
THE INTEGRATION OF AUTOMATIC SPEECH RECOGNITION

INTO THE AIR TRAFFIC CONTROL SYSTEM

by

JOAKIM KARLSSON

B.S.E., Mechanical and Aerospace Engineering
Princeton University, Princeton, N.J.

(1988)

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of

The Requirements for the Degree of
Master of Science in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology

January 1990

© Massachusetts Institute of Technology 1990

Signature of Author

Certified by

Department of Aeronautics and Astronautics
January, 1990

Prof. Robert W. Simpson
_j Thesis Supervisor

Accepted by
Prof. Harold Y. Wachman

Chairman, Department Graduate Committee

MASSAfHUSETTS INSTITUTE
OF TECHNOj OGY

FEB 2 6 1990

THE INTEGRATION OF AUTOMATIC SPEECH RECOGNITION

INTO THE AIR TRAFFIC CONTROL SYSTEM

by

JOAKIM KARLSSON

Submitted to the Department of Aeronautics and Astronautics
on January 17, 1989 in partial fulfillment of

the requirements for the Degree of Master of Science in
Aeronautics and Astronautics

ABSTRACT

Today, the Air Traffic Control (ATC) system relies primarily on verbal communication
between the air traffic controllers and the pilots of the aircraft in the controlled airspace.
Although a computer system exists that processes primary radar, secondary radar, and flight
plan information, the information contained within the verbal communications is not retained.
The introduction of Automatic Speech Recognition (ASR) technology would allow this
information to be captured for processing.

The research presented in this paper examines the feasibility of using ASR technology
in the Air Traffic Control environment. The current status of the technology is assessed.
Problems that are unique to ATC applications of voice input are identified. Since ASR
technology is inherently a part of the man-machine interface between the user and the system,
emphasis is placed on the relevant human factors issues. A man-machine model is presented
which demonstrates the use of mixed input modalities, automatic error detection and correction
techniques, and the optimal use of feedback to the controller.

Much of the potential benefit of introducing ASR technology into the Air Traffic
Control system is a result of the highly constrained language used by air traffic controllers.
Consequently, the information content of the ATC language must be determined, and methods
must be designed to process the various levels of knowledge inherently available in ATC
communications. The man-machine model adopted in this paper demonstrates techniques to
utilize syntactic, semantic, and pragmatic information to improve overall recognition accuracy.
An intelligent, adaptive voice input parser is presented.

Thesis Supervisor: Dr. Robert W. Simpson

Title: Professor of Aeronautics and Astronautics

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Robert W. Simpson, my
thesis advisor, as well as to all staff and student members of the Flight Transportation
Laboratory.

Many thanks to Professor David L. Akin for kindly supplying me with the necessary
computing equipment required to finish this work on time.

The research presented within this paper was sponsored by the FAA/NASA Joint
University Program for Air Transportation Research. I would like to thank the individuals
associated with this program, not only for their support, but also for an invaluable educational
experience.

Most of all, I would like to thank my wife Karen without whom none of this would
have been possible.

CONTENTS

1 Introduction 8
1.1 Motivation 8
1.2 Application Areas 11
1.3 The Future of Air Traffic Control 12
1.4 History 13
1.5 Outline 16

2 Automatic Speech Recognition 18
2.1 The Technology 18

2.1.1 Feature Extraction 18
2.1.2 Pattern Matching 20
2.1.3 Decision Rules 21

2.2 Characteristics of Speech Recognizers 21
2.2.1 Speaker Dependent vs. Speaker Independent Recognition 22
2.2.2 Isolated, Connected, or Continuous Speech Recognition 23
2.2.3 Vocabulary Size 23
2.2.4 Baseline Recognition Accuracy 24
2.2.5 Design of the Training Procedures 24
2.2.6 Accessibility to the Recognition Software 25
2.2.7 Noise Robustness 25
2.2.8 Sensitivity to Variations in Speech 25
2.2.9 Recognition Delay 26
2.2.10 Speech Playback and Speech Synthesis 27
2.2.11 Microphone Issues 28

2.3 Sources of Knowledge in Speech 28
2.3.1 Syntactic Analysis 29
2.3.2 Semantic Analysis 29
2.3.3 Pragmatic Analysis 30

2.4 Recognition Errors 30
2.5 Current State of ASR Technology 31

3 The ATC Environment 33
3.1 The Physical Environment 33

3.1.1 The Tower Environment 33
3.1.2 The TRACON Environment 34
3.1.1 The ARTCC Environment 35

3.2 Cognitive Workload 36
3.3 The ATC Language 38

3.3.1 The ATC Vocabulary and Syntax 38
3.3.2 Information Content of the ATC Language 40
3.3.3 The Syntax Deviation Problem 42

4 The Human Factors Perspective 45
4.1 The Significance of Human Factors 45
4.2 Modeling Human Factors 45
4.3 Identifying Human Factors Issues 46

4.3.1 Common Issues 47
4.3.2 Unique Issues 48
4.3.3 Non-Issues 49

4.4 Applying Human Factors Expertise -- 50
4.4.1 Dialog Design 50
4.4.2 Design of Training Procedures 51
4.4.3 Background Noise 52
4.4.4 Task Analysis 52
4.4.5 Automatic Error Detection and Correction 53

5 ASR Equipment Evaluation 55
5.1 Results from Previous Research 55
5.2 The Hardware Selection Process 55
5.3 The Evaluation Process 56
5.4 Characteristics of the ASR Systems 57

5.4.1 The Votan VPC 2000 58
5.4.2 The Verbex Series 5000 Voice Development System 59

5.5 Evaluation Results 61
5.6 Simulation of the ATC Environment 63

6 A Man-Machine Interface Model 66
6.1 Motivation 66
6.2 ATCVIP - The Air Traffic Control Voice Input Parser 67

6.2.1 The ATCVIP Display 69
6.2.2 The ATCVIP Process 71
6.2.3 ATCVIP Evaluation Results 76

7 Conclusion 78
7.1 Feasibility Assessment 78
7.2 The ATC Environment 79
7.3 Human Factors Issues 80
7.4 ASR Equipment Evaluation 81
7.5 The Air Traffic Control Voice Input Parser 82
7.6 Recommendations for Future Work 83

7.6.1 Operational Testing of ASR Equipment 83
7.6.2 Introduction of Adaptive Training 84
7.6.3 Improving ATCVIP 85
7.6.4 The Callsign Recognition Problem 85
7.6.5 Evaluation of Case Frame Representations 86
7.6.6 Scoring Alternate Hypotheses 86
7.6.7 Evaluating Technology Advancements 87
7.6.8 Additional Applications in the ATC System 87
7.6.9 Continued Human Factors Research 87

Bibliography 89

Appendix A: The TRACON/ATCVIP Syntax 95

Appendix B: The ATCVIP Source Code 99

LIST OF FIGURES

2.1 The Speech Recognition Process 18

3.1 The Altitude Assignment Syntax 39
3.2 The Altitude Assignment Syntax in Formal Notation 39
3.3 The Heading and Airspeed Assignment Syntax 40
3.4 The Receiver Station 42
3.5 A Case Frame Representation of the Heading Assignment Command 44

4.1 The SHEL Model 46

6.1 ATCVIP Flowchart 68
6.2 The ATCVIP Display 70

LIST OF TABLES

2.1 Speaker Dependent vs. Speaker Independent Recognition 22

3.1 Results from the Shannon Game Applied to the ATC Language 41
3.2 Examples of Syntax Deviations 43

5.1 Sample Phrases Used for Evaluating ASR Hardware 57
5.2 ASR Hardware Evaluation Results 63
5.3 The TRACON Command Set 65

6.1 ATCVIP Evaluation Results 76
6.2 ATCVIP Error Correction History. 77

CHAPTER ONE

1.1 MOTIVATION

The use of Automatic Speech Recognition (ASR) equipment in classical applications

such as package sorting, quality control, cartography, or receiving inspection, is typically

justified by one or more of the following factors [1, 2]:

* Voice input allows operators to remain mobile.

* Hands and eyes can be directed towards the primary task while providing

commands and input through speech.

* Input data rate is higher for speech than other human based modalities.

* Use of voice input requires little operator training.

It has also frequently been pointed out that ATC employs strictly constrained and well defined

vocabulary and syntax, making it an amenable environment for the introduction of ASR

technology [3, 4, 5, 6, 7, 8, 9]. However, it must be recognized that this alone cannot be the

justification for introducing ASR technology into the ATC system. Furthermore, the classical

benefits of ASR technology listed above do not necessarily apply to the ATC environment.

Before addressing the motivation for using ASR technology in ATC applications it is

thus necessary to identify the fundamental differences between ATC and other applications

where the use of voice input may be beneficial. The most significant of these differences is that

voice is currently the primary communication channel in ATC. Controllers are already mobile

(when required, as in the tower cab environment), and hands and eyes are almost exclusively
directed to the primary task of ensuring aircraft separation. The higher information throughput
capacity of speech is already being used advantageously. The issue of introducing new
technology into the ATC system is further complicated by the possibility of errors and failures
leading to fatal results, and the critically high workload already present during peak traffic
situations. Hence, the only possible justifications for introducing ASR technology are those
that imply an improvement in safety and efficiency, while maintaining or reducing the air traffic
controller workload.

The fundamental potential benefit of using ASR equipment in ATC systems lies in the

technology's capability to capture information that is currently transmitted in verbal form

between the controllers and the participating aircraft. These transmissions typically consist of

vectors, traffic advisories, requests for information about the aircraft and its intentions, or the

provision of information useful to the crew of the aircraft. Thus, the information contained

within these verbal communications contains knowledge about the state of the airspace, as well

as knowledge about its future state. The underlying motivation for the introduction of ASR

technology into the ATC environment is to acquire this knowledge in a form suitable for

automatic processing.

The ability to capture the information contained in the verbal messages delivered by

ATC would open up a host of new capabilities that could improve both safety and efficiency:

* Post-processing of the input could be used to predict the future state of the

airspace, providing an early warning capability to avoid separation criteria
violations or other hazards.

* A history of clearances could be presented to the controller as a memory aid.

* Mode-S equipped aircraft could receive a copy of the captured information,

for use as a backup or for on-board processing.

* Routine or anticipated clearances could be prestored during periods of little or

no activity.

* Controller strategies could be monitored, providing useful information for

evaluation, planning, and training.

* The use of keyboards and trackballs to designate aircraft and change data tag

information could be reduced, as much of the information entered by these
modalities is already present in the voice communications.

Hence, the possibility exists to acquire and process strategically significant knowledge. This
can be achieved without extensive modifications to the current operating practices of the air
traffic controller, which is significant not only from a convenience standpoint, but also to
ensure that the controller workload is not increased.

Given this potential benefit for using ASR technology, specific preliminary research
requirements can be defined. These requirements constitute the basic areas of investigation of
the research presented in this paper. The most basic of these is an evaluation of the current
state of ASR hardware. ATC specific performance criteria must be selected to set up a set of

specifications against which currently existing equipment can be assessed. Limitations of the

hardware must be identified, and an attempt should be made to predict any improvements that

can be expected to be introduced in the near future. Evaluation procedures must be designed,
to test the equipment under the specific conditions present in the ATC environment.

Despite the significance of the performance of the ASR hardware, the success of

introducing speech recognition technology is contingent on another issue - the interaction
between man and machine. The National Research Council has concluded that "human factors

issues are central to the successful deployment of voice interactive systems." [3] This is
inherent from the nature of the technology, as it represents an interface between the user and
the system under control. Human factors are particularly significant in ATC applications,
where levels of high workload intermixed with occasional periods of boredom are common.
The possibility of loss of life in the event of human factors related failures and deficiencies
underscores the importance of these issues.

Human factors issues are of significance in all applications utilizing ASR, and hence
considerable research has already been completed in this area, identifying key issues such as
background noise, microphone placement, speech variations, user acceptability and so on [10,
11]. However, since ATC differs from classical ASR applications, it must be determined to
what extent these issues have an impact. Also, human factors issues unique to the ATC
environment must be identified. A model for a functional man-machine interface should be
designed and evaluated, to demonstrate the feasibility of advanced techniques to overcome
human factors related problems. In order to minimize these problems, it is necessary to
implement an iterative design cycle, that should be continued until the needs of the system
users are met [10]. A human factors perspective has been adopted throughout this paper, and
the research effort it represents should be considered as one step in that design cycle.

Another issue that is directly related to the use of voice input technology is the nature of
the ATC language. Once again, there is a major difference between ATC and other ASR
applications in this respect. In ATC, the vocabulary and syntax are strictly defined and cannot
easily be altered [12, 13]. In other ASR applications, the definition of the permissible
vocabulary and syntax is an element controlled by the designer. Hence, it is necessary to
examine the information content of the ATC language, to determine its suitability for speech
recognition, and to evaluate the extent of controller deviation from the prescribed syntax in
today's ATC system. Techniques must be developed to either ensure conformance to the
syntax or to cope with occasional deviations.

Other authors have correctly concluded that current ASR technology falls short of the

performance necessary to be used operationally for ATC applications [8]. However, the

hardware is sufficiently capable that it can be used for the preliminary research necessary

before operational use. The potential benefits of the technology warrant that such preliminary

work should be undertaken at this point. Although this paper does not present any components

or systems intended for operational use, it constitutes an effort to investigate the hardware,

human factors, and language issues that must be successfully solved in order to capitalize on

the potential of ASR technology.

1.2 APPLICATION AREAS

Although this paper concerns itself primarily with the operational use of ASR

technology in ATC, it should be recognized that there is a secondary application area - ATC

training and simulation. The operational environment and the simulation environment each

have distinct requirements that demand unique solutions for the issues related to introducing

ASR technology.

In the operational environment, the motivation is based on a potential increase in safety

and efficiency. However, requirements on robustness and recognition accuracy will be very

stringent, disqualifying current ASR technology from being introduced. Furthermore, issues

such as mental workload, design of user feedback, and ability to cope with syntax deviations
will be critical. Controller acceptance of the new technology, development of new procedures,
and initial training will also be significant issues. Overall, there is a substantial amount of
outstanding research that must be undertaken prior to the operational use of ASR systems.

In the training and simulation environment, the use of ASR has the potential of
eliminating so called pseudo pilots or blip drivers who simulate aircraft controlled by the
trainee. Speech recognition could be used to recognize clearances, which could be processed
by the simulator to generate appropriate aircraft actions accompanied by simulated pilot
acknowledgements using voice synthesis technology. The result would be an overall reduction
in cost and complexity. In this case, recognition accuracy is of secondary importance, since
recognition errors can be treated as simulated pilot errors. In the simulation environment one
could insist that the controllers adhere to the prescribed syntax. Also, errors caused by human
factors issues may be admissible due to the relatively benign nature of errors during
simulations.

Hence, it is reasonable to assume that ASR technology will be introduced to the ATC

training and simulation environment before it is used operationally. In fact, development of

training suites using ASR technology is already underway [15, 16, 17, 18]. This should be

considered a desirable development, since it will provide needed experience for the design of

operational systems and will condition new controllers to the presence of ASR technology and

possibly reduce the problem of syntax deviation.

1.3 THE FUTURE OF AIR TRAFFIC CONTROL

The research effort presented in this work is based on the ATC system in operation

during the late 1980's. However, the introduction of ASR technology cannot be justified if its

use is not warranted in the future ATC environment. The current National Airspace System

(NAS) plan does not include a provision for the use of ASR equipment within its timeframe,

from 1985 to the year 2000. It is likely that voice input technology will not be introduced
within the next decade, and thus an attempt must be made to identify the fundamental
differences between today's ATC system and that of the near future.

There is an ongoing trend to further automate ATC operations, especially in the terminal
area. This is embodied by the current Advanced Automation System (AAS) program and the
introduction of the Mode-S transponder, which will provide a digital datalink between ATC
and participating aircraft. The result will be the introduction of new man-machine interface
elements including high resolution color graphics, and new input modalities such as touch
screens. Increased automation coupled with the Mode-S datalink and onboard Electronic Flight
Information Systems (EFIS) will allow aircraft to accept four dimensional1 clearances in the
terminal area. Work has already been completed on the feasibility of providing such clearances
as a function of dynamic constraints [19].

Hence, it appears that a trend exists towards increased automation, digital transmission
of ATC commands directly to aircraft, and the use of other channels of communication than
voice. The history of ATC demonstrates however, that care must be taken to introduce new
technology in such a way that users employing old technology can still be serviced. One
cannot expect all aircraft to instantaneously have Mode-S equipment installed. Nor will all
aircraft have EFIS systems on board. Aircraft that are capable of taking advantage of advanced

1 The four dimensions are as follows: latitude, longitude, altitude, and time.

automation services will occasionally experience equipment failures. Hence, verbal

communication must be retained as an information channel. In light of this, it may be most

practical to retain voice is the primary input modality, even when issuing automatically

generated four dimensional clearances. This would allow for a smooth transition to cases

where Mode-S is not available, and would require less modification of existing practices.

Thus, a system can be envisioned where the controller is in constant dialog with the system,

using voice input both to communicate with the aircraft and to control the automation tools

being used.

1.4 HISTORY

The general history of Automatic Speech Recognition has already been thoroughly

documented [20, 24], and need not be repeated here. However, the literature specifically

covering speech recognition applied to ATC applications is much less extensive. A brief

history of this field is presented below.

Although the first speaker dependent digit recognizer was devised in 1952, preliminary

research dedicated to ATC applications did not commence until the mid-1970's. Early work

was conducted by the U.S. Naval Training Equipment Center (NAVTRAEQUIPCEN) [21].

The first FAA sponsored research was concluded in 1979 by Donald W. Connolly [4]. That

research effort, conducted at the FAA's National Aviation Facilities Experimental Center 2

(NAFEC), constituted an initial attempt to assess the performance of ASR technology given an

ATC data entry task, and to determine how voice data entry compares with keyboard data

entry. Several experiments were performed using isolated speech recognition and varying

amounts of auditory feedback. Connolly concluded that applications of the technology to ATC
should be given serious consideration, but that performance improvements should be awaited

before adoption of any major upgrading of existing ATC systems.

During the early and mid-1980's, the possibility of using speech recognition

technology in ATC simulators was investigated by the Human Interface Technology Group at
Bracknell in the United Kingdom [6, 7]. It was recognized that the strict syntax used in ATC
and the nonfatal penalty of failure during simulations made ATC training a suitable application
for introducing ASR technology. The research showed that a small vocabulary speaker

2 The predecessor of the FAA Technical Center.

dependent system would be sufficient, but that it must recognize continuous speech. Speech

input and output equipment was adapted to a commercially available ATC simulator for

evaluation purposes. The importance of designing feasible correction strategies was identified.

It was concluded that the major limiting factor was the performance of the speech recognition

technology.

It was not until the mid-1980's that major U.S. research efforts dedicated to civil ATC

applications of ASR technology were initiated. During 1983-1987, several projects were
undertaken within the FAA's Small Business Innovation Research (SBIR) program [14]:

* Computer Voice and Speech Data Entry and Recognition

(Speech Systems, Inc., contract no. DTRS-57-87-00016): This study
demonstrated the feasibility of continuous speech recognition by computers,
evaluated how machines should recognize large human vocabularies and
complex syntaxes, and researched the human factors involved in the speech
input and machine feedback of the man-machine interaction.

* Computer Aided Reasoning Technology

(University Faculty Associates, Inc., contract no. DTRS-57-C-01 19/00103):
This project intended to produce an Intelligent Tutoring System, including the
use of ASR equipment, to assist training development of ATC personnel.

* Expert Systems Applications for Air Traffic Control: A Feasibility Study
(University Faculty Associates, Inc., contract no. DTRS-57-84-C-00124):
This research demonstrated the feasibility of using an expert system in the
training of ATC controllers using ASR technology.

* Speech Recognition in Air Traffic Control

(Emerson and Stern Associates, contract no. DTRS-57-85-00122): This
research was aimed at producing a reliable, real-time speech recognition
capability in the ATC environment. The grammar used was based on data
obtained from 20 hours of audiotapes from a wide variety of ATC speakers
and situations. The research suggested that the environmental challenges of
ATC and its psychological or physical stresses can be overcome, while
meeting the needs of robust operation.

Speech Systems, Inc. (SSI), and University Faculty Associates (UFA), Inc. are

cooperating in an effort to develop an ATC training expert system, using SSrs ASR system

[15, 16]. By using a large vocabulary, speaker independent speech recognition system, it is

believed that problems related to enrollment templates, coarticulation, stress, and noise can be

overcome.

An internally funded research effort by MITRE has investigated potential applications

of ASR technology in the context of advanced ATC automation aids [8, 22]. Candidate

functions which could benefit from the introduction of speech input and output technology

have been identified as the following:

* Controller data entry.

* Controller training.

* Composition of flight advisories.

* Control of voice switching systems.

* Digital data link in the cockpit.

The research intended to estimate the operational suitability of applying ASR to ATC in terms

of human factors issues such as controller workload and input/output modality compatibility.

The study concluded that today's speech synthesis hardware is adequate, but the speech

recognition hardware is not. Preliminary research should be conducted now however, while

awaiting further improvement of ASR technology.

Research at academic institutions has been mostly in the form of Masters thesis work.
In 1987, Thanassis Trikas of M.I.T.'s Flight Transportation Laboratory (FTL) completed a
Masters thesis that demonstrated the feasibility of using off-the-shelf ASR equipment in

conjunction with an existing ATC simulator [9]. Two speech recognition systems were

evaluated, and problem areas such as speech variations were identified. A simple speech input

interface was designed for use in a simulation environment, and basic operational environment

issues were discussed. Another Masters thesis, completed in 1988 by Robert F. Hall at

Arizona State University, evaluated an ASR system in an operational environment at Williams
Air Force Base [5]. The possible use of Artificial Intelligence techniques were investigated,
and potential postprocessing applications of captured ATC communications were identified. A
verb centered language model was adopted, and used as a basis for the vocabulary and syntax
definition.

The tangential issue of assessing the linguistic properties of the ATC language has been

addressed in a recent paper completed by Steven Cushing [23]. This research effort constituted
part of a larger investigation of the feasibility of using voice input/output technology in

aviation. The general problems of natural language understanding, as well as specific

ambiguities that occur in the ATC environment were investigated. Several accidents that have

resulted from language confusions were described. A solution was proposed including a voice

interface using an intelligent voice input component and an intelligent voice output component.
The voice input component would have as subcomponents a voice word recognizer and a
language filter, employing a lexicon, a grammar, and a knowledge base.

In addition to the research efforts described above, government sponsored work is

being conducted at the NASA Langley Research Center and at the Department of
Transportation's Transportation Systems Center. Furthermore, the U.S. Navy is developing
an ATC training facility incorporating speech input/output technology in conjunction with
Logicon, Inc., and the ITT Defense Communications Division. In France, the two companies
Crouzet and Steria have recently been awarded contracts to develop a prototype version of an
automatic voice recognition and synthesis system to be used in the training of air traffic
controllers [18].

1.5 OUTLINE

The purpose of this research effort is to continue some of the work described above,
especially the research already conducted at M.I.T.'s Flight Transportation Laboratory.
However, the emphasis will be placed on the operational environment. The focus of this paper
are the human factors problems involved, as these are believed to be the chief limiting factors.

In Chapter Two, a brief introduction is given to the speech recognition technology.
The underlying techniques used to recognize speech by machine are discussed, and the state of
the art of the technology is described. Parameters that classify the different types of speech
recognizers are identified, as well as the levels of knowledge present in speech.

The preliminary discussion is continued in Chapter Three with a description of the ATC
environment and its relevance to speech recognition. ATC language issues are described,
including a discussion of the information content of the language. Human factors issues such

as background noise and cognitive workload that have a direct impact on speech recognition

performance are also discussed.

Chapter Four presents a method to adopt an analytical approach to the human factors

issues of introducing ASR technology into the ATC environment. The differences in the man-

machine interface in the case of ATC applications vs. classical ASR applications are discussed.

The fundamental human factors concepts behind the design of the suggested man-machine

interface are presented.

The results from evaluating two commercially available ASR systems are described in

Chapter Five. Problems inherent in the current technology are identified. A technology

demonstrator using an off-the-shelf ATC simulator is presented.

In Chapter Six, a model for a suitable interface centered around ASR technology to be

used between the air traffic controller and the ATC system is presented. The use of mixed

input modalities, automatic error detection and correction techniques, and adaptive training is

discussed. An expert system used to process higher levels of knowledge such as semantics

and pragmatics is described. The results of simulations using the man-machine interface model

are used to demonstrate the feasibility of these techniques.

Finally, Chapter Seven contains a summary of the research presented in this paper, as

well as suitable conclusions based on the achieved results. Recommendations for future

research are presented, as well as guidelines for the developers of future ASR technology.

CHAPTER Two

2.1 THE TECHNOLOGY

All speech recognition devices are based on a three step process [24]. The first step is a

data reduction and signal representation process (feature extraction). After this pre-processing,

there is a pattern recognition process where the extracted features are compared to a database of

prestored patterns. Finally, there is a set of decision rules based on scores obtained from the

pattern matcher to decide which phrase was recognized. This process is described

schematically in Figure 2.1. The process of training (also known as enrollment) can be

represented as adding signal features of known phrases to the reference database.

Figure 2.1: The speech recognition process.

Speech
Input

2.1.1 FEATURE EXTRACTION

The first step of the recognition process consists of pre-processing the raw speech input

signal. Typically, the frequency band of interest is the range from 0 to 8 kHz, with most of the
information present below 4 kHz. Thus, the sampling rate is typically 8-16 kHz. The
resulting high data rates 3 require the use of data reduction techniques in order to represent the
signal in a manageable form. The objective of these techniques is to reduce the amount of data

3 If one byte (8 bits) of information is obtained for each sample with a sampling rate of 8 kHz, then the input
data rate would be 64,000 baud. Hence, a couple of seconds of speech input would result in a sample
equivalent to the size of this document.

Recognition
Output

necessary for processing, while retaining as much meaningful information about the speech

signal as possible.

Several standard signal processing techniques exist to achieve this desired result. One

of the simplest is filter bank analysis. A set of filters is used to determine the signal energy at a

discrete number of frequencies. This takes advantage of the fact that most phonemes (a basic

unit of speech) exhibit a set of fundamental frequencies known as formants. This filter

technique attempts to identify which phonemes are present by assessing the signal energy

distribution across the formants. Another spectral technique is to represent the signal by a set

of Fourier coefficients.

