in different lanes). As expected, the mean

accepted gaps are larger than the mean gaps in the traffic stream. Similarly, lead relative

speeds in accepted gaps are larger than in the mean of the dataset and lag relative speeds

are smaller in the entire dataset (i.e. on average, in accepted gaps the subject vehicle is

slower relative to the lead vehicle and faster relative to the lag vehicle compared to the

gaps in the entire dataset).

Table 6.4: Statistics describing the lead and lag vehicles

Variable Mean Std Dev Max Min
Lead Relative Speed -2.05 3.87 3.50 -14.58
(m/sec) (0.35) (3.55) (15.92) (-15.73)
Lead Gap 23.57 19.24 118.73 0.22
(in) (11.60) (18.74) (155.80) (0.00)
Lag Relative Speed -0.93 3.90 7.30 -15.25
(m/sec) (0.35) (3.65) (15.62) (-15.73)
Lag Gap 9.18 23.47 128.52 0.75
(in) (3.51) (20.24) (152.28) (0.00001

More detailed information on the Lankershim Blvd. dataset is available in the

NGSIM data analysis report (Cambridge Systematics, Inc. 2006) and Ramanujam (2007).

As noted previously, arterial lane selection behavior is captured by two sub-models,
the intersection lane choice model and the lane changing model for the mainline section.

The details of the intersection lane choice model are presented first followed by the

details of the lane changing model for the mainline section.

160



6.2.2 Lane Choice at Intersection

Model Structure

The intersection lane choice model involves the lane selection of drivers entering the

arterial from a side street (Figure 6.6). These drivers are likely to target the lane that they

perceive to be the best in the subsequent section of their path and plan to move to that

lane. The choice set of target lane is likely to include all lanes in the subsequent section

regardless of their availability. Due to situational constraints, immediate execution of the

tactical lane selection plan may not be possible. For example, at a particular instant,

conflicts with other vehicles can delay movement to the target lane. The immediate lane

choice of the driver, that is the lane where he/she is observed just after turning, thus may

not be the same as the originally targeted lane. Further, changes in circumstances may

lead to changes in the target lane: a long queue build-up in the chosen target lane for

example can lead to amendment to the original target. The chosen target lanes are thus

unobserved and only the immediate choice of lanes is observed.

Figure 6.6: Intersection lane selection

The intersection lane selection can therefore be modeled as a two level decision:

* Choice of target lane

* Choice of immediate lane

The choice of target lane is a tactical decision of the driver whereas the choice of

immediate lane is governed by maneuverability considerations. The framework of the

model is shown in Figure 6.7. Latent choices are shown as ovals, observed ones are
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shown as rectangles. It should be noted that once the driver enters the arterial, then the

mainline lane changing model is applicable.

1 2 3 4 Target Lane
(Plan)

Immediate Lane
4 (Action)

Figure 6.7: Structure of the intersection lane selection model

The two levels of decision are detailed in the following sections.

Choice of Plan: The Target Lane Choice

At the first level, the driver chooses the most desirable lane as the target lane. The

target lane choice set constitutes of all the available lanes the driver is eligible to move to.

The target lane utilities are affected by a wide range of factors. These include variables

related to the path-plan of the driver, such as the distance to a point where the driver

needs to be in specific lanes and the number of lane changes required from the target lane

to the correct lanes. However, the effects of path-plan in the target lane choice also

depend on the planning capability of the driver and his/her familiarity with the network.

Drivers who are familiar with the network and 'plan-ahead' are likely to pre-position

themselves in the correct lanes well-ahead of the section prior to the turn. These drivers

may also be aware of the lane-specific obstructions in downstream sections and take into

account the anticipated delays associated with staying in a lane while making their

decisions. On the other hand, drivers who are not familiar with the network and/or do not

plan-ahead are not likely to be affected by path-plan considerations or anticipated delay

beyond their immediate sections.
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Figure 6.8: Perspective of myopic drivers

Figure 6.9: Perspective of drivers who plan-ahead

Depending on the familiarity and planning capability, the drivers can thus belong to

either of the two classes:

* Class 1: Myopic drivers. Drivers who consider the path-plan and anticipated

delay only in their immediate subsequent section while making the lane

selections belong to this class.

* Class 2: Drivers who plan-ahead. These drivers consider path-plan and

anticipated delay beyond their immediate subsequent section while making

the lane selections.

Parameters associated with the target lane of the driver may be class-specific,

indicating significant difference in sensitivity to influencing variables among driver

classes. The perspectives of each class of driver are presented in Figures 6.8 and 6.9.

The utilities of the various target lanes can be expressed as follows:
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Uln = Vn + -ln, 1 E Ln (6.1 )

Where,

Vin = systematic part of the utility of target lane / of driver n

Cin = random error term associated with target lane choice

L4 =choice set of target lane of driver n

Variables likely to influence the target lane choice of the driver include the following:

* Path-plan variables: Number of lane changes the driver needs to make in order

to be in the correct lane to follow his/her path and the distance to the point by

which he/she needs to be in the correct lane;

* Lane attributes: Queue lengths, average speeds, and queue discharge rates;

* Driving style and capabilities: Individual driver/vehicle characteristics, such

as the plan-ahead distance and aggressiveness of the driver; and

* Expected maximum utility from the immediate lanes: The expected maximum

utility (EMU) that can be derived from choosing the immediate lanes given a

particular target lane can also affect the target lane choice. The choice of

target lane is thus indirectly influenced by variables that influence the

immediate lane choices given the target lane choice.

The systematic utility consists of interaction of these sets of variables and can be

expressed as follows:

Vv, = V (Xn, a, 1 , n, EMUl) (6.2)

Where,

Xn = attributes of lane lfor driver n, can be function of 2

An = individual-specific look-ahead/plan-ahead distance

,= cofficients

n= individual-specific random effect (e.g. aggressiveness): v -N(O,1)

al = coefficient of individual-specific random effect for lane lfor target lane choice

EMUn = expected maximum utility from choosing lane I as target lane

t may be noted that since the path-plan and other influencing variables are effective only

when these are within the plan-ahead distance of a driver and the plan-ahead distance

varies among the driver population with network familiarity and planning capability, the
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variables related to the lane attributes can differ among drivers at the same intersection

with the same path-plan and surrounding conditions.

The driver chooses as the target lane the lane with the highest utility. Different choice

models are obtained depending on the assumption made about the distributions of the

random terms c,, . Assuming that they are independently and identically extreme value

distributed, target lane choice probabilities, conditional on individual-specific

characteristics (planning-ahead and aggressiveness), can be expressed as follows:

exp (v,,)
P" (I IL, A, Vl,l' e Ln (6.3)

2exp (V,)
l'L,

The Immediate Lane Choice Model

Given the choice of the target lane the driver selects the immediate lane. The

immediate lane selection depends on the choice of target lane but is also influenced by

maneuverability considerations. For example, a lane may be unavailable as an immediate

lane if it is already full. To make the model more flexible, the choice set for the

immediate lane is assumed to include all available lanes in the roadway irrespective of

the target lane and the current position of the driver. The structure can thus accommodate

cases when the target lane and lanes in the direction of the target lane are blocked by

other vehicles and the driver has no option but to move to a different connecting lane.

Lane 1

Target Lane 2

Lane 3-------- --- ---[1 ----- ]--Lane---3
Immediate Lane 4
Lane

Figure 6.10: Example of a situation when the target lane is blocked

This extreme situation is illustrated in Figure 6.10 with a hypothetical example where

the target lane of the driver is Lane 2 (the path to which is blocked) and the driver
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chooses Lane 4 as the immediate lane. The other option for the driver is to wait till the

vehicles in Lane 3 move forward and maneuver to Lane 2 when possible.

The immediate lane choice is thus affected by maneuverability considerations and the

driving effort needed to reach a particular lane, and is conditional on the choice of target

lane. The utility of choosing a lane as immediate lane can be expressed as follows:

UJn =" Viln + -vil, G Jn (6.4)

Where,

Viln = systematic part of utility of immediate lane j of driver n given target lane 1

cjln = random error term associated with immediate lane choice

J,, =choice set of immediate lane of driver n

Variables likely to influence the immediate lane choice of the driver include the

following:

* Current position of the driver: Proximity of a given lane to the receiving lane

closest to the driver;

" Neighborhood variables: Presence of other vehicles and their actions, relative

position and speed of the subject vehicle with respect to neighboring vehicles,

geometric elements of the roadway, signals and signs;

* Choice of target lane: Proximity of the immediate lane to the chosen target

lane; and

" Driving style and capabilities: Individual driver/vehicle characteristics, such

as the aggressiveness of the driver and performance capabilities of the vehicle

(e.g., required turning radius).

The systematic utility consists of interaction of these factors and can be expressed as

follows:

Vil = V(Xn,,, a, vn) (6.5)
Where,

X ln= attributes of lane jfor driver n given target lane I

ai = coefficient of individual-specific random effect for lanej

J= choice set of immediate lanes of driver n
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Assuming the random error terms c,,, are independently and identically extreme

value distributed, immediate lane choice probabilities, conditional on target lane / and

individual-specific characteristics can be expressed as follows:

P ~~~exp (v,,,) VjE ,

J, (i~l,vj)= exp j' , J (6.6)exp (V,6)
J'EJ,

Likelihood Function

The probability that driver n selects lane j is the joint probability of selecting lane j
given target lane 1 and the probability of choosing target lane 1 and can be expressed as:

P (jI U, A") = IP (j11, Un)P, (Y I nI An) (6.7)

The unconditional probability of driver n selecting lane j at a given time can be

expressed as:

P (j)= PJ I (j Iv, A2,)p(A)f(v)dv

/7 Class 1 (Myopic driver) (6.8)

1 - Itl Class 2 (Driver who plans-ahead)

Where, the probability that the driver belongs to Class 1 (7i) or Class 2 (1-7ir) is

estimated from the data along with other parameters.

Assuming that the observations from different drivers are independent, the log-

likelihood function for all N individuals observed is given by:

N

L = ln(P, (j)) (6.9)
n=1

The parameters of the model are estimated by maximizing this function.

Estimation Result

All components of the model were estimated jointly using a maximum likelihood

estimation procedure as described in the previous section. The summary of estimation

results of the proposed model is presented in Table 6.5.
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Table 6.5: Estimation results of the target lane changing model

Final Log-likelihood -2115.8
Initial Log-likelihood -2797.9
Number of drivers 703
Number of observations 703

Number of parameters 20

Adjusted rho-bar square 0.237

The goodness-of-fit of the new model was compared with a reduced form model

estimated with the same data (Table 6.7). The reduced form model is a single level lane

choice model with no latent targets (Figure 6.11). The estimation results of this model are

presented in Appendix C.3.

