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Abstract

Integral Boundary Layer Heat Transfer Prediction

on Turbine Blades

by

William James Steptoe

Submitted to the department of Aeronautics and Astronautics on September 25, 1989

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

An integral method for predicting heat transfer and losses in the boundary layer of a two

dimensional airfoil is developed. Losses and heat transfer are measured by the momentum

thickness and enthalpy thickness respectively. These integral parameters are calculated by the

forward integration of three simultaneous differential equations using closure relations developed

from the Falkner-Skan wedge flows. Local heat transfer measurements are obtained from a new

empirical integral formula developed from finite difference solutions.

Comparison with finite difference solutions is good. Comparison with experiments is as good as

finite difference prediction for the same flows. Further development should lead to integration

into an integral boundary layer airfoil analysis and design tool and hence the ability to analyse

and design non-adiabatic airfoils such as those in an axial flow turbine.

Thesis Supervisor: Dr. Alan Epstein

Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Nomenclature

1.1 Subscripts

()AW: adiabatic wall quantity

()e: edge quantity

()o: stagnation quantity

()p: pressure surface quantity

()REF: reference quantity

()s: suction surface quantity

(),: wall quantity

()oo: freestream quantity

1.2 Definitions

A = area

CD = 1 fr A

C,·d =

Cp = specific heat at constant pressure

D = Diameter, Diffusion Factor

F1- 2 = View Factor from object 1 to object 2

H=-6

H* = B_
-T



H** =

H2= *

Hk =

Hw = TO.

k = coefficient of thermal conductivity

L = streamwise arclength

LMB = Mean Beam Length

Me = Edge Mach Number

p = partial pressure

P = perturbation coefficient

Pr = Prandtl Number

q = local heat transfer

PCUeCpToe

r = temperature recovery factor, -7r in laminar flows

R = Reaction

Re = Reynolds Number

St = Stanton Number, gP TAWT

T = temperature

TAW 2 Ce

TET = turbine entrance temperature

u = local streamwise velocity

U, = freestream velocity

v = radial velocity, normal velocity

V = axial fluid velocity

VO = circumferential blade velocity



a = absorption

p = Falkner-Skan wedge flow parameter

y = ratio of specific heats

60 = deviation angle, the angle between the trailing edge angle of the turbine blade, and the

fluid departure angle in the blade reference frame

6* = f(1 - )dy

s** f= (1 - )dy

82 =- f -u (1 - )dy
pau1 To.

R5 = f(1 - M)dy

6T = thermal boundary layer thickness

SU = velocity boundary layer thickness

AW = work across turbine stage

E = emmittance

= efficiency

r/ = normalized normal boundary layer coordinate -

0 = f • l( _ )dy

Ok = f -(1- )dy

Ai = viscosity

p = local density

=solidity meaxial chord or Stefan-Boltzman constant



4 = nqn-dimensional flow coefficient

= non-dimensional work coefficient

pressure loss coefficient ( total pressure across the bladepressure loss coefficient total - static pressure upstream of blade



Chapter 2

Introduction

A turbine blade design involves a series of tradeoffs. Aerodynamic efficiency, heat transfer,

performance and structural concerns affect the final design. In the turbine, like the rest of the

engine, overall efficiency is the guiding design principle. Historically, the aerodynamic efficiency

of the blades has been the first criteria [17]. Secondly, structural constraints are imposed to

insure that the blade will stand up to the hostile gas turbine environment. High turbine

entry temperature (TET), pressure, and rotational speed combine to make this a very hostile

environment indeed. Yet this environment is getting more hostile due to increasing TET. By

increasing TET specific thrust in a turbofan can be increased [14].

Since cooling is treated almost as an afterthought it is not well represented in the initial

design process. Cooling is accomplished by channelling high pressure air from the compressor

through ducts in the blades and endwalls of the turbine (Fig. 2.1). On the first stages of the

turbine, some of the cooling air is vented through small holes or slots on to the surface of the

blade providing an insulating film to further reduce heat transfer. Since this cooling air is not at

the same temperature as the main flow, less energy can be removed from it in the turbine stage

than had it passed through the combustor [14]. The film cooling also reduces the efficiency of

the turbine by mixing with the boundary layer flow and increasing drag on the blades. These

losses can be termed cooling losses.

It is difficult to predict the heat transfer in a turbine stage due to several factors including

high freestream turbulence, pressure gradients, uncertainty in the blade temperature, and three

dimensional effects. Prediction of the transition point, heat transfer in the transitional flow,

separation bubbles, separated flow and unsteady effects all combine to make heat transfer

prediction something of a black art. In fact, the limit on TET is set by the precision of blade-
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Figure 2.1: Schematic of air-cooled turbine, with cross section of cooled airfoil section at top

[14, pg. 176]

cooling design techniques [14, pg. 197]. All modes of heat transfer must be considered when

the total heat transfer, and therefore total heat to be removed is calculated.

Since the amount of cooling air needed for the design depends on the heat transfer predicted,

uncertainty in the design is involved. Errors in the local heat transfer prediction and hence the

surface temperature prediction can cause additional thermal stresses and shorten blade life. If

the error is large, blade life could be short. In order to meet contractual obligations to blade

life and efficiency several iterations of the build-test-teardown cycle are often necessary. Since

each cycle can cost millions of dollars, it is useful to have a design tool that can accurately

predict heat transfer and aerodynamic losses thereby reducing the number of necessary cycles.

What would happen if heat transfer were considered first, before the demands of aerody-

namic efficiency? If the decrease in aerodynamic efficiency were low compared to the decrease

in heat transfer, the tradeoff might raise the total cycle efficiency. The ISES airfoil design code

written by Drela and Giles [6] uses integral boundary layer techniques and solves the inviscid



Euler equations for two-dimensional transonic cases. It can act as an analysis tool in which case

it takes as input an airfoil shape and performs analysis at the desired conditions. It can also

act as a design tool in which case it takes an airfoil and manipulates it toward achieving the

specified criteria, be that drag, lift, or other parameter. With some modification ISES could be

used to analyse heat transfer, and in the design mode manipulate an airfoil toward a specified

heat transfer. From this, one could see how the tradeoff between aerodynamic efficiency and

heat transfer would work, and reduce the number of build cycles required.

