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Abstract

Visible range Raman spectra of graphene are generated based on the
double resonant process employing a full two-dimensional numerical
calculation applying second-order perturbation theory. Tight binding
expressions for both the TO phonon dispersion and the 7r - nr* electronic
bands are used, which are then fit to experimental or ab-initio results.
We are able to reproduce the single-peak D mode of graphene at
- 1380 cm - ' that is identical to experiment. A near linear shift in the D
mode peak with changing incoming laser energy of 33 cm- 1/eV is
calculated. Our shift marginally underestimates the experimental shifts
as most of the literature features specimens that contain a few or more
layers of graphene through to graphite that ought to subtly alter their
electronic and phonon dispersions. However, our approach is readily
applicable to such homologous forms of graphene once we have
available their electronic band structure and phonon dispersions.
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1 Introduction

A single layer of carbon atoms in a hexagonal network -graphene, is a building

block for carbon-based materials such as carbon nanotubes, graphite, fullerenes

etc. Initially presumed to not exist in the free-state, graphene has recently been

receiving renewed interest as a material owing to its recent isolation via exfoliation

from graphite (1). It shows a host of interesting properties such as its semi-metallic

nature which is extremely rare for films of atomic thickness, ballistic electronic

transport at sub-micrometer dimensions at ambient temperatures (1), attracting

researchers to its potential application as a replacement for copper interconnects

(2), field effect (1) for FET applications, the anomalous quantum Hall effect (3),

strong electron-phonon coupling etc.

In this thesis we will discuss the Raman spectra of single layer graphene based on a

full two dimensional calculation that is performed numerically. We start by

explaining the Raman spectra of graphite that is expected to be very similar to

graphene.
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Figure 1-1: Raman spectra of graphite excited by laser lines with

photon energies indicated. From Ref. (17).

The experimental Raman spectra of graphite shown in Figure 1-1 consists of a G

band (also known as the F band) at 1589 cm- 1 that remains stationary with

changing excitation laser energy. On the other hand another peak known as the D

peak (the D denoting defect) at -1380 cm- ' shows an unexpected near-linear shift

with excitation energy. The double resonant process as proposed by Thomsen and

Reich in Ref. (4), is successful in explaining the Raman spectra of sp 2 bonded

carbon-based materials such as graphene, graphite, carbon nanotubes etc. In the

language of perturbation theory, the double resonant process is characterized by

having two real intermediate states and provides a firm theoretical basis for the

hitherto unexplained phenomena of the shift in the defect-related D mode of

graphene with change in excitation laser energy.



Recent experimental measurements on graphene (see Ref. (5)) contrasted

graphite's double-peak structure (the curve was fit to two Lorentzians) with a

single peak structure for graphene as shown in Figure 2.1-2. Indeed, even early

calculations of the Raman spectra of graphene (5), showed a double-peak structure

for the D mode in graphene which was not seen experimentally (6).
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Figure 2.1-2: A comparison of the D mode peaks in the Raman spectra of graphite and graphene for
excitation laser energy at 514 nm. From Ref. (6).

This thesis aims at extending the one dimensional model (See Ref. (4)) of the

Raman spectra of graphene to a full 2-D calculation that is performed numerically.



It is able to recover the single-peak D mode evident in graphene and provides

extensibility to multi-layer versions of graphene through to graphite.

Chapter 2 of this thesis sets the stage for our results by discussing the theoretical

framework necessary for understanding the calculation required for generating the

Raman spectra of graphene. Section 2.1 discusses the tight binding description of

Graphene that is used to generate the electronic band gap and phonon dispersion

whose constants are then fit to experimental or ab-initio data. Section 2.2 briefly

develops basic perturbation theory and introduces Feynman diagrams that are used

as an aid to visualize the double resonant process. The double resonant process is

discussed at length in the context of graphene in section 2.3 and is followed by a

section on selection rules and symmetry arguments that are used to explain the

preponderant contribution of the TO phonon branch in the Raman spectra of

graphene. Finally, in section 2.5, we describe the computational resources and

complexity invoked via our numerical code.

Chapter 3 exposits the results of our calculations where we first discuss the

calculation involving only the 1 st nearest neighbor phonon dispersion in section

3.1, followed by section 3.2 that discusses the results based on a calculation that

uses the more realistic 3 rd nearest neighbor phonon dispersion. Finally, we present

a discussion of our results in section 0 and finish with our conclusions and scope

for future work.



2 Theoretical framework

2.1 Tight binding description of graphene

The electronic structure of any material is typically obtained by one of two

approaches. The first, is generally known as the free electron approximation

wherein the electrons are modeled to move essentially as free particles in a

vanishingly small potential produced by the atoms and their interaction with other

electrons. The second approach, in contrast to the first, is known as the tight

binding or the linear combination of atomic orbitals (LCAO) approximation. Here

we assume that the electrons are tightly bound to their nuclei and that when they

are brought close to each other their wave functions overlap. Whereas in the free

electron approach we model the electron wave functions as plane waves, in the

tight binding approach we model them as atomic orbital wave functions. The

interaction of the electronic states is what leads to the broadening of the eigenstates

and their evolution into continuous bands of the solid. For graphene it is found that

the tight binding approach is particularly successful in describing the band

structure around the Fermi level.



The atomic number of carbon is 6 which leads to the ground-state orbital structure

1s2 2s 2 2p 2. However, in order for carbon to maximize the number of bonds for

energy minimization, it's four valence electrons end up being distributed as one 2s

electron and three 2p electrons. The overlap of the different electronic orbitals

corresponding to each atom on the hexagonal network leads to the evolution of

continuous electronic bands. The overlap between the Pz wave function with the s

or the Px and the py is strictly zero. While the s, Px, and py wave functions are

symmetric for points above and below the graphene layer, the Pz orbital changes

sign. The contributions for positive and negative z cancel and the overlap vanishes

on integrating over the entire space. Therefore, the Pz orbitals may be treated

independently of the other valence electrons. These are found to be responsible for

the an bonds of graphene (7), and are relevant whilst probing the electronic

structure of graphene in the visible domain.

Figure 2.1-1: Hexagonal lattice of graphene. The sub-lattices are denoted by A and B. From Ref. (8)
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Following the treatment and nomenclature found in Ref. (8); starting with the

Schrodinger's Equation

Hip(k) = E(k)O(k) 2.1.1

where H is the Hamiltonian, E(k) are the energy eigenvalues at the wave vector k,

and ip(k) are the eigenfunctions. Writing these eigenfunctions as linear

combination of Bloch functions (DI(k) we get

O(k) = C, (l (k) 2.1.2

The unit cell of graphene contains two carbon atoms, which are labeled A and B in

Figure 2.1-1. With the normalized 2Pz orbitals of the isolated carbon atom denoted

by p (r) we construct a Bloch function for the graphene sub lattice A.

DA 1 eik.RA(r - RA) 2.1.3
A RA



and an equivalent function DB for the second sub lattice, B. Here N is the number

of unit cells in the solid and RA is a lattice vector. The sum runs over all possible

lattice vectors.

