
Exploring kinetics and thermodynamics in fast-ion conductors and

hydrogen-storage materials using ab-initio molecular dynamics

Brandon C. Wood

B.S., Physics
A.B., Slavic Languages and Literatures

Stanford University, 2001

Submitted to the Department of Materials Science and Engineering
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN MATERIALS SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ MMVII Massachusetts Institute of Technology. All rights reserved.

Author ............... ........... ..... ................................
Department of Materials Science and Engineering

July 27, 2007

Ai /1 K 1_2

Certified by ....................................................
Nicola Marzari

Associate Professor of Materials Science and Engineering
Thesis Supervisor

Accepted by

L OF •EHNOLOY

.LIBRARIES

................................. . . . .. ...

Samuel M. Allen
POSCO Professor of Physical Metallurgy

Chair, Department Committee on Graduate Students

ARCHIVES



2



Exploring kinetics and thermodynamics in fast-ion conductors and
hydrogen-storage materials using ab-initio molecular dynamics

Brandon C. Wood

Submitted to the Department of Materials Science and Engineering
on July 27, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Materials Science and Engineering

Abstract

We investigate the interplay between various kinetic processes and thermodynamic factors in
three materials--silver iodide (AgI), cesium hydrogen sulfate (CsHSO4), and sodium alanate
(NaAlH4)-using ab-initio molecular dynamics simulations.

The time-averaged and instantaneous silver substructure in the fast-ion conductor AgI
is analyzed, resulting in a set of ordering rules that govern the distribution of the mobile
silvers in the first coordination shell surrounding an iodine. We find evidence of an inde-
pendent phase transition of the silver ions which drives the structural transformation to the
high-mobility phase. A thermodynamic motivation for the existence of fast-ion conduction is
suggested in terms of an entropic stabilization associated with the decrease in silver mobility
upon melting. We also find a unique chemical signature for the fourth nearest-neighbor silver
to an iodine. This fourth silver is weakly bound and relatively unconstrained, and we isolate
it as the predominant agent in the diffusion process.

Next, a detailed statistical analysis is performed on simulations of the fuel-cell electrolyte
CsHSO 4 to isolate the interplay between the dynamics of the O-H chemical bonds, the ... H
hydrogen bonds, and the SO4 tetrahedra in promoting proton conduction. A high reversal
rate limits the apparent success rate of the otherwise rapid chemical-bond dynamics, which
are dominated by the Grotthuss mechanism of proton transfer. Rapid angular hops in con-
cert with small reorientations of the SO4 tetrahedra constitute a new dominant mechanism for
hydrogen-bond network reorganization. The SO4 dynamics are found to control the attempt
rate of chemical-bond dynamical events and the success rate of hydrogen-bond dynamical
events; this enables a novel interpretation of the diminished CsHSO4/CsDSO 4 isotope effect.
Two distinct timescales for SO4 reorientation events are linked to different diffusion mecha-
nisms along different crystal directions. Finally, a graph-theoretic analysis of the hydrogen-
bond network topology demonstrates an increased likelihood for diffusion in connectivity
configurations favoring linear network chains over closed rings.

We have discovered and characterized a new phase (-y) of the hydrogen-storage material
NaAlH4 that is energetically close to the known ground state. The manifestation of this phase
is kinetically inhibited in the bulk but is favored in a (001) surface slab above 225 K. The tran-
sition involves first activating the surface AlH 4 rotational modes. This is followed by a lattice
expansion perpendicular to the slab and a shear of successive lattice planes. A possible con-
nection between 7-NaAlH 4 and the dehydrogenation product Na3aAH 6 is suggested. We also
show that hydrogen transport in NaAlH 4 can be treated independently from the observed
phase transition, and that the presence of certain point defects can enable transport of hydro-
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gen via a structural diffusion mechanism. A link between long-range hydrogen migration and
the rotational mobility of A1Hz groups is demonstrated.

Thesis Supervisor: Nicola Marzari
Title: Associate Professor of Materials Science and Engineering
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CHAPTER 1
Introduction

"The theory of our modern technic shows that nothing is as practical as theory."

- J. Robert Oppenheimer

1.1 The rise of computational science

F OR CENTURIES, society has dichotomized scientific research into rigid categories of the-

ory and experiment. Scientists have been driven by the maxim that "theory guides,
where experiment decides." But with the rise of computational science, we are faced

with a novel research paradigm that is not so easily categorizable. Computer simulations
draw from both communities by applying sets of rules solidly grounded in theory in order
to perform virtual experiments. Such techniques have proven to be tremendously powerful
predictive tools and have sped acceptance of computational science as a third pillar of scien-
tific research that can stand on equal ground with its better-known predecessors. In this sense,
the success of simulations has forced a basic reshaping of the guiding philosophy of scientific
research [1,2].

The theory-experiment dichotomy underscores a still deeper divide in scientific thinking.
Since the days of Newton, the physicist's quest has been to reduce the universe to an ele-
gant set of governing equations. Historically, the chemist's approach has been more induc-
tive, looking for commonalities in known reactions in order to extract sets of guidelines for
future synthesis. Computer modeling requires faith in both the reductionist and empiricist
approaches: empirical laws are extracted from virtual experiments by examining the common
behavior of a set of complex interacting systems, each of which in turn evolves in strict accor-
dance with the elegantly fundamental equations of physics. It is an ideal solution for those
who embrace both the elegance of theory and the practicality of experiment, and for those
who reject the reductionist-empiricist divide. In effect, computation is the sampler platter of
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scientific research, representing the very best of seemingly opposite worlds, all rolled into a
single package.

A computational "experiment" has the advantage of providing data that is too difficult,
too laborious, too dangerous, or too expensive to obtain using traditional methods. The first

of these conditions will prove the most relevant in the context of this thesis, since we will gen-

erally be exploring phenomena observable only at atomistic length- and timescales. We will

also be using simulations to perform various gedanken experiments, which can probe the be-

havior of materials under experimentally unattainable conditions. These include investigating
new crystal structures (Chapter 6) or supercooled phases (Chapter 4), as well as fixing specific

degrees of freedom in the system (Chapters 4, 5, and 6).

Among the conceptually simplest yet most powerful computational techniques is molecu-

lar dynamics (MD), in which the motion of a set of particles is evolved according to Newtonian

mechanics. Thermodynamic and kinetic information can then be extracted from the resulting

trajectories. The inception of MD dates back to the dawn of the computer age and the early

work of Alder and Wainwright [3,4] on the mainframes at the University of California Ra-

diation Laboratory (today the Lawrence Livermore National Laboratory). The primary focus

of these early simulations was to understand the behavior of hard-sphere liquids. The earli-

est simulation of a realistic system using pair potentials was carried out by Rahman in 1964

on liquid argon [5], which he and Stillinger followed a decade later with the first dynamics

simulation of liquid water [6].

More recently, MD has moved beyond the liquid state and is now seeing increasing appli-

cation in materials science, thanks to recent advances in hardware technology and software

algorithms. Much of this has been enabled by the adoption of advanced techniques such as

ab-initio molecular dynamics (also known as first-principles molecular dynamics), which was

popularized following the work of Car and Parrinello in the mid-1980s [7]. In this scheme,

no experimental input is provided to the simulation, and the forces on the atoms are calcu-

lated using the quantum-mechanical techniques discussed in Chapters 2 and 3 of this thesis.

It is worth emphasizing that ab-initio techniques are truly predictive and can therefore offer

an unbiased description of atomistic behavior in a wide variety of chemical or physical envi-

ronments. As will be shown repeatedly throughout this work, this allows one to gain insights

into structure and dynamics that are inaccessible both to experiment and to simulations based

on classical pair potentials. The underlying philosophy of this thesis is to use ab-initio molec-

ular dynamics to explore the interplay between various complex dynamical processes, as well

as between kinetics and thermodynamics, in select fast-ion conductors and hydrogen-storage

materials.
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1.2 Fast-ion conduction

Fast-ion conductors-sometimes referred to as superionic conductors-are solids that demon-

strate liquid-like diffusive behavior for one or more ionic species. Such materials exhibit un-

usually high values of ionic conductivity, typically of the order 10- 3 to 1.0 Q-1-cm- 1, but

generally have electronic conductivities at least two orders of magnitude lower [8,9]. Mate-

rials of this sort have been known about for centuries and studied in detail for decades. For
instance, Faraday reported evidence of fast-ion conduction in the literature in the 1830s [10]
while performing experiments on Ag2S (which, incidentally, is a close relative of AgI, the focus
of Chapter 4 of this thesis). He also recorded similar behavior in lead fluoride and mercury

periodide [11]. In 1851, Hittorf [12] further investigated Ag2S and Cu 2S, ultimately concluding
that ionic diffusion had to play an important role in the conduction mechanism of these mate-
rials. The potential of these and similar materials as solid electrolytes in batteries and fuel cells
was realized some time later in the pioneering work of Nernst [13], Haber [14], Katayama [15],

and Schottky [16], who are widely credited with ushering in the field known today as solid-
state ionics [17].

The changing nature of today's energy market has prompted the re-emergence of fast-ion
conductors at the forefront of materials science, particularly for use as solid-state electrolytes
in fuel cells and ion batteries. More generally, the phenomenon of fast-ion conduction is ob-

servable in wide variety of systems from planetary materials under extreme pressure condi-
tions [18-20] to ion channels in biological membranes [21-24]. Fast-ion conductors are also
featured ingredients in novel switching [25] and sensing [26,27] devices and form the basis
of certain modern processing techniques [28, 29]. Nevertheless, the detailed atomistic mecha-

nisms involved in ion conduction through these materials remain ill understood, and it seems
certain that existing technologies would derive great benefit from a qualitatively and quanti-
tatively accurate description of the phenomenon.

Fast-ion conduction is particularly well suited to a computational investigation based on
first principles, in part thanks to the high frequency of diffusion events observable within
reasonable simulation timescales. However, to date, there have been very few ab-initio MD
treatments of the phenomenon, and although some fast-ion conducting systems have been an-
alyzed using classical molecular dynamics, these treatments suffer from the inability of clas-
sical potentials to accurately describe interactions in systems featuring a changing chemical
environment. Indeed, as will be demonstrated throughout this thesis, accurate treatment of
rapid bond breaking and forming is essential for obtaining a valid description of fast-ion con-
duction.

Chapters 4 and 5 apply ab-initio molecular dynamics results in order to characterize the
structural, electronic, and thermodynamic properties of two fast-ion conducting systems, as
well as to provide insight into the atomistic specifics of fast-ion conduction. Chapter 4 focuses
primarily on understanding the thermodynamics of fast-ion conduction and how they relate
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to the underlying dynamical structure. Chapter 5 showcases a detailed statistical approach
for discovering the complex interplay between various atomistic processes involved in ion
conduction and for obtaining information about the kinetics and timescales of each process.

1.3 Solid-state hydrogen storage

Reliable, lightweight onboard hydrogen storage has been identified as one of the key impedi-
ments to successful deployment of a vehicular hydrogen infrastructure [30]. Many of today's
modem hydrogen fuel-cell designs have their roots in NASA's Apollo and Gemini programs,
for which the technology was used to provide both electricity and drinking water [31-33].
Those designs had liquid hydrogen fuel stored onboard the spacecraft in expensive and heavy
cryogenic tanks. However, pure hydrogen stored in gaseous or liquid form generally has
too low volumetric density for practical use in hydrogen-powered vehicles. Instead, modem
deployment of hydrogen-powered vehicles requires an efficient, lightweight storage solution
that is also cost effective in order to compete with gasoline-based technologies. As such, re-
search has focused on solid-state materials that have both high volumetric (volume percent)
and high gravimetric (weight percent) hydrogen storage densities and also demonstrate quick
and reversible hydrogen uptake and release [34].

A 2003 think-tank report on the hydrogen storage situation [35] prompted the U.S. De-
partment of Energy to issue a "Grand Challenge" to the scientific and industrial community.
The purpose of the challenge was to develop a reliable hydrogen-storage infrastructure for
vehicular fuel cells. The preliminary report highlighted three of the most promising solid-
state technologies for further research: metal hydrides, boron-based chemical solutions, and
carbon-based materials [36,37]. The material explored in Chapter 6 of this thesis fits into the
first of these categories. In particular, it represents a class of materials known as complex light
metal hydrides [38-40]. These systems draw on the lightest elements in the periodic table to
form crystals that can absorb and desorb hydrogen chemically to produce new structures with
different stoichiometries [41].

Chapter 6 applies ab-initio molecular dynamics techniques to study a well-known but ill-
understood complex metal hydride. The approach used in this chapter focuses on explor-
ing the interplay between two component mechanisms necessary for the dehydrogenation
process-namely, hydrogen migration and a structural phase transition. In doing so, we will
offer an in-depth analysis of the relationship between kinetic and thermodynamic motivations
for hydrogen release.

1.4 Thesis outline

The remainder of this thesis is outlined as follows:
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* Chapter 2 reviews the basic theoretical framework behind ab-initio calculations in pe-
riodic solids, including the Born-Oppenheimer adiabatic approximation, density-func-
tional theory and the Kohn-Sham representation, and the plane-wave pseudopoten-
tial method. The chapter concludes with a brief look at maximally localized Wannier
functions and at a basic methodology for calculating vibrational dynamics from first-
principles calculations.

* Chapter 3 extends this review by introducing the fundamentals of performing ab-initio
molecular dynamics, both using the Born-Oppenheimer approach or the popular Car-
Parrinello scheme. Application of extended-Lagrangian methods for simulating systems
in other ensembles is also discussed. Finally, we define some of the useful statistical
quantities that can be obtained from dynamics results; these will be referred to often in
the subsequent chapters.

* Chapter 4 covers results on silver iodide, which represents a classic archetype of a fast-
ion conductor. Following introductory comments on the motivation for the study of
AgI and a discussion of the various relevant computational parameters, we proceed to
characterize the basic structural and vibrational properties of the material. The time-
averaged substructure of the silver ions is then discussed, followed by a look at certain
rules and restrictions that govern the substructure in an instantaneous picture. Next, we
use our results to speculate as to the nature of the transition to the fast-ion conducting
phase and the underlying motivations for its existence. The chapter concludes with a
discussion of the dynamics of the electronic structure of the system and how it relates to
the observed ion conduction.

* In Chapter 5, a detailed statistical analysis is applied to dynamical simulations of CsHSO4,
a promising proton-conducting fuel-cell electrolyte candidate. Once the motivation for
studying CsHSO4 has been introduced and the simulation details have been discussed,
we isolate the two primary microscopic phenomena responsible for proton conduction
in the material and discuss the detailed atomistic mechanisms involved in each process.
In doing so, we also extract information about the relevant timescales and kinetics from
our dynamics results. Next, we gather statistics about the magnitude and timescale of
the rotation dynamics of the SO4 tetrahedral moieties and use this information to suggest
two different dominant conduction mechanisms with different limiting factors for diffu-
sion along the two nondegenerate crystallographic axes. We also apply a graph-theoretic
analysis to the hydrogen-bond network to extract topologies that are most likely to in-
duce microscopic transport phenomena. Finally, we apply the results of our timescale
analysis to explain the lack of a prominent isotope effect in the CsHSO4/CsDSO 4 sys-
tem.

* Chapter 6 discusses the results of molecular dynamics simulations of sodium alanate, a
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complex metal hydride that is being investigated for use as an onboard hydrogen stor-

age material. In particular, we focus on understanding the motivations and mechanisms

behind the tetrahydride-to-hexahydride (NaAlH4 -- Na3AlH 6) transition. Following an

initial discussion of the background and motivation for studying NaAlH 4 (including its
relationship to fast-ion conductors) and a characterization of the known reactant and
product phases, we show that the two relevant ingredients in the phase transition-
namely, the structural reorganization and the transport of hydrogen--can be treated in-

dependently. Focusing first on the structural transformation, we explore the observed
differences between bulk and (001) surface slab simulations of NaAlH 4. Motivated by
our (001) surface slab results, we report the discovery of a new phase of the tetrahydride

that bears a structural resemblance to the hexahydride and offer a timescale analysis to

isolate the various stages involved in the lattice reorganization. Next, we discuss how
hydrogen mobility may be induced by the inclusion of various point defects and use
these results to illuminate possible transport mechanisms for hydrogen and sodium re-

location in the lattice. Finally, we integrate our results to speculate on an overall frame-

work to describe dehydrogenation, concluding with a brief discussion on the possible

role of transition-metal dopants in enhancing reaction kinetics.

Chapter 7 begins by summarizing the key findings of each of the three previous chapters.

These results are then synthesized into a discussion about the similarities and differences

among each of the three materials. We will first describe the importance of the coupling

between an electronic transition and one or more classical phonon processes in each

material. We will then conclude by remarking on the various ways in which the interplay

between ionic diffusion and phase transitions is manifest in our study.
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CHAPTER 2

Fundamentals of electronic structure

2.1 The many-body problemANY DISCUSSION of modem electronic structure theory begins with an examination

of the ground-state many-body Schr6dinger equation, which we can write in the
following schematic form:

f{-lion + el + Hion-el I}tot = E.tot. (2.1)

Conventionally, the subscripts "el" and "ion" refer to the electrons and nuclei, respectively, al-
though an alternative formulation will be introduced in Section 2.4. The first two terms contain
contributions that are limited to just the nuclear system or just the electronic system, whereas
the third term refers to all interactions involving both the electrons and the nuclei. However,
the simple form of Equation 2.1 betrays the complexity of the underlying physics; directly
obtaining the true solution for the total many-body wavefunction 'tot is often impossible
even for relatively small systems. In order to render a problem of any reasonable magnitude
tractable, certain approximations and reformulations must be considered for the three terms
in the left-hand side of the equation, each of which introduces a unique set of difficulties in the
overall handling of the many-body problem. Much of the remainder of this chapter is devoted
to an exploration of the following approaches toward the efficient and accurate handling of
the three contributions to the Hamiltonian:

* the Born-Oppenheimer adiabatic approximation for isolating the nuclear degrees of freedom
in ion,, (Section 2.2);

* density-functional theory for dealing with the ground-state electronic interactions in Hel
(Section 2.3); and

* the plane-wave pseudopotential framework for more efficient calculation of interactions be-
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tween electrons and ions in 7 ion-el within a plane-wave basis set (Section 2.4).

We will conclude with a brief exploration of a pair of techniques grounded in electronic
structure theory that are relevant to this work: the Wannierfunction approach, which introduces
a powerful technique for the visualization of localized electronic orbitals in extended systems
(Section 2.5); and linear response theory, which outlines a method for calculating the full phonon
dispersion of a crystal within the harmonic approximation (Section 2.6).

2.2 The Born-Oppenheimer adiabatic approximation

The difference in the electronic and nuclear masses gives rise to electronic motion that is much
faster than nuclear motion. In practice, this gives rise to a clear separation of the correspond-
ing frequencies of interest, particularly for multi-electron atoms. This fact can be exploited,
leading to a decoupling of the nuclear degrees of freedom from those of the electrons. The
key to isolating the nuclear dynamics, thereby simplifying the Rion term in Equation 2.1, re-
sides in the application of two well-known approximations: the adiabatic approximation and
the Born-Oppenheimer approximation [42,43]. The two are often referred to collectively as the
Born-Oppenheimer adiabatic approximation.

2.2.1 The adiabatic approximation

We begin by defining a basis of "electronic" eigenfunctions 'i with corresponding eigenvalues

Li, which themselves are solutions to the Hamiltonian obtained by letting the nuclear masses
M! go to infinity and solving the resulting problem in the potential field generated by the fixed

nuclei:

{lim R pi(lIi) =+ ( E ( A) . (2.2)
M-•-oo 2me

Here Ri refers to the complete set of M nuclear coordinates {Ri,..., RM}; r' refers to the com-

plete set of N electronic coordinates {rl,...,r }; and the index j runs over the electrons in

the system. We can then expand the solution for the total wavefunction xItot in the basis of the

electronic eigenfunctions Pi:

Stot(l• 7F)= Pi~lq, Rl). (2.3)
i

Note that the coefficients 4i of the expansion must be functions of the nuclear positions to

ensure completeness of the exact formulation for the solution to the full Hamiltonian.

Mathematically, the adiabatic approximation amounts to replacing the sum in Equation 2.3

by a single term, such that
:F) ; 'Q (R, F) D(R) (2.4)
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for the ith excitation state. The physical result of this substitution is to neglect any coupling of

the electronic eigenfunctions Ti due to motion of the nuclei. The underlying rationale is that

the motion of the nuclei is extremely slow compared to that of the electrons and therefore con-

tributes negligibly to off-diagonal coupling terms in the representation of the total wavefunc-

tion Ttot. The condition is usually applied to the electronic ground state, given that coupling

between the ground- and first excited states is generally weakest. In this case, Equation 2.4

becomes

tot A, f) To F) (R) (2.5)

When written in this way, we can interpret the adiabatic approximation by stating that from

the point of view of the nuclei, the electrons can be assumed to always be in their ground state,

which in turn is a function of the nuclear potential field.

The extent to which the ground-state adiabatic approximation is valid depends on how

well the o' obtained from the infinite-mass limit describes the true electronic ground state of

the full Hamiltonian. As such, the accuracy of the method improves as the nuclear masses

increase. Also, nonadiabatic coupling between the ground- and first excited states is mini-

mized when the energetic difference between these eigenvalues can be assumed to be large

when compared with the energetics of the nuclear motion, as is generally the case for semi-

conducting or insulating systems. For metals, where this difference is small, the adiabatic

approximation can generally be justified as long as the plasma frequency is much larger than

the energetics of the nuclear motion [44].

2.2.2 The Born-Oppenheimer approximation

The second step in separating the nuclear degrees of freedom from those of the electrons is con-

tained within the Born-Oppenheimer approximation. We begin by rewriting the full Hamilto-

nian in the following form, substituting for the total wavefunction Qtot within the ground-state
adiabatic approximation:

h2 MS V + (} ' o(R, F)4o(1) 4 E o(1, F)0o(), (2.6)
I2 I

with the index I running over all ions in the system. The underlying assumption in the Born-
Oppenheimer approximation is that the electronic wavefunctions Ti have only a weak de-
pendence on the nuclear configuration, such that all derivatives of T'i with respect to the nu-
clear coordinates can be safely ignored. This allows the nuclear kinetic energy operator in
Equation 2.6 to act solely on the 40o component of the ground-state adiabatic wavefunction.
The end result is the formulation of a decoupled "nuclear" Schr6dinger equation, in which
ground-state ionic motion takes place on the potential energy surface defined by the electronic
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eigenvalue Eo:

- ~ + 0o()} o(')() = E4o(R). (2.7)

For ease of computation, Equation 2.7 can usually be replaced by its classical analog, whose
Hamiltonian can be written

Rion 1•Z MI~ + Eo(Ii). (2.8)
I

This is generally justifiable for atoms other than hydrogen, relying on the assumption that
nuclear dynamics for such atoms are predominantly classical. Hydrogen dynamics may also
be well approximated classically, but this must be substantiated on a case-by-case basis.

The potential energy surface Eo(I~) obtained by calculating the ground-state electronic en-
ergy as a function of the nuclear coordinates in the Born-Oppenheimer adiabatic limit is often
referred to as the Born-Oppenheimer surface. It is worthwhile noting at this time that although
we followed a wavefunction formulation in our derivation, the formalism applies equally well
to the electronic-density formulation discussed in the following section.

2.3 Density-functional theory

In the mid-1960's, a milestone development in computational chemistry was achieved with
the introduction of density-functional theory (DFT), which in the forty or so years since has
become an established framework for dealing with the complex electronic interactions in the
many-body Schr6dinger equation. Moreover, the formulation of DFT is widely regarded as
the key facilitator for mainstream adaptation of electronic-structure theory to real-world prob-
lems, prompting Walter Kohn's award of the 1998 Nobel Prize for chemistry [45].

Density-functional theory is more than simply a way of obtaining and expressing a solution
to the ground-state electronic many-body Schr6dinger equation; rather, it represents a com-
plete reformulation of the equation itself. Its essence lies in restating the electronic problem
using the electronic density scalar field no(r) as the fundamental variable, which, neglecting
any dependence on the nuclear configuration R, is connected to the many-body N-electron
wavefunction 4o(') via the following relation:

no(r)= NJ... J o(ri, .. ,r) 12 dr1 --- drN (2.9)

In addition to the obvious conceptual benefit in formulating the many-body Schr6dinger equa-
tion in terms of the experimentally measurable electronic density rather than the mathematical
construct of the wavefunction, this has the notable effect of reducing the effective number of
independent position variables in the electronic system from 3N to a much more manageable
3.
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The basic framework that we use to solve the electronic problem via DFT can be laid out in

two essential steps. In Section 2.3.1, we introduce the Hohenberg-Kohn theorems, which establish

the ground-state electronic density as the new fundamental variable in the formulation of the

quantum problem. Section 2.3.2 discusses the Kohn-Sham representation, which exploits the

Hohenberg-Kohn theorems to map the interacting many-body problem to that of a system of

noninteracting fictitious particles in an effective potential. In the process, we return the system

to an orbital-dependent formulation but acquire a method for accurately approximating the

unknown density functional. The ground-state properties of the original system can then be
extracted from the fictitious system without loss of generality.

2.3.1 The Hohenberg-Kohn theorems

We start by expressing the Hamiltonian for the electronic states in the following form, having

separated out the nuclear components under the Born-Oppenheimer approximation described
in Section 2.2:

h 2  1 e2

'Ne - ei + Nel-ion -- 2m Vext(r) + rj - rk' (2.10)

where the summation index j runs over all N electrons in the system. The quantity Vext is
the "external" potential that arises from the action of the fixed nuclei on the electrons. Note
that Equation 2.10 does not include the nuclear-nuclear interaction potential; this can easily be
added in later. Treating the nuclear configuration only in terms of a fixed external potential
now allows us to drop any explicit dependence of relevant quantities on the nuclear coordi-
nates R = {R1,..., RM}.

The first Hohenberg-Kohn theorem [46] establishes a unique one-to-one correspondence
between the ground-state electronic density no(r) and the external potential Vext(r) which
gives rise to it. Thus, the external potential can be uniquely obtained from the ground-state
electronic density to within an additive constant. This in turn means that in principle, the full
electronic Hamiltonian-and consequently, all ground-state and excited-state system proper-
ties--can be generated by only a knowledge of no(r), neglecting a shift in the energy.

Since the electronic Hamiltonian is uniquely determinable from the ground-state electronic
density, we can write the expectation value of the Hamiltonian in Equation 2.10 using no(r) as
the fundamental variable:

V0 - (K0o[no]l N'e Iqo [no]) = Tel [n0o] + Eel-el [no] + J Vt (r) no(r) dr, (2.11)

where the terms containing no in brackets now represent functionals of no(r), or mappings of
the Hilbert space of density functions onto a scalar field. Note that we have also expressed
the electronic wavefunction To as a functional of no (r). The first term on the right-hand side

29

DENSITY-FUNCTIONAL THEORY CHAPTER 2



represents the kinetic energy of the interacting electronic system. The second term contains
all internal electron-electron interaction terms. The third term, which can now be expressed
explicitly in terms of the electronic density, is the electronic interaction with the external po-
tential.

The second Hohenberg-Kohn theorem proceeds by establishing a variational approach for
the electronic energy functional in Equation 2.11 and defining a universal functional FHK of the
electronic density n(r) as follows [46]:

FHK[n] Tel [n] + Eel-el [n]. (2.12)

The functional FHK [n] is universal in the sense that it contains no explicit dependence on the
external potential Vext (r) or, by extension, the nuclear configurations. The total-energy func-
tional for the electronic system can then be written as

EHK] = FHK[n] + Vext(r) n(r) dr. (2.13)

The variational character of EHK [n] means the minimum, ground-state value no(r) of the elec-
tronic density corresponds to the minimum, ground-state value of the electronic total-energy
functional:

Vo = rain { EHK [n] } = EHK [no]. (2.14)

The above minimization, subject to the constraint that f n(r) dr recovers the total number of
electrons N, yields the actual ground-state energy Vo of the electronic system within the Born-
Oppenheimer adiabatic limit. The original proof required the minimization to take place over
the subset of possible functions n(r) that are V-representable, meaning they can be expressed
as ground-state solutions to the electronic Hamiltonian in the presence of some well-defined
external potential Vext. However, subsequent reformulations of density-functional theory [47-
49] have relaxed this restriction. It should also be noted that the functional EHK [n] gives no
explicit information about excited states.

2.3.2 The Kohn-Sham representation

Despite the elegant simplicity of the Hohenberg-Kohn theorems, their full potential was not
realized until the development of the Kohn-Sham single-particle orbital representation. Rec-
ognizing the significance of the ground-state electronic density in determining much of the
relevant physics of the full many-body problem, Kohn and Sham [50] derived a method for
mapping the complex physical system of interacting electrons onto a much simpler fictitious
system of noninteracting electrons that gives rise to the same ground-state electronic density
no (r) and therefore possesses the same ground-state physical properties.

The Kohn-Sham mapping imagines a set of N independent, noninteracting electrons that
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give rise to N independent, single-particle Schr6dinger equations, each acting in a local effec-

tive potential designated by VKS. In this case, the equation for the jth noninteracting particle

(j E {1,..., N}) is given by:

H KS v2 + VKS j = EjJ. (2.15)

In order to ensure that the system of fictitious electrons reproduces the correct ground-state

electronic density, we add an additional restriction on the eigenfunctions of Equation 2.15:

OCC

no(r) = fj Il j (r) 2, (2.16)

where the index j runs over all of the occupied orbitals, and fj indicates the occupancy of the

jth Kohn-Sham state (fj = 2 for a nonmagnetic, spin-independent calculation). The eigenfunc-
tions bj in Equations 2.15 and 2.16 are known as the Kohn-Sham orbitals, and the corresponding

eigenvalues ej are known as the Kohn-Sham energies. In general, only the sum of the Kohn-
Sham energies has any physical meaning; however, the magnitude of the Kohn-Sham energy
for the highest occupied state has a special physical significance as the ionization energy.

It remains to find a form for the effective local potential VKS, which contains the relevant

physics of the Kohn-Sham representation. To do so, we first return to the universal functional

FHK from Equation 2.12, which Kohn and Sham proposed could be written in the following

general form:
e2 ff n(r)n(r')

FHK[n] = Tl[n] + - n r- r'I drdr' + Ex,[n]. (2.17)

Here T[n] is the kinetic energy term, and the electron-electron interaction has been split into
a Hartree contribution representing the classical Coulomb interaction of the electron density
n(r) with itself, and an exchange-correlation contribution Ec that contains all of the remaining
quantum many-body interactions present in Eel-el [n].

The resulting expression for the electronic ground-state energy of the interacting system
becomes

V0 = EHK[ni] = T[n0] + Vext (r) no(r) dr + •2 nor- r') drdr' + Exe[no]. (2.18)

The above equation is identical for the noninteracting system, with the kinetic energy now
expressed in terms of the Kohn-Sham orbitals:

occ h2
TKS = E 2m, f ( 2 lv 2 1j) (2.19)

It is a straightforward exercise to extract from Equations 2.18 and 2.19 the external potential
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vKS (r) of the noninteracting system that gives rise to the proper ground-state electronic density
no(r):

KS(r) = Vext(r) + e2 J (r) dr' + [(2.20)
Ir - r' S6n(r)

The potential vKS(r) from Equation 2.20 can be supplied to Equation 2.15, which together
with the constraint of Equation 2.16 forms a complete set of expressions describing the Kohn-
Sham scheme. However, the potential depends on the electronic density according to Equation
2.20, but the electronic density also depends on the potential according to Equations 2.15 and
2.16. The solution is to solve the set of equations self-consistently. The conventional procedure
for doing so is as follows:

1. An initial guess is made for the electronic density n(r), say from a superposition of the
atomic orbitals.

2. The potential VKS (r) is calculated based on this density using Equation 2.20.

3. The result is inserted into Equation 2.15, and the Hamiltonian is diagonalized to obtain
the Kohn-Sham orbitals ij (r).

4. A new guess for the electronic density is made from these eigenfunctions using Equation
2.16, and the process is repeated until a predefined convergence threshold is achieved.

Alternative methods for solving the self-consistent Kohn-Sham equations can be derived
if one considers directly minimizing the electronic energy functional in Equation 2.18 with
respect to the Kohn-Sham orbitals Cj (r). In practice, this is often done in an iterative dynamics
scheme by introducing a fictitious time variable, as is the case for the well-known steepest
descent [51] and conjugate gradient [52] algorithms. This is also the basic principle underlying
the Car-Parrinello method [7], which is discussed in detail in Section 3.3, as well as the closely
related damped-dynamics approach [53]. In such cases, one must be careful to impose an
appropriate orthonormality constraint on the Kohn-Sham orbitals, which can be done using
the method of Lagrange multipliers.

2.3.3 Exchange-correlation functionals

It should be noted that the expression for the total energy as stated in Equation 2.18 is an ex-
act representation for the actual ground-state electronic energy within the Born-Oppenheimer
adiabatic approximation. However, up to this point we have avoided any discussion of how
to obtain an explicit representation for the exchange-correlation functional Ex, [nh.

The exchange-correlation functional is so named because it contains two primary quantum-
mechanical contributions to the total electronic energy: the exchange and correlation energies.
The exchange energy results from the Pauli exclusion principle and the antisymmetrization of

the wavefunction, and amounts physically to a change in the quantum-mechanical energy due
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to wavefunction overlap. The correlation energy is a quantum many-body effect describing how

the probability of finding an electron at a particular position can depend on the positions of

the other electrons in the systemt. In particular, inclusion of correlation tends to decrease the

likelihood of finding electrons at short distances from one another.

An exact formulation for the universal exchange-correlation functional Exc [n] remains elu-

sive, and it is in this term that the exact nature of the density-functional approach breaks down.

However, certain proposed approximations have proven extremely successful in accurately

describing the physical properties of a wide variety of systems. The first of these was the local

density approximation (LDA), proposed by Kohn and Sham in their original paper [50]. Within

LDA, Exe is calculated by integrating over all space the exchange-correlation energy density

ehomo for a homogeneous electron gas, with the homogeneous electronic density replaced at

each point by the actual electronic density no(r) of the inhomogeneous system:

EcDA = ehomo [no(r)] no (r) dr. (2.21)

Initially, it was thought that LDA would apply only to systems featuring a slowly varying

density. In practice, however, it has been shown to work well for a large number of systems of

physical interest, including many with very inhomogeneous distributions (this is partly due

to the satisfaction of sum rules, as pointed out in References [54] and [55]).

More recently, a number of modifications to the LDA approach have been widely adopted.

Some of these introduce additional dependence on the gradient of the density Vno(r) and

as such fall under the umbrella of the generalized gradient approximation (GGA). Popular GGA
formulations include that of Perdew and Wang (PW91) [56], and the Perdew, Burke, and Ernz-

erhof (PBE) formulation [57] that is used throughout this work. Gradient-corrected exchange-

correlation functionals typically reduce the binding energy with respect to LDA [58,59], which

often leads to better agreement with experiment.

2.4 The plane-wave pseudopotential framework

2.4.1 The plane-wave basis set

Up to this point, our discussion has treated the total electronic wavefunction 0o(r) and the
Kohn-Sham orbitals 'j (r) in abstract mathematical terms. In any practical implementation re-
quiring wavefunction characterization, it is necessary to select a basis set in which to represent
the problem. Isolated systems, such as atoms and molecules, tend to be well suited to descrip-
tions based on Gaussiant or atomic-orbital basis sets; as such, these are the most common

tThe correlation energy can also be thought of as the error introduced in approximating the many-body wave-
function by a single Slater determinant, as is done in the Hartree-Fock approach.