ISES has been shown to work well at designing and analyzing airfoils [6]. However, ISES

boundary layer equations' boundary conditions specify that the wall be adiabatic. Since this

is not the case on turbine airfoils this condition must be modified. By allowing heat transfer,

lift and drag analysis can be done on non-adiabatic airfoils. In addition, to show the total

heat transferred to the blade, a prediction of the local heat transfer based on the boundary

layer must be made. Green [9] proposed a method of boundary layer and hence total heat

transfer prediction based on forward integration of three simultaneous equations as opposed

to the two used in ISES: the momentum-integral equation, the entrainment equation, and the

total-energy equation [9, Eqns. 17, 19, and A-i]. In BLINT, the boundary layer module of

ISES, the kinetic energy shape parameter equation is substituted for the entrainment equation

as one of two equations. The other is the momentum-integral equation. When combined with

the total-energy equation, we again have a three equation system. These equations are the

basis of the aerodynamic performance and heat transfer prediction in this analysis code.

The computational time involved in solving the boundary layer and Euler equations depends

very strongly on the number of variables. An integral non-adiabatic boundary layer code would

have the advantage of having many fewer variables than a finite difference code. Hence, as ISES

stands now an adiabatic integral boundary layer scheme is included, and the non-adiabatic

modification developed in this thesis is also an integral method.



Figure 2.2: Distribution of heat transfer on a cooled turbine blade, showing sudden increase at

boundary-layer transition to turbulent state [14, pg. 178]

Previous work by Nicholson [17] has shown that pressure surface heat transfer reduction

can be achieved without significant reductions in aerodynamic efficiency. This reduction was

achieved by tailoring the boundary layer not only near the laminar leading edge region, but

also in the turbulent and relaminarized regions downstream. However, since the highest local

levels of heat transfer are found near the leading edge of the blade in the laminar region (Fig.

2.2 [14]), the fraction of heat transferred in this region might be a high fraction of the total

heat transfer depending on the length of the blade. Optimization of the leading edge laminar

region, which this analysis code aides in, could lead to significant reductions on the total blade

heat transfer. This code is the first step in modifying ISES to handle all non-adiabatic flows.

This analysis code takes as input an edge velocity distribution, the Reynolds number, ReL,

the Prandtl number, Pr, and the wall to freestream stagnation temperature ratio, H,,. Output

is 0, 6*, and 82, as well as the local integral parameters and heat transfer. From these both

heat transfer and losses due to the boundary layer can be examined.



This thesis will describe and demonstrate a laminar integral heat transfer code that is the

first step in developing a non-adiabatic ISES airfoil design code. The different modes of heat

transfer will be examined to determine their relative contributions to the heat transfer problem.

The trade off between designing for aerodynamic efficiency and designing for low heat transfer

will be examined. Finally, the motivation behind developing an integral boundary layer heat

transfer code, its development and testing against finite difference codes and experiment, and

some recommendations for future work will be discussed.



Chapter 3

Modes of Heat Transfer

This chapter will examine the relative contributions of the three modes of heat transfer

in a turbine environment. Radiation, conduction and convection will each be described and

examined to see where the largest potential for heat transfer improvement lies.

3.1 Radiation

Radiation heat transfer is governed by the familiar Stefan-Boltzman law:

QNET = F1-2aA 1(T 4 - T24) (3.1)

where F is the view factor that depends on the geometry of the situation, A is the area, and

a is the Stefan-Boltzman constant. This formula is only valid for black bodies, that is bodies

which emit according to the formula:

e(T) = aT 4  (3.2)

Since real objects are gray, that is they do not emit according to the above formula but some

fraction thereof, the constant c is added to the formula:

e(T) = c•T 4  (3.3)

where e is the emittance. This is strictly valid only if E is integrated over the entire electromag-

netic spectrum, and in that case eT is called the total emittance. For a gas it is often difficult

to find an equivalent ET since it depends on the pressure, the volume of the radiating gas, and

the composition of the gas.



To find the radiative heat transfer between the products of combustion and a turbine blade

the following approximation is used:

= E~(T,)aT4 - ag(Tw)aT' (3.4)
A 9

[11] where ag(Tw) is the absorptivity of the gas at the wall temperature ( where (), designates a

gas quantity). The geometry of the situation is taken into account through the emittance of the

gas. Hottel and Sarafim [15] have devised a factor called the mean beam length, LMB, which

correlates the geometry and pressure into both the emittance and absorptivity of the gas. This

method is not intended to be 100% accurate, but it does simplify the problem sufficiently to

allow rapid evaluation. A complete discussion of gasious heat transfer can be found in Holman

[11].

The combustion process will yield products that are different from air, and therefore these

are the gasses that should be considered in the turbine blade radiation heat transfer problem.

The combustor yields a mixture of oxygen, nitrogen, water vapor, and carbon dioxide, plus a few

minor others depending on the fuel. The emittance of oxygen and nitrogen are small compared

to the emittance of carbon dioxide and water vapor so they are neglected [11]. The emittance of

carbon dioxide and water vapor depend on the pressure and temperature of the gasses, as well

as the geometry of the turbine. Figure 3.1 shows the ratio of radiative to total heat transfer

in a turbine. The convective heat transfer is calculated by assuming a representative Nusselt

number from Guenette et al. [10] and several representative temperatures. At no point in the

calculations does the ratio of radiative heat transfer to total heat transfer exceed 9%. With

this in mind tackling the radiation heat transfer problem is not warranted since even a 10%

reduction in radiative heat transfer results in less that a 1% total heat transfer reduction. See

Appendix A for further explanation.



9.0

x10- 2

8.0-

7.0-

% Q RAD/Q TOTAL 6.0,

5.0

4.0

3.3

RADIATIVE VS.
TOTAL HEAT TRANSFER

'SPHERES
>SPHERES
'SPHERES
)SPHERES

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 x 103

T, -R

Figure 3.1: Radiative heat transfer/total heat transfer for four pressures as a function of tem-

perature. Wall temperature was 2010* R. Gas was assumed to be products of combustion as

described in Appendix A



3.2 Conduction

Turbine blades are currently made of metallic alloys. As such they have high coefficients

of thermal conductivity, k. The result of this is that heat flows freely through the turbine

blade, tending to equalize the temperature across the blade. However, the temperature is also

driven by the local heat transfer which is decidedly non-uniform (Fig. 2.2). The various cooling

schemes also tend to cool the blade unevenly, driving the blade to non-uniform temperatures.