To solve Schrodinger's equation in Eq. (2.1.1) we substitute 4' with the linear

combination of the Bloch functions in Eq. (2.1.2). Pre-multiplying both sides with

DA and DB to form the matrix elements we obtain the system of linear equations

CA[HAA(k) - E(k)SAA(k) + CB[HAB(k) - E(k)SAB(k)]] = 0 2.1.4
CA[HBA(k) - E(k)SBA(k) + CB[HBB(k) - E(k)SBB(k)]] = 0

Where H1j are the matrix elements of the Hamiltonian and S1j are the overlaps

between the Bloch functions

H,1 =< 4DiIHIOj, >, S,1 =< 0IIDj > 2.1.5

We may simplify the Hamiltonian and overlap matrix by noting the equivalence of

the A and B atoms in graphene. Therefore, the Hamiltonian matrix element HAA

given by the interaction of an atom at site A with itself and all other A atoms in the

crystal is exactly the same as HBB. Similarly, HBA is simply the complex conjugate

of HAB. For the system of two linear equations in Eq. (2.1.4) to have a non-trivial



the determinant must vanish and therefore, the most general form of the secular

equation for the 7 orbitals of graphene is

HAA(k) - E(k)SAA(k) HAB(k) - E(k)SAB(k)
HAB*(k) - E(k)SAB*(k) HAA(k) - E(k)SAA(k)

2.1.6

The above determinant can be solved to yield

= -(-2Eo + Ej) T V(-2Eo + E) 2 - 4E2E3

2E 3

2.1.7

With

Eo = HAA(k) - E(k)SAA(k)
E2 = HAA(k) 2 - HAB(k)HAB*(k)

El = SAB(k)HAB*(k) + HAB(k)SAB*(k)

E3 = SAA(k) 2 - SAB(k)SAB*(k)

E(k) + is the eigenvalue for the symmetric combination of the atomic wave

functions also known as the valence band. Whereas the E(k)- is the antisymmetric

conduction band.

2.1.8



Neglecting the overlap between wave functions centered at different atoms

(SAA = 1; SA = 0) E1 vanishes and E3 is equal to one. Equation (2.1.7) then

simplifies to

Es=o(k)+ = HAA(k) T IHAB(k)I 2.1.9

2.1.1 1" nearest neighbor approximation

For the nearest neighbor interaction where every atom A in Figure 2.1-1 interacts

with itself and the three atoms BB11, BB 12, and BB13 causes HAA to become

constant; it reflects only the property of the A atom. Recalling that the 7n and nr*

bands cross the K point at the Fermi level gives us

HAA - IHAB(K)I = HAA + IHAB(K)I = EF = 0 2.1.10

Or for the energies in the nearest neighbor approximation

Enns=(k) = -IHAB(k)I 2.1.11



We calculate the matrix elements H,n and the overlap integrals Sj, explicitly from

the Bloch functions OI in Eq. (2.1.3). For an atom A the matrix element HAA is

HAA(k) = < QAIHI'A' >

HAA(k) I="j < elk.RA(r - RA)Hjeik-RA p(r - RA, ) > 2.1.12
RA RA,

The first sum runs over all N carbon atoms of type A in the graphene crystal.

Considering only the nearest neighbors we note all three of them belong to the B

sub lattice, see Figure 2.1-1. Thus, for a given RA the second sum has only a single

term, RA, = RA.

HAA(k) = ek.(RA-RA) < A(r - RA)IHIPA(r - RA) >
RA 2.1.13

= E2p

Empirical constants like E2p, are fit by comparing the empirical band structure to

experimental or ab-initio results. SAA is found in exactly the same way as HAA. It is

also constant, and we set it equal to one.

The matrix element between A and B atoms is given by the formal expression



HAB(k) = e k .(R.-R" ) < PA(r - RA)IHIpB(r - RB) > 2.1.14
RA RB

The second sum runs over all three nearest neighbors of a given atom A. The

vectors Rli = RB1i - RA (i = 1,2,3) pointing from A to one of its neighbors Bli

can be found from Figure 2.1-1.

1 1
RI = -(2a, - a2), R2 = -(-a, + 2a2), R13

2.1.15
1

= -(-a, - a2),3

We insert Eq. (2.1.15) into Eq. (2.1.14) and sum over the B neighbors and A

atoms. There are three integrals of the form < pA I HI B i > in Eq. (2.1.14). These

p 's exhibit radial symmetry in the graphene plane and the integral is found to

depend only on the distance between atom A and B. As all three neighbors are

equidistant, we may define a second adjustable constant y0such that

HAB(k) = -(eik.R1 L + eik.R12 + eikR13) < (RA(r - RA)IHI•B(r - RA - R11) >N 2.1
HAB(k) = yo(1 + eik.al + eik.az)ek(a+az)

From Eq. (2.1.8) we obtain



E2 = E2p - y02 [2 + 2cos(k. a,) + 2cos(k. a 2 )
2.1.17

+ 2cos(k. (al - a2)]

For the reciprocal lattice vectors given in terms of the reciprocal lattice vectors

k = k. kl + k 2.k 2 we can write E2 as

E2(kl, k 2) = E2p - YO2[f 12 (kl,k 2)] 2.1.18

Where

fl12 (ki, k 2) = 3 + u(kl, k 2),

u(kj, k2)
2.1.19

= 2cos(27rkl ) + 2cos(2rwk 2)

+ 2cos(2r(k1 - k2 ))

After some algebra we finally obtain the eigenvalues in the Ist nearest neighbor

approximation that is used to generate the electronic band structure of graphene in

Figure 2.1-2.



S2p±Yo f 12(kl,k 2)

1 + so 12 (k1 , k2)
2.1.20

r K MM r K M

Figure 2.1-2 Nearest-neighbors tight-binding band structure of graphene. (a) Full lines show the best fit of the rr

bands with a finite overlap (yo = -2.84eV, so = 0,07). (b) Overlap so set to zero. Yo = -2.7eV. The parameters

were obtained by a least square fit to the ab-initio results close to the K point. The ab-initio band structure is shown

by dashed lines. From Ref. (8).

2.1.2 3 rd nearest neighbor approximation

Judging from the ab-initio tight-binding results (See Figure 2.1-2), an empirical

calculation with third-nearest neighbor interaction should give a better description

of the graphene band structure than the nearest neighbor model. In the Hamiltonian

matrix and overlap elements we now have to further sum over the second

neighbors Ai2 (i = 1,2 ... 6) and the third neighbors B3i (i = 1,2,3) (See Figure

20



2.1-1). Here we will simply give the results of the tedious calculation based on Ref.

(9). We find for HAA and HAB

and

HAB = Y0 (1 + eik.al

HAA = E2p + l1u(k)

1

+ eik.az) e--k.(al +az)

2.1.2222ika 2ikaz k

+ Y2(1 + e-Zik'al + e-2ik~az)e'3
i.(al+az )

Where yjand Y2 are the interaction energies for second and third neighbors,

respectively. For SAA and SAB similar expression with s, and s2 are obtained. In

units of reciprocal lattice vectors, the Ei's relevant for Eq. (2.1.7) are given by

Eo = (E2p + YlU(k 1 , k2))[1 + slu(kl, k 2)]

E1 = 2soYof 12 (kl, k2) + (soY 2 + S2 0)912 (kl, k2)
2.1.24

+ 2S2yf212(2ki, 2k2)

E2 = (E2p + y1u(kl, k 2))Z -_ 2f 12 (k1, k2)
2.1.25

- YoY29 12 (kl, k2) - Y2 f2 (2k,, 2k 2)

2.1.21

2.1.23



E3 = (1 + slu(kl, k2)) 2 - SO2fl2(kl, k2)
2.1.26

- soS2912 (kl, k2 ) - s2
2f 12 (2k,, 2k 2)

Where

912 (k 1, k 2 ) = 2 u(kl, k 2 ) + u(2k, - k2 , k1 - 2k 2 ) 2.1.27

2.1.3 Extension of tight binding results to the phonon dispersion

We expect the Hamiltonian for ionic motion Hion and the associated Hamiltonian

for electron-phonon interaction He-i,,on (See Ref. (10)) to possess the same

symmetry as that for the Hamiltonian He, for the electrons with the atoms cores

fixed in position. This means that our tight binding result found in Eq. (2.1.7) may

be used identically for generating the phonon dispersion. Indeed, all vibrational

modes can be labeled just like electronic states based on their space group

symmetry.