An alternative to these spectral techniques is the so called cepstral analysis of speech,

which is defined such that the Z-transform of the complex cepstrum is the logarithm of the

Z-transform of the input signal [25]. Cepstral analysis can be used for pitch extraction and

formant tracking. Thus, many speech recognizers represent the speech signal as a set of

cepstral coefficients, computed at a fixed frame rate. Time derivatives of the cepstral

coefficients have also been used. Some systems employ Mel-scale cepstral coefficients to

mimic auditory processing. The Mel frequency scale is linear up to 1000 Hz, and logarithmic
thereafter.

One of the most commonly adopted techniques is Linear Predictive Coding (LPC). An

all-pole zero mean model of speech generation is assumed [26]. The model output (i.e. the
speech signal) is represented as a linear combination of previous outputs. The speech transfer
function consists simply of a pure gain G and a polynomial denominator with coefficients ak.
The determination of the set of coefficients { ak } reduces to a set of linear equations obtained

by minimizing the total prediction error. The gain G is found through an energy conservation
criterion. Using LPC coefficients to represent the speech input signal, the data rate can
typically be reduced to 100 Hz.

Vector quantization is a technique commonly used to further reduce the amount of data
required to represent the speech signal. Features from data samples obtained during training
sessions are represented as vectors and stored in a codebook. Then, each new input vector is
compared to these standardized reference frames, and is assigned to a class with similar
features. This classification procedure allows the speech data to be represented as a set of
indices into the reference codebook.

2.1.2 PATTERN MATCHING

In the pattern matching phase, the extracted speech features of interest are classified into

categories (e.g. words). There are two types of pattern matching problems:

" Supervised: Classes are known in advance, and samples of each class

(i.e. training data) are available.

* Unsupervised: Classes are not known a priori, and must be inferred from the

data.

Practically all current speech recognizers employ some form of supervised pattern matching,

where a set of reference patterns have been obtained through the process of user training.

The first step in the pattern matching process is usually some method to achieve time

normalization. This ensures that an attempt to match will not fail simply because the input data

and the reference data are of different temporal lengths. A commonly used technique is

Dynamic Time Warping [27]. First, the endpoints of the data sample are detected. Then, the

isolated template is time distorted by a warping function in order to minimize the distance

between it and the reference template. This procedure is then repeated for all reference

templates.

There are several algorithms that can be adopted for the pattern matcher [28]. The
simplest ones are based on Bayes Decision Theory. Given two classes C1 and C2, and a

feature x, then an intuitive decision rule would be to choose C1 if P(C 1 I x) is greater than

P(C 2 I x); else choose C2. This approach can be generalized to a set of output classes.

Another parametric approach based on probability theory is the Gaussian Classifier. It uses a

cost function known as the Mahalanobis Distance, which is based on the feature vector, a mean

vector, and a covariance matrix.

Non-parametric techniques exist that rely on geometric interpretations of the features.
The most common of these is the K Nearest Neighbor (KNN) classifier. KNN assigns a
feature x to the class most frequently represented among the k nearest tokens in the training
set. First, the distances between x and all the training tokens are determined. Then, the k
nearest neighbors are found, and x is classified by majority rule. When the amount of training
data is infinite, KNN approaches the generalized Bayes Decision Theory classifier. The

performance of KNN is dependent on the choice of k which is often chosen to be aIn where a

is a constant and n is the total number of training tokens.

One of the most successful recognition techniques used in speech recognition has been

to model the speech using Hidden Markov Models (HMM) [29]. An HMM is an extension of

a Finite State Machine (FSM), in which states are associated with features and branches with

probabilities of passing from one state to another. Typically, each recognizable word is

represented by an HMM, which has been established through a set of a priori training tokens.

When a new token x is recognized, the resulting word w is the one which has the highest

probability P(x I w). This optimization is typically achieved by using a search procedure such

as the Viterbi algorithm [30].

2.1.3 DECISION RULES

The result of the pattern matching phase is typically a set of scores which indicate how

well the recognized token matched each reference token. Barring any post-processing such as

syntax checking, the recognized phrase then consists of the words corresponding to the highest

scores. Normally a selectable threshold value is used as a cut-off limit. If the highest score

falls below the threshold, then the recognized token is rejected and no word is returned. Some

algorithms, such as the Viterbi algorithm used in conjunction with HMM representations

cannot determine scores for all reference tokens, but simply finds the highest scoring word.

This is undesirable as the complete set of scores is often useful for post-processing such as

examining the syntax and the semantic content of the entire recognized phrase.

2.2 CHARACTERISTICS OF SPEECH RECOGNIZERS

Specific criteria for selecting an ASR system depend on the application in which it is to
be used. However, all ASR systems can be categorized by the following fundamental
characteristics:

* Speaker dependent vs. speaker independent recognition.
* Isolated, connected, or continuous speech recognition.
* Vocabulary size.

Other parameters of significance to ATC applications include baseline recognition accuracy,
design of training procedures, accessibility to the recognition software, noise robustness,
sensitivity to variations in speech, recognition delay, and the availability of speech playback or
speech synthesis. The following sections describe the characteristics of ASR systems in detail,

and set criteria for selection of a system suitable for ATC applications.

2.2.1 SPEAKER DEPENDENT VS. SPEAKER INDEPENDENT RECOGNITION

The ideal ASR system is speaker independent, that is, it will recognize any user's voice
with no prior training. However, as significant differences exist in the quality of separate
individuals' voices, it is difficult to achieve speaker independent recognition with reasonable
recognition accuracy. Hence, most available systems are speaker dependent and require some
training by each individual user prior to being used operationally. For ATC applications it
would be desirable to use speaker independent ASR equipment to avoid user enrollment and to
allow for flexible and quick replacement of a controller at any given station. Realistically
however, it is more likely that a speaker dependent system will be used as speaker
independence usually implies a reduction in recognition accuracy. Table 2.1 outlines the
differences in characteristics between speaker dependent and speaker independent systems.

Table 2.1: Speaker dependent vs. speaker independent recognition.

Speaker Dependent Speaker Independent
Characteristic Recognition Recognition

Requires time consuming Requires no a priori user
Convenience user training. Flexibility in training.

changing users is reduced.

Accuracy is higher due to Accuracy suffers from lack of
Accuracy available information on specific user data.

user's voice.

Performance deteriorates Speaker independent
Robustness as user's voice changes recognition is robust to

from training tokens. variations in speech.

Low cost speaker dependent Very few speaker independent
Availability systems are available today. systems are available and the

prices are relatively high.

2.2.2 ISOLATED, CONNECTED, OR CONTINUOUS SPEECH RECOGNITION

The rate at which the user of an ASR system can speak depends on whether the system

is capable of isolated, connected, or continuous speech recognition. In an isolated word
recognition system, each spoken word must be preceded and succeeded by silence. Only
single utterances can be recognized. In a connected speech recognition system words must
also be separated by periods of silence. However, the recognizer is capable of processing
sequences of words with periods of silence as short as 0.1 s between them. Hence, entire
sentences can be recognized, provided that the user pauses briefly between words. A
continuous speech recognition system requires no pauses, and the user can speak at a natural
rate.

It has been established previously that the constraints on speech rate imposed by
isolated and connected speech recognizers are unacceptable in ATC applications [7, 9].

Furthermore, this has become less of an issue than in the past, when the acceptable speech rate
was limited by the available technology. Continuous speech recognizers do have some
limitations, including higher costs, and relatively small vocabularies. Furthermore, with some
continuous speech recognizers, output is only generated after the recognition of a full sentence.
When a rejection error occurs, the whole sentence may be lost, instead of just a single word.
Recognition accuracy may be lower for a continuous speech system than for an equivalent
isolated or connected speech unit. Despite these drawbacks, ATC applications, whether in an

operational or a simulation environment, require the use of continuous speech technology.

2.2.3 VOCABULARY SIZE

As with the other characteristics of ASR systems described above, there is typically a
trade-off between vocabulary size and performance measures such as recognition accuracy and
processing speed. In a large vocabulary system, there is inherently a greater probability of
misrecognition, and hence overall recognition accuracy can be expected to decrease with
vocabulary size. Furthermore, processing time tends to increase with vocabulary size.
Although there is no standard nomenclature, a system capable of recognizing 100 words or less
can be considered a small vocabulary system, whereas systems capable of vocabularies with
1000 words or more can be considered large vocabulary systems. Units with vocabulary sizes
between 100 and 1000 words are medium size vocabulary systems.

Previous research has demonstrated that vocabularies with less than 100 words are

sufficient to implement most ATC commands [9]. However, an operational system is expected
to require 300-500 words [4, 9]. If all possible aircraft callsigns are to be recognized, as well
as uncommon ATC commands, the required vocabulary size could well exceed 1000 words.

ATC applications are typically dominated by a few commands which occur the majority of the
time, interspersed with a large number of other commands which occur only infrequently.

2.2.4 BASELINE RECOGNITION ACCURACY

The baseline recognition accuracy of an ASR system refers to the rate of correct
recognition prior to the application of automatic error correction techniques. Although such
techniques can be introduced to improve the recognition accuracy, the baseline recognition
accuracy imposes a limit on overall performance. Most producers of ASR equipment claim
word recognition rates of 95% or greater. However, these figures are usually based on ideal
conditions and are artificially high for marketing purposes. Furthermore, a word recognition
rate of 95% implies a phrase recognition rate of 60% for a ten word sentence. Baseline
recognition rates must be measured empirically in operational conditions before employing the
equipment in question in an operational ATC environment. Word recognition rates of 98% and
above are desirable.

2.2.5 DESIGN OF THE TRAINING PROCEDURES

Classical training procedures typically consist of repeating every word in the
vocabulary several times. For recognition systems that employ HMM techniques, a large
number of training tokens are required. Therefore, as the vocabulary grows in size, several
hours of training may be required. This is inconvenient and costly, and should therefore be
avoided. Furthermore, if the user becomes bored during training, the voice patterns may
assume a form different from those which could be expected in an operational setting.
Techniques to reduce the amount of training include adaptive training during actual operation,
and the use of another user's voice patterns as an underlying basis. The problem of lengthy
training procedures is one of the major disadvantages of speaker dependent recognition
systems.

2.2.6 ACCESSIBILITY TO THE RECOGNITION SOFTWARE

When using an ASR system for research on speech input applications in ATC, it is

desirable to have some control over the recognition software. This allows for more flexibility

in creating an intelligent parser. In particular, most ASR systems report only the score for the

best match when a word is recognized. It would be useful to obtain scores for all words in the

vocabulary. These could be used to evaluate a different alternative in case the recognized

phrase does not parse syntactically or semantically. Access to the extracted features and the

ability to train during recognition are other software issues of interest. In general, the more

open and accessible the recognition software is, the higher the effective recognition accuracy

after post-processing of the recognized input.

2.2.7 NOISE ROBUSTNESS

The presence of background noise and its influence on recognition accuracy remains a

challenging problem facing ASR technology. The problem is twofold [31]:

* As background noise levels increase, the signal-to-noise ratio of the speech

input signal decreases, which results in recognition errors. Peaks in the

background noise, especially when non-random, may be recognized as

words.

* As background noise levels increase, the signal-to-noise ratio in the user's

auditory feedback decreases, which causes a speech variation which in turn

may result in recognition errors.

An additional problem is posed by variable (vs. constant) noise levels. Techniques to increase

robustness to background noise include the use of noise cancelling microphones, isolating

headsets with amplified feedback, inclusion of training tokens with background noise present,

and the adoption of speech enhancing pre-processors.

2.2.8 SENSITIVITY TO VARIATIONS IN SPEECH

Background noise has been mentioned above as one of the factors which may alter the
user's voice. Other causes include fatigue, stress, boredom, colds, temporal drift, user

idiosyncrasies, changes in intonation, and microphone placement. Furthermore, it appears that

speech recognizers work better with some people than others. Users that obtain high

recognition accuracies are often termed sheep, whereas those with consistent problems are

termed goats [32]. The so called training effect is the problem of users speaking more slowly

and carefully during training than during operational usage. Another speech variation problem

is that of coarticulation, the change in pronunciation of words due to the presence of its

neighbors. For example, the fricative sound "s" at the end of the word "this" all but disappears

in the compound "this ship", when part of a full sentence spoken at a natural rate.

The lack of robustness to variations in speech is one of the greatest limitations of

current speech recognition technology. The problem is of special concern to ATC applications

where periods of high stress or boredom are frequent. A promising technique seems to be

adaptive or on-the-fly training. By continuously updating the reference database with correctly

recognized phrases, variations in speech are reflected in the training data. However, some

speech variations may occur so rapidly that adaptive training will not cause a sufficiently quick

response. The problem of coarticulation, which is particularly serious in the case of isolated

and connected speech recognizers, has been mostly overcome by continuous speech

recognizers using HMM representations. Other speech variation problems, such as inter-

speaker variations, remain largely unsolved, although the constantly improving performance of

speaker independent recognizers offers some hope.

2.2.9 RECOGNITION DELAY

The term recognition delay refers to the time delay between the completion of an

utterance and the time recognition output is produced by the ASR unit. The delay is a function

of utterance length, vocabulary size and complexity, hardware capability, and software

complexity. Excessive recognition delays are unacceptable, as they prohibit the user from

obtaining feedback and slow down the application. For ATC applications, recognition delays

of 1-4 s have been recommended [9]. However, in an operational setting, employing extensive

post-processing techniques of the recognition output, a recognition delay of less than 0.5 s is
desired.

2.2.10 SPEECH PLAYBACK AND SPEECH SYNTHESIS

The research in this paper is focused on the recognition of speech. However, in some

of the potential ATC applications of ASR technology a speech output capability is also desired.

This is particularly true for ATC training and simulation environments, where speech output is

required to simulate aircraft acknowledgements and readbacks. Speech output may also be

desired for auditory feedback purposes in operational applications.

Several speech recognition units are delivered with the ability to generate speech output.

Two types of speech output generators exist:

* Speech playback: Actual voices of speakers are recorded digitally and then

reproduced. This offers the most natural sounding pronunciation of

individual words, but flexibility is reduced, and sentence intonation may be

unnatural if words are used in a sequence other than initially recorded.

* Speech synthesis: Speech is synthesized through a procedure similar to the

inverse of the feature extraction and data reduction procedures described

previously. The resulting voice typically exhibits a robotic sound quality, but

speech synthesis offers the capability of generating unforeseen sentences.

The speech synthesis technology is sufficiently advanced that it can be employed using

programs executed on personal computers, requiring no dedicated hardware. However, such

software driven systems are usually computationally intensive and prohibit the processor from

handling other tasks. For this reason, dedicated auxiliary hardware is usually desired. In

general however, it is recognized that the speech synthesis technology is more mature than the

speech recognition technology [3].

Because many ATC applications would benefit from the use of speech output as well as

speech input, it is desirable to select an ASR system capable of generating speech output.

Speech synthesis offers the greatest flexibility, as sound quality is becoming more and more
natural sounding. Although it is possible to use separate equipment to handle the speech

generation, this is usually less desirable as it complicates issues such as handshaking between

voice input and output, and usually degrades portability and efficiency.

2.2.11 MICROPHONE ISSUES

When selecting an ASR system one must also choose a suitable microphone for the

application. The choice of microphone has a marked influence on performance, convenience,
and user acceptability. Characteristics of microphones that must be selected include

microphone element type, directionality, and mounting [33]. In ATC applications, a noise

cancelling element may be desired, although these are usually sensitive to microphone

placement. The microphone should be mounted on a headset similar or superior to those in use

by controllers today. Mobility and comfort must be ensured. A push-to-talk (PTT) switch

should be included, as currently used, so that recognition will only occur when desired.

2.3 SOURCES OF KNOWLEDGE IN SPEECH

Uncertainties and ambiguities resulting from the speech recognition process can often

be resolved by subjecting the conflicting word hypothesis to post-processing. This is similar

to the way humans recognize and understand speech. This process takes advantage of several

levels of knowledge available to the recognizer [20, 34, 35]:

* Acoustic analysis: Feature extraction from the speech input signal.

* Phonetic analysis: Identifying basic units of speech such as vowels,

consonants, and phonemes.

* Prosodic analysis: Using intonation, rhythm, or stress to identify linguistic

structures.

* Lexical analysis: Matching words by comparing sequences of extracted

features with reference templates.

* Syntactic analysis: Applying constraints specified by a predefined syntax.

* Semantic analysis: Testing the meaningfulness of the recognized phrase.

* Pragmatic analysis: Predicting likely future words based on the past and on

the state of the system.

The first four steps compose the actual speech recognition, whereas the last three perform the

speech understanding function. As such, the first four steps are usually incorporated in the

ASR hardware, whereas the last three are left to the designer to implement. In practice

however, little, if any, prosodic analysis is performed. Furthermore, it is becoming

increasingly common to have some of the syntactic analysis be performed by the ASR unit

itself.

Processing these levels of knowledge consists of several phases, including acquisition,
representation, and implementation. The problem of processing the lower levels of
knowledge, such as acoustics, phonetics, and lexical analysis, is well understood and is
performed adequately by most ASR systems. Methods to acquire prosodic information are
much less common, however. Although it is clear that the intonation, stress, and changes in
rhythm of the controller's voice contain valuable information for the pilot, most ASR systems

work best when the speech pattern is void of such variations. In the case of the higher levels
of knowledge, implementation of syntactic processing is common, whereas semantic and
pragmatic analysis is well understood, but rarely implemented. Since these higher sources of
knowledge must usually be implemented by the designer, more detailed examination is
warranted [34].

2.3.1 SYNTACTIC ANALYSIS

The use of syntax involves defining a grammar which can be used to parse sentences.

The prime desired qualities of a syntax are simplicity, generality (ability to parse all acceptable

sentences), and specificity (the ability to diagnose and reject all unintelligible sentences). A

syntax rule consists of non-terminals (possible phrase types), terminals (possible words),

starting symbols (patterns designating complete sentences), and rules relating these

components. The uses of syntactic knowledge include recognition, prediction, enumeration

(generation of a set of alternate, specific predictions), and postdiction (testing a prediction with

additional data). Syntax can be implemented by using Finite State Networks, Augmented

Transition Networks (ATNs), or simple heuristics.

2.3.2 SEMANTIC ANALYSIS

Semantic knowledge generally implies defining meaning by relating logical expressions
to world models. Semantic knowledge in an ASR system can eliminate word sequence
hypotheses that parse syntactically, but are not actually meaningful. There are empirical
methods as well as formalized methods (such as Montague's system) of acquiring semantic
knowledge. Semantics can be embedded in the syntax or can be implemented separately, using

similar techniques (e.g. ATNs). If the syntax contains semantic notions, which is often the
case in ATC applications, it is known as a semantic grammar.

2.3.3 PRAGMATIC ANALYSIS

Pragmatic knowledge provides the capability for understanding a sentence in the

context of the situation at hand. In ATC applications, the situation is described by the state of

the airspace, that is, the state of each aircraft and the relative positions between aircraft.

Acquiring pragmatic knowledge consists of storing context sensitive information from previous

statements and deriving the speaker's beliefs and disbeliefs concerning the system. Pragmatics

should be used on a rule-of-thumb basis, and should not be regarded as always correct.

Possible implementations include knowledge based rules, Finite State Networks, and

knowledge state databases.

2.4 RECOGNITION ERRORS

A speech recognition system can yield one of the following results upon detecting a

token4 [35]:

* Correct recognition: A legal token is recognized as the correct legal word or

sentence.

* Correct rejection: An illegal token is correctly rejected as not being a legal

word or sentence.

* Rejection error: A legal token is not recognized as any legal word or sentence.

* Substitution error: A legal token is recognized as another legal word or

sentence.
* Insertion error: An illegal token is recognized as a legal word or sentence (this

includes recognition of non-speech tokens such as noise).

4 Normally, a spoken instance of a word. For a continuous speech recognizer that is only capable of
recognizing whole sentences, a token refers to a spoken instance of a sentence.

The first two of these possible results are desired (correct recognition and correct rejection),

whereas the last three are errors. Since we can never guarantee the complete absence of these
errors, their characteristics and implications to ATC applications must be understood.

While not one of the most frequent error types, the rejection error implies a loss of
information. In the case of a speech recognition system that only recognizes full sentences,
this is a particularly severe error as entire ATC commands may be lost. Substitution errors on
the other hand are typically the most frequent errors, but are relatively easy to correct. If only

one or two words in a sentence are substituted, the correct words can usually be determined

through application of higher levels of knowledge such as syntax, semantics, or pragmatics.

Insertion errors are rare, especially when noise cancelling equipment is used. When they do
occur, they can usually be eliminated through post-processing. ASR systems that only
recognize whole sentences are particularly unlikely to suffer from insertion errors.

2.5 CURRENT STATE OF ASR TECHNOLOGY

Due to the lack of standardized performance measures, it is difficult to evaluate the
current state of the technology, except through empirical methods. Current performance
assessment methods have shortcomings and tend to overemphasize baseline recognition
accuracy [36]. Manufacturers invariably claim recognition rates of 95% and higher. Usually,
these results are achievable, but only in ideal conditions. Laboratory benchmark tests are
useful for comparing ASR equipment, but are not efficient for predicting actual performance in
operational systems [37]. Nonetheless, some conclusions can be drawn regarding the state of
the art of technology [38].

Word recognition rates as high as 99.9% have been reported, and can certainly be
achieved under certain conditions. Systems used operationally however, can be expected to
achieve word recognition accuracies of 90-95% under degraded conditions. Recognition
delays are reasonable, usually on the order of 1 s or less. Most continuous speech recognition
systems available today are speaker dependent, although a few speaker independent system do
exist. Typical prices are $2,000 and below for a small vocabulary recognizer, $10,000-
$15,000 for a medium size vocabulary recognizer, and $45,000 and above for large vocabulary
systems. Many commercially available systems are delivered with either speech playback or
speech synthesis capability. Noise cancelling microphones are usually used.

In summary, current ASR recognizers are useful for preliminary research and simple
training and simulation applications in the ATC environment. Limitations include lack of
robustness to speech variations, sensitivity to background noise, sensitivity to microphone
placement, vocabulary size/cost ratio, lengthy training procedures for speaker dependent
systems, lack of cost effective speaker independent systems, and black box software
architecture. Speech output equipment suffer fewer limitations, although more natural quality
of speech is still required for speech synthesizers.

CHAPTER THREE

TrIH A¶C ENVlIRNMENT

3.1 THE PHYSICAL ENVIRONMENT

The U.S. Air Traffic Control system features several different environments where

ASR technology may be used. Each physical environment has unique implications on the use
of speech technology. Hence, it is necessary to examine those facilities which may benefit
from the ability of capturing the information transmitted to the aircraft. These include the
entities that provide clearances and vectors, that is, the towers, the Terminal Radar Control
facilities (TRACONs), and the Air Route Traffic Control Centers (ARTCCs). Variations in the
physical characteristics include background noise, controller mobility, number of active
controllers, equipment used, and frequency of manual input.

3.1.1 THE TOWER ENVIRONMENT

Towers exist at many, but not all, U.S. airports. The need for a tower is usually
dictated by the amount of traffic the airport handles. At smaller airports, towers may not be
open twenty-four hours. The purpose of the tower is to provide aircraft with clearance
deliveries, ground control, and local control over departures and arrivals. Towers at small
airports may only have a few controllers, usually at least three. In this minimum case, one
controller is dedicated to clearance deliveries, one to ground control, and one to local control.
At busier airports, the tower may be staffed with more people, including supervisors, a
controller dedicated to helicopter control, etc.

The tower cab is typically located at the top of a structure, providing a birds eye view
over most if not all of the airport. The controllers rely heavily on visual acquisition of the
aircraft under their control, particularly in the case of ground control. Local control relies more
on radar, combined with vision to determine if aircraft have landed, departed, etc. Despite the
availability of radar information, there is little automation present in the tower environment, and
controllers rarely make manual inputs to the system. Because of this dependence on viewing
the outside world, mobility is required in the tower environment, as controllers move about to

visually identify aircraft. Their freedom of travel is limited by the physical connection between

the headset and the microphone inputs, but they seldom sit down.

Tower cabs are typically heavily insulated with absorbing materials to dampen both
noise from the outside and noise generated within the cab itself. Nonetheless, background
noise exists, both in the form of aircraft engines and controller voices. Rotating radar
transmitters mounted on the tower cab roof also contribute to the background noise.
Equipment noise generated by fans and electrical equipment poses less of a problem.

As tower controllers often provide secondary information regarding activities on the
runway (such as the presence of animals, temporary holds for snow removal etc.), the syntax
used is much less constrained than in the TRACONs and the ARTCCs. Unexpected events
occur frequently at airports, and hence the controllers' work is very tactical in nature. Pre-
defined grammars are not well suited for formulating tactical solutions, as they often represent
unique cases. Hence many transmissions are in natural language form, or modifications of the
prescribed syntax, making the use of speech recognition technology less feasible.

3.1.2 THE TRACON ENVIRONMENT

TRACONs provide radar services to departures and arrivals at airports. Usually the
TRACON is located in the same building as the airport's tower facility, although this is not
always the case. Controller functions include managers, supervisors, radar controllers, and
other controllers that handle flight data strips and other functions. Each radar controller is
responsible for a subset of the controlled airspace. Divisions are usually made geographically
(i.e. north, west, east, south), or by type of traffic (i.e. arrivals or departures), or by both (e.g.
west departures). Other controllers may be responsible for coordination with satellite airports,
or provide final control.

TRACON rooms are noise insulated, just like tower cabs, but typically have no
windows to the outside. Radar controllers sit in a row along a bank of equipment. Hence, the
background noise in the TRACON environment consists mostly of neighboring controllers'
voices. There is some movement in TRACONs, typically by managers, supervisors, and
controllers that are beginning or ending shifts. In general however, mobility is not a
requirement for the TRACON radar controller.

The TRACON controllers rely almost exclusively on primary and secondary radar

information. In major TRACON facilities, this information is presented in processed form.
The most functional system available is the Automated Radar Terminal System (ARTS), of
which there are several variants. The most sophisticated of these is ARTS-IHA which detects,
tracks, and predicts primary as well as secondary radar derived aircraft targets. These are
displayed in symbolic form with additional alphanumeric information, depicting flight
identification, aircraft altitude, ground speed, and flight plan data [12]. The controller
communicates with the ARTS computer through the use of a keyboard and a trackball located
on the console.

TRACON controllers perform tactical as well as strategic work. As a result, the
adherence to syntax is stricter than in the tower environment. The terminal areas are frequently
congested and require improvements in safety and efficiency. This, combined with the relative
frequency of manual inputs, make the TRACON environment a suitable candidate for voice
input technology.

