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ABSTRACT

The most mass-influential element in a manned Mars mission is the spacecraft which returns
the Martian surface astronauts to Mars orbit. Therefore, the purpose of this study is to
determine the approximate mass, energy, and volume required for a three-astronaut Mars
Ascent Vehicle (MAV). This study, which is based on the Martin Marietta Astronautics
Group's Manned Mars System Study (MMSS), also identifies enabling and enhancing
technologies for this early 21st century manned Mars mission.

Through this study, it is found that the ascent portion of the Mars mission presents no
significant enabling technology problems. Various enhancing technologies, which are
described throughout this analysis, allow reduction of the overall vehicle mass.

Thesis Supervisor. Walter Hollister

Title: Professor of Aeronautics and Astronautics
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1.0 Introduction

There has been an endorsement by the current presidential administration of placing a man on

Mars early in the 21st century. The political and national pride obtained from landing the first

man on another planet is enormous. Other benefits include the potential for scientific

discoveries on Mars, and the pushing of the state of the art in technology, which will have

"spin-off' technological benefits.

The purpose of this study is to make a point design of the spacecraft which transports the

Martian astronauts from the surface of Mars to Martian orbit. Because this Mars Ascent

Vehicle (MAV, see Figure 1-1) must descend to and ascend from the the Martian surface as

well as make the entire journey to Mars, it is the most mass sensitive element in a manned

Mars mission scenario. For each MAV kilogram that ascends back into Areosynchronous

Mars Orbit (AMO), up to 20 kilograms of mass in Lower Earth Orbit (LEO) is required to

reach that point. Because of this extreme mass sensitivity, the MAV is an important design

element.

The MAV in this paper is designed based on a manned Mars mission scenario from the Manned

Mars System Study (MMSS) at Martin Marietta Astronautics Group. All of the non-MAV

spacecraft and scenarios are based on this study. Even though this makes the MAV point

design specific to one mission design, the overall vehicle design should carry over into any

manned Mars mission in the near future with only minor modifications.

This study first does some parametric studies in each subsystem in order to justify the choices

made in the point design, minimizing mass whenever feasible. The point design gives figures

for total masses, powers, and volumes required as well as pinpointing problem spots in MAV

design and areas requiring further research. The design employs current available and state of



the art technology, giving a baseline design into which technological advances can be

integrated at a later point.

i_.3 &._._.1

Figure 1-1: Mars Ascent Vehicle, External View



2.0 Missions

2.1 Main Scenario

In the baseline manned Mars mission, five astronauts make the journey from Earth to Mars in

the Mars Transfer Vehicle (MTV, see Figure 2-1) in the year 2005. If the mission is

conjunction class, this trip takes a maximum of a year, although different orbital mechanics

paths, such as with sprint and opposition class missions, take less travel time.

When reaching Mars, the MTV aerocaptures into a 250 km by 33850 km areosynchronous

orbit with a 370 inclination. At this point, three astronauts descend in the Mars Descent

Vehicle (MDV) to an equatorial landing site on the Martian surface. The MDV employs an

aerobrake to slow its path through the Martian atmosphere. This aerobrake is discarded before

landing, allowing the MDV to propulsively lower to the surface. In case an abort becomes

necessary on descent, the astronauts are seated in the Mars Ascent Vehicle (MAV), which is

attached to the top of the habitation module of the MDV (see Figure 2-2).

The astronauts spend the equivalent of one Earth-year on the Martian surface, exploring,

collecting samples, and running experiments. During this stay on the surface, the MAV is

always operational and ready for immediate abort-to-orbit in case of an emergency. The

samples are stored in the MAV because of this abort possibility.

After the year-long stay on the Martian surface, the astronauts ascend in the MAV back into the

aerosynchronous orbit, and rendezvous directly with the Mars Orbiting Vehicle (MOV), the

remaining section of the MTV. The MAV then docks with the MOV with the help of the on-

orbit astronauts, permitting the transfer of the surface astronauts and samples to the MOV. In

order to help with the return flight payload capability, the MAV is abandoned in the Martian

orbit as the MOV returns to Earth.



Figure 2-1: Mars Transfer Vehicle (MTV)
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Figure 2-2: Mars Descent Vehicle (MDV)
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2.2 Abort Scenario 1

The first abort scenario provides an abort during descent to the Martian surface. This could

become necessary under several conditions, including MDV system failure and failure to locate

a safe landing site. Unless there is a backup MDV, this means an overall mission failure as

well as a Mars landing abort.

If an emergency occurs on descent, the MAV detaches from the MDV habitation module. The

MAV engines then ignite, and the MAV ascends back into the orbit from which it had

descended. Unfortunately, the MAV and the MOV are no longer orbit synchronized at this

point, making rendezvous impossible.

To solve this problem, the MAV first ascends into a 250 km circular orbit. It then thrusts into

an elliptical orbit with the same perigee location as the MOV. The apogee of the orbit is

determined by how much the MAV lags behind the MOV in the orbit, and is fixed such that the

two vehicles will be in the same location at the next perigee passage. At this point, the MAV

thrusts to match velocities with the MOV, and the rendezvous and docking sequence occurs.

This scenario should always take less than one sol (Martian day = 24.66 hours).

The only time this scenario does not allow abort on descent is when the MDV is so close to the

Martian surface that the MAV cannot detach before a collision with the Martian surface occurs.

2.3 Abort Scenario 2

A second abort scenario is an abort-to-orbit sequence from the Martian surface. This scenario

allows the surface astronauts to ascend back to the rendezvous orbit from the surface landing

site at any time during their stay on the surface.

Before the ascent phase begins, the MAV must be able to ascend into the MOV orbit plane.

This means that the MAV may have to wait up to 12.33 hours on the Martian surface before the



landing site aligns with the ascending or descending node of the MOV orbit. When this

occurs, the ascent sequence begins.

The ascent sequence is a combination of the first two scenarios. The normal detachment from

the MDV habitation module occurs, and the MAV ascends into a 250 km circular orbit. Once

again, the MAV and MOV must synchronize their orbits.

The only difference between this synchronization of orbits and the one described in the

previous section is the possible location of the MOV. In the first abort scenario, the MOV is

guaranteed to be in front of the MAV, assuring that rendezvous and docking can occur in a

maximum of one sol. As a worst case in this abort scenario, however, the MOV could lag the

MAV by less than 112 minutes, the period of a 250 km circular orbit. This would mean that it

would take 26.5 hours (1 sol + 112 minutes) in order to synchronize the two orbits plus

another 12.33 hour maximum stay on the surface before the orbit nodes align. This worst case

rendezvous time of 38.8 hours sets the upper bound for the necessary life support system

capability of the MAV.



3.0 Overall Vehicle Reauirements

Before presenting the MAV subsystem designs, it is first necessary to establish the

requirements on the entire vehicle. These requirements establish the requirements on the

subsystems, which in turn determine the design of these subsystems.

By looking back at the described manned Mars scenarios (see Section 2.0), it is clear that the

MAV must perform two major functions:

* transport 3 suited astronauts from the Martian surface to the MOV orbit

* provide a survivable environment for 38.8 hours (see 5.0 for details)

In order to successfully complete its mission, the MAV must be able to reach the MOV

areosynchronous orbit. To accomplish this task, the MAV must:

* ascend to a 370 inclination, 250 km x 33850 km altitude orbit

* ascend from a 00 latitude, 00 longitude, Martian surface site

* have a propulsion system and a guidance, navigation and control system (GN&C)

capable of reaching this orbit

Once the spacecraft reaches orbit, it rendezvous and docks with the MOV. To perform these

functions, the MAV must have:

* Orbital Maneuvering System (OMS) capable of rendezvous

* approach AV < 0.1 m/s between the MOV and the MAV

* docking mechanism compatible with the MOV

* pressure compatible with the MOV (or with airlock on the MOV)

To provide a man-rated ascent to the MOV orbit, the following safety requirements are

specified:

* no wait MAV safe haven on the Martian surface

* abort-to-orbit on descent to the Martian surface



* .96 overall vehicle reliability (.995 subsystem reliability)

* no single point failures in design

* constant communication link between MAV and MOV

* possible shielding against radiation

* component shelf-life of 2 years

In addition to carrying the astronauts into orbit, the MAV also has to transport any samples

that are being returned to Earth for further study. These include soil samples, atmospheric

samples, and film. Therefore, the MAV must provide:

*.any special environments required for cargo (see Section 12.0)

* capability to carry up to 100 kg of cargo on ascent only

Since the MAV will be connected to the MDV habitation module, the MAV must be fully

compatible with it (see Figure 3-1). This means that the MAV must provide:

* entrance to the MDV habitation module (see Figure 3-1)

* pressure compatible with the MDV to avoid prebreathing (5 psia)

* geometry that fits inside the aerobrake inpingement cone of the MDV upon

entering the Martian atmosphere (600, see Figure 3-1)

* volume for the manned rover underneath the spacecraft

Generally, the mass should be minimized due to the sensitivity of the MAV to the mass in

LEO. This minimization, however, is constrained by the need for reliability and safety in a

man-rated spacecraft.



Figure 3-1: Aerobrake Impingement Cone
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4.1 Introduction

Structural elements are required to withstand internal pressure loads, as well as landing,

docking, and ascent loads. Additional structure is required for the propulsion system, and for

the numerous pressurized tanks throughout the spacecraft.

4.2 Requirements

Each of the MAV structural components must withstand the loads placed upon it:

* acceleration loads - Mars ascent, Earth ascent, Mars aerocapture

* aerodynamic loads on Mars ascent

* internal pressure loads

* thermal loads on Martian ascent

* vibrational and acoustic loads on Earth-to-orbit ascent

* docking loads

* Mars landing loads

Additionally, the MAV structure has other requirements:

* withstand internal pressure and temperature loads (for both capsule and tanks)

* factor of safety = 2.0 (from ultimate failure stress)

* avoid corrosion effects

* shelf-life = 2 years

4.3 Structural Loading

The MAV must withstand structural loads on Earth ascent, Mars transit, Mars landing, and

Mars ascent and docking. Additional loads stem from internal cabin pressures, as well as

from pressures on propellant, helium, and oxygen tanks.



4.3.1 Earth Ascent Loads

Before the MAV makes its voyage to Mars, it must first be placed into Earth orbit. Assuming

that it is launched in the STS, the MAV expects to see a maximum constant acceleration load of

about 3 g's, less than the Mars aerocapture loads (see Figure 4-1). Vibrational loads will be

significantly higher, however.

To avoid sizing the MAV structure based on Earth loadings, the MAV could be braced on

ascent to withstand the higher STS vibrational loads. The MAV cabin would also need to be

open to the atmosphere, to avoid having to size the spacecraft skin for the 67 kPa (9.7 psia)

difference between Earth sea level pressure and MAV cabin internal pressure.

4.3.2 Mars Transit and Aerocapture

Trans-Mars injection acceleration to escape Earth orbit are expected to be about 0.2 to 2.0 g's,

which won't affect MAV structural design. Mars aerocapture loads, on the other hand,

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.0
0 50. 00 150. 200 250 300. 350. 400. 450. 500. 550. 600. 660. 700

lIME (ISEC

Figure 4-1: Typical Mars Aerocapture Loads (MMSS, 1989)



approach 4.5 g's (see Figure 4-1).

4.3.3 Pressure Loads

Internal pressure loads for the MAV cabin, and propellant, helium, and oxygen tanks are

summarized in Table 4-1. Information is drawn from Sections 5.0 and 6.0.

Table 4-1: Internal Pressure Loads

Structural Element Internal Pressure, MPa (psia)

cabin pressure 0.035 (5)

NTO tanks 0.345 (50)

MMH tanks 0.207 (30)

N2H4 tanks 2.069 (300)

He tanks 31.03 (4500)

02 tanks 3.448 (500)

4.3.4 Ascent Loading

The Mars ascent loads are described in Figures 9-4 and 9-11. Peak loads are approximately 2

(Earth) gee's. Propulsion structure must be sized for the maximum single engine thrust of

53.3 kN (12000 lbf), and the maximum total thrust of 133.4 kN (30000 lbf).

Additional loads come from dynamic pressure and thermal loads on ascent. Dynamic pressure

peaks at approximately 810 Pa (17 psf; Figure 9-6), while surface temperatures are

maintained at about 205 OK, which is well within the material plastic limits of the MAV skin.

4.3.5 Docking/Other Loads

Docking loads are significant due to their applied location. All of the previously mentioned

acceleration loads are applied at the mass locations, producing a downward force with respect



to the MAV center line.. The docking load, on the other hand, is applied at the front of the

MAV, causing an upward (+ Z axis) compressive force on the MAV.

The Apollo Lunar Excursion Module (LEM) was sized for a 4 g docking impact. It is

expected, that with state-of-the-art guidance, navigation, and control (GN&C) systems, this

impact loading can be reduced to about 1 g.

Additional loads are derived from descent impact, which is expected to be approximately 5 g's

(MRSR, 1989).

4.4 Ontions and Choices

4.4.1 Material Selection

The MAV structural design utilizes three materials; high-strength, isotropic graphite/epoxy,

titanium, and aluminum. Table 4-2 illustrates the material characteristics employed in this

structural analysis and for thermal analysis (see Section 10.0).

Table 4-2: Material properties

Properties Gr/Ep (isotropic, Titanium (Ti6 Al- Aluminum (7075-

high strength) 4 V) T6)

Ult. tensile stress, MN/m 2  724 1034 523

Ult comp. stress, MN/m 2  690 1034 523

Youngs modulus, GN/m 2  83 110 71

Density, kg/n 3  1490 4430 2800

Conductivity (W/m-oK) 1.5 7.4 134

Specific heat (J/kg-OK) 800 837 502



4.4.2 Design Method

The propulsion structure was designed such that engine thrust would not create additional loads

on the main capsule structure. It is a self-contained structure which allows the engines to first

lift the propellant tanks before exerting any forces on the MAV capsule. Therefore, the main

cabin need only take the pressure, acceleration, and docking loads. The propulsion structure

absorbs all engine thrust loads.

The MAV cabin utilizes a two hull, stringer-rib construction. This gives a lightweight capsule

structure. The skin is sized in order to take the pressure loads, and the stringers absorb the

acceleration and docking loads.

4.5 Point Design

4.5.1 Main Capsule

The rib, stringer, and shell design utilized for the MAV main cabin is illustrated in Figure 4-2.

To facilitate attachment of avionics, wiring, and ducting to the inside of the spacecraft, the

inner shell and stringers are made up of aluminum. To reduce the outer shell mass, it is

constructed of lightweight graphite/epoxy coated with a thin metallic coating, such as

aluminum (to prevent leakage).

4.5.1.1 Shell

The MAV utilizes a double shell, to protect against hull rupture. To size the minimum required

thickness of the cylindrical portion of the pressure shells, the hoop stress is determined:

Prt-
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t = thickness of shell

P = internal pressure = 0.0345 MPa

r = radius of shell = 1.68 m

at = material tensile strength = 523 (aluminum) or 724 (Gr/Ep) MN/m 2

Including the safety factor, the aluminum shell only needs to be 0.222 mm (0.0087 in) and

the Gr/Ep shell requires a 0.16 mm (0.0063 in) thickness. Because the lateral pressure forces

on the conic section are less than the axial pressure forces, the conic section also requires this

minimum thickness. Dynamic pressure forces are insignificant compared to the internal

pressure forces.

This required thickness is insufficient to eliminate the danger of accidental puncture.

Therefore, the inner shell is sized for a 1.27 mm (0.05 in) thickness, while the Gr/Ep outer

shell, which is not exposed to the astronauts, is sized for a 0.762 mm (0.03 in) thickness.

The Gr/Ep shell is coated with a thin aluminum layer to minimize outgassing.

The aluminum floor pressure shell of the MAV is 1.4 mm (0.055 in). It is sized to withstand

the pressure forces, plus the force of an astronaut standing at the center of one of the square

panels. The shell thickness determines the distance between the stringers:

t = (1 Pb2)0.5 (Rourk, 1954)
Ot

3 = constant = 0.50 (for square panels)

b = panel width

P = pressure load + astronaut standing on panel

For an 82 kg astronaut on Mars, and a desired floor thickness of 1.4 mm (0.055 in), the

stringers must be (3 in) apart. This translates to a total face plate pressure of (12.4 psi)



The outer Gr/Ep shell is sized only for the internal atmospheric pressure loads, and is 0.762

mm (0.03 in) thick.

4.5.1.2 Stringers & Ribs

32 cabin wall stringers and 12 ribs absorb all of the non-pressure loads. The most significant

loading occurs during docking, when the stringers' principle failure mode is buckling:

x2EI
Per- L2

Pcr = failure load = MAV dry mass * 1 gee acceleration = 26.6 kN

E = Young's modulus = 71 GN/m2

I = stringer minimum moment of inertia

L = stringer length

Assuming the stringers are end-fixed by the hoops (see Figure 4-2), the stringer length is

0.1778 m (7 in). If the docking load is off-center, so that only half of the stringers are

employed, the required moment of inertia (with FOS) for each stringer is 1.5x10- 10 m4. With

square stringers (side = 6.5 mm), this translates to 8.34 kg of stringer mass. The mass could

be further reduced by utilizing hat or I-beam stringers.

Each of the 12 hoops must be able to absorb the docking load transferred from the stringers.

By utilizing square cross-sectional hoops, the ribs must be 3.81 mm (0.15 in) along the axial

direction, and 1.9 mm (0.84 in) along the lateral direction. This results in a total of 2.03 kg of

hoop mass.

Because the propulsion structure supports the floor of the MAV, not a great deal of floor

stringer mass is required.



4.5.2 Prooulsion Structure

Figure 4-2 demonstrates the propulsion structural system.
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Figure 4-2: Propulsion System Structure



The propulsion structure is designed such that only acceleration forces are exerted on the main

capsule structure.

4.5.2.1 Tank Structure

The tank structure consists of a rib, stringer, and shell external design, with internal supports

to absorb the majority of the propellant mass loads (see Figure 4-3). To avoid structure-

propellant compatibility problems, titanium is utilized for the propellant tank structure.

Om Im

Internal External

Figure 4-3: Tank Structure

The outer tank shell supports only the pressure loads. As with the main cabin shells,

however, this required thickness is not enough to eliminate the possibility of tank accidental

puncture. Using the hoop equation for spherical shells, it is found that the

MMH tanks require only a 0.214 mm (0.008 in) thickness, while the NTO tanks need to be

0.356 mm thick (0.014 in):
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To avoid accidental puncture, the tank shells are sized for a 0.762 m (0.03 in) thickness.

The internal vertical strut (#1, see Figure 4-3) is designed to hold the entire propellant mass

tension force during maximum mission loading:

A-=F

A = cross-sectional area of strut

F = propellant mass force = mprop * 5 gee's

Therefore, each NTO vertical strut has a total mass of 3.28 kg, while the MMH strut has a

mass of 1.7 kg. Because of these supports, the external structure of stringers and hoops need

only support the local propellant masses, and not the total propellant mass. This support

structure can thus be extremely lightweight.

The horizontal internal tank supports (#2) and the internal supports that connect the tanks

together (#3 and #4) are expected to maintain the MAV propellant "self-contained" structure. If

an engine-out occurs, these supports hold up the tanks that are no longer being lifted by the

main engines, preventing forces from being exerted on the MAV capsule.

Each of these supports must not buckle or compressively fail while supporting the 2 gee force

on the adjacent propellant tanks. To accomplish this, each support that is absorbing the NTO

propellant mass (#3) must have an area moment of inertia of 2.53x10 -7 m4, while each MMH

support (#4) must have a 1.26x10-7 m4 area moment. By utilizing hollow pipe supports, 25

mm in external radius, 16 mm internal radius, each of the four NTO supports has a mass of

12 kg. Similarly, the 22 mm external, 16.4 mm internal radius MMH supports have a mass

of 7 kg each.



The MMH horizontal internal supports (#2) have a required area moment of 2.6x10-8 m4,

translating to 2.76 kg for each of the four 15 mm external, 11.5 mm internal radius hollow

cylinder supports. The NTO horizontal internal supports require a 5.2x10-8 m4 moment,

translating to a mass of 3.75 kg for each 18 mm external, 14 mm internal radius strut.

4.5.2.2 Engine Structure

The upper main engine structure is sized for a combination of buckling and compressive

failure. Worst-case loading occurs if two engines are operating at maximum 53.3 kN thrust

levels. In addition, if the engine is gimballing, the majority of the loading occurs on only one

of the support struts (see Figure 4-2).

Each engine support must have an area moment of inertia of 9.8x10-8 m4. By again employing

pipe supports, each of the three main supports has a mass of 5.68 kg, for a 20 mm external,

14 mm internal radius strut.

Additional structure, required to sustain the attachment of the engine to the propulsion system,

is connected to the tank horizontal internal supports. These structural element primarily

withstand the engine tension forces of 53.3 kN, and have a total mass of about 5 kg.

4523 Other Propulsion Structure

The remainder of the propulsion structure consists of a truss structure located on the top and

bottom of the propulsion system (see Figure 4-2). The top truss must withstand the

compression forces of the main engines, and is thus sized to avoid buckling and compressive

failure.

As before, the worst-case loads are for maximum thrusting engines during the engine out

scenario. The truss members, to which the engines are attached, are sized for a worst-case

compressive loading of 42.6 kN (gimbaled engine, full thrust). This results in an approximate



required area moment of 3.1x10 -7 m4. Utilizing a 30 mm external radius, 25.3 mm internal

radius pipe strut, the top truss has a mass of 65.1 kg. The bottom truss does not take direct

engine loadings, and thus requires less mass.

4.5.3 Other Structural Elements

4.5.3.1 MDV Connection

The MAV must be connected to the MDV habitation module. This structure (see Figure 2-1)

fails through compression and buckling loads. If the MDV lands off-center, each of the eight

support struts must have a 2.84x10 -6 m4 area moment. This translates to 302 kg of total mass

for 60 mm external, 55.3 m internal radius supports.

Fortunately, this mass is not taken with the MAV when it ascends into Martian orbit.

4.5.3.2 Tank Structure

Tank masses throughout this design were determined using hoop stresses and utilizing a 2.0

non-ideal tank factor (Redd, 1989).

4.6 Summary

Table 4-3 summarizes the information in this section. Propellant tank masses are included in

the propulsion system mass in Section 6.0 and are not included in the total structural mass.

Table 4-3: Structure Summar

Element Number Total Mass (kg) Energy (W-hr) Volume (m3)

cabin structure:

inner shell (conic) 1 64.8 0 0.023

inner shell (floor) 1 34.5 0 0.012



Table 4-3: Structure Summairy (cont.)

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

outer shell (conic) 1 20.7 0 0.014

outer shell (floor) 1 10.0 0 0.007

stringers (conic) 32 8.3 0 0.003

stringers (floor) 64 6.8 0 0.002

hoops 12 2.0 0 0.001

welds, attachments 30.0 0 0.010

propulsion structure:

NTO shell (2) (96.6) (0) (0.022)

MMH shell (2) (96.6) (0) (0.022)

internal vert. struts 4 10.0 0 0.002

other int. supports 16 102.0 0 0.023

engine structure 4 73.2 0 0.017

top truss 1 65.1 0 0.015

bottom truss 1 10.0 0.007

OMS support 4 10.0 0.007

He support 4 5.0 0.004

MAV connections 10.0 0.007

MDV connections 15.0 0.011

welds, attachments 30.0 0.021

prop. structure 34 330.3 0 0.112

capsule structure 112 177.2 0 0.072

TOTAL 146 507.5 0 0.185



4.7 Recommendations

This was a first cut analysis, assuming that the main failure mode was the only possible

failure. Further analysis should be performed to determine the effects of torsion and shear

stresses.

Propulsion structural mass could be further reduced by utilizing advanced materials for all

propellant tank structure. If the propellant contamination and out-gassing problems are

resolved (possibly by coating the Gr/Ep with a non-reactive metal), the tanks themselves can

be made up of isotropic Gr/Ep.



5.0 Life SuDDort System

The life support system (LSS) of the MAV must provide a liveable environment by supporting

three astronauts for a period of 38.8 hours. This includes maintaining an acceptable

temperature, pressure, and humidity, as well as providing the astronauts with the needed

food, water, and air for the duration of the ascent to Mars orbit.