$Gaussians demonstrate improper exponential decay behavior, but they are nonetheless useful for Hartree-Fock
based approaches.
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approaches for quantum chemical calculations. On the other hand, for extended systems, it

is often convenient to select a basis set consisting of mutually orthonormal plane waves. This
section describes the procedure for doing so.

In principle, an infinite system requires full treatment of an infinite number of electrons.

However, this difficulty can be circumvented by exploiting the natural periodicity of the lat-

tice. The extended system is instead treated as an infinitely repeated array of supercells, each
of which contains a sufficiently large sample of the ions in the system. At the supercell edges,
we impose periodic boundary conditions, meaning opposite sides of a cell are assumed identical.
This leads to a periodicity with the cell size for the nuclear potential, i.e., Vext (r) = Vext (r + R')

for a real-space cell-cell separation given by the Bravais lattice vector R'. The supercell method
allows one to accurately treat an infinite extended system in a finitely representable manner
without introducing surfaces or isolated samples. This approach also minimizes finite-size
effects in simulations containing defects, since relevant physical quantities demonstrate rapid

convergence with respect to supercell size in such instances. Accordingly, the method may

also be applied to study surface slabs, point defects, or even isolated systems, provided the

supercell size is chosen so as to remove any unphysical correlation effects between successive

periodic images.

Within the periodic plane-wave scheme, we can make use of Bloch's Theorem [60] to write
an electronic wavefunction in reciprocal space as a sum of plane waves over the reciprocal

lattice vectors G of the extended system. Bloch noted [61] that the eigenfunction of a periodic

system can be expressed as the product of two terms:

Cjk(r) = ujk(r) eik 'r. (2.22)

The first term on the right-hand side is a function Ujk that carries the same periodicity as

the nuclear potential; the second term represents the equation for a plane wave. Note that

when written in this way, the wavefunction Pjk(r) acquires an additional index referring to

the wavevector k, which is stipulated to lie within the first Brillouin Zone (BZ). The periodic

part Ujk can be further expanded in terms of the reciprocal lattice vectors G as follows:

Ujk(r) C jk(G) eik 'r. (2.23)
G

Equations 2.22 and 2.23 together identify Ojk as a Bloch state.

The overall electronic density n(r) can then be calculated by summing the contribution

from each of the occupied Bloch states at a given k-point and integrating the result over all

k-points within the BZ:
oCC

n(r) =B f IfJ jk(r) 12 dk. (2.24)
BZ3
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As before, the sum runs over the occupied states, and fj denotes the occupancy of the jth state.

Although the integral in Equation 2.24 in principle involves a continuous sum over every k-

point in the system, it is sufficient to replace the integral with a sum over discrete k-points,

usually a Monkhorst-Pack mesh [62-64] designed to take advantage of the symmetry of the
system. In fact, for larger supercells consisting of multiple unit cells of a mostly periodic lat-

tice, such as those common in finite-temperature dynamical simulations of crystalline systems
or in point defect calculations, the integral is often sampled only at the BZ origin k = (0, 0, 0),
also known as the F-point. This can be justified by considering that the supercell BZ of a per-
fect crystal contains folded contributions from each component unit cell, meaning the band
structure at the F-point also features bands from each component unit cell. Single-k point
sampling is also commonly employed in systems with very low symmetry, since in such in-
stances the addition of extra k-points yields little new information. Note that the accuracy of
the F-point sampling method generally improves as the size of the supercell increases, since
reciprocal-lattice spacing is inversely proportional to real-lattice spacing.

It is straightforward to derive an expression for the kinetic energy of each plane wave:

h2 |k + G12

Tlk+ GI 2m (2.25)

Equation 2.25 highlights one of the advantages of a plane-wave basis set. Since kinetic energy
increases monotonically with Ik+ G, convergence can be easily controlled by considering only
those plane waves with a kinetic energy below a predefined cutoff Ecut. This corresponds to
truncating the summation over G-vectors in Equation 2.23, resulting in a finite basis set that
can be systematically improved given any atomic arrangement until a converged solution is
obtained. This in turn helps to ensure that energies of successive timesteps in a dynamical
simulation are computed with similar accuracy.

Plane-wave basis sets have additional advantages over competing alternatives [53]. Plane
waves are delocalized and position independent, making them ideally suited for calculations
in extended systems. This also means many quantities of relevant physical interest are partic-
ularly simple to calculate, including energies, forces, and stresses.

2.4.2 The pseudopotential approximation

Despite their usefulness, plane waves display certain disadvantages when applied to real sys-
tems. The most obvious is the unacceptably large number of plane waves that can be required
to depict the electronic wavefunction in the vicinity of the nucleus. In this region, the wave-
functions of the valence electrons can have many nodes owing to the imposition of orthogonal-
ity constraints (this is particularly true for larger atoms, since nodality depends on the prin-
cipal quantum number). In addition, the wavefunctions of the tightly bound core electrons
are highly localized (see Figure 2-1). Both conditions necessitate inclusion of high-frequency
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FIGURE 2-1: Radial electronic wavefunctions from an all-electron calculation of cesium ([Xe]6s').

plane waves for an accurate description, resulting in an unacceptably high value of Ecut. A
solution to this problem can be found in the pseudopotential approximation, which replaces the
actual nuclear potential in the electron-ion interaction terms with a much weaker counterpart
engineered to retain the chemically relevant behavior of the full potential.

The basic method involves redefining the term "ion" in Equation 2.1 to include not only the
atomic nuclei but also the core electrons. The rationale for doing so is that the core electrons
are generally tightly bound to the nuclei and contribute little to chemical bonding, meaning
they change negligibly in real systems with respect to the isolated atom case. The core elec-
trons therefore act primarily to screen the nuclear potential. Accordingly, the "electrons" are
redefined to refer only to the valence states, which in turn interact with the screened potential.

For many elements, choosing which electronic states should be included in the core is a non-

trivial exercise and must be decided on a case-by-case basis by combining physical intuition

with reliable test calculations.

The net result of this reformulation is the replacement of the full nuclear potential with

a much weaker pseudopotential VPs . In this scheme, the valence electrons acquire a nodeless

wavefunction in a potential that outside the core region replicates the effects of nuclear attrac-

tion, as well as Coulombic repulsion and orthogonality constraints with respect to the core

electrons. The simplified problem is designed to maintain optimal transferability, meaning it

will reproduce the behavior of the all-electron system in a variety of real chemical environ-

ments. In particular, good transferability requires that the pseudo-system properly replicate

the chemical hardness (defined as the change in orbital eigenvalues with changes in orbital

occupancies), the excitation energies, and the scattering properties of the all-electron system.
In practice, it is generally sufficient to ensure transferability for a chemically relevant energy
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range, usually within several electron volts of the electronic valence energy for the atomic

configuration.

Norm-conserving pseudopotentials

In 1979, Hamann, Schltiter, and Chiang (HSC) [65] outlined a series of criteria for the genera-

tion of pseudopotentials that simplify the electronic wavefunction description in a plane-wave
basis while ensuring accurate replication of the consequences of wavefunction orthogonality
and maintaining good transferability. All modern norm-conserving pseudopotentials are rooted

in the fulfillment of the HSC conditions, although specific recipes vary. The authors recog-
nized that since scattering is an angular-dependent property, a transferable pseudopotential

should be nonlocal, meaning it should act differently on each angular momentum channel.

However, scattering phenomena are relevant only in the core region near the nucleus, so it is
sufficient to create a semilocal pseudopotential consisting of a local component Voc (r), which
acts uniformly on all angular momentum channels, and a nonlocal component V,n loc (r), which
acts differently on each angular momentum channel f but is relevant only in the core region.
The HSC method therefore defines a core cutoff radius Re, which determines the extent of the
nonlocal portion, resulting in a pseudopotential of the form

Vloc(r) if r > Rc
VPS(r) Vloc(r) + Iyetm)Vynloc(r)(YemI if r < R, (2.26)

where Yem are the spherical harmonics. In the valence region (r > Re), the fully local pseu-
dopotential VPS(r) is constructed to match the all-electron potential VAE(r), and the radial
pseudo-wavefunctions OPS(r) match the radial all-electron wavefunctions OAE(r) (here we
have dropped the wavefunction indices j and k for simplicity of notation). At r = Rc, the
radial pseudo-wavefunction is required to be continuous, as are its first and second deriva-
tives. The HSC conditions also necessitate that the eigenvalues EPS of the pseudo-system

faithfully reproduce the eigenvalues eAE of the all-electron system for each valence state.
An additional stipulation is that pseudo-wavefunctions should be norm conserving, mean-
ing (Vt Ir)aPSm = 1 for each angular momentum channel t, m. This ensures that the pseudo-
wavefunctions generate the proper total electronic density. Combining this with the restriction
that OPS(r) = qAE(r) for T > R, gives

I• PS (r) 2 dr = j II AE(r) 2 dr (2.27)

for all R > Rc, which is the usual statement of norm conservation [58].

An identity introduced by Shaw and Harrison [66] relates Equation 2.27 to a condition on
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FIGURE 2-2: Wavefunction logarithmic derivatives for the s, p, and d angular momentum channels of
chlorine, calculated at a radius of 2.52 au and a reference energy corresponding to the eigenenergy of
the highest occupied orbital. Solid lines represent the results for the all-electron calculation, dashed
lines are the results using a semilocal pseudopotential for the valence states, and dotted lines are the
equivalent results using the Kleinman-Bylander separable form for the pseudopotential.

the logarithmic derivatives for R > Re:

27r((rV))2d +n 4) 7 R =4 V) j2P r2 dr. (2.28)

Equation 2.28 is relevant for faithful reproduction of the scattering properties, which require

agreement of the logarithmic derivatives and their energy derivatives for the pseudo- and all-

electron wavefunctions (this results from the fact that phase shifts in the Born approximation

are related to logarithmic derivatives [67]). In the case of the energy derivative, agreement is

explicitly forced at some reference energy e re, leading to an additional pair of closely related

equations that must hold for R > Re:

d (InVPS(r))j= IR dr (InVAE(r)) K (2.29)

d r_ dd A RE

dd (n Ps (d n I d AE (r)) (2.30)dYr- & REref dr de I REref
The restrictions in Equations 2.29 and 2.30 represent probably the most significant contribution

of the HSC scheme, since they offer an implicit guarantee of good transferability from the

perspective of scattering. The general behavior of the logarithmic derivative in Equation 2.30

is depicted graphically in Figure 2-2.
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r (au)

FIGURE 2-3: Comparison between pseudo- and all-electron radial wavefunctions for the 3s, 3p, and 3d
(unoccupied) channels of chlorine. Solid lines represent the all-electron wavefunctions; dashed lines
are the pseudo-wavefunctions.

The HSC pseudopotential criteria have the useful effect of removing all core-region nodes

in the pseudo-wavefunctions 'iPS(r), thereby ensuring a low plane-wave cutoff Ecut for va-

lence shells of larger atoms. As an example, Figure 2-3 illustrates the valence pseudo-wave-

functions with respect to their all-electron counterparts for the case of chlorine.

The electron-ion interaction potential for the periodic pseudosystem is calculated in recip-

rocal space as a sum of pseudopotential contributions from each of the reciprocal lattice points.

For a local pseudopotential, the form of each contribution can be written as

Vcrys(G) = S(G)VPS(G), (2.31)
8

where the index s runs over the ionic species in the system, and S, represents the structure
factor for species s, whose formula is given by

Ss(G) = ZeiG'R . (2.32)

For the nonlocal part of the pseudopotential, the contribution to the total electron-ion interac-
tion energy Eel-ion from angular momentum state £, m is calculated in the following manner:

Eel-ion; Im = = 1 (?PS2•IY£m) Vcrys(G - G') (Yim llPS). (2.33)
G,G'

However, the sum in Equation 2.33 presents a significant difficulty in terms of computation,
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since as written it is not separable into independent sums over G and G'. This results in a
computational cost that scales as the square of the number of plane waves in the finite basis
set. A simple solution to this difficulty was suggested by Kleinman and Bylander [68]. They
proposed replacing the nonlocal part Venloc(r) of the pseudopotential in Equation 2.26 with a

new operator of the form E, Ikm (r)) (/6m (r) I that acts on the wavefunction in much the same
manner as Vnloc (r) (in particular, it is identical when applied to IYem) but not when applied to
a generic wavefunction). The expressions for the new quantities EmB and Oem(r) are defined
as follows:

Vnloc (r)·,I(PSr)
tem(r) () (2.34)

Ps (Vfn l oc)2 I )PS1/2

and
K ()PS Vnloc) 2  PSEl = ls e (2.35)

For r < Rc, Equation 2.26 then becomes:

>1 S Vnloc) (vnloc *,PS I
VPS(r) = Vloc(r) + s t )n  (2.36)

It is a straightforward exercise to show that writing the pseudopotential using the Kleinman-
Bylander representation allows separation of the sum in Equation 2.33 into the product of two
sums. This allows the electron-ion interaction energy to be calculated with a computational
cost that scales linearly with the size of the plane-wave basis set. However, Gonze et al. [69,70]
showed that constructing separable Kleinman-Bylander pseudopotentials can in some cases
lead to unphysical "ghost states" that are not represented in the set of all-electron eigenvalues.
As such, proper care must be taken in the generation process, and pseudopotentials should be
tested for proper transferability and for the absence of ghost states.

Since the work of Hamann, Schliiter, and Chiang, there have been a number of improve-
ments to pseudopotential methodology. One is the inclusion of relativistic effects, enabling

proper calculation of the spin-orbit coupling [71,72]. Another important modification, known

as nonlinear core correction, compensates for false screening resulting from an overlap of core

and valence states [73]. Nonlinear core correction enables good transferability for single-

electron pseudopotentials in the case of alkali metals, for instance.

Ultrasoft pseudopotentials

An entirely new alternative to the norm-conserving pseudopotential was introduced by Van-

derbilt in 1990 [74,75]. The motivation for doing so was that certain atoms, particularly those

in the first rows of the periodic table, have highly localized charge densities in their valence
shells as well as the core. This is particularly true for 2p, 3d, and 4f elements, since these angu-
lar momentum channels contain no orthonormality repulsion from shells with lower princi-
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pal quantum numbers. For such elements, implementing a norm-conserving pseudopotential

scheme does little to reduce the total number of plane waves required by the problem. Rec-

ognizing that the primary limitation of the traditional method resides in the norm-conserving

constraint of Equation 2.27, Vanderbilt proposed easing this restriction in the e-dependent core

channels, resulting in a formalism for the generation of smoother ultrasoft pseudopotentials that

can substantially reduce the size of the plane-wave basis set in certain cases.

The ultrasoft method adopts a generalized eigenvalue formalism [76], whereby pseudo-

wavefunctions are obtained by solving a generalized eigenvalue problem in the presence of

the pseudopotential (the superscript "US" is used to distinguish from the norm-conserving

case):

(H - EjS)U s = 0. (2.37)

Here S is an overlap operator that can be expressed in terms of the augmentation charges Qjk,

which are related to the deviation of the pseudo-wavefunctions from the condition of norm
conservation:

s = 11 + Qjk I 3j)(lk (2.38)
j,k

The functions fli are projector functions that depend on the ionic positions R1. Mathematically,

the Qjk are defined as follows:

Qjk = { [1 A (r)]*hn(r) - [0jUS(r)]* US(r)} dr. (2.39)

Inclusion of these augmentation charges allow the system to recover the correct charge density.

The introduction of the overlap operator S also requires a redefinition of the orthonormality
condition on the ultrasoft wavefunction Ous (r):

(S I S I~VUS)= Ljk. (2.40)

In generating the ultrasoft pseudopotential, the generalized eigenvalues ej in Equation 2.37
can be matched to their corresponding all-electron values at as many energies j as required,
enabling improved transferability.

2.5 The Wannier function approach

In characterizing interatomic bond interactions and valence charge distributions in periodic
systems, it is often useful to examine the electronic wavefunctions in a localized basis set rather
than an extended plane-wave basis. As such, Wannier proposed expressing the electronic
wavefunction in a basis of atomic-like orthonormal orbitals w that span the same Hilbert space
as the Bloch functions of Equation 2.22 but are localized in real space [77]. These Wannier
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functions are generated from a Fourier transform of the Bloch states Ojk:

WjR' (2= )3 jke-iR' dk, (2.41)

where Q refers the volume of the cell in real space. Note that the index k representing the

wavevector in the Bloch state has been replaced by an index R' representing the real-space

Bravais lattice vector in the Wannier function.

The general definition of the Wannier function as given in Equation 2.41 suffers from lack

of uniqueness, however: multiplication of the Bloch function by any arbitrary phase factor

will in general result in a different expression for wjR', despite the fact that doing so leaves all

physical observables unchanged. In addition, the Bloch states can be mixed together in any

arbitrary fashion when generating the Wannier functions, leading to the more general formula

OCC

WjR r3 > Uij,4ike - ik-R' dk. (2.42)
wjR, Q(27Z)3  i

Marzari and Vanderbilt [78] dealt with this indeterminacy by transforming the Bloch states

into a representation designed to minimize the real-space spread r of the Wannier function,

defined as
oCC

= { o(wjlr2 JIwj o - Kwjo r WDjo)2}. (2.43)

The Wannier functions that minimize this spread functional are referred to as maximally lo-

calized Wannier functions (MLWFs). As the name suggests, MLWFs give a highly localized

description of the wavefunctions, making them particularly useful for analyzing and visualiz-

ing chemical bonding [79]. The centers of the MLWFs have an additional interesting property:

for an insulating system, the net sum of their displacement vectors from the ion centers gives

an expression corresponding to the total polarization of the cell [78].

2.6 Lattice dynamics from first principles

The various lattice-dynamical properties of a crystalline system-for example, phonon dis-

persions, infrared absorption, and Raman spectra-can be calculated from first principles us-

ing linear-response theory, which implements a first-order perturbative approach to ordinary

density-functional theory [80, 81]. Although the details of the method are beyond the scope

of this introduction, we will briefly outline the basic framework used for extracting the inter-

atomic force constants and the full phonon dispersion from linear response.

Before proceeding, it should be emphasized this formulation assumes the Born-Oppenhei-

mer adiabatic approximation, with the nuclei treated as classical particles (see Section 2.2).

Within the context of linear-response theory, this translates to the statement that lattice-dyna-
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mical properties are entirely determined by the nuclear dynamics on the Born-Oppenheimer

surface, which is obtained as the solution to the electronic system for a configuration of fixed

ions and as such is a function of the ion positions alone.

All of the basic physics of linear-response theory is contained in the various derivatives

of the total energy E, calculated within the Born-Oppenheimer adiabatic approximation. We

begin by introducing a set of perturbative displacements from equilibrium for the ions in the

system as i- = {uc }, where I and T represent the ion and supercell indices, respectively, and a

represents the Cartesian direction of the displacement. The total energy can then be expanded

as follows:

E(ii) = E(o) + 0C92E E a J, + ... , (2.44)
I,-r J,-r7 a,al I r J

where E (M) represents the total energy of the equilibrium configuration. Note that we have

neglected the first-order term in the expansion, since it contains the forces on the ions, which

are zero at equilibrium:

aE a y
E u r-  .- FrUr•, = 0. (2.45)

I,Jr a I,- a

The second derivatives of the energy surface determine the interatomic force constants C'IJ,
which collectively describe the force response of ion I in supercell 7 along Cartesian direction
a to a displacement u•,, of ion J in supercell 7' along Cartesian direction a':

CoR' _? MRe' (2.46)

We now apply the harmonic approximation [82], in which the displacements i from equi-
librium are sufficiently small, allowing us to neglect all terms higher than second order in
Equation 2.44. In this limit, the forces on the ions are linear with the displacements, and vi-
brational modes w can be approximated by harmonic oscillations. Introducing the frequency
response and scaling by the nuclear masses allows us to write

-W2 m, u a - S " ICJ uA. (2.47)

J,r' oa'

Equation 2.47 can be reformulated as a secular equation involving a matrix whose eigenvalues
produce the various vibrational modes wi of the system:

det 1 r w2_1 = 0. (2.48)

The periodicity of the system invites application of Bloch's Theorem [60], permitting de-
coupling of the crystal vibrational frequencies w for each wavevector k. Equation 2.48 is
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thereby transformed into reciprocal space and becomes

det I 1 -nf'(k) - w2(k)]I = 0. (2.49)

Here Cg' I(k) denotes the Fourier transform of the interatomic force constant matrix C7'IJ,
and has the form

CITja(k) e= O ,, ei (2.50)

where Nc represents the number of periodic supercells in the crystal. The first term in Equation

2.49 is often expressed instead as the dynamical matrix Do"' (k):

nD7'a (k) = 1 - ' (k), (2.51)S/M MjM j'(

The full phonon dispersion w(k) is derived from the collective spectrum of square-rooted

eigenvalues of the dynamical matrix at each wavevector k. Given the interatomic force con-

stants, the eigenvalue spectrum can be obtained by solving Equation 2.48.

In principle, the force constants can be calculated manually by displacing each ion within

the linear regime and calculating the energy and the corresponding Hellman-Feynman force.

However, this approach is limited to eigenvalue calculations w(k) at k-vectors that are com-

patible with the lattice periodicity. Although theoretically speaking, one can combat this dif-

ficulty by increasing the supercell size, doing so rapidly adds to the computational expense,

and an infinite cell size would be required for a complete sampling of reciprocal space. A per-

turbative approach on the density functional is far more flexible and powerful, allowing one

to sample eigenvalues at any arbitrary k-vector. The detailed methodology for calculating the

energy derivative in Equation 2.46 within density-functional perturbation theory can be found

in References [81] and [80].
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First-principles molecular dynamics

3.1 IntroductionMOLECULAR DYNAMICS (MD) provides a simple yet powerful technique for sam-

pling local configurational space given a set of initial ionic coordinates R =

{R 1,..., RM}. It is ideally suited to problems for which static total-energy calcu-

lations are insufficient, such as probing reaction kinetics or visualizing the specific pathways
and mechanisms involved in transport phenomena. It can also be used to explore free energy
surfaces at finite temperatures. Moreover, a variety of useful thermodynamic properties can
generally be obtained from MD simulation results by time averaging appropriate statistical
quantities (see Section 3.5).

The basic methodology of classical molecular dynamics is grounded in Newtonian me-
chanics and has changed little since its original formulation in the late 1950s [4]. Essentially, it
involves the deterministic propagation of particle trajectories in response to the instantaneous
forces acting on them. These forces are calculated by differentiating the total energy E(A),
such that the Newtonian equation of motion for particle I E {1,..., M} can be written as

MIRI -O RI F. (3.1)

Equation 3.1 is then discretized and integrated numerically in time to obtain the trajectories.
One of the most popular discretization schemes is the Verlet algorithm [83]. The algorithm

is particularly useful because it is both time reversible and symplectic (i.e., conserves volume
in phase space) [84], meaning it accumulates minimal additional error as a dynamics simula-
tion progresses. In practice, this allows for good long-term energy conservation, facilitating
lengthy, well-behaved simulations. It is also extremely fast and memory efficient [85] but
nonetheless retains reasonably good accuracy, with numerical integration errors of the order
0 { (At)4}. Initial ionic positions are specified along with initial velocities, from which ionic
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positions at the previous timestep are linearly extrapolated backwards in time. The algorithm
then predicts subsequent configurations as follows:

(At)2
R (t + At) = 2R (t) + R (t - At) + M- FI(t). (3.2)

An alternative but mathematically equivalent formulation known as the velocity Verlet al-
gorithm [86, 87] is sometimes used instead. In this formulation, the ionic velocities are used
directly in conjunction with the forces to compute the trajectories, and the velocities and posi-
tions are propagated independently:

(At)2
R,(t + At) = RI(t) + At Ri(t) + 2M- Fi(t) (3.3)

Rl(t + At) = R• (t)+ --- [F1 (t + At) + F,(t)]. (3.4)

Regardless of the specific integration algorithm used, the timestep increment for the dis-
cretization must be sufficiently small to ensure that the calculated instantaneous force on each
ion is a good approximation to the real force over the course of the timestep At.

3.2 Born-Oppenheimer molecular dynamics

Nearly all implementations of molecular dynamics based upon first principles are straight-

forwardly adapted from classical MD using Equation 3.1. This relies on the assumption that

the ions can be safely approximated as classical point particles, which is justified for most

systems (although for certain systems, such as those containing hydrogen, this claim must be

substantiated on a case-by-case basis). We further assume we are operating under the Born-

Oppenheimer adiabatic approximation (see Section 2.2), such that the nuclear and electronic

degrees of freedom are separable and the electrons follow the motion of the nuclei in their

instantaneous ground state. We can then calculate the forces on the ions using the Hellman-

Feynman theorem, which states that

OE\-e OREion-ionF, = = - o o - n (3.5)
aRI 49 RI aRI

Here T'o is the ground-state electronic wavefunction and He is the electronic Hamiltonian,

defined within the Born-Oppenheimer adiabatic approximation according to Equation 2.10.

The term Eion-ion refers to the classical Coulombic repulsive energy between the ions. If we

assume that the external potential Vet is local, the first term on the right-hand side of Equation

3.5 can also be formulated in terms of the electronic density n(r) as follows:

- (o oI= Ve (r)R n(r) dr. (3.6)(9RI aRi
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When n(r) is calculated within the single-particle Kohn-Sham representation (Section 2.3),
Equations 3.1, 3.5, and 3.6 generate a complete recipe for Born-Oppenheimer molecular dynamics.
In this scheme, a fully self-consistent minimization is performed at each timestep to yield the
proper electronic density, which is used to obtain the electronic energy of the current config-
uration. The Hellman-Feynman forces are calculated, and the Verlet algorithm (Equation 3.2)
or some other approach is employed at each timestep to generate the nuclear trajectories from
the forces. The energy of the new configuration is then calculated, and the process is repeated.

3.3 Car-Parrinello molecular dynamics

Although Born-Oppenheimer molecular dynamics is conceptually simple and relatively easy
to implement, it requires a complete, self-consistent solution of the Kohn-Sham equations for
every timestep. For systems of appreciable size, this calculation can become very computation-
ally expensive, limiting the overall effectiveness of the method as a practical tool. A solution
was devised in 1985 with the development of Car-Parrinello molecular dynamics [7, 75], which
outlines a scheme to simultaneously propagate the ions and find the electronic ground state,
thereby dramatically reducing calculation time.

Recognizing that in the Kohn-Sham representation the total energy E in Equation 3.5 de-
pends on the set of single-particle orbitals {'I } as well as the ionic positions R, Car and Par-
rinello proposed treating the Kohn-Sham electronic wavefunctions themselves as independent
classical dynamical variables. The total energy can then be recast as a functional ECP [i, {j }]
describing the potential energy surface parameterized by the "configurations" of 1R and { 4j }.
It should be noted that this new functional Ec P contains the classical ion-ion repulsive en-
ergy, plus contributions from each of the terms in Equation 2.18: the Kohn-Sham kinetic en-
ergy, the interaction energy with the external potential, the Hartree energy, and the exchange-
correlation energy. The total energy is recovered upon minimization with respect to {oj }. The
fictitious "coordinates" of each 0j are taken to be the coefficients of the respective plane-wave
expansion, and a corresponding fictitious mass and classical kinetic energy are introduced. In
principle, the entire system can then be relaxed in a dynamical scheme until the new energy
functional is minimized, at which point the coordinates of the virtual electronic particles are
extracted as the plane-wave coefficients of the actual ground-state Kohn-Sham system.

The classical Lagrangian of the Car-Parrinello system is given by:

CP = 1 (1 E MI - EcP 1] + EAjk I k) - Jk (3.7)
3 I jk

where 1L is the fictitious generalized mass corresponding to the electronic wavefunctions j.
The first term on the right-hand side of the equation represents the classical kinetic energy
of the fictitious electronic dynamics, and the final term is introduced as an orthonormality
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constraint on the wavefunctions. The constraint is imposed using the method of Lagrange

multipliers, which enter into the Lagrangian as Ajk. It should be noted that Equation 3.7

defines one instance of an extended-Lagrangian formalism [88], which will be discussed in more

detail in Section 3.4.

The corresponding Euler-Lagrange equations of motion for the ions and the fictitious elec-

trons are given by:
6E c P

yj = 6;- + 1 Ajk k, (3.8)
j k

OECP
MIR,= (3.9)

OR1

The functional derivative - in Equation 3.8 can also be expressed in terms of the Kohn-

Sham Hamiltonian as --7KS)j, with 7-(KS defined according to Equations 2.15 and 2.20.

In principle, integration of Equation 3.9 results in ion dynamics which match those of the

physical system only when the energy functional E CP [R , {cj }] attains its minimum value with

respect to the fictitious electronic degrees of freedom {j }. However, if p is chosen to be

sufficiently small, the dynamics of the fictitious electrons will be very fast, and coupling to the

dynamics of the ions will in practice be extremely weak as long as the system is an insulator.

This means that any kinetic energy transfer between the electronic and ionic systems will be

minimized, and the system will remain close to the Born-Oppenheimer surface. In this limit,

the Car-Parrinello approach reliably approximates the actual dynamics of the system [89].

The Car-Parrinello equations of motion can be discretized in time using an appropriate in-

tegration algorithm. Using the Verlet algorithm, the discrete form for the ions follows Equation

3.2, whereas the solution to the electronic problem becomes [58,90]:

0i (r, t + At) = 2ipj(r, t) - Cj (r, t - At) - At2 KS(rt) - Ajkk (r, t) (3.10)

It is worthwhile discussing in greater depth what motivates a proper choice for the fic-

titious mass p. In effect, 1 determines the tolerance with which the system adheres to the

Born-Oppenheimer surface; smaller values therefore yield higher accuracy results. However,

[t also limits the integration timestep in Equation 3.10 if we are to ensure that the fictitious

electronic "forces" integrate correctly. This limitation is particularly significant considering

changes in p are reflected in the square of At, given that the coefficient (At)2/p of the force

term ultimately determines the extent of the propagation in time. Although there is no firm

law governing a proper choice, / should be chosen such that the timestep can be maximized

under the constraint that the system remains close to the Born-Oppenheimer surface through-

out the entirety of the simulation time. A convenient estimate can be obtained by comparing

the kinetic energy of the fictitious electronic system (which scales with p) to that of the ions;

generally, the electronic value should be no more than 10% of the ionic one, with the electrons
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to

0

Time (fs)

FIGURE 3-1: Evolution of the (a) ionic and (b) fictitious electronic kinetic energies for a simulation of
CsHSO 4 at 550 K, sampled over a period of 0.5 ps (p = 700 au, At = 7 au). The scale of the bottom
graph is set to 1/10 that of the top graph in order to evidence the electrons' adiabatic following of the
ion dynamics.

following the same qualitative trend as the ions throughout the simulation (Figure 3-1). This
usually mandates relatively short timesteps when compared with Born-Oppenheimer molec-
ular dynamics, but this is more than compensated by the computational savings.

A nonobvious benefit of the Car-Parrinello method is that it allows for the definition of a
constant of motion Econs, which should be conserved in any properly configured simulation.
This quantity can therefore be monitored to ensure numerical stability in the integration, mak-
ing it a useful measure for fine tuning simulation parameters such as the integration timestep
At. This constant of motion can be extracted from the Car-Parrinello extended Lagrangian
(Equation 3.7) and takes the form:

1 1
Econs =1 1 Y W) + MI ECP[R'4}. (3.11)-2 _, z(jl j - _MR+ 1 (3.11)

j I

For a properly chosen value of At, Econs should display negligible drift as the simulation
progresses, and any fluctuations should be tiny on the energetic scale of the fluctuations in
EC P (see Figure 3-2).

3.4 Simulations within other ensembles

Up to this point, our discussion has presupposed that the system is in the microcanonical NVE
ensemble, such that the total energy of the system is conserved at each timestep. In practice, it
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'U

0 100 200 300 400 500
Time (fs)

FIGURE 3-2: Comparison of the magnitude of the fluctuations in (a) the total internal energy of the
system and (b) the Car-Parrinello constant of motion. The reference energy is taken to the be the corre-
sponding value at the start of the represented simulation period, and the scale of the bottom graph is
1/100 that of the top graph. Data represents 0.5 ps of a simulation of CsHSO4 at 550 K.

is often more convenient to perform MD simulations in other ensembles. For instance, fixed-

temperature simulations are useful for examining phases that manifest themselves only at fi-

nite temperatures, or for exploring thermally activated events such as those common in trans-

port phenomena. Similarly, fixed-pressure simulations allow for the investigation of structural

phase transformations that are incompatible with the constraints of a fixed-volume supercell.

Many algorithms exist for extending MD simulations to other ensembles [85,91]. However,

the extended-Lagrangian formalism used by the Car-Parrinello approach offers a particularly

convenient way of doing this by addition of generalized coordinates involving temperature or

pressure [87, 88]. These can then be treated as fictional dynamical variables in much the same

way as the virtual electronic wavefunctions in Equation 3.7. In this section, we will explore

two extended-Lagrangian methods in greater detail: the Nos&-Hoover thermostat for isothermal

simulations and the Parrinello-Rahman method for isobaric simulations. Other notable exten-

sions exist, however. One more recent example is the electric enthalpy method [92,93], which

uses an extended Lagrangian based on the pairing between polarization and displacement to

simulate the application of an external electric field.

3.4.1 The Nosd-Hoover thermostat

The extended-Lagrangian method for finite-temperature simulation in the canonical NVT en-

semble is attributed to Nose and Hoover [94-98]. Nose proposed coupling the system to a

thermostat using a generalized coordinate s and a corresponding generalized mass Q. The
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variable s acts to regulate the temperature by rescaling the velocities of the ions in a determin-
istic manner. Addition of a Nos6-Hoover thermostat to the ionic components of Equation 3.7
results in the following modified Car-Parrinello Lagrangian:

NH Z1 ( I ) + E Is2 _ E CP[R5, {j ]
j I

+ -A (0 Ik) - Qk I+ 2 - gkBTln ns, (3.12)
ik

where g represents the degrees of freedom in the thermostated system (conventionally, g = 3M
+ 1, where M is the number of ions) and T indicates the target temperature. Note that in
addition to modifying the ionic kinetic energy, a classical kinetic energy term corresponding to
the thermostat system has been added. The final term in Equation 3.12 represents a constraint
on the thermostat coordinate s designed to guarantee canonicity; that is, to ensure that physical
fluctuations in the energy and temperature are preserved and distributed properly. This in
turn generates correct values for quantities related to the natural energetic fluctuations, such
as the heat capacity [85]. The corresponding constant of motion is given by:

1 1 1
Econs = 2 • ( j• 1IP)j+ MIs2R1 + ECP[R, iii + 2Q + gkBT n s. (3.13)

2 2

For certain materials, particularly those featuring a small electronic bandgap, it may be-
come necessary to add a thermostat to the fictitious electronic system as well [99]. Doing so
can effectively prevent minor energy transfer between the "hot" ionic system and the "cool"
electronic system, thereby ensuring adiabaticity during the course of a very long simulation.
An electronic thermostat is implemented in much the same way as the ionic one, except that
the fictitious thermostat coordinate acts to instead rescale the virtual velocities 4j of the Kohn-
Sham orbitals.