3.1.3 THE ARTCC ENVIRONMENT

The primary purpose of the ARTCCs is to provide aircraft separation during the en
route phase. ARTCC facilities are located at twenty centers in the continental U.S. 5 Each
center is subdivided into a number of low and high altitude sectors. Each sector is typically
controlled by two or three controllers providing radar control, handoff control, and other
services such as flight data strip handling. Each sector team has its own work station complete
with a radar console, a flight strip bay, and a flight strip printer. The radar console has a
number of keyboards and a trackball that allow the controller to communicate with the system.

An ARTCC room consists of several banks of sector work stations. Often, adjacent
work stations correspond to adjacent sectors in the airspace. The ambient conditions are
similar to those found in TRACONs in that there are no windows, there is ample noise
insulation, and most of the background noise consists of distinct voices. Except for managers
and supervisors, ARTCC controllers remain seated.

5 In addition there is an ARTCC in both Hawaii and Puerto Rico.

Compared to the TRACON and tower environments, much of the work done in the
ARTCCs is strategic, especially that which is related to flow control. The syntax used is
therefore more constrained than in other ATC environments. Manual inputs are made relatively
frequently. This makes ARTCCs more amenable to ASR technology than towers or
TRACONs. However, en route sectors tend to be less congested than terminal areas and hence

the potential improvements in safety and efficiency due to the introduction of voice input
equipment are less significant. This may change if sector sizes are increased in the future.

3.2 COGNITIVE WORKLOAD

As has been described above, physical factors that may have an influence on the
performance of ASR equipment in the ATC environment include the level and nature of
background noise, controller mobility, and the use of manual input modalities. However, as
increases in air traffic are causing the terminal areas to become more and more congested,
cognitive workload has become a critical issue. With the introduction of ARTS the controllers
have been provided with more advanced detection, tracking, and prediction functions. At the
same time however, as more information has been made available to the controller, information
overload has become a relevant problem [39].

It should be noted that the design of airspace sectors is largely influenced by the
cognitive workload levels a sector team is considered able to handle. Factors contributing to
controller workload include [40]:

* Traffic variables: Average traffic volume, peak instantaneous aircraft count,
traffic type and mix.

* Geometric variables: Sector size, airway geometry, sector flight time, altitudes
involved.

* Sector type: High altitude en route, low altitude en route, transition, terminal.
* Coordination and interaction considerations: Nearby terminals, sector

coordination, activity of adjoining sectors, presence of satellite airports.
* Sector team control procedures: Control position organization, number of

members in the controller team.
* Technology aspects: Amount of information presented, frequency of

interaction with system, type of input/output modality, allocation of
resources.

Various measurements of workload include airspace and traffic parameters, frequency and type

of controller actions, allocation of resources, subjective evaluations, physiological

measurements, social factors, psychological tests, medical data, and incident accounts [41].

Workload is often described as having two components. The first, taskload, refers to

all the demands that the system and man-machine interface place on the controller. The second,

workload, is the amount of effort the controller invests to achieve a desired level of

performance with the given taskload. An experiment based on subjective evaluation techniques

was conducted at the FAA Technical Center to investigate the effects of taskload on the

workload perceived by the controllers [39]. In addition to self-reported measurements of

workload, observers were used to provide user independent estimates. Airspace and system

activity parameters were also sampled. Taskload, the independent variable, was controlled by

changing the average aircraft count and by activating and deactivating restricted areas. All

measures indicated that workload changed significantly with increased taskload. Furthermore,

an inverse relationship between effectiveness and workload was found.

The introduction of ASR technology may have an influence on the taskload, if it

requires frequent intervention by the controller to detect and correct errors. An increase in

taskload would then result in an increase in perceived workload, and a decrease in

effectiveness. Alternatively, if the technology is implemented in such a way that it requires

little user action, it may reduce workload and increase safety by providing useful automation

tools to the controller. It is not possible to determine with certainty what the effect of ASR

technology on controller workload will be. Careful system design and extensive evaluation are

required to ensure that information overload will not be the ultimate result of introducing

speech recognition technology into the ATC system.

The implications of the controller workload issue on the introduction of speech

recognition equipment are clear. Cognitive workload in the ATC environment has reached a

critical level. If the introduction of ASR systems has the net effect of increasing the
controllers' workload further, they will not be accepted. The technology must be sufficiently
advanced that baseline recognition accuracy is nearly perfect, even when speech is degraded by
background noise or speech variations. The technology should be as transparent as possible to
the controllers. Feedback to the user must be implemented in such a way that it does not
provide another task for the controller to monitor, but rather induces a sense of reduced levels
of stress. The success of ASR technology depends on its ability to reduce overall cognitive
workload, not increase it.

3.3 THE ATC LANGUAGE

The set of words and grammar rules that a controller uses when directing aircraft can be
thought of as a language in its own right. Although it is essentially a subset of English6, it has
its own syntax and a specialized vocabulary. A native speaker of English that is not familiar

with the ATC language would most likely have difficulties understanding a controller. The

ATC language was designed for radio communications which typically implies degraded

communication channels. Hence, it was designed to be unambiguous, clear, and simple. The
language is defined in what is known as the "air traffic controller's handbook" or simply "the
7110 "7 [12]. In addition, the pilot's perspective of the language is given in the Airman's

Information Manual, usually referred to as "the AIM" [13].

The linguistic characteristics of the ATC language are key to the potential success of
introducing ASR technology into the ATC system. Hence, the vocabulary, syntax, and
information content of the language must be examined. In addition, it is necessary to determine
to what extent controllers adhere to the syntax prescribed in the 7110.

3.3.1 THE ATC VOCABULARY AND SYNTAX

The air traffic controller's handbook describes all phases of air traffic control, with

definitions of the appropriate syntax. Examples are usually supplied to demonstrate how the
syntax should be used in practice. Figure 3.1 shows a simplified excerpt from the handbook.

Upper case letters are used to indicate fixed words, whereas lower case letters within
parentheses indicate variables that the controller must supply. A slash (/) indicates that there
is a set of alternate words. Note that the aircraft callsign is an implied variable preceding the
entire phrase. Elsewhere in the handbook are definitions for the callsign syntax and the altitude
syntax. Combined, these subsyntaxes form the entire syntax for the altitude assignment
command. The ATC grammar is the union of the syntaxes for all the commands defined in the
controller's handbook. The vocabulary then is simply the set of all words present in the syntax
definitions.

6 In the U.S. ATC system, English is used exclusively. In other countries, English is used as the international
language of ATC, in conjunction with the local language.

7 After its FAA document number. At the time of writing, the current version is 7110.65F.

Figure 3.1: The altitude assignment syntax.

Phraseology:

CLIMB/DESCEND AND MAINTAIN (altitude).

Example:

"United Four Seventeen, descend and maintain six thousand."

In order to use speech recognition technology, the vocabulary and syntax used in the

application at hand must be represented in a formal notation that can be processed by the

recognition software. Many different notations exist - the one chosen for this paper is the

syntax notation developed by Verbex, Inc. for their family of speech recognizers. This choice

is an arbitrary, yet convenient one, as a Verbex speech recognizer was used for this particular

research effort. This notation provided a simple, yet flexible and powerful means of

representing the ATC syntax. Figure 3.2 contains a possible representation for the altitude

assignment command using the Verbex notation. Lower case words are fixed words, whereas

upper case words prefixed with a period represent substructures. The definition for the

climb/descend substructure is also displayed.

Figure 32: The altitude assignment syntax informal notation.

.CALLSIGN .CLIMB-DESCEND and maintain .ALTITUDE

.CLIMB-DESCEND=

climb

descend

Due to the limitations of the speech recognition devices available today only a subset of

the 7110 can be implemented. This constraint may have to be overcome by the time the

technology is introduced operationally. However, since a set of few commands constitute the

majority of the radio traffic between controllers and participating aircraft, it is feasible to use

only a subset of the entire grammar. In particular, the commands of significance are those that

imply a change in the airspace state. The prime objective of ATC, ensuring traffic separation,
is dependent on the positions and velocities of the aircraft in the sector. Thus, our primary
concern lies with the commands that change altitude, heading, and airspeed. The altitude
assignment syntax was described in Figures 3.1 and 3.2. Figure 3.3 contains a description of
the heading and airspeed assignment commands.

Figure 3.3: The heading and airspeed assignment syntax.

Phraseology:

TURN LEFT/RIGHT HEADING (degrees).

FLY HEADING (degrees).

TURN (number of degrees) DEGREES LEFT/RIGHT.

Phraseology:

INCREASE/REDUCE SPEED: TO (specified speed in knots).

INCREASE/REDUCE SPEED (number of knots) KNOTS.

The syntax actually used contained most of these commands, as well as a number of additional

commands to increase the realism of the simulation (see Appendix A).

3.3.2 INFORMATION CONTENT OF THE ATC LANGUAGE

The level of difficulty associated with adopting a grammar and a vocabulary for use

with a speech recognizer depends on the size of the vocabulary and the complexity (or
branching factor) of the grammar. The complexity of a language is defined as 2H(w) where
H(w) is the average information content of the set W = (wl,...,wn). In our case W
represents the ATC language, and w, the individual words in the vocabulary. The average
information content in turn is defined by H(w) = -, P(w1) log 2 P(w1). The greater the

complexity of the language is, the more difficult the recognition process becomes.

An intuitive understanding of these information theory concepts may be achieved by
considering two extreme cases. First, consider a language consisting of the single phrase "the
quick brown fox jumps over the lazy dog." In this case, the occurrence of each word is known
with certainty, and hence P(wl) = 1 for all i, resulting in an average information content given
by H(w) = 0 bits/word. The speech recognition process in this case is trivial. No matter what
phrase is uttered, the phrase "the quick brown fox jumps over the lazy dog" should be
recognized. Now, consider the natural English language. In this case, there is considerable
uncertainty in determining which word will occur next in a sentence. Hence, P(wl) is less than
unity, and the information content is non-zero. As can be imagined, natural languages
constitute one of the most difficult recognition tasks.

40

The ATC language has a branching factor somewhere in between that of our fictitious

one phrase language and natural language. An empirical measure of the information content

may be obtained with help of the Shannon game. In this game a sentence is chosen from the

syntax of interest, and a player familiar with the language is asked to derive the sentence by

guessing each word or letter. The player continues guessing until the correct word or letter has

been found. The more constrained the language is, the fewer guesses the player will need.
The information content is then approximated by H(w) = -Y Q(j) log 2 Q(j), where Q(j) is the

fraction of words or letters for which j guesses where required. It is more practical to use

letters instead of words since it gives the player a smaller set of possibilities to choose from.

A simple experiment was carried out where the Shannon game was used to obtain a

comparative information content measure of the ATC language vs. natural language. Table 3.1

depicts the results of the game. The information content obtained from the natural language

example, 1.44 bits/letter, compared favorably with a result obtained from the literature [42].
The results indicate that the ATC language is much less complex than natural language. Recall
that the branching factor itself is defined as an exponential of the information content. Hence, a
threefold difference in information content implies an eightfold difference in branching factor.
The implication is that the ATC language is more constrained than natural language, and hence
a more suitable candidate for speech recognition technology. If a subset of the ATC language
is used, and pragmatic constraints added, the overall difficulty of the recognition task can be
reduced to a manageable level. Speech recognition of natural language however, is currently
not possible.

Table 3.1: Results from the Shannon game applied to the ATC language.

Language Phrase Information content

ATC "Traffic alert ten o'clock altitude unknown advise 0.580 bits/letter
you turn right."

ATC "Descend at pilot's discretion maintain six 0.553 bits/letter
thousand."

Natural "I have not had a chance to discuss it with her yet." 1.442 bits/letter

3.3.3 THE SYNTAX DEVIATION PROBLEM

The feasibility of introducing speech recognition technology into ATC depends on the

extent to which controllers adhere to the grammar specified by the FAA. Most implementations

of speech recognition technology assume a rigid syntax. Recognition is greatly facilitated by

the constraints imposed by a grammar. As has already been discussed, the less complex a

grammar is, the more certainty there is about the occurrence of a word. The task of making a

machine understand natural language is a difficult one which has not been solved with today's

level of technology. As air traffic controllers deviate from the prescribed syntax and their

speech begins to approximate natural language, the recognition process becomes more difficult.

Hence there exists a need to examine to what extent today's controllers deviate from the ATC

syntax and vocabulary.

To achieve this, a receiver station was set up in the Flight Transportation Laboratory.

Figure 3.4 shows the basic elements of this station. Several hours of radio traffic between
Boston Approach and Departure controllers and aircraft pilots were recorded. The recordings
included different controllers as well as varying traffic and weather conditions. An attempt was

made to transcribe the recordings, to monitor the extent of the syntax deviation problem.

Figure 3.4: The receiver station.

Audio Audio
Input Output

Audio Cassette
RecoCaer Flight Scan Receiver

ina

As VHF transmissions are line-of-sight, reception of Boston Approach and Departure

was poor. The degraded quality of the recordings made it impossible to obtain meaningful
statistics on syntax deviation. However, it was clear that the syntax deviation problem is

highly dependent on the individual style of each controller. With some controllers, only 5% or

less of all transmissions deviated from the ATC syntax. With other controllers however, 25%
or more of all transmissions exhibited some form of syntax deviation. As only TRACON

controllers were monitored, no experimental results were obtained from other ATC
environments. Table 3.2 depicts some examples of transmissions that did not adhere to the

prescribed syntax. Also included is an example of a hesitation, which would most likely cause

a recognition error if voice input equipment was being used. As a sidenote, it was evident

from monitoring the transmissions that air traffic controllers are much more careful about using
correct vocabulary and syntax than the pilots involved.

Table 3.2: Examples of syntax deviations.

Actual transmission Correct syntax

Two eighty three what's your current altitude? Two eighty three say altitude.

One four three make that seven thousand five One four three climb and maintain seven
hundred. thousand five hundred.

Two sixty one, Boston Departure, contact. Two sixty one, Boston Departure, radar
contact.

Cherokee one bravo hotel contact Boston Cherokee one bravo hotel contact Boston
Approach on...uhhhhh...one two three point Approach on one two three point five.
five.

There are several approaches to the solution of the syntax deviation problem. If ASR
technology was introduced, the FAA could simply insist that the controllers adhere to the
syntax. This is undesirable however, as it imposes an additional constraint on the controller,
who may not even be able to change his or her individual style even if asked to. If speech
recognition technology is introduced in controller training before it is being used operationally,
as is likely to be the case, new controllers may begin to deviate less from the syntax.
However, there would be no guarantee that they would always adhere to the syntax, and it
ignores the generations of controllers trained without using ASR technology.

An analytic approach to dealing with the syntax deviation problem is the case frame

representation of speech [35]. A traditional syntax is represented by a tree structure or a Finite
State Machine. A sentence may fail to parse the syntax simply because a word is missing, or a
word has been inserted, or parts of the sentence have been reversed. If case frames are used,
the parser attempts to extract the meaningful information from the sentence, no matter where it
is located, and all superfluous information is disregarded. A case frame consists of a head
concept and a set of subsidiary concepts, cases. The header is a set of patterns which, if
matched, indicate that a possible instance of that case frame has been entered. Then, the rest of
the case frame is processed. Figure 3.5 depicts a possible case frame definition for the heading
assignment command. This representation would parse all the various transmissions listed in
the example, including those which do not adhere to the prescribed syntax.

Figure 3.5: A case frame representation of the heading assignment command.

Case frame definition: Example:

"four five two turn left heading one four zero"

[case frame: [case frame:
head concept: TURN head concept: TURN

[cases: [cases:
callsign: callsign: 452
direction: direction: left
heading: heading: 140

i i

Examples of syntax deviations:

"four five two make that a left turn heading one four zero"

"four five two could you turn left for me now, to heading one four zero"

"and a left turn heading one four zero for four five two"

"four five two...uhhhhh...turn left heading...uhhhhh...one four zero"

CHAPTER FOUR

THE HUMAN FACTORS P1ERSPECTIVE

4.1 THE SIGNIFICANCE OF HUMAN FACTORS

The introduction of ASR technology into the ATC environment has the potential to

reduce human errors, resulting in increased system safety. However, the dilemma of ASR is

that its purported advantages are not automatically realized by simply making the technology

available. Careful human factors design is necessary to capitalize on its potential [43].

Automatic Speech Recognition is meant to provide a communication channel between the user

and the system in question. Thus, by its very nature, speech recognition is inherently a part of

the man-machine interface, and hence has an effect on both the operator and the system. At the

very least, the effect of the technology on the operator's performance must be examined.

In the case of ATC, man-machine interface problems are exasperated by the fact that

ATC is already plagued by human factors issues such as intense levels of workload during

traffic peaks intermixed with controller boredom during low demand periods. The technology

can have the effect of both worsening existing human factors problems and creating new ones.

If these problems are not solved, it is unlikely that speech recognition technology will be

accepted for operational applications. Furthermore, the possibility of loss of lives in the case

of errors makes it imperative that the human factors problems created by introducing ASR into

the Air Traffic Control system are properly addressed and solved.

4.2 MODELING HUMAN FACTORS

In order to approach human factors in an analytic way, a conceptual model of the

system resources available can be used. The system resources include software (rules and

regulations), hardware, environment, and liveware (users). The SHEL model, named by the
initial letters of these resources, can be used to represent the components and their links [42].
Figure 4.1 contains a graphical representation of the SHEL model. The connecting lines
between the system components represent the interfaces between the respective resources. It is
at the interfaces to the liveware component that most human factors issues occur.

Figure 4.1: The SHEL model.

In terms of the SHEL model, examples of human factors problems include microphone

placement and characteristics (hardware-liveware interface), speech variations due to

background noise (environment-liveware interface), and design of error correction strategies

(software-liveware interface). Note that not all human factors issues are strictly related to one

single interface to the liveware component. Examples include fatigue, stress, boredom, and

user acceptance of ASR technology. It should also be emphasized that ATC is a multi-user

system. Thus, there are also liveware-liveware interfaces that must be considered.

4.3 IDENTIFYING HUMAN FACTORS ISSUES

Identifying human factors issues related to ASR technology is a topic that has been

covered adequately and extensively [43]. However, ATC is fundamentally different from other

ASR applications in several ways:

* In ATC, voice is the primary communication channel, and microphones are
already used.

* The ATC vocabulary and syntax are already defined and cannot be altered.
* Human errors in the ATC environment can lead to fatal results.

* The background noise consists of distinct voices, not random noise.

The SHEL model is useful for an initial analysis of the human factors issues, and for

pinpointing specific problems. Three categories of human factors problems were found:

common issues that are mutual to both ATC and other ASR applications, unique issues that are

typically not encountered in other applications, and non-issues - problems that may be
significant in other applications, but that do not play a major role in ATC.

4.3.1 COMMON ISSUES

Issues that are common to both Air Traffic Control and other applications include the

problem of recognition errors due to variations in speech. This may be caused by stress,

fatigue, colds, temporal drift, or inter-speaker variations. Speech variations can be long term

or short term changes. Possible solutions include use of speaker independent systems, which

by definition can cope with different speech patterns without prior training. However,
commercially available speaker independent systems typically require some degree of speaker

dependence to achieve an adequate level of performance. A more pragmatic approach is

adaptive training, which is usually achieved by updating the user's speech model after each

recognized phrase. The technology required for adaptive training is available today. A simple
experiment using adaptive training indicated that recognition errors could be reduced from 10%

to 1% in the best cases. However, it is still unclear whether this technique is capable of coping

with short term changes such as stress induced speech variations.

Background noise is problematic since it can cause spurious recognitions and since it
can also alter the speaker's voice. As background noise levels increase to mask out auditory
feedback to the speaker, the voice changes. This phenomenon is known as the Lombard
effect. For this reason, the microphone input is usually fed into an earphone mounted on the
user's headset. Other solutions to handle the background noise problem include use of noise
cancelling microphones and pre-processors. The technology is sufficiently advanced in this
field that it no longer needs to be considered a serious problem in the ATC environment.

Other design issues of importance include user acceptance to the technology, proper
presentation of feedback, and the design of error detection and correction strategies. These
factors have an influence on performance and cognitive workload. If the users are not
motivated to use the technology, it will not be accepted in the field. For this reason, feedback
information describing recognition results should be as unintrusive as possible to the
controllers. Syntactic, semantic, and pragmatic processing, as well as Confusion Matrices,

should be used to provide automatic error detection and correction [45]. Several of these

techniques were incorporated into the man-machine interface model developed in this research

effort. These techniques will be discussed in more detail later.

User training and enrollment is especially a problem with speaker dependent systems.

During the course of this project, cases were experienced where training took two to three

hours to complete. Better training algorithms must be developed in these cases. Furthermore,

as much training information as possible should be obtained during the actual operation of the

ASR equipment, as the user's voice tends to be different during training than in operational

situations.

There are human factors issues involved with the hardware selection procedure. For

example, the better the baseline recognition accuracy of the system is, the lower the cognitive

workload tends to be. Excessive numbers of recognition errors cannot be tolerated.

Manufacturers of speech recognition equipment invariably claim recognition accuracies near

100%. For this reason, it is necessary to develop standardized tests specific to ATC

applications. Equipment that is being considered for use operationally must be tested in the

actual environment it is intended for, with the same users that will operate the system.

The use of mixed input modalities should be investigated. In earlier research completed

at the Flight Transportation Laboratory, it was determined that voice alone is not suitable to

correct recognition errors [9]. Therefore, the mixing of voice with mouse and keyboard input

should be considered. The use of touch screens also has potential for ATC applications, and is

being considered for the Advanced Automation System, but is not investigated in this paper.

Finally, as has been mentioned above, the problem of syntax deviation must be

considered. This is especially true for recognizers where syntax checking is an inherent part of
the recognition process. Other techniques such as the use of case frames should be considered.

4.3.2 UNIQUE ISSUES

Now, let us consider some of the issues that are of special significance to Air Traffic
Control. One of these is recognition errors due to stress induced speech variations. This is a
critical issue in Air Traffic Control since the cases where speech recognition technology has the
greatest potential to enhance safety are likely to be during stressful situations. It is exactly in

the conditions where the technology is needed most, that it performs worst. Adaptive training

has been suggested as a potential solution, but it is not clear that rapid changes induced by

stress can be overcome using this technique. Furthermore, once the speech model has been

adapted, recognition errors may occur if the speaker reverts to normal speech. Thus, adaptive

training limits the ability to interpret both normal and stressed speech. Alternative methods

include mapping techniques derived from speech synthesis research to normalize stressed voice

[46]. As this issue is significant to military applications of voice input technology in the

cockpit, considerable research has been directed towards solving this problem.

Another issue is that of cognitive workload. This is already a problem in Air Traffic

Control, as controllers often face an information overload situation during traffic peaks. Thus,
if the introduction of speech recognition technology has the effect of increasing workload

instead of decreasing it, it will not be accepted by the users. Before voice input technology is

introduced into the ATC environment, the impact on cognitive workload must be assessed.

Furthermore, feedback and error correction strategies must be designed to minimize the impact

on cognitive workload.

4.3.3 NON-ISSUES

For the sake of completeness, the issues that are of less significance to Air Traffic

Control should be described. The choice of microphone type and mounting, and the human
factors issues involved, are less significant in ATC since headset mounted microphones are

already used. When speech recognition equipment is introduced, the same or similar headsets
should be used if possible. This would minimize the impact of introducing new technology.
Some care must be taken however, to ensure that the performance of the speech recognizer is
not overly sensitive to microphone placement, as is often the case with noise cancelling
microphones.

The design of the vocabulary and syntax is an important issue in most speech
recognition applications. Care must be taken to determine the needs of the user, and design the
grammar so that the voice dialog is unambiguous and instills a sense of confidence in the user
[47]. In ATC however, the grammar has already been defined and for all practical purposes,
cannot be altered. Thus, speech recognition must be adapted to suit the existing vocabulary
and syntax.

Finally, a problem common to other applications is recognition errors caused by users

talking to each other with live microphones. This issue was encountered during previous

research conducted at the Flight Transportation Laboratory [9]. However, in that particular

scenario no push-to-talk (PTT) switch was used. In today's ATC system, controllers already

use PTT switches when issuing commands. This eliminates the problem of spurious

recognitions caused by communicating with other users, and also simplifies endpoint detection

during continuous speech recognition.

4.4 APPLYING HUMAN FACTORS EXPERTISE

Human factors differs from other engineering disciplines in that there is a lack of

analytic procedures that can be applied to human factors problems. For some human factors

issues, such as the choice of display colors, the design of controls, etc., there is extensive

literature based on theoretical and empirical results [48, 49]. This information is of some use

to this research effort, as it provides an analytic approach for designing the graphical

representation of recognition results and user feedback. What is needed, in the absence of

analytic methods, is a set of broad guidelines that address the man-machine interface issues
involved in introducing ASR technology. Some solutions to specific human factors problems
have been discussed above, but a more extensive set of guidelines is available from existing

literature and is presented below.

4.4.1 DIALOG DESIGN

The design of the dialog - the interaction between the user and the machine - is less
flexible in ATC applications of voice input technology, since the syntax and vocabulary are
prescribed by the FAA. Nevertheless, the following guidelines should be maintained [50]:

* The user can become lost in a strictly defined complex syntax. More flexible

representations such as case frames should be used.
* The average error rate may be unacceptable for critical commands.
* Insertions (legal recognition when no word was spoken) can confuse the

user.

* On-the-job speech may not match voice patterns generated during off-line
training conditions.

* Long host response times seem worse in voice input/output systems due to

raised expectations from human-human like speech interaction.

* The user may assume that the system understands word equivalents (e.g.

"nine" and "niner" in ATC).

* The user may think the system automatically knows when to recognize speech

and when not to.

* The user may try to speak louder and slower when a recognition error occurs.

As can be seen, several of these potential pitfalls stem from the user's expectation of the

performance of the technology. Because using voice input/output can appear more natural than

typical input modalities such as using a keyboard or a mouse, the user expects the system to

behave more intelligently.

It should be recognized that ASR systems are not always suitable as simple keyboard

replacements [47]. Voice input technology is useful in ATC to capture information that is

already transmitted verbally. However, it may also be considered for secondary functions such

as controlling inter-facility communications. In these cases it is significant to ensure that the

user perceives a need for ASR technology, or at least a deficiency with the current input

modality. The man-machine interface should provide what the user wants, needs, and expects.

Users should be in command and feel that the system is adapting to them. The user should feel

confident with the transaction, and feedback should always be unambiguous. Furthermore, the

transaction should make use of graphical representations and minimize the need for instruction

manuals.

4.4.2 DESIGN OF TRAINING PROCEDURES

Training procedures should be designed in such a way that the user remains motivated.
If the user becomes bored, the speech patterns will change, and recognition performance on the

job will be poor. This puts a constraint on the time required for training as well as how
repetitive a training session can be. Simple repetition of all words in the vocabulary is not
acceptable, especially for large vocabulary applications [11, 51]. Instead, as much training
information as possible should be obtained during operational use of the voice input
equipment. If this is not possible, simulations should be used. Furthermore, the user should
be provided with feedback information indicating the quality of the training data. Training
should be based on continuous speech, to capture coarticulation features of the speaker's voice.

