
A Comparative Approach to the Implementation

of Drug Pedigree Discovery Systems

by

Indy Yu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author
Department of Electrical EngineeifigaInd Computer Science

)07

Certified by.
- UI.Lx - . . - -- m s

>r of MIT Auto-ID Labs
Thesis Supervisor

Certified by.
Abel Sanchez

-- d Productivity

esis Supervisor
Research Sc

Accepted by

Chairman, ^-rthur C. Smith

Y Chairman, Department Committee on Graduate Students

3 2007 1 BARKER

MAssACHUs
OF TEC

OCT L

LIBRARIES

As.(

2

A Comparative Approach to the Implementation of Drug

Pedigree Discovery Systems

by

Indy Yu

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As the use of RFID technology penetrates and reforms the supply-chain industry,
standards are being produced at all levels of the RFID technology spectrum, ranging
from hardware to software. The Electronic Product Code (EPC) standard uniquely
identifies RFID-tagged products. An application that supports the usage of EPCs is
an Electronic Drug Pedigree (E-Pedigree), which is a historical record that indicates
the chain of custody of a particular drug product being passed from one supply-chain
partner to another. In order to fully implement track-and-trace of pharmaceutical
products, software systems need to be built so that pedigree documents can be effec-
tively stored and searched. In this Thesis, two approaches that address the issue of
pedigree document discovery are presented-one centralized, one decentralized. The
centralized pedigree discovery service extracts metadata from pedigree documents
submitted to a centralized server and uses them in a search engine, such as Google
Base, to located desired documents that match client queries. The decentralized ser-
vice allows pedigree documents to be stored locally by individual business owners.
Each local server is attached to a Discovery Service Unit containing metadata of local
pedigree documents, and these units communicate with each other to form a network.
Both approaches are implemented as Web Services.

Thesis Supervisor: John R. Williams
Title: Associate Professor, Director of MIT Auto-ID Labs

Thesis Supervisor: Abel Sanchez
Title: Research Scientist, Laboratory of Manufacturing and Productivity

3

4

Acknowledgments

I would like to thank Dr. Abel Sanchez and Professor John R. Williams for their

excellent guidance while I am working at MIT Auto-ID Labs for the past year. Their

mastery in computer science and valuable insights have helped me to develop new

perspectives in the field and strengthened by knowledge required for the research

associated with this Thesis.

I would also like to thank my wonderful lab mates Fivos Constantinou, JinHock

Ong, and Sergio Herrero for their help and support of my research, and for creating

a lively and constructive working environment.

Finally, I would like to thank my parents for the support and guidance they have

provided throughout my life.

5

6

Contents

1 Introduction 13

1.1 RFID Technology 13

1.2 Electronic Product Code Applications 14

1.3 Motivations for Implementing E-Pedigree Discovery Service 15

1.4 Thesis Organization . 16

2 Overview of Electronic Drug Pedigree 17

2.1 Components and Usage . 17

2.1.1 Document Components and Layout 18

2.1.2 Business Flow Scenarios . 19

2.2 Document Authentication . 22

2.2.1 Digital Signature Usage . 22

2.2.2 X509 Certificate Usage . 24

2.2.3 Common Registry . 25

3 A Decentralized Approach to E-Pedigree Discovery Service 27

3.1 Previous W ork . 27

3.1.1 Design M otivation . 27

3.1.2 Existing Discovery Protocols 28

3.1.3 Overview of Salutation . 28

3.2 Design Architecture . 29

3.2.1 Design Assumptions . 29

3.2.2 Architecture Overview . 29

7

3.2.3

3.2.4

3.3 Web

3.3.1

3.3.2

3.3.3

3.3.4

Network Communication

Design Components

Service Implementation

Implementation Overview

The LocalLookupService Object . .

The PartnerLookupService Object .

The PartnerLookupService Client .

4 A Centralized Approach to E-Pedigree Disco

4.1 Previous Work

4.1.1 Design Motivation

4.1.2 Overview of RSS

4.1.3 Overview of Google Base

4.2 Design Architecture

4.2.1 Design Assumptions

4.2.2 E-Pedigree Capture Process

4.2.3 E-Pedigree Query Process

4.3 Web Service Implementation

4.3.1 Implementation Overview

4.3.2 The PedigreeCapture Method

4.3.3 The PedigreeQuery Method

. 30

. 32

. 34

. 34

. 37

. 38

. 40

very Service 41

. 41

. 41

. 42

. 43

. 44

. 44

. 45

. 46

. 46

. 46

. 48

. 50

4.3.4 The Pedigree Server Client

5 Discussion and Future Work

5.1 Analysis of the Two Design Approaches

5.1.1 Evaluation of the Decentralized Approach

5.1.2 Evaluation of the Centralized Approach . .

5.2 Future W ork .

5.2.1 Performance Analysis

5.2.2 Improvements

5.2.3 Extensibility to Other Applications

8

. 52

55

. 55

. 55

. 56

. 57

. 57

. 58

. 59

6 Conclusion 61

A Class Diagrams for the Decentralized Implementation 63

B Class Diagrams for the Centralized Implementation 67

9

10

List of Figures

1-1 EPC Architecture Framework .

2-1 Pedigree Document Layers Generation

2-2 Example Repackaged Pedigree with Unsigned Received Pedigree Layer

2-3

2-4

2-5

2-6

2-7

3-1

3-2

3-3

3-4

Pedigree Layer Generation Flow Diagram

Pedigree Authentication Process

Example Certificate Data

Use of Public Key Infrastructure

Signature Element of a Pedigree Document . . .

Architecture of Salutation

Pedigree Discovery Service Network . . .

Communication among Discovery Service

Discovery Service Unit Architecture . . .

14

18

21

. 22

. 23

. 23

. 24

. 25

. 29

. 30

. 3 1

. 32

Units

4-1 Example RSS Feed

4-2 Example Google Base Entry

4-3 Pedigree Capture Process Flow Diagram . . .

4-4 Pedigree Query Process Flow Diagram

4-5 Screen Capture of Web Service Interface . . .

A-1 Class Diagram for the Local Lookup Service

A-2 Class Diagram of the Partner Lookup Service

B-1 Class Diagram of the Web Service

42

44

45

46

47

64

65

68

11

12

Chapter 1

Introduction

1.1 RFID Technology

Radio-frequency identification (RFID) is an automatic identification method that

relies on remote storage and retrieval of data through devices called RFID tags or

transponders. An RFID tag can be attached onto or incorporated into a product,

an animal, or a person. It is used in a variety of applications such as e-passports

systems, financial transaction systems, and automotive tracking systems. One of

the most important uses of RFID technology is in the supply-chain industry, where

products are tagged for the purpose of increasing business efficiency and the ability

to track and trace items under transaction.

All RFID-tagged products can be uniquely identified through the use of Elec-

tronic Product Code (EPC) [19], embedded in the tags. The EPC Gen2 (in short for

EPCglobal UHF Class 1 Generation 2) standard was proposed by EPCglobal, Inc.,

a subsidiary of GS1, who is the creator of the UPC barcode. The usage of EPCs in

the supply-chain industry forms the backbone of RFID tag standards and is likely

replace the barcode system in the near future. By exchanging EPC information, busi-

ness partners-including manufactures, wholesalers, and retailers-can effectively react

to business changes and expedite the process of formulating business transactions.

13

E-Pedigree Discovery

Figure 1-1: EPC Architecture Framework

1.2 Electronic Product Code Applications

In order to share EPC data among business partners, an agreement has to be reached

as to how this information can be communicated. Consequently, a standard was pro-

posed in 2005 by the EPC standard body EPCglobal to address this issue. They

established an architecture framework to formalize and identify the hardware, soft-

ware and data interface components needed to formulate the whole EPC Network [6].

Since then, many standards have been proposed for some of these components. A few

of the major ones are illustrated in Figure 1-1.

The functions of each of the components in the EPC Network illustrated above

are as follows:

" Electronic Drug Pedigree (E-Pedigree): A historical record that indicates the

chain of custody of a particular drug product being passed from one pharma-

ceutical supply-chain partner to another.