There may also be instances in which the Nos&-Hoover thermostat does not efficiently
explore phase space and can become caught in the excitation of one or a very few of the vi-
brational modes. A solution to this problem was proposed by Martyna et al. in the form of
Nosg-Hoover chains [100]. In this scheme, the initial thermostat is coupled to a second thermo-
stat, which in turn can be coupled to a third thermostat, and so forth. The entire chain can be
shown to generate a proper canonical distribution.

As with the Car-Parrinello fictitious mass /, it may not be immediately clear what mo-
tivates a proper choice of the thermostat mass Q. In principle, any value of Q will ensure
canonicity. However, by generating the equation of motion for the fictitious coordinate s from
the Lagrangian (Equation 3.12), one can show that to first order, heat flow in the Nos&-Hoover
scheme approximates a periodic oscillation of s, whose angular frequency w is governed by
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the choice of Q [87]:

w 2gT (3.14)

In order to ensure maximally efficient kinetic energy transfer to the ionic system, the mass Q
should be chosen such that w matches the typical optical frequency of the material. If Q is
chosen to be too large, it will take a long time to generate a canonical distribution. Moreover,

there will be an increased likelihood of incurring numerical errors in the integration of the

equation of motion because of the large mass difference between the system and the thermo-

stat, which could lead to energetic drift over time. On the other hand, if Q is chosen to be

too small, the thermostat will be too aggressive, leading to dampening of desirable, realistic

thermal fluctuations. In this case, unphysical high-frequency oscillations may also become
manifest.

3.4.2 The Parrinello-Rahman method

Andersen was the first to suggest simulating an isobaric ensemble by treating the volume as a
dynamical variable within an extended-Lagrangian scheme [88]. Parrinello and Rahman sub-

sequently expanded this idea to include the supercell lattice vectors themselves as dynamical

variables [101,102]. Their method offers a simple yet powerful method for performing simu-

lations at constant pressure in which the cell shape should be allowed to vary, such as those
involving structural phase transitions.

The Parrinello-Rahman method begins by introducing a coordinate system based on the
generalized supercell vectors, whose Cartesian coordinates can be expressed as column vec-
tors in a cell matrix, denoted by h. The relationship between the coordinates of an ion in the
original frame (RI) and in the new frame (SI) can then be expressed as RI = h SI. The method
treats this matrix h as the dynamical variable in the extended Lagrangian. When implemented

within the Car-Parrinello scheme, the Lagrangian of Equation 3.7 is modified as follows:
1 1P > T'T` CP

PR= z  + h L MShhS - E [Rf {j}]
j I

+ Ajk {( j lk) - jk +IWTr(T+) - Ph . (3.15)
jk

Here P denotes the target pressure and Q the instantaneous volume of the cell, which can be

calculated as Q = det h. In addition, the ionic coordinates in the kinetic energy term have been

recast in terms of the instantaneous form of the cell matrix h. The parameter W represents the

fictitious mass corresponding to the variable-cell coordinates, which should be chosen so as to

optimize kinetic energy transfer between the cell and the ionic system. A common choice for
W is the on the order of the total mass of the ions in the cell, although particular simulation
circumstances may call for "stiffening" the cell by increasing W or "loosening" it by decreasing
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W. Equation 3.15 has an analogous constant of motion, which takes the following form:

1 1 1
Econs = (jj)+ MISThTh SI+ ECP[R ,{ }] + WTr (hT) +PQ. (3.16)

j I

The Parrinello-Rahman method can easily be combined with a Nos&Hoover thermostat to
simulate within the isothermal-isobaric ensemble. Moreover, it is possible to couple the cell
parameters to their own Nos&-Hoover thermostat. This can be useful for exploring the space of
configurations more efficiently, or when attempting to overcome energy barriers to structural
transformations.

3.5 Extracting useful quantities from simulations

3.5.1 Practical considerations

Molecular dynamics represents an especially useful technique for directly analyzing reaction
kinetics, mechanisms, and pathways. However, it can also be an extremely powerful tool
for extracting various statistical quantities, such as finite-temperature structural parameters,
transport coefficients, and thermodynamic averages. Since practical constraints prevent the
direct evaluation of statistical-mechanical Boltzmann integrals, extraction of observable quan-
tities based upon statistical averages must instead rely on the principle of ergodicity. In an
ergodic system, ensemble averages are replaced by time averages. Most well-behaved sys-
tems in equilibrium will obey ergodicity, but in principle, the ensemble and time averages are
congruous only in the limit of infinite simulation time. However, in practice, it is sufficient to
sample for a finite time as long as the quantities of interest can be shown to converge to within
a desired accuracy.

In guaranteeing ergodicity, it is important to ensure that time averages take place across
configurations that are representative of the probability distribution of the corresponding en-
semble average. This assumption is usually safe except at initial timesteps, for which the
system may not yet have reached equilibrium. As such, it is common practice to divide a
molecular dynamics simulation into an equilibration regime and a production regime. All rele-
vant statistical averages are taken only over the production timesteps, since these states are
representative of the equilibrium system for a given set of input parameters and ensemble
constraints. It should be noted that although equilibration data is generally ignored when
extracting statistically averaged quantities, it can nonetheless prove useful for examining the
detailed process by which a system evolves toward equilibrium.

Throughout this document, we will use angle brackets to denote an ensemble average,
which is assumed to be calculated as a time average, in keeping with the assumption of er-
godicity. There follows a brief discussion of how to obtain some of the most commonly used
structural and dynamical quantities from an analysis of simulation data for structural and
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(a) (b) (c) (d)

FIGURE 3-3: Occupation density isosurfaces for the first four nearest-neighbor silvers to an iodine (in
order from (a) to (d)), calculated using Equation 3.17. Data is from a simulation of a-AgI at 750 K.

dynamical properties.

3.5.2 Calculation of common quantities

Occupation density

Ion trajectories can be traced with respect to a fixed reference frame (such as a crystalline lat-

tice) and averaged to calculate an occupation density f(r), whose isosurface can be plotted to ob-
tain a visual representation of most frequented pathways (Figure 3-3). In order to get smooth
results from limited statistics, it is useful to introduce a Gaussian spread in the positions before
averaging. The resulting formula for the surface representing occupancy probability is:

f() = f(r,( RI) (3.17)

where f represents a weighting function, which for the case of Gaussians is expressed by the

general formula
1 ir - R ,1 2  (3.18)

f(r, Ri) =(ri) exp 2a- 2  (3.18)

Here N, represents the total number of atoms included in the average, which is usually the
number of atoms of a particular species in the supercell. The parameter o, which controls
the width of each Gaussian, can be tuned independently for each application. Note that the

periodic boundary conditions must be explicitly accounted for if a Gaussian spreads beyond

the supercell boundary.
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Radial distribution function

The radial distribution function (RDF) g(r), sometimes known as the pair correlation function, is a
useful parameter for characterizing the structure of a solid or a liquid. It gives the probability
of finding an ion pair separated by a distance r, normalized with respect to the corresponding
probability in a random distribution of the same overall density (Figure 3-4). Mathematically,
we can write g(r) for any pair of ionic species (s, s') as follows [85,103]:

g8,,(r) = NN8  6( - j) , (3.19)

where Rij IRI-RjI represents the interionic separation, Q denotes the volume of the super-
cell, and N, and Ne, are the number of ions of the two respective atomic species representing
the pair of interest.

In practice, the spatial grid is discretized, and the delta function is replaced by a function
that is nonzero for some small range of separations [r - , r + ] and is normalized across
the discretization region Ar. Equation 3.19 can then be written:

.(N- N31
'(r; Ar) = NsNs, shell 6(r - RIjj; Ar) , (3.20)

( I J

where 2shell is the volume of a shell of radius r and thickness Ar:

she r (r - )] (3.21)

The modified delta function 6(z; Az) is defined as:

(1 if -<z< a_
6(z; Az) 2 - 2 (3.22)

0 otherwise

In the classical limit, a perfectly ordered lattice at zero temperature has a radial distribu-
tion curve that is a periodic series of delta functions. In practice, finite temperatures spread the
delta functions of a solid lattice. For a liquid with perfectly random disorder, g(r) has a con-
stant value of 1 beyond a short-ranged exclusion region (e.g., for r less than the rigid-sphere
radius).

Coordination number

The coordination number n(r) is another useful structural quantity, giving a measure of the
average number of ions within a cutoff distance r of another ion (Figure 3-4). It can be easily
calculated from an integral of the radial distribution function (Equation 3.20). The expression
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rn N

r(A)

FIGURE 3-4: Sulfur-sulfur radial distribution function gss(r) in CsHSO4 at 550 K, calculated using
Equation 3.20 (solid line, left axis). Also plotted is the corresponding coordination number nss(r),
calculated using Equation 3.23 (dashed line, right axis). The first and second coordination shells, each
of which contain four atoms, are clearly visible in the plateau behavior of nss (r).

for the coordination number for ions of species s' surrounding an ion of species s is given by:

n s, (r) = r 4rr'2 gs, (r') dr'. (3.23)

Mean-square displacement

The mean-square displacement (MSD) gives a quantifiable measure of the net motion of an ionic

species with time by examining the average distance traveled by an ion within a time t in the

simulation. The MSD must be calculated with respect to some reference configuration. One

possibility is to use the conventional set of ionic positions at the start of the simulation. In this

case, the MSD is written as [85]:

MSD(t) = N 3 JR(t) - RI(0) (3.24)
I

Depending on the nature of the simulation, it may be preferable to sample the MSD with

respect to a different reference configuration or an entire set of reference configurations. For

instance, simulations which detail a progression toward a final equilibrium state might be

better sampled with respect to the last available timestep tf, which is assumed to be fully
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equilibrated:
N8

MSD(t) = RI(tf) - Rl(t - t)2.  (3.25)
I

For steady-state dynamical processes such as self-diffusion, it is convenient to modify our
definition for the MSD at time t in terms of an ergodic average over all time intervals of length
t in the simulation. Doing so can substantially improve the statistical precision of the MSD,
since the number of sampling intervals for the averaging is effectively increased (see Figure 3-
5). However, this introduces a subtle complication, since the number of such ranges that are
available depends inversely on t, meaning values of the MSD at short times are implicitly more
precise than at long times. This must be accounted for in the calculation of any additional
quantities based on the MSD (such as the diffusion coefficient), since statistical errors cannot
be expected to remain constant throughout the calculation. An approach which is suitably
cautious for most systems is to calculate the time-averaged MSD only for data points up to
t = t1 /2, in which case Equation 3.24 becomes:

tf/2 Ns

(MSD(t)) = N R(to + t) - Ri(to) 2 . (3.26)
to0=0 I

For a solid, we typically observe a flat MSD curve following an initial increase in the bal-
listic thermalization region, with a plateau value corresponding to the square of the RMS am-
plitude of vibration. In contrast, the MSD for a liquid typically increases linearly beyond the
thermalization regime, signifying net diffusion.

Velocity autocorrelation function

The velocity autocorrelation function (VAF) is one of a broader set of autocorrelation functions
which correlate a particular quantity (in this case, velocity) for a particular ionic species at
some reference time with the equivalent quantity at a time t later into the simulation (Figure 3-
6). The VAF is a tremendously useful quantity in analyzing dynamical processes. For instance,
the VAF decay time can be extracted to obtain a reasonable estimate of the typical correlation
time for configurations. This method provides an appropriate choice for the sampling interval
in applications requiring discrete sampling of "independent" configurations, such as often
becomes necessary for error estimation. A Fourier transform of the VAF also offers a simple
way to calculate the vibrational density of states.

As with the MSD, the choice of the reference configuration is not unique. If taken with
respect to the starting configuration of the simulation, the basic formula for the VAF looks
like [85]

N,
VAF(t) =[(t) -R(0)]. (3.27)

I
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Time (ps)

FIGURE 3-5: Comparison of the mean-square displacements calculated using Equation 3.24 (solid line)
to those calculated using Equation 3.26 (dashed line). Results are for the silver and iodine ionic species
of a-AgI at 500 K.

For a system in steady-state equilibrium, it is advisable to average Equation 3.27 over all in-

tervals of length t in order to improve statistical sampling. However, as was the case for the

MSD, doing so can create nonuniform precision in the VAF as a function of time, since values

at short times are more precise than at long times. Again, a generally safe solution is to cal-

culate the VAF for times up to t = tf/2, which gives the following usual expression for the

time-averaged equilibrium VAF:

2 t /2 N,

(VAF (t)) = N, tZZ [A, (to + t) I(to)]. (3.28)
to=0 I

Transport coefficients

Various transport coefficients, such as the viscosity, the thermal conductivity, and the self-

diffusion coefficient, can also be calculated from the production regime of a steady-state equi-

librium simulation using the Green-Kubo relations, which connect these properties to the inte-

gral of their appropriate autocorrelation function [104]. The self-diffusion coefficient D is a

particularly important quantity for the purposes of this work. Its corresponding Green-Kubo

relation involves the velocity autocorrelation function and can be written (in three dimensions)

as [85]:
D = - limn (VAF(t')) dt'. (3.29)
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FIGURE 3-6: Velocity autocorrelation functions for the silver and iodine ions in a-AgI at 500 K.

Alternatively, the three-dimensional self-diffusion coefficient can be calculated from the long-
time slope of the mean-square displacement using the Einstein relation:

1
D = lim 1 (MSD(t)). (3.30)

t-*oo 6t

Mathematically, Equations 3.29 and 3.30 are equivalent and interchangeable in the limit of
infinite simulation time. Both assume isotropic, three-dimensional diffusion, although indi-
vidual components of an anisotropic diffusion tensor may be extracted by projecting the MSD
or the VAF onto the appropriate principal axis (in which case the conventional self-diffusion
coefficient is just the one third of the trace of the diffusion tensor). However, in practice, it
may be preferable to use one method or the other due to issues with convergence or error. For
instance, systems with relatively short correlation times will exhibit more rapid convergence
of D when calculated using the VAF, but integration errors using this method may become
an issue, and extremely fine VAF sampling is required to capture the full phenomenology in
the integration. The MSD method converges more slowly but is generally more robust with
respect to coarse sampling or to errors accrued at long times. A detailed discussion of the
delicate issue of error estimation in the calculation of the self-diffusion coefficient is provided
in Appendix C.

Thermodynamic quantities from fluctuations

It is worthwhile mentioning that a number of potentially interesting thermodynamic coef-
ficients can be obtained by examining the root-mean-square fluctuations of averaged quan-
tities, sampled within the appropriate ensemble. These include (but are not limited to) the
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isothermal compressibility, the thermal expansion coefficient, and the specific heat capacity.
For instance, the expression for the constant-volume specific heat capacity Cv can be derived
from the fluctuations of the total energy (or equivalently, the enthalpy) in the canonical (NVT)
ensemble as follows:

1
v (3.31)

Cv = kBT 2

where uE is the variance of the energy in the canonical ensemble, defined as:

1
a - (E 2 ) - (E) 2 = 1 E(t') - (E). (3.32)

tf t'=O

Equation 3.31 is detailed because of its specific relevance to this work, but the remaining quan-
tities listed above are calculated in an analogous fashion. The reader is encouraged to consult
Reference [85] for a more complete discussion of the methodology behind the calculation of
thermodynamic coefficients from ensemble fluctuations, as well as for detailed derivations of
additional such expressions.
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CHAPTER 4

ao-AgI: An archetype of fast-ion
conduction

4.1 Background and motivation

HE FAST-ION CONDUCTING properties of of silver iodide (AgI) have been widely stud-

ied for decades, having been mentioned in the work of Tubandt and Lorenz [105] as
early as 1914. Even today, it exhibits one of the highest ionic conductivities among

the known solid-state ion conductors and such remains of great interest to the materials com-
munity. In fact, AgI and its related silver halides and sulfides have garnered a great deal of
attention over the past several years for their potential as practical components in a variety of
devices from batteries to switches and sensors [25,29,106,107].

In addition to its technological importance, however, AgI has long been the focus of an
intensive research effort towards understanding the mysteries of fast-ion conduction in more
general terms. Its seeming simplicity masks an underlying complexity that makes it a per-
fect embodiment of the enigmatic dual nature of fast-ion conductors. Its basic structural
and conductive properties are well established experimentally [108-112], including the high-
symmetry body-centered cubic (bcc) crystal structure of its fast-conducting a phase. It is also
a known archetype for the class of fast-ion conductors known as Type I, in which conductivity
results intrinsically from the multiple lattice occupancy sites that are made available to the
diffusive species (in this case, the silver cations). However, despite their usefulness in char-
acterizing the conductive properties of AgI, the various detailed investigations over the past
several decades have made limited headway in terms of understanding the peculiar thermo-
dynamic, chemical, and structural motivations for the existence of a fast-ion conducting phase,
or in gaining a fundamental understanding of the atomistic mechanisms involved in cation
transport at the microscale. Finding an answer to these basic questions has formed the focus
of a wealth of theoretical studies, including several originating from the atomistic modeling
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FIGURE 4-1: Phase diagram of AgI. At standard pressure, the phase transition to the fast-ion conducting
a phase occurs at T, = 420 K. Taken from Reference [113].

community, yet to date, many details have remained elusive.

The phase diagram of AgI is depicted in Figure 4-1. It is well established that at standard

pressure, the material exhibits a transition from its low-temperature P phase (often mixed

with a zinc-blende -y phase) to its fast-ion conducting a phase at Tc = 420 K. Above this

temperature, the conductivity of the silver ions displays a sudden increase by about three

orders of magnitude to 1.31 (f2-cm) - 1 [111] and is accompanied by a well-defined structural

transformation from a hexagonal wurtzite crystal structure to a body-centered cubic struc-

ture [108,109,113,114]. However, experimental data suggests that this structure is predom-

inantly maintained by the iodine anions, whereas the location of the silver cations is much

less distinct. Rather, the silvers reside in the unusually high number of otherwise unoccupied

interstitial sites (12d tetrahedral, 6b octahedral, and 24h trigonal) made available by the bcc

lattice symmetry. In particular, diffraction and scattering experiments suggest that in practice,

the tetrahedral sites are occupied nearly 70% of the time, whereas the octahedral sites have the

lowest statistical occupancy [110,115]. The commonly held view in the literature is that low-

energy pathways between these many possible lattice sites facilitate fast cation transport, most

likely between neighboring tetrahedral sites via intermediate trigonal sites. The structure of

a-AgI is depicted schematically in Figure 4-2.

Previous molecular dynamics studies have made use of classical pair potentials to success-

fully reproduce various experimental characteristics of the a and P phases, including their

basic diffusive properties [116-123]. Most of these employed some version of the well-tested

potentials developed by Vashishta, Rahman, and Parrinello [116,117], which was originally

62

CHAPTER 4 BACKGROUND AND MOTIVATION



BACKGROUND AND MOTIVATION CHAPTER 4

FIGURE 4-2: Schematic illustration of the conventional unit cell of a-AgI (space group Im3m). The
locations of the iodine atoms are shown in blue. The remaining spheres designate a subset of the
possible tetrahedral (red), octahedral (yellow), and trigonal (white) interstitial sites available for silver
occupancy.

designed to adequately describe both the a --* P transition and the high-pressure phases of

AgI. An excellent summary of these investigations can be found in the review articles of Ref-

erences [9] and [8]. However, these methods cannot offer the same level of accuracy or depth

of insight afforded by first-principles calculations. For instance, they are inherently unable to

describe the electronic structure in a nonuniform chemical environment. There is reason to ex-

pect that this might be a particularly important consideration in fast-ion conductors, since local

electronic and structural environments can exhibit rapid and dramatic changes; as will become

evident later in the chapter, this point is indeed relevant for obtaining an accurate description

of AgI. Classical methods are also inadequate for capturing the full phenomenology of the

melting transition, since the potentials were optimized for lower-temperature interatomic in-

teractions in the solid state. In these regards, dynamical simulations based on first principles
provide unique and unbiased predictive power. Fortunately, owing to the extraordinarily high

ionic conductivity displayed by the material, timescales of diffusive events in a-AgI are now

readily accessible to Car-Parrinello molecular dynamics using reasonable computational facil-
ities, making such a study feasible for the first time.
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4.2 Computational parameters

In studying AgI, we used an ultrasoft pseudopotential for silver that had been generated

previously using a 4d105sl valence configuration (i.e., with the semicore d states in the va-

lence shell). This pseudopotential was obtained from the Quantum-ESPRESSO website [124],

and transferability tests had already been performed. As there was no suitable iodine pseu-

dopotential available, we generated a new scalar-relativistic norm-conserving pseudopoten-
tial with a 5s25p5 valence configuration using Martin Fuchs' pseudopotential generation pack-

age fhi98pp [125]. The software implements the Troullier-Martins procedure [126] and per-

forms certain internal transferability tests, such as checking for spurious ghost states in the

Kleinman-Bylander representation (see Section 2.4 for details). A complete listing of the in-

put parameters for our iodine pseudopotential, as well as the results of all of the additional

transferability tests that were performed, is provided in Appendix A. As with all of the pseu-

dopotentials used for this thesis work, the gradient-corrected Perdew-Burke-Ernzerhof (PBE)

recipe was used for calculating the exchange and correlation contributions to the total energy.

Suitable energetic cutoffs for the electronic wavefunctions (22 Ry) and the charge density (176

Ry) were selected using a force-convergence method, in which cutoffs were systematically in-

creased until convergence of the magnitude of the atomic forces was observed to within a

threshold of - 0.05 eV/A.

Dynamics simulations were performed within the plane-wave pseudopotential framework

using the Car-Parrinello technique. The canonical NVT ensemble was used to simulate at

a range of temperatures from 200 K to 1225 K, and the ion temperature was maintained by

the application of a Nos6-Hoover thermostat. A second, weaker thermostat was attached to

the electrons to ensure adiabaticity over the long simulation runs, each of which lasted 50 ps

following 5 ps of equilibration time. Unless otherwise indicated, all simulations were carried

out in a 54-atom supercell (sampled only at the F-point in reciprocal space), excepting the

Wannier function calculations (Section 4.7), which were performed in a 32-atom cell. The

choice of the lattice parameter (ao = 5.174 A), which remained fixed for all temperatures, will

be discussed further in the next section. The fictitious Car-Parrinello mass was chosen to be

p = 700 au, with At = 20 au (w 0.5 fs) for T < 950 K, 15 au for 1100 K, and 10 au for 1225 K.t

Justification for our chosen integration timestep and fictitious mass is offered in Figure 4-3,

which shows the stabilities and relative magnitudes of the kinetic energies of the ionic and

the fictitious electronic systems for a simulation at 200 K, and in Figure 4-4, which shows the

stability and conservation of the NVT Car-Parrinello constant of motion (Equation 3.13) for

the same simulation. For each temperature, the constant of motion fluctuated by no more than

±1.5% of the magnitude of the fluctuations in the total internal energy.

t The decrease in timestep for higher temperatures owes to the increased ionic velocities at those temperatures,
which necessitate a finer Verlet integration step.
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FIGURE 4-3: Evolution of the kinetic energies of the ionic and fictitious electronic systems for a simula-
tion of a-AgI at 200 K.

t (ps)

FIGURE 4-4: Evolution of the total internal energy and the Car-Parrinello constant of motion for a
simulation of a-AgI at 200 K. The zero reference energy represents the value of the respective quantity
at the initial simulation timestep.
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4.3 Material characterization and finite-size effects

4.3.1 Structural characterization

To estimate the equilibrium lattice parameter a0o, we fit results from a series of self-consistent
energy calculations at different values of ao to a second-order Birch-Murnaghan equation of
state [127]. These calculations were done on cubic unit cells using a four-atom basis and an
evenly spaced 8 x 8 x 8 grid of k-points, and the silver atoms were forced to occupy preselected
tetrahedral sites. Reasonable agreement with experiment was obtained using this method (see
Table 4.1), but since the silver atoms are in practice highly mobile and expected to fill multiple
sites, it was desirable to get an idea of how much this value might be expected to change with
different instantaneous configurations of the silver substructure. To do so, we isolated four
additional configurations from independent snapshots of a molecular dynamics simulation of
54 atoms, doing a full relaxation of the electronic degrees of freedom for each configuration.
We then performed a series of F-point-sampled self-consistent energy calculations for different
volumes by isotropically expanding or contracting the cell relative to its original size. The
results of these calculations are presented in Figure 4-5. It is immediately evident from the
figure that although the energy minima differ among configurations, there is little appreciable
change in the lattice parameter as the silver positions are changed. This suggests that the
lattice structural properties are primarily determined by the iodine ions (albeit compensated
by the silver ions), which remain essentially fixed through each of the four configurations.

However, Figure 4-5 also demonstrates that in addition to containing inherent disorder,
AgI is a relatively soft material, a fact which has long been documented in the literature [113,
128,129]. This makes it difficult to determine the lattice parameter to high accuracy, for in-
stance using constant-pressure molecular dynamics techniques. As a result, once approxi-
mate quantitative agreement between theory and experiment had been proven to our satisfac-
tion (bearing in mind that gradient-corrected exchange-correlation functionals are expected to
slightly overestimate lattice parameters), it was decided that all subsequent dynamics simula-
tions would use the experimental value of ao at the melting point, as determined from Refer-
ence [110]. Since thermal expansion was also neglected (this was necessary for the specific-heat
capacity analysis of Section 4.6), we ran a series of test simulations in which we systematically
increased the volume of the supercell by up to 8%. This cell expansion was seen to have no
appreciable effect on the diffusive properties, so we remained satisfied with our choice for
ao. It should be noted, however, that allowing for expansion did effect a slight increase in the
observed melting temperature.

4.3.2 Vibrational and dielectric properties

Using linear-response theory [80], we have calculated the full phonon dispersion w(q) of a-
AgI. The results are displayed in Figure 4-6(a). For purposes of computational savings, the
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FIGURE 4-5: Energy as a function of volume for five different initial configurations of the silver substruc-
ture in a-AgI. Each data point represents the energy obtained by isotropically changing the cell volume
following an initial full ionic relaxation of the starting configuration. The black curve is the configura-
tion in which all silver ions occupy the tetrahedral interstitial sites (used to obtain the structural data in
Table 4.1); remaining curves are calculated starting from independent timesteps of a 54-atom dynamics
simulation at 500 K. Energies are given in units of eV per AgI formula unit.

calculation was performed on the two-atom bcc primitive cell, necessitating placement of all
silver ions in the same tetrahedral interstitial site. The smaller cell size also required finer
sampling in reciprocal space, so the number of grid points was expanded to form a 12x12x12
k-point mesh. The Acoustic Sum Rule [130,131], which states that the dynamical charges in the
cell should sum to zero, was also imposed. Our calculations show excellent agreement with
available experimental results from IR and neutron scattering studies. It should be mentioned
that the slight discontinuity in the dispersion relation of the high-frequency optical modes at r
may indicate a directional dependence of the phonon modes, probably arising from the broken
symmetry introduced by our choice to preferentially occupy only a single tetrahedral site.

An important feature emerging from Figure 4-6(a) is the softening of the phonon mode at
q=( 22). An examination of the associated eigenvectors reveals the physical interpretation

of the soft mode: essentially, it translates to every third {111} plane remaining fixed, while
the two central planes compress with respect to one another along the (111) direction. This
low-energy transformation, indicated schematically in Figure 4-6(b), is sometimes referred to
as the w-phonon and is known to be a key enabler of martensitic phase transitions in certain bcc
materials [133,134]. Its existence is also relevant to our discussion of finite-size effects, as will
become clear. A second interesting feature of the a-AgI phonon dispersion is the unusually
high frequency of the highest acoustic mode, which appears to mix with the optical modes at
q-points away from r.
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FIGURE 4-6: (a) Calculated zero-temperature phonon dispersion w(q) along the high-symmetry direc-
tions of the first Brillouin zone in a-AgI. Results from neutron scattering (red squares) and infrared
absorption (blue diamonds) are also indicated [132]. Calculations were performed on the 2-atom prim-
itive cell with a 12 x 12 x 12 k-point mesh and the with the silver ion occupying the tetrahedral inter-
stitial site. (b) Schematic illustration of the softening of the q = ( 1) phonon mode. This low-energy
transformation occurs when every third {111} atomic plane remains fixed while the remaining planes
contract with respect to one another. The contraction is along the (111) direction, taken in the figure to
be perpendicular to the planes shown.
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TABLE 4.1: Calculated lattice parameter, Born effective charges, and dielectric constant for a-AgI. Lat-
tice parameter calculations were performed using a 4-atom basis set and an evenly spaced 8 x 8 x 8
mesh of k-points. LR denotes the calculation of the Born effective charges for the 2-atom bcc primitive
cell using linear response theory, whereas EE denotes the use of the electric-enthalpy method. For the
2- and 4-atom cells, the silver ions occupy only the tetrahedral interstitial sites. The effective charges
obtained from the electric-enthalpy calculation represent averages over several independent atomic
configurations from a molecular dynamics simulation of a 32-atom supercell. Experimental values are
taken from References [110,135,136].

Description This work Experiment % Deviation
Bulk Lattice parameter (A) 5.186 5.069 +2.3
Dielectric constant Eoo 5.88 4.80 +22.5
Born effective charges Z* (LR) ±1.27 ±1.26 +0.8
Born effective charges Z* (EE) 11.22 1 1.26 -3.2

Linear-response theory also permitted ready calculation of the dielectric constant in the
high-frequency limit ,oo, and of the Born dynamical effective charges Z*. Results of these cal-
culations are summarized and compared with available experimental data in Table 4.1. As is
typical of density-functional calculations, the dielectric response is overestimated, but agree-
ment of the effective charges is extremely good. Nevertheless, calculating the effective charges
in this manner is ill advised, since it is based on small perturbations of the perfect crystal and
presumes tetrahedral interstitial occupancy for the silver substructure, meaning it is better
suited to a description of the zero-temperature limit. To get a better measure of the dynam-
ical effective charges at finite temperature, we have instead employed the electric-enthalpy
method (Section 3.4) to measure the force response of the silver substructure to an applied
homogeneous electric field in the linear regime. This calculation was repeated for several
independent configurations taken from a molecular dynamics simulation of a 32-atom super-
cell at 500 K. The results were then averaged to obtain final values for Z*, which are listed
alongside their linear-response equivalents in Table 4.1. We note that in a pure ionic-bonding

description of AgI, one should expect the Born effective charges for the ionic species to be ±1.
However, the numbers are appreciably far from unity, suggesting the presence of some cova-
lent character in the interatomic bonding. This point will be addressed in detail in Section 4.7.

4.3.3 Finite-size effects

In order to ensure that conclusions drawn from the molecular dynamics simulation data are
reliable and appropriate, it is desirable to analyze the possible unphysical effects that can arise
when sampling a finite system. This is particular important for first-principles simulations,
since the accrued computational expense severely restricts system sizes relative to classical
simulations. One such complication is the possible presence of unphysical correlations be-
tween nearby images resulting from the application of periodic boundary conditions (Sec-
tion 2.4). These can occur if the correlation lengths are on the order of the supercell lattice
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FIGURE 4-7: Radial pair distribution functions for (A) Ag-I, (B) I-I, and (C) Ag-Ag. Curve (D) is the in-
tegrated n(r) curve, indicating an approximate silver coordination of four in the first shell surrounding
an iodine. Data is from a simulation at 750 K.

spacing. One approach for quantifying the correlation length involves examining the pair

correlation function g(r) for the diffusive species, calculated according to Equation 3.20. The

silver-silver pair correlation function gAg-Ag(r), obtained from a 54-atom dynamics simula-

tion at 750 K, is plotted as curve (C) in Figure 4-7. The effective independence of silver atoms

separated by more than ; 4.5 A is immediately evident from the rapid convergence of the

curve to unity. Note that this value is much smaller than the repeat-cell distance of Z 12.6 A,

suggesting finite-size correlation effects can be safely neglected at this temperature.

The relevance of the w-phonon mode appearing at q = ( 9 ) (Figure 4-6(b)) has already

been mentioned. Returning to this point, it should be noted that in a dynamics simulation,

in order to properly observe this vibrational mode-which manifests itself as a compression

of middle {111} planes with respect to every third stationary plane-our simulation super-

cell must contain at least three independent successive {111} planes. This fact can be easily

confirmed by investigating the presence of the anomalous mode in different-sized supercells

of a-AgI. Accordingly, for a 32-atom supercell, which contains only two unique {111} planes

due to symmetry restrictions, we detect no evidence of the q = (2 32) vibrational mode. How-

ever, upon increasing the cell size to include 54 atoms, this mode features prominently in the

simulation, with the vibration occurring uniformly along one of the (111) directions. The se-

lection of this direction of vibration can be influenced by a proper choice of the initial silver

ion configuration.

The presence or absence of the w-phonon mode as a function of system size is one example

of an entire class of finite-size effects, in which long-wavelength phonon modes are frozen out
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by symmetry restrictions in the finite cell. These can often act to retard structural phase transi-
tions or even inhibit them altogether. With specific relevance to our work on AgI, the transition
to the hexagonal wurtzite 3 phase has been prevented via a combination of fixed-volume and
finite-size effects. As such, it should be remembered that all simulations performed below the

-3 - a transition temperature temperature of T. = 420 K were actually on the supercooled a

phase rather than the / phase. This fact is crucial to understanding the motivations behind
the conclusions presented in Section 4.6. Similarly, finite-size effects are also responsible for
artificially elevating the melting temperature in our simulations.

4.4 Time-averaged dynamical structure

4.4.1 Silver ion site occupancy

Using our occupation-density method described in Section 3.5, in which ion trajectories are
traced via a superimposition of Gaussian spreads, we have investigated the most frequently
traveled pathways for the silver ions in the course of the simulations. In this way, we were
able to determine preferred lattice positions and transition pathways for the mobile silver ions
with respect to the stationary iodine ions. In the limit of infinite simulation time, resulting oc-
cupancy distributions should follow the observed macroscopic symmetry of the cubic crystal
lattice. However, as our simulations record a statistically small number of diffusion events,
we have taken steps to increase the size of our statistical sample by taking explicit advantage
of the translational symmetry of the iodine substructure. The original data set was superim-
posed with images of the same set, translated by integral multiples of the conventional cell
lattice parameter ao in each of the three crystallographic directions. Since the width of the
54-atom supercell is three times that of the conventional unit cell, taking advantage of transla-
tional symmetry means we are able to boost our sample size by a factor of 33 = 27 without re-
dundancy (assuming uncorrelated statistics). Figure 4-8 shows the resulting isosurface for the
silver ion occupation density (Equation 3.17) in the conventional cubic unit cell surrounding
an iodine. Slices along the {100}, {110}, and {111} families of planes are plotted in Figure 4-9.
It is evident from Figure 4-9 that the regions of highest density lie near the 12d tetrahedral
sites, with some density smeared toward the 6b octahedral sites (we will revisit this smearing
in Section 4.7). The octahedral sites themselves, however, exhibit low statistical occupancy. In
addition, Figure 4-8 confirms that the preferred diffusion pathway is via the trigonal sites. We
note that our profile is in extremely good agreement with the experimental profile found in
Reference [110].