5.2 Reauirements

To provide a liveable environment for the astronauts, the following requirements must be met:

* humidity between 25% - 75% (NASA-STD-3000, 1987)

* temperature between 210C and 270C (NASA-STD-3000, 1987)

* pressure between 24.7 kPa (100% Oxygen) and 101 kPa (21% Oxygen)

* compatible with MDV habitation module (34.4 kPa)

* compatible with MOV (34.4 kPa)

* air revitalization - removal of C02, pollutants

* waste management system for 38.8 hours

The following consumables have to be provided for the 38.8 hour mission:

* food for 38.8 hours

* water for 38.8 hours

* air for 38.8 hours

* FOS = 1.15 (44.6 hours)

In addition to these requirements on consumables and environment, there are a number of

other requirements based on preserving the safety of the astronauts during the mission:

* spacesuits for all astronauts in case of hull breach or air supply leakage



* 1.5 m3 per astronaut for working space / sanity

* acceleration limits (NASA-STD-3000, 1987, Figure 5.3.3.1-1)

* 5 g's sustained (> 10 minutes)

* 10 g's peak (< 1 minute)

* acceleration couches if necessary

* rudimentary first aid equipment

* fire protection equipment

* shelf-life of 2 years

* no single point failures; dual-fault tolerant in most systems

* reliability of .995

5.3 Point Design

Figure 5-1 illustrates the LSS layout. All elements are located so that they are within reach by

the astronauts, permitting repair accessibility throughout the 2-year mission. Due to better

reliability, lower power requirements, and reduced research and development costs, an open

LSS is baselined for this short duration, 38.8 hour mission.

5.3.1 Consumables

To determine the quantity of required air for a 38.8 hour mission, a 34.4 kPa (5 psia) pure

oxygen environment is baselined. This pressure level, which has been previously employed

on Apollo, Gemini, Mercury, and Skylab missions, is compatible with both the MDV

habitation module and the MOV (MMSS, 1989), eliminating any EVA pre-breathe

requirements. Opting for 34% of Earth atmospheric pressure also reduces the MAV structural

mass and air leak rates. Furthermore, a pure oxygen environment simplifies the air

distribution system (see Section 5.3.2)
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Figure 5-1: LSS Layout



Since the necessary partial pressure of 02 for alveolar oxygen levels is only 24.7 kPa (3.6

psia), the 34.4 kPa oxygen environment provides a 1.39 factor of safety. In general, for

missions over a couple of weeks, an inert gas must be provided (NASA-STD-3000, 1987),

but this not necessary for the short-term MAV mission. Oxygen is utilized at a rate of 0.84

kg/p(person)-day (MMSS, 1987).

For the maximum duration mission, extensive quantities of food are not required, since an

astronaut could easily survive without food for 38.8 hours. High-caloric packaged food is

provided based on a 0.617 kg/p-day consumption rate and an additional food storage factor of

0.45 kg/p-day rate (MMSS, 1987).

Water is nominally provided to sustain a consumption rate of 3.63 kg/p-day (MMSS, 1987) by

the astronauts, but 0.4 kg/p-day (Clark, 1988) is sufficient for survival. On-board canned

water provides this minimum quantity, with the byproduct fuel cell water producing a useable

water surplus.

5.3.2 Air Circulation System

A system of fans and ducts circulate the air throughout the cabin (see Figure 5-1 and Figure 5-

2). The air is captured near the floor by fans, purified, supplemented with oxygen , and

returned to the cabin through vents located on the walls of the spacecraft. The oxygen, stored

in 3.45 MPa (500 psia) tanks, is injected at a rate that maintains the total cabin pressure at 34.4

kPa.

Two identical circulation systems prevent single-point failures. Each of the two systems is

capable of sustaining the correct environment in the MAV cabin for half of the maximum

mission length. In case of a circulation system failure, the oxygen can be manually released

from vent valves located on the oxygen tanks.
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As an additional backup system in case of hull rupture, the stored oxygen can be pumped

directly to the astronauts' spacesuits through a secondary ducting system (see Figure 5-1). If

this system fails, or if any EVA is required, a one-hour, 0.035 kg supply of bottled 2.1 MPa

(300 psia) oxygen is maintained in each of the spacesuits. This supply allows completion of

the main scenario mission.

5.3.3 Air Purification System

The air purification system removes exhaled CO2 as well as trace contaminants from the cabin

environment. It utilizes a lithium hydroxide bed, charcoal filtering system, and a hopcalite

bed.

Lithium hydroxide (LiOH), located in a bed in the main air circulation loop, reacts with the

C02, separating it from the oxygen:

2LiOH + CO2 -> Li2CO 3 + H20

To maintain simplicity in the LSS, and because of the power required to reverse this

exothermic reaction, the LiOH is not recycled, and must therefore be supplied at a rate of 1.35

kg/p-day (Purser, 1964).

Figure 5-3 displays a schematic of an Apollo-based trace contaminant removal system (Purser,

1964), consisting of a charcoal filter and hopcalite bed. The charcoal bed removes most of the

contaminants from the air, including odor producing substances, particulate matter, and toxic

substances, consuming charcoal at the rate of 0.059 kg/p-day (Purser, 1964). Periodically,

the air flow is diverted through the hopcalite bed, which primarily removes carbon monoxide

and hydrogen through catalytic combustion.
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Figure 5-3: Apollo Contaminants Removal Subsystem (Purser, 1964)

5.3.4 Environmental Control

The MAV thermal system variable conductance heat pipes (see Section 10.0) maintain the

correct temperature range of 210 to 27 o C. To advise the astronauts of thermal system failure,

the cabin temperature is constantly monitored by thermistors in the spacecraft.

To control the humidity level, H20 needs to be removed from the air. A water separator

located in the air circulation loop condenses the water out of the air stream, passively

maintaining the required humidity level. For monitoring and check-out purposes, humidity

detectors are located in the main cabin.

Maintaining the correct oxygen level keeps the cabin pressure at a constant 34.4 kPa. Pressure

regulators release oxygen into the air stream in order to maintain this total pressure. As before,

pressure transducers located in the capsule notify the astronauts of any changes in cabin

pressure.

Because of the pure oxygen environment, there is a substantial fire hazard problem. To

prevent the initiation of fires, electronic equipment is designed to avoid the possibility of

sparks, arcs, or corona discharge. Also, fire-resistant materials are used throughout the



spacecraft. If a fire does ignite, hand-held fire extinguishers can douse the fire. As a final

backup, Halon, which is also provided on the STS, is automatically dumped into the cabin

atmosphere to extinguish the fire.

5.3.5 Waste Management

Storage of human waste is not needed for the main scenario, which lasts approximately 30

minutes. In the abort scenarios, however, the storage of urine and fecal matter becomes

necessary. To accommodate this necessity, the astronauts utilize waste elimination bags

located inside their spacesuits.

5.3.6 Acceleration Couches

The maximum acceleration force the MAV astronauts experience is the impact force during final

descent to the Martian surface. This force is expected to be approximately 5 gee's (see Section

9.0).

On account of these relatively small acceleration forces (about half of what Apollo astronauts

experienced during re-entry at Earth), padded acceleration couches are not essential.

Consequently, the couches are simply webbing strapped to a lightweight aluminum frame.

Two of these couches are attached firmly to the MAV floor. The third seat must either slide

away from the bottom hatch, or be removeable in order to allow the astronauts to enter from

the MDV habitation module (see Figure 5-1). For this design, a slideable couch has been

baselined to avoid problems with couch reattachment after the astronauts enter the MAV.

5.3.7 Spacesuits

In the main mission scenario, all crew activities are performed in a shirt-sleeve environment,

including descent, ascent, crew transfer between the MDV and MAV, and crew transfer

between the MAV and MOV. Thus, spacesuits are required only in certain abort situations.



To protect against the possibility of hull rupture or LSS malfunction, the astronauts are suited

during both ascent and descent. Also, if either docking or shirt-sleeve transfer fails, astronaut

transport between the MAV and the MOV is accomplished through EVA.

Because the spacesuits are required only in abort scenarios, lightweight, 34 kPa (5 psia)

Gemini-like suits are used. These suits are not as sophisticated as those used by STS

astronauts today, but such sophistication is not necessary for a single, short EVA.

5.3.8 Reliability

The allocated minimum LSS reliability of 0.995 should be readily achievable with the air

circulation system redundancy. In the main scenario, the three non-linked subsystems (two

main air circulation systems and a spacesuit backup) only need a 0.83 reliability in order to

meet the overall LSS reliability criterion. It is expected that significantly better subsystem

reliability than 0.83 can be obtained.

5.4 Summary

Table 5-1 summarizes the mass, power, and volume requirements of the MAV life support

system. These data are approximated from historical sources, including Gemini, Apollo,

STS, and other NASA programs (Purser, 1964; NAS9-1100, 1965; NASA R 17076, 1966;

NASA-STD-3000, 1987; JSC-32025, 1987), and from information in this section. Some of

the volume approximations are obtained by assuming an electronics specific gravity of 1

(density of 1000 kg/m3). Consumables and power are based on a 38.8 hour mission with a

relatively low FOS (factor of safety) of 1.15. The basis for this small margin is that the

mission is a maximum of 38.8 hours, and will nominally be significantly less than that amount

of time (-45 min).



Table 5-1: LSS Summary

LSS Element Number Total mass (kg) Energy (W-hr) Volume (m3)

food 3.4 0 0.005

food storage 2.5 0 0.003

water 2.2 0 0.002

water storage 4.1 0 0.004

oxygen 4.7 0 0.005

oxygen tanks 2 4.0 0 0.002

suit 02 tanks (filled) 3 0.2 0 0.003

pressure regulator 4 1.4 446.0 0.001

pressure transducer 4 0.2 312.0 0.0002

fill/vent valve 2 0.5 0 0.001

relief valve 4 0.6 0 0.001

LiOH 7.5 0 0.008

LiOH bed 2 4.0 0 0.004

charcoal bed 2 4.0 0 0.004

charcoal 0.3 0 0.0002

flow control valves 4 1.0 223.0 0.001

shutoff valves 10 2.5 10.0 0.003

regenerators 2 2.0 0 0.002

hopcalite bed 2 4.0 0 0.004

electrical heater 2 2.0 12.0 0.002

fans 8 8.0 892.0 0.008

spacesuit ducts 4 6.0 0 0.040

isolation valves 2 3.2 0 0.003



Table 5-1: LSS Summary (cont.)

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

intake ducts 4 6.0 0 0.040

outflow ducts 2 5.0 0 0.035

humidity control 2 5.0 892.0 0.005

humidity detector 2 2.0 223.0 0.002

temp. transducer 2 0.1 134.0 0.0001

fire detectors 4 2.0 446.0 0.005

fire extinguishers 2 6.0 0 0.006

Halon 4.0 0 0.004

crew, 50% man 3 246.0 0 4.500

spacesuits 3 45.0 0 0.045 (stowed)

first aid kit 1 2.0 0 0.002

couch structure 3 10.0 0 0.010

webbing 3 4.0 0 0.004

straps 3 2.0 0 0.002

urine bag 6 5.0 0 0.010

fecal ba6 5.0 0 0.010

TOTAL (w/out crew) 100 171.6 3590.0 0.284

TOTAL (w/crew) 103 417.6 3590.0 4.784

5.5 Recommendations

Mass savings are not easily obtained in this system. The only possible mass reductions come

from elimination of redundancies, but the life-critical LSS system should contain numerous

backups.



6.0 Prooulsion System

6.1 Introduction

The propulsion system is the most mass-influential subsystem of the MAV, consisting of 90%

of the overall mass. A propulsion system is needed for ascent to the MOV orbit, as a control

system, and for rendezvous and docking maneuvers.

6.2 Requirements

Main propulsion system:

* minimize mass

* minimize complexity (subject to non-excessive mass penalty)

* provide thrust capability for ascent from the Martian surface (.38 g's)

* provide propellant for ascent and rendezvous with MOV

* allow engine throttling to remain within acceleration limits (see Section 5.0):

* 5 g's sustained

* 10 g's peak

* provide rendezvous capability with MOV after MDV descent abort

OMS/RCS:

* provide rendezvous and docking capability with MOV

* pitch, roll, and yaw control

* allow midcourse, post-thrusting corrections

Overall:

* no credible single point failures

* shelf life = 2 years

* reliability = .995



6.3 Propellant Choices

There are numerous propellant options for use in the main ascent propulsion system. Table 6-1

summarizes various possibilities, tabulating fuel to oxidizer ratios and propellant performance

capabilities. The nuclear-based propulsion system is presented only for comparison, and was

not considered for the MAV due to considerable required research and development

Table 6-1: Propellant Options

Fuel Oxidizer Mass ratio (O:F) Nominal Isp (sec)

LH2  LOX 6:1 460

Nuclear (LH2) -- -- 850

MMH LOX 1.4 to 1.6:1 380

MMH H202 4:1 340

MMH, pumped NTO 2:1 340

MMH, pressure-fed NTO 1.6:1 320

Aerozine-50 NTO 2:1 310

N2H4 monoprop. -- -- 220

RP-1 LOX 2.6:1 330

Cold gas (N2 ) -- -- 80

CH4 LOX 3 to 4:1 380

C3H8  LOX 3.2:1 380

MPD ion engine (low-thrust) 6000

Liquid propellants were selected early in the design process. Solid propellants have specific

6.3.1 Liquids vs. Solids



impulses between 200 and 300 seconds, significantly lower than can be obtained from most

liquid propellants, translating into a substantial increase in the overall vehicle mass.

Additionally, solid propellants do not permit throttling or engine shut-down and restart, which

are necessary in this single-stage spacecraft.

6.3.2 Crvoeenics vs. Storables

Having chosen liquid propellants for the MAV propulsion system, a second choice between

cryogenic propellants and room temperature storable propellants is necessary. This is a

decision between the better performance of cryogenic propellants (see Table 6-1) and the

storability advantage of storable liquid propellants (see Table 6-2). Due to previous spaceflight

utilization, the two propellant combinations considered were the MMH/NTO (monomethyl

hydrazine/nitrogen tetroxide) storable propellants and LH2/LOX (liquid hydrogen/liquid

oxygen) cryogenic propellants.

Table 6-2: Propellant and Oxidizer Physical Propeties

Compund Density (kg/m3) Freezing Point (0 K) Boiling Point (0 K)

LOX 1141 54.3 90.4

LH2  70.8 13.7 20.4

NTO 1431 262 294

MMH 870.1 221 361

CH4 422.9 90.9 111

C3H8 579.9 83.7 231

H202 1430 271 421

UDMH 790 216 336

RP-1 807 225 490

N2H4 1008 275 387



From strictly a performance standpoint, there is an obvious advantage to employing a

LOX/LH2 propulsion system over a storable, pump-fed MMH/NTO system. For a 3000 kg

dry-weight MAV, 1.77 times more propellant mass is required for the storable system than for

the cryogenic system.

However, as can be inferred from Table 6-2, the main difficulty with cryogenic propellant

utilization is the problem of LH2 storability on the Martian surface (Tav = 2140 K at the equator

(see Section 10.0)). If propellant boil-off were to reach 43% in a LH2/LOX system, the

performance advantage of using cryogenics is eliminated. To reduce this boil-off, a vacuum

system with multilayer insulation (MLI) is expected to be used to minimize heat losses.

Preservation and maintenance of this vacuum present a number of problems, however.

One problem contributing to propellant boil-off is heat loss through structural contact points.

Because the MAV structure takes both ascent and descent loadings, there are several necessary

contact points on the propellant tanks. Heat circumvents the insulation layer through these

points, dominating the overall tank heat loss.

Under typical circumstances, the boil-off due to this heat loss is expected to be contained

under a few percent (Allen, 1989) for the year-long stay on the surface, indicating that the

cryogenic propellant system is probably feasible. However, this does not address the problem

of possible vacuum system failure.

If a catastrophic leak (i.e., one that cannot be evacuated by the pump system) occurs in the

vacuum system, or the vacuum pump system fails, the cryogenics propellants will boil off.

Even if this irrepairable leak is identified immediately, the MAV must still wait up to a

maximum of 12.33 hours on the Martian surface before an emergency abort-to-orbit can occur.

During this period, the LOX and LH2 would freely boil off. If the cryogenics boil-off beyond

the factor of safety built into the propulsion system, the MAV will be unable to reach the MOV



orbit.

An additional penalty of utilizing cryogens derives from the low LH2 density. Despite the

assumed greater mass (not including thermal system mass differences) of the MMH/NTO

system, it takes up 1.84 times less volume than the LOX/LH 2 system. With the limited MAV

storage space available, this volume savings is highly advantageous.

Because of these reasons, storable MMH/NTO is baselined for the MAV design. If in the

future, research indicates that long-term cryogenic storage on the Martian surface is viable,

and that there is a controllable catastrophic boil-off risk, than cryogenics should be utilized to

for probable vehicle mass savings.

6.3 Ascent Propulsion System Point Design

Schematics of the MMH and NTO feed systems (see Figures 6-1 and 6-2) illustrate the main

MAV propulsion system. Actual system and subsystem dimensions and configurations are

illustrated in Figure 6-8.

6.3.1 Propellant

A MMH/NTO bipropellant system is baselined for the MAV design. This propellant

combination, which has been employed on the Apollo missions and the STS OMS (Orbital

Maneuvering System), has the best Martian surface storability of any typically utilized system,

although insulation and some heating is required (see Sections 7.0 and 9.0).

6.3.2 Pressure- vs. Pump-Fed Systems

There are two propellant feed system possibilities, pump- and pressure-fed. Pump-fed

systems, although generally having higher performance than pressure-fed systems, have

much lower reliability. A typical pressure-fed system has 0.9999 reliability, while pump-fed

systems can approach only about 0.997 reliability.
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An analysis was performed to compare the two principle feed system possibilities for an

MMH/NTO propulsion system. The pressure-fed system assumed a 2.07 MPa (300 psia)

propellant tank pressure with an engine Isp of 320 seconds, while the pump-fed system

consisted of 0.345 MPa (50 psia) tanks and a 340 second Isp. Both systems utilized 31.1 MPa

(4500 psia) helium as a pressurant gas.

Due to a 500 kg difference in helium pressurant storage tank mass, a 600 kg difference in

propellant tank mass, and the variation in engine performance, the pressure-fed MAV had a

mass of 26,300 kg as compared to the 15,000 kg pump-fed MAV.

Clearly, it is mass-advantageous for the MAV to employ pump-fed propellants. The problem

of lower engine reliability is eliminated by allowing engine-out capability (see Section 6.3.4).

6.3.3 Staeine

Spacecraft staging is typically employed when the AV requirement exceeds the engine exit

velocity. In this design, the engine exit velocity is 3.36 km/s while the ascent AV requirement

is 5.209 km/s, indicating that staging would be advantageous.

Generally, assuming the same performance for all stages, discarding mass during ascent

reduces the overall vehicle mass. However, this mass savings must be balanced with

reliability problems associated with the added complexity. Also, the volume constraints

present in this design may make staging infeasible.

There are two primary methods of staging, drop tanks and full staging.

6.3.3.1 Drop Tanks

For drop-tank staging, the same engines are utilized for both stages, while only the propellant

tanks are staged. However, in this pump-fed MAV design, the propellant tanks are extremely



lightweight (see Table 6-5). Even if the propellant tank support structure (see Section 4.0) is

included, there is simply not enough discardable mass to warrant tank staging. The added

plumbing, stage connection structure, and separate thermal protection systems required for

drop tanks eliminate the mass advantage of staging.

An additional problem with tank staging is derived from the MAV geometry. If drop tanks

were to be specified, either the engines would need to be placed further away from the center

of mass, or the tanks would be placed outside of the engines. In either situation, the total

frontal area of the MAV would increase, resulting in difficulty in MAV storage within the

aerobrake impingement cone.

6.3.32 Full Staging

Three separate propulsion system point designs were analyzed to determine the advantage of

tank and engine staging, including a single-stage pump-fed design, a two-stage all pump-fed

design, and a pump-fed first stage, pressure-fed second stage design. All pump-fed engines

were assumed to have an Isp of 340 seconds, while pressure-fed performance was 320

seconds. Four pump-fed engines were prescribed for all vehicle first stages, while a single

engine was baselined for each second stage.

As mentioned before (Section 6.3.2), the single-stage pump-fed MAV has an overall mass of

15000 kg. Surprisingly, the two-stage mixed-feed MAV had a mass of 15200 kg. The mass

savings obtained through staging was eliminated due to the lower performance of the second-

stage engine and the excessive tank masses of the pressure-fed stage. This indicates that a two-

stage all pressure-fed system also provides no mass advantage over the single-stage pump-fed

MAV design.

The two-stage, all pump-fed MAV had an overall vehicle mass of 14100 kg, 900 kg less than

the single-stage vehicle. Due to the extra engine, as well as the additional structure and



thermal system, this mass savings is lower than would be expected. Also, there remains the

previously mentioned storage problem with this two-stage MAV. This design results in

increased MAV volume, and eliminates the possibility of a bottom hatch and tunnel to the

MDV habitation module.

6.3.3.3 Summary

A single-stage pump-fed propulsion system is baselined for the MAV. Although the overall

vehicle mass is greater than with the two-stage propulsion system, there is not a significant

enough difference to warrant increased MAV complexity.

6.3.4 Enines

The MAV engine system requires a maximum of 133.4 kN (30000 lbf) of thrust (for an initial

T/W of 2.54), a minimum thrust level of 62.3 kN (14000 lbf), and an approximate reliability

of 0.999 to meet the overall 0.995 propulsion system reliability. Unfortunately, these

characteristics do not exist in any single, current MMH/NTO pump-fed engine (see Table 6-3

and Section 6.3.4.5).

Table 6-3: Pump-fed MMH/NTO Engines

En ine Maximum thrust (kN) Isp (sec) Throttling Ratio

U/R OME (modified) 53.3 342 up to 3:1

XLR 132, ox. cooled 44.5 345 none

Transtar, fuel cooled 33.4 342 none

Advanced Agena 52.9 336 N/A

Because of their superior throttling capability, four Aerojet U/R OMEs (uprated Orbital

Maneuvering Engines) are utilized. Each of these engines have a thrust level of 26.7 kN (6000



lbf), but can be uprated to 53.3 kN (12000 lbf) by increasing chamber pressure.

In the main scenario, each of these four engines operate at 33.4 kN (7500 lbf) thrust level for

the first stage of the MAV trajectory. At a specified time (see Section 9.0), two of the engines

shut down and the remaining two throttle to 31.1 kN (7000 lbf). In the engine-out abort

scenario, two engines begin at a 53.3 kN (12000 lbf) thrust level, and throttle down to 31.1

kN (7000 lbf).

6.3.4.1 Description/Specs

The modified U/R OME (see Figure 6-3) has a chamber pressure of 700 psia, resulting in a

53.3 kN thrust capability. It operates on MMH/NTO storable propellant at a mass mixture ratio

of 1.93.

Figure 6-3: U/R OME (Aerojet, 1988)



This fuel-cooled 342 Isp (at 12000 lbf thrust) engine, including gimbal actuators and engine

controllers, has a projected mass of 124 kg. To maintain the required thrust level, nozzle

dimensions of 1.75 m (69.0 in) diameter and 3.2 m (126 in) length are projected (using

elementary nozzle theory) with an exit to throat area ratio of approximately 430:1.

Each engine has a gimbaling capability of up to ±70 pitch and ± 80 yaw. MMH and NTO are

pumped in from tanks at pressures of 50 psia and 30 psia respectively (see Figure 6-4).
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Figure 6-4: Propellant Storage Pressures (Aerojet, 1988)

6.3.4.2 Extendable Nozzle

Clearly, the OME length presents a packaging problem. One possible solution is to sacrifice

some engine performance by decreasing the area ratio, and hence the nozzle diameter and

length. A second solution, which maintains the high engine performance, is to utilize an

extendible nozzle (see Figure 6-5). In stored position, the nozzle is roughly half of its
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Figure 6-5: Extendible Nozzle

extended length. The OMEs extend after the MAV disconnects from the MDV habitation

module. An extendible nozzle is currently used on the PeaceKeeper missile.

