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ABSTRACT

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-

Ga-N system as possible future anode materials for lithium rechargeable batteries were

studied. Motivation for this study was dealt in chapter 2 following chapter 1 that covered

introduction to batteries, lithium ion batteries and anode materials for lithium ion batteries.

Synthesis method with less time was attempted and factors affecting synthesis of these

compounds were investigated. (Chapter 3) Through electrochemical characterization and in-

situ XRD, practical values of electrochemical capacities were examined in comparison with

theoretical capacity values (Chapter 4) and also possible reaction mechanisms of these

compounds vs. Li were proposed (Chapter 5).

Thesis Supervisor: Yet-Ming Chiang

Title: Kyocera Professor of Ceramics, Department of Materials Science and Engineering



Acknowledgements

First of all, I would like to thank my advisor, Prof. Yet-Ming Chiang for his support in

various ways. I'm also grateful to Chiang group members. I cannot express my gratitude

enough to my loving parents and my sister for their endless love and support. I deeply

appreciate my husband, Jongchul. Without him, I couldn't have completed this thesis. I also

thank my friend at MIT and at FKCC for their advice and prayers. Above all, I give my

thanks to Lord, my shepherd. @





Contents

Chapter 1 Introduction and Background ................................ 11

1.1 Batteries ................................................. 11

1.2Li-ion Rechargeable batteries ............................................................................. 13

1.3 Materials for Negative Electrodes in Li-ion Rechargeable Batteries .............. 18

1.3.1 Lithium Metal and Cabonaceous Materials ....................................... 18

1.3.2 Alternative materials for negative electrodes ........................................ 19

1.4 Objective of this study ............................................................ 25

1.5 References .................................................. 27

Chapter 2 M otivation for Cr-Ga-N system.............................. 30

2.1 Introduction ................................................... 30

2.2 Gallium metal and Li-Ga alloy ........................................... ................. 30

2.3 Layered structure M2AX .......................................................... 35

2.4 Selection of Cr-Ga-N system................................ 39

2.5 Difficulties in this research .......................................... ....................................... 43

2.6 References .................................................. 45

Chapter 3 Synthesis and structure of Cr-Ga-N system.......... 48

3.1 Starting m aterials ................................................................................................... 48

3.2 G aEx sam ples .......................................... ......................................................... 48

3.2.1 Experimental procedures ........................................ .................................. 48

3.2.2 Results and Discussion.................................................. 51

3.3 C G N sam ples........................................................................................................... 58

3.3.1 Experimental procedures ...................................................................... 58



3.3.2 Results and Discussion.................................................. 59

3.4 References .................................................. 68

Chapter 4 Electrochemical Performances ............................... 69

4.1 Experimental procedure .................................................. 69

4.2 Results and Discussion....................................................... 71

4.2.1 Electrochemical performance of Cr-Ga-N materials........................... 71

4.2.2 Possible reaction mechanisms of Cr-Ga-N materials ............................ 84

4.3 References .................................................. 95

Chapter 5 Conclusion ................................................................ 97



List of Figures

Fig. 1.1 Representation of a battery (Daniell cell) showing the key features of a

battery operation and the requirements on electron and ion conduction.[2]

............................................................................................................... 12

Fig. 1.2 Comparison of the different battery technologies in terms of volumetric

and gravimetric energy density.[3]............................. ........... 14

Fig. 1.3 Schematic representation of Li-ion rechargeable battery operation (a)

(left) discharge (b) (right) charge [2, 3].................................. .... 15

Fig. 2.1 Appearance of gallium metal (a) (left) typical (melted blob), (b) (right)

crystallized [ ] ............................................................................... 31

Fig. 2.2 Phase equilibrium diagram of the Li-Ga system at latm [3]............... 33

Fig. 2.3 Voltage composition profile for (a) LiGa/Li and (b) Li2Ga/Li cells [3]

........................................................................... ............ 34

Fig. 2.4 Unit cells of, (a) 211, (b) 312, and (c) 413 phases. Unit cells are

delineated by vertical arrows labeled c. The horizontal dashed line drawn

through the centers of the unit cells. [4] ....................................... 35

Fig. 2.5 XRD of as-processed samples of Cr2GaN and the same surface after

exposure to the atmosphere for 24 hours at room temperature. Note

emergence of Ga peaks and reduction in the peak intensities of the basal,

or (0006) planes of Cr2GaN. [12]..................... ......... 41

Fig. 2.6 A series of SEM images of the surface of a Cr2GaN sample exposed to

the atmosphere for 50 hrs. A) Filaments observed are pure single crystal-



line Ga. B) Same as (A), but at higher magnification. C) Same as A), but at

a different location, D) the sample after six months, showing marked

increase in density and lengths of whiskers [12] ................. 42

Fig. 3.1 XRD patterns of GaEx 2 sample................................ ........ 55

Fig. 3.2 XRD patterns of GaEx 3 sample................................ ........ 56

Fig. 3.3 XRD patterns of GaEx 6 sample................................ ........ 57

Fig. 3.4 XRD patterns of CGN 4 sample ..................................... ..... 63

Fig. 3.5 XRD patterns of CGN 5 sample ..................................... ..... 64

Fig. 3.6 XRD patterns of CGN 6 sample ..................................... ..... 65

Fig. 3.7 XRD patterns of CGN 7 sample ..................................... ..... 66

Fig. 3.8 XRD patterns of CGN 9 sample ..................................... .... 67

Fig. 4.1 Voltage-capacity curve of GaEx 2 (left) and voltage-percentage of

capacity curve of GaEx 2 during the first cycle (discharge in red line and

charge in black line) (right) .................................... 73

Fig. 4.2 Voltage composition profile for LiGa/Li and Li2Ga/Li ...................... 74

Fig. 4.3 cycle capacity vs. cycle number of GaEx 8 (before milling and GaEx 9

after milling) tested at room temperature and 37 IC ............................ 74

Fig. 4.4 Voltage-capacity curve of GaEx 8 before milling (up) and after milling

(bottom ) ........................................................... 75

Fig. 4.5 patterns of CGN5 after electrode casting .................................... 77

Fig. 4.6 Electrochemical test result for CGN 5. (a) Voltage-capacity curve, (b)

voltage profile during the 1st cycle, and (c) cycle capacity .................. 78

Fig. 4.7 Electrochemical test results for CGN5 at different current rate .......... 79

Fig. 4.8 Electrochemical test results of CGN9. (a) Voltage-capacity curve, (b)



voltage-percentage capacity curve in the 1st cycle, and (c) cycle capacity

vs. cycle number ...................................................... 82

Fig. 4.9 Electrochemical test results of CGN9 at different current rates.......... 83

Fig. 4.10 The crystal structures of (a), (b) LiGa and (c) Li2Ga.[1] ............... 92

Fig. 4.11 Voltage-capacity profile of Cr203 [8].................................. .93

Fig. 4.13 Voltage-percentage of capacity of GaEx2, CGN5, and CGN9 during

the first cycle on the same plot ........................................ ..... ... 94



List of Tables

2.1 Theoretical capacity values and molar volume ratio of lithiated compound to metal

of Al, Ga, Si, and Sn ......................................... 32

2.2 Summary of all Mn+1AXn compounds known to date ................................ 38

2.3 Theoretical capacities of several H-phase materials .................................... 39

3.1 Summary of compositions, times and temperatures of runs carried out on GaEx

sam ples ............................................................................. 52

3.2 Summary of heat treatment conditions for CGN samples............................60

4.1 Electrochemical capacity values of GaEx2 ........................................ 73

4.2 Unit cell parameter variation of CGN5 upon lithiation ............................... 92



1. Chapter 1 Introduction and Background

1.1 Batteries

Limitations of energy consumption relying on fossil fuels call for finding alternatives in

energy production. In this manner, the development of electrochemical systems such as

batteries, fuel cells, and electrochemical capacitors occupies public attention. Among

these systems, batteries are the ones that have experienced the biggest growth in the

market in the past few decades due to their various practical applications and

advantages.[1, 2]

Batteries are composed of one or several electrochemical cells that are electrically

connected in series and/or in parallel to provide the required voltage and capacity,

respectively. Each cell consists of positive and negative electrodes separated by

electrolyte solutions, which enable ion transfer between two electrodes. In batteries,

electrical energy is generated by conversion of chemical energy via redox reactions that

occur at the electrode/electrolyte phase boundary. Once electrodes are connected

externally, the chemical redox reactions proceed at both electrodes, and electrons,

therefore, are liberated so that current flows. The amount of electrical energy (Wh/kg) is

typically expressed either per unit of weight (Wh/kg) (specific energy) or per unit of

volume (Wh/1) (energy density) and is a function of voltage (V) and capacity (Ah/kg),

both of which are strongly related to the chemistry of selected systems. This implies that

selection and control of chemical reaction systems is a significant matter in order to

obtain desired electrical properties. Batteries are regarded as closed systems in that



energy storage and conversion take place in the same compartment since both negative

and positive electrodes play main roles not only as charge-transfer media but also as

active masses in the redox reaction. The requirements on electron and ion conduction in

battery systems are shown in Figure 1.1 along with basic battery operation.

Battery
r .

5eraarue
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Requlrements on
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Fig. 1.1 Representation of a battery (Daniell cell) showing the key features of a

battery operation and the requirements on electron and ion conduction.[2]

As illustrated above, the basic elements comprising a battery are anode, cathode,

electrolyte, and sometimes separator. The anode is the negative electrode of a cell

associated with oxidative chemical reactions that release electrons into the external

circuit. The cathode is the positive electrode of a cell associated with reductive chemical

reactions that gain electrons from the external circuit. The electrolyte is the material that

provides pure ionic conductivity between the positive and negative electrodes of a cell.

The separator is a physical barrier between the positive and negative electrodes to

prevent a battery (cell) from shorting.



Typically, batteries are divided into three general categories: primary batteries,

secondary/rechargeable batteries and specialty batteries. Primary batteries are

assembled in the charged state and discharged during use and then discarded.

Secondary/ rechargeable batteries are the cells that can be discharged and then restored

to their original charged condition by reversing electric current flow. Since rechargeable

batteries are usually assembled in the discharged state, they have to be charged before

use. Specialty batteries are primary batteries designed for specific purposes such as

military and medical use.

1.2Li-ion Rechargeable batteries

Among numerous batteries, the lithium rechargeable battery has become the most

indispensable due to the increasing demand of portable electronic devices such as laptop

computers and cellular phones. Compared to other rechargeable battery systems, lithium

rechargeable batteries are very attractive in that they provide high energy density,

flexible and light weight design, and longer lifespan. (Figure 1.2) [3]

The original motivation for Li-based batteries is due to the fact that lithium is the most

electropositive (-3.04 V versus standard hydrogen electrode) and lightest metal, which

gives design flexibility and energy density. Based on this fact, the first commercial

assembly of lithium primary cells using lithium metal as an anode was made in the
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Fig. 1.2 Comparison of the different battery technologies in terms of volumetric and

gravimetric energy density. [3]

1970s, followed by rapid application in watches, calculators and so on due to its large

capacity and variable discharge rate. Intercalation compounds such as TiS2 were

investigated as positive electrode materials that react with alkali metals reversibly.