An examination of the pair correlation functions (Figure 4-7) offers additional evidence for
the preferred location of the silver ions. Integrating gAg-I(r) over the first peak and using
Equation 3.23 reveals that on average, each iodine has four nearest neighbors in the first coor-
dination shell. This is consistent with geometric expectations for occupancy of the tetrahedral
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FIGURE 4-8: The isosurface of silver trajectories at 750 K in the conventional cubic unit cell surrounding
an iodine. The eight nearest-neighbor iodines surrounding the iodine at the center are located at the
vertices of the cube.

interstitial sites. In addition, gAg_-I(r) indicates that the highest-probability distance for silvers

surrounding an iodine is at RAg-I = 2.8 A, which corresponds to the distance from an iodine

lattice site to its nearest tetrahedral interstitial site.

By defining a threshold radius for an interstitial site, it is possible to track overall occu-

pancy of the tetrahedral sites as a function of temperature. Defining this radius to be one-third

of the distance between nearest-neighbor tetrahedral interstitial sites, the average fraction of

silver ions occupying tetrahedral sites varies from 62-75% over the experimental range of sta-
bility of the a phase (420-828 K [113]), with higher temperatures favoring lower tetrahedral
site occupancy. These values generally agree with the estimated 70% occupancy found in the
experimental literature [110,115]; however, it should be acknowledged that our results depend
on the somewhat arbitrary choice of threshold radius.
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(a) (b)

(c) (d)

FIGURE 4-9: Occupation density of silver ions in the (a) (100), (c) (110), and (d) (111) planes of a-AgI

at 750 K. Areas of high occupancy are shown in red and correspond to the tetrahedral interstitial sites;

areas of low occupancy appear in blue. Panel (b) shows the experimental density in the (100) plane at

433 K, taken from References [110,137].
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FIGURE 4-10: Mean-squared displacement of the silver and iodine ions in 54-atom simulations of a-AgI
at 250 K, 400 K, 500 K, and 750 K. The linear increase in the silver mean-squared displacement indicates
liquid-like diffusive behavior.

4.4.2 Demonstration of fast-ion transport

Superionic behavior can be confirmed by independently analyzing the mean-square displace-

ments (MSDs) of the silver and iodine ions. We have plotted the MSDs calculated using Equa-

tion 3.26 for a small subset of the sampled temperatures in Figure 4-10. The liquid-like dif-

fusive behavior of the silver ions is immediately evident from the positive linear slope of the

MSD, whereas the plateau behavior of the MSD for the iodine ions designates that the material

nonetheless remains a solid at all sampled temperatures. Notably, silver conduction contin-

ues even at temperatures far below Tc = 420 K; this behavior is facilitated by the suppression

of the a -+ p phase transition due to volume- and finite-cell constraints (see Section 4.3.3).

Nevertheless, in Section 4.6.1 we will demonstrate a fundamental difference between silver

diffusive character in the low- and high-temperature regimes.

4.5 Instantaneous dynamical structure

One of the most powerful and unique aspects of molecular dynamics is its ability to provide

a time-resolved picture of the dynamical structure of a material. Such information is typically

inaccessible to most experimental observations, which tend to reproduce time-averaged prop-

erties. For AgI, the ionic trajectories allow for definition of a set of ordering rules which govern

the instantaneous distribution of the silvers around an iodine. We begin by returning to the

pair correlation functions (Figure 4-7) for additional insight into the preferred organization

of the silver ions. The silver-silver function gAg-Ag(r) illustrates a zero probability of finding

74

- 250K I  Ag
- 400K

500 K
- 750 K

-

CHAPTER 4

r~n



silver ions closer together than RAg-Ag = 2.4 A. Notably, this precludes simultaneous occupa-
tion of nearest-neighbor tetrahedral interstitial sites (likely due to the electrostatic penalty that
would be incurred). In addition, we have already mentioned that integrating over the first
peak of the silver-iodine function gAg-I (r) gives a coordination number of four; this is also
observed in most of the instantaneous snapshots.

However, a time-resolved analysis also suggests a more detailed decomposition of the first
peak of gAg-I(r). In doing so, we find that most commonly, three of the four nearest-neighbor
silver ions simultaneously occupy a shell corresponding to the tetrahedral site distanceS. The
fourth silver is seen to transition regularly between this shell and its counterpart for a neigh-
boring iodine such that when averaged in time, it fills an unstable transition zone between the
two, defined by 3.0 < RAg-I < 4.2 A. This phenomenon can be seen in greater detail in Fig-
ure 4-11, which tracks the time evolution of the distance from one of the iodines to its closest
silver in a simulation. The rate of transition between these two shells is seen to be temperature
dependent. Interestingly, these transitions disappear rapidly for T < To, which gives an early
clue that certain properties of the transition to the fast-ion conducting phase are preserved in
spite of the inhibition of the structural transition. This will be discussed further in Section 4.6.
The fourth silver also possesses an angular distribution that is quite distinct from its three in-
ner counterparts, as indicated in Figure 4-12. The Ag-I-Ag angles for the closest three silvers
reveal preferences at 650 and 1050, and higher angles are uncommon. However, the distribu-
tion of the new Ag-I-Ag angles introduced by the inclusion of the fourth nearest-neighbor
silver is comparatively diffuse and indicates a significant probability for larger-valued angles.
This suggests that whereas the closest three silvers remain clustered and correlated in their
positions, the fourth silver is relatively unconstrained in its angular configuration. Moreover,
it is affected only marginally by the orientations of the remaining three. We find that it is the
transitions of this unconstrained fourth silver between first coordination shells of neighbor-
ing iodine ions that represent the primary factor behind silver diffusion-an observation that
would escape experimental investigations. The unique properties of this diffusive fourth sil-
ver will be revisited in Section 4.7. It should be noted that for both the inner and outer silvers
in the first shell, there is a zero probability of finding Ag-I-Ag angles measuring less than
about 300; this is consistent with a picture in which nearest-neighbor tetrahedral interstitial
sites are prevented from being occupied simultaneously.

Given the above analysis, we now proceed to define of a set of ordering rules for the in-
stantaneous distribution of silver ions in the first shell surrounding an iodine:

1. Four silver ions populate the first shell.

2. No two silver ions occupy neighboring tetrahedral sites.

tThe actual number can be obtained by integrating gAg-I(r) over the appropriate range, as identified in Fig-
ure 4-11 and related plots. Calculated in this way, the average tetrahedral occupancy varies from 2.7 to 3.0, with
lower temperatures favoring higher values
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Time (ps)

FIGURE 4-11: Distance from one of the iodine atoms to its six nearest silver neighbors, tracked over
10 ps of simulation time. The arrows indicate the distance to the tetrahedral interstitial site in the ideal
crystal. Mobile silvers occupy the "transition zone", defined by 3.0 < RAg-I < 4.2 A, as they travel
rapidly between high-occupancy sites. Data is from a 54-atom simulation of a-AgI at 500 K.

z Ag-I-Ag (deg)

FIGURE 4-12: Distribution of ZAg-I-Ag angles for the four silvers in the first coordination shell sur-
rounding an iodine. The solid line indicates the ZAg(t)-I-Ag(i) distribution and the dashed line indi-
cates the ZAg(i)-I-Ag(o) distribution, where Ag(') represents one of the three innermost silvers in the
first shell and Ag(o) is the fourth (outermost) silver in that same shell. The most pronounced difference
between the two distributions is manifest at angles greater than 120*. Data is from a 54-atom simulation
of a-AgI at 750 K.
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NATURE OF THE TRANSITION TO THE FAST-ION CONDUCTING PHASE

3. On average, three silver ions surround an iodine at a radius of RAg-I = 2.8 A, corre-
sponding to the distance to the tetrahedral interstitial sites.

4. The fourth silver transitions between that shell and a second shell at RAg-I > 4.2 A,
associated with a neighboring iodine; the transition rate between the two is temperature
dependent and disappears below Tc.

5. The angular positions of the three inner silvers are correlated, whereas the fourth (outer)
silver remains relatively unconstrained.

4.6 Nature of the transition to the fast-ion conducting phase

Silver iodide offers an excellent case study for understanding the underlying nature of and
motivation for the transition to the high-mobility phase in Type-I fast-ion conductors. In Sec-
tion 4.5, we presented preliminary evidence that at least one element of the fast-ion transition
of the silvers is preserved in the observed disappearance of the transitions between shells of
the fourth-nearest neighbor silver below the experimental T,. This is in spite of the inhibi-
tion of the experimentally known structural transformation of the iodine substructure to the
low-temperature hexagonal wurtzite , phase. Upon further investigation, we find additional
evidence of a phase transition of the silver ions near the experimental T, that is independent
of the conformation and dynamics of the iodine ions and signals the transition into the fast-ion
conducting a phase. In this section, we substantiate our claims and discuss their implications
in terms of understanding the fundamental nature of the fast-ion conducting a phase of AgI
from three perspectives: first, as an independently driven phase transition of the cations; sec-
ond, as an example of a special type of order-disorder transition; and third, as an entropically
stabilized phase that sits midway between a solid and a liquid.

4.6.1 An independent phase transition of the silver ions

Evidence from dynamics

As has been mentioned, we find evidence of a phase transition of the silver ions near T, that
does not depend on either the structure or the dynamics of the iodines. This transition in
turn signals the structural transformation of the iodines into the fast-ion conducting a phase.
The independent transition can be seen in the dynamical behavior by examining the silver
self-diffusion coefficient DAg as a function of temperature. This quantity was calculated from
the slope of the mean-square displacements using the Einstein relation (Equation 3.30) and is
plotted as curve (A) in Figure 4-13. Error bars at each temperature were calculated using the
method described in Appendix C. The slope of the Arrhenius plot of DAg shows a charac-
teristic discontinuity near the experimental T,. The sharp decrease exhibited in the silver ion
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FIGURE 4-13: Arrhenius plot of DAg for the fully mobile system (A) and with the iodine substructure
fixed (B), as obtained from the MSD. Red triangles indicate available experimental data, taken from
References [112,138]. Experimental values for T, and T, at 1 atm are also indicated. The discontinuity
in both curves near T, indicates a phase transition of the silvers.

diffusion behavior upon cooling below Tc remains even though cubic boundary conditions

forbid the iodine structural transition to the hexagonal wurtzite P phase.

We have also included in Figure 4-13 the result for an additional set of simulations we per-

formed with a fixed bcc iodine substructure (curve (B)). The motivation for these simulations

was to determine what effect, if any, the iodine dynamics might have on the diffusion of the

silver ions through the lattice. Immobilizing the iodine substructure does lead to an overall

decrease in DAg, suggesting local lattice fluctuations beneficial for silver mobility are frozen

out; significantly, the system retains its fast-ion conducting behavior. In fact, the discontinuity

in the slope of the Arrhenius plot is actually enhanced for the fixed-iodine case, although the

transition temperature Tc shifts slightly towards higher temperatures. This provides a sec-

ondary, stronger indicator of the independence of the silver transition from the dynamics of

the iodines.

We also note that agreement between our calculations and available experimental results

for the silver self-diffusion coefficient [112,138] is quite reasonable for temperatures within

the stability range of the fast-ion conducting a phase (420-828 K). In particular, we obtain

very good results for the energetic barrier AEa associated with self-diffusion of the silver ions,

which can be approximated from the slope of Figure 4-13 if one assumes a standard Arrhenius

form for the expression of the self-diffusion coefficient:

DAg = Doe kBT (4.1)
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FIGURE 4-14: Total internal energy of AgI as a function of temperature for the fixed-iodine simulations.
The experimental Tc is indicated. The discontinuity just beyond 500 K indicates a phase transition of
the silvers.

Using Equation 4.1 gives a value for AEa of 0.116 + 0.019 eV, compared with the experimen-

tal value of 0.095 eV [111,112]. It is worthwhile noting that the primary effect of fixing the

iodine substructure (curve (B) of Figure 4-13) is manifest in the exponential prefactor term; the

corresponding effect on the energetic barrier is minor.

Evidence from thermodynamics

The described phase transition should also be manifest in the behavior of the total internal

energy of the system as a function of temperature. This quantity is depicted in Figure 4-14 for

the simulations in which the iodine substructure remained fixed. A characteristic discontinuity

corresponding to the latent heat of transition into the fast-ion conducting phase is immediately

visible. For the fully mobile simulation, the observed latent heat (not shown) is within the error

bounds of the simulation data and therefore remains inconclusive as evidence of the transition

to fast-ion conduction. However, it will be demonstrated that the independent silver transition

can instead be observed by tracking the evolution of other thermodynamic quantities, such as

the specific heat capacity. To do so, we will define a new method for resolving the specific heat
capacity into respective contributions from the silvers and iodines.

Although it is generally impossible to separate the total internal energy of the system into
respective contributions from each ionic species, we can get a quantitative picture of the en-
ergetic fluctuations associated with the silvers or iodines by instead integrating the forces on
the ions, which are trivially lattice resolved. Doing so gives the following expression for the
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FIGURE 4-15: Specific heat capacities (see text) for the silvers (top) and for the iodines (bottom), with
the experimental T, and T,m indicated. Solid lines are intended as a guide for the eye. The dropoffs
indicate the presence of a phase transition for that particular ionic species.

evolution of the species-resolved energy, which we denote as U(s) (t) for species s:

Ns t

U(S) (t) - U() (0) = I Fj(t') Rj(t') dt', (4.2)
J=1 tl=0

where t' = 0 represents some equilibrated reference configuration and the index I runs over

all N, ions of the given species. Since in the canonical NVT ensemble, fluctuations in the

total energy are related to the specific heat capacity Cv according to Equation 3.31, we can

derive a heat capacity-like quantity which we denote C(8 ) that is resolved for species s using

the fluctuations in the evolution of the species-resolved energies, as derived independently

from the ionic forces according to Equation 4.2. The numerical robustness of this new method

was verified by ensuring that the evolution of the total internal energy (which is tracked inde-

pendently by the code as a function of time) could be recovered to within numerical error by

summing species-resolved energetic contributions from both the silvers and the iodines. Plots

of g) and dC are shown in Figure 4-15. In the silver-resolved CA) urve, We observe
clear dropoffs at 400 K and 850 K, corresponding to the critical temperature T, and the melting

temperature Tm, respectively. Examination of the iodine-resolved C() curve, however, reveals

no detectable dropoff near Tc, although the corresponding behavior at Tm is clearly visible. As

was the case for the analysis of Figure 4-13, we can thus link the transition to fast-ion conduc-

tion to the silvers only.
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FIGURE 4-16: Average silver occupancies of the six inequivalent tetrahedral bcc interstitial sublattices
of Reference [142], normalized against the case for which all ions occupy random tetrahedral sites. The
inset shows the network of tetrahedral sites surrounding a single iodine, and the dashed line indicates
the overall fraction of silver ions occupying tetrahedral sites. In the inset, spheres of a given color
represent tetrahedral sites that are equivalent by symmetry. A separation into high- and low-occupancy
tetrahedral sites can be seen for temperatures below 500 K.

4.6.2 An order-disorder transition

We note here that an order-disorder transition of the silver ions at T, has been reported previ-
ously in the literature [139-141]. Symmetry arguments allow the 24 bcc tetrahedral interstitial
sites surrounding each iodine to be organized into six inequivalent sublattices [142]. The occu-
pancies of these sublattices can be tracked independently and act as a signal of the transition,
as is evident from Figure 4-16. Our results confirm an ordering tendency for the silvers below

T, characterized by a splitting into higher- and lower-occupancy sublattices. The independent

ordering tendency of the silver sublattice upon cooling is observable despite the inhibition of

the a --+ f transition, in agreement with Reference [139]. The cited references show some

disagreement as to the exact structure and occupancy of the low-temperature ordered phases,

however. A comparison of our data with References [139-141] to determine which ordered
phase is manifest would necessitate more extensive statistical sampling for the ab-initio sim-
ulation, particularly given the low temperatures in question. Nevertheless, it remains an in-

teresting interpretation of the transition to the fast-ion conducting phase as an order-disorder

transition.

4.6.3 An entropically stabilized phase between a solid and a liquid

Figure 4-13 has an additional curious feature that was neglected in our previous discussion-
namely, the unusual decrease of the silver ion diffusion coefficient upon melting at about
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850 K. This tendency is also visible (and is even more dramatic) in the the experimental data

shown in the figure, but it is not captured by classical potentials. The thermodynamic implica-
tion offers valuable insight into understanding the stability of the fast-ion conducting phase.
We have discussed the liquid-like behavior of the silver ions in the lattice and demonstrated
the effective independence of the diffusive properties of the silver cations from both the struc-
ture and the dynamics of the iodine substructure. These observations prompt a fundamental
conceptual question: if the silver ions' diffusive behavior is nearly independent of the io-
dine substructure, why does the system not prefer to be in its liquid state above the fast-ion
transition, rather than maintaining crystallinity? The answer can be found in the decreased
mobility of the silver ions upon melting, which signals a likely decrease in the correspond-
ing silver entropic contribution. Conversely, upon cooling below T,, the immediate entropic
gain achieved in the enhanced mobility of the silver ions effectively stabilizes the phase at
intermediate temperatures. In other words, one can suppose that the iodines crystallize into
the fast-ion conducting phase below Tm to increase the entropy of the silvers. Accordingly,
the fast-ion conducting phase acts as an intermediate between a pure solid and a pure liquid,
with a high-entropy liquid species flowing through a low-energy solid matrix. An entrop-

ically driven picture of the stabilization of the a phase is also consistent with experimental

results [143], which determine the entropy difference between fast-ion conducting and liquid
phases to be unusually small.

4.7 Dynamical electronic structure

4.7.1 A unique chemical signature

In characterizing the dynamics of interatomic bonding and the valence charge distributions
for a first-principles simulation, it is often useful to examine the electronic wavefunctions in a
representation of maximally localized Wannier functions (MLWFs), as described in Section 2.5.
We have made use of the Wannier function method to characterize the bonding between ions of

each species by calculating the maximally localized orbitals for a large number of independent

dynamics timesteps taken from a 32-atom simulation at 500 K and averaging the results. Typi-

cal maximally localized orbitals for silver and iodine within AgI are depicted in Figure 4-17. In

a general sense, the valence electron distributions surrounding both atoms show a predictably

ionic character. For iodine, the full ionic valence shell manifests itself as four hybridized sp3-

like orbitals tetrahedrally oriented about each iodine atom center; for silver, the orbitals are

d-like and tend to be centered on the atoms themselves.

Figure 4-18 shows a histogram of the average radial spreads of the MLWFs over the course

of the 500 K simulation. These spreads provide a measure of the extent of delocalization for the

MLWFs. For comparison, we have also included the spread results for the MLWFs associated
with a lattice of singly ionized iodines (I-) in a diffuse jellium of positive charge spread evenly
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FIGURE 4-17: Isosurfaces of maximally localized Wannier-function representations of the electronic
orbitals for (a) silver and (b) iodine in a 32-atom simulation of a-AgI at 500 K. For the case of silver, the
individual orbitals are also shown separately for clarity.

MLWF Spread (A2)

FIGURE 4-18: Histogram of the spreads of the maximally localized Wannier functions of silver and
iodine in a-AgI, averaged over 50 ps of a 32-atom simulation at 500 K. The arrow indicates the average
Wannier function spread of a bcc lattice of singly charged I- ions in a diffuse jellium of positive charge.
The asymmetry in the distribution of the silver spreads points to a possible non-Coulombic interaction.

throughout the lattice. The distributions of the spreads of the Wannier functions do not exhibit

the symmetric Gaussian character expected for a purely ionic solid. Rather, the distributions

for both the silvers and the iodines demonstrate an asymmetric skew towards higher values of

the spread, pointing to the existence of possible stronger, partial covalent interactions between

the two ionic species. The argument for partial covalency in the silver-iodine interactions is

strengthened by the results of our calculations of the dynamical effective charges (Table 4.1),

which demonstrate significant deviations from integral values.

Recognizing that this possibility warrants further investigation, we plotted the time-aver-
aged distribution of the Wannier function centers (WFCs) with respect to the location of their

parent ion. Expectedly, the silver orbitals are centered on their ion centers, whereas the iodine
orbitals are located some distance away from their ion centers, consistent with picture shown
in Figure 4-17. However, when we plot the distribution of the locations of the iodine WFCs
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FIGURE 4-19: Histogram of distances between iodine WFCs and iodine nuclei. The insets are con-
tours of the iodine WFC distribution about their nuclei for WFCs on either side of the broken line.
The random spatial distribution short-distance WFCs points to predominantly Coulombic interactions,
whereas the structured distribution of the long-distance WFCs indicates partial covalent interactions.

(Figure 4-19), the result reveals the significant finding of an unexpected bimodal separation.

In particular, the WFCs can be partitioned into short-distance, highly localized WFCs and

longer-distance, partially delocalized WFCs. Note that for a material featuring only a single

homogeneous chemical environment, one would expect the WFCs to be normally distributed.

Further isolating Wannier functions associated with each of the two peaks and plotting

the time- and statistical-averaged contours for the WFCs around the iodines yields the isosur-

faces shown in the insets of Figure 4-19. The long-distance Wannier centers (LWFCs) tend to

align along the cubic axes toward the octahedral interstitial sites. Their orientations relate to

the observed smearing of the silver occupancy from the electrostatically preferred tetrahedral

sites towards the octahedral face centers, suggesting that these orbitals correspond to highly

directional chemical interactions between silvers and iodines. In other words, LWFCs indi-

cate some covalent-like character in the Ag-I bond. On the other hand, short-distance iodine

Wannier centers (SWFCs) exhibit a random angular distribution, as should be expected for a

strictly Coulombic picture. Comparing the peak areas in Figure 4-19 reveals that of the four

WFCs surrounding an iodine, 30% on average can be classified as SWFCs. Not coincidentally,

this figure agrees with the likelihood for a first-shell silver to be found in the mobile transition

zone (Section 4.5). It also correlates well with the experimental and theoretical likelihood of a

silver to be located outside the tetrahedral interstitial site (see Section 4.4.1). The significance

of this correlation will be explored in the next section.
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FIGURE 4-20: Histograms of interionic bond distances and bond angles for the silvers closest to iodine
WFCs, resolved into (A) long-distance and (B) short-distance Wannier functions (see text). The bond
angle 0 is defined as the angle between RAg-I and RIWFC-I. The long-distance WFCs demonstrate
clear thresholds for both the bond distance and bond angle, whereas the short-distance WFCs do not.

4.7.2 Chemical picture of the conduction mechanism

A detailed picture of the correlation between delocalization extent of the iodine MLWFs and
the positions of nearby silver atoms is offered in Figure 4-20. There is clear evidence of a chem-
ical interaction between LWFCs and silver atoms within a threshold radius of RAg-I < 3.25 A
and a solid bond angle of 101 < 150, indicating that bonding with LWFCs is indeed highly
directional. Figure 4-20 reveals no corresponding directionality for bonding with SWFCs, in-
dicating these interactions can be attributed to weaker electrostatics. Moreover, examination
of the radial distribution for first-shell silvers closest to SWFCs (not shown) places them within
the defined transition zone. We therefore conclude that silvers contributing to DAg are those
which are not bound to LWFCs, meaning they are minimally constrained both radially and an-
gularly. Most commonly, the outermost of the four first-shell silvers fills these criteria, as a lack
of stronger directional interactions with LWFCs also increases the average Ag-I bond distance.
This comparatively unconstrained, mobile fourth silver fleetingly occupies the transition zone
until it is captured by a neighboring iodine, leading to net diffusion. At higher temperatures,
thermal disordering breaks a greater number of bonds between silvers and LWFCs, promot-
ing more nearby silvers on average into the transition zone. As such, the overall fraction of
occupied tetrahedral sites decreases and diffusion is further enhanced.

The proposed chemically driven capture mechanism that leads to silver ion transport is
illustrated schematically in Figure 4-21. If a silver occupying the transition zone comes within
the predefined threshold distance and solid bond angle, it can be captured via its interaction
with the iodine orbital. This leads simultaneously to a SWFC --+ LWFC chemical transition of
the orbital and a corresponding rapid decrease in the Ag-I bond distance.* This decrease in

*This chemically driven transition the silvers in the neighborhood of the octahedrally oriented LWFCs also
conveniently explains the observed anharmonicity in the Ag-I bond as reported in Reference [110].
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(a) (b) (c)
FIGURE 4-21: Schematic illustration of the chemically driven capture-and-release mechanism for a sil-

ver ion in the neighborhood of an iodine orbital: (a) initially, the mobile silver ion lies outside the

capture zone, and the nearest iodine orbital exhibits SWFC character; (b) once the silver ion crosses

the threshold it can be captured by the iodine orbital, leading to a decrease in the Ag-I bond distance

and a SWFC -- LWFC chemical transition of the iodine orbital; (c) the captured silver ion is eventually

released by the iodine, and the SWFC is recovered.

the bond distance is also manifest in the silver ion velocities (not shown), which demonstrate

elevated magnitudes in the capture region. Following capture of the silver, the host iodine may

release one of its four nearest-neighbor silvers to recover the observed approximate three-to-

one ratio of LWFCs to SWFCs, and the process repeats. The motivation for maintaining this

ratio likely owes to a combination of thermodynamic and steric factors, the latter referring to

the geometric incompatibility between the sixfold symmetry of the LWFC distribution (right

inset, Figure 4-19) and the desire for fourfold symmetry in the distribution of the silvers in the

first coordination shell, as motivated by electrostatics.

4.8 Summary and conclusions

In conclusion, we have shown that the transition to the fast-ion conducting a phase of AgI is

signaled by an independent phase transition of the silver ions alone, characterized by a dis-

ordering of the silvers and a sharp increase in their diffusivity. Upon melting, DAg decreases,

pointing to an unusual entropic contribution to the stabilization of the fast-ion conducting

phase. We have also identified diffusion pathways for mobile silver ions above Tc, and a time-

resolved analysis of ion trajectories has allowed us to define a set of ordering rules that govern

the instantaneous distribution of silvers in the first shell surrounding an iodine. Finally, we

have found that of the four first-shell silvers, the closest three are strongly correlated and re-
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stricted in their angular distribution, and that they are involved in anisotropic, directional
bonding to an iodine. The fourth silver is bound only weakly and is relatively unconstrained,
and we have isolated it as the dominant contributor to diffusion. We have also proposed a
chemically driven capture-and-release mechanism for this fourth silver and present it as the
likely motivation for its observed high mobility.

The key findings of this work have been published in Reference [144].
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CHAPTER 5

CsHS0 4 : The kinetics of fast-ion
conduction

5.1 Background and motivationT HE RECENT PUSH to realize the hydrogen economy [145] has seen scientists and engi-

neers engaged in an active collaboration to develop environmentally sound technolo-
gies for stationary power generation as well as onboard vehicular energy conversion

and storage. However, despite extensive efforts originating from the materials community,
several key technological hurdles to the widespread adoption of fuel-cell technology remain.
One of these challenges is the discovery and optimization of inexpensive, efficient proton-
conducting electrolyte materials (a second challenge relates to hydrogen storage technologies
and will be discussed in the next chapter). Electrolytes represent a crucial component of a
standard fuel cell (Figure 5-1) and should generally be electronic insulators which are perme-
able to ions but not to neutral species. However, most devices available today use polymer
electrolyte membranes (PEMs), which generally require hydration to enable proton conduc-
tion and are therefore subject to leakage and containment issues. Electrolytes based on PEMs
also suffer from an elevated risk of degradation by attacks from free radicals and of cross con-
tamination. More significantly, the presence of liquid water limits the range of PEM operating
temperatures to below 100'C, making them difficult to implement for onboard operation in
fuel-cell powered vehicles without the addition of expensive and heavy cooling equipment.
In the quest for electrolyte materials tuned to operate at the mid-range temperatures optimal
for onboard vehicular applications (100-3500 C), a great deal of recent research effort has fo-
cused on anhydrous solid-state materials [146,147]. These do not typically suffer from the
same drawbacks as do PEMs and therefore offer greater flexibility in terms of mechanical and
thermodynamic constraints.

The fast-ion conducting properties of CsHSO4 were first investigated in detail by Baranov
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FIGURE 5-1: Schematic diagram of the operation of an ordinary hydrogen fuel cell. Hydrogen is
stripped of its electron at the cathode, and the remaining proton diffuses through the ion-conducting
electrolyte. Unable to penetrate the insulating electrolyte layer, the electron instead travels through
an external circuit, carrying an electrical load in the process. Oxygen is reduced by the electron at the
anode, and the protons and oxygen anions recombine to form water as the only byproduct.

et al. in the early 1980s [148]. Even then, its potential as a solid-state electrolyte material was
recognizable; however, it was abandoned as a practical solution early on because of its solubil-
ity in water. Nearly twenty years later, Haile et al. revisited the issue and showed that under
certain conditions, stable fuel-cell operation using a CsHSO4 was indeed possible [149]. Sub-
sequent research efforts [150] have focused on further fine-tuning of CsHSO4 and its deriva-
tives from the same family of solid acids, and these are now regarded as some of the more
promising candidates for intermediate-temperature solid-state electrolytes. They are also in-
expensive and relatively easy to produce [146,151], making them further attractive from an
economic point of view.

CsHSO4 was the first known crystalline material to exhibit both hydrogen bonding and su-
perprotonic behavior and has among the higher ionic conductivities of the known solid-acid
materials (> 10-2 (*.cm) - 1 at target operating temperatures). Its phase diagram, depicted in
Figure 5-2, is richly complex. The room-temperature phase at ambient pressure is monoclinic
(space group P21/c and features a static, well-defined network of hydrogen bonds linking SO 4
tetrahedra along the c-axis of the crystal. The high-temperature superprotonic phase-usually
designated Phase I-possesses a body-centered tetragonal structure (space group I41/amd)
and is stable above 414K [148]. The structural transition to this phase is accompanied by an

90

CHAPTER 5



BACKGROUND AND MOTVAIONCAPE

400

320

280
0.4 0.8 1, t6 & P.

FIGURE 5-2: Phase diagram of CsHSO4. At ambient pressure, the transition to the superprotonic Phase
I occurs at Tc = 414K. Taken from References [152,153].

increase in the conductivity of more than three orders of magnitude. Its structure is depicted
in Figure 5-3 and consists of a lattice of SO4 tetrahedra, each bonded to a hydrogen via an
O-H chemical bond. Each chemically bonded hydrogen also forms an O- .. H hydrogen bond
with an oxygen of a neighboring SO4 tetrahedron. It is known that the resulting hydrogen-
bond network becomes dynamic above the transition temperature and can visit a number of
distinct topologies, owing to four possible oxygen binding sites for each SO4 node in the net-
work. However, there exists no theoretical consensus as to the specific atomistic mechanisms
involved in proton transport within CsHSO4 and related solid acids, nor have there been any
atomistic studies of proton kinetics grounded in first principles. Resolving these shortcomings
represents the primary aim of the present study.

The reigning view in the literature [154-158] is that long-range proton transport in super-
protonic CsHSO4 occurs as the net result of two distinct mechanisms: first, the reorientation
of the hydrogen-bond network by rapid, nearly free rotations of the sulfate tetrahedra; and
second, the hopping of the proton between oxygens of neighboring tetrahedra across the O-
H-.. O complex when a favorable local network arrangement is encountered. The second step
has generally been considered rate limiting and is thought to occur at frequencies of the or-
der 10-9 s-1, whereas the first is expected to happen more frequently by at least two orders
of magnitude [159,160]. This two-step process is often referred to collectively as the Grot-
thuss mechanism [161-163] and is closely related to the similar mechanism in water. Since the
hopping events are discrete and therefore readily countable, CsHSO 4 presents itself as a rele-
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FIGURE 5-3: Structure of the conventional unit cell of Phase-I CsHSO 4. Hydrogen atoms are shown in
white, oxygen in red, sulfur in yellow, and cesium in blue. Hydrogen bonds are denoted by broken
green lines.

vant and interesting test case for examining transport dynamics and kinetics in network solids
from a statistical standpoint. This chapter thereby exploits an approach which is quite differ-
ent from the analytical methodology we employed in Chapter 4 and yet is equally powerful
in terms of gaining deep insight into the atomistics of the material. As should become clear
by the end of this chapter, our statistical analysis reveals an actual picture of conduction in
CsHSO4 that is substantially more complex than is commonly portrayed and features a subtle
interplay between the dynamics of the O-H chemical bonds, the O... H hydrogen bonds, and
the SO4 tetrahedra in promoting proton diffusion.

Previous molecular dynamics studies [123,164,165] of CsHSO 4 based on fitted interatomic
potentials have aided in highlighting the basic phenomenology of proton transport and of the
transition to the fast-ion conducting phase. However, such investigations are unable to de-
scribe the full complexity of hydrogen bonding and electronic interactions. This is particularly
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true in a dynamic environment that features rapid bond breaking and forming, since such
sudden and extreme changes in the chemical environment are extremely difficult to capture
using classical potentials. Ke and Tanaka [166,167] were the first to incorporate first-principles
methodologies, but their analysis was grounded in static rather than dynamics calculations.
The present study differs in that it aims to elucidate the detailed atomistic pathways and mech-
anisms involved in hydrogen diffusion in fast-ion conducting CsHSO 4 using ab-initio molecu-
lar dynamics.

5.2 Computational parameters

Ultrasoft pseudopotentials for hydrogen, oxygen, and sulfur using the gradient-corrected
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional were obtained from the Quan-
tum-ESPRESSO website [124]. For cesium, we generated a PBE norm-conserving scalar-rela-
tivistic pseudopotential with a 6so.55d0 .05 6p0.05 valence configuration using Paolo Giannozzi's
Atom code [168]. In generating the pseudopotential, the Troullier-Martins formalism [126]
was used, and nonlinear core corrections (Section 2.4) were adopted to partially account for
the overlap of the core and valence electrons. To prevent the appearance of ghost states, it was
also necessary to make the s orbital the local channel in the Kleinman-Bylander formalism.
The full input parameters, along with results of transferability tests, are listed in Appendix A.
Energy cutoffs of 25 Ry for the electronic wavefunctions and 150 Ry for the charge density
were chosen based on the results of a force-convergence calculation on the primitive cell of
CsHSO4, in which atomic forces were converged with respect to cutoffs to within a threshold
of - 0.05 eV/A.

Molecular dynamics simulations of Phase-I CsHSO4 were performed using the Car-Parri-
nello technique [7] in the canonical NVT ensemble at temperatures of 550, 620, and 750 K. Ionic
temperatures were maintained by means of Nos&-Hoover chains [94,95,97,100]. In each case, a
second, weaker thermostat was added to the electronic system [99] to ensure adiabaticity over
the course of the lengthy simulations. Since the conductivity is significantly lower in CsHSO4
than in a-AgI, we chose to simulate the system at elevated temperatures to sample a maximal
number of diffusive events. Structural constraints imposed by the finite supercell volume and
periodic boundary conditions had the computational advantage of elevating the melting point
of the material beyond its experimental value of 550 K, permitting sampling of a superheated
Phase I. Each simulation covered 25 ps of thermalized dynamics following 5 ps of equilibra-
tion. This length of time proved sufficient for sampling several hundred to a thousand jump
events, making statistical inferences possible. In each case, our supercell was comprised of 112
atoms (sixteen complete CsHSO 4 formula units), and periodic boundary conditions were im-
posed. The fictitious Car-Parrinello mass was chosen to be t = 700 au with At = 7.5 au, which
allowed for conservation of the Car-Parrinello constant of motion while guaranteeing that the
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FIGURE 5-4: Evolution of the kinetic energy of the ionic and fictitious electronic systems in the 750 K
simulation. The insets expand the gray region to illustrate the adherence of the Car-Parrinello electronic
system to the adiabatic surface.

contribution of the electronic system to the total kinetic energy remained suitably small (see

Figures 5-4 and 5-5). The lattice parameters for the simulations were chosen based on the ex-

perimental values [169] just above the fast-ion transition temperature at ambient pressure (a =

5.732 A; c/a = 2.48).

5.3 Structure and finite-size effects

As a further verification of the suitability of our pseudopotentials, we proceeded to calculate

the lattice parameters for CsHSO4. Full ionic relaxations were performed in fixed-volume unit

cells in which the a and c lattice parameters were varied, and results for a given c/a ratio were

fit to a second-order Birch-Murnaghan equation of state [127]. Each calculation was performed

using the 14-atom body-centered tetragonal primitive cell and a 2 x 2 x 2 mesh of k-points. The

two hydrogens were placed in the ordered lattice positions shown in Figure 5-3. The results

of the lattice parameter calculation for the superprotonic Phase I are plotted Figure 5-6 and

summarized in Table 5.1. Also included in the table are the results of bond length calculations

for certain relevant interatomic bonds in the CsHSO4 crystal. In all cases, our results show

very good agreement with experiment.