4.4.3 BACKGROUND NOISE

Most likely, any ASR system used operationally in ATC will be speaker dependent, or
at least speaker adaptive. For speaker dependent systems, the noise levels during training can
significantly influence recognition accuracy. Variable (versus constant) noise levels pose an
addition problem [31]. Noise cancelling techniques may reduce part of the problem, but other
guidelines exist to minimize training related problems with noise:

" Training should be done with the same noise levels as will be encountered in
the application.

* If variable noise levels are present, more robust results will be achieved if
training is done with high noise levels.

* Inclusion of one quiet training pass can improve performance for applications
with variable levels of noise.

It should be noted that most manufacturers of speech recognition equipment provide their own
guidelines for the proper training procedures in applications with significant background noise.
However, the guidelines listed above are typical for the speaker dependent systems available
today, including those used in this research project.

4.4.4 TASK ANALYSIS

Task analysis can be used to assess the feasibility of using ASR in specific ATC
applications. As it includes considerations of the operator loads and requirements, it is also
useful for identifying and evaluating human factors issues. Task analysis can be thought of as
the process of describing a task by its atomic components. Commonly followed steps in task
analysis include the following [52]:

* Specifications of system objectives and functions.
* Relation of these functions to operator inputs.
* Determination of information necessary for operator actions and feedback.
* Determination of constraints.
* Identification of operator loads.
* Identification of repetitious tasks.
* Determination of operator skill requirements.

Task analysis may also be useful in identifying user errors and needs not previously
recognized. A task analysis based feasibility assessment may help in designing the user
training program. The constraints imposed on the operator and system performance that are
identified through task analysis must be acceptable if ASR technology is to be introduced.

4.4.5 AUTOMATIC ERROR DETECTION AND CORRECTION

The importance of automatic error detection and correction techniques has been
emphasized several times. Recognition errors cause frustration and increased stress, which can
induce a vicious circle that results in unacceptable recognition performance. Recognition error
detection and correction can be partially handled by the user, but if voice means alone are used,
correction commands may also be misunderstood. Hence, other input modalities should be
used, preferably including some rapid pointing device. The trackball is an ideal candidate since
it is already in use in the ATC environment.

Automatic error detection and correction techniques can be achieved using syntax,
semantics, and pragmatics. Other techniques include the automatic insertion of alternate
words, and the use of Confusion Matrices to aid correction in the case of substitution errors.
There are also various Artificial Intelligence (AI) reasoning rules that can be applied to improve
automatic error detection. In fact, the most concise way to implement an automatic error
detection and correction system may be to employ an existing rule-based expert system shell,
and provide a set of heuristics for the particular application. These heuristics should be
dynamic and draw upon the syntactic, semantic, and pragmatic knowledge available. This
would most likely require an expert system shell capable of temporal reasoning.

One algorithm, the SMART system, uses the following procedure to implement error
detection and correction [45]:

* Check the recognized phrase for syntax.
* If a word is rejected, get the runner-up word. Compute the score difference

between the first word and the runner-up word, and increment the evidence
score ES.

* Refer to the appropriate Confusion Matrix and determine if the first word and
the runner-up word are frequently confused. Increment ES accordingly.

* Check the user's speech pattern statistics, to see if the runner-up word is used

frequently in that position. Increment ES accordingly.

At the end of the procedure, if ES is above a threshold value, the runner-up word should
automatically be inserted. Otherwise, the word should be inserted but verified by the user, or
the user should be prompted for a new word. The weights of the different components of the

evidence score and the magnitude of the. threshold must be chosen from experience.

An automatic error correction procedure as provided by the SMART system points out

the significance of being able to obtain scores for runner-up words. This is critical in choosing

an alternative automatically, when it can be determined with some certainty that a recognition
error has occurred. However, many speech recognition systems commercially available today
use Viterbi (or similar) algorithms to find the best match. These algorithms, by their nature,
cannot return the scores of alternative hypotheses. Thus, important information is not made
available to the automatic error correction algorithm.

CHAPTER FIVE

5.1 RESULTS FROM PREVIOUS RESEARCH

Prior to the current research effort conducted at the Flight Transportation Laboratory,

preliminary work was completed to demonstrate the feasibility of using commercially available

speech recognizers for ATC applications [9]. In May 1985, the LIS'NER 500, a speaker

dependent, isolated speech recognition system with a 64 word vocabulary was purchased. The

LIS'NER 500 was manufactured by Micro Mint, Inc., and was intended for the Apple II

family of computers. Baseline recognition accuracies of 70-80% were achieved. Recognition

delays were on the order of 2-5 s. These high delays were partially due to the LIS'NER 500's

dependence on the Apple II 6052 processor. These delays, combined with poor recognition

accuracy, made the system difficult to use, even for preliminary research purposes.

A second, more capable system was purchased for the preliminary research effort.

This was the Votan VPC 2000, a speaker dependent, continuous speech recognizer with an

active vocabulary of 64 words, to be used with the IBM PC series of personal computers. In

contrast to the LIS'NER 500, the VPC 2000 contains its own processor, a Motorola 6809, as

well as a customized signal processing chip. When operated as an isolated speech recognizer,

the VPC 2000 achieved recognition rates of 97%, with recognition delays of 0.8 s. Thus, both

in terms of accuracy and recognition delay, the VPC 2000 was found to be superior to the

LIS'NER 500. When operated in continuous speech recognition mode however, recognition

accuracy was degraded. In particular, it was found that the VPC 2000 could not successfully

cope with speech variations due to coarticulation.

5.2 THE HARDWARE SELECTION PROCESS

The selection of the LIS'NER 500 and the VPC 2000 seems to have been motivated by

market availability and price, rather than specifications relevant to the application at hand. In
the course of the current research effort however, a set of criteria was defined to aid in the
choice of new recognition hardware. Purchase of new equipment was motivated by recent

advancements in the technology as well as deficiencies of the LIS'NER 500 and the

VPC 2000. The required performance specifications desired for ATC applications have been

discussed extensively in Chapter 2, but are summarized below:

* Continuous speech recognition.

* Vocabulary size greater than 100 words.

* High baseline recognition accuracy.

* Efficient training procedures.

* Accessibility to the recognition software.

* Noise robustness.

* Low sensitivity to variations in speech (including coarticulation).

* Recognition delays less than 0.5 s.

* Speech playback or speech synthesis capability.

* Availability of noise cancelling microphone with FPI switch.

Equipment were evaluated and ranked according to these criteria. The results of this evaluation

process are published elsewhere [30].

The evaluation study concluded with the recommendation that the ITT Defense

Communication Division's VRS1280/PC be purchased. Consequently, an order was placed

for one unit. However, due to delivery problems, the order was cancelled, and in June 1989, a

Verbex Series 5000 Voice Development System with the extended vocabulary option was

purchased instead. The Verbex 5000 was not available during the initial market evaluation, but

appeared equal or superior to the VRS 1280/PC. Both the VRS 1280/PC and the Verbex 5000

have established themselves as market leaders. The VRS1280 series have been used

extensively for government and military applications, whereas the Verbex 5000 series have

been applied primarily in commercial systems.

5.3 THE EVALUATION PROCESS

The purpose of the evaluation process was primarily to obtain performance measures
for the newly acquired Verbex 5000, to determine its suitability for ATC applications. In doing

so, it was decided to obtain both absolute performance data as well as to perform a comparative
evaluation between the Votan VPC 2000 and the Verbex 5000. The Votan VPC 2000 was a

suitable candidate for testing, since it ranked highly in the equipment selection study 8. The

main performance criterion used was baseline recognition accuracy, measured in terms of the

word recognition rate.

The evaluation tests were performed with scripts of 50 phrases generated randomly

from a grammar used during the previous research completed by Trikas. Hence, the testing

used ATC commands, although there was some deviation from the syntax specified by the

7110. These deviations were due to shortcomings in the original grammar design. Despite its

flaws, it was decided to use the existing grammar to maintain consistency with previous

results. Once the evaluation phase was over however, a new vocabulary and syntax were

defined for the current research effort. Table 5.1 represents a sample of the phrases used for

evaluation testing of the VPC 2000 and the Verbex 5000. Overall, the script contained 50

phrases with a total of 429 words.

Table 5.1: Sample phrases used for evaluating ASR hardware.

"Air Canada 558 climb and maintain five thousand five hundred"

"United 452 cleared for final"

"Trans World 120 reduce speed 210"

"Air Canada 341 turn left heading 280 over"

"United 780 descend and maintain three thousand"

5.4 CHARACTERISTICS OF THE ASR SYSTEMS

The evaluation tests relied primarily on word recognition accuracy as a measure of

performance. Recognition delays were also measured as a secondary parameter. However, as

has been discussed previously, ASR systems possess many other characteristics that influence

their suitability for ATC applications. These include robustness to noise and speech variations,

vocabulary size, design of the training procedures, accessibility to the recognition software, the
availability of speech playback or synthesis, and microphone issues. An overview of the
characteristics of the Votan VPC 2000 and the Verbex 5000 is presented below.

8 The ASR hardware selection study actually evaluated the Votan VPC 2100, the successor of the VPC 2000.
However, according to a company spokesman, the products differ little in performance.

5.4.1 THE VOTAN VPC 2000

The Votan VPC 2000 consists of three components: the Voicecard, Voice Key, and the

Voice Programming Language (VPL) software [53]. The VPC 2000 is manufactured by
Votan, Inc. of Fremont, California. At the time of purchase in 1986, the VPC 2000 cost

approximately $1,500.

The Voicecard is the actual hardware - an IBM PC compatible add-in board that

performs the actual signal processing and feature extraction. It contains its own Motorola 6809
Central Processing Unit (CPU) to offload the host computer's CPU, as well as custom-made
signal processing chips and 22 kilobytes of Random Access Memory (RAM). The onboard
RAM is used to store training templates during recognition. The VPC 2000 relies on the host
computer's hard disk or diskette drives for permanent storage of user voice templates.
Communication with the board is achieved through the internal system bus. The board has
provisions for external audio input and output. The audio input can be used for storing
digitized recordings of speech. This feature was not used during the comparative evaluation
against the Verbex 5000 however.

Voice Key is a software package that allows the user to define a vocabulary, to train it,
and to define a keyboard equivalent for each entry in the vocabulary. The user can also store
audio segments to be used for feedback purposes. In addition to adding new training
templates, Voice Key also provides the ability to perform recognition to test the lexicon. Both
isolated and continuous recognition are supported. The purpose of Voice Key is to design
voice equivalents to standard keyboard entries for frequently used software applications such

as spreadsheet programs. However, it can also be used to design application vocabularies, and

to perform training and testing within one program environment. For example, Voice Key was
the software used for the evaluation of the VPC 2000 conducted within this research effort.

VPL is a programming language in its own right, designed for the purpose of creating
voice input/output applications using the VPC 2000. Source files are created with a regular text
editor, and then compiled and executed. VPL was used in the early Flight Transportation
Laboratory research effort to create an ATC simulation featuring voice input and output [9].
The recognition output was redirected to the IBM PC's serial port, which was connected to a
Texas Instrument Explorer Lisp machine running an ATC simulator. VPL provides more
flexibility than Voice Key, but requires some programming skills.

The VPC 2000 is capable of storing an active vocabulary of 64 utterances 9. However,

VPL provides a vocabulary switching feature, so that the effective vocabulary size can be much
larger, if the application can be logically subdivided into sequential tasks. Training consists of
simply uttering each word to store a reference template. It is possible to store multiple
templates for each word, and it is recommended that at least two templates per word be used.
However, the number of possible training tokens is limited by the onboard memory capacity.
Voice Key contains an embedded training feature that allows the user to extract templates from
phrases spoken at a natural rate. The extraction can be performed manually or automatically.
Thus, it is possible to store one token uttered during isolated speech recognition and another
from continuous speech recognition. The VPC 2000 does not possess any capabilities beyond
this to deal with the coarticulation problem.

5.4.2 THE VERBEX SERIES 5000 VOICE DEVELOPMENT SYSTEM

The Verbex Series 5000 Voice Development System consists of the Verbex Voice
Input/Output System, voice cartridges, the Vupdate, Emulate, Convert, and Transfer utilities,
and the Voice Developer software package [54, 55]. The Verbex 5000 is manufactured by
Verbex Voice Systems, Inc. of Edison, New Jersey and Littleton, Massachusetts. At the time
of purchase in 1989, the system (with the extended vocabulary option) cost $8,495.

Unlike the Votan VPC 2000, the Verbex Voice Input/Output System is housed in a
separate casing with dimensions 17x4x12 inches. Communication with the host computer is
achieved through an asynchronous serial interface (RS-232). The Verbex system can be used
as an input/output device for any computer or terminal with an RS-232 interface. However,
the application design process can only be conducted on those host computers for which
Verbex provides the necessary software. In this particular case, an IBM XT was used.
Transfer rates of up to 19,200 baud are supported. The system is capable of communicating
with other Verbex units in a chain network. This feature was not used however. The Verbex
system has provisions for audio input and output, as well as a slot for voice cartridges. The
host computer's storage capabilities (e.g. hard drive or diskette drives) can also be used for
permanent storage of grammar definitions and user speech patterns.

9 An utterance is usually a single word, but it is sometimes more convenient to train logical combinations of
words as one utterance (e.g. "Air Canada").

The main system components are mounted on a main circuit board and a daughter board

horizontally mounted inside the casing. The main circuit board contains three processors: a

Texas Instruments TMS320, an Intel 8088, and a Verbex proprietary processor known as the

"Template Manager". The main circuit board has 512 kilobytes of RAM and provisions for up

to 256 kilobytes of Read Only Memory (ROM). The daughter board provides the circuitry for

the voice output facility. It has a Motorola 68000 processor, 16 kilobytes of RAM, and 192

kilobytes of ROM.

The voice cartridges are storage devices for maintaining individual copies of recognition

files and user voice files. The concept is that each user has a voice cartridge to store training

data for the particular application. Before a user starts a session, the voice cartridge is simply

inserted to access the appropriate voice files. Each cartridge contains 64 kilobytes of battery-

backed CMOS10 RAM. Each voice cartridge can store one recognition file and one voice file,

which together form a complete voice input/output application.

Several programs are supplied with the Verbex 5000 system to design voice

applications and train the system. One of these programs, Vupdate, converts voice files from

earlier versions, to the current version of the software. The Convert program takes an ASCII

source file describing the vocabulary and grammar definition using Verbex' notation, and

converts it into a recognition file. The Transfer utility is then used to download the recognition

file to the Verbex 5000 system. This utility can also be used to transfer voice or recognition

files between the voice cartridges, the Verbex 5000 internal memory, and the host computer.

Finally, the Emulate program allows the user to access a menu based software package that

includes facilities for user training to create voice files, recognition tests, manipulation of voice

and recognition files, as well as diagnostics. The Voice Developer System is a menu driven

program that provides a user friendly environment for the user to develop and test voice

input/output applications.

The Verbex 5000 has a maximum vocabulary size of 80 words. However, there is an

extended vocabulary option which allows for vocabulary switching, which can be used to

increase the effective vocabulary size. Training consists of two phases. First, during the
enrollment phase, the user simply repeats each word in the vocabulary twice. During the
second phase, user training, a script is presented with phrases generated from the syntax.

10 Complimentary Metal Oxide Semiconductor (CMOS) chips are useful for battery-backed permanent storage
due to their relatively low power consumption.

Continuous speech recognition is then used to train these phrases, providing important

coarticulation information. The training script is designed such that each word is repeated a
certain number of times, according to a changeable parameter. It is also possible for the
application designer to define the training script. The user's speech patterns are stored using
HMM representations. Whenever a phrase is trained, the probability parameters in that user's
particular HMM network are updated. Unlike the VPC 2000, adding more training tokens
does not increase the memory required. to store the speech patterns. This allows for adaptive
training techniques to be applied without having to delete earlier training data. The size of the
HMM representation is determined by the number of words in the vocabulary, and the
branching factor of the syntax. These two characteristics are constrained by the computational
power of the Verbex 5000 and by the memory available for storage.

5.5 EVALUATION RESULTS

The first test consisted of an evaluation of the Votan VPC 2000. Trikas reported 97%
recognition accuracy with isolated speech, but did not specify to what extent the results were
degraded with continuous speech. Since continuous speech capability is essential for ATC
applications, the test was performed using a natural rate of speech. The resulting accuracy rate
was found to be 83.4%. This represents a significant reduction in recognition accuracy from
the isolated speech case. This degradation in recognition accuracy amounted to a more than
fivefold increase in error rate, from 3% to 16.6%. The overwhelming majority of the errors
were substitution errors, although rejection and insertion errors also occurred.

When the Verbex 5000 was tested, the initial results were remarkably poor. The word
recognition rate achieved was only 70.2%, significantly lower than the baseline recognition
accuracy measured for the VPC 2000. It was found that the recognition performance was
sensitive to the placement of the noise cancelling microphone. By varying the position of the
microphone element, the recognition rate was improved to 76.0%. However, this result was
still much lower than the desired 98% or above.

When analyzing the type of errors that had occurred, it became clear that rejection errors
constituted the prime cause for the low recognition accuracy. If the rejection errors were
excluded from the performance statistics, the recognition accuracy was found to be in the range
of 98.0% to 99.5%. This disproportionate impact caused by these errors was due to the
method the Verbex 5000 uses to handle rejection errors. In the case of a rejection error, the

Verbex 5000 rejects the entire phrase, unlike the VPC 2000 which only rejects individual

words. This phenomenon is due to the search algorithm employed by the Verbex 5000 to find

the best match between the recognized input and the stored speech templates. The algorithm,

while efficient, does not allow the Verbex 5000 to formulate alternative hypotheses once a

word has been rejected. For the same reason, the Verbex 5000 cannot report scores for

hypotheses other than the best match.

Given this finding, an attempt was made to reduce the frequency of rejection errors.

This was particularly important due to the marked degradation in recognition accuracy caused

by these errors, and because rejection errors imply a loss of information. Like most speech

recognizers, the Verbex 5000 utilizes an arbitrary threshold score to determine whether a

rejection error has occurred or not. The threshold can be altered by the application designer.

For the Verbex 5000 this is not a documented feature, but it was pointed out by Verbex'
technical support personnel. Changing the value of this threshold parameter provides a trade-
off between the frequency of rejection errors and the frequency of substitution or insertion
errors. In the case of the Verbex 5000, lowering the threshold increases the likelihood that a
recognized token will be rejected. If the threshold is increased, tokens that were previously
candidates for rejection will now be recognized. However, in this case there is an increased
chance of the recognized phrase containing substituted or inserted words, but this is less
problematic than the loss of an entire ATC command. Thus, the application designer must find
the threshold value that yields an optimum balance between rejection errors and other types of
recognition errors.

Essentially the only method to find an optimal threshold value is by trial and error.
Several values were tried, before obtaining test results with virtually no rejection errors, and
only a marginal increase in substitution and insertion errors. A new evaluation test was
performed with the new threshold value, yielding only two substitution errors out of the total
429 utterances, or a 99.5% recognition accuracy. This level of performance, although
achieved under near ideal noise conditions and using a prepared script, exceeds the 98% level
required for operational applications.

A final experiment was completed several weeks after the initial series of evaluation
tests to measure robustness to temporal drift in an individual user's speech patterns. A
recognition rate of 89.7% was recorded, reflecting a considerable degradation in recognition
accuracy. Once again, most of the errors were due to rejections of entire phrases. After the
test was completed, a new training pass was performed to update the speech patterns. The

recognition accuracy improved to 99.5%, the same value achieved previously. It would have

been possible to once again increase the rejection threshold value, but that method cannot be
continued indefinitely as it will ultimately result in an intolerable increase in substitution and
insertion errors. Thus, these results emphasize the importance of adaptive training to maintain
high levels of robustness to variations in speech.

The results from the evaluation tests are summarized in Table 5.2 below. The tests
confirmed that the Verbex 5000 is superior in performance to the VPC 2000, and is achieving

the levels of recognition accuracy required for operational applications. However, problems

remain with sensitivity to microphone placement and to speech variations. The evaluation
results indicate that adaptive training has the potential to improve recognition accuracy. The
VPC 2000 does have some advantages over the Verbex 5000, including the ability to reject just
words instead of whole phrases, and considerably lower purchasing costs. In terms of
performance however, the VPC 2000 cannot be considered a true continuous speech
recognizer, but rather a connected speech system as its recognition performance is significantly
degraded when using a natural rate of speech. The Verbex 5000 was judged to be a true
continuous speech recognizer, suitable for preliminary research applications.

Table 52: ASR hardware evaluation results.

Equipment Case Word recognition accuracy Delay

LIS'NER 500 [isolated speech] 70-80% 2-5 s

Votan VPC 2000 [isolated speech] 97.0% 0.8 s
[continuous speech] 83.4%

Verbex 5000 [basecase] 70.2% 0.1-0.5 s
[improved microphone placement] 76.0%
[increased rejection threshold] 99.5%
[temporal drift, before retraining] 89.7%
[temporal drift, after retraining] 99.5%

5.6 SIMULATION OF THE ATC ENVIRONMENT

The evaluation tests were conducted using scripts of randomly generated phrases.
Although the phrases represented valid ATC commands, they did not constitute a coherent
ATC task. As a result, the cognitive workload during the evaluation tests was relatively low,
and hence stress induced speech variations were practically absent. Furthermore, the voice

patterns resulting from a reading task are significantly different from the patterns resulting from

a tactical planning task such as ATC. Hence, there exists a need to provide an ATC simulation
to be used in conjunction with the voice input/output equipment that is being evaluated. This
simulation should exhibit sufficient realism to provide the user with a task, not just the
capability of arbitrarily vectoring aircraft. The taskload should also be variable so that the issue
of cognitive workload and its impact on speech recognition can be investigated.

Trikas, in his research effort, used the Votan VPC 2000 in conjunction with an ATC
simulator developed at the Flight Transportation Laboratory for the TI Explorer Lisp Machine
[9]. Using a VPL program, the output of the recognition process was transferred to the Lisp
Machine via a serial connection. There, it was processed by the ATC simulator to control the
simulated aircraft. The VPC 2000's voice storage capability was used to incorporate pilot
responses to the controller. These responses consisted of the callsign followed by the
acknowledgement "roger" or "say again" in the case of a recognition error.

Although the simulation used by Trikas possessed adequate functionality for his
preliminary research, it does not provide an inherent task for the user. Aircraft are presented
on a simulated radar display, and the user can vector the aircraft using voice recognition, but no
flight plan information is available, nor are neighboring sectors simulated. Furthermore, the
use of the TI Explorer Lisp Machine reduces the portability of the simulation. For these
reasons, a different ATC simulation was selected for the research effort presented in this paper,
the Wesson International TRACON simulator. TRACON is a PC-based simulator, and hence
can be used on the same host computer that is communicating with the Verbex 5000. This
greatly enhanced the level of portability, especially since IBM PC machines are much more
common than TI Explorers. Furthermore, TRACON provides the user with a list of flight
strips that define a task. The number of simulated aircraft per unit time can be varied to control
the taskload [54]. Hence, TRACON provides a low cost ATC simulation that suits the
requirements for the type of testing required for this research effort. It was also useful as a
technology demonstrator of the capabilities of voice input/output technology.

In order to run TRACON in conjunction with the Verbex 5000 speech recognizer, a
software utility named Softkey was used. Softkey provides a virtual pipeline from the IBM PC
serial port to the keyboard input stream. The recognition output from the Verbex 5000 could
be directed to the keyboard input for the TRACON program. Table 5.3 below lists the ATC
commands supported by TRACON, and their keyboard equivalents. Hence, an off-the-shelf
ATC simulator was used, without any special modifications to incorporate voice input.

Table 5.3: The TRACON command set.

ATC

ommnd
Keyboard

input

"Turn right NN degrees"

"Turn left NN degrees"

"Turn right heading NNN"
"Turn left heading NNN"

"Climb and maintain N thousand N hundred"

"Descend and maintain N thousand N hundred"

"Reduce speed to NNN"

"Increase speed to NNN"

"Resume normal speed"

"Resume normal navigation"

"Cleared direct to FIX"

"Hold at FIX"

"Say heading and airspeed"

"Cleared for ILS approach"

"Cleared for VOR approach"

"Contact center, good day"

Right arrow, then two digits.

Left arrow, then two digits.

Right arrow, then three digits.

Left arrow, then three digits.

Up arrow, then two digits.

Down arrow, then two digits.

Insert key, then three digits.

Insert key, then three digits.

Delete key.

Delete key.

Home key, then three or five letters.

Page Down key, then three or five letters.

Page Up key.

End key.

End key.

End key.

Note: All commands are preceded by the aircraft callsign, entered explicitly or selected using

the mouse or cursor keys. Also, note that some keyboard commands result in different

ATC actions depending on the situation.

As has been described above, the Verbex 5000 contains a voice response feature.

Hence, speech synthesis could be used with TRACON to simulate pilot acknowledgements.

This was not necessary however, since pilot responses using voice synthesis are already

featured in TRACON. This speech synthesis is achieved on a software level: speech data is

stored on the hard disk and played back through the IBM PC's internal speaker, or an external

speaker connected through the parallel port. Compared to the simulator used by Trikas, the

pilot responses provided by the technology demonstrator based on TRACON are more

extensive, and include simulated pilot errors and communication problems.

A~r nmman
Key in "

CHAPTER SIX

A MANoMACIEmNIE HNAERACE MODEIL

6.1 MOTIVATION

The level of ASR technology available today allows for the design of technology

demonstrators such as the one developed using the Verbex 5000 and Wesson International's

TRACON simulator. Simulations of this type are useful for demonstrating the feasibility of

using voice input/output in ATC applications. They can also be used for investigating potential

problems such as background noise and stress induced speech variations. However, the

simulator used for this research effort provides no error correction capability. For example, if

the recognized callsign is not in the active aircraft set, an error message is displayed. The rest

of the recognized command however, is processed. Since the aircraft callsign was not parsed

successfully, the processing of the remainder of the command fails, and a second error

message may be issued. The user must then repeat the sentence until it is recognized

successfully. Clearly, this lack of automatic error correction strategies is unacceptable for

operational applications of ASR technology.