1 F2 3 4

Figure 6.11: Simple model structure

Table 6.6: Model comparison

Statistic Single Level Target Lane
(R) (U)

Likelihood value -2120.4 -2115.8

Number of parameters (k) 19 20

Akaike information criteria (AIC) -2139.3 -2135.8

Adjusted rho-bar square ( P2) 0.235 0.237

The model with explicit target lane choice has larger values in terms of both AIC

and P2 (detailed in Chapter 4). This indicates that the inclusion of the latent plans in the

decision framework results in an improved goodness-of-fit even after discounting for the

increase in the number of parameters..

The detailed estimation results are presented next.
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Choice of Plan: Target Lane Choice

The target lane choice model describes drivers' choice of lane they would want to

travel in. The choice set of the driver includes all lanes in the mainline. The target lane

choice of the driver is affected by the path-plan, the lane attributes and driver

characteristics. Path-plan variables include number of lanes a driver has to cross (if any)

in order to take a turn or exit while following the path. Lane attributes include queue

length, queue discharge rate, average speed etc. of each lane. In this model, the queue

length and queue discharge rates are combined in a single variable anticipated delay. This

variable represents the delay associated with the queue (in time unit) and is calculated by

dividing the current queue length by the average queue discharge rate. The variables

affecting the immediate lane choice also have indirect effect son target lane choice. This

effects have been captured through Expected Maximum Utility (EMU) variables.

Different functional forms of variables as well as interactions between multiple

variables have been tested during estimation and the functions resulting improvements in

goodness-of-fits are selected. For example, the path-plan variables were found to improve

the goodness-of-fit when interacted with the individual specific random term

(aggressiveness). Also, some parameters were excluded because of non-intuitive signs

and/or statistical insignificance. For example, the effect of average speed on target lane

choice was tested but had a non-intuitive sign. The high correlation between the queue

length and the average speed variables may have caused this and so the latter has been

excluded from the model.

The estimation results of the target lane selection are presented in Table 6.7. The

magnitudes of the lane-specific constants indicate that all else being equal, the drivers

prefer lanes on the right (the rightmost lane being the most preferred lane). It should be

noted that though the model has been developed with data where the receiving mainline

section had 3 or 4 lanes, the model structure is flexible for application in other scenarios

with a different number of available lanes. For this, the lane constants in particular need

to be re-calibrated.
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Table 6.7: Intersection lane choice: Target lane model

Variable Parameter t-stat
Target Lane

Lane 2 constant -0.837 -3.64
Lane 3 constant 1.30 7.62
Lane 4 constant 3.25 8.16
Anticipated delay (second) -0.477 -0.56
Lanes away from coefficient-myopic drivers -0.0240 -0.63
turning lane constant-myopic drivers 1.43 0.83
(myopic) heterogeneity coefficient -myopic drivers 1.53 0.75
Lanes away from coefficient-drivers who plan-ahead -4.08 -1.98
turning lane constant-drivers who plan-ahead 2.05 3.01
(with plan-ahead) heterogeneity coefficient-drivers who plan-ahead 0.466 0.74

Expected maximum utility from immediate lane 0.915 7.22
Driver Class

Driver population with >1 section plan-ahead (%) 18.3 2.07

As described in the earlier section, a latent class formulation has been used for the

model to capture the heterogeneity in planning capability of drivers. The probability of

the driver being a myopic driver (Class 1) or a driver who plans-ahead (Class 2) is

calculated along with the other model parameters. The estimated probability that the

driver is of Class 2 was found to be 18.3 %.

The influencing variables differ depending upon the plan-ahead distance of the driver.

For example, familiar drivers may consider the anticipated delay in subsequent sections

while making their target lane choices. Therefore, an anticipated delay value was

calculated for each class of driver based on what segments they are considering while

making their lane choices. The functional form of the anticipated delay variable can be

expressed as follows:

q,, I k=1,2
t+exp(-q 

6.10)
11 Ii 1I 21 11+d,
q|=dj/r" ,qi -- q n!+d 1r2

Where,

q, = anticipated delay in lane 1 considering k sections ahead

d= queue length in lane i in section k at time t (vehicles)

ri = average queue discharge rate of lane i in section k (vehicles/sec)
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The anticipated delay has a diminishing effect on the utility of target lane as

illustrated in Figure 6.12. The sensitivity to anticipated delay was however not found to

be significantly different for the two classes of drivers.

1.1 _____-

0.9

0.8
0

4 0.7

0.6

0.5

0.4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Anticipated delay (sec)

Figure 6.12: Effect of anticipated delay

The path-plan of the driver has an important role in the target lane selection. The two

classes of drivers are found to have different sensitivities to path-plan considerations,

which in this case has been modeled as an interaction between the number of lanes away

from the correct lane and the aggressiveness of the driver. The functional form best

fitting the data is found to be as follows:

elle 1-6)+ 2 (e2 (6.11)
yII +a I n n 2 +a 2 Vn n n

Where,
4,, =I if the driver plans-ahead beyond the immediate section

e = lanes away from turning lane for myopic drivers

e = lanes away from turning lane for drivers who plan-aheadn

9,, ya, = coefficients of vehicle class i

As seen from the estimates, for both classes of drivers, utility of lanes reduce if they

are away from the lane that the driver needs to be in to follow his path. This disutility is,

however, less for aggressive drivers, since they are more prone to make aggressive lane

changes later if needed. The disutility was found to be larger and more significant for
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drivers who plan-ahead (Class 2). The effect of path-plan for each driver class is

explained in Figure 6.13.

U Class 1 (Myopic driver)
* Class 2 (Plan-ahead>1 section)

0.9 -------------------

0.8-
0.7-

~0.6
S0.5-

.o0.4-
0.3-
0.2-
0.1 -

0

Lane 1 Lane 2 Lane 3 Lane 4

La ne

Figure 6.13: Effect of path-plan and driver class

In this example, Lane 4 becomes a right turn only lane in the second section.

Therefore, drivers who are going straight have to change later if they choose Lane 4 in

the first section. Drivers who plan-ahead beyond the immediate section are less likely to

choose this lane as target compared to drivers who do not plan-ahead.

The expected maximum utility term captures the maximum utility that can be derived

from selecting a particular lane as the immediate lane. It has a significant effect on the

target lane choice. The expected maximum utility (EMU) can be calculated as the logsum

of the immediate lanes given the target lane (see Ben-Akiva 1973, Ben-Akiva and

Lerman 1985). Mathematically, this refers to the following:

EMUn =E (max (U 1In, U2 I,..., Ui 1n,. U, in))'

= In (exp (V In) + exp (V2,n)+... +exp (vj r,+.+ exp (Vi, In))

(6.12)
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Where,
EMU,, =expected maximum utility derived from lane /

U p,=utility of immediate lane jfor driver n given target lane I

The estimated utility of the target lane can thus be expressed as follows:

~1 -2 ~ 0.024 1 -
Ul=/3 -0.477 [(q $n )(I-6n ) + (q,, )5 I (e- )(.-024

" 1.43+1.53v0(e,)( (6.13)
- 4.08 (e 2 ) +0.915(EMUn)

2.05+0.466o, ,

Where,

= constant for lane 1
-1
q1n = anticipated delay function in lane lfor myopic drivers

~-2

-2 = anticipated delay function in lane lfor drivers who plan-ahead

e|n = lanes awayfrom correct lane for myopic drivers

e= lanes away from correct lane for drivers who plan-ahead

(consider path-plan beyond current section)

EMUn =expected maximum utility derived by driver n from selecting

lane 1 as target lane (consider delay beyond current section)

, =1 if the driver plans-ahead beyond immediate section

Choice of Action: Immediate Lane Choice

Immediate lane choices were found to be influenced by maneuverability

considerations and inertia to continue to the naturally connecting lane. The estimation

results are summarized in Table 6.8.

Table 6.8: Intersection lane choice: Immediate lane model

Variable Parameter t-stat
Lanes away from coefficient -1.01 -1.19
connecting lane constant 0.691 1.94

heterogeneity coefficient 1.96 3.48

Target lane dummy 3.16 4.54
Lanes away from target coefficient -4.42 -3.00
lane constant 2.12 2.14

jheterogeneity coefficient 0.0904 0.36
Conflict dummy -1.76 -9.63
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Inertia effects are captured by variables like current lane inertia and number of lanes

away from the connecting lane. The inertia effect was greater for aggressive drivers.

Aggressive drivers tend to stay in their current lane as long as possible and then make

aggressive changes if a lane change is warranted by the path-plan. Drivers were also

found to have a strong preference to reach their target lane and lanes closer to their target

lanes. The combined effect of inertia and preference for moving to lanes nearer to target

lanes for aggressive and normal drivers are illustrated in Figure 6.14.

Heterogenity in Immediate Lane Choice
(Current Lane=2,Target Lane=1)

0.9 - - -

0.8-
0.7-

. 0.6-

0.5 - m Normal Drier
0.4- m Aggressie Drver

eL 0.3-
0.2 -
0.1 -

Lane 1 Lane 2 Lane 3 Lane 4

Immediate Lane

Figure 6.14: Heterogeneity in immediate lane choice

Maneuver to a given lane may not be possible due to conflicts with neighboring

vehicles. In the case of such obstructions or conflicts, the driver can choose an

immediately available lane, or can wait until the neighboring vehicle moves and there are

no obstructions to maneuver to the intended target lane. As a result, if there are

conflicting vehicles in the direction of a lane, the driver was found to have a lower

preference for that lane.

The utility of immediate lanej is summarized in the following equation:

U = - (c, )+3.16(l = 0)- 4.42 (l)-1.76 yj (6.14)
0.691+1.96un '" 2.12+.0904vn
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Where,
cn =lanes away from connecting lane

lj,= lanes away from target lane 1, 1 e Ln

71 =1 if maneuver to lane j is obstructed by adjacent vehicle

6.2.3 Mainline Lane Changing

Model Structure

As discussed in Section 6.1, the within section lane changing maneuver of drivers can

be modeled as a three stage process:

* Choice of target lane (plan)

* Decision to accept available gaps (plan)

' Execution of the lane change ( action)

The structure of the model is shown in Figure 6.15 with a hypothetical scenario of a

four lane road with the driver in Lane 3.

Lane 5 [
Lane 4-[- ]
Lane3 [
Lane 2 [---]
Lane 1 [

Lane 1 [ - [--
Lane 2 m ]
Lane 3 [f_
Lane 4 El-

Lane 3

Target

I Pla

Lane 1 Lane 2 Lane 3 Lane 4 Lane

ccep ejec ccep ejec ccep ejec Gap
Ga _ _ _ Ga ___ Ga __ _ Ga ___ ________- - Ga -___-_ Ga .A. .eptin.e1

No Change o o | change No N N | Change N Action

Change Left Chne C ng Left ChangeChgeC ng Right Cag Execution

Figure 6.15: Framework for within section lane changing model
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First, the driver selects the target lane - the lane the driver perceives as best to be in,

depending upon the prevalent driving conditions and the path-plan. The choice set for the

target lane selection includes all allowable lanes in the current section in the direction of

travel. The choice of the target lane indicates the direction of immediate lane shift of the

driver. In the hypothetical scenario, if the driver is in Lane 3, a choice of Lane 3 as the

target lane means that the driver has decided not to pursue a lane change and to continue

in the current lane. If the driver perceives that moving to another lane would improve the

condition, he/she chooses that lane as the target lane. In the above example, the

immediate direction of lane shift for the driver is the left lane if either Lane 1 or 2 is

chosen as the target lane, while it is the right if Lane 4 is chosen as the target lane. If the

target lane is different than the current lane, the driver evaluates the gaps in the

corresponding adjacent lane in the direction of the target lane.