In Section 4.3.3, we used the pair correlation function for the diffusive species as a way

to measure finite-size correlation effects. However, because CsHSO 4 is a network solid and

features a mechanism involving discrete, rapid hopping of protons between neighboring SO4

tetrahedra that occupy well-defined crystallographic sites, the hydrogen substructure can be
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FIGURE 5-5: Evolution of the total internal energy U and the Car-Parrinello constant of motion Econ, in
a 750 K simulation of CsHSO4, following 5 ps of initial equilibration.
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FIGURE 5-6: Equation-of-state calculations for various values of the c/a ratio in Phase-I CsHSO 4. Calcu-
lations were performed on the 14-atom primitive cell using a 2 x 2 x 2 mesh of k-points and an electronic
wavefunction cutoff energy of 40 Ry.
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TABLE 5.1: Calculation of the a and c lattice parameters, as well as various key bond lengths, for the
fast-ion conducting Phase I of CsHSO 4. Calculations were performed on the 14-atom primitive cell
using an evenly spaced 2x2 x2 mesh of k-points and an electronic wavefunction cutoff energy of 40 Ry.
Experimental values are from References [154,155,170].

Description This work Experiment % Deviation
a (A) 5.821 5.732 +1.6
c/a 2.48 2.48 0.0

d(H-O) (A) 1.02 1.01 +1.0
d(H-O... H) (A) 2.55 2.55 0.0

d(S-O) (A) 1.50 1.51 -0.7

loosely tied to a lattice model and may therefore exhibit long-range order, even in the absence

of any specific correlation between dynamical jump events for nearby hydrogens. As such,

the mobile species in CsHSO4 should not be expected to exhibit the true liquid-like behavior

characterized by rapid convergence of the pair correlation function to unity. This retention of

solid-like order in the hydrogen substructure of CsHSO4 can be seen in Figure 5-7(a). Since

the pair correlation function alone is an inadequate indicator of whether our supercell is suf-

ficiently large to reliably discount the existence of finite-size effects, we also chose to examine

the distance-dependent correlation of the directions of the velocities of the hydrogen atoms

according to:

gv(r) = N(N 1) ij x 6 (r - Rij) , (5.1)
NH(NH-1) I=1 J>I t1

where RIj R- RI - RjI represents the interatomic separation and NH is the number of hy-

drogens in the supercell. The results of this calculation for the hydrogen atoms in CsHSO 4

are shown in Figure 5-7(b). For a solid substructure with minimal dynamical correlation, the

quantity in Equation 5.1 would be expected to decay rapidly to the correlation-free value of

g, = 0. However, we still observe some degree of correlation even at the full cell-cell separa-

tion distance. Although the effect appears to be quite minor beyond the first nearest neighbor,

it is possible that long-range correlations between periodic images may somewhat affect our

diffusive statistics. We will return to this point in Section 5.7.

5.4 Proton dynamics

In presenting the results of our simulations, we have divided the dynamics into categories

of chemical-bond dynamics and hydrogen-bond dynamics. We include in our definition of

chemical-bond dynamics any breaking or forming of 0-H chemical bonds by Grotthuss-type

hopping of a proton between oxygens of neighboring tetrahedra. Any change in the hydrogen-

bond network structure resulting from breaking or forming O .-. H hydrogen bonds that does

not also involve breaking or forming O-H chemical bonds is considered in the category of
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r (A)

FIGURE 5-7: (a) The hydrogen-hydrogen pair correlation function g(r) and (b) the corresponding ve-
locity pair correlation function g,(r) (Equation 5.1) for Phase I of CsHSO4 at 620 K. In each graph, the
dotted line indicates the uncorrelated liquid-like limit. The lack of convergence of both quantities over
the cell-cell separation distance indicates the presence of some long-range order.

hydrogen-bond dynamics. For additional clarity, Figure 5-8 offers schematic representations
of sample jump events from both categories of dynamics.

5.4.1 Chemical-bond dynamics

An O-H chemical bond was defined by considering interactions with oxygens within a cutoff
distance of ROH < 1.15 A, which represents the initial separation between the first and second
coordination peaks of the calculated oxygen-hydrogen radial pair distribution function (RDF),
displayed in Figure 5-9. Classification as chemical or hydrogen bond proved more difficult
for O-H pairs separated by an intermediate distance 1.15 < ROH < 1.35 A due to an inherent
difficulty in resolving the overlap in the first two RDF peaks in that range. The ambiguity
is also noticeable upon examination of the coordination number n(r), which is nearly flat in
this region. For such O-H pairs, we instead employed a history-dependent definition, basing
the bond category on the last visited unambiguous bonding regime. Under this definition, an
existent O-H chemical bond was considered broken only when ROH Ž> 1.35 A; analogously, an
existent O... -H hydrogen bond was considered broken only when ROH < 1.15 A.

Within the Grotthuss mechanism, local proton transfer via a series of correlated jumps
prompts changes in the chemical-bond structure. Such jumps are first nucleated by the forma-
tion of a metastable H2SO 4 defect, which subsequently propagates along the network back-
bone, acting as a successive proton donor for neighboring tetrahedra at each stage. The indi-
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(b)

(a) (c)

FIGURE 5-8: Schematic depiction of (a) a sequence of chemical-bond jumps nucleated by the formation
of an H2SO4 defect in the uppermost tetrahedron; (b) a hydrogen-bond network change induced by
rotation of a host SO4 tetrahedron; and (c) a hydrogen-bond network change resulting from a direct
hydrogen-bond hop with little or no rotation of the host SO 4 tetrahedron. The color scheme follows
that of Figure 5-3, with final configurations in jumping events shown as semi-transparent.

vidual jumps are themselves short hops across a double-well potential barrier, where the two
stable minima represent the O-... H and O-H distances and are separated by about 0.5 A. A
single Grotthuss hop therefore has the effect of swapping a chemical and a hydrogen bond, an
action that is repeated as the proton transfer propagates across the hydrogen-bond network
chain. This model of local proton transfer in superprotonic CsHSO4, represented schemati-
cally in Figure 5-8(a), is easily observable in our simulations. Indeed, just over half (51%) of
the chemical-bond jumps that we register at 620 K occur as a direct result of H2SO 4 defect
formation by the donation of a second proton from a neighboring tetrahedron, in accordance
with the Grotthuss model (see Figure 5-10). The remaining jumps are nucleated as a result of
random local fluctuations in the bond structure. It is reasonable to assume that this fraction of
Grotthuss-type hops would increase even further in the presence of an excess proton.

It is likely that for such a cooperative diffusion mechanism, the effect of breaking or form-
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FIGURE 5-9: The oxygen-hydrogen radial pair distribution function gOH(r) (solid line, left axis) and
the coordination number n(r) (dashed line, right axis), calculated from a simulation at 620 K. Regions
classified as chemical and hydrogen bonds are delineated, as well as the intermediate region for which
the history-dependent definition was employed.

ing an O-H chemical bond should have a range that reaches at least to the nearest-neighbor

SO4 node in the hydrogen-bond network; that is, that all eight oxygens in the source and
destination tetrahedra should "feel" the effect of the change in the chemical bond structure.
Figure 5-11, which shows a charge-density difference plot for a single Grotthuss-type jump in
a fixed lattice of CsHSO4 in which only one proton is allowed to move, provides some indi-
cation that this is indeed the case. Upon formation of a new O-H chemical bond, the proton
pulls charge from the remaining S-O bonds, weakening any O-H bond that may already exist

on a different oxygen node on the same SO 4 tetrahedron, thereby decreasing the jump barrier
for that second proton. Moreover, at the saddle point of the transition (Figure 5-11(b)), the
oxygens on the receiving SO4 tetrahedron already demonstrate a measurable redistribution of
charge, suggesting that changes are felt continuously throughout the entire evolution of the
H-... 0 O-H complex rather than simply upon O-H chemical bond breakage or formation. This
indicates that any change in the local electronic structure-whether manifest in the hydro-
gen bonds or the chemical bonds-is likely to effect some appreciable long-range electronic
consequences.

It is a straightforward process to track bond formation and annihilation, and we can define
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FIGURE 5-10: Distances between four diffusive hydrogen atoms and the oxygens to which they were
originally bonded, tracked over the first two picoseconds of equilibrated simulation time at 620 K.
Large increases in this distance correspond to proton hops between oxygens connected to different
sulfate tetrahedra. The increases of the O-H distances for all four protons around 0.3-0.4 ps evidence a
Grotthuss-type correlated jump event in which these protons are collectively involved.

a time autocorrelation function for bond existence as

1 N
Ce(t) = N (a(O) x a(t)), (5.2)

i=l

where a(t) is defined to be 1 if a particular type of bond exists between a given hydrogen-

oxygen pair at time t, and 0 otherwise (throughout the text, we will use angle brackets to

denote averages in the time domain). Here the summation index i is assumed to run over all

of the oxygen-hydrogen bonds in the system. Using Equation 5.2, we can obtain a detailed

picture of the timescales of the chemical- and hydrogen-bond dynamics. The hydrogen-bond

and chemical-bond existence autocorrelation functions are displayed in Figure 5-12.

Beyond about 20 fs, we observe a slow exponential decay in the chemical-bond existence

autocorrelation Ce,(t), with characteristic exponential decay times in the 11-15 ps range. These

values are recorded in Table 5.2, along with the observed average prevalence of chemical-bond

jump events at each temperature and the fraction of such jumps that subsequently reverse

themselves. As a reminder, we define a chemical-bond jump as a complete exchange of a

chemical and a hydrogen bond across an 0-H ... O complex, in accordance with the original

definition proposed by Grotthuss. The surprising commonality of chemical-bond jump events
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(a)

(b) pý r4I

(c)

4

FIGURE 5-11: Isosurface (95%) of charge density difference showing regions of charge redistribution
associated with a single proton hop across the O-H .. O double-well potential. Propagation originates
with (a) the proton chemically bonded to the right-hand tetrahedron and proceeds (b) through the
transition state to (c) a configuration with the proton chemically bonded to the left-hand tetrahedron.
Regions of positive change are depicted in orange and negative change in blue.

is reconcilable with the slow decay rate only when one considers the extremely high rate of

jump reversal, which averages around 85% and features no significant variability with tem-

perature. The combination of frequent jumping and a high, temperature-independent reversal

rate is suggestive of a potential energy surface featuring an especially shallow activation bar-

rier and bears a marked resemblance to similar findings in simulations of proton transport in

water [171,172]. The existence of such a low barrier can be further substantiated by the lack of

a distinct separation between the first two peaks in the oxygen-hydrogen radial pair distribu-

tion function (Figure 5-9), indicating a surprisingly high probability for the proton to occupy

the transition state.

At very short times (<10 fs), we observe a fast fall-off before transitioning to the slower

decay regime. In this region, we are below the timescale of any jump reversal subsequent
to chemical-bond breaking and forming, resulting in a much more rapid decay. The absence
of any noticeable high-frequency periodicity in Figure 5-12 indicates that jump reversal car-

101

CHAPTER 5PROTON DYNAMICS



CHAPTER 5 PROTON DYNAMICS

1.0

0.9

A 2

620 K (fixed:

.550 K
750 K

"" ..

"...:

''
.

·, ·
.

.
·.

.
· ·,

0 1 2

t (ps)

FIGURE 5-12: Autocorrelation functions for existence of chemical bonds after a time t for simulations at
550 K, 620 K, and 750 K, as well as at 620 K with fixed sulfate tetrahedra. The inset expands the region
for small times. For the fixed-sulfate simulation, no chemical-bond breaking is observed.

TABLE 5.2: Various quantities derived from a statistical analysis of the chemical-bond dynamics at
550 K, 620 K, and 750 K. Featured columns indicate (1) the characteristic decay time r in an exponential
fit Ae - ( /I') of the long-time data in Figure 5-12; (2) the average overall frequency v, of chemical-bond
jump events per ion, calculated by directly tallying the number of such events that are observed per
unit time; and (3) the fraction of these events that subsequently reverse themselves.

Temp. (K) r (ps) vc (THz) % rev.
550 15.2 0.58 83
620 12.5 0.80 85
750 11.2 0.94 85

ries no preferred timescale. Rather, it is likely that the reversal probability is a consequence

of stabilization or destabilization of the local potential energy surface from SO4 tetrahedral

reorientations.

As an indicator of the potential effect of the motion of the SO 4 tetrahedra on the chemical-

and hydrogen-bond dynamics, we have also chosen to run a second simulation at 620 K in

which all ions except for the hydrogens were immobilized (denoted "fixed-SO 4" in Figures 5-

12 and 5-13). The initial configuration was chosen from a well-equilibrated timestep of the

fully mobile simulation. Interestingly, all chemical-bond dynamics ceased in this simulation.

This fact is particularly notable in light of previous investigations [156,164,165] which postu-

lated that the most important factor in inducing chemical-bond jumping is a reduction in the

O-0 distance across the O-H-.. O complex due to SO 4 reorientation. However, in our fixed-

S04 simulation, not a single chemical-bond jump event was registered, despite the continuous
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presence of O-O distances as short as 2.30 A across O-H- -O complexes. Notably, this value
is approximately 0.15 A shorter than the average 0-0 distance across O-H- --O complexes of

hydrogens actively involved in chemical-bond jumps in the fully mobile simulation. More-

over, in our fully mobile simulations, we find only a negligible 0.01 A difference between the

average 0-0 distances across O-H- -. O complexes of hydrogens involved in chemical-bond
jumping events and ordinary hydrogens not involved in jump events of any sort. We therefore
conclude that the primary contribution of the SO 4 tetrahedra to chemical-bond jumping must
result from their vibrational or rotational dynamics rather than simply their instantaneous ori-
entation. Also, despite the low apparent barrier for Grotthuss-style chemical-bond hopping,
dynamic degrees of freedom connected solely to the hydrogens are nevertheless insufficient to
permit chemical-bond breaking or forming, detailing the necessary role of the oxygen modes
in that process. This observation underscores the difficulty of extracting from the simulation
a reliable estimate for the effective barrier of a single Grotthuss jump: any barrier calculation
would have to guarantee inclusion of all relevant degrees of freedom, yet the complex inter-
play between the various resulting dynamical processes generally prevents straightforward
decoupling of such an isolated event.

The fact that we were unable to observe any chemical-bond jumps in our fixed-SO4 sim-
ulation also provides insight into the relationship between proton mobility and the transition
to the fast-ion conducting phase. Our results clearly indicate that SO4 dynamics are neces-
sary in inducing proton transport. On the other hand, a classical molecular dynamics study of
CsHSO 4 [123] found that the transition to the fast-ion conducting phase, as detected in the dis-
ordering of SO4 orientations, could be reproduced even in a rigid-body simulation in which
proton dynamics were explicitly inhibited. Together with our results, these findings imply
that proton mobility is a direct result of the structural phase transition and the accompanying
orientational disorder of the SO4 tetrahedra rather than the other way around. Note that this
contrasts with what we found in our study of AgI in Chapter 4.

Our results also reveal that the general chemical-bond jump frequency is relatively high;
moreover, it is of the same order as the hydrogen-bond dynamics (compare Tables 5.2 and 5.3).
This contrasts with the view of chemical-bond jumping as substantially rate limiting and dif-
fering in timescale from the hydrogen-bond dynamics by two or more orders of magnitude.
We instead find that the limiting factor in the effective rate of chemical-bond jumps is the ex-
traordinarily high rate of jump reversal, which we suggest is linked to the dynamics of the
SO 4 tetrahedra. Yet even when jump reversals are considered, our effective chemical-bond
dynamics are significantly faster than the proposed nanosecond scale. However, our results
are consistent with a recent set of NMR experiments [173] on Phase-I CsHSO4, which point to
much faster chemical-bond dynamics than have hitherto been supposed (on sub-picosecond
scales), causing the authors to contend that the atomistic mechanism for Grotthuss-type chem-
ical bond jumping across the O-H ... -O complex is not rate limiting.

It should be noted that in our analysis of jump reversals, we have considered only sin-
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gle jumps that are subsequently reversed. In so doing, we have neglected the reversal of
collective sequences of jump events. Such higher-order jump sequences are especially diffi-
cult to properly consider given the inherent time- and lengthscale limitations imposed by the
first-principles methodology. It is expected that accounting for the potential reversal of such
longer sequences would limit the number of counted "successful" jumps (those contributing
to macroscopic proton diffusion). The magnitude of any such limitation is difficult to predict,
however.

5.4.2 Hydrogen-bond dynamics

For the purposes of this work, we have defined a hydrogen bond in terms of the oxygen-
hydrogen distance alone, with the additional restriction that hydrogen bonding cannot involve
oxygens attached to the same host sulfate tetrahedron as the hydrogen. Under this definition,
the usual practice of restricting ZO-H. -• O had no appreciable effect on the counted hydrogen
bonds and was omitted for sake of simplicity. A hydrogen-bond maximum cutoff distance of
ROH < 2.23 A was chosen based on the distance for which the coordination number n(r) = 2,
indicating the tail end of the second coordination peak (associated with H ..- O) in the calcu-
lated oxygen-hydrogen RDF (Figure 5-9). The minimum cutoff of ROH > 1.35 A was chosen
based on the clear point of separation for the second RDF peak and the end of the plateau
region in the coordination number. As for the chemical bonds, we implement the aforemen-
tioned history-dependent definition for categorizing bonds in the intermediate range of 1.15
< ROH < 1.35 A.

Figure 5-13 shows the bond-existence autocorrelation function Ce(t) for the hydrogen

bonds in simulations at 550 K, 620 K, 750 K, and for the "fixed-SO4" simulation at 620 K in

which all ions except the hydrogens are immobilized, calculated using Equation 5.2. At longer

times, we observe an exponential decay of the hydrogen bonds for the fully mobile simulations
that far outpaces that of the chemical bonds (compare Figure 5-12). The graph also reveals that

at short times (<50 fs; see figure inset), the hydrogen bond network in the fixed-SO 4 simula-

tion remains very dynamic, approximately following the equivalent curve for the fully mobile

system. However, Ce(t) soon begins to oscillate around a fixed running average, indicating

repeated visitation of a few alternating configurations. Interestingly, the overall frequency

of hydrogen-bond breaking is actually greater for the fixed-SO4 simulation than for the fully
mobile simulation.

Table 5.3 contains these hydrogen-bond breaking frequencies, as well as likelihoods for

reversal of hydrogen-bond network reorganization events. In addition to providing overall

values, we have divided the hydrogen-bond dynamics into two categories based on the loca-

tion of the newly formed hydrogen bond with respect to its predecessor. Our first category
consists of hydrogen bonds transferred between oxygens of the same destination SO4 tetrahe-

dron; the second contains hydrogen bonds transferred between oxygens of neighboring SO 4
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FIGURE 5-13: Autocorrelation functions for existence of hydrogen bonds after a time t for simulations at
550 K, 620 K, and 750 K, as well as at 620 K with fixed sulfate tetrahedra. The inset expands the region
for small times. At 620 K, the curve for the fixed-sulfate simulation follows that for the fully mobile
simulation for about 50 fs before the two diverge.

TABLE 5.3: Various quantities derived from a statistical analysis of the hydrogen-bond dynamics at
550 K, 620 K, 750 K, and for the fixed-SO 4 simulation at 620 K (designated f-SO4). The data is separated
into statistics for hydrogen-bond exchanges between oxygens of the same SO4 tetrahedron, those of
different S04 tetrahedra, and overall totals for either type of exchange. Featured columns include
(1) the fraction of total hydrogen-bond exchanges representing a particular class of exchange; (2) the
average overall frequency vh of hydrogen-bond jump events per ion, calculated by directly tallying
the number of such events that are observed per unit time; and (3) the fraction of these events that
subsequently reverse themselves.

Same S04 Different S04 Overall
Temp. (K) % tot. vh % rev. % tot. M, % rev. v % rev.

550 38 0.47 49 62 0.79 34 1.16 40
620 25 0.58 38 75 1.72 38 2.30 38
750 23 1.01 35 77 3.45 39 4.46 39

620 (f-SO4) 21 0.96 67 79 3.57 79 4.53 77

tetrahedra. In practice, higher temperatures generally show a greater preference for exchanges
between oxygens of different tetrahedra than do lower temperatures, but in all cases, such ex-
changes outnumber those between oxygens of the same tetrahedron by a margin of two or
three to one. Fixing the SO 4 tetrahedra pushes that margin even further.

Unlike in the case of the chemical-bond dynamics, freezing the degrees of freedom of
the SO 4 tetrahedra does not prevent reconfiguration of the hydrogen-bond network via bond
breaking and forming. In fact, Table 5.3 reveals that inhibiting SO 4 rotation actually enhances
the frequency of hydrogen-bond breaking and forming, particularly for bonds exchanged be-
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tween oxygens of neighboring tetrahedra. However, some degree of rotation is required in

order to explore a larger region of configuration space and prevent repeated visitation of

identical configurations-a necessary stipulation for enabling long-range macroscopic proton

transport in the material.

The point of separation of the hydrogen-bond autocorrelation curves for the fixed-SO4 and

fully mobile system, as seen in the inset of Figure 5-13, can be interpreted physically as a

characteristic reversal time: if a newly formed hydrogen bond is to be accepted, enough SO 4

rotation must occur within the approximately 50 fs window to sufficiently alter and imbalance

the energy landscape, thereby minimizing likelihood of back hopping. Accordingly, Table 5.3

shows that the observed fraction of hydrogen-bond network reorganization events that sub-

sequently reverse themselves within this time period in the fixed-SO 4 simulation is more than

double that of the fully mobile simulation at the same temperature (38% versus 77%).

A Fourier transform of the hydrogen-bond existence autocorrelation function Ce(t) gives a

good measure of the typical oscillation frequencies for the hydrogen-bond forming and break-

ing in the fixed-SO 4 simulation. Figure 5-14 compares this result to the vibrational density of

states for the hydrogens in that simulation as well as in the fully mobile simulation. A compar-

ison of Figures 5-14(b) and (c) allows us to distinguish the hydrogen vibrational modes that

are not directly connected to hydrogen-bond breaking from those that are. Those not linked to

changes in the hydrogen-bond network are represented by clusters of broader peaks around

15-20 THz, 30-40 THz, and 80-95 THz. Of these, the two lowest-frequency clusters most likely

represent bending modes, whereas the highest-frequency cluster contains stretching modes.

The primary peaks associated with bond breaking and forming are a low-frequency peak near

9 THz and a fundamental second peak at 28 THz, along with its accompanying overtone peaks

at higher frequencies. Since these peaks are completely suppressed in the result for the fully

mobile simulation shown in Figure 5-14(a), they represent the signature oscillations inhibited

upon stabilization of new configurations by reorientations of the SO 4 tetrahedra. Notably, the

half-period switching time represented by the low-frequency peak matches the characteristic

reversal threshold obtained from Figure 5-13. The higher-frequency peak at 28 THz is also

evident in that same figure, appearing as shallow oscillations at short timescales. The exis-

tence of pronounced overtones for the 28 THz peak in both the vibrational and bond-breaking

frequency spectra suggests significant anharmonicity in the potential for the H--. O bond.

Since the primary effect of suppressing SO 4 rotation is to encourage reversal of hydrogen-

bond network reorientation phenomena rather than to inhibit such reorientations altogether,

SO 4 rotation alone cannot satisfactorily account for the full network dynamics. Rather, we

observe that the dominant mechanism for hydrogen-bond network reorganization involves

hydrogen-bond transitions that are best described as rapid, discrete angular jumps between

two stable states rather than as a smooth evolution driven by SO 4 tetrahedral rotations, as has

generally been proposed previously. These two states correspond to different orientations for

which the ZS-O-H angle for chemically bonded hydrogens is maintained near the tetrahedral
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FIGURE 5-14: Vibrational density of states for the protons in (a) the fully mobile and (b) the fixed-
SO4 simulations, along with (c) the hydrogen-bond switching frequency spectrum for the fixed-SO4
simulation. Data are from simulations at 620 K, and densities of states were obtained from a Fourier
transform of the appropriate velocity autocorrelation function. The strong peaks at 9 THz and 28 THz
visible in panels (b) and (c) can be associated with the breaking and forming of hydrogen bonds.

angle of 109.50. This phenomenon is depicted schematically in Figure 5-8(c) and resembles the
proposed diffusion mechanism in a recent simulation of liquid water [174].

Additional evidence for the angular hopping model appears in Figure 5-15, which outlines
distributions for certain geometrically relevant angles in both the fully mobile and fixed-SO4

simulations at 620 K. The ZS-O-H angles for chemically bonded protons have a relatively
small spread and are peaked around the described tetrahedral geometry. Angles greater than
1450 are not represented, indicating that the protons lie primarily on the surface of a cone
centered on the S-O bond and with a half-angle of 65-70'. Notably, the angular distribution
does not change appreciably between the fully mobile and fixed-SO4 simulations. Although
hydrogen-bonded protons are generally less constrained, the ZS-O- -. H distributions for both
simulations are still peaked near 1100. However, for the fixed-SO4 simulation, a second peak
appears in the angular distribution at around 1400 as a byproduct of the hydrogen-bond hops.
The separation of the two peaks for the fixed-SO4 case in Figure 5-15(b) indicates that gen-
erally a net SO 4 tetrahedral reorientation of around 300, involving either the hydrogen-bond
donor or acceptor tetrahedron, accompanies the hop to alleviate the lattice strain it induces.
This value for the SO 4 angular rotation agrees well with what has been proposed in the liter-
ature [155,169,175,176], but our resolution is insufficient to pinpoint which of the particular
competing models is most likely to be correct. Such reorientation is also responsible for alter-
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FIGURE 5-15: Z S-O-H angles for (a) chemically bonded and (b) hydrogen-bonded protons in fully
mobile (solid) and fixed-SO4 (dashed) simulations at 620 K. The -300 separation between the two
peaks of the Z S-0 . • H distribution for the fixed-SO 4 simulation indicates the angular strain that must
be alleviated by the rotation of an SO04 moiety.

ing the potential energy surface to minimize back hopping.

5.5 Dynamics of the sulfate tetrahedra

Since it has already been established that the 300 reorientation of the SO04 tetrahedra must take

place within a 50 fs window to maximize the potential for non-reversing transitions, we can

obtain 10.5 rad/ps as a back-of-the-envelope estimate for the minimum SO 4 angular velocity

required to prevent reversal following a hydrogen-bond switch. The S04 angular velocities

follow a Boltzmann distribution and are plotted in Figure 5-16. The plot reveals that velocities

of this magnitude, although somewhat rare, are indeed accessible, representing about 8-9% of

the S04 tetrahedra in the 620 K simulation at any given time.

Figure 5-16(c) shows an isosurface of the angular velocity unit vectors Co for the rotation

of the SO 4 tetrahedra, averaged over all such groups in the 620 K simulation. Areas of high

density therefore represent preferred axes of rotation, a clear structure for which is visible

in the figure. These rotation axes do not align towards the chemically bonded hydrogen or

its accompanying oxygen, as is evident from Figure 5-16(b). Instead, they orient along the

edges of a cube rotated 7r/4 in the (001) crystal plane with respect to the conventional unit cell,

thereby correlating with the centers of the nearest-neighbor tetrahedra. The SO4 rotational

orientations thus appear to be governed by the locations of nearby SO4 tetrahedra rather than

the location of the locally bonded hydrogen or the orientation of its corresponding chemical
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FIGURE 5-16: (a) Angular velocity profile for the SO4 tetrahedra at 620 K (solid), along with the corre-
sponding fraction of tetrahedra n(w) with angular velocities < w (dashed). Inset (b) shows the angular
distribution of the sulfate tetrahedral axes of rotation (Z with respect to rSH, and inset (c) shows the
radial distribution of the 2, vectors in space with respect to the primary crystallographic axes.

bond. In other words, rotational axes align along iss rather than rSH or rso.

Having established that SO04 rotation is generally highly constrained and has a preferred

directionality, we can obtain a quantitative measure of the degree of constraint by comparing

the plateaued value of the oxygen mean-square displacement (not shown) to a free-rotation

model involving random walk on the surface of a sphere. In doing so, we are assuming that a

freely rotating sulfate group has a stationary sulfur center and that the S--O bond length Rso is

fixed and well defined. The mean-square distance between a point on the surface of a sphere

of radius Rso and any other point on that sphere is given by the simple expression 2R2o [177,
178], or around 4.5 A2 . Yet the converged value of the oxygen mean-square displacement that

we observe is only 2.4-3.2 A2, depending on temperature.

In view of the fact that angular jumps alone, stabilized by small, rapid tetrahedral reori-

entation events of about 300, account for much of the hydrogen bond network dynamics (see

Section 5.4.2), it is desirable to analyze and requantify the relative contribution of larger-scale

rotational motion. Figure 5-17, which shows the averaged distributions of angular distances

traveled by S04 tetrahedra as a function of time, illustrates one effect of slower rotational dy-
namics. There is evidence of the appearance of a second peak in the distributions representing
a new, stable equilibrium configuration at 75-80' rotation with respect to the original tetra-
hedral orientation. This peak begins to manifest in statistically measurable quantities only
after 250 fs (see inset of figure), making the quickest of such reorientation events several times
slower than the timescale of the fast 300 reorientation event described previously. We note that
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FIGURE 5-17: Distribution of angular distances traveled by sulfate tetrahedra as a function of time at
620 K. Successive curves represent values at 0.5, 1, 2, 3, and 5 ps. For longer times, the growth of a
second peak around 70-80' can be seen, indicating the presence of a second stable configuration for the
tetrahedron. The inset gives a measure of the fraction of tetrahedra with greater than 700 rotation from
their initial positions as a function of time at 550 K, 620 K, and 750 K.

the faster dynamics with the smaller reorientation angle cannot be distinguished in Figure 5-17

since it is buried within the first peak, which primarily depicts the fast librational modes.

Additional confirmation of the existence of multiple distinct timescales for the tetrahedral

orientation can be seen in Figure 5-18, which portrays the angular time autocorrelation of

tetrahedral configurations. We calculate this quantity according to

N

i= 1

where in this case, the summation index i runs over all of the S-O bonds in the system. In

simple terms, Equation 5.3 produces a measure of the cosine of the average angular distance

traveled by an S-O unit vector rso as a function of time. The slower rotation events mani-

fest themselves as a quasi-linear decay in the autocorrelation at longer times. At short times

(<250 fs), the slope is appreciably steeper, indicating faster dynamics on average. Expectedly,

the separation between these two regimes agrees with the timescale of the emergence of the

slow rotation in Figure 5-17. In addition, a shoulder indicating the timescale of a rotation to

a nearby local minimum is clearly distinguishable at around 50-60 fs, in agreement with our

previous indicators of fast dynamics on that scale. This shoulder repeats itself as periodic os-

cillations and is also detectable as a peak in the Fourier transform (not shown) of the curve in

Figure 5-18. The oscillations also span the intermediate region in which rotations of both short
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FIGURE 5-18: Autocorrelation function for angular distance traveled between SO4 tetrahedral orienta-
tions separated by time t. The inset expands the region for small times. The small oscillations visible at
short times correspond to fast reorientations of the tetrahedra.

and long timescales are manifest before they are lost in the slower dynamics at longer times.
We further note that changes in temperature have no appreciable effect on the timescale of the
fast rotation, as measured by the locations of the shoulders and oscillations in the figure. This
is consistent with a picture in which the reorientation is connected to a hydrogen-bond hop
and therefore has an almost negligible rotational barrier.

The anisotropy of the diffusion tensor for CsHSO4 has been documented experimentally
[179] and is a geometric consequence of the greater angular distance that must be traversed
by a diffusing proton traveling across two sulfate layers along the [001] or [001] directions
compared to a similar journey parallel to the (001) plane (117 ° versus 780; see Figure 5-19).
Our results confirm that locally, diffusion parallel to the (001) plane dominates: the directional
mean-square displacement of the individual hydrogen atoms systematically rises 2.5 to 5 times
faster along the [010] or [100] directions than along the [001] direction. As a crude approxima-
tion, this corresponds to a difference in the respective barrier heights of around 0.12 eV (it
should be noted that the anisotropy that we observe is more pronounced than that which is
seen experimentally; likely reasons for this will be discussed later). The disparity suggests a
different dominant mechanism for diffusion along a (001) direction, in part because the angu-
lar distance is too great to be easily accommodated by the described hydrogen bond hopping
mechanism, and in part because the corresponding angular velocities that would have to be
reached by the sulfate tetrahedra to prevent backhopping in such a scheme are unreasonably
high. Instead, we find that slower SO4 rotation plays the dominant role in overcoming the
larger barrier, in line with the more traditional model of proton transport in CsHSO 4 (depicted
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b

FIGURE 5-19: Illustration of the geometric anisotropy in the arrangement of SO4 units in Phase-I
CsHSO4. A hydrogen-bond jump across two sulfate layers along the [001] direction must traverse an
angle of 1170, whereas a hydrogen-bond jump parallel to the (001) plane needs only to traverse a 780
angle.

in Figure 5-8(b)). In this case, the dynamics are slow enough that the timescale of the large-

scale rotation is no longer a hindrance. We further note that the approximately 400 difference

in the angular distance that must be traveled in the [001] direction with respect to a similar

journey in the (001) plane, combined with the aforementioned 30' SO 4 reorientation, satisfac-

torily accounts for the appearance of the second peak in Figure 5-17 to within a rough estimate.

This suggests that for diffusion in the [001] direction, the slow rotation is probably followed

by a rapid hydrogen-bond hop, although the former clearly determines the timescale.

5.6 Hydrogen-bond network topology

We have also analyzed the basic topology of the hydrogen-bond network. Table 5.4 shows

the relative probabilities of various SO 4 bonding configurations at 550, 620, and 750 K, orga-

nized according to the number of hydrogen bonds donated (Nd) and accepted (Na) by the SO 4

tetrahedron. In our definition, a donated bond is formed between a local chemically bonded
hydrogen and one or more oxygens on a neighboring tetrahedron; an accepted bond is a hy-
drogen bond formed between one or more local oxygens and a hydrogen that is chemically
bonded to a neighboring tetrahedron. Thus for an ideal one-dimensional network, one would
expect all tetrahedra to have Nd = Na = 1. In our simulations, we observe this type of or-
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TABLE 5.4: Observed relative probabilities (%) of SO4 bonding configurations, organized according
to the number of hydrogen bonds accepted (rows) and the number donated (columns) by the SO4
tetrahedron. Data are from simulations at 550/620/750 K.