However, the problem of uneven dendritic lithium growth during subsequent charging

and discharging from a combination of a lithium metal and liquid electrolyte, which

might result in explosion hazards, restricted the use of lithium metal and assembly of Li

metal based batteries. Over the following years, oxides such as V60 13 and then LixMO 2

(M=Co, Ni, or Mn), offering higher capacities and voltages have been discovered as

positive electrode materials. As anode materials, Al alloys were investigated to replace

Li metal but unsuitable to use due to extreme change in volume during cycling, leading

to cycling fade. The idea of using insertion materials in which Li is present in its ionic

state rather than its metallic state so that safety problem can be lessened was proposed

and active research on discovery of appropriate insertion materials such as lithium

alloys and transition metal oxides was done. Eventually, in 1991, Sony commercialized

a,j
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the first Li-ion rechargeable batteries, C/LiCoO2, also called rocking chair batteries,

which provide potential exceeding 3.6V and gravimetric energy density around 120-150

Wh/kg. This attributed to the discovery of highly reversible, low voltage lithium

intercalation-deintercalation processes in carbonaceous materials. This type of battery is

still the main source powering today's high performance portable electronic devices.[3]

In lithium-ion rechargeable batteries as well as in other batteries, charge/discharge

processes occur toward the direction that reduces the potential at each electrode. Upon

discharge, Li dissociates into Li ion and electrons at the anode (oxidation) as shown in

the following equation.

xLi <• xLi + x e- (Equation 1.1)

Li ions are liberated from the anode side and swim through the electrolyte toward the

cathode while at the same time, electrons from the anode side move through the external

circuit to the cathode. (Figure 1.3a) During charge, the potential of the cathode is

heightened by applying external power source so that Li ions and electrons move back

to the anode through the electrolyte and external circuit, respectively. (Figure 1.3b)

Fig. 1.3 Schematic representation of Li-ion rechargeable battery operation (a) (left)
discharge (b) (right) charge [2, 3]



For the sake of better understanding, it is necessary to define several essential properties

in Li-ion rechargeable batteries: voltage, capacity, energy density, power density, and

cycle life.

In lithium-ion rechargeable batteries, a voltage is established by the difference in the

chemical potential of Li÷, p Li+, between the anode and cathode. This is expressed in

equation (1.2)

(, cathode _ anode

V= - L Li (equation 1.2)
nF

where V = voltage of a battery

athode = chemical potential of Li÷ at the cathode

4 anode = chemical potential of Li+ at the anode

n = the number of moles of Li that can participate in the electrochemical reaction

F= Faraday constant = 96,485 C/mole

The minus sign arises because anode and cathode accommodate Li ions at high and low

potential, respectively. When no external current flows, the voltage is called open-

circuit voltage, which is usually close to the thermodynamic voltage of the system.

Closed-circuit voltage refers to the voltage of a battery when the battery is in operation,

producing current that flows into the external circuit.

The capacity of a battery is the total quantity of electricity involved in the



electrochemical reaction and defined in terms of coulombs [C] or ampere-hours [Ah].

The theoretical specific gravimetric capacity of an electrode can be calculated by the

expression below:

Q [mAh/g] = *96485Cmol OOOmAh/Ah (Equation 1.3)
M[g /mol] 3600sec

where Q = theoretical capacity of an electrode

n = number of Li ions involved in the reaction per mole of active electrode

material M = molar weight of active material

Depending on cases, volumetric capacity [mAh/cm3] is also used.

Energy density is defined as the amount of energy per unit weight or volume. As

previously mentioned, energy density is a function of capacity and voltage as expressed

by equation 1.4.

E [Wh/g or Wh/cm3 ] = Q [Ah/g or Ah/cm3] x V [V] (Equation 1.4)

where Q = Capacity

V = Battery voltage

Power density is defined as battery power per unit weight or volume and expressed in

units [W/kg] or [W/1]. It can be calculated by the product of current density, I [A/kg]

and the battery voltage [V]. Power density can also be regarded as energy density per

unit time.



Cycle life is also of importance in Li-ion rechargeable batteries. Cycle life, also called

cyclability refers to a large number of charge/discharge cycles with little or no capacity

drop that batteries can withstand. Commercial batteries should be capable of completely

discharging their energy and then fully recharging at least 300 times with capacity drop

less than 20 %.

In general, the desirable batteries are the ones with high voltage (high power density)

and large capacity (higher energy density). In addition, low cost production, safety and

fast charging time are also significant factors in considering rechargeable batteries.

1.3 Materials for Negative Electrodes in Li-ion Rechargeable Batteries

1.3.1 Lithium Metal and Cabonaceous Materials

As previously mentioned, development of lithium rechargeable batteries originates from

the characteristics of Li metal: the most electropositive and lightest metal. Hence, in the

beginning, elemental lithium metal was used as an anode but soon discarded due to

severe safety problems such as explosion hazards resulting from dendritic growth upon

cycling. Currently carbonaceous materials have been employed in many commercial

batteries since the first commercialization by Sony in 1991. Up to 1 atom of lithium per

six carbon atoms can be intercalated into graphite (LiC6), giving a maximum theoretical

capacity of 372 mAh/g at relatively low voltage (-0.1V) relative to Li metal. Practically,

capacity values between 300-350 mAh/g are obtained. Although carbonaceous materials



take up and release Li+ ions quite reversibly over 500 cycles and can be produced at low

cost, their gravimetric capacity of 372mAh/g is small compared to the theoretical

gravimetric capacity value of Li metal (3829mAh/g). Accordingly, much effort has been

devoted to find carbon replacement materials while research on improvement of carbon

negative electrode performance through chemical or physical modification has been

carried out simultaneously. Several proposed alternative materials for negative

electrodes in Li-ion rechargeable batteries are treated in the next section along with

advantages and drawbacks for each.[3, 4]

1.3.2 Alternative materials for negative electrodes

Li-metal alloys

Instead of using Li metal as an anode, researchers have investigated a series of alloys

and compounds of lithium, which not only have potential values just slightly above that

of lithium metal but also are expected to exhibit very large theoretical capacity values

(Table 1.1). Initially, interest was placed on high temperature Li batteries with Li-Al

alloys as negative electrodes and later on ambient temperature Li-ion rechargeable

batteries consisting of numerous systems such as Li-Sn and Li-Si. Although Li metal

alloys are attractive in terms of gravimetric capacity, they suffer from poor cycling due

to drastic volume change upon insertion and removal of Li during cycling. As shown in

Table 1.1, the volume change is typically on the order of 100%. This colossal change in

volume results in mechanical stress and strain inside electrode microstructure, causing

disintegration and loss of electrical contacts between particles upon cycling. Many



efforts have been devoted to find a way to lesson the volume change and to understand

the mechanism of reaction with Li upon cycling in order to improve cyclability and take

advantage of the large gravimetric capacity of these systems. [4]

Oxides

Considerable interest has grown in using convertible oxide materials as anodes since

Fuji film announced its decision to use amorphous tin composite oxides (ATCO) in

negative electrodes. These oxides react reversibly with lithium at about 0.5V and the

reversible capacities are larger than 600 mAh/g and 2200 Ah/l, which doubles the

specific capacity of graphite (372 mAh/g and 1200 Ah/1). Several research groups have

investigated the lithium reactivity mechanism in these composites upon

discharge/charge mainly from In situ X-ray diffraction analysis. According to initial

work on non-crystalline tin oxides, during the first charging cycle, oxides are

decomposed by lithium to form intimately mixed Li20 and metallic Sn. This initial

irreversible reaction is followed by Li alloying reaction with Sn to form nanodomains of

Li4.4Sn embedded within the Li20 matrix. These scenarios are summarized in Table 1.2

for some tin oxide materials.

Initial Fully discharged Charged again

4.4Li + Sn -> Li4.4Sn ¢ 4.4Li + Sn

6.4Li + SnO -> Li20 + Li4.4Sn ¢ 4.4Li + Sn

8.4Li + Sn02 -> Li20 + Li4.4Sn 2Li20 + 4.4Li + Sn

Table 1.2

Recently, there are two distinguishable approaches to describe this mechanism of



reaction. One is that other elements that are produced from the reaction of Li-Sn are

regarded as mere "spectator" to stay electrochemically inactive while electroactive Li-

Sn alloys are mechanically dispersed. Another approach is that the dispersing matrix

and the Sn atoms interact with each other strongly. The latter approach has been

reinforced by the application of different spectroscopy such as Mossbauer spectroscopy

that can identify the non-crystalline structure of products better than diffraction

techniques. A major problem with oxides is that the electrode is subject to an

unacceptably large irreversible capacity loss, which is attributed to the inability of the

lithium trapped within the Li20 matrix to partake in the electrochemical reaction. Poor

long-term cyclability is also a problem to overcome. [5-9]

Transition metal oxides, M-O (where M = Co, Ni, Re, Cu, Mn et cetera), were also

proposed and have been studied as alternatives for negative electrodes in lithium ion

rechargeable batteries. These binary oxides exhibit capacities two to three times those of

carbons with 100% capacity retention up to 100 cycles. In these cases, transition metals,

as indicated by M above, are known to not alloy with Li. Similar to tin oxides, these

oxides are reduced to Li20O and metal nanoparticles during the first discharge at quite a

low voltage. Unlike the tin oxide case where Li alloys mostly with Sn within a matrix of

Li20 in subsequent cycles, decomposition and formation of Li20 are known to occur

upon further cycling, demonstrating very reversible capacities. M.N.Obrovac et al.

verified the following scheme.

First discharge a -CoO + 2Li -> Co + Li20 (Equation 1.5)

Further cycling Co + Li20 <' /P-CoO + 2Li (Equation 1.6)

In addition, such materials as NiO, FeO, Cu2O, Cr20 3, a -LiFeO2, /3-LisFeO4 have



been reported to show quite reversible capacities through the reaction described above.

Although transition metal oxides reduced to Li20 and metal demonstrate high reversible

capacities compared to graphite with reasonable cycle life, the huge irreversible

capacity loss during the first discharge cycle obstructs commercial use of these

materials.[ 10-15]

In terms of the type of reactions versus lithium, there is another kind of transition metal

oxide that is considered to be an intercalation electrode material. These include not only

transition metal oxides with spinel structure, such as Fe30 4, Mn 304, Co30 4, and

Li4 Ti50 12 but also anatase TiO2. As in the case of intermetallic alloys that will be

discussed later in this chapter, these oxides typically exhibit capacities lower than that

of carbon at a much higher voltage relative to Li metal, giving a lower voltage battery.