The available lead and lag gaps in the adjacent lane are compared with respective

critical gaps (unobserved) and the driver decides to accept or reject the gap. For the gap

to be acceptable, both the lead and the lag gaps have to be acceptable, i.e. greater than the

respective critical gap values.

Even if the driver perceives that the gap is acceptable, the execution of the lane

change may take some time. In urban situations, lane change durations are found to range

from 3.4 to 13.6 seconds with a mean duration of 6.0 seconds (Hetrick 1997). In the

trajectory data, the completion of the lane change is manifested as an execution decision

of the driver. In presence of acceptable gaps, the driver can either decide to complete the

lane change in a given instant and move to the adjacent lane (Change Right or Change

Left), or not to execute the lane change in that instant and stay in the current lane (No

Change). In instances when the driver chooses the current lane as the target lane or

chooses a different lane as the target lane but does not find the gaps acceptable in the

immediate lane in the direction of the target lane, he/she does not consider the execution

step (probability of execution is zero), and the driver is observed in the current lane (No

Change). This decision process is repeated at every time step.

The first two steps in the decision process, target lane choice and gap acceptance, are

latent. Only the driver's final actions, constituting no lane change or lane change

176



execution to the left or right, are observed. Latent choices are shown as ovals, and

observed ones are shown as rectangles.

Choice of Plan

In the target lane model, the driver chooses the target lane and plans to move to that

lane through gap acceptance. The choice of plan is modeled as a two stage decision,

target lane selection and gap acceptance.

The Target Lane Selection

At the highest level of lane changing, the driver chooses the lane with the highest

utility as the target lane. The target lane choice set constitutes all available lanes in the

roadway. Due to closely spaced turns and lane use restrictions (e.g. turn-only and no-turn

lanes) in urban arterials, path-plan variables are likely to have a significant impact on

target lane choice. The network familiarity of the driver as well as his/her planning

capabilities is likely to affect the path-plan variables. For example, a driver who is not

familiar with the network and/or does not plan-ahead may not take into account the path-

plan considerations before getting very close to the turn. In contrast to the intersection

lane choice case where the heterogeneity in planning ability of the driver is modeled

using a latent class methodology, in the mainline model, where a series of lane changing

decisions of the same driver are modeled over a section, a continuous distribution of

look-ahead or plan-ahead distance is more intuitive. Estimation results also support this

hypothesis and therefore a continuous plan-ahead distance is integrated in the model.

The total utility of lane 1 as a target lane for driver n at time t can be expressed by:

,,= X,,,( ) +a'v, + ,, Vl EL (6.15)

Where,

un = individual-specific random effect (e.g. aggressiveness): U, -N(O, 1)

a' = coefficient of individual-specific random effect for lane I

Ehn =random term associated with the target lane utilities

L = choice set of target lane of driver n

An = look-ahead / plan-ahead distance of the driver

Xn, = explanatory variables that affect the utility of lane 1, function of An

)6 = corresponding vector ofparameters
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The target lane utilities of a driver are likely to be affected by the following variables:

* Path-plan variables: Distance to the point when the driver needs to be in a

specific lane to follow the path, and the number of lane changes required to be

in the correct lane;

* Lane attributes: Queue lengths, average speeds, and queue discharge rates;

" Current position of the driver: Inertia to stay in the current lane, proximity of a

lane to the current lane of the driver;

* Neighborhood variables: Presence of other vehicles and their actions, relative

position and speed of the subject vehicle with respect to neighboring vehicles,

geometric elements of the roadway, signals and signs , and available capacity

of the lane; and

" Driving style and capabilities: Individual driver/vehicle characteristics, such

as the plan-ahead distance and aggressiveness of the driver;

Different choice models are obtained depending on the assumption made about the

distribution of the random term ,,. Assuming that these random terms are independently

and identically extreme value distributed, choice probabilities for target lane 1,
conditional on the individual-specific error term (o,) are given by a logit model and

expressed as follows:

exp( /' X 1J,(A)+a'v )
(it I Uexp('8 X1"I,(A") + al'o,)

S'EL,

The Gap Acceptance Model

In the gap acceptance stage, the driver evaluates the adjacent gaps in the direction of

the target lane and decides whether or not a lane change in the chosen direction can be

undertaken. The adjacent gap in the target lane is defined by the lead and lag vehicles in

that lane as described in Section 6.2.1 and shown in Figure 6.16.

The driver compares the available lead and lag gaps to the corresponding critical

gaps, which are the minimum acceptable gaps. An available gap is acceptable if it is

greater than the critical gap. Critical gaps are modeled as random variables with their
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means being functions of explanatory variables. The individual-specific term in this mean

function captures correlations between the critical gaps of the same driver over time.

Adjacent gap

Lag Lag gap Lead gap Lead
vehicle GgI, Gleadin vehicle

------------- ------- ----------------- I---------------

Subject

vehicle Traffic direction

Figure 6.16: Definitions of the lead and lag vehicles and the gaps they define

Critical gaps are assumed to follow lognormal distributions to ensure that they are

always non-negative and can be expressed as follows:

(6.17)G," = exp( /3TXi, +ago,+-,,) g e {lead,lag}

Where,

lG," =critical gap g in the direction of target lane 1, measured in

distance units (e.g. meters)

X1,= explanatory variables that affect the critical gap g in the

direction of target lane 1

/ = coefficients of explanatory variables

a g = coefficients of individual-specific latent variable V,' for gap acceptance

eit, random term: et ~ N (0-

Gap acceptance is affected by the interaction between the subject vehicle and the lead

and lag vehicles in the adjacent lane. This may be captured by variables such as the

subject relative speed with respect to the lead and lag vehicles, type of lag vehicle etc. It

can be also affected by the urgency of the lane change. Remaining distance to reach the

mandatory lane changing point can be used as an indicator of the urgency of the lane

change.

The gap acceptance model assumes that the driver must accept both the lead gap and

the lag gap to consider lane change execution. The probability of accepting the adjacent
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gap, conditional on the individual-specific term v, and the chosen target lane is therefore

given as follows:

P, (i, = I1|,,vJ)= P, (accept lead |1,, v)P, (accept lag 11,,vJ

=P(G,"" G|ea, ,' 111,, v (G|, Gcr |l,,v)

Based on the assumption that critical gaps follow lognormal distributions (6gs,, is

normally distributed), the conditional probability that gap g e {lead, lag} is acceptable is

given by:

Pn[ Ggn, > Gg,",g (on

Inf G -(n8X, a n=P [ln (G 1,) > ln (Gc, (v))] D g"I + )(6.19)
L', ~ N(0,)

(D [.] denotes the cumulative standard normal distribution.

The Lane Change Execution Model

The driver considers the lane change execution decision step if he/she chooses a

target lane that is different from the current lane and finds the adjacent gaps in the

immediate lane in the direction of the chosen target lane acceptable. Given the above

latent decisions, the decision to execute the lane change in the current time step can be

modeled as a binary logit model. The choice set in this decision step contains two

alternatives, to execute the lane change (completely move to the adjacent lane in the

direction of target lane) or not.

The probability of executing the lane change in the current time instant t is given by

1 f i, = 1 (accept gap)
P,(j,i,,l,, v.) = j+ex((#Xi, +a v4))

Pn (t I' I t I ~n X Inl(6.20)
0 otherwise

Where,

j,= lane changing action

X 11, =explanatory variables that affect the driver's execution decision

a) = parameter of individual-specific latent variable v, for execution level
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The essence of modeling the execution decision is to capture indirectly the time

required to complete the lane change after initiating one. Analysis of trajectory data by

Toledo and Zohar (2007) shows that lane changing durations are affected by traffic

density, direction of change (left or right), relative speed and spacing of front, lead and

lag vehicles, speed of the subject vehicle, type of vehicle ( heavy or not) etc.

Further, the inclusion of the execution of the lane change level is more relevant in this

particular study, where there are a number of successive observations where the driver

faces large and unchanging adjacent gaps (including those instances where there are no

lead or lag vehicles). It is observed that the driver changes lane in one of these instances.

The execution step in a way models the way the driver differentially evaluates these

seemingly similar scenarios (see Ramanujam 2007 for details).

Another key aspect that affects this instantaneous decision is the time resolution of

the subsequent observations of the same driver. The probability of executing a lane

change is reduced as the time resolution decreases. In the current dataset, the time

resolution is constant and hence this effect is likely to be embedded in the constant terms

of the execution level. But in datasets where the time steps of observation vary across the

drivers, it is possible to estimate the influence of this attribute in the final decisions of the

driver.

Likelihood Function

In this section, the likelihood function of lane changing actions observed in the data is

presented. The joint probability density of a combination of target lane (1), gap

acceptance (i) and lane action (i) observed for driver n at time t, conditional on the

individual-specific characteristics, A, and , are given by:

P U",,i O A,|n2)= P YiI,| I ,,,)P, (I| t,,V,)P, (ji,,'I1,, 1VJ (6.21)

Where, P(l, .) , P,(i, |.) and P,(j, I.) are given by Equations 6.16, 6.18 and 6.21,

respectively.

Only the lane changing actions are observed. The marginal probability of the lane

changing action is therefore given by:
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P (i IonI An )= I I P (1,, i,, j,\Ivn, An) 1 E Ln, i E In=],0 (6.22)
IeL, iEI

The behavior of driver n is observed over a sequence of Tn consecutive time intervals.

Assuming that, conditional on vn and An ,the observations are independent, the joint

probability of the sequence of observations, is given by:

P (ill,1,--- , vA)= P (it,|onAn) (6.23)

The unconditional individual likelihood function (4,) is obtained by integrating over

the distributions of the individual-specific variables:

Zn = Jn (1,2- .. ) = P (ji, j2,---, f I jv, A)f(v)dvf(A)d2 (6.24)

Where, f(v) and f(A) are assumed to have normal and doubly truncated normal

distributions respectively.

Assuming that the observations from different drivers are independent, the log-

likelihood function for all N individuals observed is given by:

N

Z= Lln(L,) (6.25)
n=1

The maximum likelihood estimates of the model parameters are found by maximizing

this function.

Estimation Results

All components of the model have been estimated jointly using a maximum

likelihood estimation procedure as described in the previous section. However, in order to

simplify the presentation, estimation results for the target lane choice, gap acceptance and

execution levels are presented and discussed separately.

