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Abstract

In this thesis, we study a novel hierarchical wireless networking approach in which
some of the nodes are more capable than others. In such networks, the more capable
nodes can serve as Mobile Backbone Nodes and provide a backbone over which end-
to-end communication can take place. The main design problem considered in this
thesis is that of how to (i) Construct such Mobile Backbone Networks so as to optimize
a network performance metric, and (ii) Maintain such networks under node mobility.

In the first part of the thesis, our approach consists of controlling the mobility of
the Mobile Backbone Nodes (MBNs) in order to maintain network connectivity for the
Regular Nodes (RNs). We formulate this problem subject to minimizing the number
of MBNs and refer to it as the Connected Disk Cover (CDC) problem. We show that
it can be decomposed into the Geometric Disk Cover (GDC) problem and the Steiner
Tree Problem with Minimum Number of Steiner Points (STP-MSP). We prove that
if these subproblems are solved separately by y- and 5-approximation algorithms, the
approximation ratio of the joint solution is y1+6. Then, we focus on the two subprob-
lems and present a number of distributed approximation algorithms that maintain a
solution to the GDC problem under mobility. A new approach to the solution of the
STP-MSP is also described. We show that this approach can be extended in order
to obtain a joint approximate solution to the CDC problem. Finally, we evaluate
the performance of the algorithms via simulation and show that the proposed GDC
algorithms perform very well under mobility and that the new approach for the joint
solution can significantly reduce the number of Mobile Backbone Nodes.

In the second part of the thesis, we address the the joint problem of placing a
fixed number K MBNs in the plane, and assigning each RN to exactly one MBN.
In particular, we formulate and solve two problems under a general communications
model. The first is the Maximum Fair Placement and Assignment (MFPA) problem
in which the objective is to maximize the throughput of the minimum throughput
RN. The second is the Maximum Throughput Placement and Assignment (MTPA)
problem, in which the objective is to maximize the aggregate throughput of the RNs.
Due to the change in model (e.g. fixed number of MBNs, general communications



model) from the first part of the thesis, the problems of this part of the thesis require
a significantly different approach and solution methodology. Our main result is a
novel optimal polynomial time algorithm for the MFPA problem for fixed K. For
a restricted version of the MTPA problem, we develop an optimal polynomial time
algorithm for K < 2. We also develop two heuristic algorithms for both problems,
including an approximation algorithm for which we bound the worst case performance
loss. Finally, we present simulation results comparing the performance of the various
algorithms developed in the paper.

In the third part of the thesis, we consider the problem of placing the Mobile
Backbone Nodes over a finite time horizon. In particular, we assume complete a-priori
knowledge of each of the RNs' trajectories over a finite time interval, and consider the
problem of determining the optimal MBN path over that time interval. We consider
the path planning of a single MBN and aim to maximize the time-average system
throughput. We also assume that the velocity of the MBN factors into the perfor-
mance objective (e.g. as a constraint/penalty). Our first approach is a discrete one,
for which our main result is a dynamic programming based approximation algorithm
for the path planning problem. We provide worst case analysis of the performance of
the algorithm. Additionally, we develop an optimal algorithm for the 1-step velocity
constrained path planning problem. Using this as a sub-routine, we develop a greedy
heuristic algorithm for the overall path planning problem. Next, we approach the
path-planning problem from a continuous perspective. We formulate the problem as
an optimal control problem, and develop interesting insights into the structure of the
optimal solution. Finally, we discuss extensions of the base discrete and continuous
formulations and compare the various developed approaches via simulation.

Thesis Supervisor: Eytan H. Modiano
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) and Mobile Ad Hoc Networks (MANETs) can

operate without any physical infrastructure (e.g. base stations). Moreover, they can

operate under a flat architecture, i.e. one in which every node in the network takes

the role of host and router. However for several reasons, including the simplification

of network computational tasks (e.g. routing, consensus) and energy efficiency, it has

been shown that it often desirable to introduce a hierarchical network architecture

[5], [9], [10], [11], [25], [31], [34], [37], [40], [42], [46], [47], [54], [62],[63], [66], [75], [79],

[82], [83], [85], [94]. In such an architecture, nodes are divided into two categories:

Regular Nodes and Backbone Nodes'. The Backbone nodes are responsible for the

bulk of the network computational tasks, and the regular nodes are therefore freed

to perform the arbitrary tasks which they were assigned.

One pertinent example of such hierarchical network architecture is a WSN or

MANET with a virtual backbone [25],[62]. If all nodes have similar communication

capabilities and similar limited energy resources, the virtual backbone may pose sev-

eral challenges. For example, bottleneck formation along the backbone may affect the

available bandwidth and the lifetime of the backbone nodes. In addition, the virtual

backbone cannot deal with network partitions resulting from the spatial distribution

and mobility of the nodes.

1In general, nodes can be divided into an arbitrary number of categories/levels. In the literature
Backbone Nodes are commonly referred to as Clusterheads, Base Station Nodes, Dominators, etc.



Alternatively, if some of the nodes are more capable than others, these nodes can

be dedicated to providing a backbone over which reliable end-to-end communication

can take place. A novel hierarchical approach for a Mobile Backbone Network oper-

ating in such a way was recently proposed and studied by Rubin et al. (see [79] and

references therein) and by Gerla et al. (e.g. [40],[94]). In this thesis, we develop and

analyze novel algorithms for the construction and maintenance (under node mobility)

of a Mobile Backbone Network. Our general approach is somewhat different from the

previous works, since we focus on controlling the mobility of the more capable nodes

in order to optimize various properties of the communications network. In particular,

we focus on connectivity and throughput optimization. However, it should be noted

that the construction of a Mobile Backbone Network may improve other aspects of

the network performance, including lifetime and Quality of Service as well as network

reliability and survivability. Note that a Mobile Backbone Network can be tailored

to support the operation of both MANETs and WSNs. For example, in a MANET,

Backbone Nodes should be repositioned in response to the mobility of the Regular

Nodes. On the other hand, in a static WSN, Backbone Nodes could be positioned

near nodes with high requirements or limited energy resources.

We elaborate further regarding our specific problem model and formulation as well

as the main contributions of this thesis in the remainder of this section. Additionally,

we provide a summary of the relevant related work and an outline for the overall

thesis.

1.1 Problem Description and Contributions

A Mobile Backbone Network is composed of two types of nodes. The first type in-

cludes static or mobile nodes (e.g. sensors or MANET nodes) with limited capabilities.

We refer to these nodes as Regular Nodes (RNs). The second type includes mobile

nodes with superior communication, mobility, and computation capabilities as well

as greater energy resources (e.g. Unmanned-Aerial-Vehicles and Rovers). We refer

to them as Mobile Backbone Nodes (MBNs). The main purpose of the MBNs is to
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Figure 1-1: A Mobile Backbone Network in which every Regular Node (RN) can
directly communicate with at least one Mobile Backbone Node (MBN). All commu-
nication is routed through a connected network formed by the MBNs.

provide a mobile infrastructure facilitating network-wide communication. Figure 1-1

illustrates an example of the architecture of a Mobile Backbone Network.

In the first part of the thesis, we focus on the problem of placing the minimum

number of MBNs such that (i) every RN can directly communicate with at least

one MBN, and (ii) the network formed by the MBNs is connected. We assume a

disk connectivity model, whereby two nodes can communicate if and only if they

are within a certain communication range. We also assume that the communication

range of the MBNs is significantly larger than the communication range of the RNs.

We term this overall problem the Connected Disk Cover (CDC) problem.

Our main contribution in this part starts with showing that the CDC problem

can be decomposed into the Geometric Disk Cover (GDC) problem and the Steiner

Tree Problem with Minimum Number of Steiner Points (STP-MSP). We prove that

if these subproblems are solved separately by 7- and 6-approximation algorithms, the

approximation ratio of the joint solution is 7y+. Then, we focus on the two subprob-

lems and present a number of distributed approximation algorithms that maintain a

solution to the GDC problem under mobility. A new approach to the solution of the

STP-MSP is also described. We show that this approach can be extended in order

to obtain a joint approximate solution to the CDC problem. Finally, we evaluate

the performance of the algorithms via simulation and show that the proposed GDC

algorithms perform very well under mobility and that the new approach for the joint

solution can significantly reduce the number of Mobile Backbone Nodes.

An implicit assumption in the formulation of the CDC problem is that an arbitrary



number of MBNs are available for deployment (i.e. with the goal being to minimize

the number actually deployed). In many scenarios however, a more appropriate (and

perhaps realistic) assumption would be that the number of available MBNs is fixed

a-priori, and the objective is to do the "best we can" with these fixed resources. Note

however, that the CDC-type formulation for MBN placement arises very naturally

given the assumption of a discrete communications model (e.g. disk model) coupled

the requirement for network-wide connectivity. Thus in the second part of the thesis,

we attempt to address both of these issues.

Specifically, in the second part of the thesis we consider the joint problem of (i)

Placing a fixed number K MBNs in the plane, and (ii) Assigning each RN to exactly

one MBN. We formulate and solve two problems under a general communications

model (e.g. as compared to a disk model). Specifically, we assume that the "through-

put" achieved by an RN transmitting to its assigned MBN is a decreasing function

of (i) The distance between the RN and MBN, and (ii) The total number of RNs

assigned to that MBN. The idea is that the first factor models the loss due to wire-

less propagation, and the second models loss due to interference caused by multiple

RNs trying to access a single MBN. We also assume that under this communications

model, MBNs can always communicate with one another. This removes the need to

explicitly consider the MBN connectivity issue, and allows us to focus on optimizing

RN throughput.

The first problem we consider is the Maximum Fair Placement and Assignment

(MFPA) problem in which the objective is to maximize the throughput of the min-

imum throughput RN. The second is the Maximum Throughput Placement and

Assignment (MTPA) problem, in which the objective is to maximize the aggregate

throughput of the RNs. It should be noted that due to the change in model (e.g. fixed

number of MBNs, general communications model) from the first part of the thesis,

the problems of this part of the thesis require a significantly different approach and

solution methodology.

Our main contribution is a novel optimal polynomial time algorithm for the MFPA

problem for fixed K. For a restricted version of the MTPA problem, we develop an



optimal polynomial time algorithm for K < 2. We also develop two heuristic algo-

rithms for both problems, including an approximation algorithm for which we bound

the worst case performance loss. Finally, we present simulation results comparing the

performance of the various algorithms developed.

To this point, we have the solved the Mobile Backbone Construction problem

based on "current" location information of the RNs. Specifically, at any given time,

the MBNs are placed reactively based on RNs' locations at that time. Yet, in many

practical scenarios entire RN trajectories are known a-priori (e.g. as waypoints for

particular missions). If this is the case, then placing the MBNs by solving an place-

ment problem independently at each time step is, in general, suboptimal. Indeed,

it would be desirable to solve for the entire optimal sequence of placements for the

MBNs at once. In the third part of the thesis, we address this MBN path planning

problem both from a discrete and continuous perspective. For our exposition, we

consider planning the path of a single MBN given the trajectories of the RNs. Our

goal is to maximize the time-average system throughput over the MBN path. For

this, we assume an objective function that combines the MFPA throughput objective

from the second part of the thesis, along with a penalty/constraint on the speed of

the MBN. The reason for this is that it is undesirable to have the MBN moving large

distances in response to small RN movements. Additionally, there can be scenarios in

which it is undesirable to have large MBN movements even in response to large RN

movements, e.g. limited MBN velocity, energy efficiency, MBN location predictability,

etc.

Our first contribution involves a discrete formulation of the MBN Path Planning

Problem (MPP). We develop a dynamic programming based approximation algorithm

for the MPP problem. We provide worst case analysis of the performance of the

algorithm. Additionally, we develop an optimal algorithm for the 1-step velocity

constrained path planning problem. Using this as a sub-routine, we develop a greedy

heuristic algorithm for the overall path planning problem. Next, we approach the

path-planning problem from a continuous perspective. We formulate the problem as

an optimal control problem, and develop interesting insights into the structure of the



optimal solution. Finally, we discuss extensions of the base discrete and continuous

formulations and compare the various developed approaches via simulation.

We present extensions to the GDC algorithms developed in Chapter 2 of the

thesis in Appendix A. In particular, we develop a number of distributed planar-based

algorithms for this problem, in contrast to the strip-based algorithms presented in

Chapter 2. We analyze the worst case performance of the algorithms using a novel

graph-based analysis technique, which we develop. Finally, we present simulation

results to evaluate the performance of the algorithms.

1.2 Related Work

The idea of employing hierarchical network architectures for Wireless Networks is a

well studied one in the literature [5], [9], [10], [11], [25], [31], [34], [37], [40], [42],

[46], [47], [54], [62],[63], [66], [75], [79], [82], [83], [85], [94]. Indeed, several have been

proposed for different types of wireless networks. Examples include single-hop cluster-

ings [9],[37], virtual backbones [25],[62] and k-clusterings [5],[31]. However, a common

feature of such architectures is that nodes are homogeneous (i.e. have identical capa-

bilities) and that the mobility of the Backbone Nodes is not explicitly controlled. In

particular, the network is assumed to be already connected, and the clustering and

virtual backbone formation is overlayed on top of the connected network. The work of

this thesis significantly differs since we assume a heterogeneous network consisting of

Regular Nodes (RNs) and more capable Mobile Backbone Nodes (MBNs). We do not

assume the network is connected a-priori, and the goal itself is to place and mobilize

the MBNs such that connectivity as well as other network objectives are optimized.

The idea of deliberately controlling the motion of specific nodes in order to main-

tain some desirable network property (e.g. lifetime or connectivity) has been intro-

duced only recently (e.g. [58],[66], [75]). The Mobile Backbone Architecture that is

considered in this thesis was originally presented by Rubin et al. [79] and Gerla et

al. [40],[94]. In their work, they assume that the RNs and MBNs are already placed,

and a-priori form a connected network. Thus the focus of their work relates to devel-



oping system-level protocols for routing, scheduling, MBN election, etc. Our general

approach differs in that we focus specifically on the fundamental problem of given

a set of arbitrarily located RNs, how to place the MBNs such that various network

objectives are optimized.

1.2.1 Work Related to the CDC Problem

The problem of placing and mobilizing MBNs for providing network connectivity is

formulated in Chapter 2 as the Connected Disk Cover (CDC) problem. Several prob-

lems that are somewhat related have been studied in the past. For simplicity, when

describing these problems we will use our terminology (RNs and MBNs). One such

problem is the Connected Dominating Set problem [25]. Unlike the CDC problem,

in this problem there is no distinction between the communication ranges of RNs

and MBNs. Additionally, MBN locations are restricted to RN locations. Similarly,

the Connected Facility Location problem [86], [43], also restricts potential MBN lo-

cations. Furthermore, this problem implies a cost structure (e.g. the assumption of

weights satisfying the triangle inequality) that is not directly adaptable to that of the

CDC problem. Finally, The Connected Sensor Cover problem [42] involves placing

the minimum number of RNs such that they form a connected network, while still

covering (i.e. sensing) a specified area. This is significantly different from the objec-

tive of the CDC problem, which places MBNs to cover a discrete set of RNs, while

forming a connected network.

We note that Tang et al. [87] have recently independently formulated and studied

the CDC problem (termed in [87] as the Connected Relay Node Single Cover). A

centralized 4.5-approximation algorithm for this problem is presented in [87]. In

chapter 2, we will show that our approach provides a centralized 3.5-approximation

for the CDC problem.

We propose to solve the CDC problem by decomposing it into two NP-Complete

subproblems:: the Geometric Disk Cover (GDC) problem and the Steiner Tree Prob-

lem with Minimum number of Steiner Points (STP-MSP). Hochbaum and Maass [52]



provided a Polynomial Time Approximation Scheme (PTAS)2 for the GDC problem.

However, their algorithm is impractical for our purposes, since it is centralized and

has a high computational complexity for reasonable approximation ratios. Several

other algorithms have been proposed for the GDC problem (see the review in [32]).

For example, Gonzalez [38] presented an algorithm based on dividing the plane into

strips. In [32] it is indicated that this is an 8-approximation algorithm. We will show

that by a simple modification, the approximation ratio is reduced to 6.

Problems related to the GDC problem under node mobility are addressed in

[34],[47], and [54],[46]. In [54], a 4-approximate centralized algorithm and a 7-

approximate distributed algorithm are presented. Hershberger [47] presents a central-

ized 9-approximation algorithm for a slightly different problem: the mobile geometric

square cover problem. In this thesis we build upon his approach in order to develop

a distributed algorithm for the GDC problem.

The algorithm for the STP-MSP proposed in [64] places Relay MBNs along edges

of the Minimum Spanning Tree (MST) which connects the Cover MBNs. It has been

shown in [20] and [67] that its approximation ratio is 4. In addition, [20] proposed

a modified MST-based algorithm that provides an approximation ratio of 3, and a

randomized algorithm with approximation ratio 2.5. Finally, [16] studied the general

k-connectivity version of the STP-MSP. For k = 1 (i.e. the original STP-MSP), the

approximation ratios of the algorithms developed in [16] are higher than those in [20]

and [64].

Finally, note that there has been a lot of work done on the original Euclidean

Steiner Tree (EST) problem and its many network variants [6],[74], [80],[60]. However,

the STP-MSP involves solving an EST problem with bounded edge lengths and node

weights. Thus the solution methodologies for the STP-MSP differ significantly from

those of the EST.

2Given a constant e > 0, a PTAS always finds a solution with value at most (1 + e) times the
optimal. The running time of a PTAS is polynomial for a fixed e.



1.2.2 Work Related to the MFPA and MTPA Problems

The problem of jointly placing MBNs and assigning each RN to an MBN so as to

maximize network throughput is formulated in Chapter 3. The problems are referred

to as the (i) Maximum Fair Placement and Assignment (MFPA) and (ii) Maximum

Throughput Placement and Assignment (MTPA) problems. To our knowledge, these

problems have not been considered before in the literature. With respect to the un-

derlying Mobile Network Architecture, much of the related work to the CDC problem

presented in the previous section is also related to this work. However, the MFPA

and MTPA problems require solving a joint problem, namely (i) placing the MBNs,

and (ii) Assigning RNs to MBNs. Strictly speaking, the CDC problem does not have

an explicit assignment component, since an arbitrary number of MBNs can be placed,

and one can consider an RN to be assigned to any MBN within its (fixed) communi-

cations range. This joint aspect of placement and assignment, as well as some of the

other modelling considerations causes the solution approach and methodology for the

MFPA and MTPA problems to significantly differ from that of the CDC problem.

Given the more general communications model assumed for the MFPA and MTPA,

the closest related work is actually in regards to base station selection/placement for

cellular and indoor wireless systems, e.g. [4],[85],[89], [68],[45]. Yet, there are several

aspects which differentiate our work from the work in this area. First, the major levers

of optimization in our work are both the MBN (e.g. base station) placement and the

RN to MBN assignments. By contrast, much of the cellular work uses trivial solutions

to the assignment problem (e.g. assign each RN to the nearest MBN) and optimize

via base station placement/selection and/or power control. Another key difference

is that practical considerations for cellular base station placement usually a-priori

restricts the set of possible locations to a discrete set of candidates. This restriction

typically results in solution methodologies along the lines of simple heuristics, or large

scale optimization tools (e.g. Mixed Integer-Linear Programming (MILP), Genetic

Algorithms (GA), etc). In contrast, we develop optimal combinatorial algorithms for

the joint node placement and assignment problems of this work.



1.2.3 Work Related to the MPP Problem

The problem of determining an optimal path for a single MBN that maximizes the

time-average system throughput subject to a velocity constraint/penalty is formulated

in Chapter 4, as the MBN Path Planning (MPP) problem. It is formulated from

both a discrete and continuous perspective. The discrete version is related to several

time-horizon network planning and facility location works considered in the past,

e.g. [92],[44], [30],[78]. The work in [44] is especially pertinent since they consider the

time-horizon 1-center and 1-median problems on graphs. They show that this problem

can be optimally solved in polynomial time. However, a key difference between the

MPP problem and the network planning works is that for the MPP problem, the

set of potential locations for the MBNs is infinite (i.e. anywhere on the plane). By

contrast, the network location work assumes that centers/medians (e.g. MBNs in

our context) can only move along edges and vertices of the graph. Moreover, they

restrict their objective functions to linear functions of the center/median metrics and

movement3 . We consider general non-linear objective functions as well has hard and

soft constraints on the MBN movement, as will be further described in chapter 4.

Along the lines of hard constraints on MBN movement (e.g. velocity) is the

work of [12], in which they consider what approximation ratios to the unconstrained

1-center/median metrics can be achieved when the MBN to RN velocity is upper

bounded. By contrast, we enforce a velocity bound on the MBN, but leave the RN

velocity unbounded. Our focus is on characterizing the performance with respect to

the MBN velocity constrained MPP objective function. Moreover while they consider

instantaneous placement problems, our focus is over the entire time horizon.

We formulate a continuous version of the MPP problem as an optimal control

problem. The theory of optimal control has been very well studied in the past, e.g.

[18], [7]. However, it turns out that the MPP problem maps to a specific class of

optimal control problems known as singular control problems. This class of problems

are somewhat harder to solve (as compared to regular optimal control problems) and

3 The 1-center metric is the distance from the MBN to the farthest RN. The 1-median metric is
the average distance from the MBN to the RNs.



are not as well studied. Numerical procedures for solving singular control problems

have been proposed in the literature [8],[50],[81].

Finally, it should be noted that time horizon network planning and facility location

problems have also been formulated in the continuous domain, e.g. [27], [71]. Yet,

the heuristic solutions they employ are discrete methods over a discrete time horizon,

as opposed to the continuous-time optimal control methods applied in our work.

1.3 Thesis Outline

This Thesis is organized as follows. In Chapter 2 we discuss the problem of placing

the minimum number of MBNs to provide network connectivity. In Section 2.2 we

formulate the Connected Disk Cover (CDC) problem. In Section 2.3 we present the

decomposition approach in which we decompose the CDC problem into the Geometric

Disk Cover (GDC) problem and Steiner Tree Problem with Minimum Number of

Steiner Points (STP-MSP). Distributed approximation algorithms for placing the

Cover MBNs (i.e. for the GDC problem) are presented in Section 2.4. A new approach

to placing the Relay MBNs (i.e. for the STP-MSP) is described in Section 2.5. A

joint solution to the CDC problem is discussed in Section 2.6. In Section 2.7 we

evaluate and compare the performance of the different algorithms via simulation. We

summarize the results and discuss future research directions in Section 2.8.

In chapter 3 we describe the joint problem of placing MBNs and assigning RNs to

MBNs in order to optimize network throughput. In Sections 3.2 and 3.3 we formulate

the MFPA and MTPA problems and give illustrative examples. Section 3.4 presents

an optimal solution for the MFPA problem. In section 3.5, we discuss solutions for

a restricted version of the MTPA problem. In section 3.6, we present approximation

and heuristic algorithms for both problems. Finally, in section 3.7 we evaluate the

performance of the algorithms via simulation.

In chapter 4 we describe the problem of computing the MBN path that maximizes

the time-average throughput, given that the RN trajectories are known a-priori. In

section 4.2 we provide our general discrete problem model and formulation. We next



develop a dynamic-programming based approximation algorithm in section 4.4. This

is followed our development of a greedy algorithm in section 4.5. We discuss relaxing

the hard velocity constraint in the base discrete formulation in section 4.6. Next,

in section 4.7 we formulate an MBN path planning problem as a continuous time

optimal control problem, and in section 4.8 discuss extensions. Finally, in section

4.9 we present simulation results comparing the various approaches developed in this

chapter.

In appendix A we present extensions to the GDC algorithms developed in Chapter

2. In Section A.2 we formulate the problem. The new distributed planar algorithms

are presented and analyzed in Sections A.3 and A.4. In Section A.5 we evaluate and

the performance of the algorithms via simulation. We summarize the results in Section

A.6. Finally, in appendix B we briefly formulate and discuss a satellite broadcast

problem, whose solution methodologies were inspired from those used throughout the

Thesis.



Chapter 2

Minimizing the Number of

Backbone Nodes for Connectivity

2.1 Introduction

As described in chapter 1, a Mobile Backbone Network is composed of two types

of nodes. The first type includes static or mobile nodes with limited capabilities.

We refer to these nodes as Regular Nodes (RNs). The second type includes mobile

nodes with superior communication, mobility, and computation capabilities as well as

greater energy resources. We refer to them as Mobile Backbone Nodes (MBNs). The

main purpose of the MBNs is to provide a mobile infrastructure facilitating network-

wide communication. In this chapter, we focus on minimizing the number of MBNs

needed for connectivity. We develop and analyze novel algorithms that place and

mobilize these MBNs in order to maintain network connectivity and to provide a

backbone for reliable communication.

Fig. 2-1 illustrates an example of the architecture of a Mobile Backbone Network.

The set of MBNs has to be placed such that (i) every RN can directly communicate

with at least one MBN, and (ii) the network formed by the MBNs is connected.

We assume a disk connectivity model, whereby two nodes can communicate if and

only if they are within a certain communication range. We also assume that the

communication range of the MBNs is significantly larger than the communication
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Figure 2-1: A Mobile Backbone Network in which every Regular Node (RN) can
directly communicate with at least one Mobile Backbone Node (MBN). All commu-
nication is routed through a connected network formed by the MBNs.

range of the RNs.

We term the problem of placing the minimum number of MBNs such that both of

the above conditions are satisfied as the Connected Disk Cover (CDC) problem. While

related problems have been studied in the past [20],[25],[47],[52],[86] (see Section 1.2.1

for more details), this chapter is one of the first attempts to deal with the CDC

problem.

Our first approach is based on decomposing the CDC problem into two subprob-

lems. This approach enables us to develop efficient distributed algorithms that have

good average performance as well as bounded worst case performance. We view the

problem as a two-tiered problem. In the first phase, the minimum number of MBNs

such that all RNs are covered (i.e. all RNs can communicate with at least one MBN)

is placed. We refer to these MBNs as Cover MBNs and denote them in Figure 2-1

by white squares. In the second phase, the minimum number of MBNs such that the

MBNs' network is connected is placed. We refer to them as Relay MBNs and denote

them in the figure by gray squares.

In the first phase, the Geometric Disk Cover (GDC) problem [52] has to be solved,

while in the second phase, a Steiner Tree Problem with Minimum Number of Steiner

Points (STP-MSP) [64] has to be solved. We show that if these subproblem are solved

separately by -y and 6 approximation algorithms', the approximation ratio of the joint

solution is 'y+6.

1A 7-approximation algorithm always finds a solution with value at most y times the value of
the optimal solution.



We then focus on the Geometric Disk Cover (GDC) problem. In the context of

static points (i.e. RNs), this problem has been extensively studied in the past (see [2]

and references therein). However, much of the previous work is either (i) centralized

in nature, (ii) too impractical to implement (in terms of running time), or (iii) has

poor average or worst-case performance. Recently, a few attempts to deal with related

problems under node mobility have been made [34],[47],[54].

We attempt to develop algorithms that do not fall in any of the above categories.

Thus, we develop a number of practically implementable distributed algorithms for

covering mobile RNs by MBNs. We assume that all nodes can detect their position

via GPS or a localization mechanism. This assumption allows us to take advantage

of location information in designing distributed algorithms. We obtain the worst case

approximation ratios of the developed algorithms and the average case approximation

ratios for two of the algorithms. We note that using our analysis methodology, we

show that the approximation ratios of algorithms presented in [38] and [47] are lower

than the ratios obtained in the past. Finally, we evaluate the performance of the

algorithms via simulation and discuss the tradeoffs between the time and communi-

cation complexity, and the approximation ratio. We show that on average some of

algorithms obtain results that are close to optimal.

Regarding the STP-MSP, [64] and [20] propose 3 and 4-approximation algorithms

which are based on finding a Minimum Spanning Tree (MST). However, when applied

to the STP-MSP, such MST-based algorithms may overlook relatively efficient solu-

tions. We present a Discretization Approach that can potentially provide improved

solutions. In certain practical instances the approach can yield a 2 approximate

solution for the STP-MSP.

We extend the Discretization Approach and show that it can obtain a solution

to the joint CDC problem in a centralized manner. Even for the CDC problem,

using this approach enables obtaining a 2-approximation for specific instances. Due

to the continuous nature of the CDC problem, methods such as integer programming

cannot yield an optimal solution. Thus, for specific instances this approach provides

the lowest known approximation ratio. It is shown via simulation that this is also the



case in practical scenarios.

To summarize, our first main contribution is a decomposition result regarding the

CDC problem. Additional major contributions are the development and analysis of

distributed algorithms for the GDC problem in a mobile environment, as well as the

design of a novel Discretization Approach for the solution of the STP-MSP and the

CDC problems.

This rest of this chapter is organized as follows. In Section 2.2 we formulate

the problem. In Section 2.3 we present the decomposition approach. Distributed

approximation algorithms for placing the Cover MBNs (i.e. for the GDC problem)

are presented in Section 2.4. A new approach to placing the Relay MBNs (i.e. for

the STP-MSP) is described in Section 2.5. A joint solution to the CDC problem is

discussed in Section 2.6. In Section 2.7 we evaluate and compare the performance of

the different algorithms via simulation. We summarize the results and discuss future

research directions in Section 2.8.

2.2 Problem Formulation

We consider a set of Regular Nodes (RNs) distributed in the plane and assume that

a set of Mobile Backbone Nodes (MBNs) has to be deployed in the plane. We denote

by N = {1,2,..., n} the collection of Regular Nodes, by M = {dl, d2 ,..., dm} the

collection of MBNs, and by dij the distance between nodes i and j. The locations of

the RNs are denoted by the x - y tuples (ix, iy) Vi.

We assume that the RNs and MBNs have both a communication channel (e.g.

for data) and a low-rate control channel. For the communication channel, we assume

the disk connectivity model. Namely, an RN i can communicate bi-directionally

with another node j (i.e. an MBN) if the distance between i and j, dij < r. We

denote by D = 2r the diameter of the disk covered by an MBN communicating with

RNs. Regarding the MBNs, we assume that MBN i can communicate with MBN j if

dij < R (R > r). For the control channel, we assume that both RNs and MBNs can

communicate over a much longer range than their respective data channels. Since



given a fixed transmission power, the communication range is inversely related to

data rate, this is a valid assumption.