2.2 Perturbation theory

Sections 2.2.1, 2.2.2 and 2.2.2 closely follow the treatment found in Ref. (11).

2.2.1 The interaction representation

Consider a Hamiltonian H of a system that can be decomposed into the following

components

H = Ho + V 2.2.1

where the unperturbed Hamiltonian, Ho is assumed to be time-independent. The

perturbational coupling may or may not depend on time. The transition from the

Schrodinger Representation to the interaction representation is achieved by

applying a unitary transformation of the form

T(t) = eiHo(t- to) l h 2.2.2



to the vectors ip(t) > and operators A of the Schrodinger representation. to is

taken to be the origin of time. Thus, we get in the new representation

Ii(t) > = e iHot / h IP(t) >

A(t) = eiHot/hA e- iHot/h

2.2.3

2.2.4

As a result of the above transformations we find that I|(t) > evolves only as a

result of of the presence of perturbational coupling V .We can see this by applying

the operator ih to Eq. (2.2.3) and using the Schrodinger Equation as followsdt

d iHot
ih-- I0(t) > = -HoV(t)> + eT(Ho + V) I(t) >

= l(t) I0(t) >

2.2.5

2.2.6

Where V(t) = eiHot/V e- iHot/h. Clearly from Eq. (2.2.6) we see that the vector

10(t) > evolves only during the collision and not prior or after it.
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In order to obtain the perturbative expansion of transition amplitudes we can write

the following

It(tf) > = U(tf, t)lo(ti) > 2.2.7

Where U(tf, ti) is the evolution operator. Performing the linear transformation of

Eq. (2.2.3) on Eq. (2.2.7) above we get:

S(tf) > = U(tf, ti)Rl(tt) > 2.2.8

The evolution operator U(tf, ti) satisfies

U(ti, ti) = 1 2.2.9

Taking into account that the Schrodinger Equation, Eq. (2.2.7) is equivalent to the

integral equation



U(tf, to) = Uo(tf, ti)

Where (t) =-iH e (tf-ti)Where Uo(tf, ti) = e h . By successive iterations, Eq. (2.2.10) thus leads to

the perturbative expansion of the evolution operator

U(tf, ti) = Uo(tf, ti) + CZ= 1u(n' (tf, ti)

Where

U (n) (tf , ti)

= L dTrn ... dr 2 dT1 e-iHo(tf-rn)/hV
= f>Tn...T

2 Tl ti

iH(T2 -Z1 )
... Ve h Ve-iHo(Tl-it)/

This then leads to

2.2.13

Where

2.2.11

I tf+ Ih dat o ( ti,t)V U(t, ti) 2.2.10

U(t,, ti) = 1 + •n ) (tf, ti)



U(n))(tf, ti)

2.2.14

= (-)n ,...T2ýT•_,

Let 'fi be the matrix element of U(tf, ti) between the eigenstates (pf and (pi of the

Hamiltonian Ho

2.2.15

which yields

Sfi = sfi + 2.2.16
,fi(n)

n=1

Where

ffi(n) = < PfU (n) (tti)Ioi >

2.2.2 First order transition amplitude

2.2.17

drn ... dT2 dr F1 (-In)

rfi =< ýlO|(ty, tp)l•o >



We can now proceed to calculate the first order of this perturbative expansion for

the transition amplitude ffi. Using Eq. (2.2.17) and (2.2.14) we get

,fi(= I tfV
Lt

> eiTI(Ef-Ei)/lh

If we make the assumption that V is independent of time and take the limits on the

integration to be tj = -- tf
21 tf

T
= - we get2

fi(n) = -27ri < VpflVlpi > 6(T)(Ef - E1) 2.2.19

Where 6 (T) (Ef rs(E•-E1) which tends to 6(Ef - EL)

Hence this function is an approximate delta function expressing the conservation of

energy with an uncertainty hIT due to the finite duration of the interaction.

2.2.3 Second order transition amplitude

2.2.18

as T - oo.



For the second order Eqs. (2.2.17) and (2.2.14) give

fi(2)(tfti) = 2drL < VfVIk
2 k 2.2.20

>< klV I•o• > e •2(Ef-Efk)/•e T1(Ek - Ei)/h

Again assuming V is time-independent and calculating the integral using the

method of residues and carrying algebraic manipulations we get:

(fin)

=-2ri[ lim ]6k pklV(E 2.2.21
7-o+ Ei - Ek+ i71

k

2.2.4 Feynman diagrams

In order to enumerate all the terms for the Second Order Transition amplitude

shown in Eq. (2.2.21) we make use of Feynman Diagrams. Here we will show

what they are and how to use them without discussing them in detail following

Ref. (10).



Propagators

- - Photon

_ _ , ,_ Electron-hole pair or
exciton

I Phonon

Vertices

* Electron-radiation interaction Hamiltonian keR

O Electron-phonon interaction Hamiltonian Xe.i,

Figure 2.2-1: Symbols used in drawing Feynman diagrams to represent Raman scattering. From Ref. (10).

The rules for drawing Feynman diagrams are:

* Excitations such as photon, phonons and electron-hole pairs in Raman

scattering are represented by propagators as shown in Figure 2.2-1. These

are labeled with their corresponding wavevectors, frequencies, and

polarizations etc.

* The interaction between two (or more) excitations is represented by an

intersection of propagators and is known as a vertex. These are rendered as

filled circles or empty squares in Figure 2.2-1.

* The arrows on the propagators indicate creation and annihilation of their

corresponding excitations. Arrows pointing away from a vertex indicate

creation whilst those pointing towards a vertex indicate annihilation.



* Chronologically, Feynman diagrams are read from left to right.

* Different time orders may be generated by simply permuting the order of the

vertexes in the diagram.

Figure 2.2-2: Feynman Diagram for a Process that contributes to One-Phonon Raman Scattering. From Ref.

(10).

We shall illustrate the application of Feynman diagrams by using them to represent

the Raman scattering by phonons following Ref. (12) (13). The diagram for the

simplest Raman process is shown in Figure 2.2-2.

Once all the possible Feynman diagrams have been drawn, these are translated into

the required perturbative expansions of the scattering probability. We make use of

Fermi's golden rule to derive the the probability for scattering a system from the

initial state Ii > to the If > state.



Consider the diagram in Figure 2.2-2. The first vertex introduces a term of the

form

2.2.22[hco - (En - E1)]n

into the scattering probability. Here I i > is taken to be the initial state and E1 is its

energy. In > denotes any intermediate electronic state with energy En. The sign of

hwc in the energy denominator depends on whether the quantum of energy hoi

was absorbed (+ sign) or emitted (-sign). The summation in Eq. (2.2.22) is taken

over all intermediate states In >. When there is a second vertex, as in Figure

2.2-2., Eq. (2.2.22) is multiplied by another similar term to become

S< n'lle-ion(&o)ln >< nl|eR(&i)Ji >
2.2.23

nn' [hti - (En - Ei)][hwi - (En - Ei) - /hoo - (En, - En)]

Where In' > is another intermediate state. The sign of hto o in the denominator is

negative now because a quasiparticle (a phonon in this case) is created. Each

32



vertex adds a matrix element of the interaction Hamiltonian to the numerator and

an energy term to the denominator. Eq. (2.2.23) can be further simplified to read

S< n'Pfe-ion(Wo)ln >< nlXeR(Oi)li >
[hrwi - (En - Ei)][hwi - hwo - (En' - Ei)] 2.2.24

These terms are included till all the vertices are exhausted. Although in principle,

there ought to be the same number of energy terms as the number of vertices in the

diagram. However, the last vertex represents the overall energy conservation

condition and is converted to a delta function.