Li4Ti50 12, for example, shows a capacity value of about 150 mAh/g at a voltage plateau

of 1.5V. Yet, these materials are interesting potential candidates for negative electrode

materials in that the combination of these anode materials with high voltage positive

electrodes is seen as a possibility to compensate the higher working voltage of the

intercalation compounds versus lithium.[ 14-17]

Intermetallic alloys

One of the most common approaches to alleviate the problem of alloy expansion is to

embed an "active" binary intermetallic electrode in a composite matrix. As discussed

already, a well-known representative of such systems is tin oxide system where Li-Sn

alloys are created within an electronically insulating Li20 matrix during the



electrochemical reaction with lithium. Considerable research has also been undertaken

on intermetallic composite structures such as FeSn2 or CoSb3 in which active LixSn and

Li3Sb cycle within inactive Fe and Co matrices, respectively. In these systems, the large

structural differences exist between original (parent) and lithiated compounds, limiting

the reconstruction of the parent structure during delithiation. The large 1st-cycle

irreversible capacity loss is also problematic. [18-21]

Intermetallic compounds such as Cu6Sns, InSb, Cu2Sb have been proposed by

Thackeray et al. for negative electrode materials as a new approach to alleviate the

problems of alloy expansion. The selection of these compounds was based on the

"structural compatibility" of the original compound with the lithiated product phase.

These intermetallic alloys undergo reversible process of lithium insertion and metal

intrusion on discharge. In this process, a strong structural relationship exists between a

parent binary intermetallic electrode, MM', in which M and M' are different metal

atoms, and a lithiated LixMM' product and therefore, less volume change upon occurs in

these materials upon cycling than in lithium metal alloy expansion. CusSns, for example,

reacts with lithium as illustrated in Equation 1.7.

10Li + CusSn5 4* 5Li2CuSn +Cu (Eqaution 1.7)

In this case, nickel-arsenide structure of Cu6Sn5 is strongly related to the lithiated zinc-

blend structure and thus, the volume expansion of the copper-tin structure during this

reaction is approximately 59%, which is much less than those of lithium-metal alloys.

Binary Sn-M system where M equals to Co, Ni, In, Pb also belongs to these



intermetallic compounds. These intermetallic alloy materials demonstrate reasonable

cycle life through a reversible process as explained. However, they exhibit capacities

lower (250-300 mAh/g) than that of carbon at a much higher voltage relative Li metal,

producing lower voltage battery and still suffer from poor cycle life. [18, 19, 21, 22]

Metal Nitrides

Ternary lithium transition-metal nitrides have also achieved researchers' interest as new

potential class of anode materials. Nashijima et al. first introduced ternary lithium

transition-metal nitrides such as Li3FeN2 and Li7MnN4, which have the general formula

of Li2n-lMNn. This group of nitrides is known to have cubic antifluorite-type structure

and undergo reconstitution (addition) reactions with stoichiometric changes of Li. There

materials show quite good rechargebility with capacity value of 150-200 mAh/g. A

second group of ternary lithium transition-metal nitrides, Li3-xMxN where M stands for

Cu, Ni, and Co, have also been investigated for their electrochemical properties. These

nitrides are isostructural to the hexagonal Li3N where the transition metal substitutes for

Li in between Li2N layers. Li2.6Co0.4N was reported to exhibit good cycling stability and

high capacity of about 760 mAh/g at an average discharge potential of about 0.8 V vs.

Li. In spite of large, stable and reversible capacity, the commercialization of these

nitride materials is constrained by their moisture sensitivity and the requirement of a

predelithiation step before use as negative electrodes in Li-ion batteries. [11, 23, 24]

There has been also some interest in the use of some nitrides such as Sn3N4, tin

subnitrides, InN, Zn3N4, silicon tin oxynitrides, Cu3N, and Ge3N4 as possible negative



electrode reactants in lithium cells. These materials were found to react with lithium in a

two-step process similar to the one observed in tin-based amorphous composite oxides.

Through an irreversible conversion reaction, a Li3N matrix and an electrochemically

active metal M are generated. The subsequent metal alloying and dealloying reactions

with lithium the reversible capacity. These two steps are depicted in Equation 1.8 and

1.9, respectively.

MxNy + 3yLi+ + 3ye- -> xM + yLi3N (Equation 1.8)

M + zLi+ + ze- 4 LizM (Equation 1.9)

Similar to the case of tin-based amorphous composite oxides, the formation of Li3N

matrix attributes to the irreversible capacity loss in the first cycle of these materials.

More detailed discussion of the reaction mechanism can be found in Reference [23, 24].

1.4 Objective of this study

As seen in the previous section, there are various approaches to find the materials that

can displace the carbon materials that are currently used for negative electrodes in

lithium-ion rechargeable batteries. Unfortunately, none of these is yet sufficiently better

to be a widely-used alternative negative electrode material. In this study, we

investigated a new class of materials as possible anode reactants, based on these

materials' particular structure and properties. Detailed motivation for selecting one

specific system among these structure materials is presented in Chapter 2. Chapter 3

covers experimental procedures, results, and discussion regarding synthesis. Several

samples of interest that consist of ternary and binary Cr-Ga-N phases were produced.

With these samples, electrochemical tests were implemented in order to see if these



materials are promising as future anode materials in Li-ion rechargeable batteries. The

detailed procedure and results are described in Chapter 4, followed by reaction

mechanism analysis on each sample. In-situ X-ray diffraction method was useful to

verify which proposed mechanism would be the most feasible one for each sample.

Overall, our main goal lies in finding out if and how the phases of Cr-Ga-N system

would react with lithium electrochemically.
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2. Chapter 2 Motivation for Cr-Ga-N system

2.1 Introduction

As previously shown in Chapter 1, numerous systems other than graphitic carbons, such

as oxide electrodes and intermetallic alloy electrodes have received a great deal of

attention. However, none of them are sufficiently satisfying yet to be able to replace

lithium-carbon electrodes. In this study, we propose Cr2GaN as one of new class anode

materials for new lithium ion batteries. The initial motivation originates from the special

characteristics of gallium metal as well as the laminate structure of Cr2GaN yielding

attractive properties. Our basic idea is that gallium, in the layered structure of Cr2GaN,

would take an active role in the reaction with lithium either through intercalation or

alloying. Although we put our interest initially in Cr2GaN only, difficulties in synthesis

of single phase Cr2GaN resulted in the samples composed of several Cr-Ga-N phases

and thus, we extended our interest to synthesis and electrochemical performances of

general Cr-Ga-N systems. More detailed features and explanation about each of these

will be described in the following sections.

2.2 Gallium metal and Li-Ga alloy

Gallium is the chemical element of silvery metal that has the symbol of Ga, number 31

in the periodic table. This element has several peculiar characteristics compared to other

typical "metals": gallium is a brittle solid at low temperatures but solidifies at slightly

above room temperature (29.8 C), which allows this metal to be melted even in the hand.



Fig. 2.1 Appearance of gallium metal (a) (left) typical (melted blob), (b) (right)

crystallized [1]

Gallium also expands by 3.1% when solidified and this is why it should be kept neither

in glass nor in metal containers. In addition, unlike mercury that is also a low melting

point metal, gallium wets glass and skin, making it mechanically more difficult to

handle together with low melting temperature near room temperature. Gallium also

alloys with other metals very easily, attacking most other metals by diffusing into their

metal lattices. [1]

Owing to these characteristics, gallium seems to us very attractive as a component as an

electrochemically active material. Although it is hard to handle gallium due to its low

melting point, the fact that gallium exists usually in liquid state gives the possibility that

ductility might be maintained during cycling since a liquid has high surface tension but

has properties equal to those of a solid. If so, this will help the system of use react very

reversibly, ultimately contributing to reducing irreversibility cycling fade.

Furthermore, when compared to other well known lithium metal alloys such as Li-Sn

and Li-Si, lithiated compounds of gallium show quite comparable values in terms of

theoretical electrochemical capacity value by calculation. A list of numbers regarding



Table 2.1 Theoretical capacity values and molar volume ratio of lithiated compound to

metal of Al, Ga, Si, and Sn [2]

MW

(g/mole)

26.98

69.72

28.09

118.69

Density

(g/cm3)

2.7

5.91

2.33

7.31

Molar

Volume

(cm3/mole

of metal)

9.99

11.8

12.06

16.24

Lithiated

Cmpnd

LiAl

Li9A14

Li3Al

Li5Ga4

Li2Ga

Li3Ga2

LiGa

Lil2Si7

Li21Si8

Lil3Si4

Li21Si5

Li5Sn2

Lil3Sn5

Li7Sn2

Li22Sn5

MW

(g/mole)

33.92

170.4

74.79

313.59

83.6

160.26

76.66

279.89

370.45

202.58

286.19

272.09

683.68

285.97

746.15

Density

(g/cm3)

1.741

1.269

1.484

3.804

2.923

3.479

4.259

1.526

??

1.25

1.197

3.513

3.466

2.957

2.562

Molar

Volume

(cm3/mole

of metal)

19.48

33.57

50.4

20.61

28.6

23.03

18

26.2

??

40.52

47.82

38.73

39.45

48.35

58.25

Average

Voltage

(against

Li)

0.36

??

??0

??.

??

??

??

??

0.158

0.158

0.2

0.485

0.485

0.385

0.385

Metal

Al

Ga

Si

Sn

Theor.

Weight

Capacity

(Ah/kg

of

starting

metal)

993.5

2235.5

2980.6

480.6

769

576.7

384.5

1635.9

2505

3101.4

4008

564.6

587.2

790.5

993.7

Theor.

Volume

Capacity

(mAh

/cm3 of

starting

metal)

2683

6035.7

8047.6

2840.3

4544.5

3408.4

2272.2

3811.6

5836.6

7226.2

9338.5

4127.3

4292.4

5778.2

7264.1

Lithiated

Cmpnd to

Metal

Molar

Volume

Ratio

1.95

3.36

5.05

1.75

2.42

1.95

1.53

2.17

??

3.36

3.97

2.39

2.43

2.98

3.59



theoretical weight and volume capacity and volume change are calculated, based on the

Li-Ga phase diagram and presented in Table 2.1. Taking a look at the Li-Ga phase

diagram (Figure 2.2) [3] tells us that there are several capacity-wise attractive binary Li-

Ga alloys. Li2Ga, for example, could reach a reversible capacity of 769 mAh/g

theoretically, which is a value about twice the maximum graphite capacity. In addition

to theoretical capacity, relatively small volume change compared to Li-Sn alloy is

expected, supporting gallium as an alternative for negative electrode material in Li

rechargeable batteries. Large volume expansion during lithiation is one of the most

significant problems that most alloys and oxides undergo during operation since it leads

to strain in microstructure and fractures, loss of electronic contact, and thus cycling

capacity fade as previously mentioned in Chapter 1.