" EPC Network Discovery: A system that specifies how EPC-related items can

be visible and accessible within a large network of supply-chain partners.

* Object Naming Service (ONS): A name resolution system that specifies how

a Domain Name System (DNS) is used to locate authoritative metadata and

services associated with EPCs.

" EPC Information Service (EPCIS): A repository service that allows one to cap-

14

ONS EPCIS LLRP

ture and query EPC-related events generated by readings from RFID Tags and

Readers.

9 Lower Level Reader Protocol: An interface protocol that bridges the communi-

cation between RFID Readers and software systems that controls these readers.

Currently standards have been proposed and specifications have been derived for

all of the components enumerated above with the exception of the EPC Network

Discovery. While no discovery standard exists, many designs in this area have been

proposed and implemented by research institutions and business corporations. For

instance, major players in the software industry such as Oracle and IBM have their

own proprietary implementations of the EPC Discovery Service software [1]. Auto-ID

Labs at Cambridge University, along with varies industry partners such as Sony and

SAP, has been working on the BRIDGE (Building Radio Frequency Identification

for the Global Environment) project, which attempts to research, develop and im-

plement tools to enable the deployment of EPCglobal applications in Europe [14]. A

large component of the BRIDGE project is the implementation of an EPC Discov-

ery Service. Even within the standard body EPCglobal, detailed propositions on the

implementation of discovery services for EPCIS and LLRP have are in the process of

being addressed by industry-led work groups.

1.3 Motivations for Implementing E-Pedigree Dis-

covery Service

As the implementations of other components in the network, such as EPCIS and

E-Pedigree, become more complete, the Discovery component becomes increasingly

indispensable. Currently it poses as the biggest hindrance to the advancement and

completion of the EPC Network as a whole. The core component of my research

focuses on working with the small building blocks of the discovery problem and ex-

perimenting with the various design approaches potentially suitable for the EPC

Architecture Framework.

15

Of the different building blocks of the EPC Network, there are three components

from which a discovery service can be build upon-EPCIS [7], LLRP [8] and E-Pedigree

[9]. A discovery service for EPCIS can be defined as a service that returns event

records associated with a particular EPC from all EPCIS Repositories in the network.

A discovery service for LLRP can be defined as a service that returns RFID Readers

to be controlled by Reader Access Controllers in the network. A discovery service

for E-Pedigree can be defined as a service that returns drug pedigree documents

associated with certain search criteria.

For this prototype discovery network, the Electronic Drug Pedigree is chosen for

a few reasons. For one, there is an urgency in resolving the pharmaceutical prod-

uct track-and-trace issue in the health care industry. Government mandates force

pharmaceutical companies to generate pedigree documents to be view by the public.

This effort in is led by the U.S. Food and Drug Administration (FDA) in attempt

to reduce the amount of counterfeiting drugs in the country. Furthermore, from the

implementation perspective, Electronic Drug Pedigrees are simple. They are XML

documents and do not use special bindings, protocols, and security mechanisms like

EPC Information Systems and LLRP Systems do.

1.4 Thesis Organization

Chapter 2 provides an overview for what an Electronic Drug Pedigree is and how it is

used in the pharmaceutical supply-chain industry. Chapter 3 proposes a decentralized

design for a pedigree discovery service and demonstrates an implementation of this

system. Chapter 4 proposes a centralized approach for the pedigree discovery system

and also illustrates a version of the implementation. Chapter 5 compares the two

designs presented and discusses the benefits, potential problems, and future work

needs to be done for each. Finally, Chapter 6 presents the conclusion of this thesis.

16

Chapter 2

Overview of Electronic Drug

Pedigree

2.1 Components and Usage

An Electronic Drug Pedigree, or e-pedigree, is a custody record of a particular drug

product that is exchanged within a pharmaceutical supply-chain. Although the con-

tent of an e-pedigree can vary by law, it is not difficult to derive a standard document

format that includes a supper-set of data elements required by all of the laws. Florida

is the first state to mandate e-pedigree documents for all drug products originated

and handled within the state. Soon after, California joined the effort by making a

strict set of pedigree requirements. These laws went into effect January 1st, 2007,

and is currently considered the unofficial standard by the pharmaceutical pedigree

community [2]. Around the same time in 2007, the Unified Drug Pedigree Coalition

work group of EPCglobal ratified a pedigree document format standard [9]. The

work group is composed of company representatives from pharmaceutical companies,

their industry associations and various US state and federal regulatory agencies. The

format was determined to be an XML document. A pedigree document schema that

includes all of the necessary data elements were derived as part of the standardization

process and the pedigree specification. (An XML schema is a description of an XML

document, typically expressed in terms of constraints on the structure and content

17

e pd e ld."ftecesveda-l w~e0 * ld- , Recekied- d-

wEriahumbe& pedig
V"*tion ShippedPedfgree k-Spe~d1

udte doagrn* d*

se"W"mbw temto

sedito

lot 411011"10#t los. ec n d~ d-'

itself.)h

2D m Cp en a ayI-iialy a pdr Stas d

&Unlw (Whoax~~ut Sftute~ppedP@d-2

Figure 2-1: Pedigree Document Layers Generation

of the document, above and beyond the basic syntax constraints imposed by XML

itself.)

2.1.1 Document Components and Layout

Initially, a pedigree contains drug product information only. As the corresponding

drug product moves from one supply-chain partner to another, new layers of the

pedigree are added each time to record the business transaction information. Each

new layer of the pedigree wraps around an older layer. The more the number of

business transactions carried out on a product, the more the number of layers of the

associated pedigree document. Figure 2-1 is an example of the pedigree formation

process.

When a new layer is added to a pedigree, it often requires the business partner cre-

ating the layer to apply a digital signature to authenticate all information contained,

including previous layers created by other supply-chain partners. The details of the

signing process is explained in Section 2.2. Of the five different types of pedigree

layers can be used in a pedigree document, two requires signing. The definition of

18

the five layer types are shown below:

" Initial Pedigree: The innermost layer of the pedigree document that records

initial product and packaging information of a particular drug product.

* Repackaged Pedigree: The innermost layer of the pedigree document that not

only records product and packaging information of a particular drug product

but also records the information of the previous products and pedigrees used in

the new product.

" Shipped Pedigree: An outer layer of the pedigree document that records the

business transaction information for a product that is ready to be shipped to

the next supply-chain location. This layer can be used to wrap any of the other

four pedigree layers and requires a digital signature of the shipping party.

* Received Pedigree: An outer layer of the pedigree document that records the

business transaction information for a product that has been received from a

previous supply-chain location. This layer can be used to wrap the Shipped

Pedigree layer and requires a digital signature of the receiving party.

" Unsigned Received Pedigree: An intermediate layer of the pedigree document

that records the business transaction information for a product that has been

received from a previous supply-chain location. This layer can be used to wrap

Shipped Pedigree layers and, as the name suggest, does not require a digital

signature. (This layer must be generated concurrently with a wrapping Shipped

Pedigree layer).

2.1.2 Business Flow Scenarios

There are twelve types of business flow scenarios in which a pedigree document can be

used. For the purpose of this Thesis, I will not iterate each one but will simply show

two examples to illustrate how pedigrees are used under different business contexts.

The most common business flow scenario is the transaction from a manufacturer, to

19

a wholesaler, then to a retailer. A manufacture can initiate an Initial Pedigree layer

and adds a Shipping Pedigree layer to the document when the product is ready to

be transferred to the wholesaler, with signature applied. Once a wholesaler receives

the pedigree and the associated drug products, the wholesaler would authenticate

the information presented in the pedigree as well as the digital signature. When all

information are authenticated, a Received Pedigree layer is added to the document

and signed by the wholesaler. The process repeats as the pedigree moves from the

wholesaler to the retailer. Figure 2-1 shown above is an example of this scenario.