% Prob. Nd = 0 Nd = 1 Nd = 2 Nd = 3

Na=O 2/3/7 3/4/6 1/1/2 1/1/1
Na = 1 18 / 22 / 26 61 / 53/41 11/15/14 1 / 1 / 1
Na= 2 1/1/2 <1 / <1/1 0/0/0 0/0/0

TABLE 5.5: Average lifetimes (fs) of SO4 bonding configurations, organized according to the number of
hydrogen bonds accepted (rows) and the number donated (columns) by the SO4 tetrahedron. Data are
from simulations at 550/620/750 K.
Lifetime (fs) Nd = 0 Nd = 1 Nd = 2 Nd = 3
Na = 0 48 / 53 / 55 47 / 43 / 42 21 / 19 / 25 34 / 21 / 24
Na = 1 176 / 159 / 117 238 / 169 / 105 128 / 119 / 75 81 / 92 / 54
Na = 2 27 / 20 / 24 20 / 17 / 20 0 / 0 / 0 0 / 0 / 0

dinary link only 41-61% of the time, suggesting the actual network topology is much more

complicated. Other highly probable configurations include one with (Na, Nd) = (1, 0), which

can be thought of as a terminator in the hydrogen bond network (18-26%); and one with

(Na, Nd) = (1,2), which can be interpreted as a network branching point (8-14%). This latter

topology, consisting of one tetrahedron hydrogen bonded to two others, is similar to the bi-

furcated hydrogen-bond complexes found in water [180]. According to Table 5.4, there is a

great deal of variability in the number of hydrogen-bond donors Nd, but configurations with

Na = 1 are comparatively rare. The primary effect of increasing the temperature seems to be a

decrease in the number of ordinary linear network links with Nd= Na = 1 in favor of network

terminators with (Na, Nd) = (1,0), resulting in a more nodal network. Some of the rare (but

nonetheless statistically significant) configurations are signatures of Grotthuss-type jumps in

progress: immediately following a standard chemical-bond jump from one SO 4 tetrahedron

to another, nucleated at a link in an ordinary linear chain, the source tetrahedron registers a

topological configuration of the form (Na, Nd) = (2,0), whereas the H2SO4 destination com-

plex acquires a configuration of the form (Na, Nd)= (0,2).

Table 5.5 lists the average lifetimes of the local topologies listed in Table 5.4. Although
these values are averages and do not account for the complete distribution of possible life-

times as do the autocorrelation curves of Figure 5-20 (discussed later), they are nonetheless

useful for purposes of qualitative comparison. Lifetimes are generally well correlated with
relative frequencies, with hydrogen bonding to a single secondary tetrahedron (Na = 1) acting
as a stabilizing force. As the temperature increases, the lifetimes of configurations with Na - 1
are affected very little, but we observe a sharp systematic decline in nearly all configurations
with Na = 1. Notably, this trend does not always follow that of the relative frequencies in Ta-
ble 5.4. For example, at high temperatures, network terminators with (Na, Nd) = (1, 0) exhibit
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FIGURE 5-20: Existence autocorrelation functions for four of the most likely SO 4 tetrahedral bonding
configurations at 620 K. In the schematic diagrams, a solid line represents a chemical bond, a dashed
line represents a hydrogen bond, and an "X" indicates the absence of a bond.

a decrease in average lifetime but an increase in their overall commonality, suggesting a more

nodal but also more dynamic network.

Tables 5.4 and 5.5 neglect hydrogen bonds to the same SO 4 tetrahedron as the host, in accor-

dance with our original definition of the hydrogen bond. However, if we relax the hydrogen-

bonding restriction requiring bonds to be between oxygens of different tetrahedra, we find

that these "self-hydrogen bonded" defects, although short-lived, are nonetheless relatively

common, representing about 3% of the total O... -H interactions at 620 K. Moreover, we find

that hydrogens involved in chemical and hydrogen bonds to the same SO 4 tetrahedron do not

permit simultaneous hydrogen bonding to oxygens of neighboring tetrahedra, meaning these

complexes function as terminators for the hydrogen-bond network chains. Also, the veloc-

ity of the oxygens in self-hydrogen bonded SO4 complexes is consistently about 10% higher

on average than in ordinary complexes with Nd = Na = 1. This suggests that underbond-

ing lessens the degree of constraint and enhances oxygen mobility in such units, likely aiding

further reorganization of the hydrogen-bond network.

In addition to examining the network topology in terms of connectivity between neigh-
boring S04 tetrahedra, one can obtain a slightly different topological gauge by looking at the

number of chemical and hydrogen bonds formed by a single proton. Figure 5-20 shows the
existence autocorrelation curves for four of the most common topologically distinct bonding
configurations for a proton. These curves give an idea of the characteristic decay times for each
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configuration. The result for a standard bonding configuration, in which a proton forms one
chemical and one hydrogen bond (black curve) is shown for timescale reference. We note that
topologies with protons forming a single chemical bond but no hydrogen bond (red curve)
are surprisingly stable, with a characteristic decay time that is relatively large on the timescale
of both the hydrogen-bond hopping and its corresponding strain-relaxing SO4 reorientation.
Defects of this class are less constrained and more mobile than their ordinary counterparts,
and as in the case of the self-hydrogen bonded complexes, the increased mobility facilitates
network reorganization much more readily. Network-branching configurations with multiple
hydrogen bonds (blue curve) play a more direct role in the reorganization of the hydrogen-
bond network but have only intermediate stability. A common function of these complexes is
as a transition state for stabilizing hydrogen-bond hopping, as discussed in Reference [167].
It should be noted that in addition to the bond topology shown schematically in the figure
panel (in which hydrogen bonding is to multiple distinct tetrahedra), network-branching con-
figurations can also involve multiple hydrogen bonds of a proton to different oxygens of a
single destination tetrahedron (of the type suggested to exist in water by the authors of Ref-
erence [181]); the autocorrelation functions for these cases are essentially indistinguishable.
Configurations with no chemical bond (green curve) are extremely short-lived.

Techniques involving the graph-theoretic adjacency matrix (see Appendix B) also offer a
convenient way of characterizing the topology of the overall network and extracting config-
urations most likely to induce a diffusive event. In particular, we are able to further classify
the network topology in terms of rings, meaning some part of the network ultimately con-
nects back to itself in a closed loop; and chains, meaning the network either remains linear
or branches, with the restriction that any two network vertices are connected by exactly one
unique directed path (i.e., a graph-theoretic tree). Examples of these topologies are depicted
schematically in Figure 5-21, and the specifics of our classification algorithm are detailed in
Appendix B. It should be noted that such a dichotomy requires classification of every node as
either a chain or a ring but does not allow any given node to be doubly counted as belonging
to both categories. Table 5.6 lists the likelihood of finding a tetrahedron in various ring and
chain topologies in an ordinary simulation timestep versus a timestep immediately preceding
a chemical- or hydrogen-bond jump event.

For ordinary configurations not involving a jump event, the network favors rings over
chains at 550 K, whereas the trend is reversed at 750 K. The intermediate temperature of 620 K
is a topological transition zone and shows a marked increase in configurations simultaneously
containing both rings and chains. There is also a notable decrease in the average length of
a chain and a slight decrease in the average size of a ring at 620 K compared to the other
temperatures. This is a further indication that the network is midway in a transition process
from primarily rings to primarily chains, as a network configuration containing both would
tend to inhibit the growth of either one at the expense of the other.

Our findings indicate that at all temperatures, the presence of topological chains has a dra-
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40+

FIGURE 5-21: Schematic illustration of (a) ring and (b) chain hydrogen-bond network topologies in
CsHSO4 (see text for definition).

matic effect in enhancing the likelihood of occurrence of either sort of jump event. Conversely,

the presence of rings strongly inhibits jumping. The trend is much more evident when one

examines frames containing either rings or chains as the only topological species: in frames

preceding a chemical-bond jump, we see a 23-24% increase in likelihood of the frame to con-

tain exclusively chains and a corresponding 13-23% decrease in its likelihood to contain exclu-

sively rings, as compared to a frame in an ordinary non-jumping configuration. This difference

is especially pronounced at higher temperatures. Nonuniform configurations containing both

rings and chains also show an overall decrease in jump likelihood. One likely reason for this

is that chains are inherently less constrained chains, allowing for easier formation of intrinsic

superprotonated H2SO 4 complexes. The trends in the chain and ring data also evidence that

from a purely topological perspective, a configuration favorable for a hydrogen-bond jump

lies midway between an ordinary configuration and one favorable for a chemical-bond jump.

We conclude that the network ring and chain topology is a good predictor of both hydrogen-

and chemical-bond jump likelihood and is substantially more effective in that capacity than

the measure of the oxygen-oxygen distance across the O-H. --O complex.

We wish to note that the influence of the long-range network structure on proton jump
behavior points to the possible existence of larger structural defect complexes that contribute
to topological chain formation while stabilizing and enhancing local proton diffusion. These
may be thought of as analogous to the Eigen and Zundel hydrogen-bond complexes in liquid

116

HYDROGEN-BOND NETWORK TOPOLOGYCHAPTER 5

%k

Jd

'k
IV N



TABLE 5.6: Observed relative probabilities (%) for various hydrogen-bond network topologies in an
ordinary timestep, compared with similar quantities for timesteps immediately preceding a chemical-
or hydrogen-bond jump event. Also listed are the relevant average ring and chain sizes for frames
where those topologies exist. Ring sizes are calculated based on the number of tetrahedra involved in
the ring, whereas chain sizes denote the maximum individual branch length within the graph-theoretic
tree structure. Data are from simulations at 550/620/750 K.

Description No jump Hydrogen-bond jump Chemical-bond jump
Rings 71 / 78 / 52 64 / 72 / 49 47 / 55 / 28
Chains 60 / 74 / 70 69 / 81 / 75 83 / 87 / 84
Rings only 40 / 26 / 30 31 / 19 / 25 17 / 13 / 16
Chains only 29 / 22 / 48 36 / 28 / 51 53 / 45 / 72
Rings + chains 31 / 52 / 22 34 / 52 / 24 29 / 42 / 12
Avg. ring size 5.6 / 4.5 / 4.7 5.3 / 4.5 / 4.6 4.9 / 4.5 / 4.5
Avg. chain size 6.9 / 5.4 / 6.2 6.9 / 5.4 / 6.0 6.8 / 5.6 / 6.0

water [171,172,182,183]. The necessity of including the oxygen modes in a dynamical de-

scription of proton transfer, as well as the relative frequency and stability of the nonstandard

bonding configurations discussed above, lends additional credence to such a hypothesis.

It is worthwhile mentioning that periodic boundary conditions and limited supercell sizes

have two major topological consequences that must be considered in any analysis: first, they

limit the maximum length of chains that can be formed; and second, they tend to artificially in-

flate the number of smaller rings, since creation of periodic images tends to wrap the network

back onto itself prematurely. As such, the values in Table 5.6 should not be taken as absolutes,

but qualitative comparisons are nonetheless useful and relevant.

5.7 Proton kinetics and the isotope effect

We can estimate the general three-dimensional proton self-diffusion coefficient D* from the

mean-square displacement of the individual hydrogen atoms using the Einstein relation, which

we reproduce here:

S I=1

From Equation 5.4, we estimate D* in our simulations to be 1.8-3.5 x 10- 6 cm2/s over the 550-
750 K temperature range, about an order of magnitude greater than extrapolations of exper-
imental measurements [160] to the same range (1.9-3.4x10 - 7 cm 2/s). Although this repre-
sents a significant error in terms of the magnitude of the calculated diffusion coefficients, we
nonetheless observe the proper scaling of D* with temperature, indicating correct calculation
of the effective energetic barriers for the collective diffusion process (around 0.11 eV, assum-
ing a thermally activated barrier and a negligible temperature dependence for the exponential
prefactor).
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It should be noted that calculations of these coefficients are notoriously difficult to con-
verge, particularly when diffusivities are small and statistics are limited. A simple indication
that our limited statistics may be insufficient to obtain well-converged results for D* can be
found by comparing diffusion projected along the [001] and [010] directions, whose values dif-
fer by as much as 20% in our simulations despite being geometrically equivalent. An alterna-
tive is to use the Green-Kubo relation based on the velocity autocorrelation function to extract
the diffusion coefficient, rather than the mean-square displacement; however, this method ex-
hibits even poorer convergence in our simulations, likely due to a combination of the presence
of weak long-time correlations and insufficient statistics. Instead, we estimate the accuracy
of our diffusion coefficients using a discrete sampling technique in intervals of the 0.2 ps cal-
culated correlation time (see Appendix C). This results in an error margin of ±15% for the
calculation of D*.

Equation 5.4 measures the average self-diffusion of individual protons rather than the col-
lective long-range diffusion that is generally detected macroscopically (this point is discussed
in detail in Appendix C). In this respect, such results are best compared with a tracer diffusion
experiment. An alternative approach involves evaluating a collective diffusion coefficient Dj
that describes the motion of the center of mass of the hydrogen atoms:

D = lim N1 1 [r(t) - r(0)] . (5.5)
t0 6t N I=1

Using Equation 5.5 in place of Equation 5.4 systematically deflates our previous results by
35-40%. The discrepancy between the two methods indicates the presence of significant cross
correlations between mean-square displacements of different individual particles at different
times (see Appendix C), as should be expected for Grotthuss-type successive proton transfer.
Given its inclusion of these correlations, the collective diffusion coefficient might seem a better
measure of the actual hydrogen mobility; however, it also results in substantially elevated
estimates of numerical uncertainty (as high as ±60%), as is evident in Figure 5-22.

Equations 5.4 and 5.5 may be inadequate for describing diffusion in a framework that can
be connected to the macroscopic conductivity of the material, however. This becomes obvious
upon noting that within the cooperative Grotthuss mechanism, a proton arriving at a tetra-
hedral SO4 moiety to form an H2S0 4 complex is not typically the first to subsequently depart
that complex to propagate along the hydrogen-bond backbone. As a result, significant discrep-
ancies are expected when relating our local short-range transport model to any macroscopic
long-range measurement of ionic conductivity, analogous to the disparity between group and

phase velocities in wave mechanics. One possible way of dealing with this would be to track

the trajectories of quasiparticles representing local structural deviations from ideality, such as
the superprotonated H2SO 4 unit. Such an approach would be more in keeping with a model
of structural diffusion. However, we have already shown that not every microscopic proton
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FIGURE 5-22: Mean-square displacement of the hydrogen atoms at 550 K. Results are shown for the
self-diffusion model used in Equation 5.4 (solid line) and for the collective diffusion model used in
Equation 5.5 (dotted line). The collective model results in slower diffusion, but the associated statistical
error is significantly higher.

transfer process can be assumed to be a Grotthuss-type jump, meaning that one would have to
carefully track the continual creation and annihilation of every possible type of quasiparticle-
an imposing task given the varied and dynamic nature of the hydrogen-bond network topol-
ogy. Moreover, the timescales accessible to our simulations are sufficiently short that statistical
sampling errors from the quasiparticle method would likely be very high, as we would be av-
eraging over relatively few such structures. As such, we present only the results based on the
self-diffusion and collective diffusion methods but offer the above discussion as a reminder
that one should remain somewhat wary of any direct comparison with experimental results.

We have also mentioned the difficulty in accounting for correlation and reversal of collec-
tive sequences of jump events. In the limit of the short length- and timescales accessible by
first-principles methods, it is expected that any diffusive correlations that persist over large
regions of either time or space would be lost, resulting in inflated diffusion statistics. Sim-
ilarly, jump events that remain localized due to high incidences of back-hopping and corre-
lation are counted as contributors to diffusion on the timescale accessible to our simulations,
whereas these would not appear in a macroscopic measurement. Since it is reasonable in a
network solid to expect correlations to persist over long distances and times, and since our
simulations have a relatively short 25 ps production time, it is extremely likely that this fac-
tor represents the primary source of error in our calculated diffusion coefficients. Moreover,
it makes sense that this long-range memory effect should manifest itself more strongly in the
proposed mechanism for diffusion parallel to the (001) plane, given that the rate of reversal
for the relevant jump events has already been shown to be extremely high. Similarly, cor-
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relation should be expected to play less of a role in the SO4 rotation that governs transport
perpendicular to the (001) plane, since the timescales involved are long enough and the rel-
evant barriers high enough that a significant rearrangement of the network topology can be
expected between such events, thereby limiting the corresponding memory effect. This offers
a likely explanation for our observed overpronouncement of the anisotropy in the diffusion
characteristics. It also means our results for diffusion along the [001] principal direction are
likely better converged than those along the [100] or [010] principal directions; indeed, these
values are substantially closer to their experimental counterparts [160,179].

We have also mentioned the artificially high number of small rings due to periodic bound-
ary conditions as a potential consequence of small supercell size. Table 5.6 suggests a possible
correlation between smaller average ring size and a higher propensity to jump, particularly
at the lower temperature, meaning our finite size effects could result in a measurable increase
in jump statistics and diffusion coefficients. However, any such decrease in average ring size
from the periodic boundary conditions is likely to be accompanied by an increase in the overall
number of rings. Since we have established the overall propensity for ring existence to inhibit
hydrogen- and chemical-bond dynamics, the competition between these two effects should
attenuate any potential impact on the macroscopic properties.

Additional errors may be attributed to our choice of the PBE functional for calculating
the exchange-correlation energy. The selection of PBE was motivated by its general success
in describing hydrogen-bonded systems [184-186]. However, it has also been shown [187]
to underestimate proton transfer barriers in several instances, which may help in offering an
explanation for the enhanced self-diffusion that we observe.

It should be noted that we are neglecting any quantum behavior of the protons. However,
an analysis of experiments on CsDSO 4 suggests the isotope effect is relatively small [179,188].
In addition, theoretical work [189] on the topologically similar material KDP concluded that
the predominant effect of quantum delocalization of the protons was limited to structural con-
siderations, in that it decreased the H ... O-H distance and consequently also the lattice pa-
rameter. The KDP analysis is also consistent with experimental comparisons of CsDSO 4 and
CsHSO4 [155,169].

A closer examination of the specific rate-limiting mechanisms covered in our analysis of

proton diffusion in CsHSO4 provides additional insight into the lack of any substantial isotope
effect. Our findings indicate that the chemical-bond dynamics are much faster than previous
analyses have suggested, of the same order as the hydrogen-bond dynamics. Rather, the pri-
mary limitation is manifest in the dynamics of the SO4 tetrahedra, since these appear to govern
the reversal rates of both chemical-bond jumping and hydrogen-bond hopping. Accounting
for proton tunneling across the O-H... 0O double-well potential would therefore have little

effect on the overall jump statistics, since the mobility of the SO4 groups is classically con-
trolled. In addition, we have established the importance of the chain and ring topology of the
hydrogen-bond network in promoting diffusive events. However, changes in the topology are
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promoted by two factors-hydrogen-bond hopping and slow rotation of the SO4 tetrahedra.

Slow SO4 rotation is clearly a classical phenomenon, and hydrogen-bond hopping is coupled
to a 300 reorientation of the heavy SO4 tetrahedron, meaning its dynamics are also ultimately
classical.

5.8 Summary and conclusions

We have presented a detailed analysis of proton dynamics in superprotonic Phase-I CsHSO4

based on first-principles molecular dynamics simulations. Our results confirm that the chemi-
cal-bond dynamics are dominated by local Grotthuss-style hops which propagate successively
along the hydrogen-bond network backbone. Individually, these hops are comparatively fre-
quent, pointing to a low diffusion barrier, but the net effective rate of the chemical-bond dy-
namics is limited by an anomalously high rate of jump reversal. We find that the propensity
for such forward- and back-hopping along the O-H ... O complex is in turn heavily influenced
by the dynamics of the SO4 tetrahedra rather than by static local geometry alone.

We have also shown that the dynamics of the hydrogen-bond network are dominated by
fast, discrete angular jumps between neighboring oxygens rather than by slow rotations of
the SO 4 tetrahedra. Such jumps occur with greater frequency between oxygens belonging to
different SO4 tetrahedra than between oxygens of the same tetrahedron, by a factor of two or
three. The hydrogen-bond jumps are accompanied by an approximately 300 reorientation of
the participating SO 4 tetrahedra to alleviate the lattice strain induced by the hop, thereby mini-
mizing the likelihood of jump reversal. We have isolated a window of 50 fs for successful com-
pletion of this "fast" reorientation event and showed that it exists independently of a second,
slower reorientation mechanism, operating on a timescale at least five times greater than its
counterpart. The slower mechanism amounts to ordinary SO 4 rotation on a longer timescale,
and we propose this to be the dominant hydrogen-bond network reorientation mechanism for
diffusion along the [001] direction, for which angular hops are significantly more difficult and
less frequent, owing to the anisotropy of the CsHSO4 lattice.

Our topological analysis of the hydrogen-bond network revealed a significant number of
branching and network-terminating nodes, indicating a substantial deviation from linearity,
particularly at higher temperatures. We postulate that the underbound network terminators
play a role in network reconfiguration by aiding SO4 rotational mobility. Graph-theoretic
methodology offered a way to isolate chains and rings as dominant topological features in
the network, and we discovered that the presence of chains and the absence of rings is a sub-
stantial predictor of likelihood for either a hydrogen- or chemical-bond jump event to occur.
We propose that our topological analysis could be easily extended to similar well-defined,
hydrogen-bonded network solids.

Finally, we apply our analysis to offer an explanation for the lack of a significant isotope
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effect in the CsHSO4 /CsDSO 4 system. In particular, we tie both the chemical- and hydrogen-
bond dynamics to the classical dynamics of the SO4 tetrahedra and argue that the inclusion of
proton quantum tunneling should play a relatively minor role in the rate-limiting steps of the
diffusion mechanism.

An overview of this work can be found in Reference [190].
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CHAPTER 6

NaA1H 4 : Structural phase transitions
and hydrogen transport

6.1 Background and motivation

OMPLEX LIGHT METAL HYDRIDES represent among the most promising current ma-

terials solutions to the hydrogen-storage problem [38-40]. Such materials have the
potential for relatively high gravimetric storage capacities and can be engineered to

possess kinetics favorable for hydrogen release at operating temperatures. Of the complex
metal hydrides, sodium alanate (NaAlH4) has attracted particular interest as a potential hy-
drogen storage material over the past decade. It allows for a high theoretical gravimetric
hydrogen release of approximately 5.6 wt.% H, just short of the 6 wt.% H milestone target pro-
posed by the U.S. Department of Energy for the year 2010 [36,37]. The absorption/desorption
reaction for sodium alanate is a two-step process and proceeds as follows [191,192]:

NaAlH 4 -± ½ Na3AlH 6 + 2 Al + H2  (6.1)

Na3A1H 6 ; 3 NaH + Al + 2 H2  (6.2)

Unfortunately, undoped sodium alanate exhibits irreversible hydrogen release and possesses
unacceptably slow desorption kinetics. However, in 1997 Bogdanovid and Schwickardi suc-
cessfully demonstrated [191] that the kinetic barrier for absorption and desorption of hydro-
gen in NaAlH 4 could be substantially lowered and the reactions made reversible by the ad-
dition of small quantities of transition metal dopants, most notably titanium. Further kinetic
enhancements involving new processing techniques and additional dopant species were sub-
sequently demonstrated [193,194]. At ambient pressure and in the presence of TiC13 at low
dopant concentrations (- 2 mol%), the first reaction (Equation 6.1) proceeds forward above
306 K, releasing a theoretical 3.7 wt.% H in the process. The second reaction (Equation 6.2)
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becomes favorable above 383 K and releases an additional theoretical 1.8 wt.% H.

Despite the aforementioned improvements, hydrogen desorption kinetics in NaAlH4 are
still too slow for adoption as a market-ready solution to the hydrogen storage problem. The
system is also short of the long-term targets for gravimetric hydrogen capacity and volumet-
ric density. Nevertheless, it is generally agreed [36,195] that NaAlH 4 possesses tremendous
potential as a template for developing new complex metal hydrides that are structurally and
chemically similar to their parent but are not subject to the same shortcomings. Modeling and
simulation represent excellent tools for probing new materials; however, systematic improve-
ments rely on a fundamental understanding of the precise mechanism of dehydrogenation in
existing complex metal hydrides such as NaAlH 4, and of the role of the catalytic dopants in en-
hancing the reaction chemistry. To this end, there have been several recent density-functional
energetics studies addressing the structure and thermodynamics of the sodium alanate system,
both in its pure form and in the presence of various dopants or defects [196-205]. However,
in the absence of an accurate dynamical picture, it is difficult to isolate predominant reaction
pathways. Moreover, an understanding of the desorption kinetics is vital to evaluating the via-
bility of any hydrogen storage material, yet the complexity of the configurational phase space
in complex metal hydrides generally renders static energetic calculations insufficient in this
regard. To our knowledge, no dynamics simulations (either classical or first-principles) have
been performed on this system, revealing a clear avenue for making a meaningful contribution
to the scientific canon. The present work uses first-principles molecular dynamics simulations
to study the sodium alanate system, focusing on understanding hydrogen mobility and the
overall dehydrogenation process in the forward reaction of the first of the two steps, as given
in Equation 6.1.

In a broad sense, the study of a hydrogen storage material may seem an unlikely inclu-
sion alongside the other materials discussed in this thesis. However, to facilitate the dehy-
drogenation process, sodium alanate requires high mobility of hydrogen and in this sense is

not dissimilar to the fast-ion conductors discussed in Chapters 4 and 5. Indeed, it will be

demonstrated that studying NaAlH 4 provides an interesting and appropriate complement to

our investigation of superionic a-AgI and CsHSO 4-I. For AgI we showed that inhibiting the

structural phase transformation at the fast-ion conducting phase boundary did not suppress
the independent phase transition of the silver ions, prompting us to suggest that the mobility
of the silver lattice likely drives the rearrangement of the base anionic structure. In contrast, in
studying CsHSO4 we encountered a situation in which proton transfer depends on a structural

transition involving the activation of SO4 rotational modes. For NaAlH 4, we will demonstrate

a mechanism distinct from either of the two previous cases, in which hydrogen mobility can be

studied independently from the underlying structural transition of the host lattice. This phe-
nomenological symmetry makes our investigation into the mobility, kinetics, and transition

pathways of sodium alanate a fitting conclusion for this thesis work.
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6.2 Computational parameters

Ultrasoft pseudopotentials for Al (3s23p2 valence configuration) and H were taken from the
Quantum-ESPRESSO website [124]. A suitable norm-conserving pseudopotential for Na was
generated with a 3so.53po.0 5 valence configuration using the Atom code of Paolo Giannozzi
[168]. As with the other pseudopotentials generated for this work, the Troullier-Martins recipe
was used. Since sodium is an alkali metal, nonlinear core correction (Section 2.4) was also im-
plemented to account for the overlap between the core and valence electrons. Detailed reports
on transferability tests for our newly generated Na pseudopotential are given in Appendix A.
All pseudopotentials used the Perdew-Burke-Ernzerhof exchange-correlation functional. En-
ergy cutoffs of 25 and 200 Ry for the wavefunctions and charge density respectively were ob-
tained by verifying the convergence of interatomic forces in perturbed test structures to within
a - 0.05 eV/A threshold.

Except where indicated, Car-Parrinello molecular dynamics simulations were performed
on 2 x 2 x 1 supercells of NaA1H 4 (96 atoms for the perfect crystal) at a variety of temperatures
ranging from 100 K to 650 K. Simulations were performed in both the NVT and NPT ensem-
bles, with temperatures maintained using Nos6-Hoover chains. For the simulations on the
defect-free crystal, the fictitious electronic mass was chosen to be 1L = 500 au with At = 6 au,

which allowed the system to remain well behaved throughout the duration of the runs (Fig-
ures 6-1 and 6-2). For simulations in the presence of surfaces or point defects, these values
were adjusted as necessary such that fluctuations in the Car-Parrinello constant of motion
were held to within 3% of the magnitude of the fluctuations in the total energy (Figures 6-3
and 6-4). Bulk simulations were run for 25 ps and surface simulations for 15 ps, each following
5 ps of equilibration time. Simulations of hydrogen mobility in the presence of defects were
run for 25-30 ps, also following 5 ps of equilibration.

The lattice parameters for the fixed-volume simulations of the tetrahydride were chosen
based upon the zero-temperature relaxed values introduced in the next section. For the simu-
lations discussed in Section 6.4.3, the choice of the lattice parameter was motivated by exam-
ining the average geometry in a variable-cell simulation at 300 K.

6.3 Structure

The body-centered tetragonal unit cell of the ca phase of the tetrahydride NaAlH4 is shown
in Figure 6-5. This structure transforms into the hexahydride Na3AlH 6, which possesses the
monoclinic structure depicted in Figure 6-6.

The system geometry of the tetrahydride NaAlH 4 was determined by fitting the results of
self-consistent zero-temperature energetic calculations for a given c/a ratio to a Murnaghan
equation of state. For each volume, the local minimum-energy ionic configuration was ob-
tained using a BFGS minimization scheme. Calculations were performed on the 12-atom
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t (ps)

FIGURE 6-1: Evolution of the kinetic energies of the ionic and fictitious electronic systems in a constant-
pressure simulation of bulk NaA1H 4 at 425 K.

t (ps)

FIGURE 6-2: Evolution of the total internal energy and the Car-Parrinello constant of motion in a
constant-pressure simulation of bulk NaAlH 4 at 425 K.
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FIGURE 6-3: Evolution of the kinetic energies of the ionic and fictitious electronic systems in a simula-
tion of a (001) surface slab of NaAlH 4 at 225 K.

t (ps)

FIGURE 6-4: Evolution of the total internal energy and the
lation of a (001) surface slab of NaAlH 4 at 225 K.

Car-Parrinello constant of motion in a simu-
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FIGURE 6-5: Structure of the conventional unit cell of a-NaAlH 4 (space group I41/a). Hydrogen atoms
are shown in white, aluminum in green, and sodium in blue.

TABLE 6.1: Calculated lattice parameters a and c, as well as various interatomic distances, for the
tetrahydride a-NaAlH 4. Calculations were performed on the 12-atom primitive cell using a 2 x2x 1
grid of k-points and an electronic wavefunction cutoff energy of 25 Ry. Experimental values are from
References [206,207].

Description This work Experiment % Deviation
a (A) 5.148 5.02 +2.5
c (A) 11.202 11.33 -1.1

d(A1-H) 1.629 1.627 +0.1

body-centered tetragonal primitive cell using a 2 x 2x 1 k-point mesh. The results of the lattice
parameter calculation are summarized in Figure 6-7 and Table 6.1 and show good agreement
with experimental values. As we saw with CsHSO4, NaAlH 4 demonstrates only minor energy
changes with respect to perturbations in the lattice parameter c.
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FIGURE 6-6: Structure of the conventional unit cell of a-Na 3AIH6 (space group P21 /c). The color

scheme follows that of Figure 6-5.

-246.58

• -246.59

-246.60

a (A)

FIGURE 6-7: Equation-of-state calculations for various values of the c/a ratio in the tetrahydride a-

NaAlH 4. Calculations were performed on the 12-atom primitive cell using a 2 x 2 x 1 grid of k-points

and an electronic wavefunction cutoff energy of 25 Ry.
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6.4 The structural transition

Intuitively, two possible scenarios for dehydrogenation emerge as most likely: first, that hy-
drogen becomes mobile and is released as a direct byproduct of the structural phase transfor-
mation of the complete lattice; and second, that hydrogen becomes mobile above the NaAlH4-
-to-Na3AlH 6 transition temperature and immediately begins to escape the bulk, forming the
hexahydride only as part of the subsequent lattice reorganization process. In other words, we
can ask whether the hydrogen mobility drives the phase transformation (as was the case for
the a-AgI) or the reverse is true. The following sections explore both possibilities in depth, ul-
timately concluding that neither is correct, and that the structural transition can be considered
independently from the hydrogen mobility. Instead, we will argue that hydrogen mobility
results from the formation of point defects in the lattice.

6.4.1 Simulating bulk NaAlH 4

We performed an initial Car-Parrinello molecular dynamics simulation on bulk NaAlH 4 in

the canonical NVT ensemble at 400 K. This temperature was well within the stable range for
driving the dehydrogenation reaction of Equation 6.1. The lattice parameters were fixed based

upon the values listed in Table 6.1. In 25 ps of equilibrated production time, the bulk NaAlH 4

demonstrated no transport of hydrogen. Moreover, we detected no visible sign of a nucle-
ation site for the phase transition to the hexahydride form, such as a local lattice distortion, a

disordering of the AlH 4- or Na substructures, or reorientation of AlH4 tetrahedra. This was

confirmed in a series of zero-pressure Parrinello-Rahman simulations (Section 3.4) at 350, 400,

425, 500, 550, and 650 K. Temperatures at or below 500 K likewise demonstrated no nucleation

of the phase transition or indication of hydrogen mobility, in spite of the fact that this method

explicitly considers the cell vectors as additional degrees of freedom in the simulation. The

first evidence of any sort of lattice distortion in the constant-pressure simulations occurred

only upon melting at T > 550 K. This can be seen in the Al-Al and Na-Na pair correlation

functions, which are plotted in Figure 6-8. Interestingly, even at these elevated temperatures,

no Al-H bonds were broken in the course of the simulations. Instead, the A1H 4 tetrahedra

always remained structurally intact as they rotated and migrated away from their original

lattice positions. This important point will be discussed further in Section 6.5. We also note

that the observed melting point is somewhat higher than the experimental value of 455 K at

ambient pressure, as is typical in small-scale simulations.

Assuming density-functional theory is sufficiently capable of properly characterizing the

free energy surface, two possible explanations emerge for the lack of an observed NaAlH 4--

to-Na3AIH 6 transition in our simulations. First, the constraints of our small system size and

short simulation time may preclude long-range or kinetically limited disordering vital to phase

transformation nucleation. If this is true, it is unlikely that any of our first-principles simu-
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R (A) R (A)
FIGURE 6-8: Pair correlation functions for (a) Al-Al and (b) Na-Na atom pairs in bulk NPT simulations
of NaAlH 4 at 350, 400, 425, 500, 550, and 650 K. The breakdown of the structure at the two higher
temperatures indicates melting.

lations will be able to adequately describe the transition. However, the fact that the AlH4
moieties remain intact in the melt and migrate freely and independently through the cell sug-
gests that the interionic interactions between Na+ ions and A1H4 tetrahedra is predominantly
ionic. This in turn implies that interactions should be limited to short-range effects. A sec-
ond possible explanation owes to the fact that these simulations neglect the presence of de-
fects which may play a necessary role in mediating transport. These include surface effects
and point defects, the potential role of which has also been discussed at length in the litera-
ture [201,204,208,209]. The remainder of this section will explore surface effects, whereas the
role of point defects forms the focus of Section 6.5.

6.4.2 Simulating the (001) surface slab

We have also run simulations to study the (001) surface, which has previously been calculated
to be the most stable among the high-symmetry crystalline surfaces [210]. Canonical NVT sim-
ulations of NaAlH 4 were run at 150,175, 225, 275, 300, 400, and 475 K in a 96-atom (four atomic
layers thickness) supercell slab surrounded by vacuum. In order to ensure sufficient vacuum
separation between successive images in the 6 direction, we performed a force-convergence
with a threshold of - 0.05 eV/A. As a safety precaution, the vacuum interlayer was then ex-
panded by an additional 50%, resulting in a 14 A separation distance. In each case, surface
configurations were first optimized using damped molecular dynamics before the initial equi-
libration period.