Weight Percent Lithium

Ga Atomic Percent L•thium .L

Fig. 2.2 Phase equilibrium diagram of the Li-Ga system at latm [3]



Recently, J.M Tarascon group reported the electrochemical performances of Li-Ga alloy

vs. Li with structural change. In their study [3], Li-Ga alloy such as Li2Ga7 , Li2Ga and

LiGa were synthesized by ball milling gallium ingots and lithium powder after

considering gallium's low melting point, tested in potentiodynamic mode and analyzed

through in-situ X-ray experiment. These alloys demonstrate up to the value of 400

mAh/g in terms of Li storage and undergo structural transition (Li2Ga < LiGa 4*
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Fig. 2.3 Voltage composition profile for (a) LiGa/Li and (b) Li2Ga/Li cells [3]

Li2Ga7) quite reversibly. The three voltage plateaus that appeared in both discharge and

charge states are regarded as evidence for this structural change. (Figure 2.3) In this

report, especially, the transition from Li2Ga to LiGa is noticeable in that it is a Li-driven

transformation from 2D structure (Li2Ga) to 3D structure (LiGa). Since gallium is

anticipated to be the main active material in our experiment, this structural transition

phenomenon seems also to be strongly related to our experimental result and will be

discussed in more detail in later chapters together with our results.

Not many studies on electrochemical performance of gallium metal or lithium-gallium

150
ril
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alloys have been undertaken so far. It is, therefore, also a good opportunity to

investigate characteristics of gallium or lithium gallium as candidate anode materials.

2.3 Layered structure M2AX

A family of compounds possessing an approximate Mn+1AXn chemistry, where M is an

M-Layers

(a)

X-Layers

(b) (c)

Fig. 2.4 Unit cells of, (a) 211, (b) 312, and (c) 413 phases. Unit cells are delineated
by vertical arrows labeled c. The horizontal dashed line drawn through the centers

of the unit cells. [4]



early transition metal, A is an A-group element (mostly IIIA and IVA) and X is either C

and/or N, is identified and shown to have unusual combination of both metallic and

ceramic properties. The Mn+1AXn phases, also called H-phases, have basically layered

hexagonal structures where almost close-packed layers of M are interleaved with layers

of pure group A-element, with X atoms filling the octahedral sites between the former.

M2AX phases, for instance, are layered and hexagonal with M2X layers interleaved with

layers of pure A while M3AX2 has the same structure but with M3X2 layers instead of

M2X layers. Figure 2.4 contains a schematic of these structures. Like mentioned above,

these phases are metallic in that they are easily machinable, relatively soft, not

susceptible to thermal shock and behave plastically at higher temperature. The Vickers

hardness of these phases are mostly in the range of 3-5 GPa, anomalously soft when

compared with most other carbides and nitrides. Their thermal and electrical

conductivities are excellent and at room temperature fall in the range of 20-40 W/m K,

and 1-14 X 106 (n m)-l, respectively. At the same time, they are also ceramic in that

they are oxidation-resistant and refractory. These peculiar combinations of

machinability, strength and ductility of these compounds can find their origin in their

layered structure. The mostly metallic nature of M-X bonds is derived from covalent

and ionic contributions. These bonds are exceptionally strong, in contrast with M-A

bonds that are relatively weak, especially in shear. [4-15]

Upon pondering over new, plausible host structures in order to find new alternatives for

negative electrode material, we realized that there are a number of aspects that make

these metallic ceramic phases, Mn+IAXn, very attractive in terms of electrochemical

storage host structure as well. First of all, based on the compounds invented up to date,



all of the A elements consist of metals that have been known to alloy with lithium to

high concentrations. Al, Si, Sn, and Ga are good examples. Since the atomic layer of

pure A is chemically very similar to the same metals in bulk or thin film, it seems highly

possible that the same elements in atomic layer A should be able to alloy with a high

concentration of lithium ions. Also, as depicted in Figure 2.4, A metal layers provide

structurally available atomic sites that can store inserted lithium ions. The relatively

weaker bonding of A-MX compared to strongly-bonded M-X also generates the chance

that the structure can expand normal to the M-X layers in order to accommodate the

volumetric expansion of alloying. Furthermore, it seems that the strongly covalent

bonds of M-X are unlikely to decompose during lithiation/delithiation, which definitely

would help conserve the layered structure and support reversible cycling. Besides, as

already mentioned above, these phases are also good electrical conductors, which means

that, when we use these phase materials as electrodes, the amount of additives for the

purpose of improving conductivity can be reduced or eliminated and also electrode

impedance can be lowered.

Based on these favorable features, we could imagine that these compounds might

possibly take lithium as intercalating metal through the following alloying reaction.

Mn+1AXn + yLi = Mn+1ALiyXn [Equation 2.1]

In this assumption, lithium would be inserted or alloyed with the A metallic layers in

nanolaminate structure Mn+1AXn. We envision that the metallic layer A would react with

lithium while M-X layers stay inactive electrochemically upon lithiation/delithiation,

supporting reversible alloying. Table 2.2 lists the summary of all Mn+1AXn phases

known to date. [4] Among all these phases, compounds of formula M2AX seem to be



especially attractive candidates for electrode materials, since they possess higher

fraction of A relative to M and X and therefore provide larger theoretical gravimetric

capacity, when compared to M3AX2 and M4 AX3. Table 2.3 demonstrates gravimetric

and volumetric capacity values of several compounds where experimental values [4] of

crystal density are available. Here, y represents the number of Li ions inserted into the

Table 2.2 Summary of all Mn+IAXn compounds known to date.
IA IIA IIIA IVA VA VIA VII ViIIA

STiAIC* T12AIN* IWffPbC* Cr2GaC VtAC T2 inN
NbAIC*  (Nb,TI)2AIC* Ti2AINc1o,5* Nb2GaC Nb2AsC Zr21nN
TI2GeC* Crz •AC Zr2S Mo2GaC Ti2CdC Hf21nN
Zr2SnC* Ta&AIC Ti2SC ThIGaC* Sc2ýnC I2SnN
Hf2SnC* V2AIC Nb2SC "l2GaN TI2inC TI2TIC
T2snCe V2PC 2HfS Cr2GaN Zr21nc ZrjTIC
Nb2SnC" Nb2PC Ti2GaC V2GaN Nb21nC Hf2TIC
Zr2PbC* Ti2PbC& V2GaC V2GeC Hf2mnC Zr2TIN

i,.-::



Table 2.3 Theoretical capacities of several H-phase materials

Material Form. Density Capacity, Capacity Capacity Capacity

Wt. (g/cm 3) y=l, mAh/g y=-2 y=3 y=4

(g/mole) [4] (Ah/L)

Ti2AIC 134.75 4.11 198.9(817.6) 397.9(1635.0) 596.8(2452.8) 795.7(3270.4)

Ti2AIN 136.75 4.31 196.0(844.8) 392.0(1689.7) 588.1(2534.5) 784.1(3379.4)

V2AIC 140.87 4.07 190.3(774.5) 380.6(1548.9) 570.9(2323.4) 761.2(3097.9)

Ti2SC 139.84 4.62 191.7(885.6) 383.4(1772.2) 575.1(2656.8) 766.8(3542.4)

Ti2SnC 226.48 6.36 118.4(752.8) 236.7(1505.5) 355.1(2258.1) 473.4(3010.8)

Ti3SiC 2  195.75 4.52 136.9(618.8) 273.9(1237.9) 410.7(1856.4) 547.6(2475.2)

Cr2GaN 187.72 6.82 142.8(973.9) 285.6(1947.8) 428.4(2921.7) 571.2(3895.6)

structure per unit cell. Compared to the gravimetric capacity, 372 mAh/g, and the

volumetric capacity, 836.9 Ah/L), of graphite [16, 17], gravimetric capacity values of

these compounds especially for y greater than about 2 and volumetric capacity values

for y values greater than about 1 seem fairly advantageous. Moreover, given that the

chemical identity of group A element layers is similar to bulk metal, there is also

potential advantages at which alloying takes place. The potentials of bulk metal, Sn, Si,

and Al are known to be less than 0.5V and the potentials of compounds Mn+IAXn are

expected to be similar to low like the bulk. This will result in energy density advantages

of these compounds over graphite as well.

2.4 Selection of Cr-Ga-N system



Considering various aspects listed in the previous section, Mn+IAXn phases seem quite

fascinating as possible electrodes in lithium ion batteries. Among over 50 compounds of

M,+IAXn that have been experimentally synthesized to date (Table 2.2), we chose

several promising compounds according to the following criteria. First of all, given that

the atomic layer of A in this layered structure are chemically similar to the same metals

in bulk or thin films or nanocrystalline form, group A elements that are able to

electrochemically accommodate a high concentration of lithium ion are favorable. Al, Si,

Sn and Ga correspond to this. Secondly, for early transition metal M, rather than

expensive and heavy-weight elements such as Ta, Hf, elements easy to obtain

commercially are selected. Ti, V and Cr apply to this based on Table 2.2. Thirdly,

compounds of which properties have been relatively well-studied take priority over

others. Researchers have examined a number of methods to fabricate a single-phase

Ti3SiC2 and its properties and the amount of study on Ti3SiC 2 [4-6, 10, 13, 14, 18] is

tremendous compared to other same kind of compounds. Lastly, as mentioned

previously, 211 phases are more advantageous than 312 and 413 phases, since the

former ones would have a high relative fraction of A relative to M and X, and therefore

a high theoretical capacity. According to these criteria, Ti2AIC, Ti2SnC, Ti2AIN, Cr2GaN,

Ti3SiC 2 and Ti3AlC2 are singled out.

We decided to try Cr2GaN, a layered ternary nitride in order to see if and how this

compound would react with lithium electrochemically. Like the other 211's, the

structure of Cr 2GaN, consisting of Cr-N layers interleaved with layers of pure Ga, is

hexagonal with lattice parameter a and c of 2.88 and 12.7 A, respectively. [19] In

Cr 2GaN, self-extrusion of Ga whisker at room temperature is observed by M.W.



Barsoum et al. In their work [12], filaments of pure elemental gallium is observed to

extrude from bulk Cr2GaN at room temperature in air and the author of this work

describes this phenomenon as a room-temperature deintercalation of gallium from the

basal plane of porous Cr2GaN samples, based on their XRD patterns and SEM pictures.

The XRD and SEM pictures are illustrated in Figure 2.5 and Figure 2.6, respectively.