Therefore for the diagram considered in Figure 2.2-2 we get the so called Raman

matrix element, K2f,0lo (14), as

K2f,10

=C < n'I-e-.on(oo)ln >< nlHeR(Oi)i > 2.2.25
, [w - (En - Ej)] [h•i - A•o - (En' - EJ)]

Different time orders contribute terms that are simply added to the expression

within the summation sign to suitably modify K2f,1 0.



2.3 The double resonant process

Double Resonant Raman scattering -where two of the intermediate electronic states

must be real, plays an important role in interpreting the Raman spectra of

graphene, graphite and carbon nanotubes thereby providing a wealth of

information about their electro-vibrational states. In such carbon based materials

and therefore particularly in graphene it is the dominant process and has been

successful in explaining various features of the Raman Spectra of these materials

such as their D mode and its hitherto curious dependence on the excitation energy

(4), (14), (15), (5). In graphite, carbon nanotubes, and other forms of sp2 -bonded

carbon, several defect-induced and second-order double-resonant modes are

observed, of which the most prominent one is the so-called D-mode at - 1380

cm - '. The first part of this section aims to describe the double-resonant Raman

Scattering in graphene in a 1-dimensional setting and the latter part extends this to

two-dimensions based on our research.



2.3.1 One dimensional calculation

Figure 2.3-1: Brillouin zone of graphene with the high-symmetry points F, K, M.

Consider the K point in the Brillouin zone of graphene (See Figure 2.3-1 and

Figure 2.3-2). The solid line from a to b in Figure 2.3-2 shows only the resonant

contribution involving a phonon that scatters the electron from the electronic

eigenstate a to another electronic eigenstate b. Phonon emission conserves quasi-

momentum and the change in the k values of electronic eigenstates a and b is

compensated via the q of the phonon. Likewise for energy conservation, where the

energy difference between the two eigenstates is again compensated by the

phonon.



I
I
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Figure 2.3-2: A Schematic of the Double resonance process in graphene about the K point. From Ref.

(8).

A continuously varying band gap implies that the incoming photon is always

resonant. A second resonant transition is made from electronic eigenstates a -4 b

with the emission of a phonon. Such a process is depicted in Figure 2.3-2 and adds

a second resonance to the Raman process. The third transition b -+ c occurs due

to elastic defect or surface scattering which cannot be resonant as the electronic

eigenstate is not a real state. Once the electronic eigenstate c is reached the

electron simply recombines with a hole and we get back the original electronic

eigenstate i conserving quasi-momentum. The second possibility, inelastic

scattering with another phonon, leads to a Raman signal at twice the phonon

energy and does not require a defect to conserve momentum.
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Application of perturbation theory to the aforementioned process leads to the so-

called Raman matrix element K2f,10o of the form (16) (where we have followed the

nomenclature from Ref. (5))

K2f ,10o

= I MeR,pMe -defect MepMeR,a 2.

a,bc (El - Ea - iy)(El - Ahph - Ebe - iy)(El - -(p -Eh - iy)

We have abbreviated the matrix elements in the numerator by Mi. Specifically,

Me-defect refers to the elastic interaction of the defect and the scattered electron.

Not much is known about this interaction and the assumption that it is elastic and

symmetry conserving for the scattered carrier. As mentioned in section 2.2.4, we

have to include all the possible time orders i.e., phonon scattering followed by

defect scattering and vice-versa, and include the hole instead of the electron as

well. The Feynman diagrams corresponding to the 1st and 2nd time order of the

double resonant process in graphene are given in Figure 2.3-3 and Figure 2.3-4

respectively.



ph

a b c

Figure 2.3-3: First time order (phonon first, defect second) Feynman diagram for double resonant process in

graphene.

W
ph

a -,b r- c W
- - r -,- - - -t~------

Figure 2.3-4: Second time order (defect first, phonon second) Feynman diagram for double resonant process

in graphene.

A change in incoming photon energy (say i' - a) leads to an excited electron

with a different momentum. In order to fulfill the second resonant transition a

phonon with different quasi-momentum is required and in particular, a larger

incoming photon energy requires a larger phonon wave vector, that depending on

the phonon dispersion involves a higher or lower phonon energy. Therefore,

scanning the incident photon energy is tantamount to scanning the phonon energy

in q-space.



We now show the analytical calculation, attributed to Reich and Thomsen from

Ref. (4) for the Raman Cross-section of the D mode in the approximation of linear

bands in one-dimension.

At the K point, the electronic bands are approximately linear for the transition

energies in the visible range of light and cross the Fermi-level. In Figure 2.3-5 both

the possibilities for scattering between the same electronic bands are shown in

where v1, v2 are the Fermi velocities (or slopes of the energy bands) and k and q .

YI

v, /v, v,

Figure 2.3-5: Linear bands of graphene with (a) D mode scattering taking place across the F point within the

same electronic band and, (b) Scattering across the r point between two almost parallel bands does not

contribute to the double resonant signal due to destructive interference. From Ref. (5).



For the linear bands in Figure 2.3-2, we can calculate the expression given by Eq.

(2.3.1), explicitly noting that for a semi-metal like graphite the electronic energies

can be expressed as a function of k and Fermi-velocities as: Eei= -kl , Ei =I;2 --1

qv11/2 , Ee = i with v1 < 0 and v2 > 0 being the Fermi velocities. In one

dimension converting to an integral over k:

MeR,pMe-defectMepMeR,a

(V1 - v2) (K 2 - q V2 ) (K2 + q
dk

(K1-k)Q(2 -k)
72 - V1

Where K1 = E- and K2V2 -V 1

El-hcoph-iy

v2- V1
As is evident from the above expression,

we have taken the matrix elements to be constant. Besides the interaction

containing the defect, all other matrix elements can be calculated and will feature

in our future work. The expression in Eq. (2.3.1) evaluates to:

K2f,1 =2 f,10 -

aMeR,p Me-def ect MepMeR,a

K2- q 2 ) (K2+ q '2 - 172 - V
2.3.3



Where a = Log(~)
iC1

(22l-q)2  is a slowly varying function of q. As is indicated
(12 -V1)2 ph

by the expression, the strongest resonant enhancement is given when both terms in

the denominator simultaneously approach zero.

Figure 2.3-6 plots IK2f,1 2for graphene for two incoming photon energies. For

each photon energy there are two maxima whose separation depends on the Fermi

velocities that are adapted from the band structure of graphene.

I....0

0.0 0.2 0.4 0.6 0.8

qph (. )

Figure 2.3-6: The absolute magnitude of the Raman matrix element K 2f,,10 2 for two incident photon energies

based on the one dimensional model. From Ref. (4).
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2.3.2 Two dimensional calculation

We now consider the same double-resonant Raman process in a more realistic two-

dimensional setting for a single sheet of graphene. Under the tight binding

approximation, the electronic band-gap of graphene was obtained from Eq.

(2.1.20) as

Eg(k, k2) = Yo f12(klk 2)[H 1 1
1 -sofl 2(k,k 2) 1+S0 f 12(k1 ,k2)

2.3.4

Where Yo = 2.84 eV, so = 0.07

f12 (kl, k2) = 3 + u(kl, k2), u(kl, k 2) = 2cos(2nkl ) + 2cos(2nk 2) +

2cos(2w(k1 - k2)).

and

Figure 2.3-7 shows the smallest irreducible

parallelogram) of the graphene Brillouin zone

electronic band-gap as a contour plot.

portion (region enclosed by

on which we can render the



Figure 2.3-7: Band-gap of graphene superimposed on the smallest irreducible portion of its Brillouin zone

(region enclosed by parallelogram).