At this stage, we assume that the number of available MBNs is not bounded (e.g.

if necessary, MBNs can dispatched from a depot). Yet in our analysis, we will try to

minimize the number of MBNs that are actually deployed. Finally, we assume that

all nodes can detect their position, either via GPS or by a localization mechanism.We

shall refer to the problem of Mobile Backbone Placement as the Connected Disk Cover

(CDC) problem and define it as follows.

Problem CDC: Given a set of RNs (N) distributed in the plane, place the smallest

set of MBNs (M) such that:

1. For every RN i E N, there exists at least one MBN j C M such that dij < r.

2. The undirected graph G = (M, E) imposed on M (i.e. Vk, 1 E M, define an

edge (k, 1) E E if dkl • R) is connected.

The first property is closely related to geometric coverage of the RNs by the MBNs

and the second property relates to the connectivity of the MBNs network. We will

present solutions both for the case in which the nodes are static and for the case in

which the RNs are mobile and some of the MBNs move around in order to maintain

a solution the CDC problem. We assume there exists some sort of MBN routing

algorithm, which routes specific MBNs from their old locations to their new ones.

The actual development of such an algorithm is beyond the scope of this work.

Before proceeding, we introduce additional notation required for the presentation

and analysis of the proposed solutions. A few of the proposed algorithms operate by

dividing the plane into strips. When discussing such algorithms, we assume that the

RNs in a strip are ordered left to right by their x-coordinate and that ties are broken

by the RNs' identities (e.g. MAC addresses). Namely, i < j, if i, < jx or ix = jx and

the id of i is lower than id of j. We note that in property (1) of the CDC problem

it is required that every RN is connected to at least one MBN. We assume that even

if an RN can connect to multiple MBNs, it is actually assigned to exactly one MBN.

Thus, we denote by Pd, the set of RNs connected to MBN di. We denote by dL and



di the leftmost and rightmost RNs connected to MBN di (their x-coordinates will

be denoted by (dL)x and (d0)x). Similar to the assumption regarding the RNs, we

assume that the MBNs in a strip are ordered left to right by the x-coordinate of their

leftmost RN ((d6) : ).

2.3 Decomposition Approach

In this section we obtain an upper bound on the performance of an algorithm that

solves the CDC problem by decomposing it and solving each of the two subproblem

separately. The first subproblem is the problem of placing the minimum number of

Cover MBNs such that all the RNs are connected to at least one MBN. In other

words, all the RNs have to satisfy only property (1) in the CDC problem definition.

This problem is the Geometric Disk Cover (GDC) problem [52] which is formulated

as follows:

Problem GDC: Given a set N of RNs (points) distributed in the plane, place the

smallest set M of Cover MBNs (disks) such that for every RN i E N, there exists at

least one MBN j E M such that dij < r.

The second subproblem deals with a situation in which a set of Cover MBNs is

given and there is a need to place the minimum number of Relay MBNs such that the

formed network is connected (i.e. satisfying only property (2) in the CDC problem

definition). This subproblem is equivalent to the Steiner Tree Problem with Minimum

Number of Steiner Points (STP-MSP) [64] and can be formulated as follows:

Problem STP-MSP: Given a set of Cover MBNs (Mcoer) distributed in the plane,

place the smallest set of Relay MBNs (Mre,,,,ay) such that the undirected graph G =

(M, E) imposed on M = Mcover U Mre1ay (i.e. Vk, l E M, define an edge (k, 1) if

dkl _ R) is connected.

We now define a Decomposition Based CDC Algorithm and bound the worst case

performance of such an algorithm.

Definition 2.3.1. A Decomposition Based CDC Algorithm solves the CDC problem



by using a y-approximation algorithm for solving the GDC problem, followed by using

a 6-approximation algorithm for solving the STP-MSP.

Theorem 2.3.1. For R > 2r, the Decomposition Based CDC Algorithm is a (y + 6)-

approximation algorithm for the CDC problem.

Proof. Define ALGO as the solution found by solving the CDC problem by the De-

composition Based CDC Algorithm. Also, define ALGOco, and ALGOrel as the set

of Cover and Relay MBNs placed by ALGO. Specifically, an MBN ai is a cover MBN

if it covers at least 1 RN (i.e. Pa, $ 0). Otherwise, ai is a relay MBN. Next, de-

fine OPTCDC as the overall optimal solution similarly broken up into OPTcl'c and

OPTcetc. Thus we have that,

II JOI ALGOcol + IALGOreII

< 7Y- OPTcov + J- IOPTALGO-cov-rel 1 (2.1)

where OPTco, represents the optimal GDC of the RNs, and OPTALGO-cov-rel repre-

sents the optimal STP-MSP solution connecting the Cover MBNs placed by the -

approximate GDC algorithm, ALGOco,.

Next, we make use of the fact that a candidate STP-MSP solution given ALGOcoJ

as the input Cover MBNs can be constructed by placing MBNs in the positions defined

by those in OPTCDC. The reason this represents a valid STP-MSP solution is that

since ALGOcV is a valid GDC for the RNs, it follows that every MBN in ALGOc,

is at most a distance r away from some RN. Since OPTEC c is also a valid GDC, it

follows that every MBN in ALGOc, is at most a distance 2r from some MBN in

OPTDc. Therefore, as long as R > 2r, the MBNs in ALGOcom U OPTCDC form a

connected network. Finally, since OPTALGO-cov-rel represents an STP-MSP solution

that must be of lower cost than this candidate solution, we have that,

IALGOI 5 7 - OPTovi + - (lOPTPcDC + (OPT~c )
S(7y + ) -IOPT~DI +6 I OPTDeI

< (7 + 6) -IOPTCDcl (2.2)



R+E R+e R+

O IVIBN --SRN (a) 2

Li--O·----------- Li l L E
>R >R >R

(b)

Figure 2-2: Tight example of the approximation ratio of the decomposition approach:
(a) optimal solution and (b) decomposition approach solution.

where the second line followed from the fact that the optimal GDC for the RNs is of

lower cost than OPTc'c. O

According to Theorem 2.3.1, even if the two subproblems (GDC and STP-MSP)

are solved optimally (i.e. with y = 6 = 1), this yields a 2-approximation to the CDC

problem. A tight example of this fact is illustrated in Figure 2-2. Figure 2-2-a shows

an n node instance of the CDC problem where e refers to a sufficiently small constant.

Also shown is the optimal solution with cost n MBNs. Figure 2-2-b shows a solution

using the decomposition approach (with y = 6 = 1), composed of an optimal disk

cover and an optimal STP-MSP solution. The cost is n + n - 1 = 2n - 1.

We note that if a centralized solution can be tolerated, the approximation ratio

of the GDC problem can be very close to 1 (e.g. using a PTAS [52]). The lowest

known approximation ratio of the STP-MSP solution is 2.5 [21]. Therefore, by The-

orem 2.3.1, the framework immediately yields a 3.5-approximation algorithm for the

solution of the CDC problem. This improves upon the 4.5-approximation algorithm,

recently presented in [87]. It should be noted that since both algorithms make use of

a PTAS, their respective complexities are quite high. The key point with respect to

our Decomposition Framework is that any future improvement to the approximation

ratio of the STP-MSP will directly reduce the CDC approximation ratio.



2.4 Placing the Cover MBNs

In this section, we present and analyze distributed algorithms for placing and mobi-

lizing (under RNs mobility) the Cover MBNs.

2.4.1 Strip Cover Algorithms

Hochbaum and Maass [52] introduced a method for approaching the GDC problem

by (i) dividing the plane into equal width strips, (ii) solving the problem locally on

the points within each strip, and (iii) taking the overall solution as the union of all

local solutions. Below we present algorithms that are based on this method. These

algorithms are actually two different versions of a single generic algorithm. The first

version locally covers the strip with rectangles encapsulated in disks while the second

version locally covers the strip directly with disks. We then generalize (to arbitrary

strip widths) the effects of solving the problem locally in strips. We use this extension

to provide approximation guarantees for the two algorithms in the worst case and in

the average case. Finally, we discuss the distributed implementation of the algorithms.

Centralized Algorithms

For simplicity of the presentation, we start by describing the centralized algorithms.

The two versions of the Strip Cover algorithm (Strip Cover with Rectangles - SCR

and Strip Cover with Disks - SCD) appear below. In line 6, the first version (SCR)

calls the Rectangles procedure and the second one (SCD) calls the Disks procedure.

The input is a set of points (RNs) N = {1, 2, ... , n} and their (x, y) coordinates,

(iX, iv) Vi. The output includes a set of disks (MBNs) M = {dl, d2 ,..., dm} and their

locations such that all points are covered. The first step of the algorithm is to divide

the plane into K strips of width qsc = aD (recall that D = 2r). The values of qsc

that guarantees certain approximation ratios will be derived below. We denote the

strips by Sj and let MsA represent the set of MBNs for strip Sj.

An example of the SCR algorithm and in particular of step 9 in which disks

are placed such that they compactly cover all points in the rectangular area with



Algorithm 1 Strip Cover with Rectangles/Disks (SCR/SCD)
1: divide the plane into K strips of width qsc = aD

2: Msj +- 0, Vj = 1,..., K
3: for all strips Sj, j = 1,..., K do
4: while there exist uncovered RNs in Sj do
5: let i be the leftmost uncovered RN in Sj
6: call Rectangles(i) or call Disks(i)
7: Msj - Msj U dk
8: return Uj Msj

Procedure Rectangles(i)
9: place an MBN dk such that it covers all RNs in the rectangular area with x-

coordinates [ix,i + V1 - 2D]
10: return dk
Procedure Disks(i)
11: Pdk +- 0- 0 set of RNs covered by the current MBN dk}
12: while Pdk U i coverable by a single MBN (disk) do
13: Pdk Pdk Ui
14: if there are no more RNs in the strip then
15: break
16: let i be the next leftmost uncovered RN in Sj not currently in Pdk
17: place MBN (disk) dk such that it covers the RNs Pdk
18: return dk

x-coordinate range ix to ix + 1 - a2D is shown in Figure 2-3.

As mentioned in Section 1.2.1, Gonzalez [38] presented an algorithm for covering

points with unit-squares. It is based on dividing the plane into equal width strips and

covering the points in each of the strips separately. In [32] it was indicated that when

the same algorithm is applied to covering points with unit disks, the approximation

ratio is 8. The Strip Cover with Rectangles (SCR) algorithm, described above, is

actually a slight modification to the algorithm of [38]. Unlike in [38], in our algorithm

we allow the selection of the strip width. This will enable us to prove that the

approximation ratio for covering points with unit disks is 6 and to bound the average

case approximation ratio by 3.

The Strip Cover with Disks (SCD) algorithm requires to answer the following

question (in Step 12): can a set of points Pdk U i be covered by a single disk of radius

r? This is actually the decision version of the 1-center problem. Many algorithms for

solving this problem exist, an example being an O(n log n) algorithm due to [51]. We
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Figure 2-3: An example illustrating step 9 of the SCR algorithm.

will show that solving the 1-center problem instead of compactly covering rectangles

(as done in the SCR algorithm) provides a lower approximation ratio.

The computation complexity of the SCR algorithm is O(n log n), resulting from

sorting the points by ascending x-coordinate. In the SCD algorithm the 1-center

subroutine may potentially need to be executed as many as O(n) times for each of

the O(n) disks placed. Therefore, the computation complexity is O(C(n)n2 ), where

C(n) is the running time of the 1-center subroutine used in steps 12 and 17. By using

a binary search technique to find the maximal Pdk, we can lower the running time to

O(C(n)n log n).

Approximation Ratios

Let algorithm A denote the local algorithm within a strip, and let IAs I denote the

cardinality of the GDC solution found by algorithm A covering only the points in

strip S,. Let algorithm B represent the overall algorithm, which works by running

algorithm A locally within each strip and taking the union of the local solutions as

the overall solution. In our case algorithm B is either the SCR or the SCD algorithm

and algorithm A is composed of the steps 4-7 within the for loop.

Let jOPTJ represent the cardinality of an optimal solution of the GDC problem

in the plane and IOPTs I the cardinality of an optimal solution for points exclusively

within strip Sj. Note that OPT =# Us3 OPTs,, since OPT can utilize disks covering

points across multiple strips. Finally, let ZA denote the worst case approximation ratio

of algorithm A. Namely, ZA is the maximum of IAsj I/IOPTs, over all possible point-

aDI



set configurations in a strip Sj. Similarly, let ZB denote the worst case approximation

ratio of algorithm B.

We characterize ZB as a function of ZA. Namely, if q < D, the cardinality of

the solution found by algorithm B is at most ([]1 + 1)ZA times that of the optimal

solution, JOPTI.

Observation 2.4.1. If the strip width is q < D, a single disk can cover points from

at most ([ l + 1) strips.

Lemma 2.4.1. If the strip width is q • D, ZB = (r E + 1)ZA.

Proof. Consider the set of disks in an optimal solution to the GDC problem in the

plane, OPT = dl,... ,dlopTI. From OPT, we can create an "algorithm B type"

solution (i.e. made up of disks covering points only from single strips) in the following

way. Assume OPT disk dk covers points from ck different strips (e.g. Sj, S+1, ... ,

Sj+ck-1). For each such dk, create ck new disks d', d22,... , dk and assign to each d'

the points covered by dk that lie exclusively within strip Sj.

Upon doing this for all dk E OPT, let OPT' denote the resulting set of disks.

Clearly, OPT' can be expressed as Usj OPT's, where OPTs represents the subset of

disks in OPT' that cover points exclusively within strip Sj. Therefore, we have that,

loPTI
IOPT'I = IOPTS I= ck < + 1 • IOPTI (2.3)

Si k=l

where the second equality, i.e. converting a sum over strips into a sum over disks,

follows from the construction of OPT', and the inequality follows from Observation

2.4.1.

Next, we note that by definition IAsl 5I ZA - |OPTsl. Combining this with the

fact that OPTs. < OPT's for all strips Sj, we have that,

IBI = EZ Asj ZA - IOPTs ZA. OPT'I
Si Si

< ZA" -D +1) .OPTI (2.4)

where the last inequality followed from (2.3). O



We now show that in the SCR algorithm, ZA = 2. This approximation ratio is

tight, as illustrated in Figure 2-4-a.

Lemma 2.4.2. If the strip width qsc < % , steps 4-7 of the SCR algorithm provide

a 2-approximation algorithm for the GDC problem within a strip.

Proof. Consider some strip S. Let OPTs = {dl,d 2,..., dloPTsl} and ALGOs =

{al, a2 , ... , aIALGOsI} denote an optimal in-strip solution and SCR in-strip subroutine

(steps 4-7) solution, respectively. Recall that we assume that the MBNs of both OPTs

and ALGOs are ordered from left to right by x-coordinate of the leftmost covered

point (i.e. i < j if (d6)x (df)x). Finally, define abm as the bY' algorithm disk (from

the left) corresponding to the disk that covers the rightmost point covered by the mth

OPTs disk din.

Let qsc = aD, a < 1. We now prove by induction that if a < V3/2, the in-strip

subroutine has approximation ratio of 2, i.e. IALGOsI = blOPTsi ! 2IOPTsI.

Base Case: The area covered by dl (the leftmost optimal disk) is bounded by a

rectangle with x-coordinate range (df), (the x-coordinate of the leftmost point) to

(df), + D. The minimum area covered by two SCR algorithm disks whose leftmost

point is (d6) . is a rectangle with x-coordinate range (dL)x to (dLf) + 2v/1 a2D.

Therefore, as long as 2V/ -- a2D > D, it is the case that bl • 2. This condition is

met if qsc <• vFD/2.

Inductive Step: Assume that the in-strip algorithm uses no more than 2m disks

to cover all the points covered by dl,... ,d, (i.e. bm < 2m). Now consider the

number of additional disks it takes for the algorithm to cover the points covered by

dl ,... ,d, dm+l. Clearly, since all of the points up to the rightmost point of dm

are already covered, by the same argument as the base case, the algorithm will use

at most 2 extra disks to cover the points covered by dm+,. It thus follows that if

q x3D/2, bm+l I bm + 2 < 2m + 2 = 2(m + 1). 1O

By combining the results of lemmas 2.4.1 and 2.4.2, we obtain the approximation

ratio of the SCR algorithm.
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Figure 2-4: Tight examples of the 2 and 1.5 approximation ratios obtained by the
in-strip subroutines of the (a) SCR and (b) SCD algorithms.

Theorem 2.4.1. If D < qsc <_ -1 , the SCR algorithm is a 6-approximation algo-

rithm for the GDC problem.

Proof. Define algorithm A as the in-strip subroutine of the SCR algorithm (steps 4-7)

and algorithm B as the SCR algorithm. From Lemma 2.4.2, for q5 V rD/2, ZA = 2.

From Lemma 2.4.1, ZB 5 ZA([D/q] + 1), the minimum value of which (for q < D)

is 3 ZA. This is attained when q > D/2. O

Below it is shown that in the SCD algorithm ZA = 1.5. Combining this result

with Lemma 2.4.1, we obtain the approximation ratio of the SCD algorithm. Notice

that the approximation ratio of 1.5 for the in-strip subroutine of the SCD algorithm

is tight, as illustrated in Figure 2-4-b.

Lemma 2.4.3. If qsc <5 L-, steps 4-7 of the SCD algorithm provide a 1.5-approximation

algorithm for the GDC problem within a strip.

Proof. Similar to the proof of Lemma 2.4.2, we use induction to prove the result. We

utilize the same definitions as from that proof.

Base Case: There are 2 "sub" base-cases to consider. First, assume (dR), < (dL),,

as shown in Fig. 2-5-a. If this this is the case, it is easy to see that bl = 1, as by

definition all of the points from dL to dR are coverable by a single disk; this fact would

have been exploited in step 12 of the SC algorithm. Second, assume (dR), > (dL),,

as shown in Fig. 2-5-b. In this scenario, we consider a base case of m = 2, and

show that b2 < 3. To see this, first note that all points immediately left of dL could
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Figure 2-5: Illustration of the SCD induction proof. (a) "Sub" Base-Case 1: (dr), <
(d2),. (b) "Sub" Base-Case 2: (di), _ (d2)

have and therefore would have been covered by a single SCD disk as per line 17 of

the algorithm. Next, as shown in Fig. 2-5-b, we note that the remaining uncovered

points all lie within a rectangular area of at most D along the strip. Since a lower

bound on the area each SCD disk must cover is x/1 - 2D along the strip (i.e. this

area is always compactly coverable), we have that these points will be covered by at

most 2 disks as long as 2v1 -K7D > D. This condition is met if a _< •.

Inductive Step: Assume the in-strip algorithm uses no more than 2m disks to

cover all the points covered by dl,..., di, i.e. bm < 1m. Assume also that m is

even 2. Now consider the number of additional disks it takes for the algorithm to cover

the points covered by dj,..., din, dm+l. Define dR* as the rightmost point covered by

di, ... , d, d, d+, e.g. dR* = maxll<m+l[dR].

Again we have two cases: First, assume that (dR*), < (dL+2)x. This case is

identical to the first base-case in that the algorithm uses exactly one extra disk to

cover the points from di +1 to dm+±, i.e.,

3 3
bm+l = b + 1 < -m + 1 < -(m + 1). (2.5)2 -2

The second case assumes (dR*), Ž (d,+ 2)'. This case is identical to the second

base case, whereby we can conclude that the algorithm uses at most 3 extra disks in

2The second base-case and second inductive-case ensure the lemma is true for all m.



order to cover the points covered by dl,..., dm+2, i.e.,

3 3
bm+2 bm + 3 = - m + 3 = -(m + 2). (2.6)

2 2

Theorem 2.4.2. If 2 < qsc 5D, the SCD algorithm is a 4.5-approximation

algorithm for the GDC problem.

Proof. Exactly the same as the proof of Theorem 2.4.1, except that as per Lemma

2.4.3, we use ZA = 1.5 instead of 2. OI

Up to now we have discussed the worst case performance. We now wish to bound

the approximation ratios of the SCR and the SCD algorithms in the average case.

We assume that the RNs are randomly distributed according to a two dimensional

Poisson process 3. Due to the random locations of the RNs, |OPTJ is a random

variable. Similarly, we define ISCRI and ISCDI as random variables corresponding

to the number of disks placed by the SCR and the SCD algorithms. We define the

average approximation ratios OSCR and ,SCD as,

E[ISCRI] E[ISCDI]
scR = E[IOPTI]' SCD = E[IOPTI]. (2.7)

It should be noted that OSCR differs from the expected value of the approximation

ratio (E[ISCRI/IOPTII). Yet, it provides a good measure of the average performance.

The following Theorem and Corollary bound the average approximation ratio of

the SCR algorithm, thereby bounding the ratio of the SCD algorithm (since SCD

always outperforms SCR). It can be seen that although the worst case approximation

ratios are 6 and 4.5 (respectively), selecting a specific strip width results in an average

approximation ratio which is bounded by 3. In Section 2.7 we will show by simulation

that in practice the approximation ratios are actually much lower.

3When the number of RNs is given, their positions are independent and each is uniformly dis-
tributed in the plane.
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Figure 2-6: Probabilistic analysis of the performance of the SCR algorithm within a
strip.

Theorem 2.4.3. Given RNs distributed in the plane according to a two dimensional

Poisson process with density A,

D2 A + 2DfA + 1
ISCD • ISCR - D2 1 (2.8)

Proof. To prove the theorem, we start by upper bounding E[ISCRI]. To this end,

consider a single strip S and recall that the SCR algorithm iteratively places disks by

identifying the leftmost uncovered point i and fully covering the x-range between i,

and i, + Vr - 2D along the strip. The points are distributed in the plane according

to a two dimensional Poisson process with density A. Therefore, the horizontal (x-

coordinate) distance between points is exponentially distributed with average 1.

Thus, the expected distance to the location of the first disk is E[T1 ] = • (see Figure

2-6.). Furthermore, once a disk is placed, the expected distance between the end of

its coverage and the start of the next disk is E[T']. Due to the memoryless property

of the exponential random variable, we can conclude E[T'] = .

It therefore follows that the expected number of disks used by the SCR algorithm

within a strip is the total length of the strip (less the initial space) divided by the

expected distance between the start of one disk and the start of another. Namely,
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Figure 2-7: Dividing the plane into strips in order to lower bound E[IOPTI]

E[ISCRIs]
L- 1

AaD

L
v1 -7a2D + DADaD

A aDL
=aV -aD+1 (2.9)

where E[jSCRIs] is the expected number of disks used by the SCR algorithm

within strip S. Note that in the second line of (2.9) we assume that L >> 1;

we technically don't need this assumption, but it makes the analysis cleaner. The

expected total number of disks used by the algorithm over the entire plane is therefore

this number multiplied by the total number of strips in the plane, i.e.,

AaDLKE[ISCRI] = D + 1Aav/l---aD2 + 1
(2.10)

We next aim to lower bound E[IOPTI]. To this end, we divide the plane into

D-spaced horizontal strips of width q as shown in Figure 2-7.

We can lower bound the expected number of disks used to cover points in a single

strip S by an optimal algorithm by noting that the area coverable by each OPT disk
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is no more than a rectangle of size q x D. Thus, using a similar argument to when

we upper bounded the number of SCR disks required to cover a strip, we have that,

E[|OPTs] >  (2.11)
D+

where E[IOP'Ts] is the expected number of disks used by the optimal solution within

strip S. Next we note that an upper bound on the expected number of OPT disks used

to cover points in the whole plane can be achieved by summing over the disks used

to cover each of the individual strips. The reason we can do this is that since there is

a distance D between strips, it is impossible for a single OPT disk to simultaneously

cover points from two different strips. We therefore have that,

E[JOPTJ] > L KoD
E[OPT - D + D + q

KLaDKLaD 
(2.12)

D2 + - +  Dq +

Next, since we have control over the strip size q, and want to find the tightest

possible lower bound, we can select q so as to maximize E[IOPTI], i.e. minimize the

bracketed quantity in the denominator of (2.12). It turns out that setting q =

achieves this. Substituting this into (2.12), we have that,

KLaD
E[IOPTI] > -D (2.13)D2 1 2D

Finally, combining (2.13), (2.10) and (2.7) gives us our desired upper bound on

3SCR, i.e.,

/SCR - AaV1 -a2D2 + 1 AaDLK

D2A + 2DVA + 1
= 1 D(2.14)a/ - D2X + 1



Corollary 2.4.1. If qsc = , then OSCD < /SCR 3.

Proof. We derive the maximum value of (2.14) by differentiating with respect to A.

Upon doing so and plugging this value of A into (2.14) gives us,

/SCR A=AX,,,< a 1a 1 (2.15)

which is interestingly independent of D. Finally, we note that for I a < 1, (2.15)

is minimized when a = ,, at which point it achieves a value of exactly 3. O

Distributed Implementation

By construction, the SCR and SCD algorithms can be easily implemented in a dis-

tributed manner. The algorithms are executed at the RNs and operate within the

strips. Thus, we assume that the strips are fixed and that their boundaries are known

to all nodes. The SCR algorithm executed at an RN i, consisting of rules regarding

initial construction and maintenance under RN mobility is described below. RN mo-

bility affects the design of the algorithms, since it can cause an RN to disconnect from

its MBN or to move to a neighboring strip in which it is not covered by an MBN.

Recall that we denote the RNs within a strip according to their order from the left

(i.e. i < j if ix < jx). Ties are broken by node ID.

It can be seen that every RN that has no left neighbors within distance D initiates

the disk placement procedure that propagates along the strip. The propagation stops

once there is a gap between nodes of at least D. If an RN arrives from a neighboring

strip or leaves the MBN's coverage area, it initiates the disk placement procedure that

may trigger an update of the MBN's locations within the strip. Notice that MBNs

only move when a recalculation is required. Although the responsibility to place and

move MBNs is with the RNs, simple enhancements would allow the MBNs to re-place

themselves during the maintenance phase.

The computation complexity is O(1) to determine what message to send out (if

any). The communication complexity is potentially O(n), since MBN Placed messages

may potentially have to propagate the entire length of the strip. Information has to



Algorithm 2 Distributed SCR (at RN i)
Initialization

1: let Gi be the set of RNs j such that j < i and i. - j, < D
2: if Gi = 0 then
3: call Place MBN

Construction and Maintenance
4: if MBN Placed message received then
5: call Place MBN
6: if i is disconnected from its MBN or enters from a neighboring strip then
7: if there is at least one MBN within distance r then
8: join one of these MBNs
9: else

10: call Place MBN
Procedure Place MBN
11: let iR be the rightmost RN s.t. (iR), < i, + /T1 a2D
12: place MBN dk covering RNs j, where j. E [is, (iR)]
13: if (iR + 1), - (iR). < D then
14: send an MBN Placed message to iR + 1

be transmitted between RNs over a distance D = 2r. Recall that in Section 2.2 we

assumed that there is a long range control channel. Therefore, once RNs decide to

place an MBN, we assume that there is a way to communicate this to one of the

MBNs.

The distributed SCD algorithm is similar to the distributed SCR algorithm. The

main difference is that in Step 11 of Place MBN, iR is defined as the rightmost

coverable point (by a single disk of radius r), given that i is the leftmost point. As

mentioned earlier, finding this point requires solving 1-center problems. Then, in

Step 12 a disk that covers all the points between i and iR should be placed. The

computation complexity of the distributed SCD algorithm is a periodic O(C(n) log n)

to calculate the value of iR, where C(n) is the running time of the 1-center subroutine

used. The communication complexity is O(n).

2.4.2 MObile Area Cover (MOAC) Algorithm

In the SCR and SCD algorithms, an RN movement may change the allocation of

RNs to MBNs along the whole strip. Thus, although they may operate well in a



relatively static environment, it is desirable to develop algorithms that are more

tailored to frequent node movements. In this section we present such an algorithm

which builds upon ideas presented in [47]. As mentioned in Section 1.2.1, Hershberger

[47] studied the problem of covering moving points (e.g. RNs) with mobile unit-

squares (e.g. MBNs). Since the d-dimensional smooth maintenance scheme proposed

in [47] does not easily lend itself to distributed implementation, we focus on the simple

1-D algorithm proposed there.

Applied to our context, the Simple 1-D algorithm covers mobile RNs along the

strip with length D rectangles (MBNs). The key feature is that point transfers

between MBNs are localized. Namely, changes do not propagate along the strip.

According to [47], the algorithm has a worst case performance ratio of 3.4

Extending the Simple 1-D algorithm of [47] to diameter D disks is not straight-

forward. We will first show that an attempt to simply use rectangles encapsulated

in disks without any additional modifications results in a 4-approximation to the

GDC problem within a strip. Then, we will present the MObile Area Cover (MOAC)

algorithm which reduces the approximation ratio to 3.

We define the strip width as qMOAC = aD. We reduce disks to the rectangles

encapsulated in them and use these rectangles to cover points within the strip, as was

depicted in Figure 2-3. The rectangles cover the strip width (aD) and their length

is at most V1 -a2D. We set D = 1 and a = v//3 (resulting in v/1-- a2D = 2/3).

These are arbitrary values selected for the ease of presentation. Yet, the algorithm

and the analysis are applicable to any 1/2 < a < V5/3. We restate the set of rules

from [47] using our terminology and assuming (unlike [47]) that the rectangles' lengths

are at most 2/3.

The following lemma provides the performance guarantee of this algorithm. Notice

that since the changes are kept local, the approximation ratio holds at all time (i.e.

there is no need to wait until the changes propagate).

4We note that using the same inductive proof methodology, used for Lemma 2.4.2, one can show
that the simple 1-D algorithm actually maintains a 2-approximation at all times.



Algorithm 3 Simple 1-D [13]

0 initialize the cover greedily {using the SCR algorithm}
1 maintain the leftmost RN and rightmost RN of each MBN rectangle
2 if two adjacent MBN rectangles come into contact then

exchange their outermost RNs
3 If a set of RNs covered by an MBN becomes too long {the separation between its

leftmost and rightmost RNs becomes greater than 2/3} then
split off its rightmost RN into a singleton MBN
check whether rule 4 applies

4 if two adjacent MBN rectangles fit in a 2/3 rectangle then
merge the two MBNs

Lemma 2.4.4. The Simple 1-D algorithm [47] with v-I 72 = 2/3 is at all times a

4-approximation algorithm for the GDC problem within a strip.