6.3.4.3 Power

The OME current requirements for the engine controls and gimbal actuators are summarized in

Figures 6-6 and 6-7. These quantities are used to calculate the total required propulsion system

power (see Section 7.0).

6.3.4.4 Helium

High pressure helium gas is required both for pressurizing the propellant tanks and for various

engine tasks. Table 6-4 summarizes the helium requirements for a single OME.

I
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Table 6-4: Engine Helium Requirements (Aerojet, 1988)

Engine Task Helium Mass (kg), 338 sec., 2 cycles

Interpropellant Seal .140

Turbine Seal Purge .035

Fuel Line Purge .007

Fuel Bearing Purge .007

Gas Generator Purge .012

Turbine Start .120

Valve Actuation .001

TOTAL (1 engine, total flight) 1.279

Two of the main engines operate for a total of 341 seconds (see Section 9.0) in the main

mission scenario. The other two engines require 0.207 kg of helium for only 154 seconds of

engine operation time. Including a 1.5 factor of safety, a total of 1.458 kg of helium are

required for the main ascent engines.

In addition to these helium requirements, 8.86 kg of helium (including a 1.5 FOS) are required

to pressurize the MMH and NTO. All of the helium is stored at a pressure of 31 MPa (4500

psia).

6.3.45 Reliability

The U/R OME with redundant valves has a predicted reliability of 0.9982 (Aerojet, 1988). If

single engine-out is acceptable, than the only failure mode occurs if one of the four engines

fails and a second engine fails once the MAV has switched to the engine-out abort mode. This

results in an engine system reliability of 0.999974, easily meeting the engine reliability

requirement.



If single engine-out on ascent is not acceptable, the engine system has a reliability of only

0.9928.

6.3.4.6 Engine-Out Abort

There is some concern about spacecraft rotations if an engine-out occurs on ascent. Because

the engines do not thrust directly through the spacecraft center of mass, engine failure induces

a spin rate about the spacecraft x- or y- axis (see Figure 6-8).

The MAV is held down to the MDV habitation module for the first 3 seconds (see Section 9.0)

of engine ignition, eliminating the spin problem in the case of pad engine-out. During the

period with 4 OMEs operating, engine-out is also not expected to be a problem. For the 0.76

seconds (expected to be 0.5 seconds by OME development completion; Boyce, 1989) that is

required for the engine opposite the failed engine to shut down, the remaining two engines can

gimbal and increase thrust to compensate, maintaining the MAV on its trajectory.

If engine-out occurs when only two engines are operating, the remaining two engines must

start up, gimbal, and compensate for the induced tumble rate. The viability of this option can

be analyzed:

T rx F rada- - 4.08
ixx Ixx 4 0 sec2

a = spacecraft angular acceleration

T = induced moment about rotation axis

r = moment arm to engine = 2.44 m (see Section 6.3.7)

F = average engine thrust over shut down = 15.568 kN

Ixx = moment of inertia about rotation axis at end of two-engine run =

9302 kg-m2 (see Section 13.0)

Utilizing this angular acceleration, the total spacecraft rotation angle during this engine failure



can be estimated, assuming that the remaining engines don't start attenuating the angular

rotation rate until 0.66 seconds (simultaneous engine start and gimballing time; Boyce, 1989):

o = o + atstop

0 = 0.5 atstop2 + CO (tstart - tstop)

co = angular velocity after engine thrust stop

wo = initial angular velocity = 0

0 = total angular displacement

tstop = engine stop time

tstart = engine start time

Because the engine start time (0.66 sec. to 66% thrust; Boyce, 1989) is less than the engine

stop time, the angular velocity contribution to the angular displacement can be neglected

(neglecting failure detection time). Therefore, the total angular displacement after engine-out is

510, which is expected to be correctable (MAV is outside of the Mars atmosphere by this time).

Additionally, if the engine stop-time is reduced to the predicted 0.5 seconds, and the start-time

is reduced to -0.5 seconds (Boyce, 1989), the rotation angle will be reduced to 290.

If any rotation is unacceptable, engine-out during the two engine run can be eliminated as an

acceptable failure mode. This would reduce the engine system reliability to 0.996.

6.3.4.7 Summaa

To summarize the MAV engine system, 4 modified U/R OMEs with extendible nozzles are

utilized, each having a maximum thrust level of 53.3 kN (12000 lbf). In the main scenario,

all four engines start the ascent trajectory at 33.4 kN (7500 lbf) thrust level, reducing at 151

seconds to two engines at 31.1 kN (7000 lbf) thrust.

In the worst-case, pad engine-out scenario, two engines start up at 53.3 kN thrust and reduce

to 33.4 kN after 186 seconds. Engine-out capability is provided throughout the MAV ascent.



6.3.5 Plumbine

To maintain high system reliability, one-shot blow valves are used throughout the propulsion

system (see Figure 6-1 and 6-2). Each of these valves opens before engine ignition, and

remains open throughout the ascent. When the engines require the shut-off of helium or

propellant flow, valves within the engines themselves close. Further reliability is obtained by

placing isolation valves in the engines in case of catastrophic engine failure.

6.3.6 Reliability

If single engine-out is allowed, the plumbing system simplicity, combined with the 0.999974

engine system reliability, is expected to maintain the system reliability over 0.995.

6.3.7 Configuration

The main propulsion system, as well as the OMS, is illustrated in Figure 6-8. Spherical tanks

are baselined for all propellant and helium supplies, to minimize both structural mass and

surface area (for thermal control purposes (see Section 10.0)). The propellant system is

configured compactly to remain within the aerobrake impingement cone.

Four main propellant tanks are specified for mass symmetry, with one helium tank

pressurizing a single propellant tank.

6.3.8 Performance Summary

The main propulsion system is sized for a AV of 5259 m/s. This already contains a significant

margin of error (3.8%) for the main mission scenario, so no added propellant factor of safety

is included.

An additional ullage factor of 5% (Redd, 1989) of the total propellant mass is included for

unusable/gaseous propellant, while another 3% is included for attitude control. For the
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spacecraft dry mass (including OMS propellant) of 2760 kg, this gives a total MMH/NTO load

of 11333 kg for a total vehicle mass of 14093 kg.

6.3.9 Mass Summary

Table 6-5 summarize the main propulsion system, including mass, energy, and volume

requirements. Energy needs are based on an engine pre-purge operating time of 30 minutes.

Helium tank masses include containment of required OMS helium.

Table 6-5: Main Propulsion S stem Summary

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

MMH tank (inner shell) 2 96.6 0 0.022

NTO tank (inner shell) 2 96.6 0 0.022

GHe tank 4 70.1 0 0.018

GHe (for engines) 4 1.5 0 0.007

GHe (for tank pressure) 4 8.9 0 0.043

insulation see thermal section (10.0)

heating units see power section (7.0)

main engines 4 497.0 529.0 12 (stored)

nozzle extender 4 20.0 0.2 0.020

fill, vent valve 8 2.2 0 0.008

blow valve 12 4.8 0.1 0.008

pressure transducer, low 4 0.2 0.05 0.0001

pressure transducer high 4 0.2 0.05 0.0001

regulator 8 5.6 0.2 0.006

filter, He 4 1.8 0 0.002

filter, propellant 4 1.8 0 0.002



Table 6-5: Main Propulsion System Summary (cont.)

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

relief valves, He 4 1.2 0 0.001

relief valves, propellant 4 1.2 0 0.001

check valves, helium 4 2.0 0 0.002

check valves, propellant 4 2.0 0 0.002

temp. transducer, He 4 0.2 0.05 0.0001

temp. transducer, Prop 4 0.2 0.05 0.0001

lines, cabling, electronic 60.0 0 0.060

AV MMH 2 3581.4 0 4.056

AV NTO 2 6912.4 0 4.763

ACS MMH 2 107.4 0 0.122

ACS NTO 2 207.4 0 0.143

ullage/unusable MMH 2 179.1 0 0.284

ullage/unusable NTO 2 345.6 0 0.333

TOTAL (Dry) 98 874.1 529.6 15.224

TOTAL (Wet) 104 12207.5 529.6 24.925

6.4 OMS Propulsion System Point Design

The MAV OMS (orbital maneuvering system) allows the spacecraft to dock with the MOV.

Figure 6-9 shows a schematic of this hydrazine-based system and Figure 6-9 illustrates overall

configuration. Four OMS thruster groups, each with four engines, permit pitch, roll, and

yaw control for the on-orbit spacecraft.
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6.4.1 Provellant Choice

Because the main ascent engines are responsible for attitude control on ascent, the OMS only

needs to support the 50 m/s docking AV requirement. As a result of this, a high performance

propellant system is not required. Therefore, to maintain OMS simplicity, a N2H4

monopropellant is baselined as the OMS propellant. For a pressure-fed system, hydrazine has

a 220 second Isp, resulting in 64 kg of required hydrazine.

6.4.2 Pressure-vs. Pump-Fed

For such a small propellant load, pressure-fed system simplicity is more important than pump-

fed performance. Also, system masses eliminate the pump-fed performance advantage for low

propellant masses. Consequently, the hydrazine is pressure-fed to the OMS engines at a

pressure of 2.07 MPa (300 psia).

6.4.3 Engines

A total of 12 engines are required to give the MAV total pitch, roll, and yaw control. For

reliability, four clusters of four 111 N (25 lbf) thrust engines are provided on the MAV. If

OMS impingement on the main engines is a problem, the ascent engines can be discarded

before rendezvous.

6.4.4 Plumbing

The hydrazine tanks are accessible by all four sets of engines. This allows the entire hydrazine

propellant load to be utilized, even if an engine cluster fails. If an engine cluster fails,

isolation valves prevent propellant loss through the defective system (see Figure 6-9).

6.4.5 Reliability

Each of the clusters has an overall reliability of 0.9996 (engine reliability of 0.9999),



translating to an overall engine system reliability of 0.99998 (with allowance of single engine

cluster failure).

6.4.6 Performance Summary

For the required docking AV of 50 m/s, 64 kg of hydrazine is required. An additional ullage

factor of 7% (Redd, 1989) is also included in the total propellant load, giving a total

propellant load of 68.48 kg.

6.4.7 Confiuration

To give the maximum control over the spacecraft, OMS engines are located away from the

spacecraft center of mass (see Figure 6-9). Each hydrazine tank is placed near a helium tank to

minimize high-pressure pressurant gas lines.

6.4.8 Mass Summary

Table 6-6 summarizes the OMS mass, energy, and volume requirements. Helium is stored

with the main propulsion system pressurant gas at a pressure of 31 MPa (4500 psia).

Table 6-6: OMS Summary

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

OMS engines 16 48.0 0.2 0.096

engine struct. 4 10.0 0 0.010

N2H4 tanks 4 4.0 0 0.001

GHe 4 0.4 0 0.002

insulation see thermal section (10.0)

heating unit see power section (7.0)

regulators 4 2.8 0.2 0.008

pressure transducer 4 0.2 0.05 0.0001



Table 6-6: OMS Summary (cont.)

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

fill, vent valve 4 1.1 0 0.004

blow valve 8 3.2 0.03 0.006

isolation valve 4 6.4 0.1 0.004

filter 4 1.8 0 0.002

relief valve, helium 4 1.2 0 0.001

relief valve,propellant 4 1.2 0 0.001

check valve 8 4.0 0 0.001

temperature transducer 4 0.2 0.05 0.0002

plumbing, electronics 30.0 0 0.030

AV N2H4  4 64.0 0 0.063

N2H4 ullage 4 4.5 0 0.004
- i

TOTAL (Dry) 76 114.6 0.3 0.167

TOTAL (Wet) 84 183.1 0.3 0.234

6.5 Recommendations

Substantial MAV mass savings are obtainable if cryogenic fuels are utilized. However, for

this to be possible, long-term storage capability of LH2/LOX on the Martian surface needs to

be developed. Cryogenic boil-off rates, as well as reliability issues, must be analyzed to

determine the feasibility of a MAV cryogenic propulsion system.

If cryogenic use is not viable, a highly reliable, 133.4 kN (30000 lbf), throttleable

MMH/NTO engine should be developed. Use of a single engine on ascent would eliminate the

performance disadvantage and safety problems of the required engine-out capability in the four-

engine MAV.



7.0 Power System

7.1 Introduction

The MAV power system must accommodate a wide range of power demands, from peak

power requirements (5.6 kW) that occur on ascent, to a significantly lower steady-state power

requirement (500 W).

7.2 Requirements

Power system must:

* supply power to all subsystems

* supply power for a maximum of 38.8 hours

* meet peak power demands of 5.6 kW

* meet sustained power demands of 500 W

* minimize mass

* have no single-point failures

* have a distribution system

* reliability = .995

* shelf-life = 2 years

7.3 Power Requirements

The MAV power system needs are summarized in Table 7-1, with more detailed energy

requirements appearing in the other subsystem technical sections. Total energy requirements

are based on the maximum length 38.8 hour mission, with only 913 W-hr of energy actually

required in the principal scenario.



Table 7-1: Subsystem Power Requirements

Subsystem Peak power (W) Total Energy (W-hr)

life support system 104 3590

propulsion system 4996 530

power system 45 2008

avionics system 354 14142

thermal system 50 2231

TOTAL 5549 22501

This total energy is distributed over the mission length as illustrated in Figure 7-1. The peaks,

lasting for periods of about 2 seconds, occur at engine startups and shutdowns. Peak

locations in the power schedule vary if an abort scenario occurs, but the total energy for ascent

remains the same independent of scenario.
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In addition to the mission electrical power requirements, thermal energy must be provided to

prevent the storable propellants from freezing throughout the 2-year mission. Because of the

vacuum system insulating the propellants, only 83 W of constant power is required for this

purpose (see Section 10.0). An additional 438 W of thermal power is necessary to sustain the

room temperature environment of the MAV capsule.

7.4 Options and Choices

There are two viable power system alternatives for this application, fuel cells and primary

batteries. The large system masses of historically long-term power-supply systems, including

solar cells, nuclear reactors, and isotope-based systems make these options infeasible (see

Figure 7-2). The following sections examine both fuel cells and batteries, providing a basis of

selection between the two options.
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7.4.1 Primary Batteries

The utilization of battery-stored energy is the less complicated of the two power system

alternatives. Required power is directly extracted from a system of batteries, drawing on a 2-

year old store of chemical energy.

Table 7-2 enumerates the state-of-the-art specific energies of several candidate battery systems.

In addition to these specific energies, shelf-life also influences battery selection.

Table 7-2: Battey Comparisons

Batter Specific energy (W-hr/kg) Comments

LiSOC12  250 (NASA TM 88174, 1985) long shelf life,best specific energy,untested

NiH2  31.5 (MRSR, 1989) good cycle life

AgZn 150 (NASA TM 88174, 1985) used on all past manned space missions

NiCd 28.6 (MRSR, 1989) low specific energy,well-tested

LiTiS2  83 (MRSR, 1989) not space proven

From the standpoint of specific energy, LiSOC12 and AgZn batteries are unquestionably

superior to the other possibilities. The remaining three batteries mentioned are typically

employed because of their long cycle life, which is not a concern in this situation, due to the

fact that the MAV power system operates only once.

Because of the necessity of a 2-year shelf-life, the utilization of AgZn batteries could be

difficult. The present-day AgZn battery has a shelf-life of approximately 2 years (NASA TM

88174, 1985), as compared to the LiSOC12 8 year storability (NASA TM 88174, 1985). The

silver-zinc battery life may not allow a suitable factor of safety.

For this reason, as well as the differences in specific energies, it is beneficial to space-qualify

the lithium-based battery. By opting for the LiSOC12 battery, the system mass, excluding the



power distribution equipment, would be 90 kg for the specified 22500 W-hr.

7.4.2 Fuel Cells

Fuel cell systems have been previously utilized during Apollo, Gemini, and STS missions,

generally delivering higher specific energies than primary battery systems for long-term

missions (>24 hours).

Past spacecraft fuel cell systems have all operated on a hydrogen/oxygen mix. As discussed

before (Section 6.0), this presents a problem with storability, specifically the risk of

accidental excessive boil-off. Because of the life-critical nature of the power system, the

utilization of cryogens for fuel cells should be avoided. If, in the future, research indicates

that cryogens are viable for the main propulsion system, then they can also be used for power.

Because of the presence of monomethyl hydrazine (MMH) and nitrogen tetroxide (NTO) in the

propulsion system, it is advantageous to also use this fuel/oxidizer combination for fuel cell

power. The reactants can be stored with the rest of the propellant, eliminating the need for

additional tankage. The main problem with this type of fuel cell is that it hasn't been fully

developed for space applications. Hydrazine-based systems exist (Schmidt, 1984; Linden,

1984), but they use air or hydrogen peroxide as the oxidizer. It is not expected to be a

problem, however, to modify these systems to use NTO as an oxidizer.

Since MMH/NTO fuel cells have not been flown previously, the performance of these fuel

cells is estimated from compound heats of formation:

CH3NHNH2 (1) + N204 (1) -> 2H20 (1) + N2 (g) + H2 (g) + C02 (g) + heat

AHf (CH3NHNH 2 (1)) = 54.81 kJ/mol

AHf (N204 (1)) = - 19.66 kJ/mol

AHf (H20 (1)) = - 238.49 kJ/mol



AHf (CO2 (g)) = - 393.30 kJ/mol

AHf (N2 (g)) = AHf (H2 (g)) = 0 kJ/mol

Utilizing these values, the maximum chemical energy obtainable is determined:

AHf total = 2 AH-f (H20 (1)) + AHf (CO 2 (g)) - AHf (CH3NHNH2 (1)) - AHf (N2 0 4 (1))

= - 905.42 kJ/mol

=> 0.183 kg/kW-hr MMH, 0.365 kg/kW-hr NTO

This results in a MMH/NTO fuel cell theoretical maximum specific energy of 1.833 kW-hr/kg

of reactant. This chemical energy must then be converted to electrical energy, taking into

account inefficiencies based on side reactions and electrode degradation. To determine a

probable efficiency, the Apollo LH2/LOX fuel cell system is evaluated.

By performing a similar analysis to the one performed on the MMH/NTO system, it is found

that the theoretical specific energy of a LH2/LOX system is 3.6 kW-hr/kg. The actually

achieved specific energy of the system is 2.564 kW-hr/kg (Linden, 1984), which indicates a

71% chemical-to-electrical energy conversion efficiency.

Assuming a more conservative efficiency of 50% for the MMH/NTO system reduces the fuel

cell specific energy to 0.913 kW-hr/kg. The fuel cell, therefore, requires 8.15 kg of MMH

and 16.30 kg of NTO to produce 22 kW-hr of energy. Scaling the system mass up from a 300

W hydrazine/air system (Linden, 1984), the fuel cell total dry mass is about 20 kg, yielding a

total system mass of 49.5 kg (dry mass and propellant). With additional mass savings attained

from 5 kg of water produced, which is expected to be purifiable, the fuel cell system has a net

mass of about half of that of the battery system.

This mass savings translates into an overall vehicle mass savings of about 300 kg, when

propellant loads are included. Some batteries are still needed, however, to handle the peak

loads, to initially fire-up the fuel cell, and for periodic MAV system checks during the 2-year



mission.

7.5 Point Design

The power system, featuring a MMH/NTO fuel cell system, is illustrated in Figure 7-3.

7.5.1 Power Source

The majority of the power needs (22000 W-hr) are provided by the MMH/NTO fuel cell

system. The reactants are forced into the 0.05 m3 cell (Linden, 1984) from the main

propulsion tanks at a pressure of 1.01 x 105 Pa (latm; Linden,1984). The fuel cell itself is

located outside the MAV cabin (see Figure 7-3) to avoid contamination of the cabin air by the

byproduct fuel cell gases.

A schematic of the fuel cell system is shown in Figure 7-4. A solid electrolyte, zirconia, is

used to avoid corrosion problems usually associated with hydroxide electrolytes. This is

particularly critical in this system, since a hydroxide electrolyte would present problems

during the two years the power system is dormant. The fuel cell anode and cathode are

sintered platinum electrodes.

Since MMH has a positive heat of formation, batteries provide power to start up the reaction.

After the fuel cell is running, the heat needed to break up MMH is provided by the fuel cell

itself. The byproduct water is condensed, purified, and pumped into storage containers

located in the MAV cabin, where it can be accessed by the astronauts.

To bootstrap the fuel cell and the entire power system, handle the peak power requirement,

allow periodic system checks during the 2-year mission, and allow completion of the main

scenario mission without fuel cells, 9.5 kg of LiSOC12 batteries are provided. This provides

913 W-hr of energy and allows 5.6 kW power peaks for up to a 2 second period. Redundant

power controllers can access both power sources in case of distribution system failure.



Figure 7-3: Power System
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Figure 7-4: Fuel Cell System Schematic

7.5.2 Distribution System

In order to distribute the fuel cell and battery power around the MAV, the power must first be

converted to a 28 V DC source. A power controller, which is in turn monitored by the main

computer system, determines where the power is needed and monitors the power system. A

wiring system (with solid state circuit breakers and switching) then distributes the power to the

various subsystems of the MAV.

7.5.2.1 Power Conditioning

The power obtained from the fuel cells and batteries is converted to a 28 V direct current (DC)

source (no alternating current (AC) is required). Each subsystem component that needs a

different voltage internally modifies the 28 V power in order to meet its needs.

7.5.2.2 Controller

The power controller monitors (with the main computer) the subsystem power needs in order

to route the correct amount of current to the various subsystems. The controller also monitors



the fuel cell power, and converts the MAV to battery power if a fuel cell failure occurs.

7.5.3 Other Power Needs

To allow immediate, emergency abort-to-orbit (when possible from an orbital mechanics

standpoint), thermal energy must be provided to keep the propellants in the liquid phase, and

the MAV cabin at room temperature.

During the Earth-Mars journey, the MAV is expected to be part of the MTV spacecraft

environment, providing additional living and storage space for the journey to Mars.

Therefore, the MAV cabin is maintained at room temperature as a result of its connection to the

conditioned air of the main spacecraft.

While on the Martian surface, the MAV cabin requires 438 W average (see Section 10.0) of

thermal energy to maintain a room temperature environment. This heat is expected to be

provided by the power system of the MDV, and thus does not affect the MAV power system

design. If this presents too much of a load for the MDV power system, a separate system can

be set up on the Martian surface specifically for the purpose of heating the MAV.

The power needed by the propellant could also be supplied by the MDV, while the MAV is on

the surface, and by the MTV, while in space. However, that would require a separate heat

venting system, because the MAV propellant tanks are not directly connected to the MAV

cabin.

To prevent the propellants from freezing, 83 W of thermal power is required (see Section

10.0). This power is supplied by small radioisotope heating units (RHUs) that are located at

the center of the propulsion tanks. Each of the RHUs weighs 43 grams and supplies 1.1 W of

heat (Putnam, 1989). To provide the required 83 W of heat, 76 RHUs are placed inside the

propellant tanks; 15 in each NTO tank, 11 in each MMH tank, and 6 in each N2H4 tank.



The RHUs are based on the Galileo heating units. Each RHU consists of a plutonium isotope

(238Pu, 89 year half-life), surrounded by iridium and a graphite housing. The graphite

housing prevents the plutonium from scattering in the atmosphere if an accident should occur

on ascent to Earth orbit.

Because these RHUs are being utilized in a manned spacecraft, there is some concern about

the radiation hazard to the astronauts. Each unshielded RHU results in 9 x 10-3 mRem/hr of

gamma radiation dose-rate and 4 x 10-3 mRem/hr of neutron radiation dose-rate at a distance of

1 meter (Zocher, 1989). With the 83 W source, this amounts to 8.65 Rem/yr exposure at a 1

meter distance.

Since the astronauts are not located near the MAV for any extended period of time during the

flight to Mars, this is not a problem during the Earth-Mars transit. While on the surface, the

astronauts spend most of their time in the MDV habitation module, approximately 2.5 meters

from the RHUs. Therefore, at this distance, the radiation hazard drops to 1.38 Rem/yr,

which is well within the 5 Rem/yr specified limit for man-made radiation (OSHA, 1989). The

radiation exposure level is further attenuated by the propellant surrounding the RHUs,

shielding the astronauts from some of the radioactive emissions.