The summary of estimation results of the proposed lane changing model is presented

in Table 6.9.
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Table 6.9: Estimation results of the target lane changing model

Final log-likelihood -1003.2
Initial log-likelihood -2094.9
Number of drivers 400
Number of observations 16696
Number of parameters 22

Adjusted rho-bar square 0.53

The improvement in the goodness-of-fit of the new model was compared with the

simpler lane-shift model proposed by Toledo et al. (2003) and illustrated in Figure 6.17.

In this model, the driver evaluates the current and the adjacent lanes and decided whether

or not to make a lane change. The model was reestimated with the same Lankershim

Boulevard arterial data. The detailed model structure and estimation results are presented

in Appendix C.4. The statistical tests for comparing non-nested models imply that the

new model has a statistically significant improvement in goodness-of-fit. The test results

are presented in Table 6.10.

Lane shift LEFT CURRENT RIGHT

Gap NOCHANG NO CHANGE N

acceptance CHANGE LEFT CHANGE RIGHT CHAGE

Figure 6.17: Structure of lane-shift model (Toledo et al. 2003)

The model with explicit target lane choice has larger values in terms of both statistical

test criteria, which indicates that it better fits the data, and supports the inclusion of the

latent planning in the model framework.

Table 6.10: Model comparison

Statistic Lane Shift Target lane
(R) (U)

Log-likelihood value -1186.9 -1003.6
Number of parameters (k) 17 22
Akaike information criteria (AIC) -1203.9 -1126.1

Adjusted rho-bar square ( p 2) 0.441 0.53 1
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Choice of Plan: The Target Lane Selection and the Gap Acceptance Models

The lane that the driver perceives to be the best is selected as the target lane. The

choice set of the driver includes all available lanes in the freeway stretch. The utility of

lane target lane 1 of individual n at time t can be expressed as follows:

U,1,1= TXI,(A,)+ a'v, + cn, Vl c Ln (6.26)

Where,

A, = look-ahead / plan-ahead distance of the driver

Xn,,= explanatory variables that affect the utility of lane 1, function of An
6 = corresponding vector ofparameters

t, = individual-specific random effect (e.g. aggressiveness): v, -N(O, 1)

a' coefficient of individual-specific random effect for lane 1

E,,= random term associated with the target lane utilities

L, = choice set of target lane of driver n

As discussed in a previous section, the target lane choices are affected by the

variables related to the path-plan and inertia, the neighborhood variables and the

attributes of the alternative lanes, as well as driver-specific characteristics. However, not

all of the candidate variables were found to be statistically significant and/or have

intuitive signs. For example, the coefficients of neighborhood variables were not found to

be significantly different than zero supporting the hypotheses that the path-plan

considerations, inertia effect and lane attributes are pre-dominant factors behind arterial

lane changing decisions. In case of some of the variables, interaction of multiple

variables have been included in the model (based on the goodness-of-fit improvements).

The estimated parameter values and the corresponding t-statistics for the target lane

selection models are presented in Table 6.11.
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Table 6.11: Estimation results of the target lane

Target Lane Selection

Variable Parameter t-stat

Current lane dummy 0.168 0.21

Inertia effect Heterogeneity term for current lane, aCL -0.479 -3.12

Lanes away from the current lane -3.71 -4.71

Lanes away from exit/turn lane -2.22 -8.41

Lanes away from exit/turn lane interacted -0.338 -1.05
with distance from exit

Path-plan Exponent of distance to exit in the interaction -4.10 -2.51
impact term

Queue ahead Less than 3 vehicles -0.408 -4.00

(vehicles/lane) More than 3 vehicles -1.24 -4.33

Mean plan-ahead distance (10 m) 37.9 10.39

Std deviation of plan-ahead distance (10 m) 4.04 12.83

As can be seen from the estimation results, the lane utilities are affected by the path-

plan related variables, the current lane inertia variables, the lane-specific attributes (queue

length) and driver-specific characteristics (planning capability and aggressiveness). The

heterogeneity in planning capability of drivers is captured by the mean and standard

deviation of plan-ahead distance (assumed to be truncated normally distributed). The

target lane utilities can be expressed as follows:

(6.27)U,11, =_ (0. 16 8 - 0.479 g, )CLi - 3.7 1 A CL,,, -2.2 2 A Ex it,",

- 0.338 c 1nt (d " )-4 10 - 0.408 (q,,, )(qn,, < 4) -1.24(q,, > 3)

Where,

c'IL = current lane dummy, 1 if lane I is current lane, 0 otherwise

q,,, = queue ahead in lane /

ACLn, = number of lane changes requiredfrom current lane to lane 1

AExitln = number of lane changes required to take the desired exit/turn of driver nfrom lane I

dte"i = remaining distance to exit/turn

The trade-off between the effects of the path-plan and inertia variables in the utility of

the target lanes is illustrated in Figure 6.18, for a standard case of 4 lanes (which

represents the typical case in the current dataset), with Lane 4 being the exit/turn lane. In

these cases, it is assumed that all drivers are taking the path-plan into account, that is their

plan-ahead distances are greater that 400 meters.
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In the first case, the driver is far from the exit/turn (remaining distance 400m which is

about 2 sections in the study dataset) and the current lane inertia dominates the target lane

selection (Figure 6.18a). As the driver approaches the turn, the path-plan effect starts to

dominate and the preference shifts to the exit/turn lane (Lane 4 in this case). Thus when

the driver is 60 m from the exit/turn, there is a very high probability of choosing Lane 4

irrespective of the current lane, as illustrated by Figure 6.18b.

a. Distance to Exit =400 m, Turning Lane= Lane 4
Plan-ahead distance=400m

1_-

0.8 - - Lane 1

0.6- H Lane 2

0.4 - oLane 3

M 0.2 - - Lane 4

0
CL=1 CL=2 CL=3 CL=4

Current Lane

Figure 6.18: Trade-off between current lane inertia and path-plan effect

The plan-ahead distance of the driver also has a significant impact on how the path-

plan considerations affect the utilities. All else being equal, the lane preferences for a

driver with 50 m plan-ahead distance (as opposed to 400m as in Figure 6.18) is presented

in Figure 6.19.
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In this case, the path-plan is not a factor until the driver reaches the last 50m before

the exit/turn. Therefore, even when he/she is 60m from the exit/turn the current lane

inertia dominates the target lane selection.

a. Distance to Exit =400 m, Turning Lane= Lane 4
Plan-ahead Distance =50 m

1

0.8

0.6

0.40

0.2

0

-- a Lane 1

- m Lane 2

- ( Lane 3

-- - -_ _ _. 0Lane 4

0. - an

. -0 Lae

CL=2 CL=3

Current Lane

Figure 6.19: Trade-off between current lane inertia and path-plan effect

The direction of the target lane indicates the direction of immediate lane change and

the driver is assumed to evaluate the adjacent gap in the immediate target lane and decide

whether or not to change lanes. In order for the gap to be acceptable, both the lead and

lag gaps must be acceptable. That is, the available lead and lag gaps must be larger than

the corresponding critical gaps. As presented in Equation 6.17, in order to ensure that the

critical gaps are always positive, they are assumed to follow lognormal distributions:
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S lead +lead

(6.28)
lfn(G;,',cr) = /JTXIa + a" , + ,lag

InnGIn!,

Where,

G,"d "', G,"" = lead and lag critical gap in the direction of target lane 1, measured in

distance units (e.g. meters)

X,',""a,X,', = explanatory variables that affect the lead and lag critical gaps respectively

in the direction of target lane 1

a "a!" = coefficients of individual-specific latent variable o, for lead and lag gap

acceptance

Eetad, Elag random terms: E,,e," ~ N (0,o,2, ), E,'n"g ~ N (0, C,2

The critical gaps are likely to be affected by the speed, position and type of the lead

and lag vehicles, remaining distance to the desired turn etc. However, not all candidate

variables were supported by the data. For example, the remaining distance to the desired

turn did not have any significant effect on critical gaps.

The estimation results for the gap acceptance model are presented in Table 6.10.

Table 6.12: Estimation results for the gap acceptance model

Gap Acceptance

Variable Parameter t-stat
Lead Critical Gap

Lead gap constant 2.38 32.23
Relative lead speed, A V,ad (m/s) -0.0216 -1.42

Standard deviation of lead gap, -1 lead 0.00761 0.07

Heterogeneity coefficient of lead gap, alead -1.75 -36.39
Lag Critical Gap

Lag gap constant 1.44 25.68

Relative lag speed, A V', (m/s) 0.264 14.73

Standard deviation of lag gap, -lag 0.00851 0.21

Heterogeneity coefficient of lag gap, alag -1.86 -40.38

The critical gaps are affected by relative speeds of the associated lead and lag

vehicles and the aggressiveness of the driver of the subject vehicle.
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As seen in the figures, the sensitivity to the relative speed is higher for the lag gap

than the lead gap. For both cases, the critical gaps are smaller for aggressive drivers than

for normal drivers.

Choice of Action: Execution of Change

Even if both lead and lag gaps are acceptable, it may take time to complete the lane

change. The duration of the lane change is reflected by the execution decisions of the lane

change. The probability of executing the lane change is expressed as follows:

1 if i, =l (accept gap)
,(ji,,J,, )= + exp X +,, +a (6.30)

0 otherwise

Where,
j,= lane changing action

Xi,,,, =explanatory variables that affect the driver's execution decision

a. = parameter of individual-specific latent variable v, for execution level

In the execution model, several variables were tested: the density and average speed

of the traffic stream, relative lead and lag speeds, rate of change in gap size etc. But none

of these variables gave the correct signs in estimation. In the final model, only the speed,

the indicator of change in gap reduction and aggressiveness of the subject driver were

included along with an intercept. The estimation results are presented in Table 6.11.

Table 6.13: Estimation results of the execution model

Execution Decision
Variable Parameter t-stat
Intercept -3.26 -6.41
Speed of subject vehicle, VJ, 0.627 6.44
Gap reduction dummy, , 0.593 0.68
Heterogeneity coefficient of execution aj 0.266 0.42

The executions of the lane change of the driver, given the adjacent gaps in the

direction of the target lane are acceptable, can be expressed by the following equation:
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The critical gap of the driver can be expressed by the following equation:

G adcr = exp(2.38 -0.0216AJVadn, -1.75 v + ekadn,)

glead -N(O,0.00761 2 )

G'c" = exp(1.44+0.264 AVIag, -1.86vn + Eiagn,)

E'g ~ N(0, 0.0085 12)

(6.29)

Where,
A Yng = r'g -v1
VI, = speed of subject vehicle n at time t

V, = speed of vehicle associated with gap g of subject n at time t

The critical gap decreases with the relative lead speed, i.e. it is larger when the

subject vehicle is faster relative to the lead vehicle. The lag critical gap increases with the

relative lag speed: the faster the lag vehicle is relative to the subject, the larger the lag

critical gap. The influence of the included explanatory variables on the critical gap

lengths are summarized in Figure 6.20 and Figure 6.21.