The net result is to have hot spots along the blade, especially at the leading edge where heat

transfer is particularly high.

The interior arrangement of cooling ducts also influences the external temperature profile.

Heat is conducted more easily through portions of the blade that are thick. Thin regions,

such as the trailing edge, will be highly dependent on the external heat transfer to determine

the blade temperature (Fig. 2.2). Thick regions also are more susceptible to thermal stress

problems, so increasing the thickness to make the temperature distribution more uniform is not

the answer.

3.3 Convection

Convection is the primary heat transfer mode in the turbine environment. Internally, heat

is carried away from the surface by the circulating cooling air. Externally, heat is transferred

to the blade due to the higher temperature combustion products. Convection is a function of

the boundary layer temperature gradient as well as the heat transfer coefficient:

- = -kT (3.5)
A ay

From Newton's law of cooling A = h(T, - TAW)g so the heat transfer coefficient h is:

h = -k( (3.6)
(Tw - TAW)



Thq driving temperature gradient for convective heat transfer in compressible boundary

layers is TAW - Tw. Non-dimensionalizing by the freestream stagnation temperature yields

Tw - .m is named H,. -Tw is defined as:
To. To. To. To,

TAW 2C,TA = T. + 2p
Toe T. + -2C

or

TAW 2 + ( - 1) M23.7)
To e 2 + (7- 1)Me2

For Pr = 1, T = 1. For Pr = 1, -TAw- 1, but if Pr - 1 this ratio is essentially 1. Therefore

the driving temperature gradient is approximately 1 - H,.

The heat transfer coefficient depends on several parameters but primarily on the thickness

and nature of the boundary layer. Thin boundary layers conduct more heat than thick ones,

turbulent boundary layers conduct more heat per unit thickness than do laminar boundary

layers [11]. Convective heat transfer is most simply predicted by the Reynolds analogy (Eqn.

4.3). A new method of heat transfer prediction will be discussed in Section 5.3.

Each of the three modes of heat transfer has been examined. It was shown that although

radiation plays a part in heat transfer it is a small one. The role of convection from the products

of combustion plays the largest role in turbine heat transfer. Although much of a turbine blade's

surface is probably turbulent, the laminar leading edge region is one of the highest regions of

heat transfer due to the the very thin boundary layer. The model developed here will predict

the local external convectional heat transfer for the laminar leading edge region (Fig. 2.2).



Chapter 4

Heat Transfer vs. Aerodynamic Efficiency

Gas turbine blade design has traditionally been concerned primarily with minimizing profile

losses at a given blade loading. In order to examine the relationship between blade profile

losses and heat transfer a method is needed that utilizes similar parameters to describe both

the heat transfer and the blade profile losses. Although the diffusion factor method described in

Ainley and Mathieson [1], Smith [21], Stewart, Whitney and Wong [22], NASA SP-36 [13], and

Kerrebrock [14] is an approximate method, it allows the two factors to be compared without

extensive computation. This simplification allows the problem to be generalized to any airfoil,

and allows the two factors to be directly related. From this analysis heat transfer and profile

loss trends can be examined, and the trade off between the two can be shown in a simple

manner.

Several factors influence the blade drag: blade loading XI = -, is a measure of how much

work can be extracted at a given turbine speed, = is the flow coefficient or non-dimensional

mass flow. These two factors are related by the reaction, R, defined as the change in enthalpy

across the rotor over the enthalpy change across the rotor and stator combined [12]. The

diffusion factor, D, defined variously as

D = 1 - s (4.1)
Vp

in [22] or

D = 1 - K+ |2 - V (4.2)
Vp 2aVp

in [14] (where v2 - v 1 is the change in tangential velocity) is an empirical correlation with the

momentum thickness. w measures the total pressure loss across the rotor and is a good measure

of the 2-D rotor airfoil efficiency [14]. The deviation angle, 60, is the difference between the



trailing edge angle of the blade, and the exit angle of the gas. According to [14], SO• ; this

is why as the solidity decreases, w increases as the flow is not turned completely through the

rotor.

The Reynolds analogy provides a first order method of comparing the local heat transfer

with the diffusion factor through the blade solidity:

St = C- (4.3)
2 Pr

Q is a function of both St and a, D is also a function of a. Therefore the diffusion factor

analysis of [14] can be used to compare the total pressure loss, w, with the integrated total heat

load, Q.

Figures 4.1 from [20] and 4.2 from [16] show two typical turbines at their operating points.

The factor (P, the non-dimensional power output, is constant at all points on the figures. Any

turbine operating at these conditions would have the same amount of power output per unit

mass flow. These figures show lines of constant non-dimensional mass flow c. As the solidity

decreases, the pressure loss coefficient increases until it is impossible to achieve the specified

power output at any flow rate. Low solidity means a high deviation angle, hence low flow

turning. It is easily seen that by deviating from the point of maximum aerodynamic efficiency

to the left yields lower aerodynamic efficiency but also lower total heat transfer. An analysis of

relative cycle costs, e.g. the price for a 1% aerodynamic efficiency increase, could show where

the point of minimum total cycle costs would lie. From these graphs the trade off between

aerodynamic efficiency and heat load can be seen clearly. Figures 4.1 and 4.2 show that the

two turbines are operating at points slightly to the left of their predicted points of maximum

aerodynamic efficiency, as would be predicted in light of the above discussion.

Although first order methods, the Reynolds analogy for predicting heat transfer, and the

Diffusion Factor analysis for predicting aerodynamic efficiency have been combined to show

the trade off between total heat transfer and aerodynamic efficiency. A point of maximum
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aerodynamic efficiency is shown to lie at some particular solidity for a given power output and

mass flow rate. By deviating from this point lower total heat transfer may be attained at

the cost of decreased aerodynamic efficiency. Depending on the relative costs of aerodynamic

efficiency and cooling costs the point of minimum total losses (cooling plus aerodynamic) may

or may not lie at the point of minimum aerodynamic losses. With the proper analysis tool, i.e.

one that can predict both heat transfer and aerodynamic losses, this point of minimum total

losses can be found more easily.