The fact that the A atom Ga is able to extrude from CrN layers as metallic Ga seems to

support the reversible alloying mechanism that we assumed previously for M.+1AXn

family materials as electrodes for batteries. This self-extrusion phenomenon implies not

only that A layers do behave as essentially metallic but also that extrusion could be

another mechanism by which the strain can be accommodated upon alloying that causes

volumetric expansion of the A layers. Theoretically, Cr2GaN could show 285.6 mAh/g

and 1947.8 Ah/L for gravimetric capacity value and volumetric capacity value,

34 36 38 40 42 44 46 48
2 Theta

Fig. 2.5 XRD of as-processed samples of CrzGaN and the same surface after exposure to
the atmosphere for 24 hours at room temperature. Note emergence of Ga peaks and

reduction in the peak intensities of the basal, or (0006) planes of Cr2 GaN. [12]
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Fig. 2.6 A series of SEM images of the surface of a Cr2GaN sample exposed to the

atmosphere for 50 hrs. A) Filaments observed are pure single crystal-line Ga. B) Same as

(A), but at higher magnification. C) Same as A), but at a different location, D) the sample

after six months, showing marked increase in density and lengths of whiskers [12]

respectively, provided that Cr2GaN adopt two lithium atoms per one atomic unit. (Table

2.4) These values are quite comparable to those of graphite. (372 mAh/g and 837 Ah/L

for gravimetric capacity and volumetric capacity, respectively). Investigating the

synthesis and electrochemical performance of Cr2GaN is meaningful in that this could

be the groundwork for a totally new class of energy storage materials if Cr2GaN turns

out to be electrochemically active. Furthermore, it is a good opportunity to analyze the

mechanism of Li-Ga reaction, since the basic idea is use gallium metal layer as an active

material in a form of new structure, M2AX.

From a perspective of synthesis, the fabrication of pure single-phase Cr 2GaN as well as



all other H-phases is still an issue. We also obtained several samples composed of

several Cr-Ga-N phases [20, 21] such as Ga, Cr-N phases, GaN, Cr-Ga phases and

Cr3GaN. Some are formed during synthesis and the others are from starting materials

remaining unreacted. Accordingly, in order to study the electrochemical performances

of Cr2GaN and deduce the correspondent reaction mechanism, it is necessary to

understand the synthesis and electrochemical properties of Cr-Ga-N systems as well.

Detailed phases of interest in the Cr-Ga-N system will be treated in Chapter 3.

2.5 Difficulties in this research

In this last section of Chapter 2, several obstacles that prevent from stepping forward to

this research are described.

Like mentioned previously, in a family compound of general formula, Mn+1AX,

synthesizing a single phase sample is also a significant issue. For Cr 2GaN as well, it is

hard to acquire a sample of a single-phase because Cr2GaN is thermodynamically stable

with other Cr-Ga-N phases depending on firing temperature and hours. For example,

GaN is known to coexist with Cr2GaN at 740 1C.[21]

Secondly, the existence of group A element such as Ga and Sn in the sample is also

problematic. As elemental gallium also reacts with lithium electrochemically, when

gallium exists in the sample, it is difficult to tell the difference between the

electrochemical properties from elemental gallium and those from Cr2GaN and other

compounds. Worse situation is that this elemental gallium is not identified in XRD due



to amorphous characteristic although quite an amount of it still stays in the sample. This

will be shown in Chapter 3. Therefore, elimination of residue of group A element is very

necessary but not easy.

Moreover, in order to avoid oxidation from air, complex synthesis procedure is required.

Despite this, during electrochemical testing preparation, there is still possibility of

oxidation or moisture absorption in samples. When oxidized, samples sometimes

include oxides with which Li-driven electrochemical reaction occurs.
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3. Chapter 3 Synthesis and structure of Cr-Ga-N system

3.1 Starting materials

In order to obtain Cr2GaN, we used i) Ga pellets and Cr2N powder and ii) GaN powder

and Cr powder as the starting materials. For convenience, depending on which

combination of starting materials was used, we denoted the samples produced from Ga

shots and Cr2N as GaEx # (#: sample number) and designated the samples from the

mixture of GaN and Cr as CGN#. Although there are detailed differences in each

synthesis step among product samples, basically, all the samples of GaEx's and CGN's

were synthesized through the following five steps: weighing, mixing, iso-pressing,

vacuum-sealing and heat treatment. Detailed procedures will be explained in the

following sections.

3.2 GaEx samples

3.2.1 Experimental procedures

Gallium pellets (6mm diameter; Alfa Aesar, 99.9999% purity, metals basis) and Cr 2N (-

325 mesh; GFS chemicals) were weighed to correspond to the 211 chemistry or other

stoichiometric value in the vicinity of 211 chemistry. In order to attain homogeneity as

much as possible, gallium pellets were cut into pieces by razor blade before hand-

mixing so that more gallium metal surface could be exposed to and evenly mixed with

chromium nitride powder as much as possible. After hand-mixing, mixture of gallium



pellets and chromium nitride were put into the "finger" from a latex glove. This "finger"

bag was tied and then put into the plastic tubing. Plastic tubing helped the mixture lump

maintain a certain shape inside latex. All the procedures up to this were conducted under

argon atmosphere in order to avoid oxidation. This tightly sealed sample was taken out

of argon chamber and then put into another plastic bag. The air inside of this bag finally

was evacuated by vacuum pump and thermally sealed. This step is necessary to prevent

the oil from leaking into the sample during isostatic pressing. Thoroughly sealed

samples were cold isostatically pressed until the pressure reached 42000 psi and then

held at that pressure for 3 minutes. When all starting materials were in powder type,

through this procedure, a single dense piece that was -4 cm long, -4-5 mm diameter

was usually produced through when removed from all surrounding bags. However, from

the mixture of gallium pellets and chromium powder, due to the characteristics of the

form of gallium, the best specimen that could be obtained after cold isostatic pressing

was in the form of gallium pellets of which surface is covered by chromium powder as

much as possible. This was one of the reasons why GaN and Cr, both existing in powder

form were tried later so that much more evenly mixed sample could be generated. As

shown later, these powder-type starting materials allowed mixing by milling tools and

this contributed a lot to homogeneity of the resulting specimens. Back to the procedure,

after isostatic pressurizing step, the specimen prepared above was put into a fused

quartz tube and vacuum-sealed. Although the time to take for vacuuming varied

according to the condition of sample pieces, the vacuuming step usually took around 24

hours for our samples. This vacuum sealing procedure was carried out by help of Yinlin

Xie, a technical staff member at MIT. In order to minimize exposure time to air, it was

recommended to take the pressurized sample out of the enclosing plastic bags and



tubing used in the previous steps right before the encapsulation step began. This

encapsulated quartz tube containing green body was finally placed in the middle of

quartz tube furnace and fired at the desired temperature. In order to find the optimum

processing temperature for Cr 2GaN, various conditions (firing temperatures and times)

were chosen and tried out. Referring to previously published studies on Cr-Ga-N system

materials [1, 2], we considered that the optimum processing temperature range for

Cr2GaN is 650-800 0C. According to L. Farber and M.W. Barsoum [2], above 910 *C,

Cr2GaN becomes unstable and decomposes, and below 650 *C the reaction kinetics are

quite sluggish. They also reported in another literature [3] that they obtained Cr2GaN

with minor amounts of other phase materials through HIPing and annealing the mixture

of gallium metal and CrN + Cr2N at 740 0C for 24 hours. Therefore, in our work, we set

the annealing temperatures and times with some variation, based on these reports

mentioned above. Eight individual runs were conducted with different conditions

(temperatures, times and compositions) and summarized in Table 3.1. As demonstrated

in Table 3.1, several runs included two or more steps of heat treatment. As reported in

reference [2], in M.W. Barsoum group's way, the pellet specimens were again hot

isostatically pressed at 850 *C for 8 hours after being cold pressed. Hot isostatic

pressing (HIP) played a role in restraining the expansion of samples while temperature

increased. In our preliminary work, it was observed that the volume of our sample

expanded little during firing without simultaneous pressurizing. Accordingly, in order to

save time and expense, we decided to skip hot isostatic pressing step in our work unlike

M.W. Barsoum group's experimental method. In GaEx 1, 2 and 3, the first step heat

treatment conditions were varied while all other parameters including secondly

annealing temperatures and times were set the same as 740 *C and for 24hrs. In GaEx 4,



after ramping up to 850 °C, the specimen was controlled to directly reach 740 'C and

annealed without going through cooling to room temperature between steps. In GaEx 5,

only one step heat treatment, that is, annealing at 740 °C for 24 hrs was run. From

GaExl to GaEx 5, the atomic composition ratio of gallium and Cr2N was 1.7 : 1 by

accident. This was not done intentionally in the beginning but later it turned out that

results from gallium excess samples were greatly useful to analyze overall Cr-GaN

system of our interest. As our goal was to attain Cr2GaN, specimens composed of 1:1

atomic ratio of gallium and Cr2N were prepared again and fired at various conditions as

shown in GaEx 6-8 in Table 3.1 In all runs, the heating rate was 10 "C/minute. After

heat treatments, the samples were removed from the quartz tube and then crushed in a

mortar and pestle. Part of the resulting powder was used for phase identification while

the remainder was saved for electrochemical characterization. Phase identification was

performed using Rigaku Powder Diffractometers.

3.2.2 Results and Discussion

X-ray diffraction (XRD) of the final compounds from eight individual runs indicated

that all resulting powders from GaEx samples included Cr2GaN, Cr3GaN (or Cr3GaNo. 5)

as main compounds in phase identification. In this work, XRD patterns were analyzed

using MDI JADE 5.0 program. Although there are many other parameters that should be

considered to determine the relative amount of individual compounds in each sample

accurately, it is useful to compare relative peak intensity heights of identified phases in

order to see qualitatively the relative amounts of resulting phases in the final samples.

Considering relative intensity peak height of XRD spectrums (Figure 3.1, Figure 3.2,



Table 3.1 Summary of compositions, times and temperatures of runs carried out on

GaEx samples

Sample Composition (molar ratio of Ga : Heat treatment profile

Cr 2N)

GaEx 1 1.7: 1 850 0C 8hrs

- RT

= 740 IC 24hrs

4 air quenching

GaEx 2 1.7 : 1 850 °C 8hrs

= RT 1000 tC 4hrs

' RT - 740 °C 24hrs

4 Air quenching

GaEx 3 1: 1 900 0C 8hrs

> RT

4 740 tC 24hrs

'4 Air quenching

GaEx 4 1.7 : 1 850 °C 8hrs

'4 740 24hrs

'4 Air quenching

GaEx 5 1.7: 1 740 °C 24hrs

4 Air quenching

GaEx 6 1:1 740 *C 24hrs

4 air quenching

GaEx 7 1:1 740 "C 18hrs

' Air quenching

GaEx 8 1:1 740 "C 48hrs

'4 Air quenching



Figure 3.3), it was observed that more Cr2GaN was created than Cr3GaN in all GaEx

samples from the mixture of gallium metal and chromium nitride powder. The

formation of Cr3GaN requires more Cr atoms than that of Cr2GaN. As our GaEx

samples contained requisite amount of gallium or excess gallium for stoichiometric

Cr2GaN, chromium elements in our starting material mixture seemed to be in short

supply for Cr 3GaN formation. Also, while creation of Cr2GaN demands combination of

Cr 2N and Ga only, formation of Cr3GaN seems to necessitate bond breakage between

Cr-N of Cr2N in order to provide 3 Cr atoms per 1 Ga atom and 1 N atom from the

mixture of Cr2N and Ga. Thus, for these reasons, it was thought that synthesis of

Cr2GaN took place more favorably than the creation of Cr3GaN from our GaEx samples.