For the case of 1s' nearest neighbor interaction, the phonon dispersion of graphene

was fitted to experimental data for it's TO branch (17), (18), (19), (20), (21), (22)

(See also section 2.4: Symmetry and selection rules) as shown in Figure 2.3-8 and

using the tight binding expression from Eq. (2.1.20) derived earlier.

0.155+0.07833 f 12(kjk 2)oh(q, q2) = 8065.5[) ] (cm- 1) 2.3.5
1+0.333 f12(k1,kA)



which gives a very similar contour plot and irreducible Brillouin zone as the one

given by Figure 2.3-7.
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Figure 2.3-8: Phonon dispersion of graphite. From Ref. (22).

In order to calculate the Raman matrix element K2f,io we implemented a

parallelized numerical code, details of which shall be given in sections 2.5 and 5.

We generated results parameterized by incoming laser energy, damping coefficient

terms and band-gap structure (in order to simulate multiple graphene layers). A

sample plot of IK2f,lo0 2 v/s phonon energy Oph (cm- ) is shown in Figure 2.3-9.
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Figure 2.3-9: Plot of IK2 ,1o 12 v/s O)ph (cm - 1) for incoming photon energy E1 = 2. OOeV

Figure 2.3-9 shows that a single D mode peak in is present nominally at 1380

cm - 1 for the given experimental conditions and model band structure and phonon

dispersion. Our results show that this peak shifts at a rate of 30-40 cm-'/eV of

incoming photon energy which is well in line with experimental results.



2.4 Symmetry and selection rules

This section aims to uncover those phonon branches that make the dominant

contribution towards the Raman cross-section due to the double-resonant process.

M K F

Wave vector

M2

M3

K' M

Figure 2.4-1: shows the 3 rd nearest neighbor electronic ir and ir' bands along r - K - M for graphene based

on the results shown in section 2.1. The symmetry representations are marked next to each branch. The solid

arrows represents phonon scattering across the F point, and the dashed line phonon scattering across the K

point. From Ref. (5).

Figure 2.4-1 shows the electronic band structure of graphene (based on the 3"d

nearest neighbor tight binding model of section 2.1.2) between the high symmetry

points F- K- M. The points excluding the points of high symmetry i.e, F, K, M



have a reduced symmetry group C2v,, as compared to the point group of graphene

that has symmetry D6h. For the branches F - K and r - K', the valence band

possesses a symmetry T4 and the conduction band a symmetry T2. Whereas for the

branches K - M and K' - M, the situation is reversed such that the conduction

band possesses symmetry T4 and the valence band the symmetry T2. For both the

above cases, a photon with symmetry F,- is required for optical excitation.

Subsequently, the phonon may scatter within the same band which is also known

as scattering across the F point (See Figure 2.4-1) via the solid line , and therefore

same symmetry (T2 + T2, T4 - T4) that consequently requires it to possess a

totally symmetric representation, T1. The other possibility being that that the

phonon scatters across bands (scattering across the K point) with a different

symmetry (T'2 - T4 or T4 - T2) which require the phonon to possess the symmetry

corresponding to the T3 representation.

As for phonon scattering across the K point, due to the peculiar nature of the

electronic bands in graphene, the third step of the double resonant process (elastic

defect scattering) has a much higher likelihood of being a virtual state rather than a

real state. This is due to the enhanced difference between the band energies

compared to the case for scattering across the F point. Therefore, defect scattering

subsequent to phonon scattering across the K point is much weaker than that



subsequent to the phonon scattering across the F point as it is much less likely to

be resonant for all but the smallest incoming photon energies. All this means that

we can safely neglect the contribution of the phonon branches possessing T3

symmetry.

This leaves us to focus on only those phonon branches that possess the correct

symmetry T, that contribute to the double resonant process.

Referring to Figure 2.3-8, we find that only the TO branch, which has a minimum

symmetry T, throughout, makes the dominant contribution to the double resonant

process. Although the LA branch possesses the correct symmetry between the high

symmetry points it lacks the requisite symmetry at both the K and r points and

hence its contribution may be safely precluded in our model.

In the above discussion we have tacitly made the assumption that the defect

scattering takes place between states of same symmetry, which even if relaxed

would result only in a diminished contribution via its corresponding matrix

element. In any case, the resonant contributions of intermediate states (possessing a

different symmetry) are much weaker than for real states therefore validating our

assumption.



These predictions are borne out very well by the results of our calculations as the

Raman spectra so obtained possesses a remarkably high fidelity with experimental

results.



2.5 Computational requirements

2.5.1 Computational resources

Our simulations were carried out primarily on a dual Quad-Core Intel® x86

processor machine with 16 GB RAM, with all cores running simultaneously to

parallelize our calculation.

2.5.2 Software

* Our code was written in Mathematica v.5.2 and we used the additional

component Mathematica Parallel Toolkit v.1.0 to parallelize certain portions

of our code.

* For graphing we used Mathematica v.5.2 and v.6.0 and Origin v.7.5

2.5.3 Computational complexity



* First, the expression ful and fu2 (See Mathematica code in section 5)

representing each of the two time orders in the perturbational expression are

summed separately over all the points (kj, k2) that comprise the irreducible

portion of the Brillouin zone to generate ful and fu2 as a function of the

phonon vectors (qj, q2) . We divided the Brillouin zone into 401*200 =

80200 distinct (kj, k2) points.

* Each of these expression ful and fu2 are evaluated for each (q,, q2). Again

we used 401*200 = 80200 distinct (qj, q2) points.

* The complex valued expressions ful and fu2 obtained for each (qj, q2)

were summed to finally obtain K2f, 10 (q, q2)

* In order to generate the Raman Spectra, i.e., IK2f,10 2 v/s Oph (cm- 1) we

mapped K2f,10 (q, q2) -K2f, 10(ph) using the phonon dispersion

oph(q, q2) (cm-1). A smooth continuous curve for IK2f,lol 2 v/s

Wph (cm-') was obtained by summing a series of normalized Gaussian 's

multiplied by K2f, o(Wph). The complete code is given in section 5.



3 Raman spectra of graphene

3.1 Results of calculation with lV nearest neighbor phonon dispersion

3.1.1 Electronic band structure used for calculation

The electronic band structure of graphene was obtained by fitting the expression

obtained in Eq. (2.1.20) to the ab-initio electronic band structure obtained from an

ab-initio tight binding code, Ref. (23) . We rewrite Eq. (2.1.20) here for

convenience

E(kl, k2)± =
E2p ± Y 0  12(k, k 2)

1 + so f 12 (ki, k2)

Where

3.1.1



f12 (kl, k2) = 3 + u(kl, k2),

u(kl, k 2)
3.1.2

= 2cos(27rk) + 2cos(2rk2)

+ 2cos(2wn(k 1 - k2))

The fitting of Eq. (3.1.1) yielded the following values for the values of the

constants

E2p = 0

Yo = 2.84 eV
so = 0.07

3.1.3

A plot of the valence and conduction bands for graphene based on Eq. (3.1.1) and

the constants listed in Eq. (3.1.3) is given in Figure 3.1-1 and Figure 3.1-2

respectively.
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Figure 3.1-1: Different views of the valence band of graphene, (a) and (b)
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Figure 3.1-2: Different views of the conduction band of graphene, (a) and (b)



The following Figure 3.1-3 shows the valence and conduction bands together for

easy viewing

Erezgy (eV)

Figure 3.1-3: Valence and conduction bands in graphene.