7.5.4 Reliability

Required reliability is obtained through redundancy. Two separate power systems connected

to the same bus, with separate power controllers and conditioners, are baselined for the power

system. Both systems can run off of either the fuel cells or the batteries. To obtain the

required system reliability, each of these separate systems must have 0.99 reliability. For the

main scenario, it is suggested that the MAV operate off of the lithium batteries.



7.6 Summary

Table 7-3 summarizes the mass, volume, and energy of the MAV power system. As in

Section 4.0, these estimates are obtained from information in this section and from historical

data. Energy requirements are based on a 38.8 hour worst-case mission with a 1.15 time

factor of safety. Additional batteries are located on the MDV to heat up the MAV for the

maximum 12.3 hr wait on the surface.

Table 7-3: Power System Summary

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

fuel cell MMH 8.2 0 0.009

fuel cell NTO 16.3 0 0.011

fuel cell stack (dry) 1 20.0 0 0.050

plumbing 3.0 0 0.003

water separator 1 2.0 223.1 0.002

battery 2 9.5 0 0.010

controller 2 15.0 892.4 0.015

power conditioner 2 5.0 892.4 0.005

RHUs 76 3.3 0 0.003

RHU tank structure 8 4.0 0 0.004

misc. structure 1 2.0 0 0.002

wiring & connectors 25.0 0 0.040

TOTAL 93 113.2 2007.9 0.154

Further investigation and eventually development of MMH/NTO fuel cells is required if they

7.7 Recommendations



are to be utilized on this mission. Specific energies, efficiencies, and stack masses must be

determined, and the fuel cells must be flight-tested and space-qualified.

If such research and development is too expensive, or the MMH/NTO fuel cell turns out to be

infeasible, additional mass penalties for high-energy batteries will be incurred. Previously

used argon-zinc battery systems are not viable on this mission, unless advanced development

provides adequate progress in extending shelf-life.



8.0 Avionics System

8.1 Introduction

The avionics system consists of communications, data systems, instrumentation, and

guidance, navigation, and control (GN & C). Each of these four subsystems are described in

detail in this section. The avionics system layout is shown in Figure 8-1.

Overall, the entire avionics system must have a 0.995 reliability to meet the vehicle reliability

requirement. This means that the four subsystems that make up the avionics system must each

have a 0.999 reliability.

8.2 Communications

The MAV communication system must provide a link between the MAV and the MOV at all

times for successful rendezvous to occur. This involves keeping a link available while the

MAV is on the surface, on ascent, and while in orbit. A secondary link to Earth may also be

desirable, if the penalty in power and mass for providing this link is not prohibitive.

8.2.1 Requirements

Communication system requirements:

* constant comm. link between MAV and MOV

* at least a voice link, possibly up to color images

* receiving and sending antenna

* omni antennae on the MAV for assured link on ascent

* high-gain antenna on MOV and comm. satellites for power advantage

* comm. gear accessible to all crew

* possible backup comm. link with Earth (through communication satellite)



Figure 8-1: Avionics System Layout
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* reliability = .999

* shelf-life = 2 years

8.2.2 Point Desien

The MAV must maintain a constant communication link with the MOV. During the abort

scenarios, the MOV may be out of the line-of-sight of the MAV, so the MAV signal must be

relayed through areostationary (18000 km altitude) communication satellites located over the

surface site.

The communication subsystem is shown in Figure 8-1, essentially consisting of two sets of

redundant omni antennae, each facing in opposing directions, and spacecraft communication

interface equipment.

8.2.2.1 Signal Power

To determine the required MAV transponder signal power, the noise power must first be

estimated:

Pr = kTB

k = Boltzmann constant = 1.38 x 10-23 J/oK

T = noise source absolute temperature = 300 OK (NASA TM, 1988)

B = communication bandwidth = 20 kHz (see Section 8.2.2.2)

With an assumed signal to noise ratio of 20 dB (100), the MAV and MOV (or communication

satellite) must have a received power of 8.28 x 10-15 W in order to process the Voice and

command communication signals. To determine the transmitted power required to convey this

received power level, the spacecraft communication system must first be defined, including

operational frequencies, antennae gains, and necessary communication path lengths.



For this study, the X-band frequency range has been selected. The MAV transmits at a

frequency of 8.4 GHz while the MOV (or communication satellite) transmits at 7 GHz to avoid

signal interference. The X-band range readily permits the 40 kb/s bit rate required by the

MAV, and is well-tested for space applications.

To maintain a constant communication link, omni antennae are utilized by the MAV. These

antennae transmit to a high gain antenna located on the MOV (or comm. satellite). Using this

information, the required MAV transmitted power can be determined:

Pr (4xr)2

Pt -
Gr Gt X.2

Pt = transmitted power

Pr = received power = 8.28 x 10-15 W

r = maximum path length = 18000 km

Gr = receiving antenna gain = 30000

Gt = transmitting antenna gain = 1

X•= signal wavelength = 0.0357 m

To transmit information to the MOV, therefore, the MAV requires a maximum of 11 W of

constant power. Power requirements for high-rate video data transfer are detailed in Section

8.2.2.2.

8.2.2.2 Bandwidth

To determine the bandwidth required by the MAV communication signal, the transmitted data

type is first specified. At the minimum, single channel 20 kb/s (see Table 8-1) voice

communication is required. Bandwidth is also necessary for command and range/range rate

information (see Section 8.3.2.1.3), for which an additional 20 kb/s is provided.



Table 8-1: Data Rate Requirements (NASA TM 4075, 1988)

Data type Data rate (Mb/s) Description

high-rate video 100 * 1 channel, color, 512 x 512 pixels, 8

bits/pixel, 30 frames/sec

low-rate video 0.20 * 1 channel, monochrome, 512 x 512

Spixels, 8 bits/pixel, 0.1 frames/sec

voice 0.02 * 1 channel

science telemetry to 10 * low duty cycle spectral scanning w/storage

to 300 * no data storage, spectral scanning

engineering 0.2 * per manned spacecraft

0.002 * per unmanned spacecraft

telerobotics 0.2 * command channel, per rover

200 * stereo, high-rate video

command to 0.002 * per spacecraft or science platform/site

data load to 1.0 * Earth to manned vehicle

Using Shannon's limit, the theoretical required bandwidth for a 40 kb/s data rate is

determined:

B = C (log2(1 + ))- 1

C = data bit rate = 40 kb/s

S/N = signal-to-noise ratio = 100

Therefore, a minimum 6 kHz bandwidth is required for a 40 kb/s data rate transfer. To allow

for modulation, deviations from the theoretical bandwidth potential, and additional bit-rate

transfer, the MAV system is sized for a bandwidth of 20 kHz.



If uncompressed high-rate video is desired, X-band frequency does not provide sufficient

data-rate capability. Even if a Ka (-32.4 GHz) frequency range is used for this purpose, the

MAV would require a minimum of 110 kW of transmitting power. With the MAV omni

antennae, high-rate video transfer is simply not feasible. Nor, for the same reason, is a direct

link to Earth viable. An Earth-link, if needed, must be maintained through a communication

satellite.

8.2.2.3 Antennae

The MAV communication system is based on 4 omni antennae. Each antenna covers the entire

area in front of the antenna plane. This translates to an antennae unit gain:

30000
G z 32 (Agrawal, 1986)

0 = coverage angle = 1800

Two antenna face forward and two backwards with respect to the center line of the MAV,

permitting 360 degree redundant coverage. Only one antenna is nominally utilized to trarisfer

the signal to the MOV.

822.4 Communication Interface

MOV voice communications are received by the astronauts through redundant speakers located

on the communication boards (see Figure 8-1). As a backup, the astronauts can also receive

and send communication signals through individual headsets. If hull rupture occurs, or for

communication during emergency EVA, the spacesuits are also equipped with headsets.

All communications are taped and stored in the MAV. Redundant transponders,

communication boards, and signal processors are provided for reliability.



8.3 Guidance. Navigation and Control

The GN & C system in the MAV must monitor and control the MAV trajectory on ascent,

rendezvous with the MOV, and during docking maneuvers.

8.3.1 Requirements

The MAV guidance, navigation, and control system requires:

* ability to monitor MAV trajectory data

* inertial navigation system

* guidance and sufficient computer power to allow rendezvous with MOV

* avionics to control the main propulsion system, as well as the OMS

* reliability = .999

* shelf-life = 2 years

8.3.2 Point Design

To maintain the MAV trajectory, the GN & C system must monitor the MAV location with

respect to that trajectory using a number of navigation aids. It then corrects for any deviations

from the prescribed trajectory, utilizing the control system.

8.3.2.1 Navigation Aids

To determine the location of the MAV with respect to its pre-programmed trajectory, inertial

measurement units (IMUs), a star tracker, and radar ranging equipment are employed.

8.3.2.1.1 IMU: Two lightweight, redundant Honeywell GG1320 IMUs are selected to

monitor the spacecraft's inertial position in space. Each IMU consists of three GG1320 ring

lazer gyros (RLGs) to monitor MAV pitch, roll, and yaw, three Sunstrand Superflex

accelerometers to measure acceleration, and a TMS 320 IMU processor (see Figure 8-2).



Figure 8-2: Honeywell GG1320 IMU (Honeywell, 1989)

The entire IMU is 0.0953 m (3.75 in) square, has a mass of only 0.76 kg, and takes less than

7 W of constant power.

8.3.2.1,2 Star Trackers: A star tracker is required only to initially align the MAV IMUs.

Since this will occur on the Martian surface, the star tracker need not ascend with the rest of

the MAV. The measurements can be taken from inside the MDV habitation module, and

transmitted to the MAV for IMU alignment.

If this is infeasible, a star tracker is relatively lightweight (7.7 kg for the STS star tracker) and

could be mounted and retained onboard.

8.3.2.1.3 Ranging Equipment: Range and range rate data is required for rendezvous and

docking with the orbiting MOV. For most of the ascent from the Martian surface, the

communication equipment can be utilized for this purpose. By measuring the turnaround time

for communication signals between the MAV and the MOV, range and range rate data can be

obtained. Due to the processing time on both ends of the communication link, this is a course



estimating method for this information, but that is all that is required for the majority of the

MAV trajectory (> 1kman distance between spacecraft).

As the MAV approaches the MOV for docking, more accurate ranging information is required.

A radar signal projected from an antenna in the nose cone of the MAV gives the precise ranging

information required for the docking maneuver. Utilizing a modified Apollo rendezvous radar

system, a 9.833 GHz signal is projected from a 0.254 m (10 in) antenna. Since this maneuver

occurs at a distance of less than 1 km from the MOV, and the beamwidth is -100, no pointing

mechanism is required.

8.3.2.2 Control System

Because two engines are always being utilized during Martian ascent, a separate reaction

control system (RCS) for ascent is not required. The main ascent engines can both

differentially throttle and gimble to control the MAV flight path. All of these maneuvers are

controlled by the main computer, which continuously compares the pre-programmed trajectory

to the measured real-time trajectory.

For docking maneuvers, the OMS (see Section 6.0) provides smaller thrust levels. This

system is astronaut-controlled using redundant joysticks inside the MAV. Additional manual

controls are provided for emergency main engine and OMS shutdown.

8.4 Computer

The main MAV computer must monitor all of the subsystem functions to warn the crew of

possible spacecraft malfunction. Additionally, the computer controls the main ascent

propulsion system, monitors the MAV trajectory, and controls certain MAV subsystem

functions.



8.4.1 Requirements

The MAV computer system must:

* control some subsystem functions

* monitor all subsystems

* monitor ascent data

* control flight path

* reliability = .999

* shelf-life = 2 years

8.4.2 Point Design

The computer selected for this mission is the Harris R3000 CPU-based computer, which is

also being studied for possible use in the the Mars Rover Sample Return (MRSR) mission.

8.4.2.1 Specifications

The main computer consists of three separate redundant processor nodes, redundant power

supplies, and sufficient telemetry memory (3 Mbit) to monitor the main trajectory (see Figure

8-3). Input/output information from the subsystems are obtained through the I/O devices wired

to the redundant system buses. Each processor node consists of a R3000 CPU chip capable of

20 MIPS (mega-instructions per second), 256 Kbytes of instruction and data memory RAM,

and a R3010 FPU chip.

The system is protected against single point failures through CPU cross-checking and has

single event upset (SEU) protected memory. This, along with the double redundancy, allows

a system reliability of 0.9994 (Harris, 1989). The entire assembly has a mass of 2.3 kg and

requires a maximum of 40 W of power.
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Figure 8-3: MAV Computer Schematic (Harris, 1989)

8.4.2.2 110 Devices

Input/Output devices are utilized to monitor and control the various subsystem functions.

Figure 8-4 and 8-5 illustrate the LSS, propulsion system, and GN & C computer schematics.

All of the other subsystems, including power and thermal control, are passive systems, and

thus are only monitored by the computer system.
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Figure 8-4: LSS I/O Schematic
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8.5 Instrumentation and other Avionics

The remainder of the avionics system consists of lighting, both external and internal, displays

and instrumentation, and cameras.

8.5.1 Reauirements

* instrumentation/controls accessible by all crew

* displays/warnings for all life critical systems

* emergency detectors for life critical systems

* display flight path information

* provide cameras for PR purposes

* sufficient lighting for internal and external viewing needs

* reliability = .999

* shelf-life = 2 years

8.5.2 Point Design

8.52.1 Instrument Panels

Information is displayed on one of three main panels accessible to the astronauts; two

communication and warning panels, and a flight information panel (see Figure 8-1).

The communication/warning panels contain LSS warning lights for cabin pressure,

temperature, and humidity, fire warnings, subsystem and overall power meters, helium

pressurant meters, propellant levels, audio comm. speakers, and communication controls.

Additionally, if automatic switching fails, the astronauts can manually switch to a redundant

system using control switches on this board.

An integrated display is located in the center of the flight panel, giving information on



navigation data, including velocity, range to target, acceleration, and pitch, roll and yaw

data. Actual trajectory data is reported on-screen and compared to pre-programmed trajectory

data. Surrounding the display are propellant meters, event and mission timers, and main

engine emergency shut-down and startup controls.

8.5.2.2 Lighting

Lighting is required for internal viewing of instruments and controls and for docking with the

MOV. Internal lighting parameters are based on the Contingency Earth Return Vehicle (CERV)

study (JSC-32025, 1987).

For external lighting, a high intensity tracking light, similar to the one used on Apollo is

utilized. This allows visual sighting of the MAV from a distance of up to 259 km, permitting

MAV viewing from the MOV during the entire main mission scenario. When the MAV

approaches within 60 m of the MOV, incandescent lights are used to allow visual docking.

8.523 Cameras

Cameras are located on both the front and rear of the MAV, providing images of the ascent

from the Martian surface. These pictures are stored and sent back to Earth once rendezvous

has occured.

8.6 Summary

Table 8-2 summarizes the mass, energy, and volume requirements of the avionics system.

Data is taken from historical sources, and from information in this section. Energy

requirements are based on the maximum 38.8 hour mission with a 1.15 factor of safety.

Power amplifier efficiencies are assumed to be 35% (NASA TM 88174, 1985).



Table 8-2: Avionics System Summary

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

audio:

audio controller 2 7.0 892.0 0.007

audio storage unit 2 5.0 446.0 0.005

crew headsets 3 0.9 0 0.001

X-band:

transponder 2 6.0 1403.0 0.006

power amplifier 3 6.0 892.0 0.006

signal processor 2 6.8 669.0 0.007

omni antennae 4 4.0 0 0.004

radar antenna 1 2.0 0 0.002

radar transponder 1 3.0 25.0 0.003

Data:

central processor 1 2.3 1785.0 0.002

mass storage 1 2.0 446.0 0.002

time/freq. unit 1 2.0 446.0 0.002

I/O devices 5 10.0 892.0 0.010

wiring and cables 15.0 0 0.015

warning, comm panel:

panel 2 10.0 0 0.010

panel support structure 2 6.0 0 0.006

LSS warning lights 12 3.0 223.0 0.003

fire warning 2 1.0 44.6 0.001

comm. controls 2 1.0 223.0 0.001



Table 8-2: Avionics System Summary (cont.)

Element Number Total mass (kg) Ener(W-hr) Volume (m3)

power meter 2 1.0 44.6 0.001

OMS pressure meter 4 1.0 89.2 0.001

ascent pressure meter 4 1.0 89.2 0.001

helium pressure meter 4 1.0 89.2 0.001

prop. temp. gauges 8 2.0 223.0 0.002

docking - yes/no 2 1.0 5.0 0.001

caution/warn. circuitry 2 10.0 0 0.010

toggle switches 30 3.0 223.0 0.003

rotary switches 4 1.2 223.0 0.001

switch circuitry 2 6.0 0 0.006

wall plugs 2 0.8 0 0.001

speakers 2 1.4 0 0.001

flight path panel:

panel 1 5.0 0 0.005

panel support structure 1 3.0 0 0.003

integrated display 1 15.0 1785.0 0.002

OMS propellant meter 1 1.0 134.0 0.001

ascent propellant meter 2 2.0 268.0 0.002

event indicator 1 2.0 223.0 0.002

event timer 1 0.5 134.0 0.001

mission timer 1 0.5 134.0 0.001

toggle switches 8 0.8 134.0 0.001

main engine controls 4 4.0 10.0 0.004



Table 8-2: Avionics System Summary (cont.)

Element Number Total mass (kg) Energ (W-hr) Volume (m3)

OMS controls:

thrust controls 4 4.0 5.0 0.004

directional control 2 2.0 10.0 0.002

OMS shutoff 8 4.0 3.0 0.004

OMS control structure 2 2.0 0 0.002

OMS circuitry 2 8.0 0 0.008

GN & C:

ring lazer gyro 2 0.8 0 0.001

IMU processor/struct. 2 0.7 625.0 0.001

accelerometers 2 0.3 0 0.001

star tracker 1 7.7 10.0 0.008

cabling 10.0 0 0.010

lighting:

int. light assembly 3 6.0 1339.0 0.006

dimmers 2 2.0 446.0 0.006

external lighting 2 6.0 500.0 0.006

misc:

cameras 2 4.0 892.0 0.004

TOTAL 169 213.67 14142.0 0.204

The avionics system utilizes almost 64% of the MAV energy budget. The average power

8.7 Recommendations



requirement (-300 W) is not excessive. The extensive time period over which it operates

causes the high energy need. Therefore, one possible method of reducing this power

requirement is to shut down the non-life-critical elements of the avionics system during the on-

orbit period of the maximum length mission.



9.0 Orbital Mechanics

9.1 Introduction

In order to size the propellant, and hence the spacecraft itself, the AV required to reach the

MOV orbit needs to be analytically determined. This delta-velocity, which is effected by drag

and gravity losses, must be optimized within the reliability, thrusting, and staging constraints

in order to minimize the MAV mass.

9.2 Requirements

The MAV must:

* ascend to 250 km x 33850 km altitude orbit

* ascend to 370 inclination orbit with the same line of nodes as MOV orbit

* ascend from 00 Latitude, 00 Longitude landing site

* rendezvous with MOV - including synchronizing the orbits

* remain within human tolerable acceleration limits (see Section 5.0)

* have an abort-to-orbit capability from the Martian surface

* have an abort-on-descent capability

Others:

* minimize mass within thrust and staging constraints

* allow single engine-out on ascent

9.3 Main Scenario Trajectory

To evaluate the MAV trajectory, Program to Optimize Simulated Trajectories (POST; NASA1-

18147, 1987) is used on the HP9000 computer. POST has been used in the past for

evaluating Titan launches as well as optimizing STS trajectories. This program's generality
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permits it to solve orbital mechanics problems around any rotating oblate body and in any

known atmosphere.

POST operates on a user-written input file which contains planetary, atmospheric, vehicle,

and trajectory goal data. It functions by trying to optimize a number of user-defined variables,

while meeting the trajectory criterion (see Table 9-2), also defined by the user. To determine a

MAV trajectory, this input file was written and is listed in Appendix A.

In general, POST can optimize trajectories subject to variable thrust and stage weights.

However, in this case, this is not really possible, since there are constraints imposed by

permitting single engine-out and by using engines of limited throttleability. Therefore, a trial

and error method is employed to "optimize" the trajectory within the given constraints. The

following sections describe data that is used in the trajectory-determining input file.

9.3.1 Vehicle Characteristics

The physical characteristics of the spacecraft affect the trajectory. Data on drag coefficients,

engine characteristics, and vehicle mass are required for the POST trajectory analysis.

9.3.1.1 Drag Coefficients

Data on drag coefficients for this spacecraft are taken from a previous study on the Manned

Mars System Study (MMSS) contract (Peterson, 1989). These data were estimated with an

ascent vehicle shaped roughly the same as the MAV. Each vehicle has a conic shape with a

rounded front section, differing only in cone half-angles. The previous ascent vehicle had an

approximate 350 cone half-angle, while the current MAV has a 450 cone angle. This fact

means that the previously utilized values are somewhat optimistic. To address this problem,

the effect of increasing drag coefficients is evaluated in Section 9.3.5.
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The drag coefficient values utilized in the POST input file for various mach numbers are

tabulated in Table 9-1.

Table 9-1: Drag Coefficients for Various Mach Numbers

Mach Number Drag Coefficient Mach Number Drag Coefficient

0 .80 2 .90

.10 .80 3 .73

.25 .70 4 .64

.50 .65 5 .60

.75 .50 10 .48

.95 .62 15 .46

1.04 .90 20 .455

1.50 1.00 30 .45

In addition to the drag coefficients, the MAV frontal area is required to determine the effect of

drag on the spacecraft. Based on a 1.67 m (5.5 ft) radius, the vehicle has a frontal area of

8.83 m2 .

9.3.12 Engine Characteristics

The throttling capability and maximum thrust required were determined after several POST

runs. The maximum thrust level needed is 53376 N (12000 lbf) per engine. In order to allow

engine-out, each engine must also be able to throttle from this maximum thrust down to 31.1

kN (7000 lbf). This translates to a 1.7:1 throttling ratio.

By utilizing the engines described in Section 6.0, with an Isp of 342 sec, the mass flow at

maximum thrust is 35 kg/sec per engine. At minimum thrust, this drops to 20.4 kg/sec per
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engine. The engine exit area, which is needed by POST to determine pressure losses (which

are minimal in the Martian atmosphere), is about 2.48 m2 per engine.

9.3.1.3 Vehicle Mass

The vehicle dry mass was also determined after several POST runs, since the propulsion

system mass determines the overall vehicle mass. The vehicle dry mass is 2760 kg. The

overall mass for the optimum ascent trajectory is 14093 kg, with a propellant mass of 11333

kg.

9.3.2 Martian Atmosphere and Planetary Data

To determine the effect of the Martian atmosphere on the MAV trajectory, Mars' density,

pressure, and temperature profiles are needed. These data are found in Appendix A in the

POST input file (JPL, 1978). The speed of sound in the Martian atmosphere is calculated

from these quantities and also tabulated in Appendix A.

Also required by the POST input file are the Martian planetary and launch site data. These

include the Jk, planetary spin rate, planetary mass, polar and equatorial radii, longitude, and

latitude. These values are tabulated in Appendix A.

9.3.3 Trajectory Description

POST runs on a series of events which are specified by the user. Each event is started by the

conclusion of the previous event and concluded when a dependent variable value is equal to a

user-specified value. Independent variables are altered by the computer during optimization in

order to minimize the spacecraft mass. These independent variables and optimized values are

tabulated in Table 9-2.

The trajectory chosen is a two thrust-level, one-stage, gravity turn trajectory (see Figure 9-1).

The MAV is first held down to the MDV habitation module until all engines are functioning.
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The MAV then disconnects from the MDV, rises vertically for 0.9 seconds with all four

engines running, and pitches over at a fixed rate for the next 4.34 seconds.

From that point, the MAV flies with a zero relative angle of attack. At a POST optimized time,

the MAV throttles down and goes into a gravity turn, sending the spacecraft into an

intermediate orbit whose apogee is the MOV perigee altitude. The engines shut down, and the

spacecraft coasts to the MOV perigee altitude. When this altitude is reached, the engines start

up again and the final orbit velocity is obtained. Docking occurs immediately at the MOV

perigee.