The underlying reason behind the inadequacy of the simulator set-up is that it does not

take advantage of higher levels of knowledge inherent in the system. In short, the voice input

parser does not possess situational intelligence. For example, if a callsign is recognized that

differs from a valid callsign by only one character, then one can safely substitute the recognized

callsign by the best match from the set of active aircraft. This is an example of the use of
pragmatic, or situational, knowledge: the use of knowledge about the system state. As has
been described above, there are seven levels of knowledge of significance to the speech
recognition process: acoustics, phonetics, prosodics, lexical analysis, syntax, semantics, and
pragmatics. Of these, the last three represent the higher levels of knowledge. These can be
used to create an intelligent voice input parser. By acquiring and processing higher levels of
knowledge, it may be possible to achieve the high levels of recognition accuracy required for
operational usage of the technology, and to add robustness to the recognition process. Hence,
a model of a potential man-machine interface for operational ATC applications was developed,
to investigate the effect of adding intelligence to the speech recognition process.

It should be noted that processing higher levels of knowledge is only part of the
automatic error correction process. Just as significant is the presentation of feedback to the
controller. For example, if an error has been detected, and an alternate hypothesis has been
found with a high level of confidence, it may be possible to correct the error without requiring
any intervention by the user. The introduction of ASR technology into the ATC environment
must not result in increased levels of workload. Hence, the design of user feedback and the
frequency of user intervention are critical problems. Another issue of interest is the use of
mixed input modalities. These aspects were also investigated using the man-machine interface
model.

6.2 ATCVIP - THE AIR TRAFFIC CONTROL VOICE INPUT PARSER

A model called the Air Traffic Control Voice Input Parser (ATCVIP) was developed
and implemented in the form of a MicroSoft QuickBASIC computer program. Figure 6.1
contains a flowchart describing the essentials of the ATCVIP program. Notice that there is no
explicit mention of voice input. This is because the Softkey utility was used to pipe the voice
recognition output into the keyboard input stream. Hence, the voice input is represented by
keyboard input. This not only simplified the input/output handling, but allowed for exact
control during testing, as recognition errors could be simulated by entering errors via the
keyboard. The ATCVIP program is essentially unable to distinguish between actual keyboard
input and voice input pipelined to the keyboard input stream.

ATCVIP is intended to be used in conjunction with an ATC simulator. It relies
extensively on the situational state of the airspace, and hence requires two-way communication
with the simulator. However, the TRACON program is a black box in the sense that it cannot
provide airspace state information to ATCVIP. Hence, it could not be used with the man-
machine interface model. Furthermore, TRACON does not provide the capability to introduce
new output features, as would be required by ATCVIP. As a result, ATCVIP was developed
as a stand-alone product. It contains its own representation of the airspace, which is displayed
to the user, although not in a graphical form. By leaving the airspace state representation as
generic as possible, ATCVIP can in theory be connected to any ATC simulator. The actual
ATC simulation is of secondary nature - the purpose of ATCVIP is to demonstrate the ability
to increase recognition accuracy by making the man-machine interface intelligent, and to
present possible solutions to the user feedback and mixed input modalities issues.

Figure 6.1: ATCVIP flowchart.

In order to maintain commonality with the technology demonstrator developed using

TRACON, the same syntax definition (i.e. recognition file) was used for ATCVIP. Hence, the
same voice files that were developed for the technology demonstrator could be used with
ATCVIP. However, some modifications had to be made to the translation tables that define
what keyboard characters should be placed in the keyboard input stream when a token has been
recognized. These modifications were due to TRACON's use of the same keyboard equivalent
for different ATC commands. For example, the commands "reduce speed to" and "increase
speed to" both use the Insert key (see Table 5.3).

In the case of commands where a keyboard equivalent is shared, TRACON uses
pragmatic information to determine which command is meant. For example, TRACON
compares the recognized speed to the current speed of the aircraft in question to determine
which command should be selected when the Insert key has been pressed. This implies that
the recognized speed is correct however, and that no recognition errors have occurred. This
assumption is feasible when using TRACON with keyboard input only, but cannot be applied
when using voice input. Hence, some parameter must be introduced to distinguish these
ambiguous inputs from each other. This was achieved by inserting a special character in the
translation table to provide a unique identifier for each command in the syntax. The caret
character ("^") was used, since it is transparent to the TRACON simulation. This allowed for
the use of one recognition file for both the TRACON simulation and ATCVIP.

6.2.1 THE ATCVIP DISPLAY

As has been mentioned above, ATCVIP should ideally be used in conjunction with an
existing ATC simulator. The output should be displayed on the simulated radar screen.
Graphic symbols could be used to display recognized commands next to the corresponding
aircraft radar return. However, since this was not possible with the TRACON simulator, and
would require a customized version of ATCVIP for every simulator supported, a generic
display was used instead, relying on text instead of graphics. ATCVIP is not meant to provide
solutions to the knobs-and-dials type human factors issues involved with introducing ASR
technology into the ATC environment. The graphical representation to the controller is an
important issue, but it is a secondary problem to the functionality of the interface. The
ATCVIP display contains the information that would be required in an operational interface,
but in a simplified form. Figure 6.2 is a representation of the screen as it would appear to the
ATCVIP user.

Figure 6.2: The ATCVIP display.

[Current Input]
Status Callsign Command Parameter

P S C X aal6 descend and maintain 85

[Input History]

P S C X aal6 radar contact
P S C X ac655 contact center g'day
P S C X twl3 cleared for final
P S C X ac655 say heading and airspeed
P S C X twl3 radar contact

[Aircraft States] Actual Filed
Callsign Type Phase Alt Spd Alt Spd Heading
ac655 m80 hndof 10000 250 10000 250 180
ua846 727 enrte 12000 250 12000 250 022
d1904 m80 enrte 9500 250 11000 250 090
aal6 737 enrte 10000 250 10000 250 255
co544h 110 centr 9000 250 9000 250 015
ea861h 747 centr 10000 250 10000 250 005
co895h 110 centr 12000 250 12000 250 212
twl3 72s inded 20 0 9000 250 036

I ATCVIP 01.00 I

The display is subdivided into three sections: current input, input history, and aircraft
states. The current input section contains the most recently recognized command, after parsing
has been completed. The command is broken down into three logical parts: the aircraft
callsign, the ATC command being issued, and an optional parameter (e.g. altitude, airspeed,
heading). If any of these three parts has been altered through the automatic correction
mechanism, it is highlighted. If one of the parts has failed the parsing process, the original
input is shown blinking. This notifies the user that the input has not been parsed successfully
and must be edited manually.

In addition to the recognized command, a set of status flags is shown. Only one flag
can be active at the time. The active flag is highlighted. The four possible flags are pending

("P"), sent ("S"), correction ("C"), and cancelled ("X"). A newly recognized command
defaults to the pending status. When the next command is recognized the command status
changes to "S", indicating it has been sent (i.e. transmitted) to the aircraft. Flags can be
selected by moving the mouse cursor to the appropriate letter and clicking the mouse button.
This provides the capability to send, correct, and cancel recognized phrases.

ATCVIP 01.0

The input history contains a list of the most recently recognized commands. The most

recent command is displayed at the top. The structure is identical to that of the current input

section, except that a command in the input history cannot have the pending flag active. The

user can select the "C" status flag by clicking on it with the mouse to correct a command. In

this case, the command is inserted into the current input section and treated as a newly entered

command. Editing is achieved by selecting the part of the command that needs to be changed,

using the mouse. A single mouse click activates an input field where the user can enter a new

value using the keyboard. A double click activates a drop-down menu from which the user can

select a new value. The options in the menu are sorted according to the likelihood scores

determined during the parsing process, so that the most likely replacement value occurs at the

top of the menu.

The final section, the aircraft states table, lists the aircraft currently in the controlled

airspace, or those about to enter it. Each aircraft is identified by its callsign, the aircraft type,

the phase of the flight, the aircraft's actual and filed altitude and speed, and finally, its heading.

The set of aircraft used was static. If ATCVIP were to be used in conjunction with an ATC

simulator, the aircraft states would be provided by the simulator, and would change with time.

The ATCVIP parsing process makes use of information about the phase of the flight.

Five phases are recognized: en route in a neighbor sector prior to handoff ("centr"), on the
ground prior to take-off ("preto"), en route in the controlled sector ("enrte"), on the ground
after landing ("lnded"), and en route in a neighbor sector after handoff ("hndof"). The aircraft

states table represents the pragmatic knowledge available to ATCVIP. The states are updated

as new commands are recognized. Most of the information that would be used in an

operational interface is present, except for the aircrafts' positions relative to each other and
temporal knowledge.

6.2.2 THE ATCVIP PROCESS

The ATCVIP display and its functionality have been described above, and the overall
functionality of the ATCVIP process is outlined in Figure 6.1. However, the parsing process
has only been briefly described. The parser represents the knowledge processing function of
ATCVIP, where syntactic, semantic, and pragmatic knowledge are used to add situational
intelligence to the man-machine interface. The full source code for the ATCVIP program is
listed in Appendix B. The language used is MicroSoft's QuickBASIC, Version 4.5. Although

it may be possible to discern the functionality of the ATCVIP interface by examining the source

code, a description of the process is presented below to describe the concepts employed.

The first segment of the program, the initialization process, sets up basic arrays and

parameters. It also contains a data segment containing the initial values for the aircraft states,
the list of supported ATC commands, and the navigational fixes and airport identifiers. The
display is initialized and cleared. Subroutines are then executed to initialize the mouse handler,
dynamic variables, and the display.

After the initialization process has been completed, the main loop is entered. During
each iteration of the loop, a subroutine is called to wait for user input. As the ATCVIP
simulation is not real time, no processing is required between inputs, except for the processing
of the inputs themselves. The input subroutine remains in an idle state until either a keyboard
or a mouse action is recognized. If a keyboard action is recognized, it is assumed that an ATC
command is being entered, and the keyboard input stream is monitored until a terminator
character is detected. If a mouse action is recognized, the number of clicks is recorded, as well
as the position of the mouse cursor. A mouse action consists of clicking the mouse button one
or more times. Simply moving the mouse is not considered to be a mouse action. Once an
input has been recognized and recorded, the program returns to the main loop. Depending on
the type of input, either the keyboard or the mouse handling subroutine is executed. The main
loop is repeated until an exit flag is detected in which case ATCVIP is terminated.

The keyboard handling subroutine is activated whenever voice input is recognized, or
when the keyboard is used to simulate voice input. First, the subroutine checks to see that the
last input is ready to be pushed onto the input history. If parsing the last input failed, and the
user did not make a correction, the new input is stored in a buffer until the last input is
modified. If the last input does not present a problem, a subroutine is called to move it to the
top of the input history. Also, the aircraft states table is updated to reflect any changes implied
by the last input. To simplify the simulation, these changes occur instantaneously - no
temporal concepts are included. After the input history and aircraft states have been updated,
the parser is invoked. The parser consists of the serial execution of three routines, one to parse
the aircraft callsign, one for the command, and one for the optional parameter. These routines
are described in more detail below. When parsing is completed, the recognized input is
displayed in the current input section, with the flag "P" (i.e. pending). If a recognition error
was detected during parsing, the segment involved is displayed highlighted or blinking.

The mouse handling routine first determines if the mouse cursor was in a valid field

when the mouse button was clicked. Possible areas include the callsign, command, and
parameter 11 fields of the current input section. Status flags can be selected in both the current
input and the input history sections, by a single mouse click. If the "S" symbol is selected in
the current input section, the status of the most recent command is changed from pending to
sent, and the aircraft states and input history are updated. If the "X" symbol is selected, the

status is changed from pending to deleted, and the input history is updated. The aircraft states

are not modified in this case. Finally, if the "C" symbol is selected in the input history section,
the corresponding input is copied into the current input section where it is treated as a new
keyboard input. This provides the user with a facility to correct previously spoken commands.

If the mouse button is clicked while the mouse cursor is in the callsign field of the
current input line, the mouse handler checks the number of clicks to determine what action to
take. In the case of a single click, a subroutine is called that allows the user to edit the callsign
field. The user simply types in a new callsign, using the Backspace key to make corrections.
The new input is terminated by pressing the Enter key. If the Escape key is pressed at any time
while entering a new callsign, the input procedure is terminated and the original callsign is
restored. After the input has been completed, the parser is invoked, and the current input
section is updated. In the case of a double click, a menu of all active callsigns is displayed.
The options in the menu are ranked according to how closely they match the current entry in the
callsign field. The rankings result from the pattern matching process, and do not contain any
acoustic or phonetic information, as the Verbex 5000 does not provide scores for runner-up
words. Thus, the entry the user wants is likely to be at the top of the menu, requiring little if
any mouse movement to select it. The user moves the mouse to highlight the option of choice,
and then clicks the mouse button to select it. If the mouse cursor is moved outside of the menu
borders, the menu is hidden and no selection is made. Once a new callsign has been selected,
the parser is invoked, and the current input line is updated.

Mouse input can occur in the ATC command field. Since the number of commands is
static and relatively constrained, there is no option to single click to access a direct input field.
Instead, a menu is displayed with all the commands, regardless of whether the mouse button
was clicked once or twice. The user then simply moves the mouse cursor and clicks to select a
new command. Once a command has been selected, the parser is invoked, and the current
input section is updated.

11 If the ATC command in question requires a parameter.

If mouse input is detected in the parameter field, the mouse handler first determines if

the associated ATC command is one that requires a parameter. If no parameter is required, the
mouse input is ignored. Else, the mouse handler determines if the mouse button was clicked

once or twice. In the case of a single click, a subroutine is called to provide direct input of a
new parameter value. In the case of a double click, a menu of suggested parameter choices is
presented, ranked by order of likelihood. The process is similar to the aircraft callsign mouse

handler. If a new parameter is selected, the parser subroutines are executed, and the current
input section is modified to reflect the change.

The intelligence of ATCVIP is embedded in the three parser subroutines: the callsign
parser, the command parser, and the parameter parser. Each subroutine contains a set of
heuristics that access syntactic, semantic, and pragmatic knowledge to determine if a
recognition error has occurred, and to determine what the most likely alternate hypothesis is.
The confidence level is determined through heuristics, the degree of similarity between the
alphanumeric representations of the alternate and the original input, and past input history. If
the confidence level is high, the recognition error is automatically corrected. The alternate is
inserted and displayed using the highlight display attribute to alert the user that a correction has
been made. If at all possible, an attempt is made to automatically correct the error since user
intervention should be kept at a minimum. If it is not possible to find a suitable alternate
however, the original input is retained, but is displayed with the blinking attribute. This
notifies the user that a manual correction must be made before the new input can be processed.

The callsign parser first checks to see if the recognized callsign matches one of the
aircraft in the active set. Since short forms12 are supported, it is possible that the recognized
callsign may match two or more aircraft. For example, the callsign "four five two" could refer
to both "United four five two" and "Delta six four five two". If the recognized callsign
matches a unique aircraft, the parser terminates successfully. If not, a pattern matching
algorithm is used to match all active callsigns to the recognition input. A customized algorithm
is used that places extra weight on the airline identifier, if it is included. If an aircraft is found
that scores higher than all other callsigns, an automatic substitution is made. Else, the parser
fails, and a flag is set to notify the user. The callsign parser primarily makes use of pragmatic
information, by determining if the callsign is in the active aircraft set and by finding a suitable
alternate if it is not.

12 The short form of an aircraft callsign normally consists of the last three digits or letters of the full callsign.

The command parser relies mostly on pragmatic knowledge to determine if the

recognized command is meaningful. Each command is evaluated against a unique set of
heuristics. The most useful information to the command parser is the flight phase. For
example, a typical rule may be "if the aircraft is issued a left turn, then it must be en route".
This rule makes use of the simple assumption that ATC will not issue vectors to aircraft that
have not taken off yet, or that have landed. The command parser is the simplest of the three
parser subroutines. ATCVIP makes the assumption that the command is recognized with a
high level of confidence, so that it can be used as a reference point against which the callsign
and the parameter are evaluated. This is acceptable however, as the commands always contain
more phonetic and acoustic information than the callsigns and the parameters, and are less
likely to be subject to recognition errors.

The parameter parser is the most complex of the three parser subroutines, as it makes
use of syntactic, semantic, and pragmatic information. The parser determines which command
has been recognized to select a set of heuristics that are executed to evaluate the meaningfulness
of the parameter. For example, if the recognized command is "hold at" or "cleared direct to",
then syntactic and semantic constraints necessitate that the parameter be a navigational fix or an
airport identifier. Thus, the utterance must contain 3 or 5 alphanumeric characters. If the
recognized utterance is not one of the fixes in the airspace under control, a best match is found
as an alternate.

The parameter parser also makes use of Confusion Matrices. These are tables that
contain information from past corrections. They are updated whenever an automatic correction
is accepted by the user, or when the user makes a manual correction. Confusion Matrices are
used to evaluate the level of confidence in the case where it cannot be determined by other
means alone [45]. For example, assume that the command "united four five two turn left
heading seven eight zero" is recognized, and it parses successfully, except for the heading.
Semantic and pragmatic constraints may dictate that the heading should be either "zero eight
zero", "one eight zero", or "two eight zero". That is, the word "seven" was misrecognized and
should be replaced by either "zero", "one", or "two". If the Confusion Matrix entry for
"seven" indicates that it has been substituted with "zero" five times in the past, but never with
"one" or "two", then the parser can safely assume that the heading should be "zero eight zero".
If the user accepts the automatic correction, the entry for "seven" being substituted by "zero" is
incremented to six times. If the user manually corrects the error to "one", then an entry is made
for "zero" being substituted by "one". Two Confusion Matrices are used: one for navigational
fixes, and one for numerics.

6.2.3 ATCVIP EVALUATION RESULTS

In order to evaluate the potential increase in recognition accuracy due to ATCVIP, a
script was generated with 52 ATC commands, for a total of 345 utterances. Unlike the script

used for the ASR hardware evaluation, this script was not generated randomly. Instead, it was

constructed to represent a typical dialog between the controller and the aircraft in the sector.

Although using a script eliminates stress induced speech variations, this method was preferred
as it provides precise control over the input. Furthermore, the purpose of this evaluation was
to determine how ATCVIP deals with errors. The source of the error is irrelevant, as long as
sufficient errors are present to be able to determine a change in the recognition accuracy.

Since the baseline recognition accuracy of the Verbex 5000 is relatively high, using the
script just one time yielded error rates of 1-2%. Hence, errors were polled from several trials

using the script. These were then deliberately concentrated into a single script with a total error
rate of 8%. Evaluation tests were then conducted using the keyboard to reproduce this script,
including the errors. Using the keyboard instead of voice ensured that the type of errors, their
occurrence in time, and their frequency were identical for all evaluations. The results from the
evaluation tests are summarized in Table 6.1 below.

Table 6.1: ATCVIP evaluation results.

Case Word Recognition Error

Base case 7.8%

First pass 2.9%

Second pass 1.4%

The results show a decrease in the error rate from 7.8% to 2.9% during the first pass of
using ATCVIP. Since ATCVIP is adaptive, and learns from the past using Confusion
Matrices, a second pass was completed to determine if the error rate could be reduced further.
In fact, the error rate decreased to 1.4%. Analysis of the type of errors that occurred showed
that this was the lowest error rate that could be achieved with ATCVIP given the errors inherent
to this particular script. Hence, the learning curve in this case levelled out after two passes, or
approximately 100 commands. The learning rate is a function of the error rate however, and
would change if a different script was used.

The evaluation tests also attempted to determine how much user interaction was

required to correct the errors that occurred. The results for a typical first pass are described in
Table 6.2 below.

Table 62: ATCVIP error correction history.

Error type Frequency Share

Automatic correction 10 45.5%

One mouse action required 11 50.0%

Breakdown: No menu action 2 9.1%

Option #1 on menu 5 22.7%

Option #2 on menu 2 9.1%

Option #3 on menu 1 4.6%

Option #4 on menu 0 0.0%
Option #5 on menu 1 4.6%

Two mouse actions required 1 4.6%

These results indicate that there was approximately a 50-50% distribution between automatic
and manual error corrections. Of the manual corrections, all but 2.3% required only one
mouse action. In 55.6% of the cases that required the use of menu selection, the desired
alternate was the first option on the menu. In these cases only little mouse movement was
required to select the alternate. If ATCVIP was tailored to include situational knowledge about
the traffic flows in a specific sector, lower overall error rates could be expected.

CHAPTER SEVEN

C ©NCLUII©ON

7.1 FEASIBILITY ASSESSMENT

The current state of the ASR technology can be summarized as "barely adequate."

Commercially available equipment such as the Verbex 5000 are achieving baseline recognition

rates of 98% and higher. True continuous speech recognition is available, and the

coarticulation problem that plagued the earlier Votan VPC 2000 appears to have been solved.

Recognition delays are on the order of a few tenths of a second, which is acceptable.

Background noise can be eliminated through the combined use of noise cancelling

microphones, filters, and speech enhancing equipment. Speech synthesis and playback

technology is sufficiently advanced, and is often combined with speech recognition hardware

to form a complete voice input/output system.

However, the technology exhibits several deficiencies that prevent its introduction into

the ATC environment. Vocabulary sizes for true continuous speech systems are usually limited

to a few hundred words. The allowable branching factor of the syntax is sometimes

constrained, in which case the full ATC grammar cannot be implemented. Speaker

independent systems are excessively costly and inefficient, and often require some level of

speaker dependence to achieve acceptable recognition rates. Training procedures and

recognition software remain inadequate for operational applications. Another critical issue is

robustness to speech variations, which can degrade recognition accuracy to unacceptable

levels. These issues must all be addressed before the technology can be used operationally.

The near future holds some promise for improvements in the technology. Continuous

speech recognizers are currently being developed that will be capable of vocabularies with
several thousand words. Clearly, the training routines must be improved by then, in order to
avoid a 5-10 hour requirement for user training. The introduction of newer processors, such
as the 286 and 386 families, will enhance the computational power of the recognition
hardware. This will allow for the introduction of more powerful pattern matchers, with an
overall improvement in performance and efficiency. Ongoing research on speech

understanding may result in better language models and the capability to include prosodic
analysis. The cost/performance ratio can also be expected to improve with time.

Today's ASR technology is not sufficiently mature for operational applications in the
ATC system. However, systems such as the Verbex 5000 are suitable for preliminary research
such as the work presented within this paper. ATC training suites and simulators can be
developed using continuous speech recognition in conjunction with speech synthesis or
playback. This would allow for the creation of a fully automated ATC simulation possessing a
high degree of fidelity. In fact, such systems are currently in development, both in the United
States and abroad. These simulators can then be used for further preliminary research prior to
the introduction of ASR equipment into the operational environment. They may also have the
beneficial effect of making new controllers familiar with the technology.

7.2 THE ATC ENVIRONMENT

Several operational aspects of the ATC environment influence the potential success of
speech input technology, including background noise, controller mobility requirements,
number of active controllers, equipment used, and the frequency and nature of manual input.
Three distinct environments can be identified: the tower, TRACON, and ARTCC. Of these,
ARTCC appears to be most amenable to the introduction of ASR technology, followed by
TRACON, and then the tower environment. There is an inverse relation between feasibility
and potential benefit, however. Safety and efficiency improvements are likely to be greater in
the ATC environments that experience the highest levels of traffic congestions - the tower and
the TRACON.

Cognitive workload in the ATC environment is a critical issue for the introduction of
ASR technology, as it presents a constraint on the information processing capacity of the
controllers. Factors contributing to controller workload include traffic variables, geometric
variables, sector type, controller interaction considerations, sector team control procedures, and
technology aspects. Ideally, the introduction of speech recognition technology should result in
a reduction of controller taskload, and hence cognitive workload. However, if the man-
machine interface is poorly designed, and requires frequent user intervention, it may result in
an increase in workload. If this is the case, the introduction of voice input/output technology
will not be accepted.

The set of ATC commands can be considered as a language in its own right. The

vocabulary and syntax are specified in the FAA's air traffic controller's handbook. The

language was designed to be unambiguous, to reduce the possibility of recognition errors. As

a result, the syntax is constrained, and possesses a branching factor well below that of the

natural English language. This is inherent in the relatively low information content of the ATC
language. These constraints on the ATC syntax and vocabulary facilitate the speech

recognition task. However, the relative ease of applying speech recognition to ATC

applications cannot alone justify the introduction of the technology. Furthermore, with the

vocabulary sizes of current speech recognizers only a subset of the entire ATC grammar can be

recognized.

The limited information content of the ATC language can only be capitalized upon if the

controllers adhere to the prescribed syntax. Monitoring ATC radio frequencies in the Boston

area indicated that the syntax deviation problem may be significant, occurring in 5-25% of all

transmissions. A related problem is the frequency of hesitations and in-phrase corrections,

which may confuse a speech recognizer. A promising solution to the syntax deviation problem

appears to be the use of case frames, where the desired information is extracted from the

recognized phrase regardless of syntax.

7.3 HUMAN FACTORS ISSUES

Although the ASR technology is not sufficiently mature for operational applications, the

state of the technology itself is not likely to be the inhibiting factor to the introduction of voice

input equipment. Instead, the critical issue is likely to be the human factors aspects. The

relevant human factors problems can be identified by applying a model of the system and its

resources, such as the SHEL (Software-Hardware-Environment-Liveware) model. Then the
specific problems can be subdivided into categories of issues common to ATC and other ASR

applications, issues of special importance to ATC, and issues of no or little significance.

Common issues include speech variations, background noise, user acceptance, user
training, baseline recognition accuracy, use of mixed input modalities, and syntax deviation.
Speech variations, especially short term changes such as those induced by stress, can rapidly
degrade recognition performance, resulting in frustration and reduced safety. Adaptive training
and speech normalization techniques under investigation for fighter cockpit applications hold
some promise for improving robustness to speech variations. Background noise may also

cause speech variations due to the Lombard effect, or may result in spurious insertion errors.
Possible solutions include noise cancelling microphones and pre-processors, as well as speech
enhancing equipment. User acceptance must be evaluated operationally, but can be improved
by automating the error correction process as much as possible. User training must be
implemented in such a way that it does not consume excessive amounts of time. If user
motivation drops, recognition performance is likely to suffer. High baseline recognition
performance will reduce the amount of user intervention required, and is necessary to instill
confidence in the technology. When recognition errors do occur, it is not feasible to use voice
alone to correct them. Instead, the use of keyboard and mouse input, combined with intelligent
parsing, should be implemented to provide an efficient correction mechanism.

Human factors issues that are of special significance to ATC include stress induced
speech variations and cognitive workload. The potential benefits of ASR technology are
greatest in scenarios with high levels of traffic. However, these situations are likely to be
stressful for the controller, which can result in degradation of recognition performance.
Workload related issues must be solved in order for ASR technology to be of benefit in the
situations where it is needed most.