Besides, it drew our attention that no trace of crystalline gallium appeared in the XRD

pattern of GaEx 2 as illustrated in Figure 3.1. Since the amount of gallium metal was

put in excess compared to the amount of chromium nitride in GaEx 1-5, it logically

follows that quite an amount of gallium should remain in the final samples after Cr2GaN

and Cr3GaN were produced. This owes to the fact that gallium metal is near its

amorphous liquid state near room temperature. Crystalline gallium peaks were observed

in the XRD patterns of a few samples such as GaExl and GaEx3 (Figure 3.2). Yet, the

intensity of these crystalline gallium peaks was weaker than those of Cr2GaN and

Cr3GaN. As more details will be explained in chapter 4, at least around 45 % of the total

composition of GaEx samples (GaEx 1- GaEx 5) was supposed to comprise gallium

metal either in crystalline or amorphous form. This is deduced from comparison of the

electrochemical capacity value. Then, if all 45 % of the total sample weight of gallium

metal had been in crystalline form, the peak intensity of gallium phase should have been

much higher than those of C2GaN and Cr3GaN in the XRD patterns of GaExl and



GaEx3. This tells us that amorphous gallium metal that wasn't detected in XRD still

existed even in the samples where crystalline gallium phase appeared in the XRD

patterns. Even for GaEx 6-8 of which starting materials corresponded to 211

chemistry, it was verified that quite an amount of gallium still remain in these samples

although no peaks of crystalline gallium emerged in the XRD patterns. More detail on

how this was verified will be treated in chapter 4 again. It is surprising that such an

amount of gallium metal cannot be detected in XRD. Also, there were some unknown

minor peaks in these GaEx XRD patterns. These peaks were not in correspondance to

those of any compound that could be formed from elements Cr, Ga, and N, at least in

phase identification of MDI JADE program. Since the peaks of Cr3GaNo. 5 and Cr3GaN

are overlapped, those two phases were indicated without thorough distinction in our

figures.
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3.3 CGN samples

As previously shown, when gallium metal and chromium nitride (Cr2N) were used as

starting materials to produce Cr2GaN, it was very hard not only to detect but also to

eliminate gallium metal in the final samples. This prevented us from fabricating the

desired compound and testing electrochemical performance of Cr2GaN or other phases

in Cr-Ga-N system. Furthermore, the coarse pellet-type form of raw gallium metal

restricted homogeneous mixing of starting materials during synthesis. Hence, we chose

to start with GaN and Cr, both commercially available in powder type. This way allows

mixing step by use of milling tools during fabrication so that the homogeneity of

mixture of starting materials could be increased. Moreover, the possibility that gallium

metal would exist in the resulting powders could be greatly lowered so that

electrochemical characterization of Cr-Ga-N system could be investigated under little

effect of gallium metal. Final products from starting powders GaN and Cr are denoted

as CGN# (# : number) in order to differentiate from the previously synthesized GaEx

samples.

3.3.1 Experimental procedures

CGN samples were fabricated by similar way to the synthesis of GaEx samples:

weighing, mixing by using milling facilities, cold isostatic pressing, vacuum-sealing,

and heat treatment. Gallium nitride (-325 mesh; Alfa Aesar, 99.99 % purity, metals

basis) and chromium powder (-100+325 mesh; Alfa Aesar, 99.99 % purity) were

weighed and dry mixed in an alumina milling jar to yield the Cr 2GaN stoichiometry. 0-



ring was used to seal the alumina jar in the argon-filled glove box in order to minimize

exposure to air. Sealed jar was put on roller mill and spun at 300 rpm for 24 hours for

mixing purpose. The mixture was cold iso-pressed at 42000 psi for 3 minute into a

single dense yellowish dark gray piece that is -4 cm long and -4-5 mm diameter. (The

color of GaN powder is light yellow and the color of Cr is dark gray.) Like GaEx

sample preparation, latex "finger" from glove, plastic tubing and plastic bags were used

to cover and seal the mixture in turn before isostatic pressing and peeled off right before

the next step (vacuum sealing). The specimens were encapsulated in quartz tube into

vacuum atmosphere before annealing. Heat treatment was conducted in a quartz tube

furnace with ramping rate, 10"C/minute. As in GaEx's synthesis, we employed several

heat treatment conditions for CGN samples that were listed in Table 3.2. After each

sample fabrication, XRD was run on the resulting CGN powders for phase identification.

We focused mainly on obtaining the samples that contained as much amount of ternary

Cr-Ga-N compounds such as Cr2GaN and Cr3GaN as possible for our future

characterization.

3.3.2 Results and Discussion

XRD patterns of several CGN samples are demonstrated from Figure 3.4 through Figure

3.8. Depending on samples from individual heat treatment experiment sets, relative

amount of Cr2GaN, Cr3GaN, GaN, Cr and oxides differed. GaN and Cr were regarded to

remain unreacted from starting mixture due to the fact that factors such as temperatures

and times were not sufficiently met. CGN4 was synthesized by firing stoichiometric

mixture at 740 °C for 9 hours. Relatively high intensity peaks of GaN in the XRD



Table 3.2 Summary of heat treatment conditions for CGN samples

Sample Heat treatment profile Specifics

(all followed by

air-quenching)

CGN 1 850 °C 8hrs

'4 740 IC 24 hrs

CGN 3 740 °C 18hrs Pressed at 18000 psi

CGN 4 740 "C 9hrs

CGN 5 850 "C 8hrs Mixture corresponding to

'4 740 "C 24hrs 311 chemistry

CGN 6 740 "C 18hrs

CGN 7 740 "C 100 hrs

CGN 9 800 "C 24 hrs



patterns of CGN4 (Figure 3.4) indicated that quite an amount of GaN wasn't able to

react due to lack of reacting time. In case of the samples (CGN6 and CGN7) annealed at

the same temperature for longer hours (Figure 3.6 and Figure 3.7) compared to CGN4,

GaN phase was not distinctly identified in the XRD patterns. Sample CGN3 also was

found to contain an appreciable amount of GaN. Compared to CGN6, CGN3 was

differently produced in that the stoichiometric mixture was pressed at lower pressure

(18000 psi) during cold isostatic pressing step. (Normally, samples were pressed at

42000 psi.) Pressing at relatively lower pressure seemed to affect the extent of density

of the sample. In a less compact mixture sample, the distance among powders would be

longer and thus reaction among powder materials would take place less actively

compared to the reaction in a denser mixture piece. As illustrated in Figure 3.6 and

Figure 3.7, CGN6 and CGN7 that were annealed at 740 1C for 18hrs and 100hrs,

respectively, were mainly composed of Cr2GaN and Cr 3GaN. Comparison of the

relative peak intensities in the XRD patterns of CGN6 and CGN7 (Figure 3.6 and

Figure 3.7, respectively) tells us firstly that too many hours of annealing at that

temperature cause Cr2GaN to decompose and secondly, Cr3GaN stays more stable when

fired at 740 "C for longer time than Cr2GaN. In an attempt to yield a single phase of

Cr 3GaN, sample CGN5 was synthesized by weighing the requisite amount of GaN and

Cr, following the same procedures as other samples and heat treated as listed in Table

3.2. Provided that undetectable amorphous phases by XRD didn't exist, almost a single

phase of Cr3GaN was formed and identified by XRD in CGN5. The broad peak looking

like a hump at lower degrees in the XRD pattern of CGN5 (Figure 3.5) gave us doubt

whether any amorphous phases were formed. This will be mentioned again in more

detail later in chapter 4. The result that single phase of Cr3GaN was more easily



produced at 740 IC than Cr2GaN from GaN and Cr mixture suggested that equilibrium

state of Cr3GaN could be reached much faster than that of Cr 2GaN at 740 "C from this

mixture. For CGN9, based on our previous experimental results, we decided to try

annealing for 24 hours at a temperature that is higher than 740 "C but should be lower

than 850 IC (decomposition temperature of Cr2GaN). From this attempt, sample CGN9

that seemed to contain more amount of Cr2GaN than Cr3GaN was obtained. Peaks of

Cr20 3 also appeared in the XRD patterns of CGN9 (Figure 3.8) and this seemed to

attribute to the oxidation of starting element Cr powder during fabrication procedures.

From the analysis of CGN9, 800 "C seemed to be a better optimum temperature to

synthesize Cr2GaN than 740 1C. All the analysis above was established upon the

assumption that there were no other major phases that were not detectable in XRD like

the case of amorphous gallium metal in GaEx samples. Observation that at least no

crystalline gallium phase was identified in XRD patterns confirmed that the possibility

that pure gallium exists was lower in CGN's than in GaEx's.
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4. Chapter 4 Electrochemical Performances

In order to investigate electrochemical properties of Cr-Ga-N materials, several

appropriate GaEx and CGN samples were selected and tested electrochemically.

Assuming that ternary compounds in Cr-Ga-N system such as Cr2GaN and Cr3GaN

uptake certain lithium atoms per 1 unit of each compound, theoretical values of

electrochemical capacity were calculated. Based on these values, current rates were also

calculated and applied to the corresponding samples. Experimental values of

electrochemical capacities obtained from the tests were compared with these theoretical

values of capacity retention. Electrochemical lithium intercalation/deintercalation tests

were performed also on GaN, Cr2N+CrN and Ga20 3 as contrast experiments in order to

see if any of these compounds contributed to the reactivity of our samples toward Li.

All battery test results were analyzes in terms of electrochemical capacity retention,

voltage curve shape and reversibility. In the last section of this chapter, we proposed

several reaction mechanisms for certain samples and deduced under which reaction each

phase in Cr-Ga-N system underwent. Argument regarding possible reaction mechanisms

was made based on the experimental results of ex-situ XRD along with Reitveld

refinement analysis as well as electrochemical test results.

4.1 Experimental procedure

Cell assembly

Several GaEx and CGN powders prepared earlier were selected and tested for their



electrochemical performances vs. Li in Swagelok-type cells assembled in an argon-

filled glove box, with oxygen and water contents below 5 ppm. After synthesis, the

samples were ground in a mortar and mixed with Kynar as a binder and NMP as a

solvent to dissolve the binder. This mixture was spreaded out uniformly on Cu foil using

casting tools. Then, samples cast on Cu foil were put to stay in vacuum oven at 80 0C

for overnight in order to remove the solvent (NMP). When dried out, electrode materials

on copper foil were cut into pieces of certain square shape. This comprised working

electrode and Li metal (lithium foil, 0.75mm of thickness) was used as counter electrode.

The electrolytes we used consisted of 1.33 LiPF6 in a 4:1:3:2 volume ratio mixture of

EC, PC, DMC, and EMC. A microporous polypropylene film of Celgard 2400 was used

as a separator. The cells were tested in a galvanostatic mode at various current rates.

Current rates were calculated based upon the actual weight of active materials of

electrodes. Since the electrodes were composed of Cu foil, powders of interest, and

binder, the weight of Cu foil and binder was subtracted from the total weight of

electrodes, giving us the actual weight of active materials. Based on active material

weight, theoretical current rate was obtained by calculation and applied the samples

appropriately.