Critical Lead Gap Variation
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Figure 6.20: Variation of lead critical gap with lead speed and aggressiveness
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- Normal Driers - - . Aggressie Driers

1 5 - - -- - - - -- -

12

9

6

U3

0
-5 -4 -3 -2 -1 0 1 2 3 4 5

Relative Lag Speed (m/s)

Figure 6.21: Variation of lag critical gap with relative lead speed and aggressiveness
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Pn ( j,=1Ji,=J1J, CL ) - I63n,(i~uji~~i~i CL) 1+exp (-3.26+ 0.627VI + 0.5984', + 0.266o) (6.31)

Where,

,,=1 if the accepted adjacent gap (i,) is reducing that is ((V, - V1,an,a) > 0)

The negative intercept indicates that all else being equal, there is delay associated

with the lane change. The execution of the lane change is faster if the speed of the subject

vehicle is high. If the corresponding adjacent gap is reducing (the lag vehicle is faster

than the lead vehicle) the execution of the lane change becomes more urgent and the lane

change is faster. The coefficient of aggressiveness of the driver was found to be positive

which agrees with the earlier hypothesis that aggressive drivers have less inertia to stay in

their current lanes and require less time to execute the lane change.

It is expected that the probability of executing the lane change will be lower if the

time resolution of the data is smaller. However, the effect of the time step could not be

tested in this study since the entire data had the same time resolution of 1 sec. The effect

of time step is thus embedded in the intercept term and needs to be calibrated if the model

is implemented in a simulator with a time step different than 1 sec.

Distribution of Plan-ahead Distance

The plan-ahead distance of drivers is assumed to follow a normal distribution

truncated on both sides. The distribution is given by:

( if Afmin <2 <2: Aa
f (n) =(D) Amax Pr_ - ( Amin - PTfi (6.32)

0 otherwise

Estimation results indicated that it is normally distributed within 50m to 500m. 8 The

estimated distribution of anticipation time can be expressed as follows:

8 Different ranges between 30 m to 600 m were tested as the upper limit of anticipation time and the
selected range provided the best goodness-of-fit.
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f(r,)= 40.35 40.44 if5O<T 500 (6.33)

0 otherwise

6.3 Aggregate Validation

This section describes the aggregate validation process including the dataset used, the

details of the calibration, the validation process that was applied, and the results obtained.

The calibration process involves adjusting the values of the parameters of the

behavioral models and estimating travel demand, in the form of OD flows, on the

network being studied in order to obtain a better fit of the model output with the actual

traffic flow. In this study, the trajectory data collected from the same site was used for

calibration and validation in the absence of other suitable data. Exact vehicle OD flows

were available from the trajectory data and no route choice was involved. The calibration

process therefore only involved calibration of the driving behavior parameters.

6.3.1 Data

The total dataset was available for a 32 minute period (8:28 a.m. to 9:00 a.m.). The

first 22 minutes of data in the north bound direction was used for calibration and the

remaining 10 minutes was used for validation.

The trajectory data was aggregated to generate synthetic sensor counts and speeds

that are used for calibration. The locations of these sensors are illustrated in Figure 6.22.

' 'Synthetic' i I
Sensor Location

- U -m

n n n
IIgu . a

Figure 6.22: Locations of synthetic sensors
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6.3.2 Aggregate Calibration

Based on previous experience and sensitivity test results (described in Section 4.4.2),

the following parameters of the combined model were selected for calibration:

* Acceleration and deceleration constants;

* Desired speed mean and sigma;

* Intercepts (constants) and variance (sigmas) of critical gap;

* Constant in the execution level;

* Intercept (constant) of lane 3 in the intersection lane choice model.

The calibration parameters and their before and after values are listed in Table 6.14.

Table 6.14: Calibration parameters

Parameter Value
Model/Variable Calibrated Parameter Initial Calibrated
Car following* Acceleration constant 0.0400 0.042

Deceleration constant -0.0420 -0.029
Desired Speed* Mean 0.100 0.056

Variance 0.150 0.540
Gap Acceptance Lead gap constant 2.38 1.56

Lead gap sigma .00751 0.0406
Lag gap constant 1.44 -0.0612
Lag gap sigma .00845 0.0517

Intersection Lane Choice Lane 3 constant 1.31 1.10
Target lane dummy 3.16 2.13

Within Section Away from exit lane -1.27 -0.0101
Current lane dummy 3.02 1.57
Execution constant -3.38 -1.37

*Note: General parameters of MITSIMLab. These variables are described in Ahmed (1999).

The driver-specific variables (desired speed, plan-ahead distance and the coefficients

of aggressiveness) are expected to vary since the model was validated at a different site

from the estimation data collection site. Among these parameters, the desired speed

parameter, the current lane dummy and the execution constant made the most significant

contributions to improving the performance of the model. When these parameters were

unconstrained, the model performed better (the objective function for calibration

improved significantly) compared to the case when these parameters were fixed at the

originally estimated values. The improvements after the calibration are presented in Table

6.15.

193



Table 6.15: Calibration results

Lane-specific Counts

Before After Improvement
Calibration Calibration

RMSE (vehicles/20 mins) 18.80 15.70 16.49%
RMSPE 0.83 0.73 12.05%

Lane-specific Speeds

Before After Improvement
Calibration Calibration

RMSE (mph) 24.05 12.65 47.40%
RMSPE 1.32 0.64 51.52%

The original MITSIMLab lane changing model reestimated with arterial data

(referred to as base model) parameters were also calibrated in a similar manner.

6.3.3 Aggregate Validation

The purpose of system validation is to determine the extent to which the simulation

model replicates the real system. At this step, the behavior parameters obtained in the

system calibration step are fixed, and the model predictions are compared against the

second set of traffic measurements, which were not used for calibration.

The validation process is comparative. In this study, the goodness-of-fit statistics of

the new model are compared with those of the base MITSIMLab model that includes a

lane-shift model (Toledo et al. 2003). The details of the model are shown in

Appendix C.4.

In this study, the sensor measurements used for the validation are the 'synthetic'

sensor counts and speeds generated using the last 10 minutes of available trajectory data

(8:50 a.m. to 9:00 a.m.).

The validity of the calibrated model was tested using the several measures of

effectiveness (MOEs) that were obtained from the synthetic sensor data and from the

summaries of the trajectory data. These included measures related to the mainline traffic

conditions as well as measures related to the merging lane (auxiliary lane) traffic

conditions:
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* Lane-specific flows

* Lane-specific speeds

* Lane distributions by location

Lane-specific Flows

Lane-specific flow (vehicle/unit time) was compared among the observed data, new

arterial models and default MITSIMLab models. As seen in Table 6.14, the new model

performs better than the base model for all measures.

Table 6.16: Comparison of lane-specific counts

Base New Improvement

RMSE (vehicles/ 5 mins) 13.71 12.26 10.58%
RMSPE 0.59 0.49 16.95%
ME (vehicles/5 mins) 4.91 -0.34 93.08%
MPE 0.25 -0.004 98.40%

Lane-specific Speeds

Speed distribution in lanes was compared among the observed data, new arterial

models and default MITSIMLab models. As seen in Table 6.15, the new model performs

better in terms of RMSE and RMSPE. But the significant improvements are in ME and

MPE.

RMSE and RMSPE tend to penalize large errors. The results suggest that there are

large discrepancies in some of the observations of the new model that contribute to the

large RMSE and RMSPE values. But the average errors are not high. As discussed before

the limitations associated with absence of accurate signal inputs could have resulted in

such errors.

Table 6.17: Comparison of lane- specific speeds

Base New Improvement
RMSE (mph) 12.61 11.84 6.11%
RMSPE 2.51 1.13 54.98%
ME (mph) 9.56 4.51 52.82%
MPE 0.76 0.48 36.84%
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Lane Distributions by Location

Distribution of vehicles in lanes was compared among the observed data, base model

and the new models. In each section distributions are calculated at three locations:

Station 1: At the beginning of the section

Station 2: In the middle of the section

Station 3: At the end of the section.

The locations of the sensors are presented in Figure 6.23.

Figure 6.23: Locations of the sensors

The results for the north bound sections are presented in Figure 6.24Figures 6.24,

6.25 and 6.26. As seen in the diagrams, the lane distributions of the new model have a

better fit to the observed data than the lane shift model. Specially, the lane shift models

over predict the through lane occupancies. The latent plan models better capture the

vehicle positioning.
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Figure 6.24: Comparison of lane distributions (Section 1)
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6.4 Summary

A latent plan based intersection lane choice and a mainline lane changing model were

presented in this chapter. Both models were estimated with detailed trajectory data

collected from Lankershim Boulevard, in Los Angeles, California.

The intersection lane choice model involves the lane choice of drivers entering the

arterial from a side street. The choice is modeled as a two step process: target lane choice

(plan) and immediate lane selection based on the target lane selection (action). The

choice of target lane was unobserved and only the final maneuvers of the driver to

immediate lanes were observed. The choice of target lane is influenced more by path-plan

variables and lane-specific attributes whereas immediate lane choices are governed by
maneuverability considerations. The heterogeneity of the driver population was explicitly

taken into account in the model formulation. In particular, the planning capability of the

driver was allowed to vary among drivers using a latent class model formulation.

The lane changing model for the mainline involves target lane choice, gap acceptance

decisions to make a lane change towards the direction of the target lane, and execution of
the lane change to the accepted gap. The choice of target lane is unobserved and only the

final lane actions are observed. The choice of target lane was found to be influenced by
neighboring vehicle speeds and positions; lane-specific attributes such as queue length;

and factors such as the path-plan of the driver and driver characteristics (planning

capability and aggressiveness). The planning capability of the driver was allowed to vary
among drivers using a latent 'plan-ahead' distance of the driver. Gap acceptance was
influenced by relative speeds of lead and lag vehicles. The execution or completion of the
lane change was found to be a function of the speed of the driver.

The goodness-of-fit of the latent plan models were compared against simpler models

estimated with the same data in each case. Statistical tests on estimation results showed

significant improvement in the goodness-of-fit of the latent plan models.

The new models were validated against simpler reduced form models that do not

address the latent targets behind the actions. These models consisted of a rule based

intersection lane choice model and a simpler within section lane shift model re-estimated

with the arterial data. The measures of validation included comparison of the lane-
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specific flows and speeds, lane distributions in different locations, number of lane

changes per vehicle and number of incomplete trips. The validation results support

improvement in the simulation capabilities of the new models.

One issue of interest within the domain of driver behavior models is the ability to

capture the effect of the time resolution of data on the estimation results. The introduction

of a third level (execution level) in the lane changing model structure to model the lane

change execution decision facilitates the explicit consideration of the impact of the time

resolution on the driving decisions. This is an aspect of research related to this work that

can be explored in the future.

A critical feature that has not yet been incorporated within the model structure for

lane changing and acceleration decisions of a mainline driver has been that of state-

dependence among the successive decisions of an individual in traffic. For example, in

this research, if the gaps are acceptable but the lane change is not completed, the target

lane and target gap decisions are reevaluated at the next time step. This approach assumes

that the state-dependence is captured by the explanatory variables (if a gap is acceptable

now it will continue to be acceptable till the lane change is completed). However, the

validity of this assumption needs to be tested by comparison with models with explicit

consideration for state-dependence. This would form a very important extension to the

current work.
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Chapter 7

Conclusion

This chapter summarizes the research presented in the thesis and highlights the major

contributions. Directions for future research are suggested at the end.