Issues of less importance in the ATC environment include the choice of microphone
type, vocabulary and syntax design, and inter-user communications with live microphones. In
ATC, headset mounted microphones are already used, and should be retained if ASR
technology is introduced. The design of the vocabulary and the syntax is a key issue for most
ASR applications, since it has an impact on performance and user acceptance. The ATC syntax
is already prescribed by the FAA. However, it may be useful to consider redesigning this
syntax. Finally, the problem of spurious recognitions due to controllers talking to each other
with live microphones is not likely to occur since PTT switches are already in use.

7.4 ASR EQUIPMENT EVALUATION

Evaluation tests were performed to compare the Votan VPC 2000 with the Verbex
Series 5000 Voice Development System. The evaluation results indicate that the Verbex 5000
is superior in terms of recognition accuracy, delay, and vocabulary size. This is not surprising
however, as the Verbex 5000 represents a new generation beyond the technology level of the
Votan VPC 2000. The baseline recognition accuracy of the Verbex 5000 matches or exceeds
that required for operational applications. The evaluation tests were conducted under near ideal

conditions, however. The Verbex 5000 lacks the necessary robustness to background noise

and speech variations. Retraining the speech patterns before testing resulted in improved
recognition performance, demonstrating the potential benefit of adaptive training. The most
limiting aspect of the Verbex 5000 for this project was the constraint on the syntax complexity.

There exists a need to provide a realistic environment for evaluating ASR equipment

intended for ATC applications. This was provided by incorporating voice input from the

Verbex 5000 with Wesson International's TRACON simulator. This set-up included both
speech recognition and speech synthesis to simulate pilot responses. Although this provided a
low cost, high fidelity demonstrator, it was difficult to use it for controlled experiments. There
exists a trade-off between the amount of control over the dialog and the realism of the
simulation. If a script is provided, complete control over the voice input is retained, but the
speech patterns are likely to differ from those that would be generated in an operational
environment. If a general ATC task is provided instead, with no prescribed script, more
realistic voice patterns can be obtained, including stress induced speech variations. However,
in this case, the utterances and the resulting recognition errors will differ from test to test.

7.5 THE AIR TRAFFIC CONTROL VOICE INPUT PARSER

An intelligent voice input parser was developed to investigate some of the techniques
that may be used in an operational man-machine interface in the ATC environment. Syntactic,
semantic, and pragmatic information was applied to increase the effective recognition accuracy.
This was achieved through a set of heuristics that represented situational knowledge acquired
from the state of the airspace, as well as syntactic and semantic constraints defined in the
controller's handbook. Confusion Matrices were used to codify past correction patterns. The
voice input parser was thus able to reduce the recognition error, both instantaneously and over
a longer period of experience. A short term improvement was achieved through automatically
correcting callsigns and parameters that failed parsing, and for which suitable alternates could
be found. A long term learning effect was achieved by using Confusion Matrices, to learn
from past corrections.

Other techniques under investigation included the use of need-to-know type of
feedback. In the cases where an automatic correction could be made with a high level of
confidence, no user intervention was required. The user was simply notified that some
uncertainty existed, by highlighting the corrected utterance. If the confidence score was

relatively low, or no suitable alternate could be found, the utterance was displayed blinking on

the screen. The user then had the option to correct the error using the mouse and keyboard.

Menu actions were provided for quick corrections, with the options sorted in order of

likelihood. Hence, the few errors that did require user intervention could usually be corrected

with just one quick mouse action. Although no quantitative evaluation was performed of this

correction mechanism, it proved to be a considerably more convenient method to correct errors

than by having to repeat the misrecognized command verbally. In an operational environment,

a man-machine interface using combinations of input modalities, such as the one designed for

this research effort, is likely to be preferred over using voice only for corrections. In addition

to mouse and keyboard input, touch screen technology may be considered.

7.6 RECOMMENDATIONS FOR FUTURE WORK

The research presented within this paper has demonstrated the feasibility of using ASR

technology in the ATC system. The ATC environment and linguistic issues have been

described. Technological limitations and human factors problems have been identified.

Commercially available ASR equipment has been evaluated. The acquisition and processing of

higher levels of knowledge have been shown to improve recognition accuracy and provide a

man-machine interface with reduced levels of user interaction. These achievements provide

some solutions for the problems facing the introduction of speech recognition technology, but

also point out a need for future research.

7.6.1 OPERATIONAL TESTING OF ASR EQUIPMENT

The evaluation tests conducted within this research effort were all performed under

laboratory conditions with a small sample of subjects. Although the subjects were familiar

with ATC, none of them were controllers. In order to investigate potential problems such as

user acceptance, background noise, syntax deviation, and speech variations, the technology

must be tested under operational conditions. Such testing can be conducted in two phases.
First, controllers can be invited to the laboratory to perform evaluation tests with the ATC
simulator and with the voice input parser. This will allow for an initial judgement of controller
reaction to the technology. Problems with syntax deviations can be monitored. The efficiency
and user acceptance of the man-machine interface contained in ATCVIP can be investigated.

The second phase would include evaluation tests of commercially available ASR
technology in ATC facilities with a higher degree of operational realism. This would allow for
the investigation of environmental issues such as background noise and controller mobility.
User acceptance, stress induced speech variations, and cognitive workload issues could also be
addressed. An attempt should also be made to evaluate the technology with actual controllers
and ATC operations. Most likely however, such testing would only be permitted using ATC
simulators.

7.6.2 INTRODUCTION OF ADAPTIVE TRAINING

The promise of adaptive training was demonstrated during the evaluation tests of ASR
hardware. Retraining the speech patterns immediately before an evaluation run resulted in a
reduction of recognition error from 10.3% to 0.5%. Adaptive training has the potential to
improve robustness to gradual speech variations due to temporal drift, fatigue, etc. Verbex has
developed preliminary software for the 5000 recognizer that allows for host controlled training.
Adaptive recognition could be implemented in the following manner: when a phrase is
recognized, the speech input data is stored temporarily. The input is then parsed, and
automatic and manual error corrections are performed. Once an hypothesis has been
formulated with a high level of likelihood, it could be submitted to the Verbex 5000 together
with the recorded speech patterns. The HMM representation of the user's speech patterns
could then be updated with this information.

Adaptive training would thus result in the continuous updating of the user's training
patterns. This would in turn reflect any changes in the speaker's voice, and would maintain
high levels of recognition accuracy. Several topics of investigation remain outstanding,
however: to what extent should the most recent patterns be weighted to achieve rapid updating
of the speech patterns? Will adaptive training be able to cope with short term speech
variations? If a user's voice changes, and then reverts to normal, how can the changed voice
patterns be erased from the training data? Future research should address these questions and
obtain a quantitative measure of the possible performance improvements due to adaptive
training.

7.6.3 IMPROVING ATCVIP

The current version of ATCVIP uses a textual interface and relies on a highly simplified

simulation of the airspace. In order to better evaluate the techniques included in ATCVIP, it

should be implemented in conjunction with an ATC simulation such as TRACON or the Flight

Transportation Laboratory's simulator. The recognition results can be displayed in graphical or

symbolic form, adjacent to the aircraft icons on the radar display. The aircraft states should be

updated using realistic flight dynamics. Speech synthesis should be added to simulate pilot

responses. These responses should include simulated communication errors and incorrect

readbacks. Wesson International's TRACON simulator would be a useful basis for such an

implementation of ATCVIP. Furthermore, ATCVIP should be improved to allow voice to be

used for making corrections, to complement the mouse and keyboard modalities.

Currently, ATCVIP supports the same set of ATC commands as Wesson

International's TRACON. Although this set is considerably more extensive than the grammar

used by Trikas in his work, it still contains some limitations and non-standard phraseology.

Due to its constraint on the branching factor of the syntax, the Verbex 5000 cannot support a

more extensive command set than the one currently implemented. If however, more capable

equipment is acquired, the grammar should be extended to include a more representative set of

a controller's vocabulary and syntax. Furthermore, due to the syntax complexity limit, the

current set-up only supports a limited number of airline callsigns, excluding many airlines as

well as all general aviation, military, and special purpose callsigns. Once again, with new ASR

equipment the grammar should be extended to include a wider variety of callsigns.

7.6.4 THE CALLSIGN RECOGNITION PROBLEM

Improving ATCVIP to support a more varied set of callsigns is relatively easy to

achieve. However, the problem of recognizing all possible callsigns that can be encountered

operationally represents a challenging problem. Callsigns include airlines, general aviation

aircraft, military flights, and special purpose identifiers for search and rescue missions, time
critical medical transportations, navigation aid calibration flights, etc. Military callsigns alone
provide practically an infinite number of possibilities. Furthermore, callsigns occur in both
long and short forms, and the numerical part of a call sign can occur as just a list of digits (e.g.
four five two) or in group form (e.g. four fifty-two). Hence, the size and branching factor of a
syntax for recognizing callsigns alone can become prohibitively large. Other methods to

recognize aircraft callsigns must be investigated. One possibility may be to have the controller

train each callsign when the aircraft first enters the sector. This would be an extension of the
adaptive training feature. As the aircraft leaves the ATC sector, situational knowledge can be

used to remove the voice patterns for that particular callsign.

7.6.5 EVALUATION OF CASE FRAME REPRESENTATIONS

Using rigid syntactic constraints provides valuable knowledge for the parsing of

recognition input. The Verbex 5000 takes advantage of this by requiring the use of a syntax
for all applications. The syntax is then used to implement a HMM representation of the user's
speech patterns. This approach enables the Verbex 5000 to achieve good performance, without
suffering from coarticulation problems, while maintaining short recognition delays. However,
the use of a syntax can cause problems when a phrase contains even a minor deviation. This is
manifested by the Verbex 5000's tendency to reject entire phrases.

An alternate to using a strict syntax implementation may be the use of case frames,
where word order is less significant than semantic content. Another technique, word spotting,
attempts to recognize specific words in a sentence that may contain them in any order,
interspersed with other words which are not present in the recognition vocabulary. These
methods should be investigated to overcome the syntax deviation problem. However, some
acquisition and processing of syntactic knowledge may have to be retained in order to achieve a
sufficiently high recognition accuracy.

7.6.6 SCORING ALTERNATE HYPOTHESES

ATCVIP relies on syntactic, semantic, and pragmatic processing, as well as Confusion
Matrices to implement an automatic error detection and correction feature. If an error is
detected, an alternate hypothesis is formulated, and its likelihood is assessed based on the
similarity to the textual representation of the recognized phrase, and past input patterns stored
in the Confusion Matrices. However, no comparison is done of the phonetic and acoustic
characteristics of the alternate and the recognized input. The Verbex 5000 does not make
available recognition scores for alternate hypotheses. This limitation is due to the nature of the
HMM representation and the search algorithm. The ability to evaluate alternate hypotheses
against the user's speech patterns would provide a valuable tool in an operational man-machine

interface using voice input. It should be a characteristic of ASR systems acquired for future
research on ATC applications.

7.6.7 EVALUATING TECHNOLOGY ADVANCEMENTS

Future speech recognizers are likely to provide reduced recognition delays, increased
vocabulary sizes, more flexible syntax constraints, and better performing and more robust
recognition algorithms. The cost for a given level of performance can also be expected to
decline. These technology advancements are fundamental to the success of applying ASR
technology to the operational ATC environment. Hence, the development of the technology
should be monitored, and new ASR equipment should be acquired and evaluated. In the
course of this research project it was found that many manufacturers of speech recognition
equipment are eager to accommodate user needs. The performance requirements for ATC
applications should be continuously refined, and passed on to the equipment suppliers.

7.6.8 ADDITIONAL APPLICATIONS IN THE ATC SYSTEM

The emphasis within this paper has been on operational applications within the tower,
TRACON, and ARTCC environments. The goal has been to capture the information
transmitted by the controllers to the participating aircraft. The potential of using ASR
technology in ATC training and simulation systems has also been described. However, there
may be other application areas within the ATC system that may benefit from the introduction of
speech recognition. Potential candidates include Flight Service Stations, military Precision
Approach Radar control, and inter-sector and facility communications. These possible
applications should be investigated, and simulation set-ups should be used to determine the
feasibility of introducing speech recognition technology.

7.6.9 CONTINUED HUMAN FACTORS RESEARCH

Throughout this research effort, a human factors perspective has been adopted. The
critical issue has been identified as the man-machine interface, not the level of the technology.
Yet, this research is only an initial step in a cyclic human factors design process. Future work
should continue investigation of the more challenging man-machine issues such as speech

variations, cognitive workload, automatic error correction, and feedback design. Several of the

problems inherent in the ATC environment are also found in other applications where the use
of ASR technology is being investigated. Two areas that possess some degree of similarity are

fighter crew stations and Airborne Warning and Control Systems (AWACS). Solutions found

for these application areas should be examined for their suitability to the ATC system.

Several significant human factors questions remain unanswered. Will there be

sufficient motivation for the air traffic controllers to justify the introduction of the technology?
If a recognition error requires user intervention, how will the controller's workload and
cognitive process be affected? What happens if a controller neglects to correct a recognition
error? The technology will develop continuously and achieve better and better recognition
performance. However, we will never be able to assume that a perfect recognition capability
has been achieved. Therefore, these questions will continue to pose challenges to the human

factors engineer. They must be answered before the users of the ATC system can capitalize on
the benefits of speech recognition.

BIBLIOGRAPHY

[1] Thomas R. Martin, and John R. Welch, "Practical Speech Recognizers and Some

Performance Effective Parameters", Trends in Speech Recognition, Prentice Hall, Inc.,
Englewood Cliffs, N.J. (1980), pp. 24-38.

[2] J. B. Peckham, "Speech Recognition - What is it Worth?", Proceedings of the 1st
International Conference on Speech Technology, IFS Publications Ltd., Bedford, U.K.
(1984), pp. 39-47.

[3] National Research Council, Automatic Speech Recognition in Severe Environments,

National Academy Press, Washington, D.C. (1984).

[4] Donald W. Connolly, Voice Data Entry in Air Traffic Control, National Aviation
Facilities Experimental Center, Department of Transportation, Atlantic City, N.J. (August
1979).

[5] Robert F. Hall, Voice Recognition and Artificial Intelligence in an Air Traffic Control
Environment, Arizona State University, Tempe, AZ (May 1988).

[6] John A. Harrison, G. R. Hobbs, J. R. Howes, and N. Cope, "The Use of Speech
Technology in Air Traffic Control Simulators", Second International Conference on
Simulators, Institution of Electrical Engineers, London, U.K. (1986), pp. 15-19.

[7] G. R. Hobbs, "The Application of Speech Input/Output to Training Simulators",
Proceedings of the 1st International Conference on Speech Technology, IFS Publications
Ltd., Bedford, U.K. (1984), pp. 121-131.

[8] James D. Reierson, and Karol Kerns, Use of Voice Interactive Technology to Study
Effects of Display and Response Modes, MITRE Corporation, McLean, VA (June
1988).

[9] Thanassis Trikas, Automated Speech Recognition in Air Traffic Control, Flight
Transportation Laboratory, Massachusetts Institute of Technology, Cambridge, MA
(January 1987).

[10] Martin Cooper, "Human Factors Aspects of Voice Input/Output", Speech Technology,

Vol. 3, No. 4 (March/April 1987), pp. 82-86.

[11] Howard C. Nusbaum, and David B. Pisoni, "Human Factors Issues for the Next

Generation of Speech Recognition", The Official Proceedings of Speech Tech '86, Media

Dimensions, Inc., New York, N.Y. (1986), pp. 140-144.

[12] Air Traffic Control, Air Traffic Operations Service, Federal Aviation Administration,

Department of Transportation, Washington, D.C. (September 21, 1989).

[13] Airman's Information Manual: Official Guide to Basic Flight Information and ATC

Procedures, Federal Aviation Administration, Department of Transportation,

Washington, D.C. (June 30, 1988).

[14] John M. Fabry, Research Summary: Federal Aviation Administration Sponsored Small

Business Innovation Research Five Year Project Summaries, Federal Aviation

Administration Technical Center, Department of Transportation, Atlantic City, N.J.

(November 1987), pp. 28, 33, 54, 63.

[15] Arthur Gerstenfeld, "Speech Recognition Integrated with ATC Simulation", ICAO

Bulletin, Vol. 45, No. 5 (May 1988), pp. 22-23.

[16] Philip Shinn, Computer Voice and Speech Entry and Recognition - FAA Phase I SBIR

Proposal and Final Report, Speech Systems, Inc., Tarzana, CA (October 1988).

[17] Philip Shinn, "Making Speech Work - A Summary of Federally Sponsored Research at

SSI", Official Proceedings of Military and Government Speech Tech '89, Media

Dimensions, Inc., New York, N.Y. (1989), pp. 15-19.

[18] Wendy Wylegala, ed., "French Team Designing Voice System for Air Traffic Controller

Training", International Voice Systems Review, Vol. 1, No. 1 (January/February 1989),
p. 18.

[19] Michel M. Sadoune, Terminal Area Flight Path Generation Using Parallel Constraint

Propagation, Flight Transportation Laboratory, Massachusetts Institute of Technology,
Cambridge, MA (May 1989).

[20] Wayne A. Lea, "Speech Recognition: Past, Present, and Future", Trends in Speech

Recognition, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1980), pp. 39-98.

[21] M. W. Grady, and M. Hicklin, Use of Computer Speech Understanding in Training: A

Demonstration Training System for the Ground Controlled Approach Trainer, Naval

Training Equipment Center, Naval Air Development Center, U.S. Navy, Moffet Field,

CA (December 1976).

[22] James D. Reierson, Software for Demonstrating and Testing the Application of Voice

Input/Output to Advanced Air Traffic Control, MITRE Corporation, McLean, VA (April

1988).

[23] Steven Cushing, Language and Communication - Related Problems of Aviation Safety,

paper presented at the Annual Meetings of the American Association for Applied

Linguistics, San Francisco, CA (December 1987) and the 24th International Congress of

Psychology, Sydney, Australia (August 1988).

[24] R. K. Moore, "Overview of Speech Input", Proceedings of the 1st International

Conference on Speech Technology, IFS Publications Ltd., Bedford, U.K. (1984),

pp. 39-98.

[25] Zue, Victor W., "Homomorphic Analysis", lecture handout for Automatic Speech

Recognition, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA (March 1989).

[26] Zue, Victor W., "Linear Predictive Analysis", lecture handout for Automatic Speech

Recognition, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA (March 1989).

[27] Victor W. Zue, "Vector Quantization and Dynamic Time Warping", lecture handout for
Automatic Speech Recognition, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA (March 1989).

[28] Victor W. Zue, "Pattern Recognition (I)", lecture handout for Automatic Speech
Recognition, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA (April 1989).

[29] Victor W. Zue, "Hidden Markov Modelling (I)", lecture handout for Automatic Speech

Recognition, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA (April 1989).

[30] Victor W. Zue, "Hidden Markov Modelling (II)", lecture handout for Automatic Speech

Recognition, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA (April 1989).

[31] Ann Rollins, and Jennifer Wiesen, "Speech Recognition and Noise", International

Conference on Acoustics, Speech & Signal Processing, Vol. 2, Institute of Electrical and

Electronics Engineers, New York, N.Y. (1983), pp. 523-526.

[32] Martin Cooper, "Human Factors Aspects of Voice Input/Output", Speech Technology,

Vol. 3, No. 4 (March/April 1987), pp. 82-86.

[33] Harry F. Waller, "Choosing the Right Microphone for Speech Applications", The

Official Proceedings of Speech Tech '85, Media Dimensions, Inc., New York, N.Y

(1985), pp. 45-47.

[34] Frederick Hayes-Roth, "Syntax, Semantics, and Pragmatics in Speech Understanding

Systems", Trends in Speech Recognition, Prentice-Hall, Inc., Englewood Cliffs, N.J.

(1980), pp. 206-333.

[35] Kalyan Ganesan, "A Unified Framework for Representation and Recognition of Speech

Using Case Frames", Speech Technology, Vol. 3, No. 2 (September/October 1986),

pp. 68-71.

[36] Carol A. Simpson, and John C. Ruth, "The Phonetic Discrimination Test for Speech

Recognizers: Part I", Speech Technology, Vol. 3, No. 4 (March/April 1987), pp. 48-53.

[37] David S. Pallett, "Performance Assessment for Speech Recognizers", The Official
Proceedings of Speech Tech '85, Media Dimensions, Inc., New York, N.Y. (1985),
pp. 162-164.

[38] Joakim Karlsson, Review of Commercially Available Automatic Speech Recognition

Systems for Air Traffic Control Applications, Flight Transportation Laboratory,

Massachusetts Institute of Technology, Cambridge, MA (March 1989).

[39] Earl S. Stein, "Controller Workload: Past - Present - Future", 29th Annual Air Traffic

Control Association Fall Conference Proceedings, Air Traffic Control Association,
Arlington, VA (1984), pp. 291-293.

[40] David K. Schmidt, "On Modeling ATC Work Load and Sector Capacity", Journal of

Aircraft, Vol. 13, No. 7 (July 1976), pp. 531-539.

[41] V. David Hopkin, "Air Traffic Control", Human Factors in Aviation, eds. Wiener, Earl

L., and Nagel, David C., Academic Press, Inc., San Diego, CA (1988), pp. 639-663.

[42] Frederick Jelinek, Language Modeling for Speech Recognition, IBM T. J. Watson

Research Center, Yorktown Heights, N.Y. (1989).

[43] J. V. F. Berman, "Speech Technology in a High Workload Environment", Proceedings

of the 1st International Conference on Speech Technology, IFS Publications Ltd.,

Bedford, U.K. (1984), pp. 69-76.

[44] Elwyn Edwards, "Introductory Overview", Human Factors in Aviation, eds. Wiener,

Earl L. and Nagel, David C., Academic Press, Inc., San Diego, CA (1988), pp. 3-25.

[45] K. H. Loken-Kim, "An Investigation of Automatic Error Detection and Correction in
Speech Recognition Systems", The Official Proceedings of Speech Tech '85, Media
Dimensions, Inc., New York, N.Y. (1985), pp. 72-74.

[46] Laurie Fenstermacher, "Voice Synthesis Techniques Applied to Speaker Normalization",

paper presented at Military and Government Speech Tech '89, Arlington, VA
(November 1989).

[47] Robert S. Van Peursem, "Do's and Don'ts of Interactive Voice Dialog Design", The
Official Proceedings of Speech Tech '85, Media Dimensions, Inc., New York, N.Y.
(1985), pp. 48-56.

[48] H. P. Van Colt, and R. G. Kinkade, eds., Human Engineering Guide to Equipment

Design, U.S. Government Printing Office, Washington, D.C., 1972.

[49] Flight Deck Panels, Controls, and Displays, Society of Automotive Engineers, Inc.,
Warrendale, PA (July 1988).

[50] Betsy J. Constantine, "Human Factors Considerations in the Design of Voice
Input/Output Applications", The Official Proceedings of Speech Tech '84, Media
Dimensions, Inc., New York, N.Y. (1984), pp. 219-224.

[51] Paul A. Mangione, "What About the User?", The Official Proceedings of Speech

Tech '86, Media Dimensions, Inc., New York, N.Y. (1986), pp. 154-156.

[52] F. Gail James, "Task Analysis as a Means of Determining the Feasibility of Voice
Input/Output Applications", The Official Proceedings of Speech Tech '85, Media
Dimensions, Inc., New York, N.Y. (1985), pp. 45-78.

[53] VPC 2000 User's Guide, Votan, Inc., Fremont, CA (1985).

[54] Verbex Series 5000 Voice Input/Output System User's Guide, Verbex Voice Systems,
Inc., Edison, N.J. (August 1988).

[55] Verbex Series 5000 Voice I/O System Voice Developer User's Guide, Verbex Voice
Systems, Inc., Edison, N.J. (October 1987).

[56] Robert B. Wesson, and Dale Young, TRACON Air Traffic Control Simulator, Wesson
International, Austin, TX (1988).

APPENDIX A

; This is an experimental grammar for operation with the Wesson International
; TRACON V1.5 simulation. Due to the constraints on the complexity of the
; grammar, some sentences can be generated that are not allowed in reality.
; More important is that most allowed forms are supported.

; In order to work properly, the utility SOFTKEY must be used to pipe the
; input from the serial port to the keyboard buffer.

; Addendum: Due to the constraints on the complexity of the grammar, only
; commercial airline jets are supported. Callsigns can be shortened, but must
; always include the airline identifier. Furthermore, compound commands (i.e.
; using "then") are not supported.

; Set-up block.

#setup
custom_training enable = on
custom_training contcount = 10
customtraining screenlimit = off
host data bits = 8
host parity = none
host stop_bits = 1
host baud = 9600
verbex wildcard offset = 100

; Preliminary part of grammar:

!tracon_grammar=
#recognition
#grammar

; Main part of grammar:

.CALLSIGN .COMMAND

; Definitions of grammar structures:

.CALLSIGN=
.TYPE @0,1 .DIGIT @2,4 heavy @0,1

.TYPE=
air-canada
air-france
american
british
caledonian
clipper
continental
delta
eastern

egypt-air
el-al
iberia
klm
kuwait
lufthansa
midway
piedmont
sabena
saudi-air
scandinavian
swissair
trans-world
united

.FIX=
arcer
bosox
burdy
celts
cinky
drunk
exalt
inndy
lobby
mills
rever
tonni
waxen
wimpy
witch
woons

bedford
beverly

logan
norwood

.DIGIT=
zero

.NONZERO

.NONZERO=
one

two
three
four
five

six
seven

eight
nine

.COMMAND=

radar-contact
released

turn-left-heading .DIGIT @3
turn-right-heading .DIGIT @3
turn-left .DIGIT @2 degrees
turn-right .DIGIT @2 degrees
climb-and-maintain .ALTITUDE
descend-and-maintain .ALTITUDE
increase-speed-to .NONZERO .DIGIT @2
reduce-speed-to .NONZERO .DIGIT @2
cleared-for-vor-approach contact -tower-at- faf

cleared-for-ils-approach contact-tower-at-faf
cleared-for-final
cleared-direct-to .FIX
hold-at .FIX
say-heading-and-airspeed
contact-center-g'day
resume-normal-speed
resume-normal-navigation
show-flight-plan
show-information

.ALTITUDE=
.THOUSANDS thousand .HUNDREDS @0,1

.THOUSANDS=
one zero
one one
one two
.NONZERO

.HUNDREDS=
.NONZERO hundred

; Translation tables to simulate keyboard.