Significant differences were discovered between the behavior of the bulk and the surface
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slab. In addition to the low-temperature a phase and the high-temperature liquid phase, a
third stable phase was seen to emerge for intermediate temperatures. Figure 6-9 compares
the final, equilibrated configurations of the 96-atom surface slab at each of the simulated tem-
peratures. For T < 225 K (Figure 6-9(a) through (c)), the surface slab remains coherent and
is structurally identical to the bulk a phase (although minor initial disordering of one of the
outermost surface layers is visible at 225 K). For T > 400 K (Figure 6-9(g) and (h)), we ob-
serve a melting of the entire slab following an initial expansion of the slab along ^ and the
activation of the AlH 4 rotational degrees of freedom. However, for temperatures in the range
(225 < T < 400 K; Figure 6-9(d) through (f)), we observe an unexpected spontaneous reorder-
ing of the NaAlH 4 slab into a hitherto unknown phase with a different symmetry and an
expanded lattice parameter c. We will denote this new phase as y throughout the remainder
of this text.t

In order to confirm that the expression of the y phase in the surface slab is not merely an
unintended consequence of finite-size effects in our small simulation cell, we ran three addi-
tional simulations at 300 K. In the first of these, we increased our simulation supercell in the ab
plane and added one additional layer, giving a total of 270 atoms (3x3x1.25). For the second
simulation, we increased the thickness of our slab by a factor of two but left the parameters in
the & and b directions unchanged, for a total of 192 atoms (2 x 2 x 2). The third simulation was
run in the NPT ensemble, so we also allowed the cell parameters to adjust themselves. No-
tably, all three simulations evidenced the same transition to the -y phase, although the overall
process occurred slower in the larger simulations. The variable-cell simulation demonstrated
an additional - 10% decrease in the cell lattice parameter a (a point to which we will return
when we analyze the precise structure of the 7 phase in Section 6.4.3), but the qualitative be-
havior matched that of the fixed-volume simulations at the same temperature.

Figure 6-10 offers a schematic illustration of the basic structural differences between a-
NaAlH 4 and -y-NaAlH4 when viewed along the & or ý crystallographic axes, based on the
locations of the aluminum atoms before and after the transition. Certain qualitative features
of the transformation are immediately detectable: first, the shear of the ab crystal planes to
generate the new lattice symmetry of the y phase; second, the expansion of the lattice param-

eter c upon entering the -y phase; and third, the rotational disordering of the AlH4 tetrahedra
that marks the departure from the alpha phase.

In characterizing the a - y transition, it is useful to quantify the three features discussed
above. In order to measure the transformation of the lattice symmetry in the ab plane due to

shearing of the ab crystal planes, it is useful to introduce an order parameter A that can act as

a reaction coordinate to mark the progress of the transition from the a phase to the -y phase.

To do so, we exploit the fact that when either the Al or Na atomic species is projected into

the ab plane, the a and -y phases feature a different occupancy of crystallographic lattice sites,

tThe NaA1H4 system also possesses a high-pressure monoclinic P phase [211].
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FIGURE 6-9: Equilibrated structure of a four-layer (001) surface slab of NaA1H 4 at various simulation
temperatures. The new -y phase is evident in the equilibrated structures at 250, 275, and 300 K (d-f).
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as described in Figure 6-10. In particular, we begin by defining two sublattices sl and s2 in
terms of relative fractional crystallographic coordinates as si = {(, m), (• + , m + ) and

s2 = { ( , ), , + ) }, where m and e are integers. Using this notation, it is clear that
in the a phase, both si and s2 are occupied in equal proportion, whereas in the -y phase, only sl
is occupied. The reaction coordinate A can therefore be calculated by examining the ratio f2/fi
between the respective occupancies of sublattices s2 and sl. It is worth emphasizing that no
assumptions are made as to the specific values of the lattice constants for the a and 7 phases,
since the elements in the two sublattices are given in relative crystallographic coordinates
rather than in any absolute reference frame. Our specific algorithm for calculating A at each
dynamics timestep proceeds as follows:

1. Project all atomic coordinates 1i along ý into the ab plane and transform to fractional
crystallographic coordinates RI' in the primitive unit cell.

2. For each atom pair (I,J $ I):

(a) Transform atom J to coordinates relative to atom I by evaluating R'Ij = R'J - R'I.

(b) Find the nearest crystallographic lattice point R = (X, k) = (e/2, m/2) to R'!j,
where e and m are integers.

(c) Evaluate the weighting factor w = exp - IR'ij - RI2 /2or a2 for the site occupancy,
where the width of the Gaussian a is chosen to be 1/4.

(d) Increment the appropriate sublattice occupancy (fl or f2) according to the rule that

f, = fi + w if ( + k = n, or else f2 = f2 + w if X + Y = n + 1/2, where n is an

integer.

3. Evaluate the order parameter according to O = 1 - (2/N) x f2/fl, where N represents

the total number of atom pairs (I,J 31I).

The weighting factor of Step 2c is included to penalize atoms for deviation from ideal crystal-

lographic sites. When applied to a single ion species, this algorithm results in A = 0 for the

pure a phase and A = 1 for the pure -y phase. Figure 6-11 demonstrates the effectiveness of A

as an order parameter. The occupancies of sl and s2 are plotted across the phase transition and

demonstrate the desired behavior of { f, f2} -- { , } for the a phase and { f, f2} -- { , 0} for

the -y phase. The figure also evidences the general agreement of the method whether applied
to the Al substructure or the Na substructure.

Choosing to focus on the ordering of the Al atoms, we plot the complete evolution of A
in the (001) surface slab at various temperatures in Figure 6-12. At 225 K, for which no tran-

sition is observed (see Figure 6-9), A remains near zero throughout the simulation, whereas

higher temperatures demonstrate the expected behavior of A -- 1. At 275 K, the transforma-

tion initializes early but then partially reverses itself before proceeding to completion. Figure
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6-12 also includes the results for one of the larger slabs (270 atoms) at 300 K, in which two
intermediate metastable states are evident as plateaus in the order parameter. By examining
the simulation snapshots, we were able to identify these states as successive shearing of ab
planes, beginning with the outermost surface layer and proceeding inwards. We note that at
temperatures exhibiting the a --+ -y transition, nucleation generally begins earlier at higher
temperatures, although the process takes longer to complete for the larger cell (300 K), as has
been mentioned. Finally, in the melted slab (400 K), there is no discernible trend in A, since
lattice sites no longer carry any meaning in a liquid.

The definition of the order parameter A as a reaction coordinate allows us to isolate an
estimate for the energetic barrier associated with the a -+ y transformation by averaging
the internal energies of all configurations corresponding to a given value of A. Figure 6-13
illustrates the result of this process for the 270-atom simulation at 300 K. The metastable states
from Figure 6-12 are distinctly visible along the reaction pathway. The figure also indicates
a low energy barrier for transition (- 8 meV/atom), as well as a relatively small energetic
difference between initial and final configurations, which will be quantified more accurately
in Section 6.4.3 using static total-energy techniques.

The rotational mobility of the AlH4 tetrahedral moieties in the gamma phase with respect
to the alpha phase can be quantified by defining an angular mean-square displacement as
follows:

N
(MSDe(t)) = cos- 1 {fAlH (t) - AIH((0)} ). (6.3)

i=1

Here the index i is assumed to run over the N Al-H bonds in the system, and A1lH represents
the directional unit vector from an aluminum to one of its bonded hydrogens. The quantity
obtained using Equation 6.3 should demonstrate a linear increase with time (up to a limiting
value of 7r2) only if the rotational modes of the AlH4 tetrahedra are activated. The angular
mean-square displacement is plotted in Figure 6-14 for the (001) surface slab at 225, 250, and
300 K. For 225 K, MSDo plateaus after an initial ballistic regime to a value related to the magni-
tude of the librational motion of the AlHý groups. For the two higher temperatures, however,
the onset of AlH4 rotation is marked by a sudden increase in the quantity MSDe that contin-
ues as the simulation progresses. For the larger slab (270 atoms; 300 K), the increase begins
sooner but takes longer to equilibrate than for the smaller slab at 250 K, in keeping with the
results of Figure 6-12.

The inset of Figure 6-14 further separates the angular mean-square displacement at 300 K
into averages over the various layers of the slab. Although there is little difference between the
onset times of AlH- rotation for the two innermost layers, the outermost layer clearly demon-
strates rotation much sooner than its inner counterparts. This suggests that the rotational
disordering begins at the surface before percolating into the slab.

We can examine the effect of the phase transition on the lattice parameter c by tracking the
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FIGURE 6-10: Schematic illustration of the fundamental geometric differences between the a (left panel)
and y (right panel) phases of NaAlH 4, viewed along the (a) i and (b) 6 crystallographic axes. One a
unit cell becomes two y cells stacked along the 6 direction, and the three central aluminum planes
perpendicular to that direction shear to generate the new symmetry. The y phase also features no
occupancy of the sites represented by the centers of the edges of the square in (b), whereas the a phase
does. Configurations are taken from a simulation of a 250 K surface slab before and after the a -~
phase transition.
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FIGURE 6-11: Comparison of the evolution of the order parameter X for the aluminum (solid curve)
and sodium (dashed curve) ionic substructures. A value of A = 0 indicates the pure a phase, whereas
A = 1 means the pure 7 phase is present. The a -+ - transition begins' at t = 5 ps. Also shown are the
average occupancies fi and f2 of Al lattice site subgroups sl and s2 (see text), normalized against the
total number of available sites in each subgroup. Data is from a (001) surface slab simulation at 250 K.

t (ps)

FIGURE 6-12: Evolution of the order parameter A for a (001) surface slab of NaAlH 4 beginning from the
a phase. A value of A = 0 indicates the pure a phase, whereas A = 1 means the pure 7 phase is present.
Data is from a series of 96-atom simulations at 225 K, 250 K, 275 K, and 400 K, as well as a 270-atom
simulation at 300 K.
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FIGURE 6-13: Change in the average internal energy U(A) of a (001) surface slab of NaAlH 4 as a function
of the reaction coordinate A during the a - 7y transition at 300 K (270 atoms). The initial a phase is
represented by the local potential minimum near A = 0, whereas the final y phase is represented by the
local minimum near A = 1. Metastable intermediate states at A = 0.35, 0.65, and 0.75 indicate shearing
of successive slab layers.
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FIGURE 6-14: The angular mean-square displacement (Equation 6.3) of the AIH 4 tetrahedral moieties
in a (001) surface slab of NaAlH4 beginning from the a phase. Data is from simulations at 225 K
(96 atoms, blue curve), 250 K (96 atoms, black curve), and 300 K (270 atoms, red curve). The inset
shows the angular mean-square displacement at 300 K averaged over the successive atomic layers
perpendicular to the slab. Here "1" designates the average angular mean-square displacement for
an outermost [surface] layer, whereas "2" represents a subsurface layer and "3" the innermost layer.
According to the inset, the onset of rotation occurs most rapidly in the surface layer and begins to
spread to the subsurface about 3 ps into the simulation.
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FIGURE 6-15: Time evolution of the Al-Al linear pair correlation function gA1Al (z) describing the rel-
ative probability of finding two Al atoms in ab planes separated by a distance z. The increase in the
perpendicular spacing of the lattice planes can be seen in the shift of the gAl Al(Z) peak locations at
about 4 ps into the simulation. Data is taken from simulations at (a) 250 K, 96 atoms; and (b) 300 K, 270
atoms.

interlayer distance perpendicular to the slab. Accordingly, Figure 6-15 shows the time evo-

lution of the linear pair correlation function 9A1Al (z), which describes the relative probability of

finding two Al atoms in planes separated by a given distance z along the [001] lattice direction.

For both simulations (250 K and 300 K), there is a clear time marker at which the increase in c

begins. Moreover, as we saw with the onset of AlH 4 rotation, the event begins at the surface

before percolating through the slab.

A comparison of Figures 6-12, 6-14, and 6-15 also yields valuable information on the rel-

ative timescales of the onset of the three described processes; namely, shear of the ab lattice

planes, activation of the AlH 4 rotational modes, and expansion of the lattice parameter c. For

both of the intermediate-temperature simulations (250 K and 300 K), activation of the A1H 4

rotational modes is the first of the processes to manifest itself, followed soon after (within half

of a picosecond) by the beginning of a lattice expansion along the 6 direction and finally (after

another picosecond or so) by the ab planar shear. Coupled with the information from the inset

of Figure 6-14, a complete picture of the motivations for the various stages of the transforma-

tion can be generated. We conclude that the transition to the -y phase begins by first activating

the rotational modes of the outermost surface AlH 4 groups. As the rotational disorder per-

meates the slab structure, the slab thickness increases to compensate. This in turn lowers the

activation barrier for the shear of ab planes to generate the new lattice symmetry.
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Our analysis also provides some insight towards understanding why the a -+ y phase
transformation is not observable in the constant-pressure simulations of bulk a-NaAlH 4. The
transformation requires an initial activation of the rotational degrees of freedom for the AlH 4
tetrahedra as a first nucleation step, yet the a phase has rigid tetrahedral units that evidence
no rotational mobility in the bulk, suggesting a large kinetic barrier. On the other hand, the
barrier to rotational mobility for an AlH4 unit at the surface is much lower, readily facilitating
the nucleation of the - phase, which subsequently percolates through the crystal. Moreover,
once the transition is complete, the ^- phase remains stable within the intermediate tempera-
ture range described above, further confirming that the transition is kinetically limited rather
than thermodynamically limited. This fact was verified in an additional constant-pressure
simulation of the bulk -y phase at 300 K, which demonstrated no return to the a phase in 15 ps
of simulation time.

6.4.3 Characterizing the y phase

Structure and energetics

In order to pinpoint the structure of y-NaAlH 4, we ran a series of energetic calculations of the
structure for different values of the lattice parameters a, b, and c, as well as of the cell angles
a and j6. For each geometry, a 2x2x1 k-point mesh was used, and a complete BFGS ionic
relaxation was performed starting from the average equilibrium positions of the ions in our
slab simulations. Energy surface contours for different values of c/a are plotted in Figure 6-16.
The final lattice geometry that we obtain indicates a tetragonal unit cell with a = 4.851 A and
c = 7.253 A, representing a 15% volumetric increase over our relaxation calculation for the a
phase.t The minimum-energy structure that we obtain is depicted in Figure 6-17. Notably, the
zero-temperature y structure has decreased lattice parameters with respect to those seen in our
variable-cell dynamics simulations of the (001) surface slab. It also features an ordered array

of hydrogens, with the central ab plane shifted slightly with respect to its neighbors. However,

at the temperatures for which the y phase is manifest (T > 250 K), the hydrogen substructure

does not order, and the shifting of the central plane is manifest only weakly (see Figure 6-10).
These features are subdued upon activation of the AlH 4 rotational dynamics, which breaks

the symmetry of the structure. It is also likely that the disorder induced by this rotation is the

primary agent responsible for the increase in the finite-temperature lattice parameter a, since

the structure must expand to accommodate free rotation of the tetrahedra.

It is useful to obtain a more precise measure of the energetic difference between the zero-

temperature ground-state a structure and the local-minimum y structure. To do so, we calcu-

lated the energy of the two relaxed structures at their theoretical lattice geometries and As it

tAn additional variable-cell relaxation was run in which the BFGS algorithm was used to minimize the energy
with respect to the lattice vectors in addition to the ionic positions; the results of this calculation were consistent
with those of the equation-of-state calculation.
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FIGURE 6-16: Equation-of-state calculations for various values of the c/a ratio in the -y phase of NaAlH 4.
Calculations were performed on a 12-atom unit cell using an evenly spaced 2x2x 1 grid of k-points and
an electronic wavefunction cutoff energy of 25 Ry.

FIGURE 6-17: Structure of the unit cell of -y-NaAlH 4, shown in (a) the standard view and (b) a top view
(along the 6 axis). The color scheme follows that of Figure 6-5.
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turns out, the gamma phase is extremely stable with respect to the reference a phase, with a

calculated energy difference of only - 1.3 meV per formula unit. The lattice expansion caused

by the AlH4 rotation likely increases the energy of the -y phase at elevated temperatures; nev-
ertheless, the associated entropic gain appears to compensate readily. This minor energy dif-
ference between the two phases further evidences that thermodynamics are not the limiting
factor in inhibiting the a -- -y phase transition in the bulk.

A possible connection to Na3A1H6

An examination of Figures6-6 and 6-17 suggests certain geometric similarities in the aluminum
substructures in -y-NaAlH4 and Na3A1H 6 that offer a possible phenomenological connection
of the observed a -- -y phase transformation to the NaAlH 4 -, Na3AlH 6 transition in the

real material. Indeed, it turns out that lattice parameters a and b of a-NaAlH 4 (a = 5.02 A;
Reference [206]) and a-Na3 AIH 6 (a = 5.410 A, b = 5.539 A; Reference [212]) are compatible to
within about 10%, and the monoclinic angle P between the &i and 6 axes in Na3AlH 6 is very
close to 90' (90.180). The most significant geometric component of the transformation (aside
from the altered symmetry group) is the change in the lattice parameter c, which is compatible
with what we observed in the a -- -y transition. Moreover, the 40% increase in the lattice

parameter c that we observe in the slab thickness upon entering into the -y phase agrees well

with the experimental 30% decrease upon transitioning to Na3AlH6 if one considers that one

complete unit cell of a-NaA1H4 bifurcates into two unit cells of -y-NaAlH4.
One aspect of the structural similarity between 3'-NaA1H 4 and Na3AlH 6 is quantified in

Figure 6-18, which compares the Al-Al pair correlation function gAl Al in a (001) surface slab
both before and after the a -- -y phase transition with a similar quantity for an ideal crystal of

Na3 AAH 6 that is lattice matched to our cell. More precisely, the Na 3AlH 6 value was obtained

by first mapping the monoclinic unit cell to a tetragonal cell while maintaining fixed values

for the fractional crystallographic coordinates of the atoms and then isotropically changing the

resulting cell volume to match the lattice parameters of our cell in the ab plane. The agreement

between the locations of the cell peaks for the modified Na3AlH 6 and for y-NaAIH 4 offers a

further indication of a possible connection between the two phases.

6.5 Mobility of atomic species

As was the case for the variable-cell simulations of bulk a-NaAlH 4, not a single Al-H bond

was broken throughout the course of any of the (001) surface decomposition simulations. No-

tably, this was the case even at temperatures in excess of the melting point of the slab. (This

finding also agrees with the combined experimental and theoretical results of Reference [213]).
However, breaking and forming of Al-H bonds represent a necessary component in dehydro-

genation, since AlH - octahedra and metallic aluminum are both produced as known byprod-
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FIGURE 6-18: Comparison of the AI-Al pair correlation function gAl Al for the (001) surface slab at 250 K
before the a -- 7 transition (black solid line) with that after the transition (blue dashed line). The red
dotted lines are the corresponding values for the lattice-matched ideal crystal of Na3AlH 6 (see text
for definition). The general agreement of the peak locations for -- NaAlH 4 and Na3AIH 6 indicates a
possible connection between the corresponding aluminum substructures.

ucts. Assuming the dynamics of bond breaking are not beyond the timescale of the simula-
tion (a reasonable assumption, given the rapidity of the phase transition and the absence of
Al-H bond breaking even at elevated temperatures), we conclude that the a - -y structural
transition must necessarily be accompanied by a secondary phenomenon to induce hydrogen
mobility.

We have already discussed the similarities between the aluminum substructures in
y-NaAlH4 and Na3AlH 6. However, in order to properly isolate the missing potential pathway
between the intermediate 7 phase and the end product Na3AlH 6, it is necessary to examine
the key structural differences between the two. In addition to the obvious difference in the hy-
drogen coordination of the aluminum atoms, a comparison of Figures 6-6 and 6-17 reveals that
the 7 phase of NaAlH 4 features missing planes of sodium atoms that lie midway between the
aluminum planes perpendicular to [001]. Completion of the NaAlH4 --+ Na3AlH6 transition
therefore requires additional absorption of both hydrogen and sodium (in equal molar propor-
tions) into the gamma phase. This sort of argument may seem counterintuitive to the reader,
since we are in fact examining the dehydrogenation reaction. However, it must be remembered
that absorption in one region implies depletion in another. Accordingly, our proposed scheme
has the metallic aluminum and molecular hydrogen of Equation 6.1 left behind following a
partial mass hydrogen exodus from a local depletion region to a local hydrogen-rich region to
form the AlH3- hexahydride complexes.

Two possibilities emerge as the most likely explanations for our inability to observe nucle-
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ation of the hexahydride. First, low concentrations of point defects may facilitate hydrogen
mobility, thereby driving formation of the hexahydride. Second, it is conceivable that on the
short lengthscales accessible to our simulations, nucleation can occur only given the precise
proper stoichiometry. Under ordinary circumstances, our tetrahydride simulations do not pro-
vide this. The following sections examine each of these possibilities in depth.

6.5.1 Hydrogen transport in the presence of point defects

A possible notion of how hydrogen transport might work in NaAlH 4 can be derived from
the structural resemblance of a-NaAlH 4 to Phase-I CsHSO 4 (compare Figures 6-5 and 5-3).
We remind the reader that we identified and discussed a causal link between structure and
mobility for CsHSO4 in Chapter 5. By extension, the similarity of the structures means it is not
implausible that an analogous transport mechanism may be responsible for hydrogen mobility
in the sodium alanate system. Extending the simple analogy to CsHSO4 would suggest that
once the network of AlH4 tetrahedral moieties becomes disordered, then hydrogen may be
passed between neighboring such complexes until it escapes at the surface.

In simulating hydrogen self-diffusion in CsHSO 4, we were able to observe common spon-
taneous formation of over- and underprotonated structural defects, such as H2SO4 or iso-
lated SO 4. These resulted from a sufficiently weak barrier to hydrogen mobility in terms of
chemical-bond jumping (see Section 5.4.1). However, the Al-H bond in NaAlH4 is much sta-
bler than the 0-H bond in CsHSO4. Accordingly, thermal energy alone is insufficient to allow
for the intrinsic formation of under- and overcoordinated AlHz complexes that can be detected
on the timescales of the bulk simulations we performed. Nevertheless, it is worthwhile inves-
tigating the effect of explicit inclusion of point defects with relatively low formation energies,
since these defects might be expected to occur naturally in the real material. Moreover, since it
is known that the inclusion of titanium substantially improves the dehydrogenation reaction
kinetics even at very low concentrations (< 2 mol% [191]), it is not unreasonable to assume
that point defects could have a nonnegligible impact on hydrogen mobility (the role of Ti will

be discussed in more detail in Section 6.6).
In an attempt to assess the potential role of point defects in enhancing hydrogen mobility

or nucleating a phase transformation, we began by running a series of simulations in a 2 x 2 x 1

supercell of bulk NaAlH 4 in the presence of various point defects at 400 K. Motivated by for-
mation energy calculations performed previously by M.Y. Chou (Table 6.2, Reference [214]),

we selected three of the most stable vacancies for simulation: H, AlH 3, and NaH.* For the case

of the hydrogen vacancy, we simulated the system twice, once in the presence of a neutral H°

vacancy and once in the presence of a charged H- vacancy. For the charged simulation, a dif-

*Calculation of accurate formation energies depends upon a proper selection of reference states; this issue has
led to discrepancy in reported values in the literature [215-217]. Nonetheless, the motivation for this study being
an understanding of the kinetics and heuristics of hydrogen transport, we are primarily concerned with qualitative
trends in formation energies and therefore accept the values in Table 6.2 as sufficiently accurate for our purposes.
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TABLE 6.2: Calculated DFT formation energies AEf for various vacancies in 2x2 x1 bulk ac-NaAlH 4.
The reference state for each calculation is taken to be standard bulk state of the constituents at 350 K.
From Reference [214].

Description AEf (eV)
H°v 1.69

(AlH 3)°  1.63
(NaH)°  1.38

fuse jellium of opposite charge and equal magnitude was implicitly added to maintain charge
neutrality across the simulation cell, and a spin-polarized calculation was used. In all cases,
the ionic positions were initially relaxed locally using a damped-dynamics run prior to the
equilibration period. Also, in order to maintain proper adherence to the Born-Oppenheimer
adiabatic surface, simulations were performed using a Car-Parrinello fictitious electronic mass
of p = 350 au, with the timestep adjusted to At = 5 au.

Since the initial positioning of the defects may affect simulation results, attempts were
made to place them in their "logical" sites. For the NaH vacancy, this simply implied re-
moval of a nearest-neighbor sodium-hydrogen pair from the bulk. For the AlH3 vacancy, an
entire AlH 4 tetrahedral complex was removed and replaced with a lone hydrogen atom in
the position formerly occupied by the aluminum. For the H vacancy, the sites are functionally
equivalent, so an arbitrary atom was chosen for removal.

Through 15 ps of equilibrated simulation time, none of our vacancy calculations demon-
strated mass transport of sodium or aluminum through the lattice. However, certain of the
point defects did have a substantial impact in enhancing hydrogen mobility. This is evi-
dent upon examination of the ensemble-averaged mean-square displacement of the hydrogen
atoms in the presence of each of the vacancies, which quantity is plotted for bulk a-NaAlH4
in Figure 6-19(a). We note a slow, linear increase in the MSD indicating diffusive behavior of
the hydrogens in the presence of an A1H 3 vacancy as well as in the presence of a charged H
vacancy (curiously, no hydrogen diffusive behavior is noted for the neutral H vacancy; we will
return to this point later).

A closer examination of these two cases reveals a diffusion mechanism that bears a great
resemblance to the dominant transport process in CsHSO 4, in accordance with our original
hypothesis. Turning first to the case of the AlH 3 vacancy, mobility results following an initial
capture of the lone hydrogen by a neighboring AlH 4 to form an AlH2- complex, which then
shares its additional hydrogen with one of its aluminum nearest neighbors to form an A12H9-

defect. When the shared Al-H-Al bond is broken, the hydrogen can find itself bonded to the
neighboring Al, resulting in net propagation of the AlH2- complex. This new complex is then
free to share one of its additional hydrogens and form a new A12H9- defect structure. As was
the case for CsHSO4, successive hydrogen transfers need not involve the original lone hydro-
gen. However, despite evidence of hydrogen mobility in the presence of the AlH3 vacancy, we
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FIGURE 6-19: Mean-square displacement of the hydrogen atoms (calculated according to Equation 3.26)
in the presence of (a) NaH, AHa3, Ho, and H- vacancies in bulk a-NaAIH 4 at 400 K; (b) Ho and H-
interstitials in bulk a-NaAlH 4 at 400 K; and (c) an H- vacancy in a (001) surface slab of a-NaAIH4 at
225 K. A linear increase is observed in all instances except the NaH and Ho vacancy simulations in the
bulk, indicating net diffusion of hydrogen. The scales in the three panels are identical.

also find that the mobile hydrogen stays loosely bound to the original immobile Al vacancy

site, always remaining within one nearest-neighbor aluminum complex. As a result, any hy-

drogen transport we observe in this scenario is highly localized and is therefore unlikely to

play a significant role in macroscopic mass transport.

The fact that the mobile hydrogen remains localized in the presence of an AlH3 vacancy in

bulk a-NaAlH 4 does not negate the potential role of overcoordinated aluminum complexes in

mass transport of hydrogen, however. Additional confirmation of the role of these structural

defects can be seen in another pair of simulations that we ran involving a single AlH2- de-

fect in the presence of otherwise pure NaAlH4. As was the case with the hydrogen vacancy,

the resulting simulations of the hydrogen interstitial were run in both the charged (H ) and

uncharged (H9) states. This scenario was selected because there should be no preferred site

for the extra hydrogen. Indeed, the results for both the charged and uncharged configurations

show substantially enhanced hydrogen mobility without any apparent localization of the de-
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FIGURE 6-20: Isosurface (95%) of the charge density difference |p-(r) - po(r) between a singly charged
hydrogen interstitial in bulk a-NaAlH 4 and a neutral hydrogen interstitial in the identical position.
Formation of an Al2HI- defect is observed, and the isosurface indicates that most of the additional
electronic density in the presence of the charged interstitial is spread across the defect.

fect. In fact, the results of the MSD calculation for the case of the hydrogen interstitial, given in
Figure 6-19(b), demonstrate faster hydrogen transport than is observed for any of the studied
vacancies in the bulk. This is true for both the charged and uncharged defect states.

The basic underlying mechanism of hydrogen transport in the presence of an extra H mir-
rors that described for the AlH3 vacancy and involves simple Grotthuss-style passing of one
of the hydrogens in the AlH2- defect to a neighboring AlH 4 when the complexes rotate to a
configuration energetically favorable for transfer. One such event is depicted in Figure 6-21.
However, a subtle difference is detectable between the neutral interstitial and charged intersti-
tial cases. For the neutral case, we do not generally observe formation of the A12H3- complex;
rather, the hydrogen remains associated with a single aluminum. On the other hand, for the
charged defect, the additional hydrogen prefers to be shared across an A12H3- complex. Fig-
ure 6-20 examines the difference between the charged and uncharged states in terms of the
electronic density. It is evident that the additional charge introduced in the case of the former
is shared across the entire A12H9- complex, thereby stabilizing it electronically. This offers
a further indication that for the charged defect, the hydrogen in the Al-H-Al bond is best
viewed as belonging to the entire A12H - unit rather than to one individual aluminum.

According to Figure 6-19(a), hydrogen diffusion in the presence of a charged hydrogen va-
cancy is significantly slower than for either an AlH 3 vacancy or an H interstitial in the bulk
solid. However, having already established the critical role of the (001) surface in promoting
the transition to the hexahydride, we ran an additional simulation of a charged H- vacancy in
the outermost layer of a 2x2x 1 (001) surface slab of a-NaAlH 4 to see if its impact on hydrogen
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(c) (d)

FIGURE 6-21: Progression of a Grotthuss-type hydrogen transfer event in the presence of an AIHi-
defect in bulk NaAlH4 . Once the AlHX complexes have rotated to a configuration favorable for transfer,
the AI-H bond associated with the traveling hydrogen (a) elongates and then (b) breaks. The hydrogen
then (c) passes through a saddle point before it (d) nears the neighboring Al and (e) is captured into a
new bond, resulting in net transport of the AlH - defect.
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mobility was enhanced with respect to the same vacancy in the bulk. The results, which are
plotted in panel (c) of Figure 6-19, indeed evidence a hydrogen mobility that is not only higher
than what we observe in the bulk simulation in the presence of a hydrogen vacancy but is
actually the highest mobility we recorded in any of our simulations. This is particularly sig-
nificant given that the temperature of the slab was set to only 225 K (the highest temperature
for which the a phase is preferred), whereas the bulk calculations were performed at 400 K.

The diffusion mechanism in the presence of a charged hydrogen vacancy in a (001) surface
slab of NaA1H 4 is illustrated in Figure 6-22. The mechanism resembles the interstitial hydro-
gen case in that it involves the formation of aluminum defect complexes. Similar to the case
for the additional charged hydrogen and the for the AlH 3 vacancy, these defect complexes
generally involve two AlH, neighbors bound together, in this case into an A12H- intermedi-
ate complex rather than a single, unbound AlH 3 defect. This A12H7 structure, which shares a
single hydrogen equally between two adjacent aluminum atoms, can propagate in a two-step
process analogous to that already discussed for A12H3- . First, one of the bonds in the shared
Al-H-Al complex is broken, releasing one A1H 4 and one AlH 3 unit. Second, the aluminum in
the AIH 3 unit forms a bond with a hydrogen from a different AlH 4 neighbor, resulting in the
formation of a new A12H- complex with a new shared hydrogen.

We have already noted that no hydrogen transport is observed in the presence of the neu-
tral H vacancy. This can be explained in terms of the aluminum defect complexes: much
like for the additional neutral hydrogen, there appears to be no tendency for the formation of
A12H7 complexes. However, diffusion in the case of the charged vacancy relies on the prop-
agation of this structure; we do not generally observe the simple "hopping" of a hydrogen
away from one AlH4 unit to an AlH3 unit. The high apparent cost of such an event precludes
its occurrence in our simulations, yet the lower barrier to propagation of the entire A12H7 unit
via the described mechanism makes it readily accessible in those simulations for which A12H-
formation is possible.

The mechanisms depicted in Figures 6-21 and 6-22 are both examples of structural diffusion.
In this model, individual mobile hydrogens cannot be distinguished, and the diffusion can in-
stead be considered by tracking large defect complexes (in this case, A12HI and A12H -) that
propagate through the system as a result of bond breaking and forming. In fact, the role of
the aluminum defect complexes in mediating hydrogen transport bears a clear resemblance to
the role of the H5sO Zundel complex as one of the structural diffusion elements responsible
for proton transport in liquid water [171,172,182,183]. The delicate issue of how diffusion
should be quantified in such materials was introduced in Chapter 5 and applies again here.
One possibility is to examine the mean-square displacement of the center of mass of the defect
complex (see also Appendix C). This solution was dismissed for CsHSO 4 for logistical rea-
sons, but it can be applied straightforwardly to NaAlH4 since the defects are easily tracked.
Figure 6-23 explores this idea by comparing the standard mean-square displacement of the hy-
drogen atoms to the mean-square displacement of the A12H- complex in the (001) surface slab
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FIGURE 6-22: Propagation of an Al 2H7 structural defect complex in a simulation of a (001) a-NaAlH 4
surface slab in the presence of a hydrogen vacancy at 225 K. The defect, initially placed in the outermost
surface layer, moves through the slab via a phenomenon known as structural diffusion, in which one
of the shared Al-H-Al bonds is broken and a new one forms with a different neighboring aluminum.

simulation in the presence of a charged hydrogen vacancy. It is immediately evident that the

structural diffusion is about 40 times faster than the ordinary hydrogen diffusion, suggesting
extremely rapid apparent mobility of the aluminum defect complex. Note that this is despite
the fact that no actual net motion of the aluminum atoms is registered and the contribution of

the diffusive hydrogen atoms is comparatively minor. The structural diffusion model is partic-

ularly compelling because it provides a viable explanation for experimental evidence [208,209]
for the existence of highly mobile hydrogen-containing defect complexes.

All of the defect simulations that feature net transport of hydrogen (HT, (AlH 3)v, Hi,
HQ) share a common thread in that they require rotational mobility of the AlH, complexes.

This can be seen in Figure 6-24, which displays the angular mean-square displacement (Equa-
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FIGURE 6-23: Comparison of the mean-square displacements of the (a) hydrogen atoms and (b) the
center of mass of the A12H7 defect complex in a simulation of a (001) surface slab of a-NaAlH4 at
225 K with a singly-charged hydride vacancy. The different slopes of the two curves indicate that the
apparent diffusion of the defect complex is about 40 times as fast as that of the individual hydrogen
atoms.

tion 6.3) for the defect simulations in Figure 6-19. Conversely, the simulations that do not

exhibit AlH, rotation (H-I, (NaH),) also do not exhibit any hydrogen transport, suggesting

that such rotational mobility is in fact a necessary precursor for hydrogen diffusion. Whether

or not the A1Hz rotational modes are activated upon inclusion of point defects therefore ap-

pears to be an excellent predictor of whether or not hydrogen diffusion will be induced in the

material.