7.1 Summary

In many situations, drivers first select a plan by choosing a target or tactic. The plan is

then manifested through subsequent maneuvers. The plan however is unobserved or

latent and only the end actions are observed. The effect of planning is more evident in

certain geometric and traffic conditions, for example in freeway/arterial with closely

spaced exits/turns, in congested or incident affected situations etc. Ignoring the plans

behind the actions can lead to unrealistic traffic flow characteristics and incorrect

representation of congestion particularly in the above mentioned scenarios. This was

reflected in the findings of the NGSIM study on Identification and Prioritization of Core

Algorithm Categories (Alexiadis et al. 2004), where the urban arterial lane selection,

oversaturated freeway behavior, freeway lane changing and weaving section behaviors

were identified as weak points of the state-of-the-art traffic simulation tools.

The focus of this thesis is on latent plan based driving behavior models that capture

the unobserved plans behind the observed driving decisions. This new framework

includes the effects of past decisions as well as anticipated future conditions in the

current decisions of drivers.

In this thesis, a general methodology for modeling behaviors with unobserved or

latent plans was presented in two phases. The methodology was presented first for a basic
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case with only serial correlation and no state-dependence and was then extended for a

case with state-dependence.

For a case without any state-dependence, the plans and actions of the driver

conditional on individual-specific driving characteristics were assumed to be independent

over time. The interdependencies and causal relationships between the choice of plan and

choice of action of the same driver were captured through individual-specific latent

variable of aggressiveness. The aggressiveness of the driver remains unchanged across all

choice dimensions and all observations of the same driver. In addition, individual-

specific planning capability of the drivers was introduced in the latent plan model

framework. Two approaches were used for this: a continuous latent 'plan-ahead' distance

approach and a latent class approach. In the continuous latent plan-ahead distance

approach, the plan-ahead distance was assumed to have a truncated normal distribution

and the parameters of the distribution were estimated along with other parameters. In the

latent class approach, the drivers were assigned to discrete classes based on their plan-

ahead distances.

The methodology was then extended to capture the effects of state-dependence

between subsequent plans and actions of the driver. This was done with a Hidden Markov

Model (HMM), which was employed to make the state-dependent model computationally

tractable. According to the HMM assumptions, the current plan depends only on the plan

of the previous time step (i.e. not on all previous plans) and all previous actions. The

current action depends only on the current plan. These assumptions enabled calculating

the probability of the plans recursively.

The latent plan modeling approach was demonstrated by lane changing models of

drivers in freeway and urban traffic scenarios. These include the following lane selection

scenarios:

* Freeway mainline lane changing

* Freeway on-ramp merges

* Urban arterial intersection lane choice and

* Urban arterial mainline lane changing.

The general framework was the same in all these cases, latent plans followed by

observed actions. As described in Section 1.2, in the general case, the latent plans can
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include multiple levels: target lane selection, target gap selection, choice of lane changing

tactic and gap acceptance for execution of the merge for example (Figure 7.1). However,

depending on the geometric and traffic attributes, one or more of these levels may be

redundant in particular scenarios. For example, in a moderately congested freeway

situation, if acceptable gaps are readily available, the target gap is always the adjacent

gap and the lane change is always through normal gap acceptance. The target gap

selection and choice of lane changing tactic are therefore redundant in such situations.

Similarly, in a freeway merging situation the target lane is by default the rightmost lane

of the freeway. The detailed structures of the estimated models were thus guided by

characteristics of the trajectory data used for the model estimation.

Current
Lane

Lane 1 Lane 2 ... Lane t '.. Lane L Trget

Target
Forward Backward Adjacent Gap

Lane
Normal Courtesy Forced Changing

Tactic

Accept Reject Accept Reject Accept Reject Gap)Dt Acceptance

Figure 7.1: Framework of choice of plan

The frameworks of the estimated freeway and arterial models are presented in Figures

7.2 and 7.3 respectively (the lane indices start from the left, i.e. Lane L indicates the

rightmost lane).

In the freeway lane selection models (Figure 7.2), the lane selection plan was

represented by choice of target lane and lane changing tactics. However, the behavior of

the mainline and on-ramp drivers have been modeled separately with different data. For

the mainline driver, because of lower level of congestion in the estimation data, the lane

changes were through normal gap acceptance and choice of lane changing tactic
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component was redundant. The on-ramp merging model on the other hand was estimated

with data from a highly congested situation and supported the choice of lane

changing/merging tactic component. In the merging model, the initial target lane was

observed (Lane L, the rightmost lane in the mainline) and the lane selection model was

redundant.

Freeway

SOn-ramp Mainline

Lane L Lane 1 .. Lane l . Lane L arget

Plan

Lane
Normal Courtesy Forced Normal Normal Changing

.-- Tactic

No l| N o Cag No hng Action
Change Change Same e Change Same Chan e Change Change Cange Ch ange Ri ctio

Adjacent New Adjacent New
G ap Adjacent Gap Adjacent

Figure 7.2: Estimated model framework for freeway lane selection model

Urban
Arterial

Intersection Section

Lane1 ... ne .e . LaneL Lanea I -- LaneL , .. LaneL

Accept Reject Accept Reject
Gap Gap Gap Gap

- -- - -- -. -. -- - -- -- ---- Aio

No Change No No No Change NoLane Lane L Change Left Change Change Change Right Change

Figure 7.3: Estimated model framework for urban arterial lane selection model
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In the arterial lane selection models (Figure 7.3), the intersection lane choice and

mainline lane changing models were estimated separately using data from the same site.

In the intersection lane choice case, because of the intermittent nature of decisions (rather

than continuous as in the lane changing case), a different plan and action framework was

adapted where the plan includes the choice of the target lane and the action involves

choice of the immediate lane based on the target lane. In the mainline arterial model, the

duration of the lane changes was found to have a significant impact and was modeled as a

separate decision level in addition to the target lane and gap acceptance levels as in the

freeway mainline.

General Findings

The new set of models was evaluated using comparison of goodness-of-fits of

estimation results and aggregate validation results within MITSIMLab. The goodness-of-

fits of the new models were compared with simpler reduced form models for each case.

The reduced form models were estimated with the same data but they do not model the

latent plans of the driver. Statistical tests on estimation results indicated significant

improvement in the goodness-of-fit of each of the four latent plan models.

For evaluation of the enhancements in the simulation capabilities of the latent plan

models, the models were implemented in MITSIMLab and validated using aggregate

data. Part of the available aggregate data was used first to calibrate the overall simulation

system. The remaining aggregate data (not used for calibration) were then compared with

the corresponding outputs of the calibrated MITSIMLab. Validation results also

supported the improved performance of the latent plan models as compared to the myopic

models. The specific findings for each of the models are presented below:

Freeway Lane Changing

In freeway lane changing, an explicit choice of target lane was introduced to capture

the effect of latent plans in the immediate maneuvers of the driver. In this approach, the

driver selects as the target the lane he/she perceives to be the best among all available

lanes. The driver then looks for gaps in the adjacent lane in the direction of the target

lane. A lane change is executed in the direction of target lane when both lead and lag

gaps in the adjacent lane are acceptable. This approach differs from existing models that
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assume that drivers evaluate the current and adjacent lanes and choose a direction of

change (if any) based on the relative utilities of these lanes. The choice of target lane was

found to be affected by lane-specific attributes, path-plan considerations and speed of

neighboring vehicles as well as individual-specific characteristics like aggressiveness

(latent) of the driver. The gap acceptance decisions were found to be affected by relative

speed and spacing of lead and lag vehicles in the adjacent lane (in the direction of the

target lane) and the aggressiveness of the driver.

While the proposed latent plan model is applicable in any general freeway situation, it

is most useful in cases with large differences in the level of service among the lanes (e.g.

in the presence of an HOV lane) where traditional modeling approaches tend to fail. The

target lane model, which has the ability to capture immediate lane changes to a worse

adjacent lane in order to execute the chosen latent plan to reach a better target lane in that

direction, performed substantially better compared to state-of-the-art driving behavior

models in such scenario.

Freeway Merging

In the freeway merging model, the target lane is observed and the latent plan

manifests as a choice of merging tactic. Traditional merging models are based on the

concept of an 'acceptable gap' emerging and the driver merging into this gap. However,

in congested situations, acceptable gaps are often not available and more complex

merging phenomena are observed. For example, drivers may merge through courtesy of

the lag driver in the target lane or become impatient and decide to force in, compelling

the lag driver to slow down. The plan of the driver, thus, involves selection of the

merging tactic, which in turn affects the driver's merging behavior. However, the chosen

plan is unobserved and only the action, that is the execution of the merge through gap

acceptance, is observed. The acceptable gaps for completion of the merge at any instant

depend on the plan at that time. For example, the acceptable gaps are smaller in case of

courtesy merging compared to normal merging since there is less risk associated with it.

Further, the plan may evolve dynamically as the immediate execution of the chosen

merging plan may not be feasible. For example, there can be a switch to the forced

merging plan if the driver is unable to merge through normal gap acceptance for a
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considerable duration. The probabilities of transitions from one plan to another were

found to be affected by the risk associated with the merge and the characteristics of the

driver such as impatience, urgency and aggressiveness as well as a strong inertia to

continue the previously chosen merging tactic (state-dependence). These effects were

captured by variables such as relative speed and acceleration of the mainline vehicles,

delay associated with the merge, density of traffic, remaining distance to the end of

merging lane, etc. To capture the effect of predicted behavior of other drivers in the

decision making of the subject driver, changes in position of the other drivers within the

anticipation time of the subject driver was explicitly taken into account. In the trajectory

data, only the final execution of the merge is observed but the tactics used for the merge

and the sequence of plans that led to the chosen merging tactics are unobserved. A HMM

formulation was used to formulate the likelihood of the observations.

The new merging model thus integrated, for the first time, all merging tactics of the

driver (normal, courtesy and forced) in a combined decision framework. The combined

decision framework gives the flexibility to model the transition between the merging

tactics that are beyond the scope of disjoint merging models. Also, for the first time, the

state-dependence among decisions that had been ignored in the previous state-of-the-art

models was captured.