#translations

< [; To distinguish voice from keyboard input.
I I ; No separator string.
>] ; To mark the end of voice input.

air-canada ac
;air-france af
american aa
;british ba
;caledonian br
clipper pa
continental co
delta dl
eastern ea
;el-al ly
;egypt-air ms
;iberia ib
;klm kl
;kuwait ku
;lufthansa lh
;midway ml
;piedmont pi
;sabena sn
;saudi-air su
;scandinavin sk
;swissair sr
trans-world tw
united ua
arcer arcer 1015]
bosox bosox 1015]
burdy burdy 1015]
celts celts 1015]
cinky cinky 1015]
drunk drunk 1015]
exalt exalt 1015]
inndy inndy 1015]
lobby lobby 1015]

milis
rever
tonni
waxen
wimpy
witch
woons

bedford
beverly
logan
norwood
zero
one
two
three
four
five
six
seven
eight
nine
thousand
hundred
heavy
radar-contact
released
turn-left-heading
turn-right-heading
turn-left
turn-right
degrees
climb-and-maintain
descend-and-maintain
increase-speed-to
reduce-speed-to
;cleared-for-vor-approach
;cleared-for-ils-approach
cleared-for-final
;contact-tower-at-faf
cleared-direct-to
hold-at
say-heading-and-airspeed
contact-center-g'day
resume-normal-speed
resume-normal-navigation
show-flight-plan
show-information

milis
rever
tonni
waxen
wimpy
witch
woons
bed
bvy
bos
owd
0
1
2
3
4
5
6
7
8
9
+

015

1015
10151136
103610641136
103610661136
10361064
10361066
1015
10361070
10361062
103610601136
10361060
10361061
10361061
103610611136

1 1
10361067
10361063
10361071
10361061
103610561136
10361056
10361106
10361111

1015]
10151
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
1015]
10151
1015]
01015] ; Trick for bug.

1015]
1015]

APPENDIX B

'THE A'T(CVH P OGUICE E CO11DE

V01.00
' Copyright (C) 1989 by the Massachusetts Institute of Technology.

Air Traffic Control Voice Input Parser (ATCVIP).

Permission to use, copy, and modify this software for internal purposes
only and without fee is hereby granted provided that the above copyright
notice and this permission appear on all copies of the code. For any
other use of this software, in original or modified form, including but
not limited to, adaptation as the basis of a commercial software or hardware
product, or distribution in whole or in part, specific prior permission
and/or the appropriate license must be obtained from MIT. This software
is provided "as is" without any warranties whatsoever, either expressed
or implied, including but not limited to the implied warranties of
merchantibility and fitness for a particular purpose. This software is
a research program, and MIT does not represent that it is free of errors
or bugs or suitable for any particular task.

Purpose:

Parses voice input arriving through the keyboard buffer. Format for ATC
commands is based on Wesson International's TRACON V1.52. This program
represents a model of a possible interface between the controller and
Automatic Speech Recognition (ASR) technology. It includes the following
features:

* Automatic error detection and correction.
* Use of syntactic, semantic, and pragmatic knowledge.
* Mixed input modalities (voice, keyboard, mouse).

1989-10-17 V00.00 Initial development version by Joakim Karlsson.
1989-10-25 V01.00 First completed version. Does not include adaptive

training. No automatic error processing for
altitudes above 9,900 feet (three digit altitudes).
Also, buffered voice input is not processed.

Editing: qb atcvip.bas /1 qbmouse.qlb
Compiling: bc atcvip.bas ;
Linking: link atcvip.obj,,,brun45.lib+mouse.lib /e

' Initialization:

DECLARE SUB MouseS (ml%, m2%, m3%, m4%)
DECLARE SUB SetState (row%, state%)

TYPE AircraftState
Callsign AS STRING * 7
AircraftType AS STRING * 3
Phase AS STRING * 5
ActAlt AS INTEGER
ActSpd AS INTEGER
FilAlt AS INTEGER

FilSpd AS INTEGER
Heading AS INTEGER

END TYPE

CONST TRUE = -1, FALSE = 0, NULL = -1
CONST ACN = 10, ACX = 13, ACLENGTH = 7
CONST CMDN = 18, CMDX = 23, CMDLENGTH = 30
CONST PARMX = 57, PARMLENGTH = 5, PARMMENUN = 25
CONST LOW = 7, HIGH = 8, BLINK = 16
CONST HISTORY = 5, BUFN = 5, MENUN = 21, FIXN = 20
CONST BS = 8, CR = 13, ESC = 27, SPACE = 32, VOICEON = 91, VOICEOFF = 93
CONST HOME = -71, UP = -72, PGUP = -73, LFT = -75, RGT = -77, ENDKEY = -79
CONST DOWN = -80, PGDN = -81, INS = -82, DEL = -83
CONST AL$ = "abcdefghijklmnopqrstuvwxyz!", NUM$ = "1234567890"
CONST STATS = "P S C X "

DIM inpbuffer$(BUFN), scroll$(HISTORY), menu$(MENUN), sort%(MENUN)
DIM parmmenu$(PARMMENUN), parmsort%(PARMMENUN)
DIM states%(HISTORY), acscr%(ACN), cmdsS(CMDN)
DIM fixconfus%(FIXN, FIXN), numconfus%(10, 10)
DIM newstate AS AircraftState, acstates(ACN) AS AircraftState

DataStatements:

DATA "ac655 ", "m80", "centr", 10000, 250, 10000, 250, 135
DATA "ua846 ", "727", "preto", 133, 0, 12000, 250, 022
DATA "d1904 ", "m80", "centr", 11000, 250, 11000, 250, 090
DATA "aal6 ", "737", "centr", 10000, 250, 10000, 250, 255
DATA "co544h ", "110", "centr", 9000, 250, 9000, 250, 015
DATA "ea861h ", "747", "centr", 10000, 250, 10000, 250, 005
DATA "co895h ", "110", "centr", 12000, 250, 12000, 250, 212
DATA "co474h ", "ab3", "centr", 11000, 250, 11000, 250, 330
DATA "ea894h ", "768", "centr", 11000, 250, 11000, 250, 010
DATA "twl3 ", "72s", "preto", 20, 0, 9000, 250, 036

DATA "released", "radar contact", "turn left", "turn left heading"
DATA "turn right", "turn right heading", "climb and maintain"
DATA "descend and maintain", "increase speed to", "reduce speed to"
DATA "cleared for final", "contact center g'day", "cleared direct to"
DATA "say heading and airspeed", "hold at", "resume normal speed"
DATA "resume normal navigation", "*** unknown command ***"

DATA "arcer", "bosox", "burdy", "celts", "cinky", "drunk", "exalt", "inndy"
DATA "lobby", "milis", "rever", "tonni", "waxen", "wimpy", "witch", "woons"
DATA "bed ", "bos ", "bvy ", "owd "

SCREEN 0, , 0, 0: CLS

GOSUB InitMouse
GOSUB InitVariables
GOSUB BuildScreen

' Main loop:

DO
GOSUB WaitForInput
IF newinp$ <> "" THEN

GOSUB HandleKeyboard
ELSEIF mousepresses% > 0 THEN

GOSUB HandleMouse
END IF

LOOP UNTIL exitflag%

100

FinishUp:

END

' Mouse initialization:

InitMouse:

DEF SEG = 0
mseg = 256 * PEEK(51 * 4 + 3) + PEEK(51 * 4 + 2)
mousel = 256 * PEEK(51 * 4 + 1) + PEEK(51 * 4) + 2
IF mseg OR (mousel - 2) THEN

DEF SEG = mseg
IF PEEK(mousel - 2) = 207 THEN

PRINT "Mose Driver Not Found!"
BEEP
GOTO FinishUp

ELSE
ml% = 0: CALL MouseS(ml%, m2%, m3%, m4%)

END IF
ELSE

PRINT "Mouse Driver Not Found!"
BEEP
GOTO FinishUp

END IF

RETURN

' Initialization of main and utility variables:

InitVariables:

exitflag% = FALSE: acrec% = FALSE: cmdrec% = FALSE: parmreq% = FALSE
accol% = LOW: cmdcol% = LOW: parmcol% = LOW
EMPTY$ = SPACES(64): current$ = EMPTY$: buffer% = 0
allac$ = "": allfix$ = ""
newstate.Phase = SPACES(5): newstate.ActAlt = NULL
newstate.ActSpd = NULL: newstate.Heading = NULL
acind% = 0: state% = 0

FOR i% = 1 TO ACN
READ acstates(i%).Callsign, acstates(i%).AircraftType
READ acstates(i%).Phase, acstates(i%).ActAlt, acstates(i%).ActSpd
READ acstates(i%).FilAlt, acstates(i%).FilSpd, acstates(i%).Heading
allac$ = allac$ + acstates(i%).Callsign + ","

NEXT i%

FOR i% = 1 TO CMDN
READ cmds$(i%)
cmds$(i%) = LEFT$(cmds$(i%) + EMPTY$, CMDLENGTH)

NEXT i%

FOR i% = 1 TO FIXN
READ fix$
allfix$ = allfix$ + fix$ + ","

NEXT i%

FOR i% = 1 TO 5
scroll$(5) = EMPTY$

NEXT i%

RETURN

101

' Displaying static screen elements:

BuildScreen:

CLS

PRINT STRING$(80, "-")
PRINT "[Current Input]"
PRINT " Status Callsign Command Parameter"
PRINT
PRINT STRINGS(80, "-")
PRINT "[Input History]"
LOCATE 12, 1, 0
PRINT STRING$(80, "-")
PRINT "[Aircraft States] Actual Filed"
PRINT "Callsign Type Phase Alt Spd ";
PRINT " Alt Spd Heading"
LOCATE 25, 1, 0
PRINT STRINGS(32, "-"); "I ATCVIP 01.00 1"; STRING$(32, "-");

GOSUB UpdateStates

RETURN

' Update the display of the aircraft state table:

UpdateStates:

FOR i% = 1 TO ACN
LOCATE 14 + i%, 1, 0
PRINT " "; acstates(i%) .Callsign; " ";
PRINT acstates(i%).AircraftType; " "; acstates(i%).Phase;
PRINT USING "#########"; acstates(i%) .ActAlt;
PRINT USING "########"; acstates(i%).ActSpd;
PRINT USING "##########"; acstates(i%).FilAlt;
PRINT USING "########"; acstates(i%).FilSpd;

PRINT " ";
PRINT RIGHTS("00" + LTRIM$(STR$(acstates(i%) .Heading)), 3);

IF i% < ACN THEN PRINT
NEXT i%

RETURN

' Wait for voice, mouse, or keyboard input:

WaitForInput:

newinp$ = "": mousepresses% = 0
ml% = 1: CALL MouseS(ml%, m2%, m3%, m4%)
ml% = 5: m2% = 0: CALL MouseS(ml%, m2%, m3%, m4%)

DO
inp$ = INKEY$
ml% = 5: m2% = 0: CALL MouseS(ml%, m2%, m3%, m4%)

LOOP WHILE inp$ = "" AND m2% = 0

IF m2% > 0 THEN
mousepresses% = m2%
IF mousepresses% = 1 THEN

tl = TIMER
DO UNTIL TIMER - tl > .5
LOOP

102

ml% = 5: m2% = 0: CALL MouseS(ml%, m2%, m3%, m4%)
mousepresses% = mousepresses% + m2%

END IF
mousex% = 1 + m3% / 8: mousey% = 1 + m4% / 8

END IF

ml% = 2: CALL MouseS(ml%, m2%, m3%, m4%)

IF inp$ <> "" THEN
cod% = ASC(LEFTS(inp$, 1))
IF cod% = 0 THEN cod% = -ASC(RIGHT$(inp$, 1))
'PRINT cod%,
'IF cod% > 32 THEN PRINT inp$ ELSE PRINT
SELECT CASE cod%

CASE VOICEON
DO

inp$ = INKEY$
LOOP WHILE inp$ = ""
cod% = ASC(LEFT$(inp$, 1))
IF cod% = 0 THEN cod% = -ASC(RIGHT$(inp$, 1))

'PRINT cod%,
'IF cod% > 32 THEN PRINT inp$ ELSE PRINT
newinp$ = newinp$ + inp$

LOOP UNTIL cod% = VOICEOFF
CASE SPACE

exitflag% = TRUE
CASE ESC

RESTORE DataStatements
GOSUB InitVariables
GOSUB BuildScreen

CASE ELSE
END SELECT

END IF

RETURN

' Update the aircraft state table:

PushState:

IF acind% <> 0 AND state% <> 4 THEN
IF newstate.Phase <> SPACES(5) THEN

acstates(acind%).Phase = newstate.Phase
END IF
IF newstate.ActAlt <> NULL THEN

acstates(acind%).ActAlt = newstate.ActAlt
END IF
IF newstate.ActSpd <> NULL THEN

acstates(acind%).ActSpd = newstate.ActSpd
END IF
IF newstate.Heading <> NULL THEN

acstates(acind%).Heading = newstate.Heading
END IF

END IF

GOSUB UpdateStates

RETURN

' Update the command history:

103

UpdateHistory:

SELECT CASE state%

CASE 1, 2, 4
IF current$ <> EMPTY$ THEN

FOR i% = HISTORY TO 2 STEP -1
scroll$(i%) = scroll$(i% - 1)
states%(i%) = states%(i% - 1)

NEXT i%
scroll$(1) = current$
IF state% = 4 THEN

states%(1) = 4
ELSE

states%(1) = 2
END IF
current$ = EMPTY$

END IF

END SELECT

GOSUB DisplayHistory

RETURN

' Display the command history:

DisplayHistory:

FOR i% = 1 TO HISTORY
LOCATE 6 + i%, 1, 0: PRINT scroll$(i%)
CALL SetState(6 + i%, states%(i%))

NEXT i%

RETURN

Keyboard input handler:

HandleKeyboard:

IF acreq% OR cmdreq% OR parmreq% THEN
GOSUB PushOnBuffer

ELSE
GOSUB PushState
state% = 1
GOSUB UpdateHistory
GOSUB GetBestAc
GOSUB GetBestCmd
GOSUB GetBestParm
GOSUB UpdateCurrent

END IF

RETURN

' Mouse input handler:

HandleMouse:

'LOCATE 1, 1: PRINT SPACE$(80);
'LOCATE 1, 1: PRINT mousepresses%, mousex%, mousey%

104

IF mousey% = 4 AND current$ <> EMPTY$ THEN

SELECT CASE mousex%

CASE 3
GOSUB PushState
state% = 2
GOSUB UpdateHistory
LOCATE 4, 1: PRINT current$;

CASE 7
state% = 4
GOSUB UpdateHistory
LOCATE 4, 1: PRINT current$;

CASE ACX TO ACX + ACLENGTH - 1
IF mousepresses% = 1 THEN

GOSUB EditAircraft
ELSEIF mousepresses% = 2 THEN

menulength% = ACN + 1
menuwidth% = ACLENGTH
menux% = ACX
menuy% = 4

orgac$ = LEFT$(orgac$ + SPACE$(ACLENGTH), ACLENGTH)
FOR i% = 1 TO ACN

menu$(i%) = acstates(i%).Callsign
sort%(i%) = acscr%(i%)
IF menu$(i%) = orgac$ THEN menulength% = ACN

NEXT i%
IF accol% <> LOW THEN

DO
swaps% = FALSE
FOR i% = 1 TO ACN - 1

IF sort%(i%) < sort%(i% + 1) THEN
SWAP sort%(i%), sort%(i% + 1)
SWAP menu$(i%), menu$(i% + 1)
swaps% = TRUE

END IF
NEXT i%

LOOP WHILE swaps%
END IF
IF menulength% > ACN THEN

menu$(menulength%) = orgac$
END IF
GOSUB HandleMenu
IF menuchoice% > 0 THEN

ac$ = RTRIM$(menu$(menuchoice%))
acind% = 0: accol% = LOW: acreq% = FALSE

COLOR accol%, 0
acpos% = INSTR(allac$, ac$)
rest$ = RIGHT$(allac$, LEN(allac$) - acpos%)

IF acpos% <> 0 THEN
IF INSTR(rest$, ac$) = 0 THEN

acind% = 1 + INT(acpos% / 8)
END IF

END IF
cmdstart% = oldcmdstart%
newinp$ = oldnewinp$
state% = 1
GOSUB GetBestCmd
GOSUB GetBestParm
GOSUB UpdateCurrent

END IF
END IF

105

CASE CMDX TO CMDX + CMDLENGTH - 1
IF mousepresses% > 0 THEN

FOR i% = 1 TO CMDN
menu$(i%) = cmds$(i%)

NEXT i%
menulength% = CMDN
menuwidth% = CMDLENGTH
menux% = CMDX
menuy% = 4
GOSUB HandleMenu
cmdi$ = ""
SELECT CASE menuchoice%

CASE 1
cmdi$ = CHR$(CR) + CHR$(CR) +

CASE 2
cmdi$ = CHR$(CR) + CHR$(CR)

CASE 3
cmdi$ = CHR$(0) + CHR$(ABS(LFT))

CASE 4
cmdi$ = CHR$(0) + CHR$(ABS(LFT)) +

CASE 5
cmdi$ = CHR$(0) + CHR$(ABS(RGT))

CASE 6
cmdi$ = CHR$(0) + CHR$(ABS(RGT)) +

CASE 7
cmdi$ = CHR$(0) + CHR$(ABS(UP))

CASE 8
cmdi$ = CHR$(0) + CHR$(ABS(DOWN))

CASE 9
cmdi$ = CHR$(0) + CHR$(ABS(INS)) + "^"

CASE 10
cmdi$ = CHR$(0) + CHR$(ABS(INS))

CASE 11
cmdi$ = CHR$(0) + CHR$(ABS(ENDKEY)) +

CASE 12
cmdi$ = CHR$(0) + CHR$(ABS(ENDKEY))

CASE 13
cmdi$ = CHR$(0) + CHR$(ABS(HOME))

CASE 14
cmdi$ = CHR$(0) + CHR$(ABS(PGUP))

CASE 15
cmdi$ = CHR$(0) + CHR$(ABS(PGDN))

CASE 16
cmdi$ = CHR$(0) + CHR$(ABS(DEL)) +

CASE 17
cmdi$ = CHR$(0) + CHR$(ABS(DEL))

CASE 18
cmdi$ = "*"

END SELECT
IF cmdi$ <> "" THEN

newinp$ = oldnewinp$
nil$ = LEFTS(newinp$, oldcmdstart% - 1)
nir$ = MID$(newinp$, cmdstart% + 1, 100)
newinp$ = nil$ + cmdi$ + nir$
cmdstart% = oldcmdstart%

state% = 1
GOSUB GetBestCmd
cmdreq% = FALSE: cmdcol% = LOW
GOSUB ParmCheck
GOSUB UpdateCurrent
IF parmcheckflag% THEN

GOSUB EditParameter
ELSE

GOSUB GetBestParm

106

END IF
GOSUB UpdateCurrent

END IF
END IF

CASE PARMX TO PARMX + PARMLENGTH - 1
IF RTRIM$(parm$) <> "" THEN

IF mousepresses% = 1 THEN
ml% = INSTR(allfix$, RTRIM$(parm$))

oldparm$ = parm$
11% = LEN(RTRIM$(parm$))
GOSUB EditParameter
IF oldparm$ <> parm$ THEN

parmcol% = LOW: parmreq% = FALSE
GOSUB EvalParm
GOSUB UpdateCurrent

END IF
m2% = INSTR(allfix$, RTRIM$(parm$))
IF ml% <> 0 THEN ml% = INT(ml% / 6) + 1
IF m2% <> 0 THEN m2% = INT(m2% / 6) + 1
IF ml% <> m2% AND ml% > 0 AND m2% > 0 THEN

p% = fixconfus%(ml%, m2%)
p% = p% + 1
fixconfus%(ml%, m2%) = p%

END IF
12% = LEN(RTRIM$(parm$))
IF 11% = 12% THEN

FOR i% = 1 TO 11%
c$ = MID$(oldparm$, i%, 1)
ii% = INSTR(NUM$, c$)
c$ = MID$(parm$, i%, 1)
j% = INSTR(NUM$, c$)
IF il% = 0 OR j% = 0 THEN

il% = 0: j% = 0
END IF
IF il% <> j% THEN

p% = numconfus%(il%, j%)
p% = p% + 1
numconfus%(il%, j%) = p%

END IF
NEXT i%

END IF
ELSEIF mousepresses% = 2 AND parmmenul% > 0 THEN

FOR i% = 1 TO parmmenul%
menu$(i%) = parmmenu$(i%)

NEXT i%
menulength% = parmmenul%
menuwidth% = LEN(menu$(1))
menux% = PARMX
menuy% = 4
GOSUB HandleMenu
IF menuchoice% > 0 THEN

orgparm$ = RTRIM$(parm$)
parm$ = menu$(menuchoice%)
IF orgparm$ <> parm$ THEN

parmcol% = LOW: parmreq% = FALSE
END IF
ml% = INSTR(allfix$, orgparm$)
m2% = INSTR(allfix$, parm$)
IF ml% <> 0 THEN ml% = INT(ml% / 6) + 1
IF m2% <> 0 THEN m2% = INT(m2% / 6) + 1
IF ml% <> m2% AND ml% > 0 AND m2% > 0 THEN

p% = fixconfus%(ml%, m2%)
p% = p% + 1

107

fixconfus%(ml%, m2%) = p%
END IF
11% = LEN(orgparm$)
12% = LEN(parm$)
IF 11% = 12% THEN

FOR i% = 1 TO 11%
c$ = MID$(orgparm$, i%, 1)
il% = INSTR(NUM$, c$)
c$ = MID$(parm$, i%, 1)
j% = INSTR(NUM$, c$)
IF il% = 0 OR j% = 0 THEN

il% = 0: j% = 0
END IF
IF il% <> j% THEN

p% = numconfus%(il%, j%)
p% = p% + 1
numconfus%(il%, j%) = p%

END IF
NEXT i%

END IF
GOSUB EvalParm
GOSUB UpdateCurrent

END IF
END IF

END IF

CASE ELSE

END SELECT

END IF

RETURN

' Menu input handler:

HandleMenu:

SCREEN 0, , 1, 0

GOSUB BuildScreen
GOSUB DisplayHistory
GOSUB UpdateCurrent

COLOR 0, LOW

LOCATE menuy% - 1, menux% - 2
PRINT "/" + STRING$(menuwidth% + 2,
FOR i% = 1 TO menulength%

LOCATE menuy% + i% - 1, menux%
PRINT "I " + menu$(i%) + " I";

NEXT i%
LOCATE menuy% + menulength%, menux%
PRINT "\" + STRING$(menuwidth% + 2,

-, .) + , \o;

- 2

- 2
1-,,) + ,/,;

ml% = 5: m2% = 0: CALL MouseS(ml%, m2%, m3%, m4%)

SCREEN 0, , 1, 1

menuind% = 0: menuchoice% = 0
menuexit% = FALSE
ml% = 1: CALL MouseS(ml%, m2%, m3%, m4%)

108

ml% = 3: CALL MouseS(ml%, m2%, m3%, m4%)
mousex% = 1 + m3% / 8: mousey% = 1 + m4% / 8
ml% = 5: m2% = 0: CALL MouseS(ml%, m2%, m3%, m4%)
mousepresses% = m2%
IF mousepresses% > 0 THEN

mousex% = 1 + m3% / 8: mousey% = 1 + m4% / 8
END IF
IF mousey% < menuy% OR mousey% > menuy% + menulength% - 1 THEN

menuexit% = TRUE
ELSEIF mousex% < menux% - 1 OR mousex% > menux% + menuwidth% THEN

menuexit% = TRUE
ELSEIF mousey% <> menuy% + menuind% - 1 THEN

ml% = 2: CALL MouseS(ml%, m2%, m3%, m4%)
IF menuind% <> 0 THEN

LOCATE menuy% + menuind% - 1, menux% - 1, 0
COLOR 0, LOW: PRINT " " + menu$(menuind%) + " ";

END IF
menuind% = mousey% - menuy% + 1
LOCATE mousey%, menux% - 1, 0
COLOR LOW, 0: PRINT " " + menu$(menuind%) + "
ml% = 1: CALL MouseS(ml%, m2%, m3%, m4%)

END IF
IF mousepresses% > 0 AND NOT menuexit% THEN

menuchoice% = menuind%
menuexit% = TRUE

END IF
LOOP UNTIL menuexit% OR INKEY$ = CHR$(ESC)

ml% = 2: CALL MouseS(ml%, m2%, m3%, m4%)

SCREEN 0, , 0, 0

RETURN

' Direct entry of aircraft callsign using keyboard:

EditAircraft:

LOCATE 4, ACX: COLOR 0, LOW
editac$ = SPACE$(ACLENGTH): PRINT editac$;
curs% = 0: exitedac% = FALSE

DO
LOCATE 4, ACX + curs%, 1
DO

inp$ = INKEY$
LOOP UNTIL LEN(inp$) = 1
IF INSTR(AL$ + NUM$, inp$) <> 0 THEN

MID$S(editac$, curs% + 1, 1) = inp$
IF curs% + 1 < ACLENGTH THEN curs% = curs% + 1
LOCATE 4, ACX, 0: PRINT editac$;

ELSEIF ASC(inp$) = BS THEN
IF curs% > 0 THEN

IF MID$S(editac$, ACLENGTH, 1) <> " " THEN
MID$S(editac$, ACLENGTH, 1) = "

ELSE
MID$S(editacS, curs%, 1) = "

curs% = curs% - 1
END IF
LOCATE 4, ACX, 0: PRINT editac$;

END IF
ELSEIF ASC(inp$) = CR OR ASC(inp$) = ESC THEN

109

exitedac% = TRUE
END IF

LOOP UNTIL exitedac%

IF ASC(inp$) = ESC THEN
GOSUB UpdateCurrent

ELSEIF ASC(inp$) = CR THEN
ac$ = RTRIM$(editac$)
orgac$ = ac$
acind% = 0: accol% = LOW: acreq% = FALSE
COLOR accol%, 0
acpos% = INSTR(allac$, ac$)
IF acpos% <> 0 THEN

rest$ = RIGHT$(allac$, LEN(allac$) - acpos%)
IF INSTR(rest$, ac$) = 0 THEN

acind% = 1 + INT(acpos% / 8)
END IF

END IF
cmdstart% = oldcmdstart%
newinp$ = oldnewinp$
state% = 1
GOSUB GetBestCmd
GOSUB GetBestParm
GOSUB UpdateCurrent

END IF

RETURN

Direct entry of parameter value using keyboard:

EditParameter:

LOCATE 4, PARMX: COLOR LOW, 0: PRINT SPACE$(5)
LOCATE 4, PARMX: COLOR 0, LOW

SELECT CASE cmdind%
CASE 3, 5: parml% = 2: allow$ = NUM$
CASE 4, 6, 7, 8, 9, 10: parml% = 3: allow$ = NUM$
CASE 13, 15: parml% = 5: allow$ = AL$