Note the crossing of the bands at the K points or alternatively, that the band gap at

the K points is zero.

3.1.2 Phonon dispersion used for calculation



The phonon dispersion used for our calculations is the same E+(ql, q2) as from

Eq. (2.1.20) used to generate the electronic band structure of graphene with the

assumption of the Ist nearest neighbor interaction (See section 2.1.3). The constants

were fitted to inelastic X-ray scattering performed by Maultzsch et al from Ref.

(22). The values of the constant obtained on fitting the date were obtained as:

£2p = 0.155e

yo = -0.07833 * 8065.5 cm - 1  3.1.4

so = 0.333

The plot of phonon energy in units of cm-' is given in Figure 3.1-4 below
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3.1.3 Overlays of IKzflo(ql, q2)1 on the phonon dispersion (oph(ql, q2)

The following overlays of IK2f,1 0 (ql, q2)1 over the phonon dispersion

w0ph(ql, q2) shall help us easily visualize the evolution of the highly resonant

contributions (given by the red portions of the figure) with the change in excitation

energy.



Figure 3.1-6: Overlay of IK21 ,10 (ql, q2)1 for laser energy 2.00eV on the 1" t nearest neighbor phonon

dispersion. The resonant contributions are highlighted in red. (Ignore the solid lines in white)
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Figure 3.1-7: Overlay of IK2to1(ql, q2)j for laser energy 2.50eV on the 1' nearest neighbor phonon

dispersion. The resonant contributions are highlighted in red. (Ignore the solid lines in red.)

As is clear from the above Figure 3.1-6 and Figure 3.1-7, in going from an

excitation energy of 2 eV to 2.5 eV we see the highly resonant trigonal ring

(highlighted in red) around the K point expand to give us a change in the q vectors

selected for resonance in the Raman Spectra thereby explaining the shift in the

Raman spectra with changing excitation energy.
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3.1.4 Raman Spectra of graphene for various excitation energies

The following plots show the Raman spectra of graphene based on our calculations

with progressively increasing excitation energies.

Figure 3.1-8: Raman spectra of graphene with incoming laser energy: 2.00eV

Figure 3.1-9: Raman spectra of graphene with incoming laser energy: 2.10eV
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Figure 3.1-10: Raman spectra of graphene with incoming laser energy: 2.20eV

I 1

I Im-,I

Figure 3.1-11: Raman spectra of graphene with incoming laser energy: 2.40eV
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Figure 3.1-12: Raman spectra of graphene with incoming laser energy: 2.50eV
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The Raman spectra plotted in Figure 3. 1-8 till Figure 3.1-12 shows the presence of

an stationary F band peak at -1560 cm-land two peaks that we may associate with

the D mode. The peak at -1360 cm-' does not shift with excitation energy while

the higher energy peak shows a near-linear shift with excitation laser energy

expected of the D mode.



3.2 Results of calculation with 3"' nearest neighbor phonon dispersion

3.2.1 Electronic band structure used for calculation

This calculation used an electronic band structure identical to the calculation for

the spectra for the 1st nearest neighbor interaction and will not be repeated here.

Please see section 2.1 for details.

3.2.2 Phonon dispersion used for calculation

The phonon dispersion used for this case was fitted to the Electronic Dispersion

obtained with the assumption of up to the 3"' nearest neighbor interaction. The

results were given in section 2.1.2 and are being reproduced here for convenience.

3.2.1E(k) ± = -(-2Eo + E1) T J/(-2Eo + E,) 2 - 4 2E3
2E3

where

EO = (E2p + y1u(kl, k2))[1 + slu(kl, k2)] 3.2.1



E1 = 2soYof 2 (k, k2) + (SOY2 + S2Y0)g912 (k, k2)

+ 2s 2Y2f 12(2kl, 2k 2)

E2 = (E2p + y 1u(kj, k2)) 2 - y0 2f 12(kl, k 2) - YOY 2912(kl, k 2)

- Y2
2f 12(2k, 2k 2)

E2 = (1 + slu(kl, k2 )) 2 - S0
2f 12(kl, k 2) - SOS29 12(kl, k 2)

- s 2
2f 12 (2k,, 2k 2)

g 12 (kl, k2 ) = 2 u(kl, k2 ) + u(2k, - k2, kl - 2k 2 )

Just as in section 3.1.2 the constants were fitted to inelastic X-ray scattering

performed by Maultzsch et al from Ref. (22) for the TO branch as required by

symmetry arguments of section 2.4. The values of the constant obtained on fitting

the date were obtained as:

E2p = 0.1718074 * 8065.5 cm - 1 Y2 = 0.0032354 * 8065.5 cm - 1

Yo = -0.002249 * 8065.5 cm - 1  s1 = S2 = S3 = 0
yi = 0.0035423 * 8065.5 cm - 1

3.2.1

The plot of phonon energy in units of cm- 1 is given in Figure 3.2-1 below

3.2.2

3.2.3

3.2.4

Where

3.2.5
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Figure 3.2-1: 3'' nearest neighbor phonon dispersion for graphene

Figure 3.2-2: F - K - M Phonon Dispersion of Graphene based on the I"t nearest neighbor interaction

3.2.3 Raman spectra of graphene for various excitation energies
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Figure 3.2-3: Raman spectra of graphene with incoming laser energy: 1.90eV
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Figure 3.2-4: Raman spectra of graphene with incoming laser energy: 1.95eV
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Figure 3.2-5: Raman spectra of graphene with incoming laser energy: 2.00eV
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Figure 3.2-6: Raman spectra of graphene with incoming laser energy: 2.05eV
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Figure 3.2-7: Raman spectra of graphene with incoming laser energy: 2.10eV
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Figure 3.2-8: Raman spectra of graphene with incoming laser energy: 2.15eV
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-~-- --- ~

1



S.x 10

4.x 101:

3.x 101:

2.x 101:

1.x 10 l

ph cmn- 1

Figure 3.2-10: Raman spectra of graphene with incoming laser energy: 2.25eV
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Figure 3.2-11: Raman spectra of graphene with incoming laser energy: 2.30eV
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Figure 3.2-12: Raman spectra of graphene with incoming laser energy: 2.35eV
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Figure 3.2-13: Raman spectra of graphene with incoming laser energy: 2.40eV
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3.2.4 Overlays of IK2f,l10(q 1 q2)I on the phonon dispersion Wph(ql, q2)

Figure 3.2-16: of IK2f,10 (ql, q2)| for laser energy 2.00eV on the 3rd nearest neighbor phonon dispersion.

The resonant contributions are highlighted in red.



Figure 3.2-17: of KJaKro(q 1, q2)l for laser energy 2.50eV on the 3r
' nearest neighbor phonon dispersion. The

resonant contributions are highlighted in red.
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4 Discussion of results and conclusions

4.1 Comparison with experiment

2500

2000

- 1500

500

0

Raman shift (cm 1)

1300 1350 1400

Raman Shift (c•")

Figure 4.1-1: Experimental Raman spectra of graphite and graphene for excitation laser energy at 514 nm.
From Ref. (6).
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Figure 4.1-2: Raman spectra of graphene with incoming laser energy: 2.40eV, corresponding to the 3
rd

nearest neighbor phonon dispersion.



Comparing the experimental Raman spectra of graphene of Figure 4.1-1, with the

results of our calculation for incoming laser energy 2.40eV (; 514 nm) in Figure

4.1-2 we see that our results are able to exactly reproduce the single-peak D mode

of graphene along with its stronger high-energy flank compared to its lower-energy

one! No assumptions regarding which parts of the Brillouin zone contribute to the

Raman spectra or arguments involving density of states are made, in contrast to

earlier attempts in the literature (See Ref. (6)).