Urban Arterial Intersection Lane Choice

The intersection lane choice model involves the lane choice of drivers entering the

arterial from a side street. Their latent plan was captured through the choice of target

lane. The immediate lane selections observed in the data are based on the target lane

selections. The choice of target lane was found to be influenced by path-plan variables

and lane-specific attributes whereas immediate lane choices was found to be governed by

maneuverability considerations. The heterogeneity in planning capability of the driver

was allowed to vary among drivers using a latent class model formulation. The latent

plan based lane selection model thus had the flexibility to capture the pre-positioning of

some drivers based on path-plan before they reach their terminal section. The urban

intersection lane choice model replaced the traditional rule-based assignment technique

of vehicles in their subsequent lanes used in state-of-the-art traffic simulators.
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Urban Arterial Mainline Lane Changing

Mainline lane changing models for urban arterials were estimated rigorously for the

first time using disaggregate data collected from urban arterials. Similar to the freeway

lane changing model, the latent plan in the mainline lane changing model within urban

arterial sections involves target lane choice. However, the duration of the lane change

that is the time elapsed between the initiation and completion of the lane change was

found to be significant. The gap acceptance decisions (indicting the maneuverability

considerations for making the change in the direction of the target lane) were therefore

followed by an additional execution level to mark the completion of the lane change. The

gap acceptance decisions were however unobserved like the choice of target lane and

only the final lane actions were observed. The choice of target lane was found to be

influenced by neighborhood vehicle speeds and positions, lane-specific attributes like

queue length, path-plan of the driver and driver characteristics (planning capability and

aggressiveness). The planning capability of the driver was allowed to vary among drivers

using a continuous latent variable: the 'plan-ahead' distance of the driver. Gap

acceptance was found to be influenced by relative speeds of lead and lag vehicles. The

execution or completion of the lane change was found to be a function of the speed of the

driver and the trend in change in gap size.

7.2 Contributions

The thesis advances the state-of-the-art driving behavior models through explicit

inclusion of the effects of latent plans in the decision framework of the drivers. The new

modeling approach gives a better representation of the decision mechanism by capturing

the causal relationships between plans and actions of the driver and results in more

realistic traffic simulation.

The above contributions were demonstrated through four lane selection scenarios that

were identified as weak points of traffic simulation by model users and developers in the

NGSIM study on Identification and Prioritization of Core Algorithm Categories

(Alexiadis 2004). In each scenario, the inclusion of the latent plans was justified by

comparison of goodness-of-fit of estimation and aggregate validation results. The

comparison of goodness-of-fit of estimation results exhibited the improvements in model
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estimates as compared to the reduced form models that do not have any latent

mechanism. The aggregate validation results demonstrated this through improvements in

the simulation capability in comparison to the state-of-the-art models that use

instantaneous decisions of drivers based on myopic considerations.

Though the benefits of the latent plan model are likely to be more in extreme traffic

conditions, for instance, when there are substantial differences in level of service among

lanes or there is severe congestion leading to increased cooperation among drivers, the

improvements were also observed for general situations.

7.3 Directions for Future Research

In this thesis, a general framework for latent plan models supported by four

applications of the framework in modeling driving decisions was presented. The concept

of latent plan and the proposed framework has enormous potential both in modeling

driving decisions and modeling decisions in other scenarios. Some of the directions in

which further research is needed are presented below:

* Additional dimensions: In this thesis the latent plan methodology was applied

to model the lane changing decisions in different freeway and urban scenarios.

These models however do not capture the effect of acceleration behavior to

facilitate lane changing. For example, drivers planning to make a lane change

may target a gap and adapt their acceleration in order to better position

themselves to maneuver to the gap chosen for lane changing. These additional

dimensions of the plan of the driver, target gap selection and acceleration

behavior for example, need to be integrated into the latent plan decision

framework.

* State-dependence: In this thesis the effect of state-dependence was modeled

only in the case of freeway merging. Similar state-dependence among

observations may also prevail in other lane changing scenarios. For example,

in case of normal lane changing, it was assumed in both freeway and arterial

models that the instantaneous choices of target lanes capture the dynamicity of

the lane changing decisions at every instant. However it ignores the possibility

that drivers may have preference to follow their initial plan even if situational

210



constraints reduce the attractiveness of the plan. The hypothesis regarding

such inertia and persistence behavior of the driver was not tested in this thesis

due to computational limitations related to initial conditions. Application of

HMM methodology to simplify the computation of the state-dependent target

lane model is an interesting direction to extend this research in the future.

* Future expectations of the driver: In this research, the utilities of future

options of the driver were not considered in the current utility. But in reality,

the expectations/payoffs of future decisions can influence the current

decisions of the drivers. For example, utility of executing a merge now can be

influenced by expected utilities of merging in later time steps. Dynamic

programming can be an effective approach to capture the future consequences

of the current action. This approach will involve inclusion of the temporally

discounted future utilities in the expected utility of the current instant. But this

was not pursued in this research due to computational burden and need to be

explored in future.

* Driver heterogeneity: In the disaggregate estimation data used in this

research, no driver specific information was available. The driver

heterogeneity was hence captured through statistical distributions using a

latent variable estimation methodology. Combination of the trajectory data

with socio-economic data of the drivers can be used in future to further enrich

these models.

" Additional applications: The simulation tools enhanced with latent plan

models have demonstrated better performance in the current research. The

improved tools have the potential to be used to investigate aggregate traffic

dynamics. For example, they can be used to investigate traffic shockwave

propagations.

The latent plan models developed in this thesis focus on the latent plans involved

with the driving decisions. The same methodology can be applied in many other

cases, both in driving behavior models and other discrete choice models where the

decisions of individuals involve unobserved planning. In particular, the proposed

method to integrate Discrete Choice and Discrete Hidden Markov methods could be
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effectively used in explicitly capturing the dynamics of plan and action in different

scenarios. Examples include route choice models (Ben-Akiva et al. 1984, Bierlaire et

al. 2006), shopping destination choice (Ben-Akiva and Lerman 1985), activity

participation and travel behavior models, and many other choice situations involving

'hidden' decision layers and latent alternatives.
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Appendix A

Microscopic Traffic Simulation

Laboratory (MITSIMLab)

MITSIMLab (Yang et al. 1996) is a simulation-based laboratory that was developed

for evaluating alternative traffic management system designs at the operational level.

MITSIM, which represents the 'real-world' with detailed traffic and network elements

and mimics the behavior of individual drivers, provides as an ideal tool for testing the

performance of different driving behavior models.

The various components of MITSIMLab are organized in three modules:

1. Microscopic Traffic Simulator (MITSIM)

2. Traffic Management Simulator (TMS)

3. Graphical User Interface (GUI)

The main elements of MITSIM are network components, travel demand and driving

behavior. The road network is represented with nodes, links, segments and lanes. The

vehicle movements and the traffic control and surveillance devices are represented at the

microscopic level.

If disaggregate travel demand data is available (vehicles starting at a given time

interval from each origin to each destination), exact time-dependent origin-destination

(OD) trip tables can be directly provided as an input to MITSIM. If such detailed data is

not available, simulated travel demand based on estimated OD flows (detailed in

Appendix B) are given as the input. The aggregate OD flows are translated into

individual vehicles wishing to enter the network at a specific time. A probabilistic route
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choice model is used to capture drivers' route choice decisions, which may be based on

historical or real-time travel time information.

Each vehicle/driver combination is assigned behavior parameters (e.g. desired speed,
aggressiveness, anticipation time, plan-ahead distance etc.) and vehicle characteristics

(type, old vs. new etc.). The vehicles move through the network according to acceleration

and lane changing models. The acceleration model captures drivers' response to

conditions ahead as a function of relative speed, headway, and other traffic measures.

The lane changing models are replaced by the latent plan models to be tested. The

default driving behavior models implemented in MITSIMLab were estimated and

validated by Ahmed (1999) and Toledo (2002).

TMS mimics the traffic control system in the network under consideration. A wide

range of traffic control and route guidance systems can be simulated. These include

intersection controls, ramp control, freeway mainline control, lane control signs, variable

speed limit signs, portal signals, variable message signs, and in-vehicle route guidance.

TMS can represent different designs of such systems with logic at varying levels of
sophistication (pre-timed, actuated, or adaptive). An extensive graphical user interface is

used for both debugging purposes and demonstration of traffic impacts through vehicle

animation. A detailed description of MITSIMLab appears in Yang and Koutsopoulos

(1996) and Yang et al. (2000).

The proposed freeway models: the target lane changing model and the combined

merging model and the proposed arterial lane selection models have been implemented in

MITSIM for the validation study. The acceleration model proposed by Ahmed (1999) has

been used to simulate the longitudinal movement in both cases.
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Appendix B

Calibration Methodology

B.1 Calibration Framework

The process of calibration of the simulation system aims to set the various parameters

so that observed traffic conditions are accurately replicated. The overall calibration

framework is summarized in Figure B. 1.

Model Estimated"
Disaggregate Estimation Mde

Dataset

P0)

IF

Traffic

Aggregate Flows Aggregate Calibrated
Dataset 1 Calibration Model

(OD, )

Traffic
Aggregate Flows OD OD Validation (

Dataset 2 Estimation Inputs

Aggregate
Validation

Goodness of Fit Statistis
Test Statistics

Po =Originally estimated parameters
@ =Calibrated parameters
OD =Origin destination flows

Figure B. 1: Calibration and validation framework
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The calibration process consists of two steps: initially, the individual models of the

simulation are estimated using disaggregate data. Disaggregate data includes detailed

driver behavior information such as vehicle trajectories. The required explanatory

variables including speeds and relations between the subject vehicle and other vehicles

can be generated from the trajectory data. The disaggregate analysis is performed within

statistical software and does not involve the use of a simulation system.

In the second step, the simulation model as a whole is calibrated using aggregate data

like flows, speeds, occupancies, time headways, travel times, queue lengths etc. The

process of aggregate calibration of the simulation system aims to adjust the various

parameters so that observed traffic conditions are accurately replicated. These parameters

consist of the parameters of the behavior model (initially estimated parameters /80
adjusted to fi) and the travel demand (expressed in terms of origin - destination or OD

flows). Also, in special cases, due to limitations of the available disaggregate dataset, it

may not be possible to estimate all the parameters of the model in the first step. For

example, if the estimation dataset does not have a high occupancy vehicle (HOV) lane, it

will not be possible to capture the effects of the HOV lane-specific variables during the
estimation step. In such cases, the values of these omitted parameters can be captured

during the aggregate calibration.

Once the calibration is complete, the values of the full set of behavioral parameters

are fixed (8 3) and a second set of data is used for validation. Application of the

simulation to replicate this dataset also requires OD flows as input. However, these may
be different from the ones obtained in the calibration phase and so the OD estimation

component of the calibration must be re-done for this dataset. These new OD flows and

the calibrated parameter values are used as inputs to the simulation system.

B.2 Problem Formulation

Aggregate calibration can be formulated as an optimization problem, which seeks to

minimize a function of the deviation of the simulated traffic measurements from the

observed measurements and of the deviation of calibrated values from the a-priori

estimates of the OD flows and the estimated behavior parameters. The formulation

presented here assumes that the observations are drawn during a period in which steady
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state traffic conditions prevail. That is, while OD flows and model parameters may vary

for various observation days, these differences are due to random effects and do not

represent a change in the underlying distributions of these variables. Furthermore, driving

behavior parameters are assumed to be stable over the period of observation. It is

important to note that the steady state assumption concerns the variability between

observation days, and not within each observation day.