Table 9-2: POST Independent Variables

Variable Value Phase in which variable is used

launch azimuth 48.921 deg hold-down

pitchover rate -4.625 deg/s pitchover

apoapsis radius at burnout 3639.6 km before coast phase

true anomoly at synch. 180 deg after coast phase

final apoapsis radius 37249.1 km final orbit

engine off

throttle down

coast thrust to MOV orbit

Figure 9-1: MAV Trajectory
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9.3.4 Results

9.3.4.1 Thrust Profile

To obtain the minimum vehicle mass with this trajectory, the MAV starts out at 133.4 kN

(30000 lbf) of thrust with all four engines operating at 33.4 kN (7500 Ibf) each. At the

throttle-down point, the thrust is reduced to 62.3 kN (14000 lbf), which translates to two

engines running at 31.1 kN (7000 lbf). These values were obtained by trial and error

"optimization", since the engines needed to allow the thrust values for the engine-out scenario

(see Section 9.4.1). The engine throttling occurs after 6000 kg of propellant are consumed.

9.3.4.2 Traiectory Results

The final trajectory is detailed in Figures 9-2 to 9-8. Velocity, altitude, acceleration, mass,

dynamic pressure and heat rates are all obtained from POST runs. The event times, also

produced by POST, are shown in Table 9-3.

Table 9-3: Event Times

Event Start Time (sec) End Time (sec)

MAV hold down -3.00 0.00

vertical rise 0.00 0.90

pitchover 0.90 5.24

thrust level 1 5.24 151.24

thrust level 2 151.24 337.57

gravity turn - coast 337.57 1520.15

MOV orbit bum 1520.15 1602.18

docking immediately after MOV orbit attained
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The AV requirements, which are use to size the MAV propellant, are tabulated below.

Table 9-2: Cumulative AV Values

Event AVTotal (nds) AVGravity (m/s) AVDrag (m/s) AVThrust (m/s)

vertical rise 8.53 3.30 0 0

pitchover 49.99 19.29 .01 .20

thrust level 1 1865.81 295.58 56.02 .20

thrust level 2 3734.67 382.46 67.48 3.15

gravity turn 3734.67 382.46 67.48 3.15

MOV orbit 5067.36 384.02 67.48 3.26

docking 5117.36 384.02 67.48 3.26

Total 5117.36 384.02 67.48 3.26
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This table summarizes AV requirements for the various phases of the MAV mission. The table

also includes the AV penalties due to gravity, drag, and thrust vectoring.

9.3.5 Effect of Different Drag Values

Because of possible drag coefficient errors, several POST runs were performed with higher

drag coefficients. These runs are summarized in Table 9-3. Four of the AV values are

obtained by multiplying the previous drag coefficients by a constant factor. The other four

values are obtained using a constant drag coefficient.

Table 9-3: AV for Various Drag Coefficients

Drag Coefficients AVTotal (m/s) AVDra Loss (m/s)

previous run 5117 67

1.5 x previous 5152 104

2.0 x previous 5194 149

2.5 x previous 5251 207

0.5 (constant) 5102 48

1.0 5152 104

1.5 5218 173

2.0 5366 281

This table shows that drag is not a very large percentage of the total AV no matter what the

vehicle shape. This is very different from Earth, where drag greatly influences both the

vehicle and trajectory shape.

9.4 Abort Trajectories

There are two abort trajectories; an engine-out scenario and an abort on descent to the Martian

surface. The first abort trajectory evaluated is the engine-out scenario.

110



9.4.1 Engine-Out On Pad

Clearly, engine-out can occur at any time in the MAV flight. In order to bracket the

performance losses in this scenario, the worst case of an engine failing on the pad is evaluated.

All other engine-out cases give a AV value between the pad failure and the normal scenario.

9.4.1.1 Traiectorv

Basically, this is the same trajectory as before, except that the thrust values and the pitchover

rate change. If an engine fails on the pad, two engines operate at maximum capacity (53.3 kN

or 12000 lbf each) during the first thrust level phase, and throttle down to 31.1 kN (7000 lbf)

each for the second thrust phase. The new pitchover rate for this trajectory is -1.17 deg/sec.

Also, a synchronization burn may be required since this path takes longer to traverse than the

main scenario trajectory (see Section 9.4.3.1).

9.4.1.2 Results

The abort trajectory results are found in Figures 9-9 through 9-15 and in Table 9-4.

Table 9-4: Event Times

Event Start Time (sec) End Time (sec)

MAV hold down -3.00 0.00

vertical rise 0.00 0.90

pitchover 0.90 5.24

thrust level 1 5.24 189.05

thrust level 2 189.05 385.27

gravity turn - coast 385.27 1891.13

MOV orbit burn 1891.13 1967.68

docking immediately after MOV synchronization
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As before, the AV chart is given below, with the losses due to various factors.

Table 9-5: Cumulative AV Values

StaLe AVToal (m/s) AVGravity (m/s) AVDag (m/s) AVhrust (m/s)

vertical rise 6.82 3.31 0 0

pitchover 39.93 19.42 0 0

thrust level 1 1865.77 412.92 37.90 .08

thrust level 2 3869.97 492.21 42.58 3.80

gravity turn 3869.97 492.21 42.58 3.80

MOV orbit 5156.21 493.74 42.58 4.22

docking 5206.21 493.74 42.58 4.22

Total 5206.21 493.74 42.58 4.22
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By comparing Table 9-2 and Table 9-5, it is observed that the abort scenario incurs the loss of

about 100 m/s in performance, mainly due to increased gravity loss. If each engine had 66.7

kN (15000 lbf) of thrust, and were throttleable to 31.1 kN (7000 lbf), that performance loss

could be eliminated. However, this would involve designing an entirely new engine (see

Section 6.0).

9.4.2 Abort-on-Descent

The second abort scenario is an abort-to-orbit on descent. In this scenario, the MAV detaches

from the rest of the descending MDV and ascends into orbit. To allow this abort-to-orbit, the

spacesuited astronauts descend to the surface while located in the MAV.

After detaching from the MDV, the MAV ascends back into the orbit from which it descended.

The same path as the main scenario, gravity-turn trajectory is followed (the final burn to reach

an elliptical orbit is delayed, however). This is possible until the MDV is too close to the

surface to allow successful engine start-up and separation of the MAV from the rest of the

MDV.

After orbit is attained, the MAV must synchronize orbits with the MOV, since, although their

orbit planes will be the same, they will no longer be in the same location in that orbit (see

Section 9.4.3.1). After this orbit synchronization occurs, the normal docking sequence

follows.

9.4.3 Abort-to-Orbit

If an emergency occurs on the Martian surface, the astronauts have the option of ascending

back into the MOV orbit. As described before (Section 2.0), the MAV must first wait until it

aligns with the MOV orbit line of nodes. This occurs twice a day, translating to a maximum

possible wait of up to 12.33 hours before launch is possible. In case the emergency is a MDV
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habitation module failure, the MAV will provide life support during this period.

After the MAV aligns with the MOV line of nodes, the MAV ascends into orbit, using the

same trajectory described in the main scenario. After reaching orbit, the MAV must again

synchronize with the MOV.

9.4.3.1 Orbit Synchronization

As described before (Section 2.0), the synchronization of the two orbits takes a maximum of

26.5 hours (1 sol + period of a LMO). This time period, along with the possible surface wait,

determines the maximum mission length of 38.8 hours.

In order to synchronize the two orbits after an abort ascent, the MAV only ascends into a 250

km circular orbit. The MAV then makes two burns; one to make sure the two spacecraft align

at the next MOV periapsis passage, and the second at the next MOV periapsis passage, to

raise apoapsis for synchronization of the two spacecraft. This causes no performance loss,

since the same energy is required as in the main scenario.

9.5 Summary

The worst case, engine-out abort scenario determines the minimum MAV AV requirement. In

addition to that, a AV factor of safety is included.

A possible AV error could stem from errors in the atmospheric or planetary data, unforeseen

propulsion system performance problems, or guidance system errors. The fact that the AV

used to determine the propellant mass is already sized for an abort case assists in this matter. If

any non-engine-out scenario occurs, the MAV has an automatic 84 m/s margin in AV. In

addition to this margin, the MAV provides another 2% (103 m/s) margin in case the engine-out

scenario occurs.

The 50 m/s needed for docking is not provided by the main propulsion system, since the main
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engines are too powerful to make this delicate maneuver. A separate orbital maneuvering

system (OMS) is provided for this action. Therefore, the main propulsion system is sized for

a AV of 5259 m/s.
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10.0 Thermal Control System

10.1 Introduction

Thermal control of the MAV cabin is required to maintain a human-surviveable temperature

throughout the astronauts' stay on the Martian surface. Additional thermal problems stem from

control of ascent heating, and from maintaining both the OMS and ascent propellants in the

liquid state.

10.2 Requirements

The thermal control system of the MAV must:

* maintain a liveable temperature (210 - 270 C) inside the capsule

* maintain the main ascent fuel and oxidizer in the liquid phase

* maintain the OMS fuel in the liquid phase

* minimize overall system mass and volume whenever feasible

* minimize external power requirements subject to reasonable mass

* have a shelf-life of 2 years

* have no single-point failures

* have a system reliability of .995

To provide an emergency abort-to-orbit capability, the spacecraft propellant must be

maintained in the liquid phase throughout the surface stay, and the MAV cabin must be

thermally controlled to a liveable temperature. Additionally, the MAV is thermally maintained

to provide a safe haven for the astronauts in case of system failure of the MDV habitation

module.
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10.3 Thermal Loads

The MAV must be thermally controlled in a wide variety of environments. These include the

vacuum of space, the cold Martian surface, and the harsh heat loads of ascent from the

Martian surface.

10.3.1 Space

To determine the necessary thermal control for the MAV throughout its year-long journey to

Mars and during ascent, the temperature of space is assumed to be 40 K. Additional space-

based heat loads come from solar insolation, which varies from 1350 W/m2 in Earth orbit to a

583 W/m2 average at Mars.

For most of the trip to Mars, the MAV is eclipsed from the sun by the main body of the MTV

(see Section 2.0). The MAV is also eclipsed at certain points in the Martian LMO and the Earth

orbit.

10.3.2 Martian Surface

While the MAV is on the surface, some of the solar energy is attenuated by dust in the Martian

atmosphere. Figure 10-1 illustrates average solar intensities throughout the Martian year for

the MAV landing site. Figure 10-2 shows daily solar intensity variation.

To specify the remainder of the Martian thermal environment, Figures 10-3 and 10-4 illustrate

both the average temperatures throughout the year and the daily temperature distribution at the

surface site.

For determining the effects of convection, average Martian surface wind velocities are

assumed to be 3 m/s (Ash, 1987).
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Figure 10-2: Daily Solar Flux Variation (Ls = 900, Lat. = 00)
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Figure 10-3: Average Diurnal Martian Surface Temperatures (Clifford, 1986)

Figure 10-3: Average Diurnal Martian Surface Temperatures (Clifford, 1986)
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Figure 10-4: Daily Variation in Surface Temperatures (00 Latitude; Clifford, 1986)

10.•33 Tnternal Heat T nLod

Table 10-1 enumerates the total internal heat rates from the various subsystems. Because the

propulsion system is external to the MAV cabin, it does not contribute to the thermal system

heat load. Human metabolic heat output is assumed to be a constant 86 W per astronaut

(Simonsen, 1988).
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Table 10-1: Subsystem Heat Loads

Subsystem Average Heat (W) Peak Heat (W)

Power 30 30

Thermal 50 50

Propulsion 0 0

Avionics 277.21 297

Structure 0 0

LSS 88.6 108

Metabolic heat 258 258

TOTAL 1703.81 1743

10.3.4 Ascent Heat Loads

The main scenario stagnation point heating rate is illustrated in Figure 9-6, with the total

stagnation heat load shown in Figure 9-7. Because this heat loading is only calculated for the

stagnation point, a heat distribution is assumed in order to calculate the total heat over the

MAV surface area (see Figure 10-5).

Figure 10-5: Assumed Ascent Heat Distribution
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10.4 Options & Choices

There are several different options for each of the various thermal control elements.

Possibilities for the insulation system, heat rejection system, thermal coatings, and thermal

protection system are evaluated in the following sections.

10.4.1 Insulation System

Both the propellant system and the MAV cabin require insulation to maintain their temperatures

within the specified ranges (see Section 5.0 and 6.0). There are two options for an insulation

system, bulk insulation and a vacuum system.

The simplest insulation system, due to the fact that it requires no special pressure environment,

utilizes bulk insulation. The two main possibilities for bulk insulation are foam insulation and

non-evacuated powders (see Table 10-2).

Table 10-2: Insulations

Insulation Density (kg/m3) Conductivity (W/m-OK)

Pure vacuum, < 10-10 MPa -- < .005

Polysterene foam 46 .026

Polyurethane foam 34 .023

Glass foam 140 .035

Non-evacuated powder (1 atm):

Perlite 50 .026

Silica aerogel 80 .019

Fiberglass 110 .025

Evacuated powder (1.3x10- 8 MPa):

Perlite 60-180 .080
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Table 10-2: Insulations (cont.)

Insulation Density (kg/ 3) Conductivity (W/m-K)

Silica aerogel 80 .0017-0021

Fiberglass 50 .0017

Opacified powder (1.3x10-8 MPa):

Al/Santocel 160 .00035

Cu/Santocel 180 .00035

MLI (1.3x10-9 MPa):

Al foil and fiberglass 12-27 layers/cm 3.5-7.0x10-5

Al foil and fiberglass 30-60 layers/cm 1.7x10-5

Al foil and nylon net 31 layers/cm 3.5x10 -3

Al crinkled, Mylar film 35 layers/cm 4.2x10-5

Most non-evacuated powders require some additional support structure, through which heat

leaks occur. They also have substantial densities, translating to a high insulation system mass.

Foam insulations, on the other hand, are lightweight and completely self-supporting. They

are simply sprayed onto the spacecraft. For these reasons, foam insulation is chosen over the

non-evacuated powders. The best practical foam insulation, from a thermal conductivity-to-

density ratio standpoint, is polyurethane foam.

An analysis was performed to determine the foam insulation thickness required by the MAV

cabin and main propellant tanks. For this first cut analysis (more detailed analysis in Section

10.5.1.3), the outer skin of the MAV was assumed to be at the average Martian surface

temperature, ignoring convective and radiative heat transfer limitations. In addition, the foam

thermal conductivity was assumed to be independent of temperature.
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Therefore, MAV heating requirements were analyzed utilizing only the conductive heat losses

through the foam:

Q " * (Tint - Text)

k = thermal conductivity = .023 W/m-OK

A = MAV surface area = 27 m2

1 = insulation layer thickness

Tint = cabin temperature = 2940 K

Text = average Martian temp. at 00 latitude = 2140 K

Figure 10-6 illustrates the MAV cabin heating required for various polyurethane foam

insulation thicknesses. Every centimeter of the foam insulation layer adds an additional 8.6 kg

to the overall vehicle mass.

3000 -
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Figure 10-6: MAV Cabin Required Heat vs. Insulation Thickness
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A similar simplified analysis was performed for the main propellant and oxidizer tanks. Each

of the fuel tanks needs to be maintained at greater than 221 OK, and the oxidizer tanks must be

kept at more than 262 OK (see Section 6.0). For the purpose of sizing the NTO insulation, the

external wall temperature was assumed to be 214 OK, while the external temperature of the

MMH tanks was assumed to be 200 *K (setting all temperatures above the MMH freezing point

to 221 OK, see Figure 10-4). Figure 10-7 illustrates the total insulation thickness for two fuel-

to-oxidizer thickness ratios, given the 57.2 m2 of surface area.
Ann .-
,uuu
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Figure 10-7: Propellant Heat Required vs. Total Insulation Thickness

For each centimeter of propellant insulation specified, an additional 9.2 kg of mass is

appended to the overall MAV mass. Therefore, if bulk insulation is utilized throughout the

spacecraft, about 212 kg (142 kg propellant, 70 kg cabin) of insulation is required to reduce

the required heat supply to under I kW, which is still a fairly significant heat level. Therefore,

alternative methods of insulation are evaluated to reduce both the insulation mass and heat
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requirements.

One possible method for reducing the insulation mass is by utilizing a trapped C02 convection

system. This can be accomplished either by using a separate external CO2 containment

mechanism, or by simply using the space between the two hulls as an insulating C02 gap.

Unfortunately, the calculated heat loss of over 700 kW through the aluminum stringers makes

the latter approach infeasible.

By utilizing an externally located Nomex honeycomb structure filled with Martian carbon

dioxide (see Figure 10-8), convection and conduction losses through the MAV cabin

insulation can be calculated:

Q = (Requiv)- 1 (Tint- Text

Requiv - RNomex RCO2 (assuming hco2 = 0; see below)

SRNomex + RC21
RNomex SkNomex ANomex

1RC02 =RCO2 = kC2 ACO2

kCO2 = .0184 W/m-OK (at Martian atmosphere conditions)

kNomex = .623 W/m-OK

ACO2 = 0.98 * 27 m2

ANomex = 0.02 * 27 m2

1= 1.3 cm (honeycomb thickness)

hCO2 = free convection constant for cylinder = 0 if NGrs < 1000

NGrs = s3 g AT (Wolf, 1983) = 1.96
V2

1
3 = reciprocal of avg. absolute.temperature- 2540 K

g = Martian gravity = 3.73 m/s2

v = CO2 viscosity = .00072 m2/s
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s = honeycomb diameter = .95 cm

AT = 800K

By again assuming an external wall temperature of 2140 K, the calculated heat loss through a

single honeycomb layer is 5.1 kW, for a honeycomb mass of 13.34 kg. If four honeycomb

layers are placed in series with each other, 1280 W of heat are still required for a 53.4 kg

insulation mass. Clearly this is not an advantage over the bulk insulation system, which

required only 70 kg of insulation to reduce the cabin losses to 500 W.
.00375"

T 214 K

5.

T 293' K

Nomex Gr/Ep Al Al
Honeycomb Shell Stringer Shell

Figure 10-8: Honeycomb Insulated MAV Wall

A second alternative to bulk insulation is low pressure insulation systems. Multilayer

insulations (MLI) have extremely low thermal conductivities if a vacuum environment can be

maintained. If 1 centimeter of MLI is utilized for the MAV cabin, only 30 W of heat

(assuming no heat loss through contact points) is required to heat the entire cabin. Similarly,

if 1 cm of MLI is utilized for the propellant tanks, 58 W of heat is required.
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To create a vacuum environment for the propellant tanks, a second, air-tight hull must be

placed around the propellant tanks while minimizing the structural contact points between the

two shells. Vacuum would then be obtained while the MAV was in space, and sustained

while on the surface.

This type of system presents a spacecraft reliability problem, however. If the vacuum system

were to fail, the propellants would freeze, preventing the spacecraft from ascending to orbit.

To solve this leak problem, a vacuum pump needs to be installed on the MAV in order to

maintain the vacuum in the gap between the two hulls. If an irrecoverable leak occurs, the

MDV must provide the necessary power to maintain the propellants in the liquid state (until an

abort-to-orbit or hull repair can occur).

MLI allows a substantial weight and power advantage over bulk insulation for the propellant

tanks. However, for the smaller surface area of the MAV cabin, the vacuum system does

provide a large mass advantage. Also, because the MAV skin must withstand ascent dynamic

pressure, a MAV secondary hull requires numerous contact points through which heat leaks

will occur.

Therefore, to avoid further reliability problems, bulk insulation is baselined for the MAV

cabin. To lower the total required heat, the propellant tanks utilize a MLI-containing vacuum

system, with a MDV heating and abort-to-orbit backup. For the small surface area OMS

propellant tanks, bulk insulation is specified.

10.4.2 Heat Collection and Reiection System

During descent and ascent, the MAV's internally generated heat load of 704 W (average) must

be rejected to maintain the spacecraft within the required temperature range. This requires both

a heat collection and rejection system. There are two principle options for collecting internally

generated heat, a coolant loop and heat pipes.
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Coolant loops have been utilized on previous manned space flights, with Apollo, Gemini, and

Mercury all employing water-based coolant systems. In these systems, a coolant fluid, which

is circulated throughout the spacecraft, stores the heat until the fluid reaches a radiator. At that

point, the fluid-stored heat is transferred to the radiator and radiated to space.

Although these systems are well-tested, they are generally quite heavy, containing coolant

plumbing, pump systems, heat exchangers, condensers, and coolant fluids. They are also

active systems, which could present a reliability problem for the two-year shelf-life MAV

thermal system.

An alternate heat rejection method employs a passive, variable-conductance heat pipe system.

A heat pipe is a closed pipe containing a small quantity of working fluid (see Figure 10-9). A

capillary wick creates the pumping force required to move the fluid from the heat source,

where the fluid is evaporated, to the heat sink, where it condenses. By introducing a fixed

amount of non-condensible (at heat pipe operating temperatures) gas into the heat pipe to vary

the condenser effective length, the source can be passively maintained at a constant

temperature.

In past applications, ammonia, freon, and water have been used for working fluids. For the

MAV application, water is baselined to avoid toxicity problems.

One disadvantage of this system is that the heat source must be physically under the heat sink

so that the capillary action occurs even in a gravity environment. This means that the MAV

radiator must be located on the upper cone of the external shell. Also, past heat pipe systems

have typically dissipated around 50 W of heat or less. A large number of these pipes are

required to reject the entire 700 W heat load.
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Figure 10-9: Heat Pipe Schematic

To reject the collected heat, the condenser ends of the heat pipes dump into a radiator. The

radiators are mounted through the insulation to the upper conic shell of the MAV.

In summary, heat pipes are utilized to collect heat from the MAV internal sources. These heat

pipes collect the heat at the source, and transfer it to a radiator system located on the external

MAV surface.

10.4.3 Coatings

Table 10-2 shows solar absorptivities and infrared emissivities for possible MAV surfaces.

Determination of the actual coatings employed is discussed in the the various thermal element

point designs.

10.4.4 Thermal Protection System (TPS)

There are several options for protecting against or rejecting the ascent heat load, including:

utilizing the already present heat pipe and radiator system, having a separate water coolant

loop, and coating the outside of the MAV with an ablative material. Allowing the thermal
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Table 10-2: Absorptivities and Emissivities of Various Materials

Material Absorptivity (Solar) Emissivity (IR)

White paint .20 .85

Black paint .94 .94

Silvered teflon .08 .72

Aluminum paint .66 .20

Aluminum .44 .08

Gold .20 .03

Titanium .60 .20

Beryllium .58 .08

Steel .85 .36

mass of the spacecraft to absorb the 4.1 kW peak load is not an option, since the ascent

heating has already heat-saturated the MAV structure. The internal peak heat load of 4.1 kW is

the result of over 100 kW/m2 of ascent heating.

Because the ascent heat rates create an internal heat load 5 times the normal MAV heat loads

(see Section 10.5.2.3), the radiator would require significantly more surface area to reject this

heat. The heat pipes would also need to increase in number (or total diameter) by a factor of

five. Therefore, a separate thermal system is specified to dump ascent heating loads.

One possibility is a water evaporation system. Water pipes run through the MAV insulation,

storing the ascent heat by water evaporation. The water vapor is then dumped into space.

Evaporation of 1 kg of water absorbs 2.43 MJ of heat.

The main problem with this heat rejection system is that it adds a significant mass quantity to
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the MAV. A separate system, with a water pump, a water vapor rejection point on the

spacecraft, and an additional plumbing system is required. In addition to this, there may be a

problem in preventing the heat from circumventing the water pipes (not boiling the water), and

heating the internal cabin. Furthermore, this method would not rid the spacecraft of the 800 W

internal load.

An ablative coating on the external MAV surface is a simple way to absorb the excess heat from

ascent. A typical ablative material absorbs 4.19 MJ/kg, which is nearly twice the performance

of the water system. Also, the ablation method requires no additional system elements.

Therefore, a thin ablative coating is baselined to absorb the excess MAV ascent heating.

One problem with either method of heat rejection is that the radiator, which is not covered with

the ablator, will exceed the heat pipe operating temperature, preventing heat rejection. To

solve this problem, a simple water evaporation loop is utilized in the radiator. This loop cools

the radiator surface below 294 OK, allowing heat radiation of the internal loads during ascent.

10.5 Point Design

The MAV thermal system is designed to allow the MAV abort-to-orbit capability at all times on

the Martian surface. Cabin temperature is sustained at a human compatible level on the surface,

as well as during the ascent and orbit stay, and the propellants are maintained in the liquid

state.