END SELECT
editparm$ = SPACE$(parml%): PRINT editparm$;
curs% = 0: exitedparm% = FALSE

DO
LOCATE 4, PARMX + curs%, 1
DO

inp$ = INKEY$
LOOP UNTIL LEN(inp$) = 1
IF INSTR(allow$, inp$) <> 0 THEN

MID$(editparm$, curs% + 1, 1) = inp$
IF curs% + 1 < parml% THEN curs% = curs% + 1
LOCATE 4, PARMX, 0: PRINT editparm$;

ELSEIF ASC(inp$) = BS THEN
IF curs% > 0 THEN

IF MID$(editparm$, parml%, 1) <> " " THEN
MID$(editparm$, parml%, 1) =

ELSE
MID$(editparm$, curs%, 1) =

curs% = curs% - 1
END IF
LOCATE 4, PARMX, 0: PRINT editparm$;

END IF
ELSEIF ASC(inp$) = CR OR ASC(inp$) = ESC THEN

110

exitedparm% = TRUE
END IF

LOOP UNTIL exitedparm%

IF ASC(inp$) = ESC THEN
GOSUB UpdateCurrent

ELSEIF ASC(inp$) = CR THEN
parm$ = RTRIM$(editparm$)
orgparm$ = parm$
GOSUB EvalParm
parmcol% = LOW: parmreq% = FALSE
COLOR parmcol%, 0
state% = 1
GOSUB UpdateCurrent

END IF

RETURN

' Find the best aircraft callsign match:

GetBestAc:

ac$ = "": acreq% = FALSE
FOR i% = 1 TO LEN(newinp$)

IF INSTR(AL$ + NUM$, MID$(newinp$, i%, 1)) <> 0 THEN
IF MID$(newinp$, i%, 1) <> "!" THEN

ac$ = ac$ + MID$(newinp$, i%, 1)
ELSE

ac$ = ac$ + "h"
END IF

ELSE
EXIT FOR

END IF
NEXT i%

orgac$ = ac$

cmdstart% = i%

acind% = 0: accol% = LOW
acpos% = INSTR(allac$, ac$)
IF acpos% = 0 THEN

GOSUB FindBestAcMatch
ELSE

rest$ = RIGHT$(allac$, LEN(allac$) - acpos%)
IF INSTR(rest$, ac$) = 0 THEN

acind% = 1 + INT(acpos% / 8)
ELSE

GOSUB FindBestAcMatch
END IF

END IF

RETURN

' Aircraft callsign pattern matcher:

FindBestAcMatch:

acl% = LEN(ac$)

IF RIGHT$(ac$, 1) = "h" THEN
heavy% = TRUE

111

acl% = acl% - 1
ac$ = LEFTS(ac$, acl%)

ELSE
heavy% = FALSE

END IF

IF VAL(ac$) = 0 THEN
airline$ = LEFTS(ac$, 2)
acl% = acl% - 2
ac$ = RIGHTS(ac$, acl%)

ELSE
airline$ =

END IF

IF heavy% THEN
acl% = acl% + 1
ac$ = ac$ + "h"

END IF

tie% = FALSE: maxscore% = 0

FOR c% = 1 TO ACN

testl$ = LEFTS(acstates(c%).Callsign, 2)
test2$ = RTRIM$(RIGHT$(acstates(c%) .Callsign, 5))

acscr%(c%) = 0

IF airline$ = testl$ THEN acscr%(c%) = acscr%(c%) + 9

IF INSTR(test2$, ac$) <> 0 THEN
acscr%(c%) = acscr%(c%) + 4 * acl%

ELSE
FOR i% = 1 TO acl%

FOR j% = 1 TO LEN(test2$)
IF MIDS(test2$, j%, 1) = MIDS(ac$, i%, 1) THEN

dist% = 2 * ABS(i% - j%)
IF dist% = 0 THEN dist% = 1
acscr%(c%) = acscr%(c%) + 4 / dist%

END IF
NEXT j%

NEXT i%
END IF

IF acscr%(c%) > maxscore% THEN
maxscore% = acscr%(c%)
acind% = c%
tie% = FALSE

ELSEIF acscr%(c%) = maxscore% THEN
tie% = TRUE

END IF

NEXT c%

IF NOT tie% AND acind% <> 0 THEN
ac$ = RTRIM$(acstates(acind%) .Callsign)

accol% = LOW + HIGH
ELSE

ac$ = airline$ + ac$
accol% = LOW + HIGH + BLINK
acind% = 0
acreq% = TRUE

END IF

112

RETURN

' Find the best command match:

GetBestCmd:

cmdreq% = FALSE: cmdcol% = LOW

cmdcod% = ASC(MID$(newinp$, cmdstart%, 1))
oldcmdstart% = cmdstart%: oldnewinp$ = newinp$

IF cmdcod% = 0 THEN
cmdstart% = cmdstart% + 1
cmdcod% = -ASC(MID$(newinp$, cmdstart%, 1))

END IF

option$ = MID$(newinp$, cmdstart% + 1, 1)
IF option$ = "^" THEN cmdstart% = cmdstart% + 1
IF option$ = CHR$(CR) AND cmdcod% = CR THEN

option$ = MID$(newinp$, cmdstart% + 2, 1)
IF option$ = "^" THEN cmdstart% = cmdstart% + 2

END IF

newstate.Phase = SPACES(5)

cmdind% = 18

SELECT CASE cmdcod%

CASE CR
IF optionS = "^" THEN

cmdind% = 1
ELSE

cmdind% = 2
END IF
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "centr"

newstate.Phase = "enrte"
CASE ELSE

cmdreq% = TRUE
END SELECT

END IF

CASE LFT
cmdind% = 3
IF option$ = "^" THEN

cmdind% = 4
END IF
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE RGT
cmdind% = 5
IF option$ = "^" THEN

cmdind% = 6
END IF

113

IF acind% <> 0 THEN
SELECT CASE acstates(acind%).Phase

CASE "preto", "Inded", "hndof"
cmdreq% = TRUE

CASE ELSE
END SELECT

END IF

CASE UP
cmdind% = 7
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE DOWN
cmdind% = 8
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE INS
IF option$ = "^" THEN

cmdind% = 9
ELSE

cmdind% = 10
END IF
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE ENDKEY
IF option$ = "^" THEN

cmdind% = 11
ELSE

cmdind% = 12
END IF
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "enrte"

IF option$ = "^" THEN
newstate.Phase = "Inded"

ELSE
newstate.Phase = "hndof"

END IF
CASE ELSE

cmdreq% = TRUE
END SELECT

END IF

CASE HOME
cmdind% = 13
IF acind% <> 0 THEN

114

SELECT CASE acstates(acind%).Phase
CASE "preto", "inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE PGUP
cmdind% = 14
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE PGDN
cmdind% = 15
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "preto", "Inded", "hndof"

cmdreq% = TRUE
CASE ELSE

END SELECT
END IF

CASE DEL
IF option$ = "^" THEN

cmdind% = 16
ELSE

cmdind% = 17
END IF
IF acind% <> 0 THEN

SELECT CASE acstates(acind%).Phase
CASE "enrte"
CASE ELSE

cmdreq% = TRUE
END SELECT

END IF

CASE ELSE
cmdreq% = TRUE

END SELECT

cmd$ = RTRIMS(cmds$(cmdind%))

IF cmdreq% THEN cmdcol% = LOW + HIGH + BLINK

RETURN

' Find the best parameter match:

GetBestParm:

ERASE parmsort%

parm$ = "": allm$ = "": parmreq% = FALSE: parmcol% = LOW: parmmenul% = 0

IF cmdstart% < LEN(newinp$) THEN
FOR j% = cmdstart% + 1 TO LEN(newinp$)

char$ = MID$(newinp$, j%, 1)

115

IF INSTR(AL$ + NUM$, char$) <> 0 AND char$ <> "+" THEN
parm$ = parm$ + char$

END IF
NEXT j%

END IF

orgparm$ = parm$

numflag% = TRUE
FOR i% = 1 TO LEN(parm$)

IF INSTR(NUM$, MID$(parm$, i%, 1)) = 0 THEN
numflag% = FALSE
EXIT FOR

END IF
NEXT i%

IF LEN(parm$) = 0 THEN numflag% = FALSE

IF numflag% THEN
first$ = LEFT$(parm$, 1)
middle$ = ""
IF LEN(parm$) > 2 THEN middle$ = MID$(parm$, 2, 1)
last$ = RIGHT$(parm$, 1)

END IF

IF LEN(parm$) <> 0 AND NOT numflag% THEN
fixind% = INSTR(allfix$, parm$)
IF fixind% <> 0 THEN fixind% = 1 + INT(fixind% / 6)

ELSE
fixind% = 0

END IF

SELECT CASE cmdind%

CASE 1, 2, 11, 12, 14, 16, 17, 18
parm$ = SPACE$(5)

CASE 13, 15
IF fixind% <> 0 THEN

parmmenul% = FIXN
FOR i% = 1 TO FIXN

parmmenu$(i%) = MID$(allfix$, i% * 6 - 5, 5)
allm$ = allm$ + parmmenu$(i%) +
parmsort%(i%) = fixconfus%(fixind%, i%)

NEXT i%
DO

swaps% = FALSE
FOR i% = 1 TO FIXN - 1

IF parmsort%(i%) < parmsort%(i% + 1) THEN
SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(i%), parmmenu$(i% + 1)

swaps% = TRUE
END IF

NEXT i%
LOOP WHILE swaps%

ELSE
parmmenul% = FIXN + 1
FOR i% = 1 TO FIXN

parmmenu$(i%) = MID$(allfix$, i% * 6 - 5, 5)
allm$ = allm$ + parmmenu$(i%) +

NEXT i%
parmmenu$(i%) = LEFT$(parm$ + SPACES(5), 5)
allm$ = allm$ + parmmenu$(i%) + ","

END IF

116

CASE 3, 5
IF numflag% AND LEN(parm$) = 2 THEN

IF lastS <> "5" AND lastS <> "0" THEN
parmmenu$(1) = firstS + "0"
parmmenu$(2) = firstS + "5"
allm$ = parmmenu$(1) + "," + parmmenu$(2) + ","

parmmenul% = 2
c5% = numconfus%(INSTR(NUM$, lastS), 5)
c0% = numconfus%(INSTR(NUM$, lastS), 10)

IF c5% <> cO% THEN
IF c5% > cO% THEN

SWAP parmmenu$(1), parmmenu$(2)
parm$ = first$ + "5"

ELSE
parm$ = firstS + "0"

END IF
parmcol% = LOW + HIGH

ELSEIF c5% > 0 AND cO% > 0 THEN
parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE

END IF
END IF
FOR i% = 1 TO 10

j% = i% + parmmenul%
parmmenu$(j%) = MID$(NUM$, i%, 1) + lastS
allm$ = allm$ + parmmenu$(j%) + ","
parmsort%(i%) = numconfus%(INSTR(NUM$, firstS), i%)

NEXT i%
DO

swaps% = FALSE
FOR i% = 1 TO 9

j% = i% + parmmenul%
IF parmsort%(i%) < parmsort%(i% + 1) THEN

SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(j%), parmmenu$(j% + 1)

swaps% = TRUE
END IF

NEXT i%
LOOP WHILE swaps%
parmmenul% = parmmenul% + 10

END IF

CASE 4, 6
IF numflag% AND LEN(parm$) = 3 THEN

IF lastS <> "5" AND lastS <> "0" THEN
parmmenu$(1) = first$ + middleS + "0"
parmmenu$(2) = first$ + middleS + "5"
allm$ = parmmenu$(1) + "," + parmmenu$(2) + ","

parmmenul% = 2
c5% = numconfus%(INSTR(NUM$, lastS), 5)
cO% = numconfus%(INSTR(NUM$, lastS), 10)

IF c5% <> cO% THEN
IF c5% > cO% THEN

SWAP parmmenu$(1), parmmenu$(2)
parm$ = firstS + middle$ + "5"

ELSE
parm$ = first$ + middleS + "0"

END IF
parmcol% = LOW + HIGH

ELSEIF c5% > 0 AND cO% > 0 THEN
parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE

END IF
END IF

117

find% = INSTR(NUM$, firstS)
parmsort%(1) = numconfus%(find%, 0)
parmmenu$(1 + parmmenul%) = "0" + middle$ + last$
parmsort%(2) = numconfus%(find%, 1)
parmmenu$(2 + parmmenul%) = "1" + middle$ + lasts
parmsort%(3) = numconfus%(find%, 2)
parmmenu$(3 + parmmenul%) = "2" + middle$ + last$

addp% = 3
IF VAL(middle$ + lastS) <= 60 THEN

parmsort%(4) = numconfus%(find%, 3)
parmmenu$(4 + parmmenul%) = "3" + middle$ + last$

addp% = 4
END IF
FOR i% = 1 TO addp%

allm$ = allm$ + parmmenu$(i% + parmmenul%) + ","
NEXT i%
DO

swaps% = FALSE
FOR i% = 1 TO addp% - 1

j% = i% + parmmenul%
IF parmsort%(i%) < parmsort%(i% + 1) THEN

SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(j%), parmmenu$(j% + 1)

swaps% = TRUE
END IF

NEXT i%
LOOP WHILE swaps%
parmmenul% = parmmenul% + addp%
IF VAL(first$) > 3 THEN

IF parmsort%(1) > parmsort%(2) THEN
parm$ = parmmenu$(parmmenul% - addp% + 1)
parmcol% = LOW + HIGH

ELSE
parmcol% = LOW + HIGH + BLINK

END IF
ELSE

addp% = 0
mind% = INSTR(NUM$, middleS)
FOR i% = 1 TO 10

p$ = first$ + MID$(NUM$, i%, 1) + last$
IF VAL(p$) <= 360 THEN

allm$ = allm$ + p$ + ","
addp% = addp% + 1
parmmenu$(parmmenul% + addp%) = p$
parmsort%(i%) = numconfus%(mind%, i%)

END IF
NEXT i%
DO

swaps% = FALSE
FOR i% = 1 TO addp% - 1

j% = i% + parmmenul%
IF parmsort%(i%) < parmsort%(i% + 1) THEN

SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(j%), parmmenu$(j% + 1)

swaps% = TRUE
END IF

NEXT i%
LOOP WHILE swaps%
parmmenul% = parmmenul% + addp%
IF addp% > 0 AND VAL(parm$) > 360 THEN

IF parmsort%(1) > parmsort%(2) THEN
parm$ = parmmenu$(parmmenul% - addp% + 1)
parmcol% = LOW + HIGH

ELSE

118

parmcol% = LOW + HIGH + BLINK

END IF
END IF

END IF

END IF

CASE 7, 8
IF numflag% AND LEN(parm$) = 2 THEN

IF last$ <> "5" AND last$ <> "O" THEN
parmmenu$(1) = first$ + "0"

parmmenu$(2) = first$ + "5"

allm$ = parmmenu$(1) + "," + parmmenu$(2) + ","

parmmenul% = 2

c5% = numconfus%(INSTR(NUM$, lastS), 5)
cO% = numconfus%(INSTR(NUM$, lastS), 10)

IF c5% <> cO% THEN
IF c5% > cO% THEN

SWAP parmmenu$(1), parmmenu$(2)
parm$ = first$ + "5"

ELSE

parm$ = first$ + "0"

END IF

parmcol% = LOW + HIGH
ELSEIF c5% > 0 AND cO% > 0 THEN

parmcol% = LOW + HIGH + BLINK

parmreq% = TRUE

END IF
END IF
find% = INSTR(NUM$, first$)

FOR i% = 1 TO 10

p$ = MID$(NUM$, i%, 1) + last$

allm$ = allm$ + pS + ","

parmmenu$(parmmenul% + i%) = pS
parmsort%(i%) = numconfus%(find%, i%)

NEXT i%
DO

swaps% = FALSE

FOR i% = 1 TO 9

j% = i% + parmmenul%

IF parmsort%(i%) < parmsort%(i% + 1) THEN
SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(j%), parmmenu$(j% + 1)

swaps% = TRUE

END IF
NEXT i%

LOOP WHILE swaps%
parmmenul% = parmmenul% + 10
IF acind% <> 0 THEN

i% = 1
alt% = acstates(acind%).ActAlt / 100
DO WHILE i% <= parmmenul%

compressflag% = FALSE
IF cmdind% = 7 THEN

IF VAL(parmmenu$(i%)) < alt% THEN
compressflag% = TRUE

ELSE
i% = i% + 1

END IF
ELSEIF cmdind% = 8 THEN

IF VAL(parmmenu$(i%)) > alt% THEN
compressflag% = TRUE

ELSE
i% = i% + 1

119

END IF
END IF
IF compressflag% THEN

parmmenul% = parmmenul% - 1
FOR j% = i% TO parmmenul%

parmmenu$(j%) = parmmenu$(j% + 1)
NEXT j%

END IF
LOOP
IF cmdind% = 7 AND VAL(parm$) < alt% THEN

parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE
FOR i% = 1 TO parmmenul%

p$ = parmmenu$(i%)
IF VAL(p$) >= alt% THEN

parmmenul% = parmmenul% + 1
parmmenu$(parmmenul%) = parm$
parm$ = p$
parmcol% = LOW + HIGH
parmreq% = FALSE
EXIT FOR

END IF
NEXT i%

ELSEIF cmdind% = 8 AND VAL(parm$) > alt% THEN
parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE
FOR i% = 1 TO parmmenul%

pS = parmmenu$(i%)
IF VAL(p$) <= alt% THEN

parmmenul% = parmmenul% + 1
parmmenu$(parmmenul%) = parm$

parm$ = p$
parmcol% = LOW + HIGH
parmreq% = FALSE
EXIT FOR

END IF
NEXT i%

END IF
END IF

END IF

CASE 9, 10
IF numflag% AND LEN(parm$) = 3 THEN

IF last$ <> "5" AND last$ <> "0" THEN
parmmenu$(1) = first$ + middle$ + "0"
parmmenu$(2) = first$ + middle$ + "5"
allm$ = parmmenu$(1) + "," + parmmenu$(2) + ","

parmmenul% = 2
c5% = numconfus%(INSTR(NUM$, lastS), 5)
cO% = numconfus%(INSTR(NUM$, lastS), 10)

IF c5% <> cO% THEN
IF c5% > c0% THEN

SWAP parmmenu$(1), parmmenu$(2)
parm$ = first$ + middle$ + "5"

ELSE
parm$ = first$ + middle$ + "0"

END IF
parmcol% = LOW + HIGH

ELSEIF c5% > 0 AND c0% > 0 THEN
parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE

END IF
END IF
find% = INSTR(NUM$, first$)

120

parmsort%(1) = numconfus%(find%, 1)
parmsort%(2) = numconfus%(find%, 2)

pl$ = "1" + middle$ + lastS
p25 = "2" + middle$ + last$
IF parmsort%(1) < parmsort%(2) THEN

parmmenu$(1 + parmmenul%) = p2$
parmmenu$(2 + parmmenul%) = pl$
allm$ = allm$ + p2$ + "," + pl$ + ","

ELSE
parmmenu$(1 + parmmenul%) = pl$
parmmenu$(2 + parmmenul%) = p2$
allm$ = allm$ + p2$ + "," + pl$ + ","

END IF
parmmenul% = parmmenul% + 2
mind% = INSTR(NUM$, middle$)
FOR i% = 1 TO 10

p$ = first$ + MID$(NUM$, i%, 1) + last$
allm$ = allm$ + p$ + ","
parmmenu$(parmmenul% + i%) = p$
parmsort%(i%) = numconfus%(mind%, i%)

NEXT i%
DO

swaps% = FALSE
FOR i% = 1 TO 9

j% = i% + parmmenul%
IF parmsort%(i%) < parmsort%(i% + 1) THEN

SWAP parmsort%(i%), parmsort%(i% + 1)
SWAP parmmenu$(j%), parmmenu$(j% + 1)

swaps% = TRUE
END IF

NEXT i%
LOOP WHILE swaps%
parmmenul% = parmmenul% + 10
IF acind% <> 0 THEN

i% = 1
speed% = acstates(acind%).ActSpd
DO WHILE i% <= parmmenul%

compressflag% = FALSE
IF cmdind% = 9 THEN

IF VAL(parmmenu$(i%)) < speed% THEN
compressflag% = TRUE

ELSE
i% = i% + 1

END IF
ELSEIF cmdind% = 10 THEN

IF VAL(parmmenu$(i%)) > speed% THEN
compressflag% = TRUE

ELSE
i% = i% + 1

END IF
END IF
IF compressflag% THEN

parmmenul% = parmmenul% - 1
FOR j% = i% TO parmmenul%

parmmenu$(j%) = parmmenu$(j% + 1)
NEXT j%

END IF
LOOP
IF cmdind% = 9 AND VAL(parm$) < speed% THEN

parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE
FOR i% = 1 TO parmmenul%

p$ = parmmenu$(i%)
IF VAL(p$) >= speed% THEN

121

parmmenul% = parmmenul% + 1
parmmenu$(parmmenul%) = parm$

parm$ = p$
parmcol% = LOW + HIGH
parmreq% = FALSE
EXIT FOR

END IF
NEXT i%

ELSEIF cmdind% = 10 AND VAL(parm$) > speed% THEN
parmcol% = LOW + HIGH + BLINK
parmreq% = TRUE
FOR i% = 1 TO parmmenul%

p$ = parmmenu$(i%)
IF VAL(p$) <= speed% THEN

parmmenul% = parmmenul% + 1
parmmenu$(parmmenul%) = parm$

parm$ = p$
parmcol% = LOW + HIGH
parmreq% = FALSE
EXIT FOR

END IF
NEXT i%

END IF
END IF

END IF

CASE ELSE

END SELECT

GOSUB RemoveExtraParm

GOSUB EvalParm

RETURN

' Remove duplicate parameters from the menu list:

RemoveExtraParm:

IF LEN(allm$) > 0 THEN

i% = 1: div% = INSTR(allm$, ",") - 1

DO WHILE LEN(allm$) > div%
ppos% = INSTR(allm$, parmmenu$(i%))
allm$ = RIGHT$(allm$, LEN(allm$) - ppos% - div%)
IF INSTR(allm$, parmmenu$(i%)) <> 0 THEN

compressflag% = FALSE
FOR j% = i% + 1 TO parmmenul%

IF parmmenu$(j%) = parmmenu$(i%) THEN
compressflag% = TRUE

END IF
IF compressflag% THEN

parmmenu$(j%) = parmmenu$(j% + 1)
END IF

NEXT j%
parmmenul% = parmmenul% - 1

ELSE
i% = i% + 1

END IF
LOOP

122

END IF

RETURN

' Evaluate the recognized parameter:

EvalParm:

newstate.ActAlt = NULL: newstate.ActSpd = NULL: newstate.Heading = NULL

SELECT CASE cmdind%
CASE 1, 2, 11, 12, 13, 14, 15, 16, 17, 18

numflag% = FALSE
CASE 3, 4, 5, 6, 7, 8, 9, 10

numflag% = TRUE
END SELECT

IF LEN(RTRIM$(parm$)) = 0 THEN numflag% = FALSE

IF numflag% AND acind% <> 0 THEN

SELECT CASE cmdind%

CASE 3
newstate.Heading = acstates(acind%).Heading - VAL(parm$)

IF newstate.Heading <= 0 THEN
newstate.Heading = newstate.Heading + 360

END IF

CASE 4, 6
newstate.Heading = VAL(parm$)

CASE 5
newstate.Heading = acstates(acind%).Heading + VAL(parm$)

IF newstate.Heading > 360 THEN
newstate.Heading = newstate.Heading - 360

END IF

CASE 7, 8
newstate.ActAlt = 100 * VAL(parm$)

CASE 9, 10
newstate.ActSpd = VAL(parm$)

CASE ELSE

END SELECT

ELSEIF acind% <> 0 THEN

SELECT CASE cmdind%

CASE 16
newstate.ActSpd = acstates(acind%).FilSpd

CASE 1, 17
newstate.ActSpd
newstate.ActAlt

= acstates(acind%).FilSpd
= acstates(acind%).FilAlt

CASE 11
newstate.ActAlt = 20
newstate.ActSpd = 0
newstate.Heading = 36

123

CASE ELSE

END SELECT

END IF

RETURN

' Check the recognized parameter value:

ParmCheck:

parm$ = RTRIM$(parm$)
parml% = LEN(parm$)

numflag% = TRUE
FOR i% = 1 TO parml%

IF INSTR(NUM$, MIDS(parm$, i%, 1)) = 0 THEN
numflag% = FALSE
EXIT FOR

END IF
NEXT i%

parmcheckflag% = FALSE

SELECT CASE cmdind%

CASE 1, 2, 11, 12, 14, 16, 16
IF parml% <> 0 THEN

parm$ = SPACE$(5)
END IF

CASE 3, 5, 7, 8
IF parml% <> 2 OR NOT numflag%

parmcheckflag% = TRUE
END IF

CASE 4, 6, 9, 10
IF parml% <> 3 OR NOT numflag%

parmcheckflag% = TRUE
END IF

THEN

THEN

CASE 13, 15
IF (parml% <> 3 AND parml% <>

parmcheckflag% = TRUE
END IF

5) OR numflag% THEN

END SELECT

IF parmchekflag% THEN parm$ = SPACE$(5)

RETURN

' Update the current command line:

UpdateCurrent:

ac$ = LEFT$(ac$ + SPACE$(10), 10)
cmd$ = LEFT$(cmd$ + SPACE$(34), 34)
parm$ = LEFT$(parm$ + SPACE$(10), 10)
current$ = STAT$ + ac$ + cmd$ + parm$

124

COLOR LOW, 0

LOCATE 4, 1, 0: PRINT STATS;
COLOR accol%: PRINT ac$; : COLOR LOW
COLOR cmdcol%: PRINT cmd$; : COLOR LOW
COLOR parmcol%: PRINT parm$; : COLOR LOW
CALL SetState(4, state%)

RETURN

Get a recognized command from the buffer:

GetFromBuffer:

newinp$ = inpbuffer$(buffer%)
buffer% = buffer% - 1

RETURN

' Push a recognized command onto the buffer:

PushOnBuffer:

IF BUFN > buffer% THEN

buffer% = buffer% + 1

IF buffer% > 1 THEN
FOR i% = buffer% TO 2 STEP -2

inpbuffer$(i%) = inpbuffer$(i% - 1)
NEXT i%

END IF

inpbuffer$(1) = newinp$

END IF

RETURN

SUB SetState (row%, state%)

IF state% > 0 THEN
COLOR LOW + HIGH
LOCATE row%, 2 * state% - 1, 0
PRINT MID$(STAT$, 2 * state% - 1, 1);
COLOR LOW

END IF

END SUB

125