Not all transactions has to originate from a manufacture. Sometimes a whole-

saler can initiate a pedigree on behalf of the manufacture. The original transaction

information from the manufacture to the wholesaler would simply be recorded inside

an Initial Pedigree or a Repackaged Pedigree layer. For instance, a wholesaler can

initiate a pedigree to indicate a return transaction to a kit manufacture. Initially the

wholesaler creates a Repackaged Pedigree to indicate the previous product and previ-

ous pedigree information for each drug contained in the kit. Then it adds and signs a

Shipped Pedigree layer for the return transaction. If the wholesaler decides to sale the

same product to another retailer, it would add another receiving and shipping layer

on to the current shipping layer. However, if both layers were to be added at the same

time, the process can be simplified by replacing the Received Pedigree layer with the

Unsigned Received Pedigree layer, so that only the outermost Shipped Pedigree layer

has to be signed. Figure 2-2 shown below is an example of this scenario.

Regards of the business scenario, all pedigrees have to abide by the rules shown

in Figure 2-3 when new layers are generated. Pedigree layers with solid arrows pro-

jecting out indicate that they cannot be stand-alone and must have additional layers

wrapping around them. Layers with dashed arrows indicate that they can be stand-

alone, and any additional layers are optional.

20

Figure 2-2: Example Repackaged Pedigree with Unsigned Received Pedigree Layer

21

igre 2-:PeegedLyrieertrnFewDaga

Asmetine arie, hppd~dire ndeeiePedigree eeet eur

sigin; hnc aSigatreeleen mst e ppnde. Uhesign ehns

pediree ocumnt snderto te doumendregrver

A siger'sur ey 2-3su: l P medd aer Gentherati at that Disrattm eth

pedgre Documen he uthewng caigrssonxm etfctedt Fgr -)

Theing encue aSiwste eeert t frms be GaphpesnUer ITeraenhe rinnmcaight

seos thli ey ame rctr PI)aogwihX0 certificates [17] User daaerrtrifaWidwsC-se

2.2.s aemddita Signature Uelmnsadaextcedurgthsiaue

atetctoprcs.The following flgur (Figuer2-6 illustrates the inn n uhiai process o

peif e PKI. unt signdeg potessoaumessag digstiver. temsaecotn en

siged les figrsowstd.Te the ignrssitcPate KrmaGapisUey Itersignover the digst.

During the authentication process, the authenticator would use the signer's Public

22

Figure 2-4: Pedigree Authentication Process

Figure 2-5: Example Certificate Data

23

Fleid Vake

- gnature aldnthM sh1a1RSA
Issuer TCR11
vaid from Tuesday, Aprf 17, 2007
vabdto S*turday, Decenber 31,
5ubject TCRI1
P-bbO eey RSA (1024 Bts)
Au ty Key Identier Key-6 63 9tca 6c .
-Ix, n

LeaM mm e about r

St.12:...
2.M...

a98 4 .

Validating Message

Message .. I am a cat
I am a cat

u.. decaypsignature

Digest ... #@ic(#:9d msa

#@jc(#V:9d

Enryptdigestwith Digest

#@c(#:9d
Digital
Signature

I am a cat

Figure 2-6: Use of Public Key Infrastructure

Key to decrypt the signature to obtain the original digest. Then the authenticator

would compute another digest of the message content and compare the two. If they

match, one can guarantee that the content of the message has not been tampered with

after it is signed. For drug pedigree documents, message digests are computed using

the SHA1 algorithm, and digital signatures are computed using the RSA algorithm.

2.2.2 X509 Certificate Usage

Digital signatures only guarantee that a signed pedigree has not been not tampered

with but does not guarantee the identity of the signer; thus X509 certificates are used

to bind a public-private key pair to the signer's identity. Some of the components of

a certificates include validity period, serial number, issuer name, subject (user) name,

and user public key [17]. To verify that the Public Key belongs to the signer, the

authenticator must already have a trusting relationship with the Certificate Authority

24

Signina Messaue

(<:Signature>
<k:Signedlnfo>
K :Canonicalizati rilethod Aigoll= t1YvWY3 or1Q1I/z-~-~0 />
(a:Signatxre~ethod Aigoth:_ -ttp sgfs-hl
(,ds:Reference 'URI="#id4c6abd8-c3b3-4bba-b23-a95c14da177b" >

(da :Transforas>
<f:Transforn Algoritha=".httn://www.v3.org/2001/i1ixal-exc-cl4n$" />

</ds:Transfors>
<s:Digestlethod Algoritha=" />
<ds:DigestVaue>e+BtK1p/XFq+S9HZCN38EbzI6Sw</ds:DigestValu a -

</di :Reference>
</ds:SignedInfo>
<(d:SignatureValue>IXlIJbHosnin2hcaGszXfjcFNLkRaQ6NK8oNw7o8adwOFkajQZvotAEB=</ds:SignatureValue>
<ds:KeyInf>

<:KeyName>PubIic key of certificate</ds:KeyNaxe>
<k:KeyVaiue>

<k:RSAKeyValue>
<ds :odulus>9wxff5VXJVI4whELx9I6lDb/USjqDED7h2NIsa3xGg8kJh+9y2TJiV5+qx=</ds:1odulus>
<ds:Exponent>AQAB</ds:gxponent>

</ds:RSAKeyValue>
</ds:KeyValue>
<O:X509Data>

<5:X509IssuerSeria>
<&_:X509IssuerNaae>CN=subCA, OU=Basic Coabined OU4, O=Test Certificates, C=US</ds:X509IssuerNaxe>
<S :X509SerialNwmber>i</ds:X509SerialNuaber>

</ds:X509IssuerSerial>
<(:X509Certificate>IIICVzCDAcACAxAAATANBgkqhkiG9v0BAQQFADCBkzERIGluYYvxDTAL</ds :X509Certificate>

</ds:X509Data>
</ds:KeyInfo>

</ds:Signature>

Figure 2-7: Signature Element of a Pedigree Document

(CA) that issues the signer's certificate. In other words, he or she must have CA's

Public Key. The certificate itself contains a digital signature, signed over the user

Public Key using the CA's Private Key. The authenticator can use the CA's Public

Key to verify the CA's signature over the user Public Key. Once it is clear that the

user Public Key belongs to the signer, the authenticator can use the key to verify the

pedigree content. An example Signature element of a pedigree document is shown

below in 2-7. This XML block of document not only includes the certificate itself but

also the transforms, canonicalization, and signature methods used to compute the

digest and the digital signature value.

2.2.3 Common Registry

Although digital signatures and X509 certificates can be used to guarantee the au-

thenticity of pedigree content and the identity of the signer, it does not prevent the

signer to change the content of the pedigree and re-sign at a later time. Currently, all

pedigree documents are maintained and stored locally by the individual businesses

that have created these documents. Thus a prevention scheme may be necessary to

prohibit companies from potentially manipulating their information. Many industry

25

participants have been actively promoting the use of a common registry. Currently

the structure of the registry has not been finalized. It may be historical copies of all

drug pedigree document exchanged within the entire supply-chain, or it may simply

be a hash, or digest, of the documents. Many large companies, such as Verisign,

have been competing for the position as the primary holder of the common registry.

However, whether this registry is needed at all is still uncertain.

26

Chapter 3

A Decentralized Approach to

E-Pedigree Discovery Service

3.1 Previous Work

3.1.1 Design Motivation

The purpose of a pedigree discovery service is to provide searching assistance for

pedigree documents that reside on the EPC Network. A decentralized approach to

discovery suggests that all pedigree documents associated with a particular business

must be maintained in its local repository. This approach may be preferred from

a business logistric's point of view. For one, pharmaceudical companies might be

skeptical and reluctant to actively report their data into a centralized location for

others to manage. In addition, if mistakes need to be revised, the revision process

can be performed must faster if all data are maintained locally, thus reducing business

costs. From the point of view of system design, a decentralized service reduces the

possibility of potentially having a message loading bottleneck at the central storage

server and having a single point of failure if the server breaks.

27

3.1.2 Existing Discovery Protocols

Many common discovery protocols were surveyed for the purpose of this design, in-

cluding Jini [18], Salutation [4], UPnp [5], SLP [15], and UDDI [10]. However, all

current protocols lack one important parallelism with what is needed for the Pedi-

gree Discovery Service-All the discovery protocols enumerated above looks for any

one service that would satisfy a client's needs, but a discovery service on the EPC

network requires all services that satisfy the client's needs. Currently there is no

available framework that fully implements the latter. The services that are close to

satisfying this need are search engines like Google.