4.2 Shift of Spectra with Change in Laser Energy
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Figure 4.2-1: Near linear shift in the D mode of graphene corresponding to a least square value of 33 cm.-1/

eV



Our numerically obtained spectra are successful in replicating the almost linear

shift in D mode peak with change in excitation laser energy (See Figure 4.2-1).

The change in the phonon energies corresponding to the D mode peak selected is

observed in two dimensions going from the overlays of Figure 3.2-16 to Figure

3.2-17. Clearly, the trigonal ring around the K point is seen to expand outwards

with increasing excitation laser energy leading to different phonon energies being

selected corresponding to the D peak.

We obtained a shift of 33 cm-1 /eV which is comparable to the experimentally

obtained shift of roughly 40-50 cm- 1 /eV depending on the publication and the

exactflavor of multi-layer graphene/graphite used. Nevertheless, we must note that

the experimental spectra of single-layer graphene has never been measured for a

range of excitation energies. Therefore, any subsequent discrepancy may be

explained in part by the changing atomic structure experienced by progressively

stacking layer upon layer of graphene that finally results in graphite. The

interplanar interaction between the carbon atoms is likely to change the tight

binding expression obtained in section 2.1, and hence the corresponding electronic



band structure and phonon dispersion. Another possibility is that we have used the

phonon dispersion of graphite (22), instead of that for graphene.

However, our results regarding the absolute phonon wave numbers at which the D

mode exists are slightly off from experiment. This may again be attributed to using

an incorrect phonon dispersion in our calculation.

4.3 M Point Peak in Numerically Obtained Spectra

Comparing Figure 4.1-1 and Figure 4.1-2 we clearly see the presence of both the D

mode and the F mode in both the spectra. However, a small peak corresponding at

phonon energy 1425 cm - 1 is missing for the experimental spectra. It's presence in

Figure 3.2-3 till Figure 3.2-15 of our results stems from the fact that the phonon

dispersion of graphene contains a Van Hove singularity of the type M1 in two

dimensions (also known as a saddle-point) at its M point (See Figure 4.3-1).

Indeed, we fitted the M point of graphene exactly at the value of 1425 cm -1 for the

3 rd nearest neighbor phonon dispersion and therefore we see a peak at that energy

in our results. Yet, this peak is absent from the experimental results of Ref. (17), as

the M point is selection-rule limited. See Ref. (24).
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Figure 4.3-1: Type M1 Van Hove singularity (saddle point) present at 1425 cm-' in the 3rd nearest neighbor

phonon dispersion of graphene corresponding to the M point.

4.4 Differences between the one dimensional and two dimensional
calculations

As is shown in Figure 2.3-6, the one dimensional calculation leads to a double

peak structure for the D mode peak whereas our two dimensional calculation

results in a single peak with a stronger high-energy flank than the low-energy one

for the D mode that is observed experimentally.

4.5 Inadequacy of the 1st nearest neighbor phonon dispersion

The fitting of the 1st nearest neighbor tight binding expression to the phonon

dispersion of graphite (as per Ref. (22)) was unable to achieve the correct trigonal

warping around the K point. This resulted in the odd double-peak structure of the
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D mode of the Raman spectra with one stationary peak and while the other showed

a familiar near-linear shift with changing excitation energy.

4.6 Scope for Future Work

* Having calculated the Raman spectra for graphene, our 2-D model provides

ready extensibility to multi layered versions of graphene through to graphite.

All we need to specify in our calculation is the modified tight binding

expressions for the electronic bands and the phonon dispersions that shows

band-splitting and opening up of an electronic band gap at the K point. This

will allow us to study the changes in the peak structure of the D mode with

increasing number of layers such as the eventual double-peak structure

observed experimentally for graphite.

* Calculate the second order spectra of graphene based on our model

associated with the D* mode and compare with experiment.

* Measure the Raman spectra of graphene experimentally for a range of

excitation energies.

* Calculate all the matrix elements in the expression for K2f,10 except for the

one involving the defect scattering.



4.7 Conclusions

Our results are able to replicate the near linear shift of the D mode in the Raman

spectra of graphene (when compared to graphene) with changing excitation laser

energy of 33 cm-1 /eV. This compares favorably with experimental data on

graphite. Without resorting to any ad hoc assumptions our calculations neatly

reproduce the single peak structure of the D mode that distinguishes the spectra of

graphene from the double-peak D mode of graphite.

The false peak corresponding to the M point frequency (1425 cm -1 ) is merely an

artifact of our calculation and can easily be precluded based on selection rule

restrictions.

Our methodology to produce Raman spectra may be easily extended to multi layer

graphene, graphite and carbon nanotubes by suitably adjusting the tight binding

expression used to generate the electronic and phonon dispersions.



5 Appendix

5.1 Mathematica code to generate K2f,10 (ql, q2) for the 1S' nearest neighbor

phonon dispersion

mees [" Parallel' Debug" "
]

Weied [" Parallel 
"

]
Print [Date [] ];

Inc2 - 1

incl - 10

CloeSlaveM [];

LaunchSlave [" hotstadter" ;

LaulchSlave [" achilles" ]

LauachSlave[" tortoise"];

LalnchSlave["crab"];

(*Constantsw)

h . 435l1-' s

e - 1. 02 * 18";

E . ( +incl eI. 05)*e:

Print ["Calculating ..... ." o ToStriag[(2 + incl, 0. 5)] o. "eV
Y " 

). ToStriag[(iac2 / 10)] h "b" ;

b - (inc/2 10):

-0 2.84 e;
fso -. O4?;

sul :-= ;

su2 :-. I;

(wTioght :indin! Description of Electronic BdanTds)

ft[u , v ] :-= 3+Cos[2•u] + 2Cos[2 yv] + 2Cos[2• (u-v)];

E][u_, v_] :.
1 + so 0 2 [U, V]

E,[u_, v] :*.+=
1

- so t2 2 [u, v]

E.[u_, v ] :•E•[u, v] -E,[u, v];

E..[u , V ] : -E.[n-gl, v-g2]-E,[,, v]:E•-L[u_, xv] :.•E[u+ql, v+q2] -E [z, v];

ftu_, _] :.

1/
(m[El-E[u, v]- sb)

Ei- ((.,,,e +..0783333e (3+2Cos[2nq l].2Cos[2n,.q2]+2Co,[2n,(ql,-q2)]))/

(1+8.33ss.333*(3+2Cos[2n. .l]+2Cos[2w. 2]+2Cos[2n(.ql-q2),)) -Eu ,u, v]-ti*b)

(Ex-((0.155l e +8.073331Se./ (S+2LCos[2n.l]+l Cos[2nq2] +2Coa[2r.(ql-q2)]))/
(1+8.333333*(+2Csssss. +co[2n l].+2Cos[2n2]+2Cos[2 (q -2)]))) -E.[, v] -. b)) +

1/

(E1 - E.[u, v] - •b) (E -Ebj [Ui ] -v]- b)

(a- -((e.I5e +.3711333** 4.(3+2.Cos[2inwl]+2Cos[2n.2]+2Cos[2nw*(.l-2l,])/
(1+*.. ssss33333. V (S. Cos[2 l]+2Co[2q,2]+2Co[2n (q1-2).,]))_- E,[u, v]_- t.b));

memorrmFI e [];

(ýDeteaiining FunctijonaI Depeuer1ncr of K1rr on qI ,,q;)