6.5.2 Accounting for stoichiometry

Although our defect simulations are successful in providing a compelling picture of the rel-
evant mechanisms involved in hydrogen transport, such an analysis cannot account for the
mass transport of sodium that is necessary to complete the NaAlH 4 - Na3AlH 6 transition.
As a reminder, the -y phase of NaAlH 4 differs from Na3AlH6 in that it lacks the intermediate
planes of sodium atoms between the aluminum planes perpendicular to the C axis. Therefore,
in order to finalize a clear connection between y-NaAlH 4 and Na3AlH6, the mechanism of
sodium transport also needs to be investigated.

Given the relatively small system sizes that are accessible to our simulations, it is easy to
imagine that nucleation of the hexahydride (and more particularly, absorption of the sodium
atoms into the lattice and migration to their respective lattice destinations) might necessitate
exact stoichiometry for the complete supercell. However, testing this hypothesis requires that
we develop a way of introducing additional sodium atoms that is unbiased towards any par-
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FIGURE 6-24: Angular mean-square displacement of the hydrogen atoms (calculated according to Equa-
tion 6.3) in the presence of (a) NaH, AlH 3, Ho, and H- vacancies in bulk a-NaAIH 4 at 400 K; (b) Ho and
H- interstitials in bulk a-NaAIH 4 at 400 K; and (c) an H- vacancy in a (001) surface slab of a-NaAIH 4 at
225 K. Linear increases are observable in each of the simulations featuring mobile hydrogen atoms (i.e.,
all except the NaH and Ho vacancy simulations in the bulk), indicating the presence of AlH 4 rotation.
The scales in the three panels are identical.

ticular lattice site preference. To do so, we ran a series of simulations in which sodium and hy-

drogen were added in equal ratios to as to generate the proper Na3AlH 6 stoichiometry for the

overall supercell, with the positions for the additional atoms generated randomly to minimize

bias. To account for the extremely high interatomic forces that may be generated in random

positioning, in each case we first ran a damped dynamics simulation before equilibrating the

system.

First, our simulations evidence that spontaneous absorption of Na or H into the NaAlH 4

lattice from a diffuse NaH mixture may be difficult in the absence of an external agent. We ob-

served no appreciable absorption of either Na or H when the two were added to the vacuum

interlayer between (001) surface slabs of -y-NaAlH 4; the outermost surface layer disordered,

but there was no further absorption of Na or H into the lattice. Fixing the aluminum locations

eliminated the surface disordering but did not enhance absorption. Similar behavior was de-
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tected in a simulation involving an isolated 96-atom supercell of y-NaAlH4 with Na and H
added randomly throughout the vacuum border region, meaning permeation is equally un-
likely across the (001) plane. We also simulated a liquid layer of NaH sandwiched between
slabs of bulk -y-NaAlH 4 uniaxially compressed along either the ^ or ^ lattice directions. The
motivation for these simulations was to introduce an external pressure to force the Na and H
into the lattice. However, in these instances, the compressed NaAlH 4 instead reformed into an
amorphous high-pressure configuration that prevented any additional absorption of Na or H.
Moreover, in each of these simulations, formation of a liquid layer of NaH was preferred over
lattice absorption.

However, the -y-NaAlH 4 + 2 Na + 2 H -+ Na3AlHe transition was at last observed when
we fixed the aluminum lattice in the bulk ' configuration and inserted the Na and H atoms
into random positions without any change in the corresponding lattice parameters. This sug-
gests that once additional Na and H are properly introduced into the -y lattice of NaAlH 4, the
transition to the hexahydride will indeed be favored. Figure 6-25 offers a quantitative measure
of the timescale of the migration of the additional sodium atoms and hydrogen atoms to their
new hexahydride sites by plotting the "reverse" mean-square displacement (Equation 3.25) of
the sodium atoms over the entire 50 ps simulation time. Here the reference configuration is
the final simulation timestep, which has the proper geometry of the hexahydride. The first
stages of the relocation takes place within only a few picoseconds, with the diffusion of the
sodium ions initially even faster than the hydrogens. The system then occupies a sequence of
metastable states until the final configuration is achieved almost 40 ps into the simulation.

It is interesting to examine the diffusion mechanisms for the hydrogen and sodium atoms
as they seek their final lattice configurations. The hydrogen is observed to diffuse via a mech-
anism similar to that seen in the H7- defect simulation, with formation of both A12H3- and
A12H5I defect complexes as metastable intermediaries as the hydrogens travel between Al
hosts via alternative Al-H bond breaking and forming (see Section 6.5.1 for details). Diffusion
of sodium ions, on the other hand, follows a simple vacancy hopping mechanism. To analyze
the diffusion pathways for the Na atoms, we have run four additional simulations of fixed-Al
y-NaAlH 4 with Na and H inserted in different initial random configurations. The occupation
density method (Equation 3.17 was then used to track the Na trajectories in each simulation,
and the results were averaged over all five simulations. The resulting isosurface of preferred
Na diffusion pathways is graphed in Figure 6-26. According to the figure, migration of Na ions
into the previously unoccupied interlayer positions is most likely to occur via the octahedral
interstitial sites at the centers of the (001) planes.
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FIGURE 6-25: Mean-square displacement of the hydrogen and sodium atoms, calculated using Equa-
tion 3.25 by comparing the configuration at time t to that at the final timestep tf. Data is from a sim-
ulation of bulk 96-atom y-NaAIH 4 with 32 additional Na atoms and 32 additional H atoms placed
randomly throughout the supercell. The total simulation covers 50 ps, with the initial nonequilibrated
configuration represented by the t = 50 ps data point. The final Na3AlH 6 configuration is reached 12 ps
before the end of the simulation, or 38 ps from the starting frame.

6.6 Speculating on the tetrahydride-to-hexahydride transition

In light of the above discussions, it now becomes possible to construct a speculative frame-

work for describing the complete process of dehydrogenation in sodium alanate. Our pro-

posed mechanism proceeds as follows: the first step for inducing both hydrogen mobility

and the necessary structural transformation involves activation of the AlHz rotational modes,

which is inhibited in the perfect bulk crystal but can take place either in the presence of certain

point defects to facilitate hydrogen migration or else at exposed surfaces or grain boundaries

to prompt transformation to the 7 structure. As surface rotation enables the structural trans-

formation, the lattice exhibits local expansion along the ý lattice direction, finally resulting in

a shear of successive ab planes to form the required symmetry of the final phase, beginning

at the surface and percolating through the bulk. Meanwhile, induced migration of hydro-

gens from another region of the system overcoordinated AlH. complexes in the destination

region (which will become the hexahydride) and undercoordinated AlHz complexes in the

depleted region, inducing further hydrogen diffusion in both regions via a structural diffusion

mechanism. Sodium atoms are also injected into the nucleated hexahydride from the depleted

region as the transformation occurs, possibly as a result of disordering at the boundary inter-

face between grains. As local growth of the Na3A1H 6 phase progresses, the reaction proceeds

forward by entirely depleting the source of sodium and much of the hydrogen. Alane (AlH 3)
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FIGURE 6-26: Occupation density isosurface representing the most commonly traveled pathways for
the additional sodium ions during the conversion of a unit cell of y-NaAlH 4 into Na3AlH 6. The points
of the two cross-like isosurfaces represent the eight final lattice sites. Migration to these sites is via the
octahedral sites at the centers of the (001) planes, which correspond to the centers of the two isosurface
crosses. The positions of the aluminum atoms are shown for reference.

is left behind as a byproduct in the depleted region but is thermodynamically unstable at the

temperatures in question [39,218] and therefore further decomposes into aluminum metal and

molecular hydrogen. The H2 is subsequently released, most likely at the interface between the

hexahydride and the depleted region.

As a final note, the proposed framework also allows one to further speculate as to the

specific role of the titanium dopant in catalyzing the dehydrogenation reaction. There exists

significant disagreement as to the preferred location of the Ti in the host lattice; most studies

suggest it lies near the surface and is substituted either for a sodium atom [204, 219] or an
aluminum atom [203,220,221], whereas others conclude that it resides in an interstitial site or
penetrates into the bulk [199,222, 223]. To aid in our discussion, we relaxed the structures of
Na-substituted and Al-substituted Ti on the (001) surface of NaAlH4 using damped molecular
dynamics in a 96-atom slab. Table 6.3 lists the enthalpies of substitution for these two cases, as
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TABLE 6.3: Calculated DFT enthalpies of substitution AH, for a Ti dopant atom in a 2 x 2 x 1 (001) surface
slab of a-NaAlH 4.

Description AH, (eV/atom)a AH, (eV/atom)b

Ti -~ Al 0.016 -0.007
Ti + Na 0.031 -0.022

(a) Reference [203], using pure NaAlH 4 and bulk metal as reference state
(b) Reference [204], using pure NaAIH4 and isolated atoms as reference state

calculated by the authors of References [203] and [204]. Using David Vanderbilt's uspp pack-
age [224], we generated an ultrasoft Ti pseudopotential in a 3s23p64s23d2 valence configuration
(details of the pseudopotential are documented in Appendix A). The final configurations of the
Al-substituted and Na-substituted simulations following the damped dynamics are graphed
in Figure 6-27. Titanium substituted in the aluminum site prefers higher hydrogen coordina-
tion than the replaced aluminum and takes those hydrogen atoms from neighboring A1H4

complexes, creating undercoordinated AlH 3 complexes that could become mobile via the pro-
cess described in Section 6.5.1. Conceivably, titanium in the aluminum site could also act as
a hydrogen donor for creating nearby overcoordinated AlH, complexes, which have also al-
ready been shown to induce hydrogen mobility. Titanium in the sodium site has a similar
effect, in that it interacts with hydrogens bonded to neighboring AlH 4 units to create larger
defect complexes, thereby weakening nearby Al-H bonds. This potential kinetic effect of Ti
in enhancing the breakup of Al-H bonds via formation of new cluster geometries is also dis-
cussed in Reference [213]. Significantly, in both site substitutions, the relaxation results in a
reorientation and distortion of the tetrahedral geometry of neighboring AlH4 groups to max-

imize local Ti-H interaction (this finding is in agreement with the results of Reference [225]).
Since activation of the A1Hz rotational modes has already been established as a key ingre-
dient in the tetrahydride-to-hexahydride transition, this represents another likely benefit of

Ti doping. Finally, in addition to the potential reasons already mentioned, it could be that

the primary contribution of titanium to the dehydrogenation process is the creation and pro-

motion of stable alloys with aluminum or sodium, as has been proposed by the authors of

References [204] and [226]. If this were the case, these alloys could facilitate mass transport of

the metallic elements and free bound hydrogens in the process.

6.7 Summary and conclusions

In this chapter, an in-depth analysis of the dehydrogenation reaction in the sodium alanate sys-

tem based on a variety of first-principles molecular dynamics simulations has been presented.

We find that the formation of the Na3AlH6 product is a result of a cooperative interplay be-

tween a structural transition that nucleates at an exposed surface or grain boundary, and the

defect-driven migration of hydrogen through the lattice structure. We show that these two
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(a) (b)

FIGURE 6-27: Configuration of atoms in a 2 x 2 x 1 (001) surface slab of a-NaAlH 4 with a surface Ti
dopant atom (orange) substituted in (a) the Al site and (b) the Na site. Geometries were extracted
following a full system relaxation using damped molecular dynamics. Views are along the b axis, with
the a axis pointing upwards.

phenomena can be treated independently of one another and offer a detailed examination of
each in turn.

We have also discovered and characterized a new phase of NaAlH4 that we label -. It is
shown that the transition to the -y phase is kinetically inhibited in the bulk but occurs readily
in a (001) surface slab at simulation temperatures above 225 K and below 400 K. This transition
takes place by first activating the rotational modes of the AlH 4 tetrahedra at the surface. This
disordering percolates into the bulk, following which the lattice expands along the ý direction,
and then the ab planes shear to generate a new symmetry. A possible structural link between
the y phase and the known Na3AlH6 dehydrogenation product is also discussed.

Next, it is demonstrated that hydrogen mobility is enabled and enhanced by the presence
of an H- vacancy or the addition of an extra hydrogen or hydride. For the charged defects,
structural diffusion of shared-hydrogen A12Hz complexes represents the dominant process in
transporting hydrogen between aluminum hosts. We also find that the mobility of hydride
vacancies is higher at the (001) surface than it is in the bulk. In each case, hydrogen mobility
is signaled by the onset of rotational dynamics of the A1Hz units. We also discuss a possi-
ble connection of the vacancy-hopping mechanism for sodium migration to the conversion of
7-NaAlH 4 into Na3AlH 6. Finally, we speculate on the possible role of the Ti dopant in enhanc-
ing the dehydrogenation reaction kinetics.
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CHAPTER 7

Concluding remarks

"It is unworthy of excellent men to lose hours like slaves in the labor of calculation which
could be relegated to anyone else if machines were used."

- Gottfried Wilhelm von LeibnitzIN SUMMARY, extensive first-principles molecular dynamics results have been presented
on three technologically relevant highly diffusive materials: AgI, CsHSO4, and NaAlH 4.
This chapter begins by reviewing the key findings of those simulation results. The broa-

der vision of this work is then re-examined through an exploration of the phenomenological
similarities and differences among the three studied materials. Finally, we discuss the impact
of our results in terms of understanding the relationship between ionic diffusion and phase
transitions in these and similar materials.

In Chapter 4, we characterized the transition to the fast-ion conducting phase, as well as
the lattice and electronic structures of the archetypal Type-I fast-ion conductor a-AgI. Signif-
icantly, we found that fast-ion conduction in the material is signaled by a phase transition of
the silver ions alone. It was also discovered that in the fast-conducting phase, the first silver
shell surrounding an iodine displays a distinct dynamical structure that would escape a time-
averaged characterization; we captured this structure in a set of ordering rules that govern
the instantaneous distribution of silvers surrounding an iodine. The electronic structure was
also shown to demonstrate a unique chemical signature of the weakest-bound silver in the
first shell, which we in turn identified as the most likely to diffuse. The paradoxical nature
of the fast-ion conducting phase as an exotic order-disorder transition, an independent phase
transition of the silvers, and an unusual entropically stabilized phase was also discussed.

In Chapter 5, we presented a detailed study of proton dynamics in the hydrogen-bonded
proton conductor CsHSO4, isolating the subtle interplay between the dynamics of the O-H
chemical bonds, the O... H hydrogen bonds, and the SO4 tetrahedra in promoting proton dif-
fusion. We found that the Grotthuss mechanism of proton transport is primarily responsible
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for the dynamics of the chemical bonds, whereas the reorganization of the hydrogen-bond
network is dominated by rapid angular hops in concert with small reorientations of the SO4

tetrahedra. A detailed statistical analysis revealed that frequent proton jumping across the
O-H ... O complex is countered by a high rate of jump reversal. We showed that reversal rate is
connected to the dynamics of the S04 tetrahedra, resulting in a diminished CsHSO 4/CsDSO 4

isotope effect. We also presented evidence of multiple timescales for SO04 reorientation events,
leading to distinct diffusion mechanisms along the different crystal lattice directions. Fi-
nally, we employed a variety of graph-theoretic techniques to characterize the topology of
the hydrogen-bond network and demonstrated a clear relationship between the likelihood for
diffusive jump events and the presence of connectivity configurations favoring linear network
chains over closed network rings.

Chapter 6 focused on simulations of the dehydrogenation reaction in the sodium alanate
system, a complex light metal hydride with tremendous promise as a hydrogen storage mate-
rial. At least two processes were found to be necessary components in driving the phase tran-
sition: first, the structural reorganization of the lattice, and second, the defect-driven transport
of hydrogen. We further showed that these can be treated independently. We reported the

discovery of a new phase (-y) of the tetrahydride NaAlH 4, and the transition to this new phase
was recorded in simulations of a (001) surface slab of NaAlH 4. The geometric connection of the
-y phase to the Na 3AlH6 structure was then demonstrated, and a timescale analysis was used

to isolate the progression of the three dominant processes driving the transition. Next, we dis-
cussed how hydrogen mobility is induced in the presence of additional hydrogens, hydrides,
or hydride vacancies and described the underlying transport mechanism in each of these cases.
We also isolated the pathways for sodium relocation in the lattice, and these results were com-
bined with our results on hydrogen diffusion and lattice structural reorganization to provide
a complete picture of the NaAlH 4 -- Na3AlH 6 transition.

As a final note, we wish to emphasize that fast ionic diffusion can be an elaborate phe-
nomenon that manifests itself uniquely in very different classes of materials. As such, devel-

oping a universally applicable framework for understanding its various complexities remains

a difficult task. Nonetheless, we have demonstrated that novel insights into certain diffusive

materials can in fact be gained from atomistic simulations. In fact, many of these conclusions

retain relevance across wide ranges of known ionic conductors, owing to the emergence of

patterns in the coupling between ionic and electronic configurations in the studied materi-

als. For instance, each features mobile ions that can transition rapidly between two distinct

electronic or chemical configurations. For AgI, this change was identified as a transition to a

state containing covalent character. In CsHSO4, on the other hand, we found that it arises in

the back-and-forth hopping of protons across the hydrogen-bond complex. And in NaAlH 4,

it was detected in the effect that inclusion of hydrogen-related defects had on the aluminum-

hydrogen binding energy. Moreover, in all cases, such events drive local ion migration, but

they are also phonon-coupled to classical disordering phenomena that exhibit behavior on
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longer time- and length scales. In AgI, it is the silver lattice ordering and the subsequent
reorganization of the iodine lattice; in CsHSO 4, it is the topological behavior of the hydrogen-
bond network structure and the coupling to the rotational dynamics of the SO4 units. Finally,
in NaAlH 4, it can be seen in the connection between hydrogen mobility and the structural
phase transition of the host lattice.

The phenomenological differences between the three materials are equally significant, how-
ever, in that they demonstrate the variability that exists in the interplay of atomistic process in
different types of conductors. Notably, although all three exhibit structural phase transitions
that are linked to microscopic diffusive phenomena, the relationship between these two dif-
fers substantially from one to the next. In particular, for AgI we found that it is the mobility of
the silver lattice that likely drives the rearrangement of the base anionic structure. In contrast,
CsHSO4 represents an instance in which enabling proton transfer depends upon a structural
transition to a phase with rotational freedom for the SO4 units. For NaAlH 4, we saw that
defect-driven hydrogen mobility can be treated entirely independently from the transition to
the -y phase but that both are necessary ingredients in the transformation to Na3AlH 6.

To conclude, we reiterate that for each of three systems that were studied in this thesis, it
is impossible to attribute ionic diffusion to any one factor. Instead, an attempt has been made
to explore a wide variety of possible motivations, showcasing the power of first-principles
methodology in illuminating multiple facets of what can prove a very intricate phenomenon.
The resulting picture is a tapestry of kinetic, thermodynamic, geometric, and electronic ef-
fects whose significance may seem marginal when considered individually, but when woven
together emerge as a richly complex diffusion mechanism.

Funding for this thesis work was provided by the U.S. Department of Energy Computa-
tional Science Graduate Fellowship, with additional support from MURI Grant DAAD 19-03-
1-0169 and the U.S. Department of Energy Hydrogen Program Contract DE-FG02-05ER46253.
Computational facilities were provided under National Science Foundation Grant DMR-
0414849. All calculations have been performed using the Quantum-ESPRESSO software pack-
age [124], distributed under the GNU Public License. Most figures were generated using the
Grace [227] and VMD [228] packages.
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Pseudopotential parameters

HIS APPENDIX details the input parameters and test results for the I, Cs, Na, and Ti

pseudopotentials generated for this thesis work. Table A.1 summarizes the relevant
input parameters for each of the generated pseudopotentials. Tables A.2, A.3, and A.4

compare the results of select lattice parameter and bulk modulus calculations for I, Cs, and
Na, respectively. In each case, results are given for the pseudoatom in the bulk and in at least
one common binary compound. Verification of the suitability of the Ti pseudopotential can be
found in Reference [229], from which the input parameters were taken. It should be noted that
Tables A.2, A.3, and A.4 do not include the results of the lattice parameter calculations for the
materials studied directly in this work; these can be found in the text of Chapters 4-6.

TABLE A.1: Input parameters for generating the I, Cs, Na, and Ti pseudopotentials used in this work.
Parameters for the Ti pseudopotential are taken from Reference [229]. For the pseudopotential type,
'TM' denotes the norm-conserving Troullier-Martins formalism [126] and 'US' denotes the Vanderbilt
ultrasoft formalism [74]. 'NLCC' indicates use of the nonlinear core correction method of Reference [73].
In each case, the reference energy is taken to be the eigenenergy of the highest occupied orbital.

Input parameter I Na Cs Ti
Valence configuration 5s25p5  6s.55do056po.0 5  3sO.53pO.O5 3s 23p63d24s2

Pseudopotential type TM TM TM US
Software used Ref. [125] Ref. [168] Ref. [168] Ref. [2241
NLCC N Y Y N
Radial cutoffs (au) 5s = 2.15 6s = 4.19 3s = 2.64 all = 1.80

5p = 2.24 6p = 6.01 3p = 3.90
5d = 3.01
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TABLE A.2: Calculated Nal lattice parameter and 12 bond length using the generated pseudopotential
for iodine. Experimental values are from Reference [230].

Description This work Experiment % Deviation
NaI lattice parameter (A) 6.605 6.470 +2.1

12 bond length (A) 2.699 2.660 +1.5

TABLE A.3: Calculated lattice parameters and bulk moduli for bulk Cs and CsCl using the generated
pseudopotential for cesium. Experimental values are from Reference [230].

Description This work Experiment % Deviation
Cs lattice parameter (A) 6.134 6.046 +1.5
Cs bulk modulus (kbar) 19.2 21.5 -10.7

CsCl lattice parameter (A) 4.197 4.123 +1.8
CsC1 bulk modulus (kbar) 163.8 169.6 -3.4

TABLE A.4: Calculated lattice parameters and bulk moduli for bulk Na, NaCl, and NaI using the gen-
erated pseudopotential for sodium. Experimental values are from Reference [230].

Description This work Experiment % Deviation
Na lattice parameter (A) 4.191 4.291 -2.3
Na bulk modulus (kbar) 75 63 +19.0
NaI lattice parameter (A) 6.605 6.470 +2.1

NaC1 lattice parameter (A) 5.850 5.640 +3.7
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Graph-theoretic methodology

IN THIS APPENDIX, we offer a detailed account of the graph-theoretic methods used to cal-
culate the hydrogen-bond network topology of CsHSO4 in Chapter 5. We begin by repre-
senting the network as a directed graph with the edge vector pointing along the O-H -. O

bond direction; that is, from the sulfate tetrahedron acting as the hydrogen-bond donor in the
complex to the sulfate tetrahedron acting as the hydrogen-bond acceptor. The adjacency ma-
trix Aij can then be constructed as an N x N matrix, where N is the number of tetrahedra in the
unit cell and the indices i and j run over the donor and acceptor sulfate groups, respectively:

1 if there exists a direct link i - j
Sotherwise

The diagonal elements Aii are set to zero. Topological characterization of a single node is then
a straightforward process of performing a row sum to get the number of nodes to which it
donates (Nd) and a column sum to get the number of nodes donating to it (Na). It is also easy
to categorize jump events by analyzing the difference of the adjacency matrices of successive
timesteps.

To determine ring connectivity and size, we exploit the property of adjacency matrices
[231] that element (i, j) of An gives the number of unique directed pathways from i to j of
length n. We take the size of the ring containing the ith node to be the lowest value of n in the
interval [2, (N-1)] for which the diagonal element AR 5 0. If Ai = 0 for all n in the interval,
the node is not considered part of a ring.

Deriving chain sizes is more complex, since we must account for multiple branching topolo-
gies and for topological mixtures of rings and chains. We first decompose the network into
clusters of unconnected subgraphs. This is done using the connectivity matrix Ci, which has
the property that Cij = 1 if there is a path of any length connecting nodes i and j. We form the
symmetric Cij from Aij using Warshall's algorithm [232].
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We proceed to construct a matrix Sij that contains the shortest path between each pair of

nodes (i, j), i $ j, by taking the lowest value of n in the interval [2, (N-l)] for which Ag # 0.
We can then take the maximum value of Sij across the columns to get a row array of maximum

path lengths for chains originating at the it h node. The chain size is then determined by finding

the maximum value of the resultant array over the nodes contained in each connected cluster,

which can be easily determined by parsing Ci. Finally, we add the restriction that none of the

links in the chain can themselves be members of rings. This prevents counting of chains that
are fictitiously long due to intermediate or terminating rings and ensures a clear separation

between ring and chain topologies. The resulting chain size is then calculated as the maximum

span of the graph-theoretic tree.
Very large networks may necessitate more efficient algorithms due to the expense of calcu-

lating A(N - 1) . However, the system sizes in our study are sufficiently small to readily allow

calculations using the described method.

166



APPENDIX C

On the calculation of diffusion
coefficients from molecular dynamics

IN CHAPTERS 4 AND 5, we provided estimates of diffusion coefficients in fast-ion conduc-

tors calculated using molecular dynamics data. This Appendix briefly evaluates the vari-
ous methods that can be used to calculate the diffusion coefficient and discusses the rela-

tionship of these methods to experimental measures. Finally, methods for estimating the error
associated with the calculation of transport coefficients are mentioned, including the specific
techniques used in this thesis.

We begin by reviewing the methods discussed in Chapter 3. The first approach uses the
Green-Kubo relation to evaluate the self-diffusion coefficient D* by integrating the velocity
autocorrelation function (Equation 3.28) [85]:

D= lim (VAF(t')) dt'. (C.1)
3 t--oo o

An alternative choice is to use the Einstein relation and the slope of the mean-square dis-
placement (Equation 3.26) [85]:

1
D* = lim - (MSD(t)). (C.2)

t--oo 6t

Despite their mathematical equivalence, Equations C.1 and C.2 are not numerically identi-
cal in finite simulations. In practice, it may be preferable to use one method or the other. The
VAF method converges more rapidly to an approximate value for D, since the MSD method
requires significant sampling beyond the initial ballistic regime. As such, Equation C.1 may
be preferable for short simulations, especially of systems with short correlation times between
"independent" frames. However, the evolution of the ionic positions is significantly smoother
than the evolution of the ionic velocities. This means that extremely fine VAF sampling is re-
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quired to capture the full phenomenology in the Green-Kubo integration. The MSD, on the
other hand, can be sampled at relatively coarse intervals without loss of pertinent data. The

smoothness issue also means that the errors accrued for long-time values of the MSD-for
which there are few intervals over which to average-are generally much less than those for
long-time values of the VAF. This results in more robust convergence of the calculated diffu-
sion coefficient for long times. The MSD method is further beneficial in that one does not have
to account for the numerical integration error that is accrued in the VAF method. Therefore,
Equation C.2 is often preferable for sufficiently long simulations or simulations of systems
with long correlation times, and is the method that is generally used throughout this work.

Chitra and Yashonath [233] examined the dependence of the calculated diffusion coeffi-
cient on the simulation time using both the Einstein and Green-Kubo methods. They discov-
ered that although both methods converge readily to an approximate value, convergence to
a final, stable value can be extremely slow. They also determined that diffusion coefficients
calculated from short molecular dynamics simulations tend to be overstimated with respect to
longer simulations, even in systems with low correlation in the motion of the diffusive species.
This was found to be particularly true for the MSD method, owing to the deceptively long tail
of the ballistic regime. One would expect this effect to be amplified in materials with complex,

correlated diffusion pathways (such as CsHSO4), since visitation of all possible configurations
could not be guaranteed within the relatively short simulation time.

It should be noted that Equations C.1 and C.2 give expressions for the self-diffusion co-

efficient, which are best compared to the results of diffusion experiments using radioactive

isotopes or NMR tracing. However, for fast-ion conductors, well-resolved data can be diffi-

cult to obtain using these methods, given the high operating temperatures and fast diffusion

kinetics, as well as a potential lack of availability of proper isotopes. Instead, diffusion co-

efficents may be obtained directly from conductivity measurements or by using a polarizing

field and assuming a formal charge for the diffusive ionic species. On the atomistic scale, such

measurements are more appropriately compared to the chemical diffusion coefficient, which de-

scribes diffusion in a chemical potential gradient and is the quantity which generally enters

into Fick's Law [234].

The chemical diffusion coefficient Dc can be written as [235,236]:

Dc= (((6N)2 ) -
1

Dc (N) D Dj, (C.3)

where Dj is the "collective diffusion coefficient" or "jump diffusion coefficient", defined as:

Dj = liNm - ( [R(t) -RI (0)] (C.4)

The leading term on the right-hand side of Equation C.3 refers to the fluctuations ((6N)2) in
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the particle number N of the diffusing species. In principle, this quantity should be calcu-
lated from a grand-canonical simulation. However, it may be well approximated by instead
considering number fluctuations in a subregion of fixed volume [235].

For our ab-initio simulations, the fluctuations in the particle number are seen to depend
strongly on the size of the subregion partitions, indicating our simulation supercell is too
small to obtain a reliably converged measure. As such, we do not attempt to calculate the
chemical diffusion coefficients Dc in this work. On the other hand, the collective diffusion
coefficient Dj is readily calculable. This quantity measures the center-of-mass motion of the
entire diffusive substructure rather than the average motion of the individual diffusive atoms.
The primary result is that the collective diffusion coefficient properly accounts for the possibil-
ity of cross correlations between particle dynamics [237] (in the absence of cross correlations,
Equations C.2 and C.4 should be expected to give identical results). Since the fast-ion con-
ductors we study demonstrate highly correlated motion of the diffusive species, the collective
diffusion coefficient is likely to be a more appropriate measure of the actual self diffusion.
However, tracking only the center of mass results in a substantial reduction in usable statis-
tics. This is verified in Chapter 5, in which we ultimately conclude that calculation of Dj
for the hydrogen atoms in CsHSO4 has an unacceptably high statistical error for practical use
given our simulation timescales.

In cases where structural diffusion represents the predominant transport mechanism (such
as for the defect complexes of Chapter 6), choosing a proper microscopic formulation of the
diffusion coefficient becomes still more difficult. This is due to the fact that small actual motion
of diffusive atoms can result in large apparent motion of structural defect complexes. One
possibility is to adopt a quasiparticle approach, in which the diffusion coefficient is calculated
by tracing the apparent mean-square displacement of the center of mass of the defect structure
rather than the individual motion of atoms:

DQ = lim (R(t) - RQ(O))2 . (C.5)

Here RQ (t) represents the time-dependent center of mass of the quasiparticle defect.
In principle, Equation C.5 could yield results that point to near-infinite diffusion. In prac-

tice, DQ will be determined by the lifetime of the metastable defect intermediary (for the
A12H- defect in Chapter 6, it led to a 40-fold increase with respect to the traditional method).
It should be noted that this method destroys the smoothness of the trajectories, which could
lead to slow convergence and an increase of numerical error for a finite simulation.

Accurate estimation of error in the calculation of the diffusion coefficient is not a straight-
forward process. In principle, one must track the error both in the calculation of the VAF or
MSD and in the use of the appropriate quantity to extract the diffusion coefficient. The error
in the calculation of the VAF or MSD results from replacing the true equilibrium ensemble
average by a time average over a finite simulation length. In general, this error should be pro-
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portional to the square root of number of independent data points available in the simulation,
i.e., to the simulation duration [238]. However, when using the averaging methods of Equa-
tions 3.26 and 3.28, data points at short times are inherently more precise than those at long
times. This is due to the fact that at short times, there exist more intervals over which to aver-
age. This in turn means that there is no absolute measure of error in the calculation of the MSD
or VAF. It also means that when the diffusion coefficient is calculated, using the long-time data
will introduce more error. On the other hand, both the Green-Kubo and Einstein approaches
rely on long-time limits, making it unclear which is the optimal data range to be used in the
calculation of D.

For the results presented in this thesis, we used only the first half of our MSD or VAF
results in calculating the diffusion coefficient, as described in Chapter 3. This ensured that
data points with high errors were not included in the calculation. The choice was then made
to ignore any error differences across the remaining data points in the MSD or VAF, since the
error in the calculation of the diffusion coefficient should dominate the end result.

Probably the most common method for estimating the error in the final calculation of D
is that discussed by Wood in Reference [239]. In this scheme, the total run is subdivided into
smaller runs. The diffusion coefficients from each smaller run are then compared to get a final
measure of the error. In principle, this method is robust, although the choice of the number
of subdivisions is somewhat arbitrary and may affect results. However, in this method, two
fundamental assumptions are made that may not be appropriate to the systems studied here.
First, it is assumed that each smaller run has enough data to reliably approximate the behavior
of the system at long times. Since we have already established that the diffusion coefficient can
be slow to converge, this assumption can be dangerous for the short simulation times acces-
sible to our methodology. Second, it is assumed that the system reaches equilibrium rapidly,
such that each smaller simulation demonstrates equivalent diffusive behavior. However, for
systems with a long equilibration time or highly correlated particle motion, this is unlikely to
be true. It is also problematic for systems near a phase transition, since these can exhibit ex-

treme fluctuations in dynamical quantities that are averaged out only over very long intervals.

For this work, we have instead developed an error estimation procedure that uses discrete
sampling based on correlation times. In this sense, it draws on ideas similar to those used in

the method of Smith and Wells [240]. An estimate for the correlation time i-the time between

"independent" dynamics timesteps-is first obtained by examining the short-time behavior of

the velocity autocorrelation function.t The method then proceeds as follows:

1. Discretize a grid representing half of the total simulation time into intervals of the corre-

tA naive approach at this point would be to simply sample the MSD data discretely in fixed intervals of 7.
However, in doing so, we would be willingly ceding relevant statistical information and might also be giving un-
due preference to individual abberant data points. Averaging results for D based on discrete sampling in intervals
of 7 but using different starting configurations does little to improve the situation, since different data sets would
still be cross correlated.

170



APPENDIX C

lation time 7.

2. For each grid point t' larger than a predefined cutoff:

(a) Choose a starting timestep at random from the first half of the simulation data.

(b) Calculate the mean-square displacement at time t' by comparing the randomly se-
lected starting timestep with a frame at a time t' later.

3. Extract a diffusion coefficient based on the data obtained in Step 2 by performing a linear
regression and using Equation C.2. Keep track of the standard error (i.e., 95% confidence
interval) in the calculation of the slope.

4. Repeat Steps 2 and 3 to obtain a handful of diffusion coefficients (say, 5-10).

5. Extract the standard error (i.e., 95% confidence interval) from the set of individually
obtained diffusion coefficients, assuming a normal distribution.

6. Compound the error from Step 5 with the average of the errors obtained in Step 3 to
obtain the final estimate.

The cutoff in Step 2 is introduced to eliminate the ballistic regime in the MSD calculation.
Figure C-1 demonstrates the suitability of our method by comparing the diffusion coeffi-

cient calculated using the Green-Kubo approach (Equation C.1) to the calculated error bounds
in the result using the Einstein relation (Equation C.2). This method was also used to calculate
the error bounds in the diffusion coefficients in Figure 4-13. Note that the approach outlined
here should not be applied to discretely sample the VAF and extract the Green-Kubo coeffi-
cients. This is because the VAF is not a robust quantity with respect to coarse sampling as is
the MSD.
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FIGURE C-1: Comparison of the Green-Kubo integral of the velocity autocorrelation function (solid
line) with the self-diffusion coefficient obtained from the Einstein relation (dashed line). Error bounds
for the Einstein-relation method, calculated using the method described in this Appendix, are shown
as dotted lines to illustrate the general agreement between the two methods. Data is from a 200 K
simulation of a-AgI.
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