Proof. To begin, we assume the same definitions of OPTs, ALGOs, and bm from

Lemma 2.4.2. We now proceed to prove the theorem by induction.

Base Case: The length (along the strip) covered by d, (the leftmost optimal disk)

is at most 1 (recall that we pre-set D = 1 for this section). Next, we show by a packing

argument that at most 4 ALGOs disks can simultaneously cover points from such a

unit-length interval where by assumption, no uncovered points exist to the left of dL .

To see why, assume 5 such ALGOs disks existed. However, this would mean that

the member points of four of the disks all lay within a unit interval. We define the

"combined length" of adjacent ALGOs disks mj and mj+l as Qj = (dJ)x - (dfL)x.

We thus have that Q1+ Q3 Q 1. However, from rule 4 of the Simple 1-D algorithm two

adjacent disks mj and mj+l are merged if their combined length Qj • 2. Therefore,

assuming Q1 > and Q3 > •, We have that Q1 +Q3 > 1, which is a contradiction.

Inductive Step: Assume the Simple 1-D algorithm uses no more than 4m disks

to cover all the points covered by dl, ... , dm, i.e. bm < 4m. Now consider the num-

ber of additional disks it takes for the algorithm to cover the points covered by

d1,... , din, dm+. Since all of the points up to the rightmost point of dm are already

covered, by the same argument as the base case the algorithm will use at most 4 extra
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Figure 2-8: Worst case example for the performance of the Simple 1-D algorithm:
(a) algorithmic solution and (b) optimal solution. The number of optimal MBNs is
denoted by k.

disks to cover the points covered by dm+l. Thus, we have that,

bm+l < bm + 4 < 4m + 4 = 4(m + 1). (2.16)

From lemmas 2.4.1 and 2.4.4 it follows that if implemented simultaneously in

every strip, the algorithm provides a 12-approximation for the GDC problem in the

plane, which is relatively high. We now focus on enhancements that reduce the

approximation ratio while maintaining the desired locality property.

Figure 2-8 presents an example which shows that the approximation ratio de-

scribed in Lemma 2.4.4 is tight. It can be seen that the performance ratio is (4k-1)/k,

where k is the number of disks used by the optimal solution. One of the sources of in-

efficiency is the potential presence of e-length MBNs (e.g. covering a single RN) that

cannot merge with their 2/3-length neighbor MBNs. Thus, up to 5 MBNs deployed

by the Simple 1-D algorithm may cover points which are covered by a single optimal

MBN. As long as such narrow MBNs can be avoided, a better approximation can be

achieved. We now modify the Simple 1-D algorithm to yield the MOAC algorithm in

which e-length MBNs cannot exist.

Before describing the algorithm, we make the following definitions. For MBN di,

in addition to its leftmost and rightmost RNs, defined earlier, as d6 and d~, we also



define Li and Ri as the x-coordinates of its left and right domain boundaries. The

interpretation of MBN di's domain is that any point in the x-range of [Li, Ri] will

automatically become a member point of MBN di. Recall that by definition MBN di

is to the left of MBN dj if (dF). < (dfL),

The MOAC algorithm operates within strips and maintains the following invari-

ants in each strip (in order of priority) at all times, for every MBN di:

1. Domain definition: L <_ (dL)x < (dR)x • Ri.

2. Domain length: < I Ri. - Li < 2

3. Domain disjointness: [Li, Ri] i[Lj, R3] = 0, Vdj E M.

4. Domain influence: Vp E N, Li :5 p~ Ri P - px E Pd,.

We describe the MOAC algorithm below. It consists of rules regarding construc-

tion and maintenance of the MBN cover. This algorithm can be implemented in

distributed manner by applying some of the rules at the MBNs and some of them at

disconnected (i.e. uncovered) RNs (it is clear from the context where each rule should

be applied). For brevity, we only state the maintenance rules for the case in which an

RN moves outside its MBN's domain boundary to the right (analogous rules apply

to a leftward movement).

It should be noted that the operations in lines 22-26 can always be accomplished

without violating invariant (2). This is due to the fact that an MBN dj is created for

point p only if Ipx - Lj_11 > 2/3 (otherwise MBN dj_-1 would have been stretched),

which implies there is enough space for two MBNs of size greater or equal to 1/3 to

coexist. Following the merge in line 28, the MBN should update its Li and RP such

that the domain will include all RNs and will satisfy invariant (2). This is always

possible, since the two merged MBNs satisfy the invariants prior to their merger.

The following lemma provides the performance guarantee of the MOAC algorithm

within the strip. From Lemma 2.4.1 it follows that if MOAC is simultaneously exe-

cuted in all strips, it is a 9-approximation algorithm.



Algorithm 4 MObile Area Cover (MOAC)
Initialization

1: cover the RNs with MBNs using the SCR algorithm
2: for all MBNs i do
3: L +-d ; Rid +2
4: Pd2 +- all RNs within [Li, Ri]

Maintenance (analogous rules apply for leftward movement)
5: if an RN p E Pd, moves right such that P. > Ri then
6: if Lj ! px _ Rj, j # i {p in dj's domain} then
7: remove p from Pd,
8: else if jp, - Li < 2 then-3
9: stretch Li and RP to maintain invariant (1) by setting Ri p• and Li

max(Li,px - 2)
10: else {p not in the immediate domain of any MBN}
11: remove p from Pd,
Disconnection
12: if at any time there exists an uncovered RN p then
13: if for some MBN dj, Lj < px < Rj then
14: Pd +-- p
15: else if for some MBN dj, Lj and Rj can be stretched (see line 9) to include p

while maintaining invariant (2) then
16: Pdj +- P
17: strech Lj and Rj to maintain invariants (1),(2)
18: else (p cannot be covered by an existing MBN}
19: let di- 1 and dj+l represent the MBNs to the left and right of p
20: if ILj+l - Rj-_11 i.e. enough "open space" to maintain invariant (2)}

then
21: create MBN dj with Pd, = p and IRj -Lj 1 while maintaining invariant

(3)
22: else (< . space around p}
23: shrink MBN dj_l such that Rj-1 = PX -
24: create MBN dj with Lj = p. - . and Rj = px
25: Pdj-1 +- all points in [Lj_1 , Rj-1]
26: Pd, +- all points in [Lj, Rj]
Merge
27: if there exists MBN dj such that I(dR), - (dL), I < or (dý)x - (d),| I 2then
28: merge dj into di

Lemma 2.4.5. The MOAC algorithm is a 3-approximation algorithm at all times

for the GDC problem within a strip.

Proof. The proof is almost identical to that of Lemma 2.4.4, except now we define

the "domain length" of each ALGOs MBN mj separately, as Qj = IRj - Ljj.



Base Case: Again, recall that the length (along the strip) covered by dl (the leftmost

optimal disk) is at most 1. This time we show that at most 3 ALGOs disks can

simultaneously cover points from this interval where by assumption, no uncovered

points exist to the left of dL . Too see why, assume 4 such ALGOs disks existed. As

before, this means that the member points of 3 of these ALGOs disks must all lay

within this interval, requiring that '3= 1 Qj : 1. However, the merging rule of the

algorithm implies that the sum of domain lengths of two adjacent disks must be > 3.

Furthermore, invariant (ii) of the algorithm states that the domain length of any disk

must be _> . We therefore have that Q1 + Q2 > and Qa 3 i, which together imply

Ej=1 Qj > 1, which is a contradiction.

Inductive Step: Assume the MOAC algorithm uses no more than 3m disks to cover

all the points covered by dl,..., din, i.e. bm < 3m. Now consider the number of addi-

tional disks it takes for the algorithm to cover the points covered by d1,..., dm, dm+l.

Since all of the points up to the rightmost point of dm are already covered, by the

same argument as the base case the algorithm will use at most 3 extra disks to cover

the points covered by dm+l. Thus, we have that,

bm+i 5 bm + 3 < 3m + 3 < 3(m + 1). (2.17)

Both the computation complexity and communication complexity of the MOAC

algorithm are always 0(1) per single node-movement. The only assumption required

is that MBNs and disconnected RNs have access to information regarding Lj, dL, d0

and Rj of their immediate neighbors to the right and left (as long as they are less

than 2D away). Thus, in terms of complexity, the MOAC algorithm is by far the best

of the distributed algorithms.

2.4.3 Merge-and-Separate (MAS) Algorithm

The relatively high approximation ratio of the MOAC algorithm results from the fact

that it reduces disks into rectangles, thereby not taking advantage of about 35% of



disk coverage area. The difficulty in dealing with disks is that there are no clear

borders and that even confined to a single strip, many disks can overlap even though

they cover disjoint nodes.

On average any algorithm with a merge rule should perform well. However, just

having a merge rule is not sufficient in the rare but possible case where many mutually

pairwise non-mergeable MBNs move into the same area. Based on this premise, we

present the Merge-And-Separate (MAS) algorithm, as an algorithm which merges

pairwise disks where possible (similar to the MOAC algorithm) and separates disks, if

too many mutually non-mergeable disks concentrate in a small area. As will be shown,

the MAS algorithm retains some of the localized features of the MOAC and obtains

better performance ratio. However, this come at a cost of increased complexity.

We define the strip-widths as qMAS = aD and set D = 1, a = V51/3, -/1- =

2/3. These are arbitrary values selected for the ease of presentation, the algorithm

and the analysis are applicable to any 0.5 < a < v3-/2. Let XR{i,j,k) and XL {i,j,k

be the x-coordinates of the rightmost and leftmost points of {Pd2 U Pdj U Pdk}. The

algorithm is initialized by covering the nodes within a strip with MBNs by using the

SCR algorithm. The algorithm that then operates at an MBN di is described below.

Notice that Figure 2-9 demonstrates the separation done at lines 8-11.

Notice that rearrangement of MBNs is done to the right (see for example Figure

2-9). Clearly, this means that if a Separation event occurs at the far left of a crowded

strip, this could initiate other Separation events along the remainder of the strip.

Simple heuristic modification can be designed to deal with such a situation.

Define steady state as any point in time in which there are no merge or sepa-

rate actions immediately pending. Below we describe the performance of the MAS

algorithm.

Lemma 2.4.6. In steady state, the MAS algorithm is a 2-approximation algorithm

for the GDC problem within a strip.

Proof. We prove the lemma by induction in a similar way to the proof of Lemma

2.4.2. We assume the same definitions of OPTs, ALGOs, and bm as in that proof.



Algorithm 5 Merge-and-Seperate (MAS)
Initialization

1: cover the RNs with MBNs using the SCR algorithm
2: Pdi + all RNs within [Li, Ri]

Merge
3: for all MBNs dk within 2D of di do
4: if {Pd U Pdk } can be covered by a single MBN then
5: merge di and dk

Separation
6: for all MBN pairs dj, dk within 2D of di do
7: if IR{ij,k} - XL{i,,k} I • 2D then
8: separate and reassign MBNs and RNs such that
9: P, -- all RNs in [xL{i,,k, {k + 2]

10: Pdj -- all RNs in [xL{i+,jk + , {,,k} + ]

11: Pdk +- all RNs in [XL{Ijk + , X{i,j,k}
Creation
12: if an RN p enters from a neighboring strip or an RN p E Pdj, moves s.t. MBN di

cannot cover Pd, then
13: create a virtual MBN for p
14: if the virtual MBN cannot be merged with any of its neighbors then
15: create a new MBN to cover p

Base Case: Consider the leftmost OPTs disk dl and its member point-set Pdl.

Assume there exist 3 ALGOs disks that cover at least one point from Pd,. However,

if this was the case then all of the points covered by these 3 ALGOs disks would lie

within an x-range of 2D (i.e. [[d L , dL + 2D]), and would be re-organized as per the

separate rule of the in-strip MAS algorithm. Once re-organized, we note that since

there exist no uncovered points left of df, that as per the separate rule of the MAS

algorithm, the first 2 re-organized disks would cover all points within the x-range

[df, dL + !], and thus the third re-organized disk could not cover any points from

Pd1 , which is a contradiction.

Inductive Step: Assume the in-strip MAS uses no more than 2m disks to cover all

the points covered by dl,..., dm, i.e. bm < 2m. Now consider the number of additional

disks it takes for the algorithm to cover the points covered by dj,..., dm, dm+l. Since

all of the points up to the rightmost point of dm are already covered, by the same

argument as the base case the algorithm will use at most 2 extra disks to cover the



points covered by dm+l. Thus, we have that,

bm+l < bm + 2 < 2m + 2 < 2(m + 1). (2.18)

The computation complexity of the MAS algorithm is a periodic O(C(n)) to

evaluate the merge and the create rules, where C(n) is the running time of the 1-

center subroutine used. On the other hand, since point transfers are local (e.g. only

take place between adjacent MBNs), the communication complexity is 0(1). In order

to make the required decisions, we assume that an MBN has access to all nearby (i.e.

within a distance of 3D) MBNs' point-sets and locations.

2.5 Placing the Relay MBNs

Recall that in Section 2.3 we showed that the CDC problem can be decomposed into

two subproblems. In this section, we focus on the second subproblem that deals with

a situation in which a set of nodes (Cover MBNs) is given and there is a need to

place the minimum number of nodes (Relay MBNs) such that the resulting network

is connected. Recall that the distance between connected MBNs cannot exceed R.

This problem is equivalent to the Steiner Tree Problem with Minimum number of

Steiner Points (STP-MSP) [64].

In [64] a 4-approximation algorithm that places nodes along edges of the Min-

imum Spanning Tree (MST) which connects the Cover MBNs has been proposed.

In [20] an improved MST-based algorithm that provides an approximation ratio of

3 has been proposed. These algorithms are simple and perform reasonably well in

practice. However, their main limitation is that they only find MST-based solutions.

Namely, since the Relay MBNs are in general placed along the edges of the MST,

these algorithms cannot find solutions in which a Relay MBN is used as a central

junction that connects multiple other Relay MBNs. An example demonstrating this

inefficiency appears in Figure 2-10.



XL{i,j,k} < 2D XR{i,j,k}

P i 1 ·

2 2 2
3 3 -3

Figure 2-9: The Separation rule of the MAS algorithm

OM
relay

cover

(a) (b)

Figure 2-10: (a) Optimal STP-MSP solution (4 Relay MBNs). (b) MST-based solu-
tion (6 Relay MBNs).



Below we present and analyze a Discretization Approach which provides a theo-

retical footing towards the application of the vast family of discrete and combinatorial

approaches (e.g. integer programming and local search) that can potentially rectify

the above inefficiency. In particular, the approach transforms the STP-MSP from

a Euclidean problem to a discrete problem on a graph. Although the transformed

problem does not admit a constant factor approximation algorithm, in many practical

cases it can be solved optimally. We will show that if such a solution is obtained, it

is 2-approximation for the STP-MSP.

Our approach is based on an idea used by Provan [74] for dealing with the contin-

uous analog of the STP-MSP problem, the well known Euclidean Steiner Tree (EST)

problem [35]. In [74] it was proposed to discretize the plane and to solve a Network

Steiner Tree problem [35] on the induced graph, yielding an efficient approximate

solution for the EST. We utilize a similar approach towards solving the STP-MSP

problem, which we present below. Note that our approach is quite different from the

approach of [74], since the STP-MSP problem is more sensitive to discretizing the

plane than the EST problem.

Define Vo as the lattice of points in the plane generated by gridding the plane with

horizontal/vertical spacing A, the exact value of which will be derived later. Next,

define V1 as the set of points associated with the pairwise intersections of radius R

circles drawn around each of the Cover MBNs. For the intersection region of any two

circles, add three equally spaced points along the line between the two intersection

points. Let V2 denote the set of these points. Finally, define conv(Mcoer) as the

convex hull of the of Cover MBNs. We can now define

V= {(Vo U Vi UV 2 U over) n* conv(Mover)}. (2.19)

where we define a special intersection operator n* to ensure that we pick enough

points to be in V such that conv(V) Q conv(Moer).

For all u, v E V, if du, 5 R, we define an edge (u, v). We denote the set of edges

by E and the induced graph by G = (V, E). Let the node weights be denoted by w,.



We now introduce the Node-Weighted Steiner Tree (NWST) problem [41],[60],[80],

which has to be solved as part of our Discretization algorithm.

Problem NWST: Given a node-weighted undirected graph G = (V, E) with zero-

cost edges and a terminal set Mc,,, _ V, find a minimum weight tree T C G spanning

Mcover .

Algorithm 6 Discretization
1: create the sets Vo, V1, V2, and V {A derived below}
2: w, 1 Vv E V - Mcover
3: w, 4 OVv E Mcover
4: create the set E
5: find a minimum weight NWST on G = (V, E)

The set of nodes selected in step 5 correspond to the Relay MBNs in the STP-MSP

solution. We assume that step 5 is performed by a ,NwsT-approximation algorithm.

The following theorem provides the performance guarantee of the above algorithm.

Theorem 2.5.1. If A < , the Discretization algorithm is a 2fNwsT-approximation

algorithm for the STP-MSP.

Our methodology in proving the theorem is as follows. We start by assuming the

optimal STP-MSP tree is known, and we define an algorithm to construct a candidate

Steiner tree T in G from this optimal tree. Notice that the optimal solution is of course

not known, and therefore, T will not be constructed in practice. However, we will

use the definition of T in order to bound the ratio between an approximate solution

to the Node-Weighted Steiner Tree (NWST) problem in G to the optimal solution of

the STP-MSP in the plane.

Recall that the set of terminals/Cover MBNs Moe,,,, is given as input to the

problem. Define TOPT = (M*, E*) as the optimal solution to the STP-MSP. The

node set M* is composed of the Cover MBNs Mc,,,e and the optimal set of Relay

MBNs denoted by M,*eay. We now present an algorithm for the construction of a

candidate tree T = (MT, ET) in the graph G = (V, E). An example of steps 4-5, 7,

and 12-14 of the algorithm is illustrated in Figure 2-11.



Algorithm 7 Construction of a Feasible STP-MSP (CFS)

1: MT - Mcover

2: ET -- edges from E* connecting Mcover nodes to each other
3: for all u E Mr~eay that have edges (in E*) to a set of Cover MBNs (in Mcoer) do
4: add to MT a Relay MBN u' E V located at the nearest point to u that can be

directly connected to the same set of Cover MBNs
5: add to ET edges connecting u' and the set of Cover MBNs
6: for all u E M~iay that do not have edges (in E*) to any Cover MBNs in Moer

do
7: add to MT a Relay MBN u' E V located at the nearest point to u
8: for all Relay MBNs u, v E M*elay such that (u, v) E E* do
9: if dUV < R then

10: add to ET an edge (u', v')
11: else
12: w +- midpoint of the line segment (u, v)
13: add to MT a Relay MBN w' E V located at the nearest point to w
14: add to ET edges (u', w'), (w', v')

In the following lemma we show that T is a feasible solution to the NWST problem

in G.

Lemma 2.5.1. If A < A, then T, constructed by the CFS algorithm, is a Steiner

tree in G.

Proof. In this proof, we denote the Euclidean distance between nodes u and v by luvj.

We have to show that T connects all the nodes from Mover by a tree whose nodes

are in V and that the edges added to ET are valid edges in E.

The nodes of T (i.e. MT) are by definition in V, since they are selected from V.

We can see that following Step 1 all the nodes from Mcover are included in T. Then,

in Step 2 all the Mcover nodes that were directly connected to each other in TOPT

are similarly connected in T. In steps 3-5 all the Cover MBNs that were directly

connected to a relay MBN in TOPT are also similarly connected to new Relay MBNs

(that connect the same groups of Cover MBNs) in T. The new Relay MBNs always

exist and are always less than R away from their Cover MBNs, since V includes the

intersections of radius R circles drawn around each of the Cover MBNs.

Up to this point all of the edges added to ET are clearly of length at most R.

We now show that this is the case for edges connecting new Relay MBNs as well.
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Figure 2-11: An example of the construction of the candidate tree T from the optimal
STP-MSP tree TOPT

In Step 7 each Relay MBN is replaced by a new Relay MBN which is a node in V.

If two Relay MBNs are less than R from each other, they are connected in Step 10.

It remains to show that if this is not the case, the new edges are shorter than R.

Consider an edge (u, v), u, v E M*,eay and the corresponding new edges in T - (u', w')

and (w', v') (generated in Steps 13-14). We show that lu'w'l < R, thereby it is an

edge in E (the proof for Iw'v'l is symmetric).

By the definition of the STP-MSP solution luwl < R/2. In addition, by applying

the triangle inequality to the distance between an arbitrary point w to the nearest grid

point w' in Vo, we get that Iww'I A. Using these facts and the triangle inequality

we have that,

R
Iu'w'I Iu'u + IUWI + ww'I < u'uI + - + A. (2.20)

Obtaining an upper bound on lu'ul requires to take into account the case in which

u is directly connected to multiple Cover MBNs. In such a case in step 4, u' may

potentially have to be located at a specific point in Vi U V2 which is not necessarily

its nearest point in V. Two scenarios have to be considered. In the first scenario, u'

r
I E N
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Figure 2-12: A loose upper bound on the area of any intersection region of 2 circles
that does not contain a grid point.

can be located at a grid point in Vo. Namely, it can be placed at a grid point located

in the intersection region of radius R circles centered around the Cover MBNs that u

is directly connected to. In this case, lu'ul 5 2A, since u' can potentially be located

at this (not necessarily the nearest) grid point.

In the second case, no point in Vo is located in the relevant intersection region. In

that case we can (loosely) bound the size of the intersection region by a 2R x V.A rect-

angle, as shown in Figure 2-12. Note that the VWA width of the rectangle corresponds

the diagonal distance between grid points, and therefore, it is quite conservative. In

the construction of V2 we included 3 points along each line between two intersection

points. Therefore, by using the triangle inequality, we get that lu'ul < A/Vf2 + R/4.

Combining this with (2.20), we have that,

Iw'I < max 2A, (A +  R+R + A (2.21)

which is less than R if A < R. [

In the following lemma we show that the number of Relay MBNs in T, denoted

by IMrTay = IMTI - IMcoer , is less than twice the number of Relay MBNs in the

optimal solution of the STP-MSP (TOPT)-

Lemma 2.5.2. In T, constructed by the CFS algorithm, IMrelayl < 2M*relay .

Proof. In the CFS algorithm, each Relay MBN u in TOPT is replaced by a Relay MBN

u' in T (steps 4 and 7). For each edge connecting a pair of Relay MBNs in TOPT, at

v/2-A



most one additional MBN is added in T (w' in step 13). Since TORPT is a tree, there

can be at most IM,*,,,l - 1 such edges. Therefore, the total number of Relay MBNs

in T is,

IM•eayI < IM;ezay• + IM;eayI - 1 < 21 Melay 1. (2.22)

Proof of Theorem 2.5.1. Let the number of Relay MBNs in TOPT and T be ITOPTI =

IMr*elayv and ITI = IMT ayl, respectively. Recall that in the Discretization algorithm,

the Cover MBNs in G were assigned a weight of 0 and the other nodes were assigned

a weight of 1. Let ToPWST be the optimal (minimum weight) Node-Weighted Steiner

Tree (NWST) in G and denote its weight by IToNWSTI. Due to Lemma 2.5.1 when

A < R/7, T is a feasible solution to the NWST problem in G. Therefore, and due to

Lemma 2.5.2,

ITo"p' ST I 5 ITI 2ITORTI. (2.23)

In Step 5 of the Discretization algorithm, the NWST problem in G is solved by

a 3NWST approximation algorithm. We denote the obtained solution by TALGO and

denote the number of Relay MBNs in this solution by ITALGOI. From (2.23) we get

that

ITALGOI • INWSTITONPWST I 5 2,3NWSTTOPTI. (2.24)

It was shown in [60] that the NWST problem does not admit a constant factor

approximation algorithm and that the best theoretically achievable approximation

ratio is In k, where k is the number of terminals (in our formulation k = IMcoer I).

For the case in which all node weights are equal, [41] indeed presented a (In k)-

approximation algorithm. Thus, in general, the Discretization algorithm yields a

worst case approximation ratio of 2 In IMco,,,, . However, in some cases the NWST

problem can be solved optimally by discrete methods such as integer programming

[80]. Since in such cases 3NWST = 1, the approximation ratio will be 2. Notice that it



is likely that the Discretization algorithm will have better average performance than

the MST-type algorithms, due to the use of Relay MBNs as central junctions.

Finally, it should be noted that the Discretization algorithm is centralized. Since

this algorithm takes care of placing only the Relay MBNs, it might be feasible to

implement it in a central location. Yet, if there is a need to solve the problem in a

distributed manner, one of the MST-based algorithms [20] implemented with a dis-

tributed MST algorithm should be used. Although these algorithms are distributed,

they do not deal very well with the mobility of Cover MBNs (i.e. a small change in

the location of a Cover MBN may require repositioning several Relay MBNs). Thus,

the development of distributed algorithms for the STP-MSP that take into account

mobility remains an open problem.

2.6 Joint Solution

Using the decomposition method presented in Section 2.3, the overall approximation

ratio of the CDC problem is the sum of the approximation ratios of the algorithms

used to solve the subproblems. In this section, we note that the Discretized algorithm

developed in the previous section can be applied towards solving the CDC problem.

The result is that in specific instances when the Node-Weighted Steiner Tree (NWST)

problem can be solved optimally (e.g. using integer programming), we can obtain a

centralized 2-approximate solution for the CDC.

The key insight is that the CDC problem can be viewed as an extended variant

of the STP-MSP problem. Namely, given a set of RNs (terminals) distributed in the

plane, place the smallest set of MBNs (Steiner points) such that the RNs and MBNs

form a connected network. Additionally, RNs must be leaves in the tree, and edges

connecting them to the tree must be of length at most r. The remaining edges in the

tree must be of at most R.

For the Discretization algorithm to apply, we need to make the following modifi-

cations. First, in the definition of the vertex set V, Mco,,r should be replaced with

the set of RNs, N. Second, V1 and V2 should now be defined with respect to the
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Figure 2-13: Ratios between the solutions by the SCD and SCR algorithms and the
optimal solution, and an upper bound on average approximation ratios.

pairwise intersections of radius r circles drawn around each of the RNs. Finally, in

the definition of the edge set E, RNs should only have edges to vertices in V within

distance r, and no two RNs should have an edge between them. With these modifi-

cations, it can be shown that if R > 2r and A < R/6, the Discretization algorithm

is a 23NwsT-approximation algorithm for the overall CDC problem.

2.7 Performance Evaluation

In this section we evaluate the performance of the algorithms via simulation. First,

we evaluate the distributed GDC algorithms in both static and mobile environments.

Then, we focus on the CDC problem and compare results obtained by the Discretiza-

tion algorithm to results obtained by decomposing the problem. The results have

been obtained by a simulation model of our algorithms, developed in Java.

For a network with static RNs, Figure 2-13 presents the average ratio between

the solutions obtained by the SCD and SCR algorithms, and the optimal solution.

For each data point, the average was obtained over 10 different random instances in

,,,,,,,
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Figure 2-14: The number of Cover MBNs used by the GDC algorithms during a time
period of 500s in a network of 80 RNs.

which the RNs are uniformly distributed in the plane. The optimal solutions were

obtained by formulating each instance of the GDC problem as an Integer Program

and solving it using CPLEX. It can be seen that although the worst case performance

ratios of the SCR and SCD algorithms are 6 and 4.5, the average performance ratios

are closer to 1.7 and 1.4, respectively. The figure also presents the upper bound on

the average approximation ratios (IscR and ,SCD) derived in Theorem 2.4.3.5 The

large gap between the bound on the average approximation ratios and the actual

ratios indicates that the bound is somewhat loose.

Table 2.1 shows the complexities and approximation ratios of the distributed GDC

algorithms. It can be seen that there are clear tradeoffs between decentralization and

approximation. These tradeoffs are further demonstrated by simulation. Figures 2-14

and 2-15 illustrate simulation results for a network with mobile RNs. The mobility

model used is the Random Waypoint Model [57] in which RNs continually repeat

5Recall that in Theorem 2.4.3, we assume that the RNs are randomly distributed according to
a two dimensional Poisson process. Therefore when the number of RNs is given, their positions are
uniformly distributed in the plane.



Table 2.1: Time complexity (# of rounds), local computation complexity, and ap-
proximation ratio of the distributed GDC algorithms (C(n) is the complexity of a
decision 1-center algorithm).

Algorithm Time Local In-Strip

Complexity Computation Approximation

Complexity Ratio

MOAC 0(1) O(log n) 3

SCR O(n) O(log n) 2
MAS 6  O(1) O(C(n)) 2

SCD O(n) O(C(n) log n) 1.5

the process ,of picking a random destination in the plane and moving there at a

random speed in the range (0, Vmax]. We used a plane of dimensions 600m x 600m,

set Vmax = 30m/s, and set the RNs communication range as r = 100m.

Figure 2-14 depicts an example of the evolution (over a 500s time period) of the

required number of MBNs used by the different GDC algorithms in a network with 80

RNs. As expected, the most distributed and least computationally complex algorithm

(MOAC) performs the poorest, and the least distributed and most computationally

complex algorithm (SCD) performs the best. Moreover, both algorithms that utilize

1-center subroutines (MAS and SCD) perform better than the MOAC and SCR al-

gorithms, which reduce disks to rectangles. Figure 2-15 presents the average number

of MBNs used over a 500s time period as a function of the number of RNs. Each

data point is an average of 10 random instances. The same performance order as in

Figure 2-14 is observed.

Next we compare solutions of the CDC problem obtained by the decomposition

method to joint solutions obtained by the Discretization algorithm. Figure 2-16

depicts a random example of 10 RNs distributed in a 1000m x 1000m area.7 The

communication ranges of the RNs and the MBNs are r = 100m and R = 200m,

respectively. In the decomposition method, we used an optimal disk cover (obtained

6The approximation ratio of the MAS algorithm holds when the algorithm is in steady state.
7We deliberately selected a small number of RNs in order to generate a partitioned network that

requires Relay MBNs.
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Figure 2-15: The average number of Cover MBNs used by GDC algorithms over a
time period of 500s.

by integer programming) and the 3-approximation STP-MSP algorithm from [20].

The Discretization algorithm uses the NWST approximation algorithm from [60]. In

this example, the joint solution requires 12 MBNs while the decomposition based

solution requires 15 MBNs .

Figure 2-17 presents similar results for a more general case with the same param-

eters (area, r, and R). The Decomposition method used the SCD algorithm along

with the MST algorithm [64] and along with the Modified MST-based algorithm [20].