3.1.3 Overview of Salutation

Of all the discovery protocols mentioned above, the one that influenced the design pre-

sented in this Chapter the most is Salutation, developed by Salutation Consortium.

It is also the only one that uses a decentralized network approach. The architec-

ture of Salutation is composed of three fundamental components: Functional Units,

Salutation Managers, and Transport Managers. Multiple clients and services can be

attached to one Functional Unit, and Functional Units can communicate with each

other about the services that they provide. A client only needs to connect to one unit

to locate a desired service in the network.

Each Functional Unit contains a Salutation Manager and a Transport Manager.

Salutation Managers serve as service brokers that 1) help clients to find desired ser-

vices and 2) allow services to register their availability. They communicate with each

other through remote procedure calls (RPC). Transport Managers isolate the detailed

network specific protocol information from Salutation Managers, thereby giving Salu-

tation network transport independence. Figure 3-1 is an overview of Salutation's

architecture.

28

Client Service Service Service Client- Client

Salutation Manager RPC Salutation Manager

Trans Transport Manager

Figure 3-1: Architecture of Salutation

3.2 Design Architecture

3.2.1 Design Assumptions

In order to scale the prototype to contain only the minimum crucial portions of the

design, many important assumptions were made. For one, since the design does not

contain any security mechanism, it is assumed that all the service partners in the

network may freely access each other's data. In addition, it is assumed that business

relationships do not form and discontinue frequently. Thus, the overturn rate of

businesses entering and leaving the network is low. For the initial implementation of

this design, there is no mechanism that supports automatic registration of business

partners. In addition, the total number of partners participating in the network

must be scalable such that there are no significant delays caused by querying a large

number of partners in the network. Finally, we assume that having stale data, caused

by delays in content refreshing in local servers, is allowed.

3.2.2 Architecture Overview

The decentralized pedigree discovery service is defined as a network of services that

returns a list of pedigree documents associated with a common attribute for which

a client has used as searching criteria. A client can be a company, a consumer, or a

government agency. This network is composed of identical service units, which serve

a similar purpose as Functional Units in Salutation. These units, referred to as a

29

Business Partner 2

Business Partner 3 Business Partner 4

Figure 3-2: Pedigree Discovery Service Network

Discovery Service Units, reside locally with individual business partners. They are

directly attached to local pedigree servers where pedigree documents are stored. A

service unit has two purposes: 1) extract metadata from pedigree documents residing

in local servers, and 2) answer client queries by communicating with a predefined

list of service units to obtain pedigree documents. A service unit would always be

connected to one or more other service units, and these interweaving connections form

the Discovery Service Network. Figure 3-2 illustrates an overview of this network.

3.2.3 Network Communication

As mentioned above, a Discovery Service Unit has two functions, thus two design

components. Just as there is a layer of separation between a Salutation Manager

30

Business Partner 1I

Pedigree
Server 1

0

Local LookUD Unit
24983 (A
95783
49853 D

C:

Un I ocal Look
247,r
351 9
487r,

S ocal Lookup Unit
48305 0
12345 0
98244 0

Pedigree Pedigree Pedigree
Server 2 Server 3 Server 4

Figure 3-3: Communication among Discovery Service Units

and a Transport Manager in Salutation, there is complete isolation between the two

major components that make up a Discovery Service Unit: the Partner Lookup Unit

and the Local Lookup Unit. The Partner Lookup Unit accepts client queries and

conducts searchs of pedigree documents that match client requests by communicat-

ing with other Discovery Service Units. The Local Lookup Unit accepts queries from

Partner Lookup Units of other service units and locally searches its metadata in at-

tempt to match client requests. Figure 3-3 is an example of how partner Discovery

Service Units interact with each other. For explanation purposes, the metadata used

in answering client queries are pedigree serial numbers. In reality, many different pedi-

gree document attributes can be used as metadata beyond the simple serial number

caching presented in the figure.

In a Discovery Service Unit, a Local Lookup Unit may contain a list of serial

numbers referring to all pedigree documents residing in the local server. When a client

queries for pedigree documents with specified serial numbers, the Partner Lookup Unit

searches its local server as well as the Local Lookup Units of other Discovery Service

Units. Once a client query reaches another service unit, it is forward onto other

31

Discovery Service Network

Local Lookup Service Interface

Company
Registry Query

Processing Serial Number

Results Unit Lookup Table

Cache

Partner Lookup Service Interface

Clients Local Pedigree Server

Figure 3-4: Discovery Service Unit Architecture

Discovery Service Units known by the current service, and the process continues.

The above figure illustrates this principal. For instance, the client is connected to

Unit 1, which is connected to Unit 2 and 3. But since Unit 3 is connected to Unit 4,

the client query is forwarded onto Unit 4, which communicates with Unit 1 to answer

the query. It is worthy to note that a service unit may refuse to forward a client query

if the Time to Live (TTL) value of the query has been expired.

3.2.4 Design Components

This section describes in detail the design of the two components of the Discovery

Service Unit. Figure 3-4 provides the layout of a typical Discovery Service Unit.

Again, for explanation purposes, only pedigree serial numbers are mentioned instead

of other pedigree attributes.

The Local Lookup Unit contains a Lookup Table composed of serial numbers and

file location pointers. The table is updated as new pedigree documents are submitted

to the local server. When a client request asking for documents with a particular

32

serial number is received, the Local Lookup Unit searches its Lookup Table, if the

serial number exists, it retrieves the corresponding pedigree documents from its local

server and forwards the query onto the Partner Lookup Unit. The Partner Lookup

Unit would then forward the client query onto other Discovery Service Units, but

only if the query's TTL has not yet been expired. The average pedigree document is

usually associated with three businesses-such as a manufacture, a wholesaler, and a

retailer; therefore a TTL value that permits the query to be sent to Discovery Service

Units that are four degrees removed would be sufficient. Of course, this assumes that

the client would have some justification for choosing the initial entry point where

the query is made. However, this assumption may be dangerous. Choosing TTL

values itself can be a challenging optimization problem, which I will discuss further

in Section 5.2 of Chapter 5.

The Partner Lookup Unit is composed of a Partner Registry, a Results Cache

and a Query Processing Unit. The Partner Registry contains a list of endpoints, or

URLs, of each Discovery Unit known by the current unit. (In most situations, this

list would contain Discovery Service Units that belong to frequent business partners.)

The Results Cache contains query results that are recently returned by the network.

When a client queries the Partner Lookup Unit, the service would first check with the

Results Cache, and remote queries to partner Discovery Units are only made if the

result is not already available in the cache. All cache results are kept for a predefined

period of time, which may vary depending on network traffic. If the cache is full, it

would function as a First In First Out (FIFO) queue. The Query Processing Unit

handles the actual queries that flow through the network. When a query originated

from a remote discovery service is being forwarded to another service, the Query

Processing Unit sets its return address to that of the original service unit where the

query is initiated, so results can be returned directly. As results come back from the

network, (which do not have to be in the same order as it is sent out,) the Query

Processing Unit packages them and returns them to the client.

33

3.3 Web Service Implementation

3.3.1 Implementation Overview

As mentioned earlier, pedigree metadata are extracted while files are being stored

into local servers. These characteristic data may include serial number, drug name,

business names, and other XML elements of a pedigree document. Clients may use

any of these data fields as query parameters in their search. Again, for demonstra-

tion purposes, the implementation only considers pedigree serial number as a query

parameter. Nonetheless, regardless of the query parameter used for searching, the

process for how queries are performed remains the same.

The Discovery Service Unit is implemented using .NET technology as a set of two

separated Web Services with different port locations. One implements the Partner

Lookup Unit and the other the Local Lookup Unit. Each service contains only one

method, which takes in a serial number as its input parameter and performed all the

necessary processing for results to be returned. The service interface for each of the

two services is shown below:

[ServiceContract]

public interface ILocalLookupService

{

[OperationContract]

XmlDocument[] GetLocalData(Serial serial);

}

and

[ServiceContract]

public interface IPartnerLookupService

{

[OperationContract]

XmlDocument[] GetPartnerData(Serial serial);

}

34

The method GetLocalData takes in a serial number of user defined type Serial

and searches its local Lookup Table, implemented as a DataTable object. If there is

a match, it retrieves and returns pedigree documents in the format of XmlDocument

arrays. Similarly, The method GetPartnerData also takes in a serial number of

type Serial, sends a request to every Discovery Service Unit listed in the Partner

Registry, and records the results in Results Cache before returning it to the client as

XmlDocument arrays. The Partner Registry and Results Cache are also implemented

as DataTable objects.