Do[sul. ÷ Evaluate[fu[u, v]], (v, 0, 8.5, 0.0025)];

Do[su2 * -Evaluate[sul], Iu, -0.5, 3.5, 0 0025)];
mn..rylaUse [];

su3 ParallelTable[Evaluate[Mfs[su2]], (q2, -0.5, 0, 0.0025), (ql, -. 5, 0.5, 0.0025)];

tMralrt['parallel" o: ToStrlag[(2 + incl* . 85) * 100] <> "eV" c> ToStriag[inac2] "b" o.. cv', Tablesora[uu3], "CSV"];
Pr•at (ate[]];

Clearm[ul, su2, su3, fu]:

Mort[]:



5.2 Mathematica code to generate Kf,l0 (ql, q2 ) for the 3"' nearest

neighbor phonon dispersion

Iked['SParallel'Debug "]

Need[(P'Paallel ']

Prtit[Date[o]:

irc2 . 1
incl -21

h. (6.3 w 10^-34) (2rn)

e.1.662*10-19;

El- (2÷+incll.05) we;
Print [( Calculating. ..... >ToStrixg[(2 + incl, . 85)] <0eV" > ToStriA[((inc2 / 10)] > 

"b
" ];

b- (inc2/10) we;
A0. 2.14 6.e8

sEO 0. 07:

su2 : 0;

({lTjldh inding Dcaption of Prectle m ro11 Fins)

Ei.Comile[((f,-Real), (v, Real)), (--,EOwEa[Sqrt[3+2Cos[2n7 ]+2Cos[2rv] +2Cos(2nw (u-v)]]])/

(1+sE Iwl$a[sa(3c+2 L [2 w ] . 2 Co2 v]+ 2 Co[2w (u -v) ])D]

Ex.Cos ile[f(fn Rel), fi Real)), (+eSEG*M[Sqrt[3+2Cos[2nwu]+2Cos[2neJv]+2Co.[2,w (n-v)]J])

(1-sEuwuhs[(3+2.cof[2nwn]+,Co6[2nw v]+2Cos[2wn*(i-v)])

Ea . Compile[((n, Real), (v, Rea?)), Ex[u, v] -Ei[u, v]];
Ebil. Cmplle[((u, _Real), (v, Real), (ql, Real), (q, _Real)}, Ex[f - gl, v - ] - Ei[, v]];

Ebi2 - Compile[((u, Real), (v, Real), (ql, Real), (q4, Real)), Exu gl, v+2] - Ei[, v]]:

c2p .0.1718074220168557' :

-@. -0,00224931865514905;

l. 0.0035423648175591467 :

-* 2 .0.3235475712655553' :

u12 .Colpile(f(( , Re.al), (v, Real)), 2Cos[2n. ir] + 2Cos[2ww v] + 2Co[2snw (a- v)]]:

f12 - ompile[( , Real), (v, Real)),3 + 2 C[2 n]+ 2 Cos[2n v] + 2Co[2y* (n -v)l]]

g12 .Copile[((n, Real), ( v, Real)), 2ul2[u, v]+2Cos[2w (2:) -v)]+2Cos[2w (n-2wv)]+2Cos[2wt(2wi- v- n.+2 v)]];

E0.Compile[f(u, _Real), (v, Real)), (fp *+\wl12[u, v])]:

E2. Copile[((n, Real), Iv, Real)), (e2p+ yl.l2[n, v]) ^2'-f0^2 f12[X, v] -" 2g1l2[(u, v] - ly2•2f12[l2 [a, v]]:

.- ompile ((u, f el), (v, Real), el 2 -(-2 O[l , v)) +M[((-2 0E., v]). 2-4E2(• , ( v])u1]
ful.. Compile[{(u, Real), (I, Real), (qt, Real), (g2, Real)), 1I((El-Eai[n, v]) -Ah) (El-efql, 2)]-Eh)il[~,, v, qg, 2] -iwb) (El-s[ql, q2]-Eai[u, v] -twb)),

((tu, _Complex))];

al. Sm[fal[u, v, ql, q2], (u, -0.5, 6.5, 6.0025), (v, 0, 6.5, 0.0025)];
Print [emryIMmse []];

bl. ParallelTable[Evaluate[al], (ql, -6.5, 6.5, 0.0025), (q2, -6.5, 0, 6.0025)];

Tablelom[bbl]

Print [MemorylAUe []];

Exlort[" copile-300ev- first -cowlex-t imeorder -final..csv" , bbl];

Clear[al, full]:

u2= Compile[{(u, Real), (v,, Real), (ql, Real), (q41, Real)), 1/((El- Eai[z, v] - kb) (El- bi2[n, v, gi, q2] -Aib) (El-e[ql, Vq] -Eai[j, v]-jk* h)),
((fu, _•COlex))];

a2 = Sum[ff2[u, v, ql, q2], (u, -0.5, 0.5, 6.0025), (v, 0, 6.5, 0.0825)];

Print[faorylUse[]]j

b2 = ParallelTMble[Evaluate[a2], (ql, -0.5, 0.5, 0.0025), fq2, -0.5, 0, 6.0625)];

TsbleFor[bb2]

Print[MemrrylaUse][]:

E port["conmile -00ev- second- coplex tijorder final .csv"r , bb2]

Clear[a2, fu2]:
CloseSlavesf];

final - TableFom[ s[bbl h bb2)]

EWort'co"(rpile-300ev-c(nuet.e-•ahsolUe- tiorder final.sv" , final, 'CSV"]



5.3 Code to generate Raman spectra

lriat[Date[]];
an 1;

gaussian[y_] eA(-(x- y)A
2

/ (2 4^2))

e2p .9.1718742820168557' 1

0 .-. 0522493186551405' ;

,1. .0035423418675591467';

;2. 8.1032354757026555539';

u12 -CSWpileS[((u, _Real), (v, _Real)), 2 Co [2 r u] + 2 Cose[2 Xv] +2 Co[2n (u -v)]];

f12.Campile[((u, Real), (v, _Real)), 3 + 2Cos[2xnu]+ 2Cos[2•x v] 2Cos[2,c (u- v)]];

g12 Caile[((u, _Re&Z), (v, _Re&)), 2*ul2[u, v] +2Cos[27e (2*nu-v)] +2Cos[2w* ( - 2*v)] + 2Co1t,[n (2 un- v- u+ 2*v)]];

EOS CWpile[((u, _Real), {v, _Real)), (e2p +, l.ul2[u, v])];

E2 - Coaeile[({u, Real), (v, _Real)), (e2p + •ylu12[u, v])^2 -yg0^2 fl2[u, v] - 0f 2 .g12[u, v] -y2A2f2[2 u, 2 v]];

e. Conile ((U, -Real), (v, _Real)Z), 0965.512 (-(-2EO[n, v]) + Mwhs ((-2 EO,[, v]) A2 -4 E2[u, vj)])]
For[iNc * -2, inc S 10, inc - inc + 1,

Clear [al];

aal Ilport [3 nn-full-" o ToStriV[20I0 +inc * 5] < "e v
.csv", "CSV•];

u. avaluateo[Sm[aal[[q•, q2]]JA2 gausuian[[(l - 1) / 411, (q2 -201) 140S]], (qi, 1, 401), (q2, 1, 41)1]];
Export ["plotsum' + ToString[2SU + inc ] <) ".txt", su];

Prit [ Printing ..... *ro ToString[2V 9 + inc * 5] <0 "eV" ]:

Priat[Flott[u, (x, 1366, l01), PlotUaws -+ (, 5 *1^123)]];
Clea [mu];

Pvlnt[Date[]]];
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