Chapter 5

Analysis Code

White [24] defines three types of computer generated boundary layer solutions: series expan-

sion, finite difference, and approximate techniques. He goes on the further divide approximate

techniques into integral methods, similarity patching, and weighted residual approaches. Series

solutions are laborious, and are not suited for computational use. Finite difference solutions

have the advantages that they are easily implemented on the computer, and are highly accurate,

but have the disadvantage of being typically slower than integral methods. Integral methods

have the advantages of being simple and computationally rapid. Drela and Giles [6] have writ-

ten a design and analysis code (ISES) which uses the integral methods and has been shown to

be highly accurate as well as rapid for two-dimensional adiabatic flows.

In order to handle turbine flows, which is the motivation for modifying ISES, the boundary

layer solution scheme must be modified to handle non-adiabatic flows. Since BLINT is already

structured to interface with ISES, it makes sense to use the format of BLINT with some

modification to solve the non-adiabatic boundary layer equations. BLINT has the advantages

over finite difference codes of being more computationally rapid. In addition, few integral heat

transfer codes have been written.

5.1 Integral Boundary Layer Equations

The equations used in UNI are derived in Appendix B. By integrating across the boundary

layer the resulting boundary layer equations are functions of only the streamwise coordinate

and the integral boundary layer parameters (0, 8*, H etc.). For compressible flow the following



Karmin integral equations and the enthalpy equation result:

80 0 dU2 C
+ e (2 + H - M = Cf (5.1)

ax Ue dx 2
dH* 8 dU 2CD - C (5.2)

0- + (2H** - H*(H - 1)) e 2C - H (5.2)
dz Ue dx 2

C_ 0 dUe dH2
Q - H-2( - (H + 1) )  = 2  (5.3)2 U. dx dx

These three simultaneous differential equations are integrated by marching downstream. The

solution is the three dependent variables 0, 8*, and 82. A Newton-Raphson solver is used

to iteratively solve for the three variable at each streamwise position. The residual for each

equation is found and driven toward zero. Each equation is linearized in essentially the same

way as Chapter 6.10 of [5] except that the edge Mach number and velocities are treated as

constants, since in UNI they are specified.

5.2 Dimensions and Non-dimensionalization

In the equations in this program most variables are naturally non-dimensionalized, that

is they appear in forms like --, -L etc. (see Section 1.2). However, the input velocity vs.

streamwise arclength must be non-dimensionalized. Choosing the simplest values possible, z is

non-dimensionalized by L, the streamwise trailing edge arclength, and U, is non-dimensionalized

by the freestream speed of sound ao = -vRT.

The dimensions on 0, 6*, and 8H are relatively easy to interpret. Each has a significant

meaning: 8* is the displacement thickness, that it is the distance that the inviscid flow is

displaced from the edge of the airfoil. The momentum thickness also has an important meaning.

It is the thickness of a stream of fluid with the edge velocity Ue, and edge density Pe that contains

an amount of momentum equal to the momentum deficit in the boundary layer. The enthalpy

thickness is similar to the momentum thickness. It is the thickness of a stream of fluid with

the edge velocity Ue, edge density Pc, and edge stagnation temperature Toe that contains an



amount of enthalpy equal to the enthalpy deficit in the boundary layer. This is significant in

that this is the amount of enthalpy absorbed by the blade.

The other thicknesses, 0*, and 8**, the kinetic energy thickness and the density thickness

are similarly the fluid stream thicknesses containing the same kinetic energy and mass as the

kinetic energy and mass deficits in the boundary layer.

5.3 Unified Heat Transfer and Loss Prediction Code (UNI)

The code takes as input the edge flow velocity vs. streamwise distance, the Reynolds number

ReL, and the wall to freestream stagnation temperature ratio, H,. To identify the particular

gas involved and the dimensioned temperature of the flow the Prandtl number, Pr, at the flow

conditions, a temperature correlation constant based on Pr, and the ratio of specific heats (y)

are also needed.

In order to close equations 5.1 through 5.3 five functional relations are needed in terms of

the dependent variables and parameters:

H* = H*(Hk,Me,Ree) (5.4)

H** = H**(Hk,Me) (5.5)

Cf = Ci(Hk, Me,Ree) (5.6)

CD = CD(Hk,Me,Ree) (5.7)

Q = Q(HkMe, Re,, HR ,H2) (5.8)

M,2 is obtained from the edge flow velocity at each streamwise coordinate [4]; Ree is a function

of the solution variable 0. Hk, the kinematic shape parameter, relates the given flow to an

equivalent incompressible flow through M,2, H2 and Hw. Equations 5.4 through 5.7 are given

in BLINT [5]. Two of the five, H* and H**, have no temperature dependence independent of

Hk, therefore they can be used without modification from BLINT. CD and Cf are dependent



on the local values of the viscosity, which is dependent on the local temperature and cannot be

modelled effectively by Hk alone. C1 is corrected using the temperature-viscosity relation of

Rayleigh [24].

-=( T " (5.9)
/LREF TREF

for air n=0.666 [24].

Since CD depends on the integrated values of the viscosity the Rayleigh equation is not the

proper correction. A correction to CD based on Drela's finite difference code BLAKE [4] is

included in UNI. The quantity ro", was integrated over the boundary layer at three H,. This

quantity and hence CD was found to vary approximately as 0.2(1 - H,) 2 over the range of H,

tested (0.6 < Hw, 1.0).

Q, the local heat transfer, is predicted using an integral shape parameter relationship. This

relationship was not needed for the adiabatic conditions of BLINT and was obtained empirically

by observing solutions from BLAKE. The quantities Hk*Cf*(1-H,) and St*H2 were found for

all the test cases and all the test profiles describes in Chapter 6. The resulting linear relationship

for all points is shown in Figure 5.1. This relationship varies little with ReL or freestream

pressure gradient. It is definitely a function of Pr. As H, approaches 1 (adiabatic conditions)

the relationship is less accurate since the factor (1-H,) approaches 0. This method of heat

transfer prediction yields better results than the Reynolds analogy since that relationship was

developed for flat plate flow and Pr = 1. Even when corrected for pressure gradient (Fig. 5.2

[24, pg. 286]) the new relationship gives better agreement with the finite difference code results.