Windows Foundation Communication (WFC) is used, and both the

ILocalLookupService and the IPartnerLookupService are self-hosted by perform-

ing the following:

ServiceHost host = new ServiceHost(typeof(LocalLookupService), baseURI);

host. OpenO;

and

ServiceHost host = new ServiceHost(typeof(PartnerLookupService), baseURI);

host.OpenO;

The LocalLookupService and PartnerLookupService inherit from the

ILocalLookupService and IPartnerLookupService base class, respectively, and

these services implement the logic behind the interfaces. The baseURI is a string

that indicates the URL endpoint of the service.

When a Local Lookup service host opens, the Lookup Table is uploaded from

local memory and updated as new pedigree documents are inserted or deleted from

the local pedigree server. Uploading and deletion of data are performed atomically to

prevent data inconsistency. When a Partner Lookup service host opens, its Partner

Registry is loaded from memory and an empty Results Cache is created. The cache

is gradually filled as client queries are processed. Again, this operation is performed

atomically. Furthermore, since all results are stored in one instance of the cache, only

35

one instance of the service is created. All clients connect to the same instance. This

is made possible by using WFC, which differs from a typical Web Service, where an

instance is created for every client and discards after use. A WFC service remains

alive as long as the host is open.

[ServiceBehavior (InstanceContextMode = InstanceContextMode.Single,

ConcurrencyMode = ConcurrencyMode.Multiple)]

In addition, to improve performance, requests sent to remote discovery units are

made asynchronously, so as results come back (possibly in different order than it is

being sent out), it can be assembled right away to be sent back to the client. A

timer is set for each request so that the service does not wait forever for a response

to comeback. Consequently, if certain remote services fails to respond, partial results

can still be returned. The following code is taken from the Query Processing Unit,

where queries are been sent out asynchronously to the Local Lookup Unit of another

Discovery Service Unit:

ServiceEndpoint httpEndpoint = new ServiceEndpoint(

ContractDescription.GetContract(typeof(ILocalLookupService)),

new WSHttpBindingo, new EndpointAddress(url));

ChannelFactory<ILocalLookupService> factory =

new ChannelFactory<ILocalLookupService>(httpEndpoint);

ILocalLookupService svc = factory.CreateChannel();

IAsyncResult ar = svc.BeginGetLocalData(serial, null, null);

First, a ServiceEndpoint object is created to specify 1) the contract of the service

ILocalLookupService and 2) the location of the service indicated by the url string.

Then, the ChannelFactory creates an instance of ILocalLookupService, which calls

BeginGetLocalData (instead of the normal synchronous method GetLocalData) to

send a request to another Discovery Service Unit. Again, this method take in a

36

serial number of type Serial. As results come back, they are contained in the

IAsyncResult object and can be retrieved by performing the following:

XmlDocument[] result = svc.EndGetLocalData(ar);

The ILocalLookupService calls EndGetLocalData, which takes in the

IAsyncResult object and return the actual pedigree documents in XmlDocument ar-

ray form.

3.3.2 The LocalLookupService Object

As mentioned earlier, the LocalLookupService takes in a serial number of type Serial

and searches through its Lookup Table for a match. If a match exists, then it retrieves

the corresponding pedigrees from the local server. This process is embedded in the

method GetLocalData of class LocalLookupService. A section of this method is

shown below:

DataTable table = LocalUnitHost.SerialLookUp.SerialTable;

DataRow row = table.Rows.Find(serial.Value);

XmlDocument[] result = null;

if (row != null) result = UtilitiesLocal.RetrivePedigrees(row);

The Lookup Table, called SerialTable is instantiated in the

LocalLookupService host class LocalUnitHost. It contains two columns: 1)

the serial number of type Serial and 2) the pointers to the corresponding pedi-

gree file locations of type string [. The Value property of the Serial object

contains the actual serial number to be searched. If during the querying process

a corresponding entry is found in the table, the helper method RetrivePedigrees

would use the pointers to retrieve the pedigree documents from the server. In the

current implementation, a separate program is in charge of filtering information

from captured pedigrees and updating the Lookup Table. The current program only

reloads the table from memory periodically, such as shown below:

37

if (TimeToReloadO)

{

Thread thread = new Thread(new ThreadStart(UpdateTable));

thread.IsBackground = true;

thread. Start 0

}

The TimeToReload method is set to true periodically, which spins out a (Thread)

that updates the Lookup Table. The UpdateTable method simply loads the newly

revised table from memory and merges the two tables.

DataTable newTable = UtilitiesLocal.LoadMyTable(FileLocation);

DataTable table = LocalUnitHost.SerialLookUp.SerialTable;

table.Merge(newTable, false);

The FileLocation parameter indicates the location of the Lookup Table in mem-

ory. Having the second parameter of the Merge method set to false guarantees that

in case of conflict, incoming values can overwrite existing values in the table.

3.3.3 The PartnerLookupService Object

The PartnerLookupService answers client requests by forwarding the request onto

Discovery Service Units listed in the Partner Registry. The query is sent out to

the network through the Query Processing Unit if it is not found in Results Cache.

This entire process is encapsulated in one method, called GetPartnerData, in the

PartnerLookupService class. A section of this method is shown below:

DataTable rsltsTable = PartnerUnitHost.rsltsCache.ResultsTable;

DataRow row = rsltsTable.Rows.Find(serial);

if (row != null)

return UtilitiesPartner.BuildResults(row);

}

38

else

QueryProcessingUnit myQuery = new QueryProcessingUnit (serial);

return myQuery.ExcuteQueryo;

}

The method first checks the Results Cache, which is instantiated by the service

host PartnerUnitHost. The cache ResultsTable is stored as a DataTable object.

It has two columns: 1) The serial number of type Serial, 2) the previously returned

pedigree results of type XmlDocument []. If the query is found in the cache, the pre-

viously stored results would be returned by BuildResults; otherwise an instance of

QueryProcessingUnit is created to send the search request out to the network. In

order to send a query, the ExcuteQuery method must first obtain the URLs of its part-

ner services from the Partner Registry. It then sends the request out asynchronously

to Local Lookup Units of partner Discovery Service Unit, shown below:

DataTable registry = PartnerUnitHost.ptnerReg.RegistryTable;

ArrayList returnedRslts = new ArrayListO;

foreach (DataRow row in registry.Rows)

{

XmlDocument[1 result = UtilitiesPartner.SendRequest(row);

returnedRslts . AddRange (result);

}

XmlDocument [1 results = (XmlDocument []) returnedRslts .ToArrayO;

UtilitiesPartner.CacheInsert(serial, results);

return results;

Like the Results Ccache, the Partner Registry RegistryTable is also instanti-

ated by the service host PartnerUnitHost. Client requests are sent out one-by-one

asynchronously to partner service units through the method SendRequest. This asyn-

chronous process is described in the above Section 3.3.1. As results come back from

39

the network, they are compiled into one arraylist named returnedRslts. Before

results are returned, it is inserted into the cache by the CacheInsert method.