10.5.1 System Description

Figure 10-10 illustrates the MAV thermal system. Bulk insulation on the MAV cabin and a

MLI vacuum system on the propulsion tanks are utilized to maintain the Martian surface

thermal power requirement under 500 W. Heat pipes are used during the mission to collect the

generated internal heat, and the radiator is designed to reject this heat load. An ablative

material coats the outside of the spacecraft to absorb the ascent heat loads.
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105.1.1 Heat Pipes

A total of 36 variable conductance heat pipes, each with a 50 W heat transfer capability, are

utilized to reject the internally generated and solar absorbed heat load of 800 W (see Section

10.5.1.3). Twelve heat pipes (including 6 for redundancy) are employed to collect the avionics

heat load of 300 W (see Figure 10-10), while 12 heat pipes are attached to each of the air

circulation vent heat exchangers to remove the remaining 500 W of heat.

To remove the total internal heat load, only one of the air circulation systems must be

operating. In addition to the 10 required heat pipes attached to this system, 2 more heat pipes

are provided for redundancy. Redundancy is also provided for each of the avionics heat pipe

clusters.

Water is utilized as a working fluid, evaporating at the heat source end of the heat pipe, and

condensing at the heat sink. Each cluster of heat pipes spread out through the radiator,

allowing heat transfer between the condenser end of the pipe and the radiative surface.

10.5.12 Ascent Heat Reiection System

To reject the ascent heat loads, 5.6 kg (with a 1.5 factor of safety) of ablative material is

sprayed onto the MAV external skin. This amount of material absorbs the non-radiator ascent

heat load of 15.6 MJ (see Section 10.5.2.3). An additional 5.4 kg (FOS = 1.5) of water is

required to maintain the radiator at 290 *K (see Section 10.5.1.5), so that the internal heat

loads can be rejected during ascent. Section 10.5.1.5 examines the water coolant system.

10.5.1.3 Thermal Coatings

The thermal coatings on the MAV cabin, radiator, and tanks must be specified in order to

determine the spacecraft heat loads. In general, it is beneficial for the MAV to have a highly
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solar absorptive coating while the MAV is on the Martian surface. The solar energy assists in

reducing the overall MAV heating requirements.

To determine the required emissivity of the MAV outer surface, the time during Martian orbit

solar eclipse is examined. This is the point where the internal spacecraft heat must sustain the

MAV at 294 OK:

kA*
Qint -1 (Tint - Text)

Qint = internal heat = 704 W

k = MAV skin thermal conductivity const. = 0.0216 (see Section 10.5.1.4)

A = MAV surface area = 27.2 m2

1= insulation thickness = 0.0762 m (see Section 10.5.1.4)

Tint = internal temperature = 294 OK

Text = external temperature

If a thermal balance is to be maintained in this case, the external surface temperature must be

sustained at a temperature of 203 OK. Utilizing this temperature,' the infrared emissivity can be

calculated:

e o Text4 A = Qint

E = infrared emissivity

o = Stefan-Boltzmann constant = 5.667 x 10-8 W/m 2-oK4

Therefore, the MAV cabin infrared emissivity must be less than 0.269, or additional heat

sources must be supplied on the MAV. To meet this emissivity specification, and to maintain

the highest possible solar absorptivity, aluminum paint is baselined for the MAV skin. This

paint has an emissivity of 0.2 and an absorptivity of 0.66. The aluminum paint coats the entire

surface of the MAV, and is mixed in with the ablative material to sustain the needed surface
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emissivity after Martian ascent. Aluminum paint is also utilized on the hydrazine propellant

tanks.

The main propellant tanks are sustained within an acceptable temperature range at Earth orbit,

Mars orbit, and Mars surface by utilizing the optical properties of the aluminum coated tanks

(see Table 10-2). No additional thermal coatings are required.

The MAV radiator is painted white to maintain the required high IR emissivity, while having a

low solar absorptivity. This allows the MAV heat to be rejected, while increasing the radiator

efficiency through reduced solar heat input.

10.5.1.4 Insulation

Polyurethane foam insulation is specified for both the MAV cabin and the hydrazine tanks. A

0.0762 m (3 in) layer of this lightweight insulation is sprayed onto the MAV cabin surface,

reducing the total MAV cabin required heating to an annual average of 438 W (see Section

10.5.5.2). With a density of 34 kg/m3, this amounts to a MAV cabin insulation mass of 70.5

kg.

A 0.1524 m (6 in) layer of insulation is also sprayed onto the hydrazine tanks, reducing the

heat requirements to 25 W, or 6.25 W per tank (see Section 10.5.5.2).

Figures 10-11 and 10-12 illustrate the thermal properties of the polyurethane insulation BX-

250.

10.5.1.5 Radiator

The MAV radiator is required to reject a maximum of 800 W of heat. To size this radiator, a

radiator temperature of 290 OK (must be under 21 OC internal temperature) is specified in the

following energy balance:
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as Sm F Ar + Q rax = r a Tr4 Ar

as = solar absorptivity = 0.20

Sm = solar intensity in Mars orbit = 583 W/m2

F = worst-case radiator area projection factor = 0.707 (sin 450)

Ar = radiator area

Qmax = maximum heat rejected = 800 W

Er = radiator IR emissivity = 0.85

Tr = maximum radiator operating temperature = 285 OK

Therefore a minimum of 3.1 m2 of radiator area is required. For a factor of safety, and to take

into account unused radiative area, a radiator area of 3.9 m2 is specified.

The radiator itself is constructed of aluminum 6061-T6, which permits rapid heat transfer

(thermal conductivity = 166 W/m-OK). The condenser portions of the heat pipes are threaded

through the radiator, rejecting their heat to the aluminum surface. The radiator is located on

the upper portion of the MAV cone (see Figure 10-10).

To maintain the MAV at the 290 OK operating temperature during the Martian ascent, a water

evaporation loop is utilized (see Figure 10-13). The water is pumped through pipes in the

radiator, reducing the radiator surface temperature by evaporating. The water vapor is then

separated from the liquid water and discarded. A total of 8.7 MJ of heat is rejected from the

radiator by 5.4 kg (FOS = 1.5) of evaporated water.

10.5.1.6 Main Prooellant Vacuum System

To sustain the MMH/NTO propellants in the liquid phase, a multilayer insulation (MLI)-filled

vacuum system is utilized. A 1 centimeter gap is filled with 15 layers of fiberglass/aluminum

coated mylar foil MLI (0.23 kg/m2), reducing the conductive loss in space to 58 W of total
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Figure 10-13: Radiator Water Evaporation Loop

heat, 17 W for each of the NTO tanks, and 12 W for each MMH tank (see Section 10.5.2.2).

Slightly less heat is required on the Martian surface.

To create the vacuum environment, a 0.000762 m (0.03 in) graphite/epoxy layer, coated with

a thin layer of aluminum, is employed as the second shell surrounding the propellant tanks.

The second hull is sized to reduce the possibility of accidental puncture, since it actually

requires only about 2x10-5 centimeters of Gr/Ep to take the loads from the 9 kPa Martian

environment. The aluminum coating is used to reduce the vacuum leak rate.

Because the second structure can also readily withstand Earth pressures, the vacuum chamber

can be evacuated either in space or before launch to Earth orbit.

In case of vacuum system leaks, a Balzer turbo-molecular pump is provided. This pump is

efficient to a flow rate of up to 600 I/s, which will evacuate the entire propellant vacuum

system in 0.93 seconds. Since this pump is only required on the Martian surface, it can be

operated from and located on the MDV habitation module.

141



10.5.1.7 Window

To reduce heat losses through the window, a still air gap is maintained between two panes of

glass separated by a 2 centimeter gap. This reduces the space heat losses to about 31 W, and

the Martian surface heat losses to about 8.6 W. The external MAV insulation overlaps the

outside of the window pane, reducing heat losses through the window support structure.

10.5.2 System Analysis

The MAV thermal system was analyzed on the HP9000 computer using SINDA (NAS9-

17448, 1987), a thermal resistance-based analysis tool. The program operates on a user-

defined input file, which is listed in Appendix B. It determines required internal heat values

by analyzing convective, conductive, and radiative heat transfer.

10.5.2.1 Space

In order to analyze the MAV cabin and propellant tanks, a model of the MAV using thermal

resistances and thermal nodes must be defined. Figure 10-14 illustrates this resistor network,

with the resistance values appearing in Appendix B. The resistance values are defined as

follows:

kA
Rconductance =-' Q = R * (Tnode a - Tnode b)

Rconvection = h A Q = R * (Tnode a -Tnode b)

Rradiative = E A o Q = R * (Tnode a4 - Tnode b4)

Each of the thermal nodes is defined by the product of mass and heat capacitance, which is

also illustrated in Appendix B.
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Figure 10-14: Thermal Resistor Network

By utilizing the insulation data in Figures 10-11 and 10-12, and the thermal coating

emissivities and absorptivities, the required heats for the MAV cabin and propellant tanks in

space were determined.

During the journey to Mars, the MAV cabin requires 608 W of thermal energy to maintain it at

room temperature. This heat is expected to be provided by the MTV by virtue of the two
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vehicles shared air flow (see Section 7.0). While the spacecraft is operating in Martian orbit in

full frontal solar view, 800 W of heat must be rejected from the MAV. If the MAV is eclipsed

by Mars, only 96 W of heat must be rejected.

The propellant tanks require 93 W of total heat while in space. Assuming a MLI thermal

conductivity of 7x10 -5 W/m-OK, 17 W of heat is needed to maintain each of the NTO tanks at a

temperature suitable for the liquid oxidizer. An additional 12 W of energy is required to sustain

each MMH tank and another 6.25 W is required for each hydrazine tanks.

1052.2 Martian Surface

To determine the surface heating requirements, the thermal forced and free convection

constants for the MAV cabin and the propellant tanks can be estimated (Edwards, 1979 and

Wolf, 1983):

htotal = hfre + hforced (worst-case)
hfree (sphere) =- * (2 + 0.6 (GrD Pr)0-25) = 0.25 W/m2-oK

D = sphere diameter = 7 m

GrD = D3  AT (as in Section 10.4.1)
v2

Pr = 0.71
hfoned (sphere) = * (2 + 0.3ReD0.6pr0.33) = 0.596 W/m2-oK

Du
ReD Du

V

u = Martian air velocity = 3 m/s
hfree (vertical cylinder) = - * 0.67RaLO. 25(1 + ( r)0563)-0.44

= 0.31 W/m2-oK

L = MAV height = 2 m

RaL = GrL Pr
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k 0.6ReDO.5pr0.33
hforced (vert. cyl.) = * (0.3 +1+(0.4/Pr)667) 0 .25

(1+(0.4/Pr)O.667)O.253

= 0.39 W/m2-oK

D = average MAV diameter = 2.1 m

Therefore, the total convection constant for the propellant tanks is 0.846 W/m2-oK, and the

estimated MAV cabin convection constant (modeling the MAV as a vertical cylinder) is 0.80

W/m2-OK.

Utilizing these quantities, the total required MAV cabin heat is calculated. Figure 10-15

illustrates the daily variation in cabin required heat during the expected warmest and coldest

days at the Martian surface site. From these data, the MAV cabin average heat requirement of

438 W is calculated.

Two separate propellant tank heat calculations were performed, one with bulk insulation

protected tanks, and the other with MLI insulated tanks. For the foam insulation case, 0.0762

m (3 in) of insulation is placed on the oxidizer tanks, while 0.0381 m (1.5 in) of foam is

sprayed on the propellant tanks.

Figure 10-16 shows the propellant required heat for the same temperature extremes as the MAV

cabin. This results in an average of 377 W of required thermal power throughout the Martian

year for the bulk insulation system.

For the MLI insulated system, 13.6 W of total power are required, including 4.7 W of NTO

heat and 2.1 W of MMH heat. Each hydrazine tank requires an additional 3.1 W of heat.

These requirements are all less than the space heat requirements, and thus don't drive the

power system design.
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Figure 10-15: Required Heat in MAV Capsule
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Figure 10-16: Required Heat for Foam Insulated Propellant Tanks
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10.5.2.3 Martian Ascent

SINDA was also utilized to determine the internal heat loads from the ascent heating described

in Figure 9-7. By assuming the heat distribution to be as in Figure 10-5, the internal heat

loads are calculated and shown in Figure 10-17 utilizing temperature and heat load profiles

from Section 9.0.
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Figure 10-17: Required Ascent Heat Rejection

The total external energy that must be absorbed by the ablator and radiator water system is 24.3

MJ. The radiator must absorb 8.7 MJ, while the ablator absorbs the remaining 15.6 MJ of

heat.

10.5.3 Summary

Table 10-3 summarizes the MAV thermal control system mass, power, and volume

requirements. The vacuum pumps are not included in the totals, since they are assumed to be
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left behind during ascent. Their power requirements are included, however, since the pumps

may may be operating during a MDV system failure. Heat pipes are sized for 0.3 kg/m of

length.

Table 10-3: Thermal Control System Summary

Element Number Total mass (kg) Energy (W-hr) Volume (m3)

heat pipes 36 16.3 0 0.016

working fluid 36 8.0 0 0.008

heat exchanger 2 10.0 1785.0 0.010

radiator 1 20.0 0 0.007

radiator attachments 8 4.0 0 0.003

water 5.4 0 0.005

water storage 1 1.3 0 0.001

water pipes 8.0 0 0.010

pumps 2 5.0 5.0 0.005

ablative material 5.6 0 0.003

capsule insulation 70.5 0 2.070

hyd. insulation 9.5 0 0.278

MLI 13.0 0 0.560

Gr/Ep shell 4 64.0 0 0.043

vacuum pump (2) (20.0) 441.0 (0.040)

TOTAL 88 240.6 2231.0 3.018

10.5.4 Reliability

Required system reliability of 0.995 is obtained through heat pipe redundancy. Adequate heat
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rejection is obtained with only half of the avionics heat pipes, and with only one of the

circulation systems operating. This, combined with the high reliability of the passive heat

pipes, is expected to sustain the required reliability.

10.6 Conclusions and Recommendations

Even with the MLI propellant tanks, the thermal power requirements for the MAV are fairly

significant. One possible way to reduce these requirements would be to let the MAV capsule

and propellant tanks cool to Martian surface temperatures. Before launch occurs, the MAV

cabin would then be heated with MDV power, which causes a delay in an abort-to-orbit

scenario.

The problem with this method of power reduction is that the propellants would need to melt

back to the liquid state. Chunks of solid propellant could cause plumbing problems and

possible engine failure. If a safe method of assuring that all of the propellant is in the liquid

state can be devised, this solution would offer great overall power savings.

Further research and development must also take place to determine the feasibility of utilizing a

vacuum system on the Martian surface.
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11.0 Docking System

11.1 Introduction

Once the MAV accomplishes rendezvous with the MOV in Martian orbit, the surface

astronauts must transfer back to the main spacecraft. A docking module is provided for shirt-

sleeve transfer of the MAV crew.

11.2 Requirements

The MAV docking system must be:

* compatible with MOV

* easily accessible by all crew members

* able to withstand same loads as stringers

* minimize impact to reduce structural weight

* allow passage of fully suited astronaut with safety margin

* allow shirt-sleeve passage

* reliability = .995

* shelf-life = 2 years

Other docking system requirements include:

* approach velocity < 0.1 m/s

* capability for a single crewman to execute the docking operation

* direct visibility of the target

* capability to perform docking maneuver in pressure suit

11.3 Options

Figure 11-1 illustrates possible docking mechanisms for this MAV/MOV crew transfer.
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Figure 11-1: Possible Docking Mechanisms (Bloom, 1969)
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11.4 Point Design

For 5 out of the 7 possible docking mechanisms, the only required MAV system is a

lightweight inverted cone structure. The docking system associated with the MAV therefore

has a very low mass. Because of its thorough testing and design, the Apollo probe and

drogue docking method is baselined for this mission.

11.4.1 System Description

In the probe and drogue method of docking, the MAV drogue impacts with the MOV docking

probe. The latches on the probe then grab the MAV and an electrical reeling mechanism tows

in the spacecraft. The docking mechanism is manually removed, permitting shirt-sleeve

astronaut passage.

11.4.1.1 Probe

The docking probe located on the MOV consists of an attenuator, a spring latch, and an

electrical retractor (see Figure 11-2). The attenuator is filled with high pressure gas, which is

rcmn rPccPA ilnn MAV imn2-t

Figure 11-2: Apollo Docking Probe (Clark, M., 1987)
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11.4.1.2 Drogue

The drogue located on the front of the MAV is simply an aluminum cone and a seal, and is

expected to have a mass of approximately 15 kg.

To install the probe and drogue system, the surface astronauts first enter the MAV. The probe

and drogue system is then installed in the intermediate tunnel. After the MAV detaches from

the MOV, the nose cone (which is required for Mars ascent heating) swings into place over the

drogue.

11.4.2 Docking Scenario

11.42.1 Main Scenario

In the main mission scenario, the crew transfer occurs in a shirt-sleeve environment. The nose

cone is first removed from the tip of the MAV. After the impact between the MAV and MOV

occurs, the probe reels in the MAV, sealing the two spacecraft together. The surface

astronauts (or the MOV astronauts, if necessary) then remove the probe and drogue structure

manually, opening up the tunnel from the MAV for crew transfer.

11.4.22 Abort Scenario

If the docking system fails, an EVA backup is provided. The MAV astronauts exit from the

MAV rear hatch in their pressure suits, transferring to the MAV through an alternate MOV

entrance.
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12.0 Other Systems

12.1 Payload

100 kg of samples are returned by the MAV from the Martian surface. Figure 12-1 illustrates

the sample locations, as well as the layout of the other elements described in this section.

12.1.1 Requirements

Martian sample requirements:

* 100 kg samples

* samples must be kept below Martian temperatures on ascent

* human acceleration levels (see Section 5.0) are acceptable for samples

* no volatile or toxic cargo unless crew is protected

12.2.2 Point Design

1222.1 Sample Container Design

The sealed sample containers design is based on MRSR cannisters (see Figure 12-2). Both

atmospheric and soil samples are stored in aluminum tubes, which are then sorted and labeled

according to sample acquisition locations. Samples are stored in the MAV containers

throughout the surface stay in case of emergency abort-to-orbit.

12.2.2.2 Location

Samples are stored external to the spacecraft in order to maintain them at Martian surface

temperatures throughout the ascent. They are stored inside an uninsulated container on the

bottom of the MAV. A door to the main MAV capsule is utilized to transfer the samples to the

MOV once rendezvous has occured.
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Figure 12-2: Sample Return Container (MRSR, 1989)

12.2 Hatches

12.2.1 Requirements

The MAV hatches must provide:

* attachment to MDV habitation module

* attachment to MOV/docking mechanism

* passage of fully suited astronaut: 95 cm diameter (NASA-STD-3000, 1987; Figures

8.8.1.1-1 and 14.3.4.1-1)

* manual as well as electromechanical releases for safety

Other requirements:

* must be accessible by all crew members

* must withstand same loads as main cabin structure
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12.2.2 Point Design

1222.1 Locations

Hatches are required to permit astronaut passage to the MOV and the MDV habitation module.

One hatch is located at the front of the MAV, and allows astronaut entrance to the MAV before

surface descent. It also permits transfer between the MAV and the MOV after rendezvous and

docking occurs.

A second hatch, located on the bottom of the MAV, is utilized to permit transfer of the

astronauts from the MAV to the MDV habitation module (see Figure 12-1).

12.2.2.2 Summary

Because the top hatch is put in place after astronaut entrance, it is only removed once (after

docking). Thus, it can have a fairly simple, and therefore low mass, design. The bottom

hatch, on the other hand, must allow repeated astronaut transfer. Both hatch structures are

constructed of aluminum.

12.3 Windows

12.3.1 Location

A window is required only for manual docking. It is therefore located such that the middle

MAV astronaut has a forward-oriented view (see Figure 12-1).

12.3.2 Structure

As mentioned before (see Section 10.0), two panes of glass are utilized in order to minimize

heat losses through the window pane. Because the spacecraft must absorb external ascent heat

loads, quartz glass is utilized.
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The window gap is filled with cabin pressure air. Therefore, the outer pane need only

withstand a 34.5 kPa (5 psia) pressure differential:

t = (3 Pb2)0.5 (Rourk, 1954)
at

13 = constant = 0.66 (a/b = 1.5)

b = panel width = 0.3048 m (12 in)

P = pressure load = 34.5 kPa (5 psia)

at = quartz ult. tensile stress = 27.6 MN/m2 (4000 psi)

Therefore, the outer pane window thickness needs (with FOS) to be 18 mm (0.69 in) thick,

translating to a 5.4 kg pane (density = 2200 kg/m3). The inner pane is sized for the same load

to protect against an outer pane leak.

12.4 Pyrotechnics

Pyrotechnics are required to separate the MAV from the MDV habitation module before Martian

ascent and to remove the nose cone to allow docking to occur.

12.4.1 Reauirements

The MAV pyrotechnics requirements:

* provide release of MAV from MDV before ascent

* release MAV nose cone

12.4.2 Point Design

Pyrotechnic devices are utilized at the junction between the MAV and the MDV support

structure (see Figure 2-2). The devices disconnect the MAV after ignition and engine power-

up have occured. Additional pyrotechnic devices are located around the MAV nose cone.
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12.5 Tunnel to MDV

For astronaut transfer between the MAV and the MDV habitation module, a tunnel is provided.

12.5.1 Requirements

Tunnel requirements:

* allow passage of fully suited astronaut (95 cm diameter)

* withstand 5 psia internal pressure

* detachable before ascent from inside MAV

12.5.2 Point Design

To allow astronaut transfer, the tunnel connects the MAV lower hatch to the habitation module

upper hatch (see Figure 2-2). Utilizing aluminum for this tunnel, the required thickness can be

estimated by analyzing hoop stress:

Pr
at

Therefore, 0.063 mm (0.0025 in) is the required thickness. As in Section 4.0, this is too thin

to avoid a possible accidental puncture. Utilizing 1.27 mm (0.05 in) aluminum translates to 32

kg of tunnel shell mass. In addition to the shell, a ladder must be placed in the tunnel to permit

astronaut transfer.

Latches are provided inside the MAV cabin to manually release the tunnel seal before Mars

ascent occurs.

12.6 Summary

Table 12-1 summarizes the subsystem elements described in this section. The tunnel and MDV

pyrotechnics do not ascend with the MAV, and are not included in the total mass.
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Table 12-1: Misc. Systems Summary

Element Number Total mass (kg) Enery (W-hr) Volume (m3)

payload:

sealed samples 30.0 0 0.010

sealed containers 2 10.0 0 0.004

non-sealed samples 70.0 0 0.023

non-sealed containers 1 6.0 0 0.002

atmosphere samples 2 0.0001 0 0.006

atmosphere container 2 6.0 0 0.002

film 1.0 0 0.001

film containers 2 2.0 0 0.001

misc. structure 15.0 0 0.005

top hatch:

structure 1 8.0 0 0.003

seals 1 2.0 0 0.002

latches, hinges 4 4.0 0 0.002

handles 1 1.0 0 0.001

bottom hatch:

structure 1 16.0 0 0.006

seals 1 4.0 0 0.004

latches, hinges 4 4.0 0 0.002

handles 1 1.0 0 0.001

window:

panes 2 10.8 0 0.005

seals 2 2.0 0 0.002
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Table 12-1: Misc. Systems Summary (cont.)

Element Number Total mass (kg) Ener (W-hr) Volume (m3)

support structure 1 2.0 0 0.001

nose cone pyros 2 2.0 0.1 0.002

pyrotechnic devices (4) (4.0) 0.1 (0.004)

tunnel:

shell (1) (32.0) (0) (0.011)

ladder (1) (10.0) (0) (0.004)

attachments (2) (4.0) (0) (0.001)

TOTAL 30 196.8 0.2 0.083
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13.0 System Inteeration

13.1 Configuration

13.1.1 Subsystem Locations

Subsystem locations are illustrated in each of the technical subsections (see Sections 4.0-12.0).

In general, subsystems were placed to maintain mass symmetry about the x- and y- axes of the

MAV.