X-Ray Diffraction (XRD)

Later in this chapter, we proposed several possible reaction mechanisms for each phase

in Cr-Ga-N system. In order to verify if structure underwent expansion or contraction

during cycling, ex-situ XRD was undertaken, providing information about unit cell

parameter variation during cycling. The analysis of ex-situ XRD was made using



Reitveld refinement method.

4.2 Results and Discussion

4.2.1 Electrochemical performance of Cr-Ga-N materials

GaEx samples

In voltage profile of GaEx samples, there were three voltage plateaus shown both upon

discharge and charge. (Figure 4.1) The voltage-capacity curves of GaEx samples greatly

resemble the voltage-composition curve of Li-Ga alloys (Fig. 4.2) in that there are three

distinct voltage plateaus located at similar height on charge and discharge, respectively.

As published in reference [1], J. Saint et al. synthesized LixGay alloys such as Li2Ga and

LiGa by ball-milling Ga ingot and lithium powder and tested these alloys in Li-half

cells potentiostatically. By comparison, we could see that both LixGay alloys and GaEx

samples showed three distinctive voltage plateaus both on discharge and charge at

similar height of voltage in capacity vs. voltage curves. (Figure 4.1 and Figure 4.2) This

indicated that LixGay alloys and GaEx sample have similar activity toward Li. In chapter

3, by calculation, we confirmed that gallium metal comprised at least 45 % of the total

sample weight. The existence of quite an amount of gallium metal in GaEx samples as

well as the similar voltage profile shape of GaEx samples to Li-Ga alloys strongly

suggested that the main electrochemically active material was gallium metal in GaEx

samples. In terms of capacity retention, sample GaEx exhibited 182.87 mAh/g and

168.08 mAh/g on discharge and charge, respectively during the first cycle, followed by



the capacity value, 170.07 mAh/g and 163.70 mAh/g on discharge and charge,

respectively in the second cycle. By definition, the first-cycle irreversibility is the

difference between first-charge and first-discharge capacity, arising when lithium is

trapped in the anode or is consumed irreversibly in a side reaction during the first cycle.

As shown in chapter 1, a number of possible anode materials suffer from the large first-

cycle irreversibility. Therefore, it is remarkable that GaEx samples displayed relatively

low first-cycle irreversibility. (Table 4.1) The reversibility around 92.3% was obtained

from GaEx 2 sample during the 1st cycle. Although 1:1 molar ratio of gallium pellets

and Cr2N were put to attempt to synthesize Cr2GaN, GaEx 6-8 samples were found to

still contain gallium metal in the resulting powders, based on voltage profiles of these

samples. The voltage-capacity curve of GaEx6-8 exhibited the same shape as the

voltage profile of GaEx 1-5. The voltage profile and capacity-cycle number graph were

depicted in Figure 4.3. It implied that although peaks of gallium metal were not detected

in XRD patterns, the existence of gallium seemed obvious in all GaEx samples and the

electrochemical capacity seemed to come from gallium metal remaining in GaEx

samples remaining from the starting materials.

In addition, in order to see the effect of kinetics on GaEx samples, tests with reduced

size particles (or amorphous phase) by milling and at higher temperature (at 37 °C)

were conducted. As shown in Figure 4.3, with increasing temperature conditions,

electrochemical capacity increased by 40-50% and this demonstrated the kinetic

influence upon reactions. Unlike high temperature test that didn't affect the shape of

voltage profile, test results after milling the sample showed definite change in the shape

of voltage profile as well as increasing values in electrochemical capacity.



Disappearance of step-wise plateaus in voltage profile implies either that through

milling, amorphous phase or new phase were formed, or that reduced particle size of

gallium or other materials behaved differently from the bulk sample at some point.

Table 4.1 Electrochemical capacity values of GaEx2

cycle 1 cycle2

C/100 discharge 182.87 170.07

charge 168.08 163.7

C/50 discharge 120.25 112.01

charge 110.78 110.73

I GaEx2 at C/100 and RT

0 200 4;0 ;00
total capacity (mAh/g)

I 0am5

RTIIRT

0.0 0.2 04 0.0 0.8 1.0

percentage of capacity

Fig. 4.1 Voltage-capacity curve of GaEx 2 (left) and voltage-percentage of capacity
curve of GaEx 2 during the first cycle (discharge in red line and charge in black
line) (right)
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CGN samples

After electrode casting, XRD was run on CGN samples before electrochemical tests. As

illustrated in Figure 4.5, due to the unavoidable exposure to air even for a short time

during electrode casting procedure, chromium oxide were formed and detected in XRD.

As will be mentioned later in this chapter, these oxides were regarded to take active role

mainly when the CGN samples reacted with lithium.

First of all, electrochemical test results of CGN5 (Cr3GaN + oxides) were shown in

Figure 4.6 In voltage-capacity profile, upon the first cycle discharge, one very flat

monatomic curve continued from around 0.07V to 0.01V (limit voltage) instead of

several level of step-wise plateaus that were seen in gallium active samples (GaEx's).

This suggested that a reaction of different mechanism from that of LixGa alloy

underwent in the reaction of CGN5 with lithium. In subsequent cycles, curves having

certain inflections around 0.2V and 0.34-0.31V appeared quite reversibly. Considering

electrochemical capacity retention values and the shape of voltage capacity profile, it

implied that certain reactions occur quite reversibly after the first cycle. The theoretical

capacity of Cr3GaN is 111.82 mAh/g and 223.64 mAh/g for 1 lithium uptake per 1 unit

of Cr3GaN and 2 lithium uptake, respectively. Actual discharge capacity value of CGN5

exhibited 50.6575 mAh/g on discharge and 27.6503 mAh/g on charge, respectively at

C/300 and room temperature during the first cycle.

One of the methods to check out the polarization effect is to test sample at different rate

of current. Even though both are quite slow current rate, the current rate of C/300 and



C/100 were applied to CGN5 in order to see if there is any polarization occurring upon

reaction in CGN5. (Figure 4.7) The difference between the electrochemical capacities

from relatively lower and higher current tests gradually decreased and disappeared only

after several cycles. Voltage profiles upon 1st cycle from both current condition tests

were rescaled with respect to the percentage of cycle capacity of each test. From this

comparison plot, we could see that lower current test exhibited a curve with a little more

slope followed by a little lower plateau as current varied. However, little difference

implied that not much polarization occurred in CGN5.
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Fig. 4.6 Electrochemical test result for CGN 5. (a)

voltage profile during the 1st cycle, and

Voltage-capacity curve, (b)
(c) cycle capacity
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Fig. 4.7 Electrochemical test results for CGN5 at different current rate
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Electrochemical tests were also conducted on CGN9 that was composed of Cr 2GaN as

the first main phase, Cr3GaN as the second main phase and oxides. (Figure 4.8)

Theoretical capacity of Cr2GaN is 142.794 mAh/g, assuming that 1 Li is inserted into 1

unit of Cr2GaN. For two Li insertion per 1 unit of Cr2GaN, the theoretical capacity of

Cr2GaN is 285.5879 mAh/g. The actual capacity of CGN9 during the 1st cycle was

73.85 mAh/g on discharge and 47.78 mAh/g on charge, respectively. Similar to the

voltage profiles of LixGay and GaEx samples, several step-wise curves were observed in

CGN9 even though the length of voltage plateaus along capacity axis (or composition

axis) was shorter. In order to compare LixGay alloys, GaEx2, and CGN9, the numbers

of voltage from where voltage plateaus appeared in each sample are listed as follows:

LixGay upon discharge: 0.025 /0.52 /0.82V

GaEx2 upon discharge: 0.01-0.12 /0.50 and 0.59V /0.73V

CGNn9 upon discharge: 0.01-0.13V/ 0.46V /0.78V (1st cycle) followed by 0.2V /0.47V

(from the 2nd cycles)

Although where voltage plateaus appeared in voltage profile of CGN9 seemed to

correspond to GaEx2 (gallium excess sample), from a perspective of length of each

plateaus along the capacity axis, obvious difference was shown between these two.

These figures were also used to deduce the possible reaction mechanism of CGN9,

especially Cr2GaN phase later.

The tests at different current rate were undertaken on CGN9 also in order to see if any

polarization occurred. (Figure 4.9) Unlike CGN5 where a bit of polarization observed,



both test results of CGN9 at C/300 and C/100 almost corresponded to each other in

terms of voltage profile and cycle capacity values. Here, voltage profiles were re-plotted

with modified scale, that is, percentage of each capacity for comparison. Although both

C/300 and C/100 were slow current rates, polarization seemed not to occur at least at

these two different rates in CGN9.
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Fig. 4.8 Electrochemical test results of CGN9. (a) Voltage-capacity curve, (b)
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4.2.2 Possible reaction mechanisms of Cr-Ga-N materials

In chapter 4.2.1, we presented how much lithium is taken up upon discharge/charge

along with the corresponding voltage profile upon cycling, depending on each sample

from different synthesis results. In this section, we extended our discussion to possible

reaction mechanisms that occur during charge and discharge processes of each sample.

Knowing how lithium insertion/deinsertion takes place would be of great help not only

to understand the material itself more fundamentally but also to find out the way to

improve the material properties as electrodes.

Reaction of GaEx 2 vs. Li

Earlier, it was shown that the main active material that stored lithium in GaEx2 was

gallium metal even though the peaks of gallium didn't appear in the XRD patterns. The

reaction mechanism of GaEx vs. Li, therefore, could be thought to follow the same

mechanism as gallium metal or Li-Ga alloy, unless there was some other unknown

component exhibiting similar voltage characteristics upon cycling to gallium. Provided

that the argument regarding Li-Ga alloy reaction mechanism made by J. Saint et al. in

reference [1] is quite reasonable, it can also be expected that the phase transitions of

Li2Ga 4• LiGa 4 Li2Ga7 also correspond to each voltage plateau of the GaEx samples.

When compared to the voltage plateaus of similar position in Li-Ga alloy, the much

shorter length of voltage plateau along composition axis at around 0.05V on discharge

(0.28V on charge) indicated that the transformation from LiGa to Li2Ga might be

bypassed in GaEx samples due to slow reaction kinetics. As shown in Figure 4.10, a



phase transition of from LiGa to Li2Ga is a structural transition from three dimensional

structures to two dimensional structures that should entail atomic bond breakage and

rearrangement. This means that a reaction of this kind is not likely to take place easily

unless enough kinetic conditions such as high temperature and slow current rates are

satisfied.