Each data point is averaged over 10 random instances. It can be seen that the joint

solution provides a significant performance improvement (about 25% for large number

of RNs). Yet, while the decomposition method uses distributed algorithms, the joint

solution must be obtained in a centralized manner. Thus, a reasonable compromise

could be to place the Cover MBNs in a distributed manner and to place the Relay

MBNs (e.g. Unmanned-Aerial-Vehicles) by a centralized Discretization algorithm.
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Figure 2-16: An example comparing solutions obtained by (a) an optimal Disk Cover
and the STP-MSP algorithm from [20] and (b) the Discretization algorithm using an
NWST algorithm [60].

2.8 Conclusions

The architecture of a hierarchical Mobile Backbone Network has been presented only

recently. Such an architecture can significantly improve the performance, lifetime, and

reliability of MANETs and Wireless Sensor Networks. In this chapter, we concentrate

on placing and mobilizing backbone nodes, dedicated to maintaining connectivity

of the regular nodes. We have formulated the Mobile Backbone Nodes placement

problem as a Connected Disk Cover problem and shown that it can be decomposed

into two subproblems. We have proposed a number of distributed algorithms for

the first subproblem (Geometric Disk Cover), bounded their worst and average case

performance, and studied their performance under mobility via simulation. As a

byproduct, it has been shown that the approximation ratios of algorithms presented

in [38] and [47] are 6 and 2 (instead of 8 and 3 as was shown in the past). A new

approach for the solution of the second subproblem (STP-MSP) and of the joint

problem (CDC) has also been proposed. We have demonstrated via simulation that

when it is used to solve the CDC problem in a centralized manner, the number of the

required MBNs is significantly reduced.

The work presented here is the first approach towards the design of distributed
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Figure 2-17: Number of MBNs as a function of the number of RNs computed by:
(i) the decomposition approach using the SCD with the MST-based [64] algorithms,
(ii) the decomposition approach using the SCD with the modified MST-based [20]
algorithm, and the (iii) the Discretization algorithm.

algorithms for construction and maintenance of a Mobile Backbone Network. Hence,

there are still many open problems to deal with. For example, it seems that the SCD

algorithm can be generalized to yield a PTAS for the GDC problem in the strip.

Also, moving away from the strip approach may be beneficial. Indeed, we present

such planar-based distributed algorithms in appendix A. Thus, we intend to extend

the MAS algorithm such that it will operate with disks in the plane. Finally, we note

that there is a need for a distributed algorithm for the STP-MSP, capable of dealing

with Cover MBNs mobility as well as for a mechanism for routing MBNs from their

old locations to the new ones.

A major future research direction is to generalize the model to other connectivity

constraints and other objective functions. Indeed, we address some of these issues in

the chapter 3. Additionally, it would be desirable to consider the energy resources

and the communication requirements of the RNs when making the mobility decisions.



Chapter 3

Joint Placement and Regular Node

Assignment of a Fixed Number of

Mobile Backbone Nodes

3.1 Introduction

An implicit assumption in previous formulations of the Mobile Backbone Network

construction problem is that an arbitrary number of MBNs are available for deploy-

ment, and the goal is to minimize the number actually deployed. For example, such

a problem formulation was given in chapter 2 as the Connected Disk Cover (CDC)

problem. Specifically, the CDC problem aims to place the minimum number of MBNs

such that (i) All RNs are covered by at least one MBN, and (ii) The MBNs form a

connected network. In many scenarios however, a more appropriate (and perhaps

realistic) assumption would be that the number of available MBNs is fixed a-priori,

and the objective is to do the "best we can" with these fixed resources. As such, in

this chapter we consider the problem of placing a fixed number of Mobile Backbone

Nodes (MBNs), and assigning each Regular Node (RN) to exactly one MBN. The

network objective we consider is to optimize RN throughput.

Note however, that the CDC-type formulation for MBN placement arises very



naturally given the assumption of a discrete communications model, such as the "disk"

connectivity model. In such a model, two nodes can communicate if they are within

some fixed range, and cannot otherwise. However, while the disk model is a good first-

order communications model, a more realistic model would account for the fact that

the data rate at which two nodes can reliably communicate is actually a continuous

function of the received Signal-to-Interference-and-Noise Ratio (SINR). The SINR in

turn, depends on the wireless channel conditions and underlying PHY/MAC protocols

(i.e. the System model). In this chapter and for the specific context of Mobile

Backbone Networks, we distill these issues into the following general model: The

"throughput" achieved by an RN transmitting to its assigned MBN is a decreasing

function of (i) The distance between the RN and MBN, and (ii) The total number of

RNs assigned to that MBN. The idea is that first factor models the loss due to wireless

propagation, and the second models loss due to interference caused by multiple RNs

trying to access a single MBN. We elaborate further on the mathematical specifics of

the model, as well as provide examples in section 3.2.

With the above communications model, we are able to re-formulate the backbone

construction problem in a manner significantly different from previous formulations,

and thereby requiring significantly different solution methodologies. In particular, we

consider the joint problem of placing a fixed number of MBNs, and assigning each RN

to exactly one MBN, such that a throughput objective is maximized. We consider

two objective functions, yielding two separate problems. The first is to maximize

the throughput of the minimum throughput RN, which we term the Maximum Fair

Placement and Assignment (MFPA) Problem. The second is to maximize the aggre-

gate system throughput (i.e. sum of the throughputs achieved by each RN), which

we term the Maximum Throughput Placement and Assignment (MTPA) problem.

It should be noted that in contrast to previous backbone construction problem

formulations, the MFPA/MTPA involve a non-trivial assignment component. Specif-

ically, a solution needs to balance assigning RNs to their closest MBNs and not

assigning too many RNs to any particular MBN. Thus for the overall problems, not

only do K MBNs need to be placed at arbitrary locations on the plane, but once



placed there are KN different RN to MBN assignments, among which the optimal

one must be chosen, where N is the number of RNs.

Despite this, we are able to develop an optimal polynomial time algorithm for

the MFPA problem for fixed K. We also develop an optimal solution for a restricted

version of the MTPA problem for K < 2. As will be described later, the key lies in

exploiting certain geometric properties of the placement portion of the problem, and

certain combinatoric structure for the associated assignment subproblem. We also

develop approximation and heuristic algorithms for both problems.

As a final point, to our knowledge the joint placement and assignment problems

considered in this chapter have not been addressed before. Thus the primary goal

of this chapter is to provide a theoretical framework and develop basic optimal solu-

tions. We leave the development of more efficient, distributed and mobility-handling

algorithms for future work.

This chapter is organized as follows. In Sections 3.2 and 3.3 we formulate the

problem and give illustrative examples. Section 3.4 presents an optimal solution for

the MFPA problem. In section 3.5, we discuss solutions for a restricted version of the

MTPA problem. In section 3.6, we present approximation and heuristic algorithms for

both problems. Finally, in section 3.7 we evaluate the performance of the algorithms

via simulation.

3.2 Problem Formulation

We consider a set of N Regular Nodes (RNs), distributed in the plane and assume that

a set of K < N Mobile Backbone Nodes (MBNs) are to be deployed. We denote the

set of RNs by P = {1, 2,... , N} and the set of MBNs by M = {ml, m 2,... , mK}. For

every RN i, let m(i) denote the MBN to which i has been assigned, (e.g m(i) = k if i

is assigned to mk), and let d(i, m(i)) represent the distance between them. In general,

let d(i,j) represent the distance between nodes i and j. Next, for every MBN mk,

let Pk denote the set of RNs assigned to it. Note that for any feasible solution, we

have Uk Pk == P. Finally, we refer to the tuple of an MBN and its assigned RNs as a
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Figure 3-1: Example of a Cluster.

cluster. For cluster k corresponding to (ink, Pk), we define the cluster radius Rk as,

Rk = maXJEpkd(j, mk). The number of RNs assigned to MBN mk, IPk|, is referred to

as the cluster size. An example of a cluster is shown in Fig. 3-1.

For the communications model, we assume that the throughput of an RN i trans-

mitting to its assigned MBN m(i) is some function H (d(i, n(i)), IPm(i)) , that is

decreasing in both it's arguments. As mentioned earlier, the dependence of H() on

d(i, m(i)) models wireless propagation loss, and the dependence on IPm(i) I reflects

loss due to interference at MBN m(i). Note that in this communications model we

assume that RNs from different MBNs do not interfere with each other, e.g. different

clusters operate on different frequencies.

To gain some intuition about the form H() could take, consider the following

two system examples: (i) Slotted Aloha-based, and (ii) CDMA-based. In the Slotted

Aloha based model, we assume that all RNs assigned to an MBN mk transmit within

a slot with equal probability, 1/ PkI. Additionally, we associate a "distance penalty"

proportional to d- ' for an RN located a distance d away from mk, where a represents

the path loss exponent. This could, for example, reflect extra coding that needs to be

used in order to deal with the propagation loss. The resulting throughput of a node

i in this system is therefore simply the probability that exactly one RN transmits in

a slot, multiplied by the distance penalty, i.e.,

)LII~ i
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TPsA() = P(i)I pm(i) d(i, m(i)) )

ePm(i) -d(i, m(i))a

A HSA (d(i m(i)) , Pm(i) ) (3.1)

where we have left out most of the constants for simplicity, and we use the ap-

proximation that (1 - l/x)"- 1 -* 1/e even for small values of x > 1. Note that (3.1)

is of the desired form for H(), i.e. decreasing in both d(i, m(i)) and IPm(i) . Next,

consider a CDMA-based system in which power control is employed. Specifically, in

order to combat the near-far problem, all RNs assigned to an MBN m(i) equalize

their received power (equal to 1, for simplicity) at m(i) to that of the farthest away

RN. Thus the throughput achieved by every RN within a cluster is the same, and is

proportional to its Signal-to-Interference-and-Noise Ratio (SINR) at m(i), i.e.,

1

TPcdma(i) =(i
( )Pm(i 1) + r

1

IPm(i)I + 17 -Rm(i) - 1

SHcdma( Pm(i) ) (3.2)

where r7 represents the noise at MBN m(i), and Rm(i) the radius of cluster m(i).

Again, note the form of the throughput function is as desired, since it is decreasing

in both distance and cluster size. For the purpose of intuition, we will carry these

two examples throughout the paper, whenever possible directly applying to them the

general results that we derive.

We now give a precise formulation for the two problems that will be addressed in

this chapter: (i) The Maximum Fair Placement and Assignment (MFPA) Problem

and (ii) Maximum Throughput Placement and Assignment (MTPA) problem.



Problem MFPA: Given a set of RNs (P) distributed in the plane, place K MBNs

(M) and assign each RN i to exactly one MBN m(i) such that,

min TP(i) = min H (d(i, m(i)), IPm(i)I (3.3)
iEP iEP

is maximized.

Problem MTPA: Given a set of RNs (P) distributed in the plane, place K MBNs

(M) and assign each RN i to exactly one MBN m(i) such that,

S TP(i) = H (d(im(i)), Pm(i) (3.4)
iEP iEP

is maximized.

As a final point, we enforce the following additional conditions on the H() function,

1. H(R,X) > 0VR > 0, X > 1.

2. H(R, X) < o00 VR > 0, X > 1 (only for MTPA)

Notice that condition (2) is needed for the general MTPA problem as stated above

to be well defined. Otherwise, any solution in which an MBN is placed on top of an

RN could yield infinite aggregate throughput (i.e. artificially exploiting the so-called

"near-field" effect). Since K < N, this is not an issue for the MFPA problem, i.e.

the worst case throughput RN cannot have an MBN on top of it.

3.3 Illustrative Examples

In this section we attempt to give some additional intuition regarding the complexity

of the joint placement and assignment problems addressed in this chapter. To begin,

consider a 1 MBN instance of the MFPA problem. With just one MBN, we imme-

diately note that the assignment portion of the problem is trivial (i.e. all N RNs

are assigned to the one MBN). Furthermore, the associated placement portion of the

problem can be solved optimally by placing the single MBN so as to minimize the
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Figure 3-2: K = 2 MFPA example. (a) 2-Center Solution. (b) Optimal Solution.

farthest distance from any RN. This is precisely the well known 1-center problem1,

for which several efficient polynomial time algorithms exist [2]. Applying one of these

algorithms solves the 1 MBN MFPA problem optimally.

Next, consider the 2 MBN example illustrated in Fig. 3-2. Fig. 3-2(a) shows

the MFPA solution if we simply apply a 2-center algorithm, and assign RNs to their

nearest MBN. As shown, the worst case RN attains a throughput of H(R2-cen, n - 2)

in this case, where R 2-cen is the 2-center radius. However, by increasing the radius

of the second cluster by a small amount, i.e. enough to enclose half of the n - 4 RNs

clustered together, the optimal solution can potentially increase the worst case RNs'

throughput to H(R2-cen + E, '); this is shown in Fig. 3-2(b). Clearly depending on

the exact form of H(), this improvement can be quite significant. As demonstrated in

this simple example, even if we are given a placement of the MBNs, the assignment

problem is non-trivial, as it may potentially be beneficial to assign RNs to farther

away MBNs.

Thus the main difficulty of the MFPA and MTPA problems for K > 1 can be

summarized as follows. First, there are an infinite number of potential locations for

the MBNs (i.e. anywhere on the plane). Second, for any particular placement of K

MBNs, there are KN different assignments of RNs to MBNs (i.e. each RN can be

assigned to one of K MBNs).

1In general, the K-center problem places K MBNs such that the farthest distance from any RN
to its nearest MBN is minimized.



3.4 MFPA Solution

The key to our approach in solving the MFPA problem is to decouple the placement

and assignment problems in a way that does not affect the optimality of the resulting

decoupled solution. We start with the following observation and lemma. The ob-

servation applies to any feasible MFPA solution, and follows from the fact that the

overall minimum throughput RN must be the minimum throughput RN in its own

cluster.

Observation 3.4.1. Let RN i have minimum throughput among all RNs, and let

m(i) be its assigned MBN. Then, the throughput of i can be expressed as a function

of its cluster's radius and size, i.e. TP(i) = H(Rm(i), IPm(i) ).

Lemma 3.4.1. Let P1*, P2* ,, Pk represent the optimal MFPA assignments of RNs

to MBNs mi, m 2 ,..., mK respectively. Then, there exists an optimal solution to the

overall MFPA problem in which the MBNs are placed at the 1-center locations of

P1, P2,... , Pk.

Proof. Consider an optimal solution to the MFPA problem in which the MBNs are not

placed at the 1-center locations of P*,..., Pk. Next, consider the solution obtained by

moving all of the MBNs to their respective 1-center locations. By definition of the 1-

center, doing this never increases the radius of any of the K clusters. Therefore, since

the cluster sizes IP*I,..., IPkI are fixed, then by observation 3.4.1 the throughput of

the worst case throughput RN does not decrease. O

The consequence of the above Lemma is that for the placement problem, the finite

space of 1-center locations contains at least one solution of optimal cost. Additionally,

the associated cluster radii of each of the K clusters are by definition 1-center radii.

Thus as a first step, we have reduced the search space from an infinite number of

locations on the plane, to a finite set of 1-center locations (with associated 1-center

radii).

At first glance, the total number of 1-center locations/radii might seem pro-

hibitively large and thus our reduction of limited use. For example, every subset
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Figure 3-3: Illustration of the forms of 1-center (location,radius) tuples. (a) Midpoint
of a pair of points. (b) Circumcenter of a triplet of points. (c) On top of a single
point.

of RNs has an associated 1-center location and radius, and there are 2N subsets.

However, it turns out that all of these locations/radii come from a relatively small

(i.e. polynomial in N) set of candidates. To show this, we need the following fact,

illustrated in Fig. 3-3, regarding the 1-center of a set of RNs P [73],

Fact 3.4.1. The unique 1-center location and radius of a set of RNs P, denoted

1C(P) and R(P), is defined by either:

1. A pair of RNs i, j E P. If this is the case, then 1C(P) is situated at the midpoint

of i,j, and R(P) = d(i, j)/2.

2. A triplet of RNs i, j, k C P that form an acute triangle. If this is the case, then

1C(P) is situated at the circumcenter 2 of {i, j, k} and R(P) is the circumradius.

3. A single RN i E P. This is the degenerate case where P = {i} is a singleton

set, and 1C(P) is situated on i itself, and R(P) = 0.

Indeed, the actual 1-center (1C(P), R(P)) tuple has minimum R(P) such that all

RNs are within distance R(P) of the location 1C(P). Let Qp denote the full set of

candidate 1-center locations, as described in fact 3.4.1 with respect to the original

set of RNs P. Note that since each q E Qp is defined by either 1,2 or 3 RNs in P,

it follows that that Qp has cardinality at most (N) + (N) + (N). Additionally, as
2For a triplet of RNs, the circumcenter is the center of the circle that has all three RNs on its

boundary. The radius of this circle is the circumradius.



described in Fact 3.4.1 and shown in Fig. 3-3, for each q E Qp, we associate Rq to

denote the 1-center radius of a cluster whose 1-center location is q, and the set wq to

denote the set of defining RNs for q. Note that though several locations in the set Qp

may be coincident, all wq's are distinct. We now state the following lemma, which

follows by construction of Qp and fact 3.4.1.

Lemma 3.4.2. The 1-center (location, radius) tuple of any subset T C P corresponds

to some (q, R,) tuple, q E Qp.

Combining Lemmas 3.4.1 and 3.4.2 and Fact 3.4.1, we can conclude that restricting

our placements of MBNs to the set Qp still allows us to find the optimal solution to

the overall MFPA problem. Moreover, we can restrict ourselves to solutions whereby

if an MBN mk is placed at location q E Qp, all of the RNs assigned to it must be

within distance Rq, i.e. d(i, mk) • Rq, Vi E Pk. Otherwise, by Fact 3.4.1 q cannot be

the unique 1-center location of Pk, i.e. there must exist some other location q' E Qp

that is the actual 1-center location of Pk, with corresponding 1-center radius Rq,. As

per lemma 3.4.1, moving mk to location q' cannot decrease the MFPA objective.

For clarity, we illustrate the exhaustive search over all placements among locations

in Qp as the high-level framework presented below. We use the following notation for

the overall solution. Let m*, ... , m* represent the optimal locations of the K MBNs,

m*(1),..., m*(N) the optimal RN to MBN assignments, and U* the associated

optimal cost.

Up to this point, we have not discussed the assignment subproblem, which we

need to solve as a subroutine in step 5 of the high-level framework. It turns out that

the specific methodologies used to solve this problem for K = 2 and K > 2 are quite

different, as we describe below.

3.4.1 K = 2 MFPA Assignment Subproblem

With the placement locations and radii fixed, for K = 2 the resulting MFPA assign-

ment subproblem turns out to be easy to solve. In this situation, as depicted in Fig.

3-4(a), we define C(1) and C(2) as the sets of RNs that lie exclusively within radius



Algorithm 8 High-Level Optimal MFPA Framework
1: initialize U* = -oo
2: create the set Qp by enumerating over all defining subsets of size 1, 2 and 3 of

P.
3: for all (IKPI) placements of K MBNs mi, ... , mK do
4: if all RNs are within Rj of at least 1 MBN mj in current MBN placement then
5: calculate the optimal MFPA assignments m(i), Vi E P, given the cur-

rent MBN placement and subject to the constraint that m(i) = k only if
d(i, mk) < Rk. Let U represent the corresponding worst case RN through-
put.

6: if U > U* then
7: set U* -- U, update m*(i), m*, Vi E P, k E K
8: return U*, m*, ... , m * and m*(1), ... , m*(N)

R 1 and R 2 of MBNs mi and m 2 respectively. Similarly, let C(1, 2) denote the "com-

mon set" of RNs that lie within the radii of both mi and m 2. The main idea is that

since the radii are fixed, RNs in C(1), C(2) must be assigned to mi, m 2 respectively.

Moreover, in assigning the remaining RNs in C(1, 2), it is only the number assigned to

each MBN that effects the MFPA objective. Thus we can search over the 0C(1, 2)1 + 1

different possibilities and pick the one that maximizes the throughput of worst case

throughput RN.

The worst case computational complexity of the overall MFPA algorithm for K =

2 is therefore! O(N 7). This follows from the fact that IQpI < N3 and we need to solve

(IQ2PI) assignment problems, each of which takes O(N) time.

3.4.2 General K MFPA Assignment Subproblem

The MFPA assignment subproblem for K > 2 is significantly more difficult than for

K < 2. To get a sense of the additional difficulty, consider the 2 vs. 3 MBN example

illustrated in Fig. 3-4. For 2 MBNs mi, m 2 , there is only one type of "common set"

of RNs, i.e. C(1, 2), yielding at most O(N) ways to assign different numbers of RNs

to each MBN.

For K > 2 MBNs, the number of ways to divide different numbers of RNs within

a single common set generalizes to O(NK-1). However, the real difficulty lies with

the fact that for K > 2, there can potentially be many types of common sets. For
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Figure 3-4: (a) K = 2 vs. (b) K = 3 examples of assignment subproblem.

example, in Fig. 3-4(b), RNs in the set C(1, 2,3) can be assigned to any of the 3

MBNs, whereas RNs in C(2, 3) can only be assigned to either m 2 or m 3 . Therefore,

the total number of ways the RNs within all of these different common sets can be

divided between K MBNs is O((NK-1)I), where I represents the number of distinct

common sets. Observing that each MBN location and radius represents a circular

region, we can actually bound I by K 2 [1]. This results in a total complexity of

O(NK3 ) to enumerate all possible assignments. While this is still polynomial in N,

spending this complexity for each of the O(N 3K) assignment subproblems yields an

overall algorithm definitely outside the realm of practicality (e.g. even for K = 3).

With a more practical solution desired, we now develop an optimal algorithm

for the general K MFPA assignment subproblem that is polynomial in both K and

N. To this end, we start by formulating the MFPA assignment subproblem using a

mathematical programming notation. Define indicator variables xij to equal to 1 if

RN i is assigned to MBN mj. Next, define indicator constants zij to be equal to 1 if

d(i, mj) < Rj. The resulting formulation can be written as,



max min H(Rj ij) (3.5)
jEMEP

iEP

s.t. xij = 1, Vi E P (3.6)
jEM

xj <_ z 3j,Vi E P,j E M (3.7)

xj e {0, 1} (3.8)

where constraints (3.6) ensure that every RN is assigned to exactly 1 MBN, con-

straints (3.7) that we only make valid assignments, and constraints (3.8) integrality

of the final assignment. Defining the increasing function FO() = 1/H(), since H() > 0,

we can re-write the objective function in (3.5) as,

mm max F(R,j Zxi) (3.9)
iEP

Applying one more transformation, we have,

min W (3.10)

s.t. Z xij g(W; Rj),Vj E M (3.11)
iEP

Zxi = 1, Vi E P (3.12)
jEM

zij • zij,Vi E P, j E M (3.13)

xij E {0, 1} (3.14)

where we have used the common trick of converting a minimax objective function

into a simple min objective function by introducing an extra real valued variable W

and moving the max part of the objective function into the constraints. We define

g(W; Rj) to be the inverse with respect to Ei xij of F(Rj, Ei xij), i.e.,



which we assume exists. Note that this assumption is justified given that F() is a

monotonically increasing function, and therefore constitutes a one-to-one (in Ei xij)

continuous function. As an example, for the Slotted Aloha H() given in (3.1) we have

that g(W; Rj) = W/(e - Rf).

At this point, we note that the above optimization problem can be solved by way

of solving a series of feasibility problems (e.g. fix W, and see if there exist xij's that

satisfy constraints (3.11)-(3.14)). One way of doing this is by performing a binary

search over the space of all possible values of W. Specifically, if the problem is feasible

for a given W, we can conclude the optimal value of W, denoted W*, is such that

W* < W. Otherwise, W* > W can be concluded. The second way uses the following

observation, and allows us to obtain an exact solution for W*.

Observation 3.4.2. The optimal W* must satisfy g(W*; Rj) E Z. That is, g(W*; Rj)

must be integral.

Proof. Since g(W; Rj) is the inverse of the increasing function F(-, xi j; Rj), it too

must also be increasing (i.e. in W). Next, suppose the optimal W* did not satisfy

g(W*; Rj) E Z. Since the xij's are integral, this implies that the left hand side of

constraint (3.11) must also be integral. Thus since g(W; Rj) is increasing in W, it

follows that we could have further reduced W* until g(W*; Rj) reached [g(W*; Rj)],

while still satisfying constraint (3.11). This contradicts the minimality of W*. O

We can combine this observation with the fact that there are at most K-N distinct

integer feasible values for g(W*; Rj). Specifically, for each Rj (of which there are K),

W* can be one of F(Rj, b), b = 1,..., N. Therefore, we can exactly find the optimal

W* by solving K - N feasibility problems.

The remaining question is: Given a value for W, how can we efficiently find (or

not find) an assignment of xij's that answers the feasibility question? To this end, we

will now show that the feasibility problem can be transformed into a classical graph
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Figure 3-5: Construction of the Flow Graph G = (V, E, C) for a given W.

problem, Integer Max-Flow, for which several efficient polynomial time algorithms

exist [3].

The Integer Max-Flow problem is defined as follows: We are given a flow graph

G = (V, E, C), where C defines an integer set of capacities cij on each edge (i, j) E E,

and a source vertex s and a sink vertex t, s, t E V. The objective is to assign a

set of positive integer flows fij on each each edge (i, j) E E such that the aggregate

flow from s to t, equal to Ej fsj, is maximized. The fij's must obey the following

constraints:

1. fij < cij, V(i, j) E E (capacity constraints)

2. E fi - Ek fjk = 0,Vj E V\{s, t} (flow conservation)

3. •• fi = Zj ftj = 0 (source and sink property)

Returning to our problem, we start by constructing a flow graph G = (V, E, C)

in the following manner, depicted in Fig. 3-5. Let P E V represent a set of vertices

corresponding to each RN, and similarly M E V for the MBNs. Next, define source

and sink vertices s, t E V. Next, define N source edges (s, i) with capacities c(s, i) =

1, Vi E P. Next, define edges between nodes (i,j) with capacities c(i,j) = zij,

Vi E P, j G M. Finally, define K sink edges (j, t) with capacities c(j, t) = g(W; Rj),

$



Vj E M. At this point we run a Max-Flow algorithm to find the maximum (integral)

flow between s and t in G. Given the Max-Flow solution, we interpret a non-zero

flow fij = 1 on an edge of type (i, j), i E P, j E M to mean that in the assignment

solution RN i should be assigned to MBN j. Our main result lies in the following

lemma, which we only prove for one direction; the converse holds by construction.

Lemma 3.4.3. For a given W, the MFPA assignment subproblem is feasible if and

only if the Max-Flow from s to t has value equal to N.

Proof. Assume an integer max-flow of value N is found. To show this corresponds

to a feasible solution to the MFPA assignment subproblem, it suffices to show that

all of the constraints (3.11)-(3.13) are satisfied. Constraints (3.12) are satisfied since

if the max-flow is equal to N, it must mean that all source edges carry a flow of

1. Thus by flow conservation, this implies that each RN (at the endpoint of each of

the source edges) is assigned to exactly 1 MBN. Next, note that constraints (3.13)

are satisfied by the fact that if edge (i, j), i E P, j E M has non-zero flow across it,

then by construction it's capacity, which is equal to zij must be equal to 1. Finally,

constraints (3.11) are satisfied since if more than g(W; Rj) RNs are assigned to any

MBN mj, this would correspond to edge (j, t) having a greater flow than it's assigned

capacity. O

The preceding lemma gives us the final piece of the puzzle needed in order to

construct an efficient algorithm for the MFPA assignment subproblem. The algorithm

is given below.

We conclude the section by noting that the best Integer Max-Flow algorithm

has running time O(KN2 log N) [33]. Therefore, the algorithm depicted above has

O(K 2N 3 log N) complexity. The result is a worst case complexity O(N 3 K+31og N)

algorithm for the fixed K MFPA problem. As will be shown in section 3.7, this

algorithm can be applied to solve instances with relatively small K and N.



Algorithm 9 Fixed K MFPA assignment algorithm
1: initialize W* +- oo
2: for k = 1 to K do
3: for b = 1 to N do
4: set W - F(Rk, b)
5: if W < W* then
6: construct flow graph G = (V, E, C) as follows:
7: set V PUMU{ls, t}
8: set E E EU{(s, i)}, c(s, i) 1, Vi E P
9: set E - EU{(i, j)}, c(i, j) - zij,Vi E P,j E M

10: set E E U{ (j, t)}, c(j, i) - g(W; Rj )],j E M
11: solve s - t Max-Flow on G. Let fij be the flows on each edge (i, j) and

Fmax the max-flow value.
12: if Fmax = N then
13: set m(i) - j if fij = 1, Vi E P, E M
14: set W* +- W
15: return W*, m(1),...,m(N)

3.5 MTPA Solution

It turns out the general MTPA problem as formulated in 3.4 is significantly more

difficult to optimally solve than the MFPA problem. For example, consider the MTPA

problem for K = 1 MBN (i.e. ignore the assignment subproblem). At first glance

it would seem like the MTPA problem looks like the well known 1-median/Fermat-

Weber problem (numerically solvable in polynomial time [2]), in which one seeks to

place the MBN in the location that minimizes the sum of the distances to each RN.

However, the general MTPA objective is actually to maximize the sum of arbitrary

decreasing functions of each of the distances; the difference is quite substantial. For

example, consider a very simple decreasing function H(di) = 1/(di + -y), where di

represents the distance from RN i to the placed MBN and y some positive constant.

Clearly minimizing -i di achieves a significantly different objective from maximizing

Ei 1/(d2 + -1) (for which to our knowledge no optimal algorithm exists).

Thus we consider a restriction on the general MTPA problem, in which we en-

force the condition on the H() function that all RNs within a cluster get the same

throughput, which is a function of the cluster radius and size, i.e.,



TP'(i) = H(Rm(), IPm(1),Vi E P (3.16)

The reasoning behind this particular restriction is two-fold. First, the above ex-

pression yields a lower bound on the general MTPA objective, i.e. since

H(d(i, m(i)), IPm(i) ) > H(Rm(i), Pm(i)1), Vi E P. It is therefore still useful to op-

timize. Second, this approach allows us to heavily leverage the discussion we have

evolved through this chapter for the MFPA problem. To start, for K = 1 the 1-center

algorithm optimally solves the restricted version of the MTPA problem.