3.3.4 The PartnerLookupService Client

Anyone who wishes to utilize the discovery service can connect to the Partner Lookup

Unit of a Discovery Service Unit. However, he or she would first need to build a service

proxy for the PartnerLookupService and then connect to the proxy. For example, if

a client wants to obtain all pedigree documents containing the serial number 12345,

he or she would run the following program:

PartnerLookupServiceClient client = new PartnerLookupServiceClient();

DiscoveryServiceUnit.Serial serial = new DiscoveryServiceUnit.Serial();

serial.Value = "12345";

XmlDocuments [resultPedigrees = client.GetPartnerData(serial);

The PartnerLookupServiceClient object, provided automatically by the proxy,

allows the client to directly utilize the web service method GetPartnerData. The ser-

vice endpoints are specified in a separate configuration file app. conf ig. The following

is a section of this file:

<client>

<endpoint address="http://localhost:9000/PartnerLookupService"

binding="wsHttpBinding"

bindingConfiguration="WSHttpBindingIPartnerLookupService"

contract="IPartnerLookupService"

name="WSHttpBindingIPartnerLookupService">

<identity>

<userPrincipalName value="AUTO-A2F185FFE5\Indy" />

</identity>

</endpoint>

</client>

40

Chapter 4

A Centralized Approach to

E-Pedigree Discovery Service

4.1 Previous Work

4.1.1 Design Motivation

A decentralized approach to electronic pedigree discovery service allows pedigree doc-

uments to be managed by individual supply-chain partners. However, this approach

forces a client to wait for search results from multiply locations and is greatly depen-

dent on network performance. A centralized approach, on the contrary, uses a much

simpler search process. It simply requires a search to be conducted on the local file

system. There would be no need to send search request out to the Internet, hence

query performance can be greatly improved.

Furthermore, performing data search in local memory is a more manageable prob-

lem than architecting new network discovery protocols. Much research has been

performed in this area. In this approach, the problem becomes 1) designing a search

engine of high performance and 2) effectively managing large amounts of data. An

example solution to the first problem is the Google File System [11]. An example solu-

tion to the second problem is the Google's BigTable, which implements a distributed

storage system [3]. Another solution can be a distributed in-memory database pro-

41

<Channel>
<---,le>Lio Nwews</title>
<,:.rnk>*-ttp://1 if toff .=zic.nasa.qcv/</!..4k>
<de-t,n>cftoff -c Space Exploratn. </desorp tc-.>
<Iang age>en-us</Ianguage>
<pubDate>Tue, 10 Cu- 2-n3 :: <

<-ast~u-,1dDate>TUe, - :u= 2n- 9:--5Sr<lstuldae
<dccs>ttp://lgs.Ia.araredu/tecfrss</doos>

<generator>7 ebbog Edror 2.D</generator>
<rAnag ingid::. -or> ed i,:zr e xamp.e -c =< /ma naging--d;.t-r>
<wbate omatrexml~om</web. aster>

<otte>3tar City<tte
<!I-k>'ttp://iftoff.msfc.nasa.qv/ne'ws/2 3/news-szarcity.asp</llnk>
<desCript1:on>Hcw do Americans get ready to work with Russ.ans aboard the

IcerrnatSona c 3paoe Station? They take a crash course in culture, ianguage
and procol at Russia's Star Cicy.</desoription>

<putDate>T,e, *Jun 203 O9:39:21 CT</pubDace>
<gu:>ht-p://fccff.mcasa.g'/2../M/2.tml*:em% <guid>

</ tem

<1tcem>

<lIk>htc :l'Ifof-msc.nasa.gov new/2003/ne's-Iaundry.as</2.nk>
<description>C mpared to earL'er spacecraft, che International Space

Station has many luxurles, but laundry facilities are not one of them.
Znstead, astronauts have other opti.:ns.<ldescri pson>

<pubDate>Tue, 20 May 2273 .!:5f:2 *[</ubDaZe>

Figure 4-1: Example RSS Feed

posed by MIT Auto-ID Labs [16].

4.1.2 Overview of RSS

The centralized approach uses the Really Simple Synchronization (RSS) framework to

capture and manage pedigree documents [20]. RSS forms a standard way to publish

frequently updated digital content. Its most common application is in publishing of

news blogs. A RSS Feed is analogous to a table of contents. Each entry in the Feed

summarizes the content of some information located elsewhere and provides a link to

the full content. RSS formats are specified in XML. Figure 4-1 illustrates a typical

RSS feed.

Recently many extensions have been developed to support the use of RSS in

different context. The extensions are predefined XML elements that fall under a

42

different namespace than that of the default namespace. The minimum requirement

for an RSS entry, or an <item>, to be valid must include the following fields:

" Title

" Description

" Link

If extension elements are used, they are appended to the required elements

and are child nodes of <item>. For instance, an extension to Yahoo! Weather

feeds would include elements such as <yweather: location>, <yweather: wind>, and

<yweather: atmosphere>, under predefined namespace yweather.

For the centralized e-pedigree discovery service, RSS is used along with the Google

Base extension fields under the namespace g and gbase. This framework serves as the

backbone to metadata storage of pedigree information, where characteristic attributes

for each pedigree document is extracted and saved as an RSS entry in Google Base.

4.1.3 Overview of Google Base

Google Base allows Google account users to freely publish RSS feeds under their

own accounts for the public to browse. The information posted by the public can be

informational, such as recipes and personal profiles, or commercial, such as housing

and products for sale. The following is an example RSS entry found on the website:

All items published are accessible through the use of the Google Query Language

[12]. For instance, if one wants to search for a digital camera that is under $500, he

or she perhaps would construct a query like the one shown below:

digital camera [price <= 500.0 USD1

A matching entry would contain the phrase digital camera in the <title> or

<content> field, and it would also contains a field <g: price> whose value is less than

500 USD. The example entry shown above in Figure 4-2 satisfies these criteria.

43

<entry>
<id>http://wvv.google.com/baae/feeds/anippets/9026918904664888476</id>

<published>2007-05-26TO3:03:08.000Z</publiAhed>
<updated>2007-05-29T04:47:14.000Z</updated>
<category schee- http://base.google.cow/categories/itemtypes term-IProducts'></category>
<title type-' text '>Canon Powershot 5D550 Digital Camera Battery Door</title>
<content type- htol'>SquareTrade A. AP6.0 Please Read Entire Description Before Bidding or guying.Item Description: This is a
<link rel-'alternate' type-' text/html' hret- http://ed:arm.meditplex.co/ad/ck/711-5256-e19g-2?1oa-http;3kk2F,2Fagi.ebay.con*2
<link rel-self' type- application/ato+xml' href-'http://wvw.google.co/base/feeds/snippets/9026618904664888476'></1ia>
<author>

<name>eBay</name>
<email>rcross@ebay.com</ef.ail>

</author>
<g:brand type- text' >Digital Camera Battery</g!ibrand>
<g:item type type- text'>Products</g:item type>
<g:item language type' text'>EN</g:itemlanguage>
<g:price type-'floatUnit'>9.95 usd</g:price>
<g:target country type- text '>US</g: targetcountry>
<g:image link type-' urI'>http://thurbs.ebaytatic.com/pict/i4IZ2326763_1.jpg</g:maglink>
<g:category type-,text'>Caweras 4amp; Photokgt;Digital Caerastgt;Parts & Repair</g:category>
<g:ustomer id type- int'>11729</g:customerid>
<g:id type-' text' >140122326793</g:id>
<g: expiration date type-' dateTime' >2007-06-25T03 :03:09. OOOZ</g: expiration date>

</entry>

Figure 4-2: Example Google Base Entry

To further assist users, a programming API for Google Base was developed [13].

The GData API not only allows Google Base users to programmatically create, revise,

delete their own items in Google Base but also provides a channel for users to search

for publish items that can automatically be fed into user applications. Client libraries

are available in C# and Java. For this implementation, the C# libraries were used

along with ASP.NET to construct the Web Service framework described in Section

4.3.

4.2 Design Architecture

4.2.1 Design Assumptions

This design assumes that all pedigree documents submitted to the central pedigree

server satisfies the standard document format stated in the Pedigree Ratified Stan-

dard v1.O [9], so that XML elements, or pedigree data fields, can be extracted to

use as metadata. In addition, this design does not involve the use of any security

mechanism. As stated earlier, pedigree documents by law must be open to the pub-

lic. Furthermore, this design requires a constant connection to Google Base servers.

Although in the future a separate search engine will be built, the current implemen-

tation relies heavily on Google Base to perform the search of pedigree documents.