Besides, thorough voltage profile comparison between Figure 4.1 and 4.2 implied that

more difference existed between pure Li-Ga alloy vs. Li reaction mechanism and the

reaction of GaEx2 vs. Li although they had gallium metal in common as the

electrochemically active component. First of all, unlike Li-Ga alloy case, very obvious

inflection appeared at the second voltage plateau (0.5V and 0.59V) on discharge in

GaEx2. According to phase diagram, the phase transition from Li3Ga2 to LiGa was

possibly to occur in Li-Ga binary alloy reaction mechanism. It is suspected that the

transition of from Li3Ga2 to LiGa also possibly underwent at around 0.59 V before the

inflection, followed by the transformation from LiGa to Li2Ga7 at around 0.5V. Another

difference is that voltage plateaus of GaEx systems are a little lower than pure Li-Ga

alloy systems, especially on discharge. Possible reasons can be thought of regarding

these differences between Li-Ga alloys and GaEx samples. GaEx samples were

composed of not only gallium but also other phases unlike Li-Ga alloys, and therefore,

the main active material, gallium in GaEx samples were surrounded by other phases. In

the GaEx samples, there were other phases than gallium metal such as Cr2GaN, Cr3GaN

and unreacted Cr2N from starting raw material. Although the amount of each of these

phases seemed relatively too small to take active role in reaction with Li compared to

gallium metal, it could be plausible that these other phases, especially hard material,



Cr 2N, possibly kept its structure and helped conserve the system during cycling as TiC

or SiC worked as a buffer matrix in Si-TiC or Ti-TiC nanocomposite materials [2]. The

effect of different surrounding composition might be the reason as well why the

capacity retention of GaEx system unusually reaches up to 92% upon cycling, while

pure Li-Ga binary alloys still suffered from large irreversibility.

Possible Reaction Mechanism of CGNS (Cr3GaN + oxides) vs. Li

In general, there are 2 types of reactions of Li with electrochemical active compounds:

intercalation reaction and displacement reaction. From this point of view, several

possible mechanisms were proposed, based upon experimental results and analysis.

i) Intercalation Reaction

Since CGN5 was mainly composed of the Cr 3GaN phase, an intercalation reaction of

Cr 3GaN phase like below would be plausible.

xLi + Cr 3GaN <* LixGa 3GaN (Equation 4.1)

If CGN5 underwent this intercalation reaction, Cr 3GaN structure should be expanded

upon lithiation. In order to check the expansion or contraction upon lithiation, ex-situ X-

ray experiment at several points of discharge of CGN5 during the first cycle was

performed and analyzed through Reitveld refinement. The unit cell parameter variation



of Cr3GaN structure upon 1St cycle discharge is presented in Table 4.2 along with

goodness of fit (GOF). Typically, up to the third decimal point of unit cell parameters

should be taken into account in Reitveld refinement. This table suggested that no

systematic expansion or contraction of Cr3GaN structure was shown and therefore,

CGN5 sample did not undergo through an intercalation reaction of Cr3GaN.

In JCPDS card available, Cr 3GaNo. 5 has been reported to have perovskite structure.

Compared to perovskite Cr3GaN, this phase is deficient in N atoms and therefore, the

vacant sites of N atoms could be available for lithium ion to be inserted. Yet, since

perovskite Cr3GaN is partially ionic, the idea of inserting more lithium cations into

anion-deficient structure is too radical to be realized.

ii) Displacement Reaction of gallium

xLi + Cr 3GaN 4* LixGay + Cr3Gal.yN (Eqaution 4.2)

This reaction is actually what we expected to happen in Cr2GaN vs. Li, based on recent

report that gallium was extruded from Cr2GaN under particular circumstances. [3] Yet,

little trace of Li-Ga compound either in XRD pattern or in voltage profile shape was

found in ex-situ XRD patterns of Cr3GaN upon lithiation. Taking into consideration that

the perovskite structure is partially ionic cubic, we could imagine that the partially

bonding of gallium atom with N atoms in this structure is not likely to part easily and

alloy with Li.



iii) Displacement Reaction of nitrides

In several cases reported lately (i.e. Zn3N2, Cu3N, Ge3N4) [4-7], nitrides, in general,

exhibit the following 2-step reaction:

i) MxNy + 3yLi+ + 3ye- '• xM + yLi3N (matrix) ---- irreversible reaction

(Equation 4.3)

ii) x M + z Li+ + ze- * Li z Mx ------------------reversible reaction (Equation 4.4)

If we apply this to Cr 3GaN phase,

i) Cr 3GaN + 3yLi+ 3ye- 4* Cr3 Ga + Li3N (Equation 4.5)

ii) Cr3Ga + zLi+ + ze- ý* Li3 Cr3Ga (Equation 4.6)

Upon Li insertion, very minor peaks of assumed Cr3Ga were shown a bit but little of

Li3N exists. In the literature, when nitrides follow the reaction mechanism above, the

product, Li3N peaks evolve very evidently with high intensity.

iv)Displacement reaction of oxides

If Cr3GaN did not mainly contribute to the capacity of CGN5 vs. Li, it might be

possible that oxides that were inevitably formed during the electrode casting process

behaved as active species in reaction of CGN5 vs. Li. The plausible oxide phases are

Cr 20 3 and Ga20 3 as confirmed in XRD patterns. (Figure 4.5) Electrochemical



performance of Cr20 3 has already been studied by other research group. [8] (Figure

4.11) According to Jin et al., Cr20 3 was known to undergo similar reaction mechanism

of oxides to the one of TMO (tin metal oxide) like below:

Cr20 3 + 6Li -> 2Cr + 3Li20 (Equation 4.7)

In their experiments, the initial discharge capacity reached up to 1166 mAh/g, which

was larger than the theoretical value of 1058 mAh/g, owing to extra Li storage in SEI

formation. The initial charge capacity value was 771 mAh/g, showing irreversibility as

other metal oxides do.

As no report on the electrochemical properties of Ga20 3 has been found, galvanostatic

test was conducted with commercially available Ga20 3 in this work. Based on several

aspects of voltage-capacity curve and cycling behavior (Figure 4.12), it can be

concluded that Ga20 3 features the typical displacement reaction behavior of metal

oxides [9-13]. The first discharge plateau was continuously flat line, which indicated

high capacity, followed by a charge plateau with less capacity. The second discharge

appeared at higher voltage but there still exists polarization, providing charge plateau

with less capacity than discharge capacity. Subsequent cycles are in the same pattern as

the 2 nd cycle except for capacity loss. This typical metal oxide voltage behavior suggests

2-step reaction mechanisms:

1st discharge: Ga203 + 6Li -> 2Li20 + 2Ga (irreversible) (Equation 4.8)

2 nd and further discharge: xLi + 2Ga * LixGay (reversible) (Equation 4.9)



Another common feature of metal oxide also displayed in Ga20 3 is that experimental

capacity value of 1200 mAh/g is much larger than the theoretical capacity value of 858

mAh/g, storing 6Li per unit Ga203. In short, both Cr20 3 and Ga20 3 turned out to be one

of typical metal oxides that generate large irreversible capacity initially with low flat

voltage plateau, followed by relatively reversible capacity retention.

Now, whether these oxides are the major active species in CGN5 sample should be

answered. There are several supporting bases. First of all, the voltage curve and cycle

capacity of CGN5 (Figure 4.6 and Figure 4.7) resembled the behavior of metal oxides

of Cr20 3 and Ga20 3 (Figure 4.11 and Figure 4.12). Upon 1st cycle discharge, one very

flat monotomic curve continued from around 0.07V to 0.01V (limit voltage). In the

following cycles, curves having certain inflections around 0.2V and 0.34~0.31V

appeared quite reversibly. When electrochemical capacity retention and voltage-capacity

profile were considered, certain reactions seemed to occur quite reversibly after an

irreversible reaction during the 1st cycle. In addition, although the intensity of oxides

peaks were not strong compared to the main phase Cr3GaN in the XRD patterns due to

small amount, when the part where oxide peaks appeared upon lithiation were

magnified for the sake of analysis, it was observed that the peak intensities of oxides

were decreasing upon lithiation, implying consumption of oxides upon Li uptake. Lastly,

by calculation, it is proved that only 0.083 wt% of total sample material weight should

belong to oxides in order to provide about 30 mAh/g, which was the actual capacity

value of CGN5 in our work. Thus, it seemed also reasonable that product such as Li20

from the reaction of oxides with Li were weakly detected only in ex-situ X-ray



experiment upon lithiation even though oxides take the active role in the mechanism.

Possible reaction mechanism of CGN9 vs. Li

It was useful to compare voltage profiles of GaEx2, CGN5 and CGN9 in the same plot

so that bigger picture about the possible mechanism can be captured. The 1 st discharge

and charge voltage curves are re-drawn along the percentage of each capacity all

together in Figure 4.13. Above all, the behavior of CGN9 stood out in that its voltage

profile looked like a combination of the other two voltage profiles. There were

noticeable steps in the voltage plateau curve of CGN9 like the step-wise voltage profile

appeared in GaEx 2, but with different length and slope along the percentage of capacity

axes. In terms of slope of voltage vs. capacity, the voltage-capacity curve of CGN9

rather resembled CGN5. The lowest and longest voltage plateau shown in the voltage-

capacity curve of CGN9 also was almost consistent with the voltage-capacity profile of

CGN5. If oxides were the only active species in CGN9 like CGN5, the voltage profile

should have looked like the one of CGN5. There were, however, more detailed steps

distinctly that were shown in the voltage-capacity curve of GaEx2. Even upon charge,

the height where voltage plateaus were situated was consistent with gallium metal

(GaEx2) vs. Li case. Furthermore, much more reversible capacity retention of was

shown in CGN9 than in CGN5. This intermediate behavior suggested that in

electrochemical reaction of CGN9 vs. Li, gallium in certain way (either from extrusion

from Cr2GaN structure or from remaining amorphous gallium) took an active role while,

at the same time, other reactions such as displacement reaction of oxides from CGN5

occurred at the same time, generating mixing mechanism of reaction in CGN9. This



implied that not only displacement reactions of oxides took place but also that gallium,

extruded from Cr2GaN phase, underwent a displacement reaction in CGN9, both at the

same time.

Table 4.2 Unit cell parameter variation of CGN5 upon lithiation

Voltage upon lithiation Unit cell parameter (A) Goodness of Fit (GOF)

Before discharge (3.00V) 3.875507 2.88

At 0.7 V 3.876876 3.39

0.1280V 3.875860 2.97

0.08V 3.876207 2.57

0.04V 3.876207 1.50

0.01V 3.875503 3.90
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Fig. 4.10 The crystal structures of (a), (b) LiGa and (c) Li2Ga. [11
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Chapter 5 Conclusion

In summary, single phase materials of ternary compounds in Cr-Ga-N system such as

Cr2GaN and Cr3GaN were hard to fabricate. Instead, in this work, samples composed of

several kinds of Cr-Ga-N materials were obtained by weighing, mixing, cold isostatic

pressing, vacuum sealing, and heat treatment. Electrochemical tests were conducted on

several selected samples. Although electrochemical capacity of Cr2GaN was found not

to be large, observation that gallium from Cr2GaN structure seemed to be

electrochemically active was notable. Possible reaction mechanisms for the individual

samples were discussed, based on experimental data.