Reynolds analogy corrected for pressure gradient is:

St Cý (5.10)

2Pr s

This new relationship is interesting in its simplicity. Deviation from the linear results is greatest

at the points of high acceleration (Fig. 5.1, near the origin). No ReL dependence at all was
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Figure 5.1: Integral correlation to determine the local heat transfer coefficient, derived from

BLAKE results. Y-axis is a measure of surface friction and the driving temperature gradient,

X-axis is a measure of heat transfer coefficient
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H - 0.290M2
Hk -- .11M (5.11)1 + 0.113Me2

of temperature a more complicated relationship has been developed.

:m the external flow, and H,, is given, H and H2 are functions of

rk. H and H2 depend on the velocity and temperature boundary

bo correlate Hk to H and H2, it is necessary to define the boundary

YFk. The boundary layer velocity profile has the following boundary
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s task of defining the polynomial coefficients in terms of Hk.

ions are fixed, the shape of the boundary layer velocity profile

umed across the boundary layer as well T-_= T (r(I). The

TO.( TO

To
To--"(0) -= Hwo (5.12)



O(1) = 1 (5.13)
Toe

The baseline temperature profile shape is that for a flat plate at the given H, [24]. This shape

is varied by a perturbation function Ptr(l - tr) where P is the perturbation coefficient.

Since the stagnation temperature ratio is specified yet the density gradient depends on the

static temperature ratio, the static temperature ratio is a derived quantity. This requires that

the temperature and velocity gradients in the boundary layer be coupled. We know that for

flows where Pr#1 the thicknesses ST and Su are not identical. For laminar flow an empirical

relationship has been developed to relate 8• and Sv:

h= PrO.42  (5.14)

[24]

The solution process is iterative using a Newton-Raphson solver starting at an estimated H

and H2, guessing Hk and P, substituting the resulting velocity and temperature distributions

into the definitions of Hk and H2, then correcting Hk based on the resulting H, and correcting

P based on the resulting value of H2. The resulting Hk is used to define the quantities in

Equations 5.4 through 5.8. These are substituted into the residuals of Eqs. 5.1 through 5.3. If

the residuals are larger than the prescribed maxima, a correction is calculated for 6*, 0, and 62,

and the process repeats.

The result is an integral, non-adiabatic boundary layer solution scheme similar in form to

Drela's BLINT code. This scheme can be implemented to determine the heat transfer and

profile losses for a non-adiabatic laminar airfoil. It is the first step in modifying the ISES airfoil

design and analysis code to handle turbine airfoils.



Chapter 6

Test Cases

6.1 Development

During the development process the unified heat transfer and loss prediction code was

checked against Drela's finite difference code BLAKE [4]. Several freestream velocity profiles

were developed as test profiles; these were implemented at different Me, Pr, H', and ReL,

where ReL is in terms of the streamwise arclength. The development test profiles were: flat

plate (constant velocity), a Falkner-Skan wedge flow with fl = 0.5 (parabolic velocity profile),

and a simulated airfoil profile with flow from a stagnation point over a circular cylinder to

the maximum velocity (2Uo) followed by a flat plate region, then decreasing velocity until

separation (sinusoidal velocity increase followed by constant velocity, then a velocity decrease)

(Figs. 6.1, 6.2, and 6.3). Ue is given in terms of the leading edge speed of sound.

Since the code is intended to be used for turbine blade analysis the test conditions were

designed to simulate typical turbine leading edge flows. The development test parameter space

was:

0.0 < Me < 1.0

0.7 < Pr < 1.0

1.0x105 < ReL < 1.Ox 107

0.6 < Hw < 1.0

Tests were conducted by prescribing Pr, H,, and ReL for the flow, and allowing M, to

be calculated from the specified velocity. Identical conditions were specified for both UNI and

BLAKE, so the solutions were directly comparable. (Table 6.1).
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Figure 6.2: Parabolic profiles
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SIMULATED AIRFOIL
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Figure 6.3: Simulated airfoil profiles
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CASE 3, H
BLAKE VS. UNI

4.11

3.5.

2.9

H 2.3

1.7

1.1

0.5

0 UNI,06
-- BLAKE,06
A UNI,08
-BLAKE,08
x UNI,98

-BLAKE,09

10
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Figure 6.4: Case 3, H vs. z. For all cases 3 and 4, the individual points are UNI results, the

solid lines indicate the BLAKE solution at the same H,

Implementing UNI and BLAKE yields several output variables. Since the loss and heat

transfer measurements are of greatest interest, these were the results that were directly com-

pared. Loss calculations were compared through the shape parameter H, heat transfer calcu-

lations through the enthalpy thickness shape parameter H2. In addition, local values of C1

and Stanton number were compared. Since the integral parameters scale with the Reynolds

number, the shape factors H and H2 are identical for the range of Reynolds numbers tested.

Figures 6.4 through 6.16 show a comparison between finite difference results from BLAKE

and integral results from UNI. The plots are for Re = 5.0x 106. In case 3, Pr = 0.7, and case

4, Pr = 1.0. Both are for the high Mach number simulated airfoil flow (see Figure 6.3). The

simulated airfoil case was chosen to represent the developmental cases because of its full sweep

of shape parameter values, from stagnation point to separation.
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CASE 3, St
BLAKE VS. UNI
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Figure 6.6: Case 3, Stanton Number vs. x, Leading Edge
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CASE 3, St
BLAKE VS. UNI
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Figure 6.7: Case 3, Stanton Number vs. x, Downstream of leading edge
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CASE 3, St
BLAKE VS. UNI
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Figure 6.8: Case 3, Stanton Number vs. x, H, = 0.98. At the point in the flow where

TAm - H,- = 0.0, (for this case Me = 0.8325) the denominator of the Stanton number goes to

zero. Since the driving temperature gradient goes from positive to negative, the heat transfer,