For K > 1, we note that Observation 3.4.1 along with Lemmas 3.4.1-3.4.2 all

apply to the restricted MTPA problem. Therefore, the high-level framework in sec-

tion 3.4 solves the placement portion of the problem. Additionally, for K = 2 the

simple MFPA assignment algorithm in section 3.4.1 also solves the restricted MTPA

assignment subproblem, as long as the appropriate (i.e. MTPA) objective function is

used.

For K > 2, the brute force approach discussed in the beginning of section 3.4.2

applies to the restricted MTPA problem. However, the fixed K MFPA assignment

algorithm does not solve the fixed K restricted MTPA assignment problem. The

reason for this is that while the MTPA problem can also be written as a Mixed-

Integer-Linear-Program similar to (3.5), because the objective function is a max sum

(as opposed to a max min), the max-flow technique cannot be applied.

3.6 Lower Complexity Heuristics

Although the algorithms developed so far in this chapter find optimal solutions in

polynomial time, their complexity is still prohibitively high unless both K and N are

quite small. For example for K = 3, N = 35, the running time of the optimal MFPA

algorithm was 3 hours on a Pentium 2.4GHz computer.

Thus in this section, our goal is to develop suboptimal approaches that have sig-

nificantly less running time than the optimal approach, but still perform comparably

well. We will discuss 2 such approaches: (i) An approximation algorithm that is based
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Figure 3-6: Extended Diameter-type vs. Circumcenter-type placement.

on cutting down the number of candidate MBN placements, and (ii) A simple and

fast heuristic algorithm, but with no worst case performance guarantee. For the most

part, the discussion applies to both the MFPA and restricted MTPA problems. For

brevity, we will describe the algorithms in the context of the MFPA problem, noting

any key issues specific to the restricted MTPA when appropriate.

3.6.1 Extended Diameter Algorithm (EDA)

As was discussed in section 3.4, the complexity of the optimal MFPA algorithm is

dominated by the number of (optimality-preserving) possible placements, (IKPI) =

O(N 3 K). Indeed, the set Qp is of size O(N3 ) because we had to consider all possible

locations/radii corresponding to circumcenters/circumradii of triplets of RNs (see

Fact 3.4.1). If we did not consider such "circumcenter-type" locations, but instead

only considered locations defined by (i) the midpoint of pairs of RNs (i.e. "diameter-

type") and (ii) single RNs (i.e. "singular type"), the number of possible placements

would immediately be reduced to O(N2K). This is the main idea behind the approach

in this section.

Recall that in the high-level framework, we only consider placements at locations

q E Qp, and assignments such that if an RN i is assigned to MBN mk located at

q E Qp, then d(i, mk) < Rq. We denote such solutions as valid. However, an issue

that comes up when we remove circumcenter-type locations from Qp is that a valid



solution may not even exist (e.g. consider 3 RNs that form a equilateral triangle).

To compensate for this, we define extended-diameter type locations, shown in Fig.

3-6, whose locations are the same as the original diameter-type locations, but whose

associated radii are vf3 times larger. Let Q' denote the set of all extended-diameter

and singular-type locations with respect to a set of RNs P. Note that a direct analog

with lemma 3.4.2 applies, i.e. Q' contains all extended-diameter and singular-type

locations (with associated radii) with respect to any subset of RNs T C P. The next

lemma ensures that placements among locations in Q', are guaranteed to contain a

valid MFPA solution.

Lemma 3.6.1. For a set of RNs P, there exists a valid solution to the MFPA problem

with placements at locations in Q'p.

Proof. To prove the lemma, we need to show that for every circumcenter-type loca-

tion/radii tuple in Qp, there exists an extended-diameter-type location/radii tuple in

Q', that covers the same set of RNs. To this end, consider some circumcenter-type

placement, and the extended-diameter location corresponding to the midpoint of the

longest side (of length 2a) of the acute triangle formed by the circumcenters' defin-

ing RNs. The situation is depicted in Fig. 3-6. Let b be the distance between the

extended-diameter and circumcenter locations. Next, let r denote the circumradius.

By the triangle inequality, we know that the distance between the extended diam-

eter location and any RN covered by the circumcenter placement is at most b + r.

Therefore, we have that,

a a2

b+r = r+V2_ + a 2

sin3 sin2 3

< 2a a = v a  
(3.17)

where we have used a geometric property of circumcenters that r = -. Addi-

tionally, we have used the observation that since the defining triangle is acute and

since the extended-diameter location under consideration is defined by the longest

edge of the triangle, that 7r/3 < P3 ir/2. O
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Figure 3-7: Example of solutions found for a K = 3, N = 20 instance of the MFPA
problem with the Slotted Aloha throughput function. (a) Unoptimized Farthest Point
Heuristic (FPH) (b) Unoptimized Extended Diameter Algorithm (c) Optimal MFPA
algorithm.

Finally, define the extended-diameter I-center of a set of RNs P as the location

in Q'p that minimizes the maximum distance from any RN in P. We now state the

analog of lemma 3.4.1 applied to this context, whose proof follows from lemma 3.6.1.

Lemma 3.6.2. Let P,, P2, ... , P represent the optimal assignments of RNs to

MBNs mi, Mr2, .... , mK respectively. Then, there exists a solution to the overall MFPA

problem in which MBNs are placed at the extended-diameter 1-centers of Pl*, P*,..., Pk.

Also, the objective value of this solution is at least H(v3/R*, IP*I), where R* and jP*j

represent the worst case cluster radius and size of the optimal solution.

We define the Extended-Diameter Algorithm (EDA) for the fixed K MFPA as

well as the K = 2 MTPA problem, as basically the optimal algorithms described

r

,LT

(a)



earlier, with Q', used in place of Qp. The only difference is a final optimization step,

in which after the suboptimal extended-diameter placement is decided, we move each

of the MBNs to the actual 1-center location of their assigned RNs.

By the preceding discussion, the EDA algorithm is a H(V*IP*I) -approximation

algorithm for the MFPA. Note that for a path loss exponent a = 2 this ratio evaluates

to 1/3 for both the Slotted-Aloha and CDMA throughput functions. Finally, the

worst case running time of the algorithm is O(N5 ) for K = 2, and O(N 2K+3 log N)

for general but fixed K.

3.6.2 Farthest Point Heuristic (FPH)

This next algorithm is simply an adaptation of Gonzalez's Farthest Point Heuris-

tic (FPH) [39], with an additional optimization step tailored to our setting. The

algorithm works as follows: Initialize the algorithm by placing an MBN on top an

arbitrary RN, and assign all RNs to this MBN. Place the next MBN on top of the RN

farthest from its assigned MBN, and re-assign RNs to their nearest MBN. Repeat the

previous step until all K MBNs are placed. The above placement can be "optimized"

by moving each MBN to the 1-center location of its assigned RNs. The running time

of the unoptimized version of this algorithm is O(N log K), and assuming the use of

a practical 1-center algorithm, the optimized version takes O(KN log N) time [2].

3.7 Simulation Results

In this section we compare the performance of the various algorithms presented in

this chapter via simulation. To this end, we begin with an example of running the

algorithms on a single K = 3 MBNs, N = 20 RNs, MFPA instance, shown in Fig.

3-7. We assume the RNs are randomly distributed in a 600 x 600 plane, and we use

the Slotted-Aloha H() throughput function given in (3.1), with a = 2.

As can be seen, the optimal solution achieves the ideal balance between lightly

loading clusters of large radii vs. heavily loading clusters of smaller radii. By con-

trast, the FPH solution potentially creates enormous radius clusters. Moreover, since
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Figure 3-8: Average case simulation for K = 2 for the MFPA problem with Slotted
Aloha throughput function

nothing intelligent is done by the FPH regarding the assignment problem (i.e. just as-

sign RNs to their closest MBN), the large radius clusters can also get heavily loaded.

The EDA does better, in that even though its cluster radii are larger than optimal,

it intelligently assigns RNs in a way that achieves optimal load balancing among the

placed clusters.

Figs. 8 and 9 show an average case plot for varying numbers of RNs, and K = 2

and K = 3 MBNs. All of the parameters are the same as for the previous scenario,

and we average each data point over 10 random instances. The results are presented in

terms of the average ratio of the throughput achieved by the suboptimal algorithms

as compared to that achieved by the optimal algorithms described in sections 3.4.

In both figures, we can notice that the optimization step significantly improves the

performance of the heuristics. However, as exhibited by the poor performance of

both the optimized and regular FPH, the optimization step can only help insofar

as lowering the cluster radius if possible; it cannot make up for already-made poor

assignment dlecisions.
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Figure 3-9: Average case simulation for K = 3 for the MFPA problem with Slotted
Aloha throughput function

Finally, Fig. 10 shows an average case simulation for the K = 2 restricted MTPA

problem with the CDMA throughput objective function from (3.2). We set rq = 10- 4

in order to normalize the SNR somewhat, and add 1 to the denominator so as to

maintain H() < oc as mentioned in section 3.2. Note that the O-EDA achieves

aggregate throughput very close to optimal. In fact, all of the algorithms perform

significantly better (relative to optimal) for the MTPA objective than for the MFPA

objective, albeit with different H() functions. Nevertheless, this would seem to indi-

cate that the max-sum (i.e. MTPA) objective is less sensitive to suboptimal MBN

placement/assignment than the max-min (i.e. MFPA) objective.

3.8 Conclusion

The recently studied Mobile Backbone Network architecture can significantly improve

the performance, lifetime and reliability of MANETs and WSNs. In this chapter, we

have focused on the key problem of how to jointly place the Mobile Backbone Nodes
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Figure 3-10: Average case simulation for K = 2 for the MTPA problem with CDMA
throughput function

(MBNs), and assign every Regular Node to exactly one MBN. To this end, we have

formulated two problems under a general communications model. The first is the

Maximum Fair Placement and Assignment (MFPA) problem in which the objective

is to maximize the throughput of the minimum throughput RN. The second is the

Maximum Throughput Placement and Assignment (MTPA) problem, in which the

objective is to maximize the aggregate throughput of the RNs. Our main result is a

novel optimal polynomial time algorithm for the MFPA problem for fixed K. We have

also provided an optimal solution for a restricted version of the MTPA problem for

K < 2. We have developed two heuristic algorithms for both problems, including an

approximation algorithm with bounded worst case performance loss. Finally, we have

presented simulation results to evaluate the performance of the various algorithms

developed in the paper.

To our knowledge the problems presented in this chapter have not been considered

before. Thus for this paper, our primary goal has been to provide a theoretical

framework, as well as basic optimal solutions. Future work involves the development
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of more efficient, distributed and mobility-handling algorithms for both the MFPA

and MTPA problems.

102



Chapter 4

Optimal Mobile Backbone Path

Planning

4.1 Introduction

Previous formulations of the Mobile Backbone Network construction problem have

been based on knowledge of the "current" locations of the RNs. Specifically, at any

given time, the MBNs are placed and mobilized reactively based on RNs' locations at

that time. Indeed, this was the approach taken in chapters 2 and 3 of this thesis. Yet,

in many practical scenarios entire RN trajectories are known a-priori (e.g. as way-

points for particular missions). If this is the case, then placing the MBNs by solving

a placement problem independently at each time step is, in general, suboptimal. In

particular, it would be desirable to solve for the entire optimal sequence of placements

for the MBNs at once. In this chapter, we address this MBN path planning problem

both from a discrete and continuous perspective. For our exposition, we consider

planning the path of a single MBN given the trajectories of the RNs. Our goal is

to optimize throughput metrics along the lines of the those presented in chapter 3,
averaged over the time horizon under consideration.

It is important to note that if the throughput metrics are simply time-averaged

and no consideration is given to the actual movement of the MBN, then there is a

straightforward way to calculate the optimal MBN paths. Specifically, combining the
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optimal solutions at each time step yields the overall optimal path. For example, we

can obtain such solutions by employing the optimal algorithms developed in Chapter

3 independently at each time step. However, such an objective function can result in

undesirable solutions for instances in which the required MBN motion in consecutive

time steps is very large, even when the actual RN movement is small. Fig. 4-1,

adapted from [12], shows a 3 RN example of such a situation. The figure shows the

bottom 2 RNs moving a distance d. It can be shown that in response to this specific

motion, the optimal 1-center' actually moves a distance x = +dR where R is the

radius of the circle formed by the RNs as shown in the figure. Recall that in section

3.3 it was shown that for a single MBN, the placement that maximizes the MFPA

objective is precisely the 1-center of the RNs. Expressed as a ratio, the MBN must

move + -times faster than the RNs. Hence this ratio can be made arbitrarily

large by simply increasing R. Additionally, there can be scenarios in which it is

undesirable to have large MBN movements even in response to large RN movements,

e.g. limited MBN velocity, energy efficiency, MBN location predictability, etc.

To address this issue, we introduce a penalty and/or constraint (we consider both)

on the MBN velocity. This immediately causes a dependence between the solutions

at each time step, thereby considerably increasing the difficulty of the overall path

planning problem. For example, at a particular time instance, it may be the case that

significant (throughput) sub-optimality is necessary to allow for greater throughput

at a future time instance. We provide an illustration of such a situation in section 4.3.

Thus choosing the optimal time sequence of placements would seem to necessitate an

algorithm that solves for the entire path at once, as opposed to a simpler (e.g. greedy)

solution wherein independently solved instantaneous solutions are concatenated to-

gether. In section 4.4 we develop such an algorithm, based on dynamic-programming,

in which the entire MBN path is directly solved for. In section 4.4.1 we characterize

its performance with respect to the optimal solution. Interestingly, in section 4.5.1

we are able to show that for the single time step velocity constrained MBN path

1The 1-center problem places a single MBNs such that the farthest distance from any RN to the
MBN is minimized.
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Figure 4-1: An example in which small RN movements cause a large deviation in the
optimal MBN position.

planning problem, an optimal solution can be obtained via a combinatoric algorithm.

We use this algorithm as a subroutine for a greedy approach developed in section 4.5.

We compare both approaches via simulation in section 4.9.

The preceding discussion implicitly assumed a discrete sequence of time steps, over

which the MBN path planning problem is considered. An alternate approach is from

a continuous perspective. Under such a formulation, we assume RN trajectories are

given as continuous functions of time over the finite time horizon. Thus to solve for

the optimal trajectory of the MBN we can employ techniques from Optimal Control

(OC) theory. In general this theory has been very well studied in the literature.

However, as we will elaborate upon in section 4.7, there are several complexities

associated with this approach for the MBN path planning problem in particular.

One such complexity is that it turns out the formulation falls into a category of OC

problems known as Singular Control Problems. Such problems are in general more

difficult to solve optimally [18],[7]. Thus in this work we formulate a simpler problem

instance involving a single RN, and are able to gain significant insight into the optimal

MBN trajectory by examining the OC optimality conditions. In 4.9 we numerically
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simulate an example RN trajectory and compare the resulting performance to the

discrete algorithms developed in sections 4.4 and 4.5.

Finally, to our knowledge the MBN path planning problem with a throughput

maximization objective has not been considered in the literature. Yet, as mentioned

in section 1.2.3 several closely related problems and formulations have been consid-

ered. The goal of this chapter is to provide a basic formulation from both a discrete

and continuous perspective, as well a characterization of several natural solution

methodologies.

The remainder of this chapter is organized as follows. In section 4.2 we provide a

discrete problem model and formulation. We next develop a dynamic-programming

based approximation algorithm in section 4.4. This is followed our development of

a greedy algorithmic approach in section 4.5. We discuss relaxing the hard velocity

constraint in the base discrete formulation in section 4.6. In section 4.7 we formulate

an MBN path planning problem as a continuous time optimal control problem, and in

section 4.8 we discuss extensions to this formulation. Finally, in section 4.9 we present

simulation results comparing the various approaches developed in this chapter.

4.2 Discrete Problem Formulation

We consider a network consisting of N RNs P = {pl,p2,... , PN} and a single MBN

M. Our interest is over a finite time horizon [0, T], discretized by At-spaced time steps

t = 0, 1,..., K, K = T/At. We assume all of the nodes in the network are situated

on a 2-dimensional plane. We denote by pi(t) A (pi, (t), pi", (t)), t = 0, 1,... , K, the

x-y position of RN pi at time step t. Similarly, we define M(t) A (M.(t), M,(t)) for

the MBN M. Let d[u, v] denote the Euclidean distance between two nodes u and v.

Next, we let di(t) denote the distance between RN pi and the MBN M at time step t,

i.e., di(t) = d[M(t),pi(t)]. Finally, let dma,(t) represent the distance from the MBN

to the farthest RN at time step t, i.e., dma,(t) = maxi d (t).

We assume the trajectories of the RNs are known a-priori over the full time horizon

t = 0,1,..., K. Thus the goal is to compute a path M* = M(0), M(1),... , M(K)
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for the MBN given this information. We assume the initial position of the MBN M0

is fixed and known, i.e. M(0) = Mo. Finally, we enforce a hard constraint that the

maximum speed of the MBN is upper bounded by V, i.e., d[M(t - 1), M(t)] < VAt,

Vt = 1,..., K. We discuss relaxing this constraint in section 4.6.

In this work we are concerned with maximizing the time average MFPA through-

put objective from (3.3), i.e. I EZK H[d,,m(t)]. As was described in detail in section

3.2, we assume H() is a decreasing function that represents the throughput received

by the worst case throughput RN. It can also serve as a proxy to describe the system

throughput under certain system models, e.g. the CDMA Model described in section

3.3. We term the MBN path planning problem with time average MFPA objective

function the MPP-MFPA problem, and formulate it below.

Problem MIIPP-MFPA: Given the RN trajectories pi(t), Vi E P, t = 0,..., K and

initial MBN :position M(O) = M0 . Compute the MBN path M* = M(0), M(1),..., M(K)

such that the average MFPA throughput metric is maximized, subject to the max-

imum MBN speed bounded by V. Mathematically, the MPP-MFPA problem is ex-

pressed as,

max _ •1 H[dmax(t)] (4.1)

s.t. d[M(t - 1), M(t)] < VAt, Vt = 1,..., T (4.2)

M(O) = M0  (4.3)

4.3 Illustrative Example

In this section we provide an example that will allow us to gain insight into the MPP-

MFPA problem. The example, involving a single RN travelling on a line is illustrated

in Fig. 4-2. The trajectory of the RN is shown on top, and we assume that the MBN's

speed is bounded by V = 2, and that At = 1, i.e. K = T. In the example both the

RN and MBN start at the same location on the line, i.e. M(O) = p(O) = 0. Note

that in the MPP-MFPA formulation, the speed of the RN is not bounded, and in the
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Figure 4-2: Single RN, Single MBN, 1-D example of greedy vs. optimal approach to
MPP problem. Assume M,(0) = Mopt(O) = p(O) = 0 and V = 2, At = 1.

example it travels at speed equal to 4 between time steps 1 and 2. In many scenarios,

RNs might not travel faster then the MBNs. Yet, as shown in Fig. 4-1 the 1-center

of the RNs certainly can travel much faster than any particular RN movement. Thus

one can also think of the RN in the example as a proxy for the 1-center of a number

of RNs.

An MBN path obtained by applying a greedy (i.e. myopic) approach that tries to

maximize the instantaneous MFPA objective at every time step is shown in the middle

of the figure. Notice that for all time steps t > 2, the greedy MBN trails the RN by

a distance of 2. This results in an MPP-MFPA objective of I[H(0) + (K - 1)H(2)].

By contrast, the optimal MBN path involves accepting some sub-optimality in the

first time step by staying at position 0 at time step t = 1. However, doing this allows

the optimal MBN to follow the RN exactly for all time steps t > 2, yielding an MPP-

MFPA objective of U[H(2) + (K - 1)H(O)]. Depending on the exact form of H(),

this can be significantly larger than that achieved by the greedy approach.

The example shows that for certain problem instances a greedy solution approach

can be highly sub-optimal. For such instances, solutions obtained by solving for the

entire path at once are necessary for good performance.
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Copies of Grid
Points

Y(1) Y(2) Y(3) Y(K)
% e_
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Figure 4-3: Illustration of Trellis Structure. Edges between vertices at consecutive
time steps are drawn only if the grid points they represent are at most VAt distance
apart.

4.4 DP-based Approximation (DPA) Algorithm

In this section we provide a Dynamic-Programming (DP) based approximation algo-

rithm to solve the MPP-MFPA problem. We start by gridding the plane with vertical

and horizontal spacing e < VAt. Next, we construct K copies of the resultant grid

points, denoted by Y(1), Y(2),..., Y(K), where a grid point v E Y(t) will represent

a potential location for the MBN at time t. For notational convenience, we define

the set Y(0) to denote just a single point, Mo, i.e. the given starting position of the

MBN.

We next define an edgeweighted graph G = (V', E), illustrated in Fig. 4-3, as

follows. Let the vertex set V' consist of all the Y(t)'s, t = 0, 1,..., K. We add an

edge (u, v) to E between u E Y(t), v E Y(t + 1), t = 0,..., K - 1, if d(u, v) < VAt,

where d(u, v) is the distance between grid points u and v. Constructing the edge set in

this way restricts the MBN to only travel between grid points in successive time steps

that are at most a distance VAt apart. Finally, we define the weight w(u, v) of an

edge (u, v) E E, u E Y(t), v E Y(t+ 1), t = 0,..., K-1 to equal to the instantaneous
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throughput value assuming the MBN is located at v at time t + 1. Specifically, this is

expressed as w(u, v) = H[max{d(v, pi(t + 1))}].

We now state the following lemma, which forms the main justification for the

algorithm.

Lemma 4.4.1. Assume the MBN is restricted to travel between grid points during

time steps t = 1,..., K. The optimal MPP-MFPA path subject to this restriction is

equivalent to the longest (maximum weight) path in G from the vertex Y(O) to some

vertex v E Y(K)

Proof. Consider a path in the graph Q = q(0),q(1),...,q(K), q(t) E Y(t),Vt where

by construction q(O) = Mo. If we add up the edge weights along the path Q we obtain

the expression,

K

Weight(Q) = H•[max{d(q(t),pi(t))}] (4.4)
t=1

Clearly maximizing the above is equivalent to maximizing (4.1) subject to the

grid-point restriction. O

Note that in general graphs, finding a longest path is NP-complete. However, the

specific graph structure implied by the graph G' is known as a Trellis Graph, or more

generally, a Directed Acyclic Graph. In such graphs, the longest path can be easily

found in a manner similar to finding the shortest path. Specifically, at each vertex we

can maintain the maximum weight (as opposed to the minimum weight) path from

the source to that vertex.

Furthermore, we take advantage of the repeated edge structure between vertices in

Y(t) and Y(t + 1), t = 1,... , K - 1. This greatly simplifies the longest path problem,

and instead of requiring a computationally complex algorithm such as Dijkstra or

Bellman-Ford, we can draw an analogy from coding theory to note that a longest

path in a Trellis Graph can be found using the Viterbi algorithm[49]. This is adapted

into the DPA algorithm, which is presented below. For the algorithm, we utilize the

following notation. Let Y(1) denote a single copy of the grid points. We denote the
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distance metric of the longest path from Mo to grid point v at time t as q,(t). We

denote the predecessor grid point along this path as p,(t).

Algorithm 10 DPA Algorithm
Initialization:

1: set q, (t) = -oo, p,(t) = 0, Vv E Y(1),t = 1,..., K.
2: set LP(O) = Mo.
3: for v E Y(1) s.t. d[Mo, v] < VAt do
4: set qv(1) = H[max{d(v,p i (1))}], p,(1) = Mo0.

Metric Update:
5: for t = 2, 3,..., K do
6: for u E Y(1) do
7: for v E Y(1), s.t. d(u, v) < VAt do
8: if q,(t - 1) + H[max{d(v, pi(t))}] > q, (t) then

9: set q (t) = qu(t - 1) + H[max{d(v, pi(t))}] and p,(t) = u

Calculate Longest Path:
10: let v = argmax q,(K) and LP(K) = v

uEY(1)

11: for t = K, K - 1,..., 1 do
12: set v = p,(t)
13: set LP(t) = v
14: return LP = {LP(O), LP(1),..., LP(K)}

As a final point, the computational complexity of the algorithm is equal to O (IY(1)).

([2A~)2 -K), where JY(1)J is the total number of grid points. Note that for a plane

of dimensions L x L, IY(1)l = ([LJ + 1)2. We obtain the complexity result by exam-

ining the Metric Update (lines 5-9) portion of the algorithm. Note that the outer two

loops iterate for K time steps, and over jY(1)1 vertices respectively. Finally, for each

vertex v E Y(1), we can upper bound the number of surrounding grid points that are

within distance VAt, by ([21_At])2.

4.4.1 Analysis

As mentioned in Lemma 4.4.1, the DPA algorithm finds the optimal MPP-MFPA path

subject to the constraint that the MBNs must only travel between grid points. Yet,

it would be desirable to calculate how close this solution approximates the original

unconstrained optimal MPP-MFPA solution. The Lemma below shows that for an
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unbounded plane, this can be a function of both the grid spacing e as well as the end

time step K. We define dMz(t) to be the distance from the MBN to the farthest

RN at time step t in the optimal solution (i.e. not constrained to lie on grid points).

Additionally, we define a grid square to denote the induced square area from a square

configuration of 4 corner grid points. We use the notation a E A to denote that the

point a is located within the grid square A. Finally, two grid squares are adjacent if

they share at least one corner grid point.

Theorem 4.4.1. For an unbounded plane, the MPP-MFPA objective value of the

solution path found by the DPA algorithm is at least E H(dtx(t) + 2-- tE).

In order to prove the above theorem, we will first need the following two lemmas.

Lemma 4.4.2. Assume there exist two points a E A and b E B such that d[a, b] =

VAt. Then, there exists a grid square C, adjacent to B, such that the following two

facts hold: (i) We can always find a corner grid point c' E C such that d[a, c'] 5 VAt,

and (ii) For any corner grid point a' E A we can always find a corner grid point c' E C

such that d[a', c'] < VAt.

Proof. Assume the grid squares A and B are not co-linear, and without loss of gen-

erality2, that A is situated some number of grid squares below and to the left with

respect to B. This is depicted in Fig. 4-4-a. If this is the case, then it must be that

the bottom-left corner grid point in B, denoted b', must be the closest point in B to

any point in A. Define C as the grid square immediately bottom-left of B (i.e. B and

C share the corner grid point b'). Thus we can conclude that d[a, b'] • d[a, b] = VAt.

Next, note that the top-right corner grid point in A, denoted a', must be the clos-

est point in A to any point in B. Thus, we have that d[a', b'] < VAt. Finally, we

can reach, within distance VAt, a corner grid point in C from any corner grid point

a" E A. We do this by simply translating the line segment between a' and b' such

that a' is shifted to a". This is shown in the figure.

Next, assume the grid squares A and B are co-linear, and without loss of generality,

that A is some number of grid squares left of B. This is depicted in Fig. 4-4-b. If

2The same analysis can be applied for all other non-co-linear configurations of A and B
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Figure 4-4: Illustration depicting the proof of Lemma 4.4.2. (a) Case where grid
squares A and B are not co-linear (b) Case where grid squares A and B are co-linear

this is the case, then it must be that the top-right corner grid point in A, a', and

the top-left corner grid point in B, b', are at least as close to each other as any

other two points in A,B. Define C as the grid square immediately left of B (i.e. b'

is one of two corner grid points shared by C and B). Thus we can conclude that

d[a', b'] < d[a, b] = VAt. Note that we can translate the line segment between a' and

b' to show that, within distance VAt, from any corner grid point a" E A, we can reach

some corner grid point in C. Finally, let c' be the top-left corner grid point of C. We

show that d[a, c'] < VAt as follows. First, we project the line segment between a and

b onto the horizontal axis, and let c* E C and b* E B be the intersection points with

the left sides of C and B respectively. Applying the triangle inequality, we have that,

d[a, c'] < d[a, c*] + E = d[a, b*] < d[a, b] 5 VAt (4.5)

O

Lemma 4.4.3. For any two points a E A and b E B such that A and B are adjacent

grid squares, d[a, b] g 2vf2e.
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Proof. The largest distance between any two points within the same grid square is

vf'e. Applying the triangle inequality, we obtain the desired result. O

Proof of Theorem 4.4.1. Consider an optimal MBN path QOPT = Q(0), Q(1),..., Q(K),

where Q(O) = Mo. Without loss of generality, we assume the optimal MBN trav-

els at maximum speed over the entire time horizon, i.e. d[Q(t - 1), Q(t)] = VAt,

Vt = 1,..., K. Intuitively, this follows from the observation that the slower the op-

timal MBN travels, the easier it becomes for the DPA MBN to close the gap with it

over time.

Our aim is to construct a candidate path M' = M'(O),M'(1),...,M'(K) that

traverses from M'(0) = Mo to M'(K), consisting only of grid point locations. Let

dMa(t) denote the distance from M'(t) to the farthest RN at time step t, i.e. similar

to the definition of d,(t). Similarly, we define dgdp(t) with respect to the solution

found by the DPA algorithm. By lemma 4.4.1, we know that the path found by the

DPA algorithm will have at least as high MPP-MFPA objective value as that of M',
i.e. k z H[dg_(t)] > 1EK H[di' (t)]. Thus we will proceed to lower bound

the objective value of M' with respect to the optimal solution, i.e. we will show

that _ Eg 1 H[dM'(t)] Ž 1 Z 1 H[d•g l (t) + 2vftE]. We will show this by upper

bounding dmax(t), i.e. we will show that dXma(t) 5 dPz(t) + 2V2tc, Vt.

We construct the candidate path M' as follows, starting from M'(O) = Q(O) (not

necessarily located at a grid point). From the first part of Lemma 4.4.2 we can set

M'(1) to lie at a grid point in a grid square at most one away from (i.e. adjacent

to) the grid square containing Q(1). Specifically, since d[M'(O),Q(1)] = VAt, the

lemma tells us that d[M'(O), M'(1)] < VAt. Next, we can apply lemma 4.4.3 to show

that d[M'(1), Q(1)] • 2v/E. Applying the triangle inequality, we therefore have that

md' (1) 5 dOptx(1) + 2AVE.