The formulation is shown below. The first and second terms in the objective function

are a measure of deviation between observed and simulated measurements and between a

priori OD flows and the estimated OD flows respectively. The first constraint shows the

dependence of simulated measurements on the driving behavior parameters, OD flows

and the network conditions. The second constraint is a non-negativity constraint for the

OD flows.

iZ(MT MosW(sm obs'~(Doo T1o~o
mn>,MN"-M,"'") W- M' + M,*(OD - OD") V-'(OD - OD")

PiOD i=1

s.t. M'Si = S(6, OD) (B.1)

OD>O

Where,

/8 =driving behavior parameters

OD =OD flows

OD =a priori ODflows

N =number of days for which sensor data is available

M'" =simulated measurements

Mobs =observed measurements for day i

S =the simulation model function, which generates simulated traffic measurements

W= variance-covariance matrix of the sensor measurements

V = variance-covariance matrix of the ODflows

The sensor measurements in this case constitute of the traffic flows and speeds

measurements at all sensor stations and all time intervals.

The formulation presented above is difficult to solve because of the absence of

analytical formulations that relate the affect of behavior parameters to the sensor

measurements and relatively large number of parameters to calibrate. An iterative
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solution approach is therefore adopted. In each iteration, first the driving behavior

parameters are kept fixed and the OD flows are estimated. Then the OD flows are kept

fixed and the driving behavior parameters are estimated.

The number of behavior parameters in the simulation model is very large. It is not

feasible to calibrate all of them. A sensitivity analysis is often done to identify the

parameters that contribute most in improvement of the objective function. In sensitivity

analysis, the impact of an individual factor on the overall predictive quality of the

simulator is measured while keeping all other parameters at their original values.

The details of the calibration methodology are presented by Ben-Akiva et al. (2003).
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Appendix C

Reduced Form Models

C.1 Lane Shift Model (Toledo et al. 2003)

This section describes the structure and the parameter estimates of the lane shift

model (Toledo et al. 2003), which is the reduced form model for the freeway target lane

model. The model integrates the mandatory and discretionary lane changing

considerations of the driver in a single framework. The lane changing process consists of

two steps: 1) choice of a lane shift and 2) gap acceptance decisions. The choice set for

lane shift consists of current and adjacent lanes (restricted targets) and does not include

the full set of latent targets as in the latent plan freeway lane selection model. The choice

of lane shift is however unobservable; only the driver's lane changing actions are

observed. The structure of the model is shown in Figure C. . Latent choices variables

are shown as ovals, and observed ones are shown as rectangles.

Lane
Left rr Righthift

No Change No Change No Gap
Change Left Change Right Change Acceptance

Figure C. 1: Structure of the lane shift model

The lane shift is the direction of change (or decision not to change) that the driver

perceives as best to undertake. The Current branch corresponds to a situation in which

the driver decides not to pursue a lane change. In the Right and Left branches, the driver
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perceives that moving in these directions, respectively, would improve his/her condition.

In these cases, the driver evaluates the adjacent gap in the lane in the chosen direction

and decides whether the lane change can be executed or not. Only if the driver perceives

that the gap is acceptable the lane change is executed (Change Right or Change Left);

otherwise, the driver does not execute the lane change (No Change).

Estimation results of the lane shift model are presented in Table C.1.

Table C. 1: Estimation results of lane-shift model (Toledo et al. 2003)

Variable Parameter t-stat
Lane Shift

CL constant 2.490 3.74
RL constant -0.173 -0.51
Right-most lane dummy -1.230 -3.89
Subject speed, m/sec. 0.062 1.59
Relative front vehicle speed, m/sec. 0.163 3.02
Relative Lag speed, m/sec. -0.074 -1.30
Front vehicle spacing, m. 0.019 3.42
Tailgate dummy -3.162 -1.68
Path-plan impact, 1 lane change required -2.573 -4.86
Path-plan impact, 2 lane changes required -5.358 -5.94
Path-plan impact, 3 lane changes required -8.372 -5.70
Next exit dummy, lane change(s) required -1.473 -2.30
oMLC -0.378 -2.29
/7 0.004 0.46

72 0.009 0.77
acCL 0.734 4.66

__ __ 2.010 2.73
Lead Critical Gap

Constant 1.353 2.48
Max(A V,'ed(t), 0), m/sec. -2.700 -2.25

Min(A V lead (t),0), i/sec. -0.231 -2.42

alead 1.270 2.86
olead 1.112 2.23

Lag Critical Gap
Constant 1.429 6.72
Maxi(A Vn'(), 0) m/sec. 0.471 3.89

a lag 0.131 0.64

0 .lag 0.742 3.68
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C.2 Single Level Gap Acceptance Model (Lee 2006)

This section describes the structure and the parameter estimates of the single level

gap acceptance model (Lee 2006), which is the reduced form model for the freeway

merging model. The single level model aims at capturing the normal, forced and courtesy

behavior of drivers through one gap acceptance level. In this model the merging driver

evaluates the adjacent lead and lag gaps for merging and compares them with the

corresponding critical gaps. An adjacent gap is acceptable if both lead and lag gaps are

acceptable. The model structure is shown in Figure C.2.

Gap
Acceptance change ng
(Action)

Figure C. 2: Framework of single level gap acceptance model (Lee 2006)

Critical gaps are modeled to have log-normal distribution their means being function

of explanatory variables. Variables capturing courtesy and forced merging are included

by means of relevant variables (acceleration of lag vehicle as an indicator of courtesy,

remaining distance to the merge as an indicator of forced merge). The estimation results

of the single level gap acceptance model are presented in Table C.2.
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Table C. 2: Estimation results of the single level gap acceptance model

Variable Parameter t-stat
Lead Gap

Constant 0.181 0.203
Max(0,average speed - subject speed)(m/sec) 1.45 4.59
Min(0,lead speed - subject speed) (m/sec) -0.571 -3.53
remaining distance to MLC point (10 meters) 1.029 4.29
Remaining distance constant -0.492 -0.81
a Re mDisLead 0.798 2.66
0.Mlead 4.27 5.86
aMlead -0.00016 -0.0033

Lag Gap
Constant 0.379 0.89
Max(0,lag speed - subject speed )(m/sec) 0.178 1.36
Min(0,lag speed - subject speed)(m/sec) 0.0909 0.707
remaining distance to MLC point (10 meters) 0.178 1.74
Remaining distance constant -2.21 -0.55
a RemDisLag 2.88 0.73
Max(0,acceleration of lag vehicle)(m/secA2) 0.0766 0.81
0. lag 0.914 5.63
a Ulag -0.00012 -0.0025

C.3 Single Level Intersection Lane Choice Model

The reduced form model for the intersection lane choice model is a single level

multinomial logit model. The structure of the model is illustrated in Figure C.3. In this

model the driver evaluates the utilities of the available lanes and selects the lane with the

highest utility. The model was estimated with same data as the latent plan intersection

lane choice model.

1 F 3 4

Figure C. 3: Framework of single level intersection lane choice model

The estimation results are presented in Table C.3.
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Table C. 3: Estimation results of single level intersection lane choice model

Variable Paramete t-stat
r

Lane Selection
Lane 2 constant -0.0181 0.12
Lane 3 constant 1.10 6.91
Lane 4 constant 3.29 7.43
Anticipated delay-myopic drivers (second) -0.331 -0.87
Anticipated delay-drivers who plan-ahead (second) -0.477 -0.49
Lanes away from coefficient-myopic drivers -1.11 -0.49
turning lane (myopic) constant-myopic drivers 0.968 0.79

heterogeneity coefficient -myopic drivers 0.427 1.03
Lanes away from coefficient-drivers who plan-ahead -4.24 -6.36
turning lane (with constant-drivers who plan-ahead .415 0.84
plan-ahead) heterogeneity coefficient -drivers who plan-ahead 1.51 2.10

Lanes away from coefficient -1.01 -2.92
connecting lane constant 0.427 1.03

heterogeneity coefficient 0.648 4.46
Conflict dummy -1.95 -11.01

Driver Class
Driver population with >1 section plan-ahead % 3.31 0.33

C.4 Lane Shift Model for Urban Arterials

This section describes the reduced form model for the mainline lane changing model

for the urban arterial. The structure of the lane shift model for urban arterials is same as

the lane shift model for freeway developed by Toledo et al. (summarized in C. 1). But the

model has been re-estimated using the same trajectory data that has been used to estimate

the latent plan model for the urban arterial mainline presented in Section 6.2.3.

Estimation results of the model are presented in Table C4.
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Table C. 4: Estimation results of the re-estimated lane changing model

Variable Parameter t-stat

Lane Shift

Current Lane Dummy 4.36 0.34
Path-plan impact : No. of lane changes to exit lane -1.12 -3.64
Path-plan impact : No. of lane changes to exit interacted -0.71 -2.53
with distance from exit
Exponent of dist. to exit in no. of lanes to exit- dist. to 0.344 1.20
exit interaction
Queue length ahead in lane -0.087 -1.22
Front vehicle relative speed 0.0186 3.35

aCL 1.15 5.20
Lead Critical Gap

Lead gap constant 0.798 20.18

V m ada m/s) 0.757 59.21
0 lead 0.000141 0.08
alead -0.94 -31.31

Lag Critical Gap
Lag gap constant -1.205 -10.51
A V'gTL (m/s) 0.257 9.60

a lag 0.000157 0.002

0 .lag -1.78 -116.94
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Appendix D

Related Publications

1. Choudhury C., Ben-Akiva M., Toledo T., Rao A. and Lee G. (2007), Modeling State-
dependence in Lane-changing Behavior, paper presented at the 17th International
Symposium on Transportation and Traffic Theory, London, UK.

2. Choudhury C., Ben-Akiva M. and Toledo, T. (2007), Modeling Lane-changing
Behavior in Presence of Exclusive Lanes, paper presented at the 1 1th World
Conference on Transport Research, Berkley, USA.

3. Ben-Akiva M., Abou Zeid M., Choudhury C. (2007), Latent Choices, paper presented
at the 9e Journee Transport, Paris, France.

4. Ben-Akiva M., Abou Zeid M., Choudhury C. (2007), Hybrid Choice Models: from
Static to Dynamic, paper presented at the Triennial Symposium on Transportation
Analysis VI, Phuket, Thailand.

5. Choudhury C., Ben-Akiva M., Ramanujam, V., Toledo, T. and Rathi, V. (2007),
Arterial Lane-selection Model, Federal Highway Administration, Technical Report
No. FHWA-HOP-07-079.
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Cooperative Lane-changing and Forced Merging Behavior, paper presented at the 86
Transportation Research Board Annual Meeting, Washington DC, USA.
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presented at the 2 International Symposium of Transport Simulation, Lausanne,
Switzerland.

8. Ben-Akiva M., Choudhury C. and Toledo, T. (2006), Modeling Latent Choices:
Application to Driving Behavior, paper presented at the 11 International
Conference on Travel Behaviour Research, Kyoto, Japan.
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Technical Report No. FHWA-HOP-07-078.
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