Q, changes sign at this point.
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CASE 3, Cf
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Figure 6.9: Case 3, C1 vs. x, Leading Edge
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CASE 3, CI
BLAKE VS. UNI

16

38
I)8

Figure 6.10: Case 3, C1 vs. x, Downstream of leading edge
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CASE 4, H
BLAKE VS. UNI
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Figure 6.11: Case 4, H vs. x
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CASE 4, St
BLAKE VS. UNI
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Figure 6.13: Case 4, Stanton Number vs. x, Leading Edge
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Figure 6.14: Case 4, Stanton Number vs. x, Downstream
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CASE 4, C1
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CASE 4, Cf
BLAKE VS. UNI

Figure 6.16: Case 4, Cf vs. x, Downstream
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St WITH
EXTRA LEADING EDGE POINTS
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Figure 6.17: Effect of decreased space between leading edge points on the UNI solutions. The

numbers indicate the streamwise position of the first analysis point. The results show that the

UNI solutions are independent of the leading edge spacing. BLAKE is also independent of the

leading edge spacing; a BLAKE solution is included for comparison

The leading edge difference is < 10% for all cases and quickly goes to < 1% as the solution

moves downstream. At the leading edge stagnation point both St and Cf are undefined since

they are normalized by the edge velocity, which is zero. The integral parameters at the leading

edge are calculated by assuming similarity between the first two points. Furthermore, the

first two points are assumed to be related by the Falkner-Skan wedge flow parameter P. 8 is

calculated from the velocity distribution at the leading edge.
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6.2 ,Comparison with experiment

UNI has been compared with two heat transfer experiments: ([17] and [71).

6.2.1 Giedt [7]

The Giedt experiments involved airflow over circular cylinders. The Reynolds number was

ReD = 219000. The temperature ratio was not given. The Mach number was also not given

but it is assumed to be incompressible flow and hence low Mach number. The external flow

was calculated from potential flow for a cylinder in cross flow. The given Nusselt numbers were

converted to Stanton numbers, normalizing with respect to the edge velocity. Figure 6.2.1 shows

a comparison between UNI predictions for the heat transfer and the measured heat transfer

over the cylinders. The UNI Mach number used was Me = 0.1. H, = 0.8 was selected, although

H, = 0.6, and 0.98 were similar.

Agreement between UNI and the Giedt measurements is good. The Giedt profile is the

same as the first part of the simulated airfoil velocity profile used in the development test cases.

6.2.2 Nicholson [17]

The Nicholson experiments involved airflow over a set of typical commercial aircraft turbine

blades. The data sets were taken at the Oxford cascade tunnel. The flow conditions were

To = 430K and T, = 290K, and Re = 1.113x10 6. The blades are shown in Figures 6.19

and 6.21. Since UNI requires not the blade shape but the external flow, ISES [6] was used to

generate the external flows for the Nicholson blades. The heat transfer data in [17] is given

in terms of q,. In order to compare the data directly with UNI output it was converted to

Stanton numbers: the wall to freestream temperature difference is known, and the factor p,U,

can be found from the known stagnation values and the Mach number distribution given in

[17], assuming that the flow is isentropic. Heat transfer predictions of UNI vs. measured

!
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Figure 6.18: Giedt heat transfer measurements vs. UNI predictions, ReD = 219000, HW = 0.6,
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Figure 6.19: The Nicholson High Stagger Blade

quantities of [17] are shown in Figures 6.20 and 6.22. Agreement between the UNI values and

those measured by Nicholson et al. is surprisingly good for the high stagger blade. The values

measured are for 4% freestream turbulence. No provision is made in UNI to correct for the

effects of freestream turbulence.

The Nicholson low stagger blade data was obtained from an internal Rolls Royce report [3]

as well as Nicholson [17]. Like the high stagger case above the edge flow was calculated using

the ISES code. The blade shape is shown in Figure 6.21. The heat transfer data from [31 was

given in terms of Nusselt number. Since

Nuz
St = PrRej Pr (6.1)

the Stanton number can be found from the other flow properties. Heat transfer predictions of

UNI vs. measured quantities of the low stagger blade are shown in Figure 6.22.
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Figure 6.20: Predicted vs. measured Stanton Number for the Nicholson High Stagger Blade
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Figure 6.21: The Nicholson Low Stagger Blade
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NICHOLSON LOW STAGGER AIRFOIL
UNI VS. UNSFLO
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Figure 6.23: UNI Prediction vs. UNSFLO prediction for the Nicholson low stagger blade, with

the stagnation point removed to show the small scale heat transfer

Agreement between UNI and the measured values of the low stagger blade are not as close

as those for the high stagger blade. UNI predicts a narrow, shallow peak at St = 0.02; the

measured values are closer to St = 0.08 with an exceptionally wide base.

Figure 6.23 shows the UNI predicted Stanton number vs. the Stanton number prediction of

Giles' UNSFLO Navier-Stokes code [8]. UNI agrees more closely with the UNSFLO prediction

than the measured data from the low stagger airfoil, especially away from the stagnation point.

^ ^^



Chapter 7

Discussion and Conclusions

7.1 Discussion

Green [9] states that integral heat transfer methods are not numerous. This is probably due

to the difficulty in predicting the local heat transfer coefficient, and the difficulty in estimating

the shape of the temperature profile across the boundary layer. In UNI, the temperature and

velocity profiles are coupled together by forcing the velocity profile to conform to Hk, and

forcing the total temperature profile (which is a function of both the temperature and velocity

profiles) to conform to H2. For Pr = 1 no other relation is needed, but for Pr#1 some relation

between bu and 6T is needed. Since the forcing process is iterative, these conditions on u and

To can be met at each estimate of Hk and H2, then checked against the residuals of the three

basic equations (Eqs. 5.1, 5.2, and 5.3).