Similarly, starting from M'(1) (located at a grid point), we can apply the second

part of Lemma 4.4.2 and set M'(2) to lie at a grid point in a grid square at most

two away from the grid square containing Q(2). We do this as follows, where we

let A and B denote the grid squares containing Q(1) and Q(2) respectively. By the

lemma, we have that since d[Q(1), Q(2)] = VAt, that from any grid point a E A we
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can reach a grid point c E C such that d[a, c] < VAt, where C denotes a grid square

adjacent to B. Finally, we can translate the line segment between a and c such that a

is shifted to M'(1). We define M'(2) as the resultant shifted (grid point) location of

c. Since M'(1) is located in a grid square adjacent to A, we can conclude that M'(2)

is in a grid square at most two away from B. Applying lemma 4.4.3 and the triangle

inequality, we therefore have that dMx (2) < dgtx(2)+ 2 - (2v2E).

We can repeat this application of the second part of Lemma 4.4.2 for an arbitrary

time step t to obtain the desired result. O

Since the above Theorem simply shows a lower bound on the MPP-MFPA objec-

tive achievable by the DPA algorithm, we do not know if this is a true reflection of the

worst case performance of the algorithm. Yet, as reflected in the following Theorem,

it turns out the lower bound is tight in the sense that the difference between d~ (t)

and dmax(t) can potentially increase without bound as a function of the number of

time steps (i.e. assuming fixed At).

Theorem 4.4.2. For an unbounded plane, there exists a worst case problem instance

in which lim {dmpa,(t) - do (t) =
t---*O0

Proof. We illustrate two worst case situations that result in the performance bound

of the theorem in Fig. 4-5. Both examples involve a single RN p travelling in a

single direction with speed V, and M0 = p(O). Thus the optimal solution in both

instances involves the MBN following the exact same trajectory as the RN, travelling

a distance VAt in each time step. This yields do (t) = 0, t. Yet, starting from Mo

the DPA solution can only travel between grid points and therefore cannot exactly

follow an arbitrary trajectory. Thus to prove the theorem we need only provide an

RN trajectory that results in the DPA MBN path being limited to travel (in each

time step) a constant distance strictly less than VAt in the direction of the optimal

MBN (i.e. projected onto its trajectory). Since this difference accumulates linearly

with each time step, we obtain the result of the theorem.

We first assume that VAt is not integer divisible by e, and consider a horizontal

straight-line RN trajectory, illustrated in Fig. 4-5-a. Due to the non-divisibility
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Figure 4-5: Illustration depicting the proof of Theorem 4.4.1. (a) Worst case scenario
when VAt is not integer divisible by e. (b) Worst case scenario when VAt is integer
divisible by c.

assumption, no two horizontally separated pair of grid points can be exactly VAt

apart.

Next, assume VAt is integer divisible by e and consider a diagonal (e.g. -45O)

trajectory, illustrated in Fig. 4-5-b. Now, because of the integer divisibility assump-

tion, all diagonally separated grid points are some integer times xic€ apart. Thus

since x/2 is irrational, it follows that no two diagonally separated grid points can be

exactly a distance VAt apart. O

It should be noted that Theorems 4.4.2 and 4.4.1 are in the context of an un-

bounded planar area. Yet, the practical scenarios we are interested in involve a

bounded area, in which the worst case result of Theorem 4.4.2 would not hold. In

such scenarios, it is likely that the difference between the DPA and optimal solutions

would be capped by a function involving the area's dimensions.

4.5 Greedy Approach to the MPP-MFPA problem

In this section we develop a greedy approach towards solving the MPP-MFPA prob-

lem. As mentioned in section 4.3, for certain problem instances the performance of
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such an approach can be quite poor in the worst case. Yet, as will be shown via

simulation in section 4.9, for many problem instances the approach performs quite

reasonably. More importantly, the approach is significantly less computationally com-

plex than the DPA algorithm described in section 4.4.

The most natural greedy approach to a multi-step optimization problem aims to

optimize the 1-step instantaneous problem at each time step. This is the approach

we take in this section, and present a high level algorithm below.

Algorithm 11 High Level MPP-MFPA Greedy Algorithm
1: Initialize M(O)= Mo
2: for t=1,2,...,K do
3: Compute the location for M(t) that maximizes H[dma,(t + 1)], subject to

d[M(t - 1), M(t)] < VAt
4: return M* = M(O), M(1),..., M(K)

The key step in the above high level algorithm is the solution of the 1-step op-

timization problem in line 3. A more complete formulation of this problem is as

follows.

Problem 1-step MPP-MFPA: Given the RN positions at time t+ 1, pi(t+ 1), Vi E

P and previous MBN position, M(t). Calculate the optimal MBN position at time

t + 1, M(t + 1), such that the MFPA throughput metric at time t + 1 is maximized,

subject to the maximum MBN velocity bounded by V. Mathematically, the 1-step

MPP-MFPA problem is expressed as,

max H[dma,(t + 1)] (4.6)
M(t+l)

s.t. d[M(t), M(t + 1)] < VAt (4.7)

With the above formulation, we note that the 1-step MPP-MFPA problem can

be viewed as a constrained 1-center problem. Specifically, since H() is a decreasing

function in dma,(t + 1), minimizing dmax (t + 1) will maximize the objective function in

(4.6). If not for the velocity constraint in (4.7), the problem would reduce to finding

the unconstrained 1-center, for which several efficient polynomial time algorithms
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Figure 4-6: Illustration of constrained 1-center instance in which the unconstrained
1-center is outside the constraining circle.

exist [2]. Yet, with the constraint in mind we can view the problem as one in which

we need to to find the 1-center of the RNs at time t + 1 such that it lies within a

circle of radius VAt around M(t). This is depicted in Fig. 4-6.

The general convex polygon constrained 1-center problem has been previously

addressed in [15]. However, the algorithm from [15] cannot be directly adapted due

to the fact that it requires considering each polygon vertex separately. In our problem,

we are constrained by a circle, which cannot really be viewed as a polygon (and even if

it could, it would have an undefined or infinite number of vertices). In the next section

we develop a simple algorithm to solve the circular constrained 1-center problem.

4.5.1 Circular Constrained 1-Center (CC-1C) Algorithm

We begin with the following observation, which provides the first step in our algorithm

to solve the circular constrained 1-center problem. Let C denote the constraining

circle of radius VAt with center M(t)

Observation 4.5.1. If the solution to the unconstrained 1-center problem lies within

the circle C, then this is the solution to the constrained 1-center problem.

Thus the main difficulty lies in solving the constrained problem when the uncon-

strained solution lies outside C (e.g. shown in Fig. 4-6). The following lemma pro-
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vides the first key to solving this problem, where we have defined WC as the boundary

of the circle C.

Lemma 4.5.1. Assume the solution to the unconstrained 1-center problem lies outside

the circle C. Then, the solution to the constrained 1-center problem must lie on WC.

Proof. By the previous discussion, the solution to the constrained 1-center problem

involves minimizing dmax(t + 1) subject to the circular constraint. The proof involves

first showing that dmax(t + 1) is convex in M(t + 1) A [Mx(t + 1), My(t + 1)]. This

will allow us to conclude that from a given MBN placement at M(t + 1), changing

the solution along the gradient direction Vdma (t + 1) will decrease dmax (t + 1). Note

that while dm,,a(t) is not differentiable at certain points, directional derivatives exist

everywhere [56].

Next, we assume that the circular constrained optimal M(t+1), denoted M*(t+1),

is an interior point of C. However, if this were the case, then there must exist another

location M'(t + 1) along the direction Vdmax(t + 1) such that M'(t + 1) is within C

(i.e. either also interior to C or on 6C). Thus M'(t + 1) must yield a lower value of

dma,(t + 1), contradicting the optimality of M*(t + 1).

To show dma, (t + 1) is convex in [Mx (t + 1), My (t + 1)] consider its full expansion.

We have removed the (t + 1) dependence for legibility.

dmax = max di
iEP

= max { - p +[M - p2 - pi, 2} (4.8)

A common fact from optimization theory is that a function that is a maximum of

a set of convex functions is also convex. Since the Euclidean distance function di() is

convex [56], the result follows. O

Lemma 4.5.1 allows us to restrict our search for M(t + 1) to the locus of points

defined by SC. We define the Constrained Minimum Spanning Circle (CMSC) for

the RNs at time t + 1, as the circle with center at the optimal location of M(t + 1)
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Figure 4-7: Illustration of the two unique ways the constrained 1-center can be defined.
(a) By a single RN. (b) By a pair of RNs.

and radius equal to the corresponding value of d,,,a(t + 1). We denote the center

and radius of the CMSC as qcMsc and RCMSC respectively. Consider the following

lemma regarding the CMSC, illustrated in Fig. 4-7.

Lemma 4.5.2. Assume the unconstrained 1-center is outside the constraining circle

C. Then there are are two unique ways the CMSC can be defined.

1. By a single RN i E P. If this is the case, then qCMSc is located at the first

intersection between 6C and the directed line segment iM(t). RcMsc is equal

to d(qcMsc, i).

2. By a pair of RNs i, j E P. If this is the case, then qcMSC is located at an

intersection point between SC and the perpendicular bisector of i and j. The

intersection point is chosen to minimize RcMsC = d(qcMsc, i).

Proof. To prove the Lemma, first recall that by Lemma 4.5.1, the optimal qCMSC

must lie on bC. We now go through several cases regarding the farthest RN(s) from

qcMsc. First assume exactly one RN is farthest from qCMsc. In this case, in order to

minimize RCMSC subject to the constraint that qCMSC e C it is a simple geometric

fact that qCMSC and RCMSC are defined as in the first part of the Lemma. The same
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holds true with respect to the second part of the Lemma if we assume that exactly

two RNs are simultaneously farthest from qcMsc. Finally, consider the case in which

exactly k > 3 RNs are simultaneously farthest. In this case, we have a situation in

which all pairs of the k farthest RNs must be equidistant from the center. Yet, a pair

of equidistant RNs coupled with the constraint that the center must be on 6C uniquely

determines a center location (e.g. as per the second part of the Lemma). Therefore,

k > 3 simultaneously farthest RNs represents an over-determined situation, wherein

the corresponding qcMsc, RcMSc tuple would have been considered under the second

part of the Lemma. O

Lemma 4.5.2 can be thought of as the constrained analog of Fact 3.4.1 from

Chapter 3. However, it should be noted that in Fact 3.4.1 we had to consider triplets

of farthest RNs, in addition to singles and doubles. The difference is due to the circle

boundary constraint brought upon by Lemma 4.5.1. Indeed, Lemma 4.5.1 can be

thought of as reducing the degree of freedom of the problem from 3 equidistant RNs

uniquely defining a center, to just 2 RNs. Below we present the Circular Constrained

1-Center (CC-1C) algorithm, which finds the finds the constrained 1-center.

Algorithm 12 CC-1C Algorithm
1: Compute the unconstrained 1-center location, quc, using an algorithm from [2]
2: if quc is within C then
3: return M(t + 1) = quc
4: Set Rmin = oo
5: for all single RNs i E P do
6: Let q be the first intersection point between the line segment iM(t) and WC.
7: Let Rq be the distance between q and i, Rq = d(q, i)
8: if d(q, j) : Rq,Vj E P and Rq < Rmni then
9: Set M(t + 1) = q and Rmin = Rq

10: for all pairs of RNs i,j E P do
11: if the perpendicular bisector of i, j and SC intersect then
12: Let q be the intersection point between the perpendicular bisector of i, j and

SC that yields the lowest value of d(q, i).
13: Let Rq be the distance between q and i, Rq = d(q, i)
14: if d(q, k) 5 Rq, Vk E P and Rq < Rmin then
15: Set M(t + 1) = q and Rmin = Rq
16: return M(t + 1)
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The algorithm works by directly applying the constructive implications of the

previous discussion. Specifically, we start by checking whether the condition out-

lined in observation 4.5.1 holds. Assuming it does not, we next check all possible

qcMsc, RCMSC tuples as outlined in Lemma 4.5.2 to see if they define a valid CMSC

(i.e. if they cover all the RNs). The valid CMSC with minimum radius is taken as

the overall solution.

The computational complexity of the CC-1C algorithm is O(N 2), where N is the

number of RNs. This is because the for loop in line 10 considers all pairs of RNs,

and thus results in the most complex operation. The solution of the unconstrained

problem (line 1) can be found with O(Nlog N) computational complexity [2],[51].

Note that the complexity would have been O(N3 ) if we had to consider triplets of

RNs. Thus the result of Lemma 4.5.1 yields considerable complexity savings.

As a final point regarding the overall greedy algorithm, consider a problem in-

stance in which the unconstrained 1-center locations at consecutive time steps are

always within a distance VAt of each other. Also assume that Mo is within VAt the

unconstrained 1-center location in the first time step. If this is the case, then by the

presence of line 1 in the CC-1C algorithm, the greedy approach will find the exact op-

timal solution. By contrast, the DPA algorithm would still only find an approximate

solution, since the MBN placements would be restricted to grid points.

4.6 Discrete Formulation with Relaxed Velocity

Constraint

In this section we propose a variation of the base discrete MPP-MFPA formulation

given in (4.1). In particular, we relax the hard constraint on the MBN velocity, instead

adapting a penalty function G() on the MBN movements. This type of formulation

can model situations in which we would like to discourage large MBN movements, but

allow such movements if there is sufficient throughput gain to be had. The modified

formulation is given below.
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Problem Relaxed MPP-MFPA: Given the RN trajectories pi(t), Vi E P, t =

0,... ,K and initial MBN position M(O) = Mo. Calculate the MBN path M* =

M(0), M(1),..., M(K) such that the average MFPA throughput metric plus a veloc-

ity cost is maximized. Mathematically, the Relaxed MPP-MFPA problem is expressed

as,

max + d[M(t -1), M(t)] (49)max - H[dmax(t)] + G (4.9)M* K At

s.t. M(O) = Mo (4.10)

where Go is a decreasing function in its argument. By forcing Go to decrease with

increasing value of d[M(t-1),M(t)] this penalizes MBN paths with large movements.

To solve the above formulation, we attempt to leverage the discussion thus far.

Indeed, the DPA algorithm from section 4.4 can be modified in a simple manner to

solve the Relaxed MPP-MFPA problem. Specifically, we need to apply the following

modifications:

* Initialize q%(1) = H[max{d(v, p(1))}] + G ( d[Mo, v] , Vv e Y(1) (line 3)

* Allow MBN movements between any two grid points (i.e. remove the distance

restriction from line 7)

* Replace H[max{d(v, pi(1))}] with H[max{d(v,pi(1))}]+G (d[ ]) throughout

the Metric Update phase (i.e. lines 8, 9)

By arguments along the same lines as those proposed in section 4.4, we can con-

clude that the DPA algorithm with the above modifications will solve the Relaxed

MPP-MFPA problem. However, the analysis of section 4.4.1 does not directly ap-

ply. It is likely, however, that similar results can be shown with a similar analysis

technique. It is important to note that this modified DPA is considerably more com-

putationally complex than the original DPA. In particular, since MBNs can travel

between any two grid points in a time step the resulting complexity is O(IY(1) 12 K)
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for the modified DPA, as opposed to O(IY(1) . ([2VAt1 )2 -K) for the original DPA. If

the maximum MBN speed V is not too large, the difference can be quite significant.

We next attempt to leverage the Greedy Approach towards solving the Relaxed

MPP-MFPA problem. To this end, we can apply the same high-level algorithm

given in section 4.5. We next turn our attention to the single step solution. Thus

we formulate the 1-step Relaxed MPP-MFPA problem in a vein similar the original

1-step MPP-MFPA problem in section 4.5 below.

Problem 1-step Relaxed MPP-MFPA: Given the RN positions at time t + 1,

pi(t + 1), Vi E P and previous MBN position M(t). Calculate the optimal MBN

position at time t + 1, M(t + 1) such that the Relaxed MPP-MFPA throughput

metric at time t + 1 is maximized. Mathematically, the 1-step Relaxed MPP-MFPA

problem is expressed as,

max H[dmax(t + 1)] + Gd[M(t), M(t + 1)] (4.11)
M(t+1) At

We begin by observing that, given a value of d[M(t), M(t+1)], this fixes the second

term of (4.11). Therefore, we can use the CC-1C algorithm from section 4.5.1 to

maximize the first term of (4.11). Next, we observe that dmax(t + 1) is monotonically

decreasing with increasing values of d[M(t), M(t + 1)] in the range [0, d*], where

d* = d[M(t), Mic(t + 1)] is the distance between M(t) and the unconstrained 1-

center of the RNs at time t + 1, M•,c(t + 1). Clearly we would never have the MBN

travel farther than d*, since this simply decreases G[d()] while having no effect on

H[d()].

The above observations motivate the following basic heuristic for the 1-step Re-

laxed 1-center problem, where k represents a parameter that trades off complex-

ity vs. performance. Determine the unconstrained 1-center Mrc(t + 1), and set

d* = d[M(t), M•c(t + 1)]. Solve the circular constrained 1-center problem by utiliz-

ing the CC-1C algorithm for k+1 circles of radii [0, d*/k, 2d*/k,..., (k- 1)d*, d*]. Set

M(t + 1) to equal the location which yields the maximum value of H[maxi d[M(t +
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1),pi(t + 1)]] + G(d[M(t)~(t+1)]")

Obtaining the optimal solution for the 1-step relaxed MPP-MFPA problem ap-

pears somewhat more complicated than for the base 1-step MPP-MFPA problem.

The reason is that instead of being able to minimize dmax(t) as a proxy for maximiz-

ing the overall objective function, for the relaxed 1-step relaxed MPP-MFPA problem

there does not appear to be an obvious way to get around having to directly optimiz-

ing the entire objective function. This likely requires assuming specific properties for

H() and G() and we do not pursue this in this section.

4.7 Continuous Problem Formulation

Up to this point, we have discretized time, and for the DPA algorithm we discretized

space as well. Doing this allowed us to develop algorithms that obtain good solutions

to the MPP-MFPA problem. Yet, an alternative approach is from a continuous

perspective. We develop such a formulation below, as the Continuous MPP-MFPA

problem. Throughout the section, we use bold font to denote a vector (as opposed to

a scalar) quantity.

Problem C-MPP-MFPA: Given the RN trajectories pp(t), Vi E P, 0 < t < T and

initial MBN position M(0) = Mo. Calculate the optimal MBN path M(t), 0 < t < T

such that the time average MFPA throughput metric is maximized, subject to the

maximum MBN velocity bounded by V. Mathematically, the C-MPP-MFPA problem

is expressed as,

max T fL H[dmax(t)] (4.12)
M(t)

s.t. IM(t)l V, 0 < t < T (4.13)

M(O)= Mo (4.14)

where M(t) denotes the time derivative of M(t). The above formulation of the

MPP-MFPA can be seen as the direct continuous analog of the discrete-time formu-
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lation given in section 4.2 (e.g. take At -- 0). We start by noting that we can adapt

the above formulation to that of an optimal control problem. Specifically, we can let

M(t) represent the system state and u(t) = M(t) the control. We can thus re-pose

the problem in standard form as an optimal control problem with bounded control

[18] as follows.

max T fo H[dmax(t)] (objective) (4.15)
M(t)

s.t. M1(t) = u(t) (system dynamics) (4.16)

Iu(t)l < V (control variable constraints) (4.17)

M(O) = Mo (initial condition) (4.18)

where we note the fact that u(t) = [ux(t) uy(t)]T and M(t) = [Mx(t) M,(t)]

are 2-dimensional vectors of functions. The goal is to solve for the optimal control

function u(t) and in turn determine the optimal state trajectory M(t). To do this,

we follow the method prescribed in [18],[7] based on Calculus of Variations theory.

Specifically, we start by forming the variational Hamiltonian, J, which in the optimal

solution is maximized.

J = H[dmax(t)] + A(t)T . u(t) (4.19)

where A(t) = [AX(t)AY(t)] T is a lagrange multiplier vector. From the form of J,

we can immediately conclude that the u(t) that maximizes J for A(t) $ 0 is,

Vu(t) = V(t) (4.20)

Geometrically, this can be viewed as a vector of length V in a direction co-linear

with A(t). Next, we utilize the Euler-Lagrange equation A(t) = - to obtain the

following relation,
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A(t)= - a~i (4.21)8H

The above equation gives us the key information needed to solve for A(t). To

proceed further, we will assume a specific functional form for H(). Specifically, we

will consider the CDMA Throughput function from (3.2), i.e.,

1
Hcdma[dmaz(t)] = dmax(t)a + b (4.22)

where a > 2 represents the path loss exponent and b a positive constant. For

simplicity we have ignored all other multiplicative constants. Next, for the purposes

of illustration we assume just a single RN p, e.g.,

dmax(t) = d(t) = V/[Mx(t) - p(t)]2 + I[M(t) - py(t)]2  (4.23)

This assumption allows us to temporarily do away with the complexities (e.g.

non-differentiability at certain points) associated with the function dmax(t). In the

next section, we discuss how to deal with more than one RN. With this assumption,

the Euler-Lagrange equations from (4.21) yield,

SA(t) d(t) 2  [Mx(t) - p(t) 1 (4.24)
)Y(t) [d(t)a + b]2  My(t) - p,(t)

At this point, there are two cases: a singular (A(t) = 0) or normal (A(t) # 0)

arc/interval. The normal case was discussed earlier, yielding (4.20) when A(t) $ 0.

For the singular arc case, suppose there A(t) = 0 for some time interval [t1 , t 2]. Thus

it must be that A(t) = 0, Vt E (t 1, t 2). Then by (4.24) and (4.16), it must be the case

that,

MX (t) Px (t) ex (tM Ps (t)() = ] and (t) ] ] (4.25)
My (t) py (t) uy (t) p yt (t)

Looking at (4.20) and (4.25), we can fully characterize the control u(t) in terms
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of the lagrange multiplier function A(t), i.e.,

I v xA(t), (t) 0
u(t) = x/x(t)2+ , (t)2 (4.26)

5(t), x(t) 0

The above gives a very interesting insight into the optimal MBN path M(t) for the

single RN case. In particular, from (4.25) we have that either (i) M(t) is coincident

with p(t) and is staying coincident with p(t) by travelling with velocity u(t) = p(t)

(singular arc) , or (ii) M(t) is away from p(t) (or just instantaneously coincident with

p(t)), and is travelling at maximum velocity V in some direction. Thus the conditions

tell us that if M(t) is away from p(t), it will never travel with velocity slower than V.

Note however, that the conditions do not mean that if M(t) is coincident with p(t),

that it must stay coincident (i.e. enter a singular arc). Indeed, this uncertainty is one

of the reasons that such singular control problems are difficult to deal with. We give

an example of such a situation in Fig. 4-8. In the example, at time t*, the MBN can

stay coincident with the RN (i.e. stay in the singular arc) since the RN is moving

with just velocity V. Yet, if it does so then starting at time t** (at which time the

RN has sudden jump in velocity) it will lag the RN until the end of the time horizon.

By contrast, the optimal path diverges from the RN path at time t*, but rejoins it

at time t**. This example can be thought of as the continuous analog to the discrete

example in Fig. 4-2.

We complete the characterization of the optimal solution by gathering the follow-

ing system of equations. These equations must be solved to determine the optimal

A(t) and thus the optimal u(t) and M(t).
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Figure 4-8: Single RN, Single MBN, 1-D continuous time MPP example.
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(Control Equations)

(System Dynamics)

(Initial state)

(Final Condition)

The final condition in (4.31) is due to the form of the objective function in (4.16).

The above system of differential equations constitutes what is known as a Two-Point

Boundary Value Problem (TPBVP). In contrast to an Initial Value Problem (IVP),

where all conditions are specified at the initial time, a TPBVP splits the conditions

at both the initial and final times. Because of this, obtaining the numerical solution

to TPBVPs (closed form results are quite rare) is considerably more difficult than

that of IVPs. A common method for numerically solving TPBVP's is known as the

Shooting Method, e.g. [50].

Further complicating matters is the potential presence of singular arcs in the

solution, which has a direct influence on the form of u(t). Furthermore, since A(t)
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and u(t) are co-dependent on each other, obtaining a solution is greatly aided if we

have a-priori knowledge of the sequence of normal and singular arcs. For this the

DPA algorithm discussed in section 4.4 can be utilized. In particular, for a given

problem instance we can first employ the DPA algorithm with a relatively coarse grid

spacing. From the resulting solution, we can qualitatively glean the normal-singular

arc sequence. Knowing this, we can execute a shooting method with fine step size and

obtain close to an exact optimal MBN trajectory. Note that the reason we cannot

simply run the DPA with fine gridding is its high computational complexity which

is a function of the grid spacing. This was discussed in greater detail in section 4.4.

By contrast, the computational complexity of the shooting method is approximately

linear in the number of integration steps3 . As a final point, it is important to note

that the discrete methodology utilized by the DPA is an independent methodology

from the TVBVP solution utilized by the continuous methodology.

4.8 Extensions to the Continuous Formulation

The first obvious extension to the continuous formulation discussed in the previous

section is how to deal with multiple RNs. As mentioned earlier, the main difficulty

has to do with the form of dmax(t) = maxi d[M(t),pi(t)], which is non-differentiable

for certain values of M(t) A (Mx(t), My(t)). Thus a relatively straightforward way

to deal with this is to use the function dest-max(t) = -,(d[M1(t), pi(t)])h, to act as an

estimate for dma,(t). The intuition is that for a large enough value of h, the maximum

(d[M(t),p,(t)])h will dominate the sum (e.g. similar to the Loo metric).

The next extension is to relax the hard velocity constraint, as we did for the dis-

crete problem in section 4.6. Thus, we can formulate (but do not solve) the continuous

analog of the relaxed MPP-MFPA problem.

Problem Relaxed C-MPP-MFPA: Given the RN trajectories pi(t), Vi E P, 0 <

t < T] and initial MBN position M(0) = M0o. Calculate the optimal MBN path

3 This assumes that the correct starting conditions are guessed. These starting conditions can be
determined by a relatively fast iterative gradient or bisection search as part of the shooting method.
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M(t), 0 < t < T such that the time average MFPA throughput metric less a penalty

imposed on the MBN velocity is maximized. Mathematically, the C-MPP-MFPA

problem is expressed as,

max T H[dmax(t)] + G i (t) I dt (4.32)
M(t) TJo f

where G() is as defined in section 4.6.

As a final point regarding the continuous formulation discussion, it important to

recognize that the optimal control solution we have employed are necessary conditions

for stationarity. Indeed, these are not guaranteed to be the globally optimal solutions.

To guarantee global optimality, one must examine the second order conditions which

are generally quite complicated and do not yield much additional intuition. Yet, we

can be confident that the solution derived in the previous section for the assumed

functional forms are close to if not globally optimal. As we will show via simulation

in the next section, the continuous solution outperforms the DPA algorithm, which

tends to the optimal discrete solution for small grid spacing and fixed time horizon

(i.e. Theorem 4.4.1). Furthermore, as the time step spacing gets smaller, the optimal

discrete solution converges to the optimal continuous solution. In general, however,

global optimality is not the case and for many functional forms the necessary condi-

tions of the optimal control solution can yield the variational calculus equivalent of a

saddle or minimum extreme point.

4.9 Simulation Results

In this section we present simulation results comparing the various approaches devel-

oped in this chapter. To this end, we begin with a simple single RN, 1-dimensional

MPP-MFPA example, illustrated in Figs. 4-9 and 4-10. Both plots show an RN trav-

elling on a line with position function p(t) = t4e-t + t, t E [0, 10]. This function was

chosen somewhat arbitrarily, though it serves to reveal several insights into the work-

ings of the various algorithms. We assume the MBN starts at position Mo = (0.1, 0),

its speed is bounded by V = 2, and that the CDMA throughput function from (4.22)
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Figure 4-9: MPP-MFPA Single RN instance travelling on a line with position function

p(t) = t4 e- t + t with Optimal Control Solution. The MBN velocity is bounded by
V = 2, and the CDMA throughput function is used with a = 2, b = 1. Also plotted
are the corresponding Lagrange Multiplier function A(t), Control Function u(t) and
Variational Hamiltonian Y(t).

is used with parameters a = 2, b = 1.

Fig. 4-9 shows the detailed optimal control solution, found by using the shooting

method to solve the Two-Point Boundary Value Problem represented by (4.27)-(4.31).

As can be seen, the solution consists of a normal arc, followed by a singular arc.

Specifically, in the normal arc (i.e. A(t) f 0) the MBN travels at full speed and

is away from p(t) until t i 4.6. After this, the solution enters a singular arc4(i.e.

A(t) = 0), and stays coincident with p(t) until the end of the time horizon.

4In the plot, A(t) is not exactly equal to 0 during the singular arc. The reason for this is that
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Figure 4-10: MPP-MFPA Single RN instance travelling on a line with trajectory
p(t) = t 4e- t +t. The MBN velocity is bounded by V = 2, and the CDMA throughput
function is used with a = 2, b = 1. Shown are a comparison of the Optimal Control
Solution, DPA solution with grid spacing E = 0.02 and Greedy solution. Circles are
used to depict the greedy algorithm's placements at each time step.

For the same 1-D RN position function, Fig. 4-10 shows a comparison of the op-

timal control solution with the solution achieved via the DPA and Greedy algorithms

for the time horizon t E [0, 10]. Both discrete algorithms use At = 1, and the DPA

algorithm uses grid spacing e = 0.02. Quantitatively, the greedy algorithm obtains

92% of the MPP-MFPA objective achieved by the optimal control algorithm, and the

the DPA algorithm 99%. Qualitatively, we see that the DPA solution exactly follows

the optimal solution until time t = 4, at which point there is a slight deviation. In

contrast, we see that the greedy lags the optimal solution during 1 < t < 5 due to

a small positive numerical threshold of 0.08 was used in the Matlab simulation for the switch over
from normal to singular control.
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Figure 4-11: MPP-MFPA Single RN, 2-D example. The RN travels according to a
random waypoint model. Both DPA and Greedy Approaches use At = 1. The plot
show the MBNs spatial movement with respect to the RN, and '*' is used to depict
the starting locations.

the choice of not travelling at full speed between during 0 < t < 1.