Finally, and most importantly, this design only attempts to solve the data discovery

44

Base BETA
C

-Serial number C

-Drug name t
---> -Manufacture Server Records 2c:

-Etc. .0
1 0

0

I Pedigree Metadata

Pedigree Documents

Figure 4-3: Pedigree Capture Process Flow Diagram

problem and does not propose a solution for the data storage problem. Hence, it is

assumed that the central pedigree server has the memory capacity to store all the

pedigree documents submitted to the server.

4.2.2 E-Pedigree Capture Process

The centralized pedigree discovery service can be broken down into two parts: Cap-

ture and Query. The pedigree capturing process is shown in the following figure.

As a pedigree document is submitted to the server, it is filtered to extract char-

acteristic data. The data fields, or XML elements, extracted are the fields that are

most representative of and whose values are the most unique to the pedigree docu-

ments that contains them. This metadata information is pushed onto Google Base

as an <item> of a RSS feed, The full document is stored in the local file system. It is

important to note that each entry fed to Google Base not only includes the metadata

but also the pointer to the file location in the server, so one can effectively retrieve

desired documents after matching metadata are found as a result of a client query.

45

-Serial number = 12345
-Drug name = Product A
-Fie Location= C//Pegrees/doc83742.mi
-Etc.

Matching E-Pedigree Server Records Matching Metadata

Figure 4-4: Pedigree Query Process Flow Diagram

4.2.3 E-Pedigree Query Process

An example pedigree querying process is shown below in Figure 4-4. For instance, if

a client wants to obtain all pedigree documents containing the serial number 12345,

the discovery service application would submit a query to Google Base, and Google

Base would return all RSS entries with the serialNumber=12345. For each entry

that is matched, the service application would use the corresponding file path, such

as f ileLocation=C: //Pedigrees/doc83742.xml, to obtain the matched documents

in the server. These documents are then returned to the client.

4.3 Web Service Implementation

4.3.1 Implementation Overview

Same as the decentralized discovery service implementation, the centralized version

also uses .NET technology and the Web Services framework. The following figure is

a screen capture of this service shown in a web browser.

As shown above, the web service only supports two web methods:

PedigreeCapture and PedigreeQuery. The following code is a stripped-down ver-

sion of this service.

46

Search EngineQuery Paramneter

A web service that allows one to upload and search for e-pedigree documents.

The following operations are supported. For a formal definition, please review the Service Qescription.

* PedioreeCaDture

* PedigreeQuery

0 Find: price j Next 4 Previous -j Highlight all 1 Match case

http:/localhost:50330/PedigreeServer/Service.asmx?op=PedigreeQuery

Figure 4-5: Screen Capture of Web Service Interface

[WebService(Namespace = "PedigreeServer",

Description = "A web service that allows one to upload

and search for e-pedigree documents.")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfilel_1)]

public class PedigreeService : System.Web.Services.WebService

{

[WebMethod]

public void PedigreeCapture(XmlDocument pedigree, string filename)

{

PedigreeCapture capture = new PedigreeCapture(pedigree, filename);

capture.StorePedigree();

}

[WebMethod]

public XmlDocument [] PedigreeQuery(XmlDocument queryDoc)

{

PedigreeQuery query = new PedigreeQuery(queryDoc);

return query.Runo;

47

pedig'ire&r'VtceWebSmict- M O!OaFi4fo il -

}

}

The name and the description of the service are specified as web service attributes.

The pedigree document submitted through the PedigreeCapture method must be

of type XmlDocument. The StorePedigree method stores the input pedigree in the

server and pushes its corresponding metadata onto Google Base. If one wants to

submit a query through the web method PedigreeQuery, he or she must submit an

XML document that specifies the searching criteria. Each query parameter is specified

as an XML element, and the values being queried are contained in the corresponding

elements. The following example XML document queries for pedigrees with serial

number equal to 12345 and drug name equal to Product A.

<serialNumber>12345<\serialNumbe>

<drugName>Product A<\drugName>

The Run method processes the query parameter document, searches though Google

Base for matching pedigrees, and returns the pedigrees in XmlDocument [format.

4.3.2 The PedigreeCapture Method

The PedigreeCapture captures pedigree document in three steps: 1) attribute ex-

traction, 2) file storing, and 3) attribute publishing. The following code encapsulates

what has just been described:

PedigreeAttributes pedAttr = ExtractAttributeso;

GBaseService service = new GBaseService("Pedigree Discovery", developerKey);

service.setUserCredentials(username, password);

PublishEntry(pedAttr, service);

The ExtractAttributes method processes the XML document and extracts char-

acteristic data as metadata. In the currently implementation, the following fields are

being extracted:

48

* Serial Number

" Drug Name

" Transaction ID

* Sender Business Name

* Recipient Business Name

" Source Routing Code

" Destination Routing Code

One or more of these XML elements shown above may be empty in the pedi-

gree document. If a search string uses a data field that is empty in the pedigree,

the document will simply be skipped. The fields are stored as properties of the

PedigreeAttributes object. After the desired elements are extracted, the pedigree

is saved in the local file system and the path of the file location is returned. The file

location is also saved as a property of PedigreeAttributes. The following code is a

stripped-down version of ExtractAttributes:

PedigreeAttributes ped = new PedigreeAttributeso;

XmlNodeList serials = GetNodes(pedigree.DocumentElement, "V/serialNumber");

ped.SerialNumber = serials;

//Extract other properties

string fileLocation = GetStorageLocationO;

ped.FileLocation = fileLocation;

return ped;

As shown above, XML elements are extracted one by one and assigned as pedigree

attributes, including the file location. The GetNodes method extracts XML elements

based on the XPath expression given. The GetStorageLocation method simply save

the pedigree document to the local server and return a string that indicates its file

path.

49

After attributes are extracted, a GBaseService is instantiated. The Google Base

account where pedigree metadata is stored requires a username and password to

prevent outsiders from tampering with this information. After security credentials

are set, the PublishEntry method pushes the new pedigree information onto Google

Base through the use of GBaseService methods. A stripped-down version of the

PublishEntry method is shown below:

GBaseEntry entry = new GBaseEntryo;

foreach (XmlNode serial in ped.SerialNumber)

{

entry.GBaseAttributes.AddTextAttribute("serialNumber", serial.InnerText);

}

//Assign other attributes

GBaseEntry myEntry = service.Insert(GBaseUriFactory.Default.ItemsFeedUri,

(GBaseEntry) entry);

An RSS entry of type GBaseEntry is instantiated. Metadata fields are assigned as

GBaseAttributes objects. After all the attributes are assigned, the entry is inserted

into Google Base through the Insert method of the GBaseService object.

4.3.3 The PedigreeQuery Method

The PedigreeQuery method first forms a query string based on the query parameters

given in the client's input XML document, such as the one shown in Section 4.3.1.

The method then submits the query to Google Base to retrieve an RSS feed containing

the pedigree entries that have matched the request. This process is illustrated in the

following code:

foreach (XmlNode query in queryParams.ChildNodes)

{

if (query .Lo calName .Equals (QueryType .Ser ialNumber))

{

50

GBaseQueryString = GBaseQueryString +

[SerialNumber: *" + query.InnerText + "*]";

}

else if (query.LocalName.Equals(QueryType.DrugName))

{

GBaseQueryString = GBaseQueryString +

" [DrugName: *" + query.InnerText + "*]";

}

//Other query parameters are checked

}

GBaseService service = new GBaseService("Pedigree Discovery", developerKey);

service.setUserCredentials(username, password);

GBaseQuery GBquery = new GBaseQuery(GBaseUriFactory. Default. ItemsFeedUri);

GBquery.GoogleBaseQuery = GBaseQueryString;

GBaseFeed feed = service.Query(GBquery);

The GBaseQueryString is an concatenation of all the query parameter-value pairs

expressed in the Google Query Language format mentioned in Section 4.1.3. After the

query string is constructed, a new GBaseService is instantiated, and user credentials

are set. Then, A GBaseQuery object is instantiated to encapsulate the query string.

The GBaseService takes in this object and sends a request to Google Base using its

Query method. The returned results are RSS entries encapsulated in the GBaseFeed

object.