The results of the development tests show that UNI agrees well with the finite difference

code BLAKE. This is not all that unexpected since two important factors: the integral wall heat

transfer scheme, and the CD correction for non-uniform viscosity were obtained from BLAKE

results. Since UNI is to be part of a design code, it is important that it accurately predict trends

in heat transfer and aerodynamic efficiency. In this way, different designs can be compared as

to their aerodynamic and heat transfer preformance. UNI has shown that it accurately predicts

heat transfer and aerodynamic loss performance trends. It is also important that it give good

absolute local heat transfer and aerodynamic loss predictions. UNI's developmental cases show

that it can predict local values to better than 10% accuracy as compared with finite difference

codes. However, since UNI is an integral method, it is well suited to be integrated into the

ISES airfoil design and analysis code.
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Figure 7.1: Comparison of BLAKE and UNI Predictions for the Nicholson High Stagger Blade

Agreement with experiment is not as good as with theory. This seems to be a common

problem in turbine analysis, but that does not excuse further efforts. Agreement with Giedt

and the Nicholson high stagger case is good; agreement with the low stagger data is not as

good. Prediction of St and C1 at the leading edge are not good, but if the subsequent analysis

points are closely spaced near the leading edge, greater accuracy is possible. A comparison

between BLAKE and UNI for the Nicholson flows shows that the two codes agree quite closely

(Figures. 7.1 and 7.2).

For a typical development case (Flow 6, Hw = 0.6) UNI is -40% faster than BLAKE yet

gives comparible results for the integral parameters, heat transfer, skin friction, all of course

for the laminar case. For ISES and UNSFLO, accuracy is highly dependent on the number of

grid points, and so is the time needed to converge. For the viscous portion of the Nicholson low
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Figure 7.2: Comparison of BLAKE and UNI Predictions for the Nicholson Low Stagger Blade

stagger case ISES converged to the same rms remainder ,15 times faster than did UNSFLO

for the same number of grid points. This is not to say that their accuracies are identical. When

the non-adiabatic boundary layer scheme is incorporated into ISES, convergence will probably

be slower since Hk is no longer an algebraic relationship with M2 and H. Hk is now found

iteratively through H, M,, H2, and the perturbation coefficient, P.

The most obvious shortcoming of this program is its inability to deal with turbulent flow.

In [5] Drela states that for turbulent flow, the primary scaling factor for the wall layer is the

skin friction. In Chapter 3 of [9] Green discussed a method for determining the skin friction

with non-adiabatic flow. It is suggested that this method, in conjuction with the enthalpy

thickness analysis also suggested by Green and developed here would be a good starting point

for an integral non-adiabatic turbulent flow analysis. Because of the difficulty of correlating

the temperature effects with the dissipation and skin friction the extension of this method to



turbulent flow will probably be difficult. The shape of the turbulent boundary layer would not

be well represented by a third order polynomial. Some way of modelling the layers of turbulent

temperature and velocity boundary layers would have to be devised in order to accurately

predict Hk. For turbine applications the turbulent extension of this code would definitely be

necessary for any practical use.

This code probably could be refined to give greater accuracy at all points in the flow with

better correlations. As was noted for the dissipation coefficient, a correlation to the wall tem-

perature was needed to account for temperature and hence viscosity gradients in the boundary

layer. This correlation, the integral heat transfer prediction correlation, and most importantly

the Hk estimation scheme could be improved to better account for interaction between such

factors as the Prandtl number, the freestream pressure gradient, and the wall temperature. A

correction for freestream turbulence could also be used.

7.2 Conclusions

Although traditionally turbine airfoil design has tried to optimize aerodynamic efficiency,

the potential exists to increase total cycle efficiency by considering heat transfer performance

at the design stage. The ISES airfoil design and analysis tool is an adiabatic code that has

the potential to design turbine airfoils if modified to allow non-adiabatic boundary conditions.

With such a tool turbine airfoils could be designed to tradeoff aerodynamic efficiency and heat

transfer performance to reach the highest level of total cycle efficiency.

Radiation heat transfer was found to have a minor role in heat transfer to a turbine blade

compared to convection heat transfer. Since the percentage of heat transferred by radiation is

110%, reductions in radiative heat transfer do not have as much potential for reducing the total

heat transfer as do reductions in the convectional heat transfer.

Using a diffusion factor model it was shown that a point of minimum aerodynamic losses



exists, and that by sacrificing some amount of aerodynamic efficiency lower heat transfer can

be achieved. In a total cycle analysis the point of highest total efficiency might not be at the

point of highest aerodynamic efficiency, and if so designing for low heat load would increase the

total cycle efficiency.

The non-adiabatic integral boundary layer model was chosen over finite difference codes in

view of the number of variables to be solved. Since the computational time and effort required

is strongly dependent on the number of points involved, an integral method has an advantage.

And, as shown in Chapter 6, the accuracy of the two methods is comparable.

A new integral correlation for heat transfer has been developed from the finite difference

code BLAKE [4] solutions to the developmental test case flows. It is surprisingly simple and

highly accurate for Reynolds numbers between 1. x 105 and 1. x 107 , Prandtl numbers between

0.7 and 1.0, and pressure gradients measured by the Falkner-Skan parameter between P = 0

and 8 = 1. Since these flow conditions are typical of turbine blade leading edge values this

method should be useful for leading edge heat transfer prediction.
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Appendix A

Gasseous Radiant Heat Transfer

The mean beam length analysis for gasseous radiant heat transfer is one way of looking at a

complex problem. It is semi-empirical in that it applies empirical corrections to the theoretical

gas heat transfer equation (Eq. 3.4). The empiricism comes in through the calculation of e~

and cac of the gas.

The mean beam length is a non-physical length that takes into account the geometry of the

situation. A general rule of thumb for its calculation is LMB = 3 .6 VOLUME For several specific

geometries less general formulae are given in [11]. For the turbine application the geometry

was modeled as the radiation of a volume of gas in a cylinder to the surface. The diameter was

modeled as the blade pitch, for this case - 1.3 inches. Holman suggests LMB = 0.95D, and in

this case LMB = 0.105 feet was used.