Additional insight can be gained into comparing the greedy and DPA approach

if we examine Figs. 4-11 and 4-12. Fig. 4-11 shows a single RN instance travelling

in a 20 x 20 2-dimensional plane according to a Random Waypoint Model. In such

a mobility model, RNs continually repeat the process of choosing a random location

in the plane and travel there at a randomly chosen constant speed in the range

[Vmin, Vmax]. We chose Vmin = 0.5, Vmax = 2, and assumed the MBN speed was

bounded by V = 2. We consider a time horizon t E [0, 30] with At = 1 for both

algorithms, and c = 0.2 for the DPA. Finally, we assume the MBN starts at Mo =

(8, 0), and denote starting points with a star. From the figure, we can see that early

in the time horizon the greedy deviates from the DPA, but because the RN is not
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Figure 4-12: Evolution of the greedy to DPA performance ratio with respect to time.
Plot corresponds to the 2D random waypoint example in Fig. 4-11.

moving faster than the MBN it is able to catch up by time step t = 5. As the

performance ratio plot in figure 4-12 would indicate, it is up to here that the DPA

algorithm seems to be performing better than the greedy algorithm. Specifically, the

DPA is worse than the greedy during 0 < t < 2, but better for 2 < t < 5. For

time steps t > 5 however, the greedy MBN is able to stay exactly on top of the

RN, whereas the DPA MBN is restricted to travel between grid points. Again this

is reflected in the instantaneous time performance ratio plot at the bottom since for

time steps t > 5 the throughput achieved by the greedy algorithm is either as good as

the DPA or slightly better. Indeed, in general it would seem that in situations when

the MBN can travel at a speed as fast or faster than the RNs the greedy algorithm

can perform quite well.
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Figure 4-13: Constrained MBN speed MPP-MFPA average case plot for varying
numbers of RNs, over a time horizon t E [0, 100] and At = 1 for both algorithms.

This observation is confirmed by the plot depicted in Fig. 4-13. It shows the

average ratio (over 10 runs) between the MPP-MFPA objective achieved by the greedy

to that achieved by the DPA algorithm for varying numbers of RNs over a time

horizon t E [0, 100] , with At = 1 and MBN speed bounded by V = 2. The mobility

model used for the RNs is a random waypoint model over a 50 x 50 dimension plane,

for a "fast RN" and "slow RN" scenario. For the "fast RN" scenario we assume

[Vmin, Vmax] = [5, 10], and we assume [Vmin, Vmax] = [0.5, 2] for the "slow RN" scenario.

As can be seen in the plot, for faster speeds and small numbers of RNs, the DPA

algorithms outperforms the Greedy algorithm. However, once the number of RNs

passes 10, the greedy performs as well or better than the DPA algorithm. This can

likely be attributed to the fact that for larger number of RNs, the 1-center is more

stable and slower moving, and thus the greedy can get to the exact location even
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Figure 4-14: Relaxed MPP-MFPA Single RN instance travelling on a line with tra-
jectory p(t) = t4e- t +t. Shown are a comparison of the DPA solution and the Relaxed
Greedy Heuristic, over a time horizon t E [0, 10], and At = 1 for both algorithms.
The relaxed objective function is a1 )]2 with the parameter c setdm,,(t)2+1+ d[M1t-1),MTt)1 2+1 with the parameter c set
as c = 1 in the top plot, and c = 1.1 in the bottom plot.

though the MBN is slower than individual RNs. In contrast, the DPA algorithm is

limited to an approximate location (i.e. on a grid point). Indeed, for slower RNs the

greedy outperforms the DPA algorithm for this reason.

Fig. 4-14 shows a single RN 1-D example plot comparing the discrete algorithms

for the relaxed MPP-MFPA problem discussed in section 4.6. We consider the same

RN position function as for Figs. 4-9 and 4-10 over the time horizon t E [0, 10]. For

the penalty function, we assume the form G(x) = c for G(), where a = 2 and b = 1

are the same as for the CDMA throughput function H(). The motivation for H() and

G() having similar forms is so that the tradeoffs can clearly be explored. We assume
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Figure 4-15: Relaxed MPP-MFPA average case plot for varying numbers of RNs, over
a time horizon t E [0, 100] and At = 1 for both algorithms. The relaxed objective
function is d (t)2+1 + d[M(t- ,1M(t)]2+1. The figure shows a plot for plots for c = 0.3

and c= 1.1.

At = 1 for both algorithms, and a grid spacing e = 1 for the DPA. From the plots

we can see how sensitive the greedy algorithm is to the cost function. For example,

in Fig. 4-14-a, for a value of c = 1, the relaxed greedy algorithm achieves 95% of the

objective of the relaxed DPA algorithm. By contrast, in Fig. 4-14-b, when c = 1.1

the greedy algorithm achieves only 68% of the DPA's objective. The reason for this

disparity can be seen by examining the decision of the greedy algorithm at time step

t = 1. When c = 1, the tradeoff makes it worth it to move and thereby obtain a better

value of H(). This decision propagates forward as the greedy algorithm continues to

make correct decisions. However, when c = 1.1 the optimal 1-step tradeoff at time

step t = 1, is to not move. This decision also propagates forward since for all time

steps t > 1 the RN is even farther away and it is too late to move (i.e. the movement
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required is too large to justify the 1-step gain in H() value).

Finally, Fig. 4-15 illustrates an average case plot for the relaxed MPP-MFPA for

varying numbers of RNs. We assume the RNs move according to a random waypoint

model with [Vmi,, Vmax] = [4, 8] over a 20 x 20 plane, over the time horizon t E [0, 100].

We assume At = 1 for both algorithms and e = 1 for the DPA. We assume the same

form for the penalty function G() as for 4-14, with c = 0.3 and c = 1.1. As can

be seen from the figure, for a single RNs the greedy algorithm performs better when

c = 0.3 (i.e. more emphasis on optimizing H()), and the DPA performs better when

c = 1.1 (i.e. more emphasis on simultaneously optimizing H() and G()). However,

it is interesting that as soon the number of RNs is increased above 1, the algorithms

obtain more or less the same objective value for both values of c. The reason for this

would seem that once N > 1 it is always likely that the farthest RN will be quite far

away, and therefore given the form of the cost functions it almost never advantageous

to move. Indeed, the solution of both algorithms involve the MBN being static for

most of the time horizon.

4.10 Conclusion

Previous formulations of the Mobile Network construction problem have been based

on placing and mobilizing the MBNs reactively based on the position of the RNs

at the "current" time. Yet, in many practical scenarios entire RN trajectories are

known a-priori, and if this is the case, then placing the MBNs by solving a placement

problem independently at each time step is in general suboptimal.

To address this, in this chapter we considered the path planning of a single MBN

with the goal of maximizing the time-average system throughput. We have assumed

that the velocity of the MBN factors into the performance objective as either a con-

straint or a penalty. We first considered a discrete approach, for which our main

result is a dynamic programming based approximation algorithm for the path plan-

ning problem. We provided worst case analysis of the performance of the algorithm.

Additionally, we develop an optimal algorithm for the 1-step velocity constrained
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path planning problem. Using this as a sub-routine, we develop a greedy heuristic al-

gorithm for the overall path planning problem. We also considered the path-planning

problem from a continuous perspective. We formulated the problem as an optimal

control problem, and developed interesting insights into the structure of the opti-

mal solution. Finally, we discussed extensions of the base discrete and continuous

formulations and compared the various approaches via simulation.

Future work includes extending the single MBN formulation to multiple MBNs

and incorporating the assignment subproblem from chapter 3. General solutions for

the continuous formulations would also be highly desirable.
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Chapter 5

Conclusions

The architecture of a hierarchical Mobile Backbone Network has been presented re-

cently. Such an architecture can significantly improve the performance, lifetime, and

reliability of MANETs and Wireless Sensor Networks. In this Thesis, we have con-

sidered the problem of how to (i) Construct such Mobile Backbone Networks so as to

optimize a network performance metric, and (ii) Maintain such networks under node

mobility.

In the first part of this thesis, we have concentrated on placing and mobilizing

backbone nodes, dedicated to maintaining connectivity of the regular nodes. We have

formulated the Mobile Backbone Nodes placement problem as the Connected Disk

Cover (CDC) problem and shown that it can be decomposed into two subproblems.

We have proposed a number of distributed algorithms for the first subproblem (Geo-

metric Disk Cover), bounded their worst and average case performance, and studied

their performance under mobility via simulation. A new approach for the solution of

the second subproblem (STP-MSP) and of the joint problem (CDC) has also been

proposed. We have demonstrated via simulation that when it is used to solve the CDC

problem in a centralized manner, the number of the required MBNs is significantly

reduced.

In the second part of this thesis, we have focused on the problem of how to

jointly place the Mobile Backbone Nodes (MBNs), and assign every Regular Node to

exactly one MBN. In particular, we considered this problem under the assumption
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that the number of available MBNs is fixed a-priori, and formulated two problems

under a general communications model. The first is the Maximum Fair Placement and

Assignment (MFPA) problem in which the objective is to maximize the throughput

of the minimum throughput RN. The second is the Maximum Throughput Placement

and Assignment (MTPA) problem, in which the objective is to maximize the aggregate

throughput of the RNs. Our main result is a novel optimal polynomial time algorithm

for the MFPA problem for fixed K. We have also provided an optimal solution for a

restricted version of the MTPA problem for K < 2. We have developed two heuristic

algorithms for both problems, including an approximation algorithm with bounded

worst case performance loss. Finally, we have presented simulation results to evaluate

the performance of the various algorithms developed in the paper.

In the third part of the thesis, we have considered the problem of placing the

Mobile Backbone Nodes over a finite time horizon. We assume complete a-priori

knowledge of each of the RNs' trajectories over a finite time interval, and formulated

the problem of determining the optimal MBN path over that time interval. We con-

sidered an objective function that maximizes the time-average system throughput,

subject to a constraint or penalty on the MBN velocity. For a discrete formulation

of the problem our result is a dynamic programming based approximation algorithm,

for which we have provided worst case performance analysis. Additionally, we have

developed an optimal algorithm for the 1-step velocity constrained path planning

problem. Using this as a sub-routine, we have develop a greedy heuristic algorithm

for the overall path planning problem. We also formulated the path planning problem

from a continuous perspective as an optimal control problem. We developed several

interesting insights into the structure of the optimal solution. Finally, we have dis-

cussed extensions of the base discrete and continuous formulations and compared the

various developed approaches via simulation.

Overall, our goal in this thesis has been to study and provide a basic theoreti-

cal framework for the fundamental problems associated with the Mobile Backbone

Architecture for Wireless Networks. To this end, we have formulated several inter-

esting problems, proposed various combinatorial algorithms and have provided both
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theoretical as well as simulation-based performance analysis. Several open problems

have emerged from this work. Three such problems are (i) Developing distributed

algorithms for the CDC problem capable of dealing with the mobility of cover MBNs,

(ii) Developing more efficient, distributed and mobility-handling algorithms for the

MFPA and MTPA problems and (iii) Extending the path planning framework to

multiple MBNs and in doing so incorporating the RN assignment subproblem.
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Appendix A

Placing the Cover MBNs-

Extensions to Non-Strip Based

Algorithms

A.1 Introduction

Recall the architecture of a Mobile Backbone Network, shown back in Fig. 1-1 in

chapter 1. The set of MBNs has to be placed and mobilized such that (i) every

RN can directly communicate with at least one MBN, and (ii) the network formed

by the MBNs is connected. We assume a disk connectivity model, whereby two

nodes can communicate if they are within a certain range. We also assume that

the communication range of the MBNs is significantly larger than the communication

range of the RNs. The problem of placing the minimum number of MBNs was termed

in chapter 2 as the Connected Disk Cover (CDC) problem. A similar problem has

been recently also formulated in [87].

The algorithms in chapter 2 focus on controlling the mobility of the MBNs in

order to provide a backbone for reliable communication. These algorithms are based

on the fact that the CDC problem can be decomposed into the Geometric Disk Cover

(GDC) problem and the and the Steiner Tree Problem with Minimum Number of
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Steiner Points (STP-MSP). It was shown in chapter 2 that if the GDC and STP-

MSP subproblems are solved separately by y and 6-approximation algorithms, the

approximation ratio of the joint solution is y+6.

Motivated by this decomposition result, in this chapter, we focus on the GDC

subproblem. This problem can be stated as: given a set of points in the plane,

place the minimum number of disks such that all points are covered. Due to the

our focus on decentralized operation in a mobile environment, we aim to develop

distributed algorithms that maintain a disk cover under mobility. It follows from

the decomposition result that any improvement in the approximation ratio of the

GDC problem (y) immediately improves the approximation ratio of the overall CDC

solution. Hence, the developed algorithms are an important building block for any

decomposition-based Mobile Backbone Network algorithm.

The Mobile GDC problem also stands alone as an important problem and has

several applications in MANETs [34],[54], and in WSNs. For example, a possible

application is in the area of point coverage in sensor networks (e.g. [65]), where

sensors have to track or follow a set of moving targets. Hershberger [47] points out

applications in databases, where clustering can support queries regarding time-varying

data. Finally, in the context of Mobile Backbone Networks, assuming that MBNs can

communicate with each other over long distances ensures that the MBNs' network is

always connected and reduces the CDC problem to GDC problem.

The static GDC problem has been extensively studied in the past. Hochbaum

and Maass [52] provided a Polynomial Time Approximation Scheme (PTAS) for the

problem. However, their algorithm is impractical for our purposes, since it is central-

ized and has a high running time for reasonable approximation ratios. Several other

centralized algorithms have been proposed. For example, Gonzalez [38] presented an

algorithm based on dividing the plane into strips, whose approximation ratio has been

recently shown to be 6 [83]. Franceschetti et al. [32] developed an algorithm that

places disks only on vertices of a mesh. A table comparing the various centralized

GDC algorithms can be found in [32].

As mentioned above, the properties of wireless networks call for distributed disk
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cover algorithms that deal with RNs mobility. However, only a few recent works

have focused on algorithms that maintain coverage under mobility (i.e. solve the

Mobile GDC problem) and even fewer proposed distributed algorithms. We note

that clustering given nodes to form a hierarchical architecture has been extensively

studied in the context of wireless networks (e.g. [9],[11],[37]). However, the idea

of deliberately controlling the motion of specific nodes in order to maintain some

desirable network property has been introduced only recently (e.g. [58],[83]).

In the specific context of the Mobile GDC problem, [54] present a 7-approximation

distributed algorithm. Hershberger [47] presents a centralized 9-approximation algo-

rithm for a slightly different problem: the mobile geometric square cover problem.

Gao et al. [34] study a closely related problem in which the centers have to be se-

lected from the set of points (i.e. RNs). Finally, in chapter 2 we presented a number

of distributed approximation algorithms for the Mobile GDC problem.

Similarly to the formulation in chapter 2, we assume that all nodes can detect

their position via GPS or a localization mechanism. This assumption allows to take

advantage of location information in designing distributed algorithms. However, the

algorithms in chapter 2 solve the Mobile GDC problem by dividing the plane into

strips, solving the GDC problem locally within strips, and finally combining these

solutions to form an overall solution. One of the advantages of this type of a strip-

based algorithm is that the optimization is easier within a narrow strip, as opposed the

whole plane. Another advantage is that the computation is localized to within strips,

yielding a sort of spatial decentralization of both computation and communication.

However, a drawback of this approach is the fact that cross-strip optimization

cannot be exploited. A typical example of the resulting inefficiency is depicted in

Fig. A-1, in which a strip-based algorithm uses two MBNs to cover two RNs that

could obviously be covered by a single MBN. In this chapter we present and analyze

a number of new planar-based distributed algorithms that do not use strips. Yet,

we show they are still able to distributedly solve the Mobile GDC problem while

providing good performance guarantees.

We start by presenting a novel family of algorithms that periodically merge neigh-
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Figure A-1: Example of basic inefficiency of strip-based algorithms.

boring MBNs (if possible) and spatially separate groups of neighboring MBNs (if

required). Analyzing the worst case performance of these algorithms requires devel-

oping a novel graph-based technique. We use this techniques to obtain the approx-

imation ratios of the algorithms. We later show via simulation that on average the

algorithms perform better than the strip-based algorithms.

We then present a very simple 5-approximation algorithm that is based on an

overlooked observation regarding the relation between the GDC problem and the

maximal independent set problem. We show that placing the MBNs (i.e. the disk

centers) on top of some of the RNs (points) yields a restricted GDC problem, which

is equivalent to a minimum dominating set problem in a unit disk graph. We show

that we can find an approximate solution to the unrestricted problem by finding a

maximal independent set in the unit disk graph. This simple observation is important,

since it immediately provides a 5-approximation distributed algorithm for the static

and mobile GDC problems, whereas in the past much effort has been dedicated to

developing centralized algorithms with higher complexities and approximation ratios

(see the table in [32]).

Then, we evaluate the performance of the algorithms via simulation. We start

by studying the performance under mobility and by comparing the performance of

the planar algorithms, presented in this chapter, to a number of previously presented

Mobile GDC algorithms. Then we compare average case and simulation results of

the different algorithms.

To summarize, our main contribution is the development and analysis of dis-

tributed algorithms for the Geometric Disk Cover problem in a mobile environment.
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These algorithms may operate on a stand-alone basis or provide an important building

block for the Mobile Backbone Network algorithms.

This chapter is organized as follows. In Section A.2 we formulate the problem.

The new distributed planar algorithms are presented and analyzed in Sections A.3 and

A.4. In Section A.5 we evaluate and the performance of the algorithms via simulation.

We summarize the results and discuss future research directions in Section A.6.

A.2 Problem Formulation

We consider a set of Regular Nodes (RNs) distributed in the plane and assume that a

set of Mobile Backbone Nodes (MBNs) has to be deployed to cover them. We denote

by N the collection of Regular Nodes {1, 2,..., n} and by M = {dl, d2 ,... .,dm} the

collection of MBNs. The locations of the RNs are denoted by the x - y tuples (ii, iY)

Vi and dij denotes the distance between nodes i and j.

We assume that the RNs and MBNs have both a communication channel (e.g.

for data) and a low-rate control channel. For the communication channel, we assume

a disk connectivity model. Namely, an RN i can communicate bi-directionally with

another node j (e.g. an MBN) if the distance between i and j, dij K r. We denote

by D = 2r the diameter of the disk covered by an MBN communicating with RNs.

For the control channel, we assume that both RNs and MBNs can communicate

over a much longer range than their respective data channels. Since given a fixed

transmission power, the communication range is inversely related to data rate, this is

a valid assumption.

For this work, we assume that the number of available MBNs is not bounded

(e.g. if necessary, additional MBNs can be dispatched). Yet in our analysis, we will

try to minimize the number of MBNs that are actually deployed. We formulate the

Geometric Disk Cover (GDC) problem [52], as follows:

Problem GDC: Given a set of RNs (N) distributed in the plane, place the smallest

set of MBNs (M) such that for every RN i E N, there exists at least one MBN j E M

such that dij < r.
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The Mobile GDC problem is implicit in the above formulation, as the goal is to

maintain a valid GDC under RN mobility. We assume there exists some sort of MBN

routing algorithm, which routes specific MBNs to their new locations. The actual

development of such an algorithm is beyond the scope of this chapter.

Before proceeding, we introduce additional notation required for the presentation

and analysis of the algorithms. Note that in the formulation of the Mobile GDC

problem it is required that every RN is connected to at least one MBN. We assume

that even if an RN can connect to multiple MBNs, it is actually assigned to exactly one

MBN. Thus, we denote by Pd, the set of RNs connected to MBN di. We denote by d,

d0, dP and di' the leftmost, rightmost, bottommost, and topmost RNs connected to

MBN di. Their (x, y) co-ordinates are denoted with x - y subscripts, e.g. (dL)x, (dL)y.

A.3 Planar Merge-And-Separate Algorithms

In this section we present and analyze a family of distributed algorithms for the Mo-

bile GDC problem. We refer to these algorithms as the Planar Merge-And-Separate

(PMAS) algorithms. These algorithms build upon the ideas presented in the develop-

ment of the in-strip Merge-And-Separate (MAS) algorithm in chapter 2 section 2.4.3.

However, as mentioned in Section A.1, the PMAS algorithms are planar-based as

opposed to the strip-based algorithms of chapter 2. The advantage of this approach

is that it avoids inherent inefficiencies resulting from dividing the plane into strips

and takes advantage of possible cross-strip optimizations.

A.3.1 Distributed Algorithms

Our presentation is in the form of a generic algorithm, with three versions1 : (i) Square-

Cover with Rectangular Separation (SC) (ii) Disk-Cover with Rectangular Separation

(DCR), and (iii) Disk-Cover with Circular Separation (DCC). The two disk-cover

versions, i.e. DCR-PMAS and DCC-PMAS, constitute distributed algorithms for the

1In the description of the algorithm, it should be clear which procedure applies to which algorithm
version.
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Mobile GDC problem. The Square Cover Planar MAS (SC-PMAS) is a distributed

algorithm that places the minimum number of D x D squares to cover the RNs. Note

that the SC-PMAS algorithm is not applicable to the Mobile GDC problem. It is

presented here solely to serve as a simple demonstration of the analysis technique

that is developed for analyzing the DCR-PMAS and DCC-PMAS algorithms.

Algorithm 1/2/3 SC-PMAS, DCR-PMAS, DCC-PMAS algorithms (at MBN di,
RN q)
Disconnection Rule (at RN q)

1: if q uncovered then
2: place MBN di, set Pd, +- q

Merge Rule (at MBN di)
3: call Chk-Sqr-Merge(di), or Chk-Dsk-Merge(di)

Separate Rule (at MBN di)
4: call SC-Separate(), DCR-Separate(), or DCC-Separate()

Procedure Chk-Sqr-Merge(di)
5: for all MBNs dj within 3v/D of di do
6: if Pdi U Pd, coverable by a single D x D square then
7: merge di and dj

Procedure Chk-Dsk-Merge(di)
8: for all MBNs dj within 2D of di do
9: if Pd, Ui Pdj coverable by a single disk then

10: merge di and dj

Procedure SC-Separate() (see Fig. A-2(a))
11: if 3 9 MBNs a1,..., a9 (including di) such that all RNs q E U9=Paj lie within a

3D x 3D area then
12: separate and reorganize al,..., a9
Procedure DCR-Separate() (see Fig. A-2(b))
13: if 3 17 MBNs al,..., a17 such that all RNs q E Ujl=lPaj lie within a 3D x 3D

area then
14: separate and reorganize al,... , a17
Procedure DCC-Separate() (see Fig. A-2(c))
15: if 3 14 MBNs al,..., a14 such that all RNs q E Uji4Paj lie in a circular area of

diameter 3D then
16: separate and reorganize al,..., a14

The generic PMAS algorithm is simple, and the basic idea is that we periodically

enforce a merge rule and a separate rule at each MBN di. Additionally, a disconnection

rule is enforced at each RN q. Namely, if at any time q is not covered by any MBN,
assign a new MBN to cover q.
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Initially, we assume that there is an MBN covering each individual RN (i.e. as

per the disconnection rule). The merge rule states that if there exists another MBN

dj that can be merged with di (i.e. Pd, U Pd, coverable by a single MBN), then

merge di and dj. The separate rule states that if the point-sets of too many mutually

non-mergeable MBNs simultaneously converge on a sufficiently small area, then these

MBNs should be separated (i.e. the MBNs relocated and their point-sets reassigned),

as illustrated in Fig. A-2. The reasoning behind the choice of the numbers defining

too many and sufficiently small area (e.g. 17 and a 3D x 3D square for DCR-PMAS)

will become clear in the next section, when we bound the worst case performance of

the algorithms.

For correctness of the algorithm, we assume that both the merge and separate

operations can be executed atomically (i.e. without any interrupting operation). We

also use the convention that an MBN can be placed arbitrarily within its coverage

disk, as long as it is within distance r from all the RNs it is covering. For square MBNs

(i.e. for the SC-PMAS), we assume simply that the MBNs are placed somewhere in

the D x D coverage square. Finally, we assume that if at any time an MBN does not

cover any RNs (e.g. after a separation operation), it is released.

Note that in the description of the PMAS algorithm, the separate rules are de-

scribed in general terms, as opposed to an explicit implementation. The reason for

this is that there are several possible ways to implement the algorithm, and our goal is

to convey the general idea. An example of a distributed implementation of the DCR-

PMAS separation rule at MBN di could be as follows. MBN di starts by detecting

all the MBNs (including itself) dj within distance 4v2D, and for which d6, dR , dB

and dJ all lie: within an x - y range of [(dL)x, (dL)x + 3D], [(dfi ) + 3D, (dS), - 3D)].

Next, these detected MBNs are sorted by ascending bottommost point y-coordinate,

yielding a sorted list, denoted by {al, a 2,... , aQ . Now, di can sequentially check

whether (aTj ,) - (aB), < 3D. If this condition holds, then it can conclude that all

of the RNs covered by these 9 disks aj,..., aj+s lie in a 3D x 3D area. At this point,

a separate operation can be initiated by sending messages to the appropriate MBNs

to move to their new coordinates, and reassign RNs as illustrated in Fig. A-2-b. Note
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that the reassignment of RNs would require additional messages in order to inform

each RN of its new covering MBN. The points of reference for the separation are (dL).

and (aj%), which are shown in the figure. In particular, the left-bottommost corner

of the 3D x 3D area in Fig. A-2-b would be [(dL)x, (a ),].

A.3.2 Worst Case Performance

We now analyze the worst case performance of the PMAS algorithms. The induction-

based methodology used in the analysis of the strip-based algorithms of chapter 2

cannot be extended to 2-dimensions, since there is no left-to-right directionality that

can be exploited. Thus, we develop a novel graph-based analysis technique, which we

demonstrate by first analyzing the Square Cover version of the PMAS algorithm (SC-

PMAS). We then show how this can be straightforwardly applied to the Disk-Cover

versions of the PMAS algorithm.

We use OPT = {dl, d2,..., dIoPTI) to denote an optimal solution and ALGO =

{al, a2,... , aIALGOI} for an SC-PMAS solution. Let Pd, and Pa, represent the sets of

RNs covered by the OPT square di and the ALGO square ai, respectively. We define

the notion of ai touches di (or vice versa) as if and only if there exists at least one RN

q, such that q E Pa, and q E Pd,. Finally, define the notion of the PMAS algorithm

being in steady state if there are no merge or separate actions currently pending.

Lemma A.3.1. In steady state, no more than 8 SC-PMAS ALGO squares can touch

a single OPT square di.

Proof. Suppose 9 ALGO squares each covered at least one point from Pd,. However,

if this was the case then all of the points covered by these 9 squares must lie in a

3D x 3D area, and would have been reorganized as per the separation rule illustrated

in Fig. A-2(a). Once reorganized, an OPT square can clearly touch at most 4 ALGO

squares, which is a contradiction. O

Lemma A.3.2. In steady state, at most one SC-PMAS ALGO square ai can exclu-

sively touch a single OPT square dj (i.e. Pa, C Pdj).
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Proof. Suppose there existed 2 ALGO squares al, a2 that exclusively touched a single

OPT square dj (i.e. Pa, U P,, C Pdj). However, by definition this means that the set

of RNs covered jointly by al and a2 could be covered by a single square. It follows

that in steady state al and a2 would have been merged as per the merge rule, which

is a contradiction. O

We are now ready to prove the performance guarantee of the SC-PMAS algorithm.

Theorem A.3.1. In steady state, the SC-PMAS algorithm is a 4.5-approximation

algorithm.

Proof. We construct an undirected graph G = (V, E) as follows. Define a vertex

v E V for ea~ch of the OPT squares. For each ALGO square ai, we associate exactly

one edge according to two cases: (i) if ai only touches a single OPT square dj, define

a self-loop edge (dj, dj), and (ii) if ai touches multiple OPT squares dp, dq,..., then

pick two of these OPT squares (arbitrarily) and define an edge between them (e.g.

(dp, dq)). Note that there could be both self-loops and parallel edges in the resultant

graph. An example of the graph transformation is depicted in Fig. A-3.

Finally, since we have associated exactly one ALGO square with one edge, we

have that IVI = |OPTI and IEI = IALGOl. Using the standard formula for counting

the number edges in an undirected graph with self-loops we have that by lemmas

A.3.1 and A.3.2,

IEI = Z(d(v) - s(v) +S)
vEV

< 7 +1 9 IVI,
vEV

where d(v) represents the degree of node v, and s(v) the number of self-loop edges

at v. O

At this point, the reasoning behind the exact numbers defining the PMAS sepa-

ration area (denoted A), and the number of MBNs that must converge on A before
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Figure A-3: Demonstration of a graph transformation: (a) original network and
square cover, and (b) transformed graph.

separation (e.g. 9 and 3D x 3D square for the SC-PMAS), can be more clearly un-

derstood. In turn with Lemma A.3.1, A is defined to be a minimal area satisfying

the following: Consider some optimal square (disk) d. For any algorithm square a to

touch d, it must only cover RNs which lie in A. Furthermore, a valid separation and

reorganization can only be ensured if the squares involved can compactly cover the

separation area, so as to ensure all RNs within A are still covered after the separation.

Therefore, the number of separated PMAS MBNs (e.g. 9, 17 and 14 respectively)

represent the minimum number of MBNs required to compactly cover their respective

separation areas.

We are now ready to analyze the disk cover versions, starting with the DCR-

PMAS. To do so, we can use the exact same analysis as for the square cover version. To

start, we restate lemmas A.3.1 and A.3.2 (whose proofs are identical, except reapplied

to disks) in the context of disks, followed by the approximation ratio theorem.

Lemma A.3.3. In steady state, no more than 16 DCR-PMAS ALGO disks can touch

a single OPT disk di.

Lemma A.3.4. In steady state, at most one DCR-PMAS ALGO disk ai can exclu-

sively touch a single OPT disk dj (i.e. Pa C Pdj).

156

d2

II
II
II
II



Theorem A.3.2. In steady state, the DCR-PMAS algorithm is a 8.5-approximation

algorithm.

Proof. Using the same definitions and graph transformation as from the proof of

Lemma A.3.1, we have that, IE •< Evv(15/2 + 1) = 8.51VI. O

For the DCC-PMAS algorithm, the proof is identical and thus we simply state

the result.

Theorem A.3.3. In steady state, the DCC-PMAS algorithm is a 7-approximation

algorithm.

A.3.3 Complexity

When discussing the complexity of the distributed algorithms presented in this chap-

ter, we will use two standard measures, both with respect to the complexity expended

in reaction to a single RN movement. The first is the time complexity, which we de-

fine as the number of communication rounds and the second is the local computation

complexity at each MBN, which for a viable algorithm should be negligible compared

to a communication round length.