A single level MAV was chosen over a smaller diameter bi-level MAV due to control and

instrumentation accessibility and for structural simplicity. If two astronauts were placed on the

bottom level, and a third astronaut were located above them, there would be less space for the

spacecraft controls. Additionally, the top docking hatch would not be as easily accessible.

Furthermore, the MAV structure would be more complex. One acceleration couch would need

to be suspended above the MAV floor, either by attachment to a secondary floor, or by being

suspended from the top of the MAV. The spacecraft would also need to be taller, and wider at

the top to accommodate the third MAV astronaut.

Finally, since drag does not strongly influence AV requirements (see Section 9.0), decreasing

the MAV diameter is not very mass-beneficial.

13.1.2 Moments of Inertia

The spacecraft moments of inertia are utilized by the GN & C system to determine the OMS

thrust rates. They are also needed to determine the rotation effect of engine-out on the

spacecraft (see Section 6.0).

Spacecraft moments of inertia were determined by placing all of the subsystem element

locations in a spreadsheet, and utilizing the following formula:
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Itotal = mR2 + Ibody

m = mass of object

R = x, y, or z distance of object from center of gravity

Ibody = moment of inertia of object about its own center of gravity axis

The spreadsheet first calculates the MAV center of gravity location. After subtracting this from

the subsystem location, the moment of inertias of the MAV about all three body axes are

calculated. Spacecraft moments of inertia are summarized in Figures 13-1 through 13-3 over

the entire mission length.

13.1.3 Center of Gravity

Elements of the subsystems were placed such that the MAV is mass symmetric about the x- and

y-axes. Therefore, the center of gravity distance from the defined x- and y- axes (see Figure

6-8) is zero. The distance of the center of gravity from the z-axis is described in Figure 13-4.
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Figure 13-3: MAV In vs. Propellant Consumed
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Figure 13-4: Z-axis Center of Gravity vs. Propellant Consumed

13.2 Comparison to Past Systems

Comparison of the MAV to previously flown systems is difficult because of the unique mission

requirements of the MAV. The most similar mission to the MAV ascent of past space flights is

the Apollo LEM ascent stage. Table 13-1 summarizes these two vehicles.

Table 13-1: LEM vs. MAV

Subsystem MAV mass (kg) LEM (ascent stage) mass (kg)

structure 507.45 630.98

LSS (w/out crew & suits) 126.569 239.23 (wfTCS)

main prop. (dry) 874.134 213.06

OMS (dry) 111.076 120.45

power 113.1 332.34
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Table 13-1: LEM vs. MAV (cont.)

Subsystem MAV mass (kg) LEM (ascent stage) mass (kg)

avionics 213.67 285.94

thermal control 240.55 (included in LSS)

docking 15 (included in structure)

hatches 40 (included in structure)

window 15 (included in structure)

payload 140 279

TOTAL (dry) 2396.549 2101

Comparing the two spacecraft reveals several mass deviations. The difference in propulsion

system mass is understandable; it is due to a much larger MAV propulsion mass requirement

and higher engine thrust needs. The thermal control mass dissimilarity is due to the MAV

insulation requirements on the Martian surface.

The power system mass improvement is influenced by a number of different factors. Most of

the LEM power system mass consists of wiring and circuit breakers. However, in the MAV

design, the electronic wiring is distributed over the systems which utilize the power, including

the avionics system, main propulsion system, and the OMS. Therefore, some of what is

considered power system mass in the LEM breakdown is distributed among several MAV

subsystems.

An additional factor which influences the lower system mass is the fact that the MAV does not

utilize an extensive manual circuit breaker system. Power is distributed and rerouted by the

power controller and the central computer. In the LEM design, there was not enough

computer power available for this purpose.
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13.3 Mass. Power. Volume Summaries

Table 13-2 summarizes the MAV system masses, energy, and volume requirements. Data is

drawn from Sections 4.0 to 12.0. In addition to the total mass, the fraction of the subsystem

to the total MAV dry mass is tabulated.

Table 13-2: MAV Summary

Subsystem Mass, kg (% of tot.) Energy (W-hr) Volume (m3)

structure 507.5 (18.4) 0.0 0.185

LSS (w/crew) 417.6 (15.1) 3590.0 4.784

main prop. (dry) 874.1 (31.7) 529.6 15.224

OMS 183.1 (6.6) 0.3 .234

power 113.2 (4.1) 2007.9 .154

avionics 213.7 (7.7) 14142.0 .204

thermal control 240.6 (8.7) 2231.0 3.018

docking 15.0 (.5) 0.0 .015

hatches 40.0 (1.4) 0.0 .018

pyrotechnics 2.0 (.007) 0.1 .002

window 13.8 (.5) 0.0 .007

payload 140.0 (5.1) 0.0 .055

main propellant 11333.0 0.0 9.701

TOTAL (dry) 2760.5 22500.9 23.901

TOTAL (wet) 14093.5 22500.9. 33.601
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13.4 Mission Stages

13.4.1 Main Scenario

The main mission scenario precedes as follows:

1) astronauts buckle down in MAV

2) pre-ignition check

3) engine-startup

4) MDV/MAV separation

5) pitchover

6) throttle down

7) gravity turn

8) MOV orbit synchronization

9) rendezvous

10) docking

11) initiate crew transfer

12) discard MAV

-15 min

-14 min

-3 sec

0 sec

0.90 sec

151.24 sec

337.57 sec

1520.15 sec

1602.18 sec

30 min

40 min

before Earth return

(at node alignment)

This gives an approximate 55 minute main scenario mission length.

13.4.2 Abort Scenarios

The worst-case abort mission scenario occurs as follows:

1) astronauts enter MAV

2) pre-ignition check

3) engine-startup

4) MDV/MAV separation

5) pitchover

6) throttle down

-12.3 hr

-14 min

-3 sec

0 sec

0.90 sec

189.05 sec

(at node alignment)

168



7) gravity turn

8) MOV orbit synchronization

9) rendezvous

10) docking

11) initiate crew transfer

12) discard MAV

385.27 sec

ts = 26.5 hr

ts + 80 sec

ts +3 min

ts+ 13 min

before Earth return

The worst-case abort scenario has an approximate 38.8 hour mission length.

13.5 Sensitivity Analysis

13.5.1 Crew Size

Three astronauts on a single level, as is baselined in this design, is probably the maximum

number that could be utilized for a single-floor MAV. If more astronauts were needed, a two-

level spacecraft design would be required.

Figure 13-I
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Figure 13-5: MAV Mass vs. Number of Crew Members
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13.5.2 Payload Ratio

If 1 kg of payload mass is added, an additional 3.8 kg of propellant are required to lift the

MAV to Mars orbit. If a significant payload increase were specified, additional structural and

insulation mass would also be required.
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14.0 Conclusions

The purpose of this study was to determine the approximate mass, power, and volume of a

three astronaut Mars Ascent Vehicle. Emphasis was placed on utilizing state-of-the-art

technologies to reduce the overall vehicle mass. Additionally, this study was performed to

identify necessary areas of further research, to both allow the Mars mission to occur and to

reduce the overall mass.

During the design process, one mission enabling technology was identified. For the MAV

power needs, current technology levels are not sufficient. Previously, silver-zinc batteries

have been utilized for space-based manned mission power needs, but these batteries have an

insufficient shelf-life for this two-year mission. Therefore, either this battery storage life must

be extended, or alternate power sources must be utilized.

There are two possibilities for alternate power sources, both of which also require further

research. One option is the utilization of lithium-based batteries. These batteries, which have

an 8-year life-span, would need to be flight-tested before they could be employed on this

mission. Another possibility, which has the added benefit of reducing MAV mass, is to

utilize MMH/NTO propellant fuel cells. The propellants are filtered off of the main tanks, and

reacted together to obtain power. These fuels have not been previously used for fuel cells, but

adapting a fuel cell to these fuels is not expected to be a problem.

In the process of the MAV point design, several enhancing technologies were identified. One

technology that would significantly reduce the vehicle mass is the utilization of cryogenic fuels

in the main propulsion system. To determine whether these propellants can be employed,

cryogenic boil-off rates must be determined for the year-long surface stay. Safety issues have

to be addressed also, to determine whether catastrophic propellant boil-off is a problem.

If these fuels are utilized, a vacuum system must be employed to reduce boil-off rates. Even if
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storable propellants are utilized, a vacuum system significantly reduces the power required to

maintain the propellants in the liquid phase for the Martian surface stay.

In addition to this technology identification, a number of unexpected results were obtained

from this study. In the area of orbital mechanics, the spacecraft shape did not greatly influence

the drag losses on Martian ascent. Even with a drag coefficient of 2.0, the AV drag penalty

was only 3.8% of the total ascent requirement.

Furthermore, expected performance advantages for utilizing a two-stage propulsion system did

not materialize. Only a 6% mass advantage was attained by utilizing a two-stage pump-fed

propulsion system over a single-stage, less-complex MAV.

Another problem materialized in the MAV thermal system. There were severe penalties for

maintaining the MAV at room temperature on the surface of Mars and maintaining the

propellants in the liquid state. Even with 200 kg of bulk insulation, the total heating

requirements were still over 800 W. Further research and development should be performed to

devise methods for reducing this required thermal power.
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Annendix A: POST Innut File

; dt = 9/23/89 by scott geels

; .... search and print specifications
ideb = 1,
srchm = 4,

ipro = -1,
maxitr = 0,

/print trial step summaries
/targeting using the projected gradient algorithm

/print final trajectory only
/maximum number of iterations for optimization

;.... constants controlling automatic pert selection
npad = 0, /disable automatic pert option

;.... automatic control weighting factors
modew = 0, /use input scaling factors
;.... step size limitations
pctcc = 0.10,
stpmax = 1.,
;.... iteration convergence
coneps = 90.0, 0.,

0., 0.,
p2min = 1.,

;.... curve
consex --
fiterr =

/max relative change allowed in magnitude of weighted vector
/max absolute change allowed in magnitude of weighted vector

tolerances
0.,
0.,
/value of sum of squares of errors below
/which iteration is considered targeted

fitting tolerances
1.0e-05, 1.Oe-05,
1.Oe-06, 1.Oe-03,

;.... unit conversion factors
ioflag = 3, /metric input and metric output

;.... control variable specification
nindv = 4, /number of control variables
indxi = 2, 3, 4, 5, /indices of active controls

;.... launch azimuth (dg)
indvr (1) = 'azl',
indph (1) = 10.,
pert (1) = .0001, /(dg)
wvu (1) = .1, /(1/dg)

;.... sgl inertial kickover pitch rate
indvr (2) = 'pitpc2',
indph (2) = 40.,
pert (2)= .00001, /(dg)
wvu (2) = 2., /(s/dg)

;.... apoapsis radius
indvr (3) = 'critr',
indph (3) = 70.,
pert (3) = 10.,
wvu (3)= .00001,

(m) at booster burnout

/(m)
/(1/m)
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.... true anomoly at bgn of sg2 synchronization burn
indvr (4) = 'critr',
indph (4) = 80.,
pert (4) = .0001, /(dg)
wvu (4) = .5, /(1/dg)

;....apoapsis radius at
indvr (5) = 'critr',
indph (5) = 90.,
pert (5) = 100.,
wvu (5)= .000001,

synchronization burn

/(m)
/(1/m)

u (1) = 48.921,
u (2) = -4.625,
u (3) = 3639565.93,
u (4) = 180,
u (5) = 37249063.9,
; .... constraint variable specification
ndepv = 5,
indxd = 2, 3, 4, 5, 6, /indices of active constraints

;... altitude at sg burnout
depvr (1) = 'altito',
depph (1) = 60,
depval (1) = 65000.,
deptl (1) = 1.,
idepvr (1) = 0.,

;.... apoapsis radius (m) at
depvr (2) = 'aporad',
depph (2) = 90.,
depval (2) = 37249064.,
deptl (2) = 100.,
idepvr (2) = 0.,

/(m)
/(m)
/equality

rendezvous orbit injection

/(m)
/(m)
/equality

;.... radius (m) at rendezvous-orbit injection
depvr (3) = 'gcrad',
depph (3) = 80.,
depval (3) = 3639565.93, /(m)
deptl (3) = 10., /(m)
idepvr (3) = 0., /equality

;.... flight-path angle (dg)
depvr (4) = 'gammai',
depph (4) = 90.,
depval (4) = 0.,
deptl (4)= .001,
idepvr (4) = 0.,

; .... final orbit inclination
depvr (5) = 'inc',
depph (5) = 90.,
depval (5) = 37.6,

at rendezvous injection

/(dg)
/(dg)
/equality

/(dg)
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deptl (5) = .001,
idepvr (5) = 0.,

;.... periapsis altitude at
depvr (6) = 'altp',
depph (6) = 90.,
depval (6)= 250000.,
deptl (6) = 1.,
idepvr (6) = 0.,

; .... objective function
opt = 1.,
optvar = 'weight',
optph = 90.,
wopt = 1.,
$

rendezvous-orbit inj.

/(m)
/(m)
/equality

specification
/maximize objective
/(kg)

/(1/kg)

p$gendat
title(1:40)

= 'manned mars ascent trajectory ',
title(41:80)

= 'O-duration phs to align body axis with la',
title(81:96)

= 'unch frame (1)',
event = 10.,
mdl = 1, /trigger event if and only if critr
; /equals value
iguid
iguid
iguid

steering sp
(1) = 1,
(2) =0,

iguid (4) = 1,

rolpc (1) = 0.,
yawpc (1) = 0.,
pitpc (1) = 0.,
; .... trajectory
fesn = 100.,
altmin = -10000.
maxtim = 5000.,
;.... propagatic
npc (2) = 1,
dt = 4.,
; .... vehicle m;
npc(30) = 3,

;.... vehicle no

go = 1.,
nstpl = 1,
nstph = 3,
istepf = 3*1,
; .... mavy step 1
wstpd (1) = 0,
;.... mav step 2

)ecification
/inertial euler angle steering
/use same functional type to
/specify all attitude angles
/all attitude angles are cubic polynomials
/in time with constant terms input
finertial roll euler angle (dg)
/inertial yaw euler angle (dg)
/inertial pitch euler angle (dg)

abort specifications
/final event
/minimum altitude (m)
/maximum time (s)

rn specificati

ass specificat

/4th order runge-kutta integration

/use component step and propellant
/mass model

n-propellant mass data

/weight to mass conversion
/lowest index of any step
/highest index of any step
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wstpd (2) = 1247.,
; .... mav payload
wstpd (3) = 1513.0,
;.... vehicle propellant mass data
nengl = 1, /lowest index of any engine
nengh = 2, /highest index of any engine
;.... mav engine for step 1
wprp (1) = 6000.0,
iengmf (1) = O0, /turn off engine 1
; .... mavy engine for step 2
wprp (2) = 5333.,
iengmf (2) = O0, /turn off engine 2
; .... propulsion specification
npc (9) = O0, /no rocket thrust simulation

;.... state vector initialization
time = -3., /initial trajectory time (sec)
timeo = -3., /time at which eci frame initialized
npc (4) = 2, finitialize position vector with
; /spherical coordinates of pad
altito = 0., /initial altitude (m) of vehicle cg

; /above the reference ellipsoid
gdlat = 0., /geodetic latitude (dg) of launch pad
long = 0., /longitude (dg east) of launch pad

; .... equation of motion specification
npc (14) = 1, /fix vehicle rigidly to pad
;.... inertial launch frame (1-frame) specification
azl= 52.812, /azimuth (dg) of 1-frame z-axis
lad = 0., /astronomic latitude of launch pad
lonl = 0., /astronomic longitude of launch pad
; .... jpl mars model parameters
npc (16) = 0, /oblate planet model
j2 = 196.5e-06, /2nd zonal harmonic coefficient
j3 = 0., /3rd zonal harmonic coefficient
j4 = 0., /4th zonal harmonic coefficient
mu = 4.28283e13, /newtonian grav constant (m^3/s^2)
omega = 0.70882181e-04, /mars rotation rate
re = 3397241.5, /mean mars equitorial radius (m)
rp = 3375542.5, /mean mars polar radius (m)
; .... atmospheric specification
npc (5) = 1, /general tables of atemt,cst,denst
;.... specification of variable to be integrated
npc (24) = 1, /compute integral of gderv(i) as ginti
gderv (1) = 'thrust', /calculate integral of total thrust as ginti
gint (1) = 0., /initialize value of thrust integral
gderv (2) = 'asm', /calc integral of sensed acceleration as gint2
gint (2) = 0., finitialize value of sensed acceleration int
; .... specifications of variables to be monitored for extremes
monx (1) = 'dynp', /monitor dynamic pressure
mony (1) = 'time', /record time at dynamic pressure extremes
monx (2) = 'qaltot', /monitor total qalpha
mony (2) = 'time', /record time at extremes
; .... range calculation specification
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npc (12) 1,

altref = 0.,

/compute crmg & dwnrng based on
/relative great circles
/altitude of reference circular orbit for
/calculating crrng & dwnrng

azref = 52.812, /azimuth reference for comp crrng &I
latref = 0, /reference latitude for comp crrng & C
lonref = 0., /reference longitude for comp crrng
; .... conic calculation
npc (1) = 2, /calculate and print conic block only a
;.... profil-file specification
prnc = -10., /write profil block at each integration
; .... print interval specification
pinc = 10., /time interval between print blocks
; .... print block specification
; prnt (1) ='time ', 'altito ','veli ', 'gammai','thrl', 'clr'
; prnt (7) ='tdurp', 'gcrad', 'azveli','weicon','thr2', 'tvac'
; prnt (13) ='weight ','gdlat', 'gclat', 'long', 'asm', 'asmg'
; prnt (19) ='dprngl','w', 'cs', 'xi', 'vxi', 'axi'
; prnt (25) ='wdot', 'wdl', 'wd2', 'yi', 'vyi', 'ayi'
; prnt (31) ='thrust','gammar','gamad', 'zi', 'vzi', 'azi'
; prnt (37) ='ibl 1', 'ib2', 'ibl3', 'dens', 'mach', 'alpha',
; prnt (43) ='ib21', 'ib22', 'ib23', 'pres', 'dynp', 'beta' ,
; prnt (49) ='ib31', 'ib32', 'ib33', 'atem', 'qaltot','alptot',
; prnt (55) ='ca', 'roli', 'yawr', 'rolbd', 'velr', 'ahi' ,
; pint (61) ='alphai','yawi', 'pitr', 'yawbd', 'azvelr','ahid' ,
; prnt (67) ='betai', 'piti', 'rolr', 'pitbd', 'dlr', 'dli' ,
; prnt (73) ='xmaxl', 'yxmxl', 'lift', 'videal','tvlr', 'tvli' ,
; prnt (79) ='xmax2', 'yxmx2', 'drag', 'intl', 'atl', 'atli'
; prnt (85) ='xmin2', 'tmmn2', 'vela', 'int2', 'clr', 'gli'
; prnt (91) ='pstop',
pint (1) = 'time ', 'heatrt ', 'tlheat ', 'ahid ' ,'htbt ','htlf',
prnt (7)= 'htrt ', 'http ', 'veli ', 'altito ', 'pstop',
$

p$tblmlt
atemm = 0.555555555,
presm = 6894.4896,
densm = 515.37899,
csm =-- .30480370,
$

p$tab
...-.

....

table

dwnmg
dwnrng
& dwnrmng

at events

/(dk/dr)
/(144 inA2/f^2 x 47.879094 psc/(If/fA2))
/((kg/m^3)/(slug/f^3))
/f/m)

"mars reference atmosphere" jpl 1978 (updated with data
from jpl in oct 87)
atmospheric temperature (degr) vs altitude (f)

='atemt' , 1., 'altito',
129., 1., 1.,
1.,

-9.99e9,385.2,
0., 385.2,
1000., 385.0,
2000., 384.8,
3000., 384.5,
4000., 384.1,
5000., 383.2,

6000., 382.3,
7000., 379.4,
8000., 376.6,
9000., 372.8,
10000., 369.0,
11000., 365.8,
12000., 362.5,
13000., 359.3,

14000.,
15000.,
16000.,
17000.,
18000.,
19000.,
20000.,
21000.,
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356.0,
353.2,
350.3,
347.5,
344.6,
341.8,
339.0,
336.2,



22000., 333.4, 58000., 262.3, 94000., 250.2,
23000., 330.9, 59000., 260.9, 95000., 250.2,
24000., 328.5, 60000., 259.6, 96000., 250.2,
25000., 326.2, 61000., 258.5, 97000., 250.2,
26000., 324.0, 62000., 257.4, 98000., 250.2,
27000., 321.7, 63000., 256.5, 99000., 250.2,
28000., 319.5, 64000., 255.6, 100000.,250.2,
29000., 317.2, 65000., 254.7, 110000.,153.0,
30000., 315.0, 66000., 253.8, 120000.,153.0,
31000., 312.7, 67000., 252.9, 130000.,153.0,
32000., 310.5, 68000., 252.0, 140000.,153.0,
33000., 308.2, 69000., 251.5, 150000.,153.0,
34000., 306.0, 70000., 251.1, 160000.,153.0,
35000., 303.7, 71000., 250.6, 170000.,153.0,
36000., 301.5, 72000., 250.2, 180000.,153.0,
37000., 299.1, 73000., 250.2, 190000.,153.0,
38000., 296.6, 74000., 250.2, 200000.,153.0,
39000., 294.5, 75000., 250.2, 210000.,153.0,
40000., 292.3, 76000., 250.2, 220000.,153.0,
41000., 290.2, 77000., 250.2, 230000.,153.0,
42000., 288.0, 78000., 250.2, 240000.,153.0,
43000., 286.2, 79000., 250.2, 250000.,153.0,
44000., 284.4, 80000., 250.2, 260000.,153.0,
45000., 282.6, 81000., 250.2, 270000.,153.0,
46000., 280.8, 82000., 250.2, 280000.,153.0,
47000., 279.1, 83000., 250.2, 290000.,153.0,
48000., 277.4, 84000., 250.2, 300000.,153.0,
49000., 275.7, 85000., 250.2, 310000.,153.0,
50000., 274.0, 86000., 250.2, 320000.,153.0,
51000., 272.2, 87000., 250.2, 330000.,153.0,
52000., 270.5, 88000., 250.2, 340000.,153.0,
53000., 269.1, 89000., 250.2, 350000.,153.0,
54000., 267.7, 90000., 250.2, 360000.,153.0,
55000., 266.3, 91000., 250.2, 9.99e9, 153.0,
56000., 265.0, 92000., 250.2, $
57000., 263.6, 93000., 250.2,

p$tab
; .... atmospheric pressure (lbf/iA2) vs altitude (f)
table ='prest', 1., 'altito',

129., 1., 1.,
1.,

-9.99e9,9.23e-2, 12000., 3.04e-2, 25000., 8.16e-3,
0., 9.23e-2, 13000., 2.76e-2, 26000., 7.33e-3,
1000., 8.42e-2, 14000., 2.51e-2, 27000., 6.59e-3,
2000., 7.69e-2, 15000., 2.27e-2, 28000., 5.92e-3,
3000., 7.02e-2, 16000., 2.06e-2, 29000., 5.31e-3,
4000., 6.41e-2, 17000., 1.86e-2, 30000., 4.76e-3,
5000., 5.85e-2, 18000., 1.68e-2, 31000., 4.26e-3,
6000., 5.34e-2, 19000., 1.52e-2, 32000., 3.82e-3,
7000., 4.87e-2, 20000., 1.37e-2, 33000., 3.41e-3,
8000., 4.44e-2, 21000., 1.24e-2, 34000., 3.05e-3,
9000., 4.04e-2, 22000., 1.12e-2, 35000., 2.73e-3,
10000., 3.68e-2, 23000., 1.01e-2, 36000., 2.43e-3,
11000., 3.35e-2, 24000., 9.07e-3, 37000., 2.17e-3,
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38000.,
39000.,
40000.,
41000.,
42000.,
43000.,
44000.,
45000.,
46000.,
47000.,
48000.,
49000.,
50000.,
51000.,
52000.,
53000.,
54000.,
55000.,
56000.,
57000.,
58000.,
59000.,
60000.,
61000.,
62000.,
63000.,
64000.,
65000.,
66000.,
67000.,
68000.,

p$tab
; .... atmospheric density
table ='denst', 1.,

129., 1.,
1.,

-9.99e9,3.02e-5,
0., 3.02e-5,
1000., 2.76e-5,
2000., 2.52e-5,
3000., 2.30e-5,
4000., 2.10e-5,
5000., 1.92e-5,
6000., 1.76e-5,
7000., 1.62e-5,
8000., 1.49e-5,
9000., 1.37e-5,
10000., 1.26e-5,
11000., 1.15e-5,
12000., 1.06e-5,
13000., 9.69e-6,
14000., 8.87e-6,
15000., 8.11 le-6,