Calculations were made at 5000F intervals (30000-5000 0F) and at 10 atmosphere pressure

intervals (10-40 atm.) The combustion chemistry was modeled as follows. Assume a hydrocar-

bon fuel (methane) and the following reaction:

CH4 + 202 -+ 2H 20 + CO2  (A.1)

If we have a 0.03 fuel to air mass ratio [14] the chemsitry would look something like this. Since

air is approximately 302 + 7N 2 the actual reaction would be:

602 + 14N 2 + CH4 -+ 2H20 + CO2 + 14N 2 + 402 (A.2)

It is assumed that the oxygen and nitrogen do not radiate since their emittances are small

compared to carbon dioxide and water vapor [11]. The partial pressures for both C02 and

H20 are needed; an intermediate step is to calculate the product Pco2 LMB and PH2OLMB.



These are compared to Figures 8-34 and 8-35 in [11] to find the emissivity cco2 and eH2o.

Correction factors Cco, and CH2 o are applied to correct for the given total pressure, and a

final correction Ae is calculated since both CO 2 and H20 are present. The final formula for E

is:

EG = CC0 Eco 2 + CH20CHýO - AE (A.3)

ac is calculated in a similar fashion [11, pgs. 419-420].

The convectional heat transfer is calculated by assuming a representative Nusselt number

from [10]. The same temperatures were used as above, but no correction for the different

pressure ratios was attempted.

Despite the T4 behavior of radiational heat transfer this analysis does not show the expected

sharp increase in the ratio of radiational heat transfer to total heat transfer as the TET increases

to the stoichiometric limit. This analysis should not be taken as the final word on the subject

since several values in the analysis were approximate at best. No allowance was made for

particulates in the flow, nor the role that chemistry would undoubtedly have in such high

temperature flows. Still, not even a strong trend toward a great role for radiational heat

transfer was found.



Appendix B

Derivation of Fundamental equations

We start from three basic equations:

Continuity:

+ +a(pu) + (pv) = 0oTX ax
Streamwise Momentum:

3u 8v
puT + pv

dU, 8r
= PeU + -

dz By

and from [9, Appendix A] the enthalpy equation:

d (PeUeH2)dz CpToe

where x is the streamwise coordinate and y is the normal coordinate.

Summing u(B.1) + (B.2) and integrating over the boundary layer we have

au+ pu- =u, * dUe=0 (PeXe+ 0)dy
dy

(B.4)

Noting that:

d(
2 )ax

-(puv)

f/a(puv)dy0 a Yy

apu' + 2pu
ax + x

= u (pv) + pau

= PeUeve

and from continuity:

Peve = Ye (pv)dy = - f. +(pu)dy

(B.1)

(B.2)

(B.3)

oe (U pu a
+ U-pV

av+
+ PvT)dy

(B.5)

(B.6)

(B.7)

(B.8)



and from the definition of r,:

I dy = -rwo By
we have:

f (pu2) - pUe We

a a
(-pu(Ue - u)) = U •C (p

a- Ue(pU))dy = -r,

a dU) -a (pu2) + PeUey-

Combining terms and introducing C1

a f o(pu(Ue - u))dy09X 0
Divide by peU, and introduce the definitions of 0 and 6* yields

1 8 1 dUe, C(p.U2 0) + * = Cý
peUC x Ue dx 2

expanding and rewriting yields

0 20 dUe 0 ape 1 dUe+ + + 6*x Ue dx pdx Ue dz
From thermodynamic relations [23] we know

1 ap_ M2 dUe
Pe ax Ue dx

and introducing the definition of H we have

90 0 dUe M)

a + -i dU( 2 H-M = C
ax U, dz 2

(B.9)

Note that

(B.10)

(B.11)

dU Y CfPU2+ " (PeUe - pu)dy = -Pe•dx o 2 (B.12)

(B.13)L

Cf
2

(B.14)

(B.15)

(B.16)



which ip the first of the three integrated equations. To get the second of the three integrated

equations we start from (u2 - U2)(B.1)+2u(B.2)

This can be grouped as

(u2 (pu) + 2pu d dU, a av
-Ua (pu) - 2PeUeyu ) + ((u2 - U ) -(pv) + 2puv--)

9xu d2 2 aa
- 2u 0= 0

(B.17)

Note that

(98 2 _ 2 )) dU2 a U2 u
(pu(u2 )) + 2Ue (P - Pe) = u2 -(pu) + 2pu -aZ G/ ~ed za

a dU-
- U2 (pu) - 2pdeUWe

ax dx

also

(Uy - U2 )) = (u2 - U2 ) (pv) + 2paut
9y uy vay

Substituting into eq. (B.17) yields

SdU( a = r
(pu("2 - U2 )) + 2uUe (p - pe) + ((U2 - U2 )pv) = 2uax(UU , dx ay U, a

Regrouping to form the integrands of 0* and 6** and integrating over the boundary layer yields

a d
(-PeUeSO*) - 2PeUe 8**ax dx: +((u 2 - U)pv) jI'= 2(ur I - Ye(r )dy)

0 0 -)d ay

The evaluated quantities go to zero since they are zero at the wall and at the boundary layer

edge. Noting this and bringing in the definition of CD yields

a(peU,3*) + 2peU 2 W ** = 2peU6CD
SC * dUCD (B.22)

(B.18)

(B.19)

(B.20)

(B.21)



Dividing by peUeI, expanding the derivative and introducing eqn. (B.15) yields

(3 - Me) Wd---7x
ao* 6** dUe+- + 2-- = 2Cax . Ue dz

(B.23)

Take eqn. (B.16), multiply by H*, add ."d, to both sides and regroup to yield

= H*(2 2
dO

dxz
O* dUx
ve dx

(B.24)

Substitute into eqn. (B.23). Note that

dH*
0-
dx

ao* 0ao
ax az

(B.25)

Regroup and rewrite to form

dH* 0 dU= 2CD
d0 + (2H** - H*(H - 1)) 0 = 2CD
dx U, dx

- H* C
2

(B.26)

which is the second of the three equations. To get the third equation we start with the enthalpy

equation, expand the derivative and assume that the recovery factor is constant in x [24]. This

yields

dH 2  dO OH2 dp HUe + qw
x + H - -+ +

dx dx Pe dz Ue dz peUeCpToe

Introducing eqs. (B.15) and (B.16) and regrouping yields

dH HCf H d Ue0 = Q - H2( - (H + 1) dU
dxh 2 U, dx

which is the third equation.

(B.27)

(B.28)

(3 - M * dUeSU dx