The local computation complexity of the DCR-PMAS algorithm is a periodic

O(C(n)) to evaluate the merge rule, where C(n) is the running time of the decision

1-center subroutine used. Various efficient algorithms exist that solve the decision 1-

center problem, an example being an O(n log n) algorithm in [51]. The separate rule

can be evaluated in 0(1), since a packing argument can be used to show that at most

48 MBNs (i.e. a constant number) need be detected by an MBN di before there must

exist 17 MBNs whose points all lie within a 3D x 3D area. Since all point transfers

are local (i.e. only take place between adjacent MBNs), the time complexity (number

of rounds) is 0(1). Hence, this algorithm is implementable in realistic scenarios.

While the merge rule of the DCC-PMAS algorithm also entails a local, periodic

O(C(n)) computation, implementing the separation rule is much more complex. An

example implementation could be examining all circumcircles defined by pairs and
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Figure A-4: A pathological example of arbitrarily bad performance of a PMAS algo-
rithm without the separate rule.

triplets of RNs whose ensuing radii are at most 3D/2, and testing whether the point-

sets of 14 MBNs lie within. Note however, that this entails a centralized O(n 3 C(n))

computation (e.g. by collecting all RN location information at some MBN), which is

much too high to implement frequently.

Fortunately, an important note regarding the PMAS algorithms is that the merge

rule is far more important than the separate rule. It turns out the merge rule is the one

that ensures good average performance, whereas the separate rule protects against

the rare, pathological yet theoretically possible cases of extreme inefficiency. An

example of such a pathological situation is shown in Fig. A-4, in which an arbitrarily

large number of mutually non-mergeable MBNs cover points coverable by 2 optimal

MBNs. However, such situation would almost never occur in any practical scenario

and thus the separate rule need only be implemented very rarely, perhaps making the

DCC-PMAS also a viably implementable algorithm in certain scenarios.

A.4 Cluster Cover Algorithm

In this section we present the Cluster Cover (CC) algorithm which, like the PMAS

algorithms, distributedly solves the Mobile GDC problem without the use of strips.

The advantage of the CC algorithm over the PMAS algorithms is that it is simpler

to implement, and has a lower computational complexity. Furthermore, we show

that the approximation ratio of the CC algorithm is lower than that of the PMAS

algorithms. Yet, as will be shown via simulation, on average the PMAS algorithms
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perform significantly better than the CC algorithm.

Before describing the algorithm we present the following definitions. Given an

undirected graph G(V, E), a dominating set is as a subset Q C V such that Vi E V,

either i E Q or 3(i, j) E E for some j E Q. An independent set is defined as a

subset Q C V such that Vi,j E Q, ý(i,j) E E. Finally, given N points (RNs)

distributed in the plane, a unit disk graph G = (V, E) is defined such that V = N

and (i, j) E EE<= dij < r.

The CC algorithm is based on an overlooked observation regarding the relation

between the GDC problem and the Maximal Independent Set (MIS) problem. Be-

fore describing this relation, we note that restricting the locations of the MBNs (i.e.

the disk centers) to the locations of the RNs (points) yields a restricted version of

the GDC problem. This restricted GDC problem is equivalent to a Minimum Dom-

inating Set (MDS) problem in a unit disk graph. Hence, IGDCoPTI 5 IMDSOPTI,

where IGDCoPTI and IMDSOPTI are the cardinalities of the optimal solutions to the

unrestricted GDC problem and to the MDS problem in a unit disk graph.

An MIS is by definition a dominating set. Therefore, finding an MIS provides

an approximate solution to the MDS problem. An MIS can be found in linear time

by a simple centralized algorithm that adds nodes to the set and then deletes their

neighbors from the graph. It was shown in [69, Theorem 4.8] that in unit disk graphs

the cardinality of an MIS is at most 5 times the cardinality of the MDS. Namely,

IMISI • 51 •MDSoPTI-

We now show that an MIS in the unit disk graph of the RNs is a valid solution

to the unrestricted GDC problem and that its cardinality is at most 5 times the

cardinality of the optimal GDC solution. Namely, IMISI 5 51GDCopTI. Hence, an

MIS algorithm operating on a unit disk graph provides a 5-approximation not only to

the MDS problem in the unit disk graph but also to the unrestricted GDC problem in

the plane. Notice that this relation is not directly implied by the above inequalities.

An MIS in the unit disk graph of the RNs is a feasible solution to the GDC

problem, since all RNs are within distance r from an MBN. However, in general it

is not an optimal solution. This results from the fact that for the GDC problem,
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MBNs can be placed anywhere in the plane. On the other hand, in the unit disk

graph problem, MBNs are constrained to lie on top of RNs. As shown below the

approximation ratio obtained by finding an MIS can be easily bounded.

Lemma A.4.1. An MIS algorithm in the unit disk graph of RNs is a 5-approximation

algorithm for the GDC problem.

Proof. Let OPT and ALGO represent an optimal and algorithmic GDC solutions

(the algorithmic solution is an MIS). As mentioned earlier, the algorithm maintains

the invariant that no two disk (MBN) centers are within distance r from each other.

Similarly to [69], it can be shown that this implies that at most 5 disk centers can lie

in a circular area of radius r. Namely, at most 5 ALGO disk centers can lie inside

the area covered by an OPT disk. Since all ALGO disk centers are placed on top

of points (RNs) that are covered by the optimal solution, all ALGO disk centers are

contained within some OPT disk. Since the number of ALGO disk centers is same

as the number of ALGO disks, IALGOI < 51OPTI. O

A distributed implementation of the the Cluster Cover (CC) algorithm that finds

an MIS in a unit disk graph of the RNs can be based on an algorithm developed

by Baker and Ephremides [9] for clustering in a mobile wireless network. The local

computation complexity of the CC algorithm is 0(1) since at each iteration simple

decisions need to be taken. However, the time complexity (number of rounds) is O(n).

We note that several more efficient distributed implementations of MIS algorithms

exist and can be easily adapted to our scenario.

A.5 Performance Evaluation

In this section we evaluate the performance of the algorithms via simulation. The

results have been obtained by a model of our algorithms, developed in Java.

We start with the mobile RN scenario, comparing the performance of the planar

GDC algorithms developed in this chapter to some of the strip-based algorithms

developed in chapter 2. Figures A-5 and A-6 illustrate simulation results for a network
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Figure A-5: The number of MBNs used by the GDC algorithms during a time period
of 500s in a network of 80 RNs.

with mobile RNs. The mobility model used is the Random Waypoint Model in which

RNs continually repeat the process of picking a random destination in the plane

and moving there at a random speed in the range [Vmin, Vmax]. We used a plane of

dimensions 600m x 600m, with Vmin = 10m/s and Vma = 30m/s, and set the RNs

communication range as r = 100m. Finally, each simulation was performed for 1000s

from which we discarded the first 500s.

Fig. A-5 illustrates the evolution of the algorithms over a 500s time period, with 80

RNs. It can be seen that the simplest and least computationally complex algorithm,

the CC algorithm, has the poorest performance. Fig. A-6 shows the average number

of MBNs used over a 500s time period as a function of the number of RNs. Each data
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point is averaged over 10 instances. As can be seen in the figure, when the number

of RNs is low, the PMAS is the best performing algorithm. However, for a larger

number of RNs, both of the strip-based algorithms perform better. The reason for

this is that when the configuration of RNs is sparse, cross-strip optimization is more

important, since scenarios such as those depicted in Fig. A-1 can frequently occur. By

contrast, as the configuration of RNs grows more dense, MBNs will have to be used

in all strips regardless. Thus, in this case, the fact that both the SCD and In-Strip

MAS algorithms perform better within a strip than the PMAS explains their superior

performance.

For a network with static RNs, Fig. A-7 presents the the average ratios between

the solutions obtained by both the planar and strip-based algorithms, and the op-

timal solution. We used a plane of dimensions 1000m x 1000m and set the RNs

communication range as r = 100m. For each data point, the average was obtained

over 10 different random instances in which the RNs are uniformly distributed in

the plane. The optimal solutions were obtained by formulating each instance of the

GDC problem as an Integer Program and solving it using CPLEX. From the figure, it

can be seen that although the worst case performance ratios of the CC, SCR, PMAS

and SCD algorithms are 5, 6, 8.5 and 4.5, their average performance ratios attained

in simulation are closer to 2, 1.7, 1.5 and 1.4, respectively. Furthermore, the trend

observed in the mobile scenarios, in which the PMAS outperforms the SCD for sparse

RN configurations and vice versa for dense RN configurations, still holds.

Fig. A-7 also presents the upper bound on the average approximation ratios (IscR

and IscD) derived in Theorem 2.4.3 in chapter 2. The large gap between the bound

on the average approximation ratios and the actual ratios indicates that the bound

is somewhat loose.
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A.6 Conclusion

The architecture of a hierarchical Mobile Backbone Network has been presented only

recently. Such an architecture can significantly improve the performance, lifetime,

and reliability of MANETs and WSNs. In this chapter, we concentrate on placing

and mobilizing backbone nodes, dedicated to maintaining connectivity of the regu-

lar nodes. Specifically, we focus on the important subproblem of Mobile Geometric

Disk Cover. We have proposed a number of distributed planar-based algorithms for

this problem and bounded the worst case performance of two of them using a new

methodology. Finally, we studied the performance under mobility via simulation.

A major future research direction is to generalize the model to other connectivity

constraints and objective functions. For instance, we intend to extend the results to

connectivity models that are more realistic than the disk connectivity model. More-

over, we intend to consider the energy resources and the communication requirements

of the RNs when making the mobility decisions.
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Appendix B

Optimal Beam Forming and

Positioning for Efficient

Satellite-to-Ground Broadcast

B.1 Introduction

Future satellite systems will be equipped with antenna arrays that will be capable

of dynamically changing transmission beam size and position [22],[77]. This chapter

addresses the problem of exploiting this beam forming and steering capability to

facilitate efficient satellite-to-ground broadcast.

The satellite-to-ground broadcast problem relates to a situation where there are

several users on the ground, all of whom require transmission of the same data from

the satellite in a timely manner. This is a realistic model for several real-world sce-

narios, including commercial (e.g. TV broadcast, Teleconference) and military (e.g.

aggregated intelligence data for troops) areas. In any scenario, satellite usage time

is a scarce resource of prime value, governed by various factors including monetary

related, political as well as logistical. Therefore, efficient management of this time is

extremely important, and serves as the main motivation for the problem considered

in this chapter.
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Figure B-1: Example of using beam forming and steering for satellite-to-ground
broadcast. (a) Satellite using a single low data rate global beam to transmit to
all the users. (b) Satellite using different sized high data rate beams in succession to
transmit data to all the users.

Many current satellite systems transmit using a single global beam that covers all

users simultaneously. For example, a GEO satellite global beam can cover a third of

the globe. This is done regardless of the communication paradigm, user distribution

(geographic) or required data rates. With the advent of dynamic beam forming and

steering capabilities, we can significantly optimize satellite usage time and transmis-

sion capability. Figure B-1 illustrates an example of how dynamic beam forming and

steering can be utilized to reduce the total time spent in transmission. Whether the

scenario in B-1-a or B-1-b results in a lower total transmission time depend on two

factors: (1) the data rate of a particular size (radius) transmit beam, and (2) the

switching time, i.e. time it takes to change the beam size and position. We note

that for an antenna-based system, the data rate increases as the size of the transmit

beam decreases. This is due to the fact that the same amount of power is spread

over a smaller area when the beam size is decreased, resulting in a higher signal-

to-noise-ratio (SNR) at the receiver. The result of this is a higher sustainable data

rate [76],[77]. Therefore, assuming the switching time is reasonably small, it is clear
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that depending on the users' geographic distribution, we can optimize the tradeoffs

between size (data rate) of individual beams versus the number of beams, in order

to minimize the total transmission time. To this end, we will formulate the Mini-

mum Time Broadcast (MTB) problem in section B.3 and provide an approximation

algorithm for it in section B.5.

The remainder of the chapter is organized as follows. We discuss previous related

work in section B.2. Next, we introduce the communications model, as well as for-

mulate the Minimum Time Broadcast (MTB) problem in section B.3. In section B.4

we present an optimal polynomial time algorithm for the 1-dimensional version of the

MTB problem. Lastly, we present an approximation algorithm for the 2-dimensional

MTB problem in B.5.

B.2 Related Work

The Minimum Time Broadcast (MTB) problem is related to the well studied Geo-

metric Disk Cover (GDC) and K-center problems, but differs in a few key aspects.

Below we briefly describe these two problems, and point out the subtle yet important

differences between them and the MTB problem. We also describe the Conceptual

Clustering problem, which more closely resembles the MTB problem than the previ-

ously mentioned two problems, yet also exhibits a key difference.

The GDC problem, discussed in great detail in Chapter 2, is also known as the

Planar Location Set Cover problem and a variant of the Facility Location problem [52],

[32], [88], [23], [26]. The basic problem is defined as follows: Given a set of points

distributed on a plane, cover all of the points with disks of fixed radius R such that

the number of disks used is minimized. The GDC is an NP-complete problem, for

which several heuristic algorithms have been developed, ranging from simple greedy

heuristics to more complex polynomial time approximation algorithms and schemes

[52], [88],[32].

The K-center problem is also known as the K-clustering problem, the minimax
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radius clustering problem, and also falls under the broad umbrella of Facility Location

problems [48],[93], [39],[53],[26], [19]. The basic problem is defined as follows: Given

a set of demand nodes distributed on a plane, cover all nodes with (fixed) K disks

such that the maximum radius of any of the disks is minimized. This problem is also

NP-complete, and several heuristic and approximation algorithms have also been

developed [38],[53].

The MTB problem differs from both the GDC and K-center problems in that

variable disk radii (in contrast to the GDC) as well as a variable number of disks

(in contrast to K-center) are allowed. Instead of either of these constraints the MTB

aims to minimize an objective function that is defined in the next section. In this

sense, the MTB can be thought of as a relaxed version of the GDC and K-center

problems.

The Conceptual Clustering problem [70], [72] is more generally defined than other

traditional clustering problems. In our context, i.e. where the points to be clustered

are distributed on a plane, conceptual clustering methods aim to produce a cluster-

ing that is "good" based on some metric (objective function). Moreover, there exist

algorithms for the conceptual clustering problem, that can find optimal solutions (in

polynomial time) for a restricted class of objective functions. The most common such

algorithms, the Hierarchical Agglomerative Clustering (HAC) algorithm, involves it-

eratively pair-wise merging the two (distance-wise) closest clusters until there remains

just one cluster containing all of the points. Yet, it turns out the MTB objective as

described in the next section does not fit into the class of objective functions that

can be (optimally) optimized by the HAC algorithm.

B.3 Problem Formulation

We assume N users P = {Pl,-...,PN} that are arbitrarily distributed on a plane, all

of whom require the same data. The locations of the users are denoted by the x-y

tuples (p., pi,) Vi E P. Transmission beams are modelled as disks. Specifically, beam
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k is modelled as the center-radius tuple [ck, rk]. We say that a user j is covered if it

is enclosed by at least one beam, i.e. d(ck,j) A rTk for some beam k, where d(ck,i)

refers to the distance between ck and pj. We assume the satellite is equipped with a

single transmitter. This means that transmissions to a subset of users take place via a

single beam (with associated center and radius) at any time, and that this beam may

need re-location and re-sizing before the beam can be trained on a different subset of

users. We assume that it takes a constant amount of time, L, to re-size and re-locate

the beam; we refer to L as the beam switching time.

The transmit data rate (in bits/sec), b(rk), of beam k is modelled as proportional

to . This is a common simplified assumption for wireless transmission. Without

loss of generality, we assume the constant of proportionality to be equal to 1, i.e.

b(rk) = •. In this model therefore, the amount of time beam k with radius rk

needs to be held in order to transmit 1 bit, is equal to , or just r'. Finally,

due to physical constraints associated with any antenna system, especially satellites,

the transmission beam cannot be made arbitrarily small (i.e. obtaining infinite data

rate). Thus we assume transmit beams must have a minimum radius of ro.

Based on this model, one can formulate several pertinent problems related to

efficient satellite-to-ground transmission. The problem we address in this chapter is

the Minimum Time Broadcast (MTB) problem, defined below. We define a feasible

beam allocation as a set of m beams {[ci, ri],..., [cm, rm]} that cover all users, where

m is variable.

Problem MTB: Given a set of users (P) distributed on a plane. Find a beam

allocation {[cl, rl],..., [cm, rm]}, ri _ ro, i = 1,..., m, such that all users are covered,

and the total time required to transmit Q bits to all users,

m

T= Qr + (m - 1)L (B.1)
i=1

is minimized, where Qrf is the time for beam i to transmit Q bits.
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B.4 1-Dimensional MTB Problem

The 1-dimensional MTB problem is a restricted version of the more general planar (i.e.

2-dimensional) version of the problem, where all of the points (users) are constrained

to be on a line (as opposed to a plane). We assume the the users are sorted by

increasing x-coordinate, e.g., P = {pl,... ,PN}, i < j - pi, < Pj.

We now provide an optimal algorithm for this problem. Our method is one in

which we modify the Dynamic Programming approach from [17] for the 1-Dimensional

K-clustering problem. To this end, we begin by defining an edgeweighted graph

G = (V, E), the process of which is illustrated in Fig. B-2. The vertex set V is

defined as the set of tuples {(pi, k)}, i = 1,..., N, k = 1,..., i. A vertex {(pi, k)} can

be interpreted as "pi is the leftmost user in the kth beam", where the beams are also

ordered from left to right. We define edges between vertices (pi, k) and (pj, k + 1),

j = 2, ... , N, i < j, k = 1,..., i. We interpret an edge between (pi, k) and (pj, k + 1)

to indicate that "the kth beam has been allocated to covers the users {pi, ... , Pj-1})"

We define the weight of an edge (pi, k) and (pj, k + 1) as the time taken to transmit

to the users {pi,..., Pj-1} plus a switching time, i.e.,

W[(pi, k), (p, k + 1)] = max{Qro, Q(P(-1) - Pi~ )2 + L (B.2)

Finally, we define edges between vertices (pi, k) and a dummy sink vertex (PN+1),

i = 1,... , N,k = 1,... , i. These edges are interpreted in a similar way as the previous

edges, i.e. that the "kth beam has been allocated to covers the users {pi,... ,PN}".

Their weight is defined similarly as well.

The following theorem and corollary serve as the key results needed for the optimal

solution.

Theorem B.4.1. The set of paths between the vertices (pl, 1) and (PN+1) enumerate

all candidate optimal beam allocations.

Proof. To prove the theorem, we first observe that an optimal beam allocation must be

contiguous. To see why, consider a beam allocation that includes two beams, one that
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Figure B-2: Example of construction of graph G. (a) Original 1D problem instance.
(b) Resultant graph G. Outgoing edges from vertices (pi, 1), i > 2 are not shown
since these would never be part of a path originating from the vertex (pl, 1).

covers users Pa,... ,Pb,Pb+c,... ,Pd (a < b < c < d), and the other that covers users

Pb+1, ... ,Pb+c-1. Indeed, the first beam could have covered the users covered by the

second beam at no extra cost, whereas the second beam must incur some finite cost.

Given this observation, consider an arbitrary optimal candidate beam allocation of

m beams, covering user sets {p,... .,Pkl}, {P(kl+l), .. ,Pk2}, ... {P(km-1+1),-.- . Pkm•

where Pk, denotes the rightmost user covered by beam i. This can be mapped onto

the path in G consisting of vertices (pl, 1) -- (P(k,+l), 2) --+ ... --- (p(km-+1), m) --

(PN+1). Similarly, by construction of G, any path between (pi, 1) and (PN+1) must

correspond to a valid beam allocation. O

Corollary B.4.1. The minimum weight path between (pi, 1) and (PN+1) corresponds

to the optimal MTB beam allocation.

Proof. Consider a path consisting of m edges (i.e. corresponding to a beam allocation

of m beams), (pl, 1) -+ (pk,+1, 2) --+ ... --+ (Pkm-•+1, m) - (pN+I), where Pk, denotes

the rightmost user covered by beam i. By construction of G, the weight of this path
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m

Weight = E(max{Qr, Q( Pki, - P(k-i+1)2 )2} + L) (B.3)
i=1

where P(ko+l) A pi for notational convenience. Next, note that for an arbitrary

beam allocation of m beams we can re-write (B.1) as,

T = 2j(max{Qr, Q(Pi (k1+1) )2} + L) - L (B.4)
i=1

from which we can conclude the result of the corollary. O

To find the minimum weight path in G, we observe that G constitutes a Directed

Acyclic Graph (DAG). Thus there exist several algorithms we can employ to obtain

the minimum weight path with O(IVI + IEI) computational complexity [24]. For our

problem this corresponds to O(N3 ). Finally, the overall algorithm including the graph

construction phase is given below.

Algorithm 1/2/3 1-D Beam Allocation Algorithm
Graph Construction:

1: Let (G = V, E) represent the beam allocation graph.
2: Set V as the set of tuples {(pi, k)}, i = 1,..., N, k = 1,..., i.
3: Add to V the dummy sink vertex (pN+1)
4: Define edges in E between vertices (pi, k) and (pj, k + 1), j = 2,... ,N,

i < j, k = 1,..., i. Set the weights of these edges as W[(pi, k), (pj, k + 1)] =
max{Qr2 , Q(P(-1-Piz )2} + L.

5: Add edges to E between the vertices (pi, k) and (PN+1), i = 1,... , N,k = 1,... , i.

Set the weights of these edges as W[(pi, k), (pN+1)] = max{Qr 2, Q(PN)7p2 )2 }+L.

Main Algorithm:
6: Find the minimum weight path in G between (pl, 1) and (PN+1) using an algo-

rithm from [24]. Let H = (PI, 1) -- (pk1+ 1, 2) --+ ... -- (km-1+1, m) -- (PN+I)
denote this path of m > 1 edges.

7: Set the beam allocation M as the m beams covering the sets of users
{P, ... , PkI}, {P(k+l),... 7,Pk2 },... , {P(km-l+l), ... ,PN, respectively.

8: return M.
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Figure B-3: Examples of dividing the plane into strips and turning the 2-D problem
into a series of 1-D problems. (a) Division of the plane into strips of width 2ro. (b)
Forcing beam centers to be located on the center line of the strip, and forcing beams
to cover entire rectangular slabs of the strip.

B.5 2-Dimensional MTB Problem

The 2-dimensional MTB problem formulation was given in section B.3. To solve

this problem we attempt to leverage the discussion given in the previous section.

In particular, our goal is to construct an algorithm that applies the 1-dimensional

optimal algorithm in 2-dimensions. We show that such an algorithm has bounded

worst case performance.

To this end, we begin by dividing the plane into strips of width D = 2ro, as

depicted in Fig. B-3-a. The reason for this choice of strip width will become clear

when we analyze the performance of the algorithm. The 2-D algorithm works by

applying the 1-D algorithm to find a beam allocation for the the users in each strip

independently. To facilitate this, we will force the in-strip algorithm to place beam

centers on the center-line of the strip, as well as always cover full rectangular slabs

of the strip, eg. as shown in Fig. B-3-b. Doing this will allow us to treat the strip-

173

S2r 0



covering problem as a 1-D problem, needing only to consider the x-coordinate of each

of the users within a strip. In particular, as shown in Fig. B-3-b, to cover a set of

users with leftmost user PL and rightmost user PR, we force the 1-D algorithm to use

a beam of radius /PR-PL)2+(2ro) . A complete description of the 2-D algorithm is

given below.

Algorithm 1/2/3 2-D Beam Allocation Algorithm
Initialization:

1: Divide The plane into Z strips S1, S2,.. ., Sz
2: for i = 1 to Z do
3: Execute the 1-D algorithm on the users in strip Si treating the users in Si

as located on their projection onto the center line. Also, in line 5 of the 1-D

algorithm change WO to W[(pi, k), (PN+1)] = max{Qr 2, Q((P(N) - p , )2+(2ro)

L.
4: Let Ms, denote the resultant beam allocation.
5: return M = U= Ms,.

The following theorem shows the worst case performance of the 2-D algorithm as

compared to the optimal beam allocation.

Theorem B.5.1. In the worst case, the cost of the beam allocation found by the 2-D

algorithm is at most (8 + U)-times the optimal beam allocation.

To prove the above theorem, we will employ the following methodology. First, for

any instance of users, we will construct a candidate beam allocation that allocates

beams to users on different strips independently. Additionally, we will force the

candidate allocation to cover entire intervals of the strip. Given these restrictions, by

the discussion in section B.4 we can conclude that the 1-D algorithm must outperform

this candidate allocation within each strip. Therefore, the solution found by the 2-D

algorithm which uses the 1-D algorithm in each strip must outperform the overall

candidate beam allocation solution. It follows that any performance bound we show

for the candidate allocation must hold for the overall 2-D algorithm.

To further proceed, we first need the following observation, analogous to observa-

tion 2.4.1 from chapter 2.
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Observation B.5.1. An optimal beam of radius q will contain users from at most

[-l + 1 different strips.

Proof of theorem B.5.1. We construct a candidate beam allocation M as follows.

Consider a single optimal beam OPT with center c and radius q, illustrated in Fig.

B-4. Next, assume kr o 5 q 5 (k + 1)ro, for an integer k > 1. We consider two cases,

the first assuming k > 2. In this case, we can upper bound the users covered the

optimal beam by a square with center c and side length 2q as depicted in the figure.

Next, we compactly cover this square area with ([ ] + 1)([ ]) candidate beams that

cover square slabs of the strip of side length 2ro (i.e. of radius V2ro). The reason

this can be done follows from observation B.5.1, and is depicted in Fig. B-4-a. Thus

for such a scenario we have that,

Cost(M) (k + 2)(k + 1)Q(x/Zro)2 + [(k + 2)(k + 1) - 1]L
Cost(OPT) Qq2

2(k 2 + 3k + 2)Qr 2 + (k2 + 3k + 1)L
k2Qr2

3 2 3 1 L
= 2(1 + - ) + (1 + + -)

k k2 k k2 Qr0
L

< 6+3 L (B.5)

the last line follows from the assumption that k 2, and Cost() refers to the cost

function in (B.1). Next, assume that k = 1, i.e. ro < q 5 2ro. Simply substituting

k = 1 into B.5 while valid yields a very loose performance upper bound of 12 + 5-o.

We can tighten this bound by noting that for ro < q 5 2ro, there are three cases

for the candidate beam M, illustrated in Fig. B-4. In particular, if q = ro + c, c

denoting a very small value, then the optimal beam will just barely cover users from

three different strips as shown in Fig B-4-b. Thus in this case, the candidate M will

only need at most 4 beams of radius Vf2ro to cover these users. This yields,
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Figure B-4: Illustrations of the proof of theorem B.5.1. (a) Covering an optimal beam
of radius q with candidate beams of radii VAro. (b) Case 1: q = ro + E. Note that the
length of intersection of the optimal beam with the bottom (and top) strip is x < 2ro.
(c) Case 2: q > Ero. The length of intersection of the optimal beam with the bottom

strip is x > 2ro. (d) Case 3: q > v'ro. The length of intersection of the optimal
beam with the top and bottom strips is x > 2ro.
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Cost(M)
Cost(OPT)

4Q(OVro)2 + 3L
Qr-
L

= 8+3
QrO

which will turn out to be the worst case. To see this, consider the second case

wherein q ýr 0o and therefore the optimal beam again covers users from three strips

but now covers users from a long enough interval (i.e. more than length 2ro) on a

second strip to force the candidate solution to have to use 5 total beams of radius

f2ro. This is shown in Fig. B-4-c. This yields,

Cost(M)
Cost(OPT)

< 5Q(v-ro)2 + 4L

Q(Iro)2

32 64 L

- 5 25 Qr2

which is smaller than 8 + 3L . The third case, depicted in Fig. B-4-d, is the case

that q _ /-25ro in order to force the candidate solution to utilize 6 beams of radius

vf2ro. This case yields,

Cost(M)
Cost(OPT)

6Q(V2ro)2 + 5L

Q Q(Vro)2
5L

< 6 +Qr
- 2 Qr2

which is also smaller than 8 + 3 . Finally, since this procedure can be applied

to all optimal disks, we obtain the result of the theorem. O

It should be noted that for a normal problem instance, the performance bound

proved in theorem B.5.1 is still quite loose. For instance, in most instances the 2-D

algorithm will be able to optimize the solution within a strip much better than naively
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covering the area covered by the optimal beam with 2ro x 2ro squares. Additionally,

for a given optimal beam, it may not necessarily be the case that the users it covers

lie in every strip that it comes in contact with. It is also possible that dividing the

strip into different sized strips could have yielded a tighter approximation ration. We

have not pursued this in this chapter. We also should note that the solution found

by the 2-D algorithm can be further improved by removing redundant beams from

different strips that actually cover the same sets of users, as well as moving beam

centers to the 1-center locations of the users that they cover as a final step.

Finally, we note that if the ratio -k is large then the 2-D algorithm presented in

this section will in general have very poor performance even with the above improve-

ments. Indeed, in this scenario any algorithm that uses more beams than the optimal

solution would have poor performance. Thus in this case an alternative heuristic (e.g.

non-strip-based) should be employed.

A loose bound on the computational complexity of the 2-D algorithm is O(N4 ).

This comes from simply multiplying the total number of nodes multiplied by the

computational complexity of the 1-D algorithm discussed in section B.4.

B.6 Conclusion

Future satellite systems will be equipped with antenna arrays that will be capable

of dynamically changing transmission beam size and position. In this chapter we

have addressed the problem of exploiting this beam forming and steering capability

to facilitate efficient satellite-to-ground broadcast. To this end we have formulated

the Minimum-Time Broadcast (MTB) problem which chooses the optimal transmit

beam allocation so as to minimize the broadcast time to set of users on the ground.

If all of the users are located on a line, we have provided an optimal polynomial

time algorithm. We have used this 1-dimensional algorithm as a subroutine for an

approximation algorithm for the general 2-dimensional MTB problem.

Future work includes the development of algorithms with better approximation
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ratios. Additionally, in practice transmit beams are not exactly circles, and thus the

formulation needs to be expanded to facilitate arbitrary shaped beams.
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