(slug/f^3) vs altitude (f)
'altito',
1.,

16000., 7.40e-6,
17000., 6.76e-6,
18000., 6.16e-6,
19000., 5.61e-6,
20000., 5.11e-6,
21000., 4.65e-6,
22000., 4.23e-6,
23000., 3.84e-6,
24000., 3.48e-6,
25000., 3.15e-6,
26000., 2.85e-6,
27000., 2.58e-6,
28000., 2.33e-6,
29000., 2.1 le-6,
30000., 1.90e-6,
31000., 1.72e-6,
32000., 1.55e-6,
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1.93e-3,
1.72e-3,
1.53e-3,
1.36e-3,
1.21e-3,
1.07e-3,
9.52e-4,
8.44e-4,
7.47e-4,
6.61e-4,
5.85e-4,
5.17e-4,
4.57e-4,
4.03e-4,
3.56e-4,
3.13e-4,
2.76e-4,
2.43e-4,
2.14e-4,
1.88e-4,
1.65e-4,
1.45e-4,
1.27e-4,
1.12e-4,
9.80e-5,
8.59e-5,
7.53e-5,
6.59e-5,
5.77e-5,
5.05e-5,
4.42e-5,

69000.,
70000.,
71000.,
72000.,
73000.,
74000.,
75000.,
76000.,
77000.,
78000.,
79000.,
80000.,
81000.,
82000.,
83000.,
84000.,
85000.,
86000.,
87000.,
88000.,
89000.,
90000.,
91000.,
92000.,
93000.,
94000.,
95000.,
96000.,
97000.,
98000.,
99000.,

3.87e-5,
3.38e-5,
2.96e-5,
2.58e-5,
2.26e-5,
1.97e-5,
1.73e-5,
1.51le-5,
1.32e-5,
1.15e-5,
1.Ole-5,
8.82e-6,
7.72e-6,
6.75e-6,
5.91e-6,
5.17e-6,
4.52e-6,
3.95e-6,
3.46e-6,
3.03e-6,
2.65e-6,
2.32e-6,
2.03e-6,
1.78e-6,
1.56e-6,
1.36e-6,
1.19e-6,
1.04e-6,
9.15e-7,
8.01e-7,
7.02e-7,

100000.,6.15e-7,
110000.,1.55e-7,
120000.,3.90e-8,
130000.,1.16e-8,
140000.,4.05e-9,
150000.,1.66e-9,
160000.,7.39e-10,
170000.,3.33e-10,
180000.,1.52e-10,
190000.,7.05e- 11,
200000.,3.30e- 11,
210000.,1.56e-11,
220000.,7.38e-12,
230000.,3.5le-12,
240000.,1.68e-12,
250000.,8.05e-13,
260000.,3.88e-13,
270000.,1.88e-13,
280000.,9.1 le-14,
290000.,4.44e- 14,
300000.,2.17e- 14,
310000.,1.07e-14,
320000.,5.27e-15,
330000.,2.61e-15,
340000.,1.30e-15,
350000.,6.46e- 16,
360000.,3.24e- 16,
9.99e9,3.24e-16,

33000.,
34000.,
35000.,
36000.,
37000.,
38000.,
39000.,
40000.,
41000.,
42000.,
43000.,
44000.,
45000.,
46000.,
47000.,
48000.,
49000.,

1.40e-6,
1.26e-6,
1.13e-6,
1.02e-6,
9.15e-7,
8.22e-7,
7.37e-7,
6.61e-7,
5.92e-7,
5.29e-7,
4.73e-7,
4.22e-7,
3.76e-7,
3.36e-7,
2.99e-7,
2.66e-7,
2.36e-7,



50000., 2.10e-7,
51000., 1.87e-7,
52000., 1.66e-7,
53000., 1.47e-7,
54000., 1.30e-7,
55000., 1.15e-7,
56000., 1.02e-7,
57000., 8.99e-8,
58000., 7.94e-8,
59000., 7.01e-8,
60000., 6.19e-8,
61000., 5.45e-8,
62000., 4.80e-8,
63000., 4.22e-8,
64000., 3.71e-8,
65000., 3.26e-8,
66000., 2.87e-8,
67000., 2.52e-8,
68000., 2.21e-8,
69000., 1.94e-8,
70000., 1.70e-8,
71000., 1.49e-8,
72000., 1.30e-8,
73000., 1.14e-8,
74000., 9.95e-9,
75000., 8.70e-9,
76000., 7.60e-9,

p$tab

77000., 6.65e-9,
78000., 5.81e-9,
79000., 5.08e-9,
80000., 4.45e-9,
81000., 3.89e-9,
82000., 3.40e-9,
83000., 2.98e-9,
84000., 2.60e-9,
85000., 2.28e-9,
86000., 1.99e-9,
87000., 1.74e-9,
88000., 1.53e-9,
89000., 1.34e-9,
90000., 1.17e-9,
91000., 1.02e-9,
92000., 8.96e-10,
93000., 7.84e-10,
94000., 6.87e-10,
95000., 6.01e-10,
96000., 5.26e-10,
97000., 4.61e-10,
98000., 4.04e-10,
99000., 3.54e-10,
100000.,3.10e-10,
110000.,8.63e-11,
120000.,1.94e- 11,
130000.,5.08e- 12,

140000., 1.53e- 12,
150000.,5.29e-13,
160000.,2.33e-13,
170000.,1.04e- 13,
180000.,4.71e-14,
190000.,2.16e- 14,
200000., 1.00e- 14,
210000.,4.72e- 15,
220000.,2.24e- 15,
230000., 1.06e- 15,
240000.,5.09e- 16,
250000.,2.44e- 16,
260000.,1.18e- 16,
270000.,5.69e- 17,
280000.,2.7 6e- 17,
290000.,1.35e- 17,
300000.,6.59e-18,
310000.,3.24e-18,
320000.,1.60e- 18,
330000.,7.90e- 19,
340000.,3.93e- 19,
350000., 1.96e- 19,
360000.,9.8 le-20,
9.99e9, 9.8 le-20,

$

; .... atmospheric speed of sound (f/s) vs altitude (f)
table ='cst', 1., 'altito',

129., 1., 1.,

-9.99e9,768.,
0., 768.,
1000., 768.,
2000., 768.,
3000., 768.,
4000., 767.,
5000., 766.,
6000., 766.,
7000., 763.,
8000., 760.,
9000., 757.,
10000., 754.,
11000., 751.,
12000., 748.,
13000., 745.,
14000., 741.,
15000., 739.,
16000., 736.,
17000., 733.,
18000., 730.,
19000., 727.,
20000., 725.,

21000., 722.,
22000., 720.,
23000., 716.,
24000., 714.,
25000., 712.,
26000., 709.,
27000., 707.,
28000., 705.,
29000., 702.,
30000., 700.,
31000., 698.,
32000., 695.,
33000., 693.,
34000., 691.,
35000., 688.,
36000., 686.,
37000., 683.,
38000., 681.,
39000., 678.,
40000., 676.,
41000., 674.,
42000., 671.,

43000., 669.,
44000., 667.,
45000., 665.,
46000., 663.,
47000., 661.,
48000., 659.,
49000., 657.,
50000., 656.,
51000., 654.,
52000., 652.,
53000., 650.,
54000., 648.,
55000., 647.,
56000., 645.,
57000., 644.,
58000., 642.,
59000., 641.,
60000., 639.,
61000., 638.,
62000., 637.,
63000., 635.,
64000., 634.,

184



65000.,
66000.,
67000.,
68000.,
69000.,
70000.,
71000.,
72000.,
73000.,
74000.,
75000.,
76000.,
77000.,
78000.,
79000.,
80000.,
81000.,
82000.,
83000.,
84000.,
85000.,
86000.,

p$gendat

title(41:80)
= 'fixed-rltv atd phs f go-intertial to sgl',

title(81:96)
=' ignition '

event = 20.,
critr = 'tdurp',
value = 0.,
; ... steering specification
iguid (1) = 2,
iguid (4) = 0,

endphs = 1.,

633.,
632.,
631.,
630.,
630.,
629.,
629.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,
628.,

/duration of previous phase

/relative euler angle steering
/all attitude angles are cubic polynomials
/in time with constant terms carried over
/from previous phase

title(41:80)
='fixed inrtl atd phs f sgl ignition t bgn',

title(81:96)
=' kickover pr ',

event = 30.,
critr = 'tdurp',
value = 3., /duration of previous phase (sec)
;.... steering specification
iguid (1) = 1, /inertial euler angle steering
iguid (4) = 0, /same as before
; heat rate calculation
npc (15) = 1, /chapman heating
rn =.5,
; .... propagation specification
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87000., 628.,
88000., 628.,
89000., 628.,
90000., 628.,
91000., 628.,
92000., 628.,
93000., 628.,
94000., 628.,
95000., 628.,
96000., 628.,
97000., 628.,
98000., 628.,
99000., 628.,
100000.,628.,
110000.,565.,
120000.,598.,
130000.,638.,
140000.,685.,
150000.,747.,
160000.,751.,
170000.,755.,
180000.,759.,

190000.,763.,
200000.,767.,
210000.,767.,
220000.,767.,
230000.,767.,
240000.,767.,
250000.,767.,
260000.,767.,
270000.,767.,
280000.,767.,
290000.,767.,
300000.,767.,
310000.,767.,
320000.,767.,
330000.,767.,
340000.,767.,
350000.,767.,
360000.,767.,
9.99e9, 767.,

endphs = 1.,
$

p$gendat



dt = .0625,
;.... propulsion specification
npc (9) = 1, /rocket thrust
iengmf (1) =1, /turn on sgl engine
; .... equation of motion specification
npc (14) = 0, /remove rigid connection to mdv

; .... aerodynamic-force specification
npc (8) = 1, /input drag coefficients

sref = 8.8, /forward area (nm2)
; .... atmospheric specifications
npc (6) = 0, /no wind simulation
; .... aeroheating specification
npc (26) = 2, /compute time integral of produc

/pressure and velocity rel
; heatk (1) = 1,
; heatk (2) = 17600,
; heatk (3) = 26000,
; .... velocity loss calculations
npc (25) = 2, /calculate velocity losses

t of dynamic
lative to atmosphere (ahi)

$
p$tblmlt
tvclm = 4.44822161,
wdlm = .45359702,
aelm = .092905299,
cam = 1.0,
$

p$tab
; .... sgl vacuum thrust
table ='tvc 1t', 0,
$

p$tab
;.... sgl mass flowrate

343 isp
table ='wdlt', 0.,

p$tab
.....

table
$
p$tab
tabl....
table

/(n/lbf)
/(kg/Im)
f(mA2/fA2)

(If) versus time
30000.,

(s) from ignition

(lm/s) versus time (s) from ignition

87.46,

sgl engine exit area (fA2)
='aelt', 0., 106.78,

stage 1
='cat',

0.00,
0.75,
2.00,
10.0,

endphs = 1.,

& 2 aerodynamic axial force coefficient vs mach
1, 'mach',
2, 1, 1,
1,

0.80,
0.50,
0.90,
0.48,

0.10,
0.95,
3.00,
15.0,

0.80,
0.62,
0.73,
0.46,

0.25, 0.70,
1.04, 0.90,
4.00, 0.64,
20.0,0.455,

0.50, 0.65,
1.50, 1.00,
5.00, 0.60,
30.0, 0.45,

p$gendat
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title(41:80)
='fixed inrtl rate phs f bgn t end of kick',

title(81:96)
='over maneuver',

event = 40.,
critr = 'time',
value = 0.9, /end time (s) of,

; .... propagation specification
dt = 0.125,
endphs = 1.,

vertical flight
/and start time of open-loop prl

p$gendat

title(41:80)
='0 rltv atck angle sgl phs to minimize po',

title(81:96)
='inting velocity Iss',

event = 50.,
critr = 'tdurp',
value = 4.34,
;.... steering specification
iguid (1) = O0, /relative aerodynamic angle steering
iguid (2) = O0, /all attitude angle are same functional type
iguid (3) = 1, /all angle of attack, sideslip, and bank are
;/cubic polynomials in tdurp with

; /constants input
alppc (1) = 0., /(dg)
betpc (1) = 0., /(dg)
bnkpc (1) = 0., /(dg)
alppc (2) = 0., /(dg/s)
betpc (2) = 0., /(dg/s)
bnkpc (2) = 0., /(dg/s)
; .... propagation specification
dt = 0.5,
endphs = 1.,
$

p$gendat
title(41:80)

='0 inrt atck angle sg2 thrusty phs t achiev',
title(81:96)

='e xfer ellipse',
event = 60.,
critr = 'wprp 1',
value = 0.,
; .... steering specification
iguid (1) = 3, /inertial aerodynamic angles
; .... vehicle mass specifications
nstpl = 2, /lowest index of any step in current vehicle

weicon = 0.,
nengl = 2, /lowest index of any engine in current vehicle
;.... propulsion specification
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npc (9) = 1,
iengmf (1) = 0,
iengmf (2) = 1,
$

p$tblmlt
tvc2m = 4.44822161,
wd2m = .45359702,
ae2m = .092905299,

p$tab
;.... sg2 vacuum thrust
table ='tvc2t', 0.,
$

p$tab
; .... sg2 mass flow rate
; isp = 343 sec
table ='wd2t', 0.,

/rocket thrust
/turn off spl engine
/turn on sp2 engine

/(n/lbf)
/(kg/Im)
/(mA2/fA2)

(If) vs time (s) from ignition
14000.,

(lm/s) vs time (s) from ignition

40.82,

p$tab
;.... sg2 engine exit area (f^2)
table ='ae2t', 0., 53.39,
endphs =1.,
$

p$gendat

title(41:80)
='0 inrt atck angle

title(81:96)
=' on xfr ellipse',

event = 70.,
critr = 'aporad',
value = 3639565.93,
;.... steering specifica
iguid (1) = 3,
; .... propagation spec
dt = 1.,

; .... propulsion specil
npc (9) = 0,
iengmf (1) = 0,
iengmf (2) = 0,
endphs = 1.,

p$gendat

sg2 coast phs t aapsis',

/apoapsis radius (ft) for 250 km orbit
Ltion

/inertial aerodynamic angles
ification

fication
/rocket thrust
/turn off sp 1 engine
/turn off sp2 engine

title(41:80)
='0 inrt atck angle sg2 thrst phs t crclrz',

title(81:96)
=' rndvs orbit ',

event = 80.,
critr = 'truan',
value = 180,
;.... steering specification
iguid (1) = 3, /inertial aerodynamic angles
;.... propagation specification
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dt = 0.5,
;.... mass specification
weicon = 0.,
;.... propulsion specification
npc (9)= 1, /r
iengmf (1) = O, /t
iengmf (2) = 1, /t
endphs = 1.,

p$gendat

ocket thrust
urn off spl engine
urn on sp2 engine

title(41:80)
='0 duration phase to show component masse',

title(81:96)
='s at mro inject ',

event = 90.,
critr = 'aporad',
value = 37249064., /apoapsis radious (m) for 33852 km
tol= 10,
; .... vehicle mass specification
weicon = 0., /reset propellant consumed
; .... propulsion specification
iengmf (2)= 0, /turn off sp2 engine
npc (9) = O0, /no rocket thrust
endphs = 1.,
$

p$gendat

event = 100.,
critr = 'tdurp',
value = 0.,
tol = 1.e-6,
endphs = 1.,
endprb = 1.,
endjob = 1.,
$
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Appendix B: SINDA Input File

HEADER OPTIONS DATA
TITLE MARS ASCENT

MODEL = MAV
OUTPUT = /users/sgeels/thermal/ascent/ascent.out
USER1= /users/sgeels/thermal/ascent/ascent.usr
QMAP = /users/sgeels/thermal/ascent/qmap

C
HEADER CONTROL DATA,GLOBAL
C

UID = SI
NLOOPS = 3000,
SIGMA = 1.0,
TIMEND = 5000.0

C
HEADER CONTROL DATA,RAD
C

DRLXCA =
EBALSA =
EXTLIM =
NLOOPT =
OUTPUT =

0.1,
0.1,
10.0,
50,
50.0

ABSZRO = -273.16
TIMEO = 0.0

ARLXCA = 0.1
EBALNA = 0.1
ITEROT = 2000
DTIMEI = 0.5

C .
C *********************************************************************

HEADER USER DATA,GLOBAL
C
C

FOO = 0., FOO2 = 0., FOO3 = 0.
C *********************************************************************

HEADER ARRAY DATA,RAD
C

10= 0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110.
120., 130., 140., 150., 160., 170., 180., 190., 200., 210.
220., 230., 240., 250.
260., 270., 280., 290., 300., 310., 320., 330., 340., 350.
360., 370.
380., 390., 400., 410., 420., 430., 440., 450., 460., 480.
500., 520.
540., 560., 580., 600., 620., 640., 660., 680., 700., 750.
800., 850.
900., 950., 1000., 8000.

11= 0., 3.15, 31.6, 124., 328., 687., 1248., 2044., 3101.
4420., 5993., 7797., 9754., 11841., 13980., 16093.
15508., 14634.
13830., 13083., 12438., 11840., 11281., 10792., 10345.
9952.
9589., 9247., 8936., 8647., 8387., 8125., 7869.
7600., 7102.
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-52, 20.00, -900. * 14.51
-57, 20.00, -900. * 17.49
-62, 20.00, -900. * 11.33
-67, 20.00, -900. * 7.75
-72, 20.00, -900. * 4.17
-77, 20.00, -900. * 0.79

C*********************************************************************
HEADER SOURCE DATA,RAD
C

TVS 10, A10, All, 0.5840 $ NOSE AERO-HEAT RATE
TVS 15, A10, All, 1.4016
TVS 20, A10, All, 2.1866
TVS 25, A10, All, 2.1307
TVS 30, A10, All, 1.2842

C
GEN 35, 9, 5, 80.0 $ INTERNAL HEAT

10, 583. * 0.46 * .55 $ SUN RADIATION
15, 583. * 1.36 * .55 $ ""
20, 583. * 2.85 * .55 $ ""
25, 583. * 4.16 * .55 $ ""
30, 583. * 0.001 * .55 $ ""

C

HEADER CONDUCTOR DATA,RAD
C

C CONDUCTORS ARE W/K

TVS 1, 5, 10, A17, A18, 0.5840
TVS 2, 5, 15, A17, A18, 1.7520
TVS 3, 5, 20, A17, A18, 3.6443
TVS 4, 5, 25, A17, A18, 5.3267
TVS 5, 5, 30, A17, A18, 6.4210
SIV 6, 10, 15, A14, 0.0912/.4877
SIV 7, 15, 20, A14, 0.1824/.5367
SIV 8, 20, 25, A14, 0.2918/.5855
SIV 9, 25, 30, A14, 0.4013/.5974
SIV 10, 10, 35, A14, 0.5840/.0762
SIV 11, 15, 40, A14, 1.7520/.0762
SIV 12, 20, 45, A14, 3.6443/.0762
SIV 13, 25, 50, A14, 5.3267/.0762
SIV 14, 30, 55, A14, 6.4210/.0762
SIV 15, 35, 40, A14, 0.0912/.4877
SIV 16, 40, 45, A14, 0.1824/.5367
SIV 17, 45, 50, A14, 0.2918/.5855
SIV 18, 50, 55, A14, 0.4013/.5974
SIV 19, 55, 60, A14, 0.4013/.5334
TVS 20, 80, 100, A17, A20, 4.1588
TVS 21, 85, 100, A17, A20, 2.8463
TVS 22, 90, 100, A17, A20, 1.5320
TVS 23, 95, 100, A17, A20, 0.2917
SIV 24, 80, 85, A14, 6.2832*.0381/.3794
SIV 25, 85, 90, A14, 6.2832*.0381/.6191
SIV 26, 90, 95, A14, .13679
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SIV 27, 60, 80, A14, 4.1588/.0762
SIV 28, 65, 85, A14, 2.8463/.0762
SIV 29, 70, 90, A14, 1.532/.0762
SIV 30, 75, 95, A14, .29172/.0762
SIV 31, 60, 65, A14, 6.2832*.0381/.3794
SIV 32, 65, 70, A14, 6.2832*.0381/.6191
SIV 33, 70, 75, A14, .13679
SIV 43, 30, 80, A14, 0.4013/.5334

-44, 10, 5, .20*5.667E-08 * 0.5840
-45, 15, 5, .20*5.667E-08 * 1.7520
-46, 5, 20, .20*5.667E-08 * 3.6443
-47, 5, 25, .20*5.667E-08 * 5.3267
-48, 5, 30, .20*5.667E-08 * 6.421
-49, 80, 100, .20*5.667E-08 * 4.1588
-50, 85, 100, .20*5.667E-08 * 2.8463
-51, 90, 100, .20*5.667E-08 * 1.532
52, 95, 100, .20*5.667E-08 * .29172
54, 35, 37, 204.*.5840/.00254/100.
55, 40, 42, 204.*1.752/.00254/100.
56, 45, 47, 204.*3.644/.00254/100.
57, 50, 52, 204.*5.327/.00254/100.
58, 55, 57, 204.*6.421/.00254/100.
59, 60, 62, 204.*4.159/.00254/100.
60, 65, 67, 204.*2.846/.00254/100.
61, 70, 72, 204.*1.532/.00254/100.
62, 75, 77, 204.*.2917/.00254/100.

HEADER OPERATIONS DATA
BUILD MAVRAD
C
C
C CALL STDSTL
C

CALL QMAP('RAD', 'DAB', 1)
C QPRINT('RAD')
C GOTO 103
C
102 CONTINUE

C
CALL FWDBCK

C
103 CONTINUE

C

HEADER VARIABLES 1, RAD
C
C

CALL D1D1DA(TIMEM, A10, A12, FOO)
T5 = FOO
T100 = FOO

C CALL QMAP('RAD','DAB',1)
C ************* ************ ********** ***
HEADER OUTPUT CALLS,RAD
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C
M CALL TPRINT('RAD')
C

CALL HNQPNT('RAD')
F003--Q37+Q42+Q47+Q52+Q57+Q62+Q67+Q72+Q77
WRITE(6,100) F003

F 100 FORMAT(/,10X,'HEAT REQUIRED =', F12.2)
WRITE(NUSER1,101) TIMEM, F003

F 101 FORMAT(2F12.4)
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Appendix C: Table of Acronyms

AMO Areosynchronous Mars Orbit

CERV Contingency Earth Return Vehicle

CPU Central Processing Unit

EVA Extravehicular Activity

FLOPS Floating Operation Per Second

FOS Factor Of Safety

FPU Floating Processor Unit

GN&C Guidance, Navigation, and Control

IR Infrared

LEM Lunar Excursion Module

LEO Lower Earth Orbit

LH2  Liquid Hydrogen

LMO Lower Mars Orbit

LOX Liquid Oxygen

LSS Life Support System

MAV Mars Ascent Vehicle

MDV Mars Descent Vehicle

MIPS Mega-Instructions Per Second

MLI Multilayer Insulation

MMH Monomethyl Hydrazine

MMSS Manned Mars System Study

MOV Mars Orbiting Vehicle

MRSR Mars Rover/Sample Return

MTV Mars Transfer Vehicle

NASA National Aeronautics and Space Administration
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NTO Nitrogen Tetroxide

OEXP Office of Exploration

OME Orbital Maneuvering Engine

OMS Orbital Maneuvering System

OSHA Occupational Hazard and Safety Administration

POST Program to Optimize Simulated Trajectories

RAM Random Access Memory

RCS Reaction Control System

RP Rocket Propellant

SEU Single Event Upset

SINDA Systems Improved Numerical Differencing Analyzer

STS Space Transportation System

TCS Thermal Control System

TPS Thermal Protection System

196