Once results are returned, each entry of the feed is extracted as an GBaseEntry

object. Using the GBaseAttribute pointer location of each entry, the program ob-

tains the corresponding XML documents from the local server. Finally, these XML

documents are compiled and return as an XmlDocument [1 object. The following code

illustrates this process:

foreach (GBaseEntry entry in feed.Entries)

{

51

foreach (GBaseAttribute attr in entry.GBaseAttributes)

{

if (attr.Name.Equals("serverlocation"))

XmlDocument doc = new XmlDocument 0;

doc.Load(attr.Content);

results.Add(doc);

}

}

}

4.3.4 The Pedigree Server Client

A client who wants to connect to this centralized pedigree discovery service intends

to either submit a pedigree document or query the discovery network. Like all Web

Services clients, anyone who wishes to utilize this service must first create a service

proxy and add it as a web reference. Once the proxy is set up, web methods can be

directly used by client applications. The following code instantiates a service proxy:

PedigreeServiceProxy.PedigreeService service =

new PedigreeServiceProxy.PedigreeServiceO;

The endpoint URL of this service is specified in a separate configuration file. A

section of this file is shown below:

<applicationSettings>

<PedigreeServerClient.Properties.Settings>

<setting name="PedigreeServerClientPedigreeServiceProxyPedigreeService"

serializeAs="String">

<value>http: //localhost:50330/PedigreeServer/Service . asmx</value>

</setting>

</PedigreeServerClient .Properties . Settings>

</applicationSettings>

52

To submit a document into the server, one can call the PedigreeCapture method

with the appropriate parameters, such as the example shown below:

service.PedigreeCapture(pedigree, "My Pedigree");

The first input parameter pedigree is an XmlDocument object containing the

actual pedigree. The second input parameter is a name with which the client wants

to associate his or her pedigree. This name will be used as the Title field to the

associated metadata entry submitted Google Base.

Similarly, to query the network, the PedigreeQuery method should be called,

such as the one shown below:

XmlDocument [results = service.PedigreeQuery(queryParams);

The input parameter queryParams is an XML document similar to the one shown

in Section 4.3.1. The results returned from the network are XML documents of type

XmlDocument [], which can potentially be further processed by clients applications.

53

54

Chapter 5

Discussion and Future Work

5.1 Analysis of the Two Design Approaches

Both the decentralized and the centralized approach presented in this Thesis have its

benefits and weaknesses. The following sections analyze the design trade-offs of each

approach.

5.1.1 Evaluation of the Decentralized Approach

The decentralized approach allows pedigree documents to be stored in business

owner's local servers. First of all, this approach is perhaps preferred by most busi-

nesses, who are skeptical about a third-party intervening. Secondly, this approach

eliminates the possibility of having a centralized point of failure. If one pedigree

server fails, the performance of the network is completely unaffected, since a time-

out is imposed on all client queries. If at a later time the broken server rejoins the

network, again, no other servers would be affected by this change.

Although the decentralized approach is easier to manage and reduces the possi-

bility of having a single point of failure, it has many weaknesses. For one, it is a

best effort network and does not guarantee to return all the results that satisfy the

searching criteria. The amount of results returned is greatly dependent on the entry

point of the network, or the Discovery Service Unit to which the client has chosen to

55

connect. All service units have a predefined list of partner services that it is connected

to. Consequently, there is a limitation to the querying range. To obtain quality re-

sults, clients must have some prior business context knowledge of the service unit to

which he or she has connected. In the worst case, it is possible to have a client request

expire without returning any desired results.

The biggest weakness of this design is the problem of scalability. As more Dis-

covery Service Units join the network, the Partner Registry will grow with speed of

Q(n), where n is the number of discovery units in the network. Assuming the delay

due to network traffic is insignificant and the service unit computation time is negli-

gible, this value will be the amount of time it takes for a single client request to be

processed. If it takes constant time, or Q(1), to search through a finite list of pedigree

documents records within one Discovery Service Unit, as the TTL value of a client

request approaches oc, the number of times the request get passed on from one unit

to another is Q(lg(n)). Consequently, in the worst case scenario, the time it takes for

a client request to be answered is Q(n) x Q(lg(n)) = Q(n lg(n)). This performance

is inefficient. Hence, the decentralized design presented in this Thesis does not solve

the problem of discovery and can only serve as a starting point.

5.1.2 Evaluation of the Centralized Approach

The search process for the centralized approach is much simpler than the decentralized

approach. All pedigree documents are managed in one centralized pedigree server, so

answering a client query does not require submitting requests to a network of remote

servers. As a result, query processing speed can be greatly reduced. It takes constant

time to extract metadata from a pedigree, to push the metadata onto Google Base,

and to store the pedigree document into the server. Hence, the time it takes for a

pedigree document to be submitted to a server is Q(c) ~ Q(1), where c is a constant

equal to the number of operations performed by the pedigree capturing service.

On the querying side, it takes constant time to form a query string and submit it

to Google Base, approximately 0(m) to conduct a metadata search, where m is the

number of RSS metadata entries stored, and constant time to retrieve the pedigree

56

document associate with the metadata. Altogether, a single client query takes Q(m)

to process. Although m >n, or the number of pedigree documents stored in the server

is greater than the number of discovery units in the decentralized network, possibly

even by orders of magnitude, it is still reasonable to believe that the centralized

approach, by design, would outperform the decentralized approach, especially as the

network grows and more pedigree documents are generated.

However, this centralized approach also has some weaknesses. For instance, having

all pedigrees stored in one location introduces the possibility of having a single point of

failure. If the web service endpoint breaks, clients can no longer submit pedigrees nor

query them. If the hardware storing the documents becomes vastly damaged, pedigree

data may be permanently lost. If too many clients are connected to the server, the

endpoints can be overloaded and the network saturated. A solution to how client

requests can be evenly distributed among the network entry points remains unsolved.

As a result, if the centralized approach were to be implemented, many other associated

issues like the ones mentioned above would need to be addressed concurrently.

5.2 Future Work

5.2.1 Performance Analysis

Although prototype implementations are available for both the decentralized and

the centralized pedigree discovery services, their performance analysis is yet to be

completed. For the decentralized design, a test is needed to indicate the scalability

of the network by measuring the delay in client responses and the quality of results

returned due to network traffic caused by sending large amounts of round-trip queries.

This might involve exploring different TTL values for client requests. The goal it to

find an optimal TTL value such that there is a balance between the time delay for

a request and the number of desired pedigree documents returned. Furthermore,

one may wants to test query load limitations to determine what threshold values

would undesirably saturate the network. A another test may involve evaluating data

57

consistency and the robustness of the Results Cache, as multiple threads attempt

to read and write the cache. Similarly, for the centralized design, it is important

to measure the average amount of time it takes for a request to be returns 1) when

many clients attempts to access the server concurrently and 2) when the number of

pedigree document stored in the server becomes extremely large.

5.2.2 Improvements

Many improvements can be made and many extra features can be added to the

decentralized pedigree discovery service. For instance, an automated registration

system can be implemented so that as new discovery service units enter the network,

it broadcasts itself to all other units in its Partner Registry so that other service

units can have the option to add the new unit to their own registry. In addition,

the processing of updating the pedigree Lookup Table can be automated. Instead

of reloading the table periodically, a mechanism should be implemented such that

whenever a pedigree is submitted to the server, its information is automatically added

to the Lookup Table. A publication-subscription model may be ideal in this case.

Furthermore, message forwarding needs to be added to this implementation, and a

desired TTL value needs to be determined. Since the TTL value of client requests is

crucial to network performance, it may be beneficial to keep TTL values as a dynamic

variable linked to real-time network performance, and heuristics can be added to

further optimize these values.

Similarly, further work needs to be performed on the centralized service. For

instance, all pedigrees are currently stored in one server. As the number of pedi-

grees documents increases and more servers are added to provide extra storage space,

a mechanism needs to resolve the issue of load balancing of documents among the

servers. Furthermore, to present lost of information due to server failures, document

replicas should be made. Hence, one needs to research and implement a mechanism to

effectively create pedigree replicas and handle unexpected server failures. Finally and

more importantly, since it would not be surprising if pharmaceutical companies are

distrustful of using a third party company, such as Google, to manage their informa-

58

tion, a reliable search engine should be implemented to replace all the functionalities

used in this application currently offered by Google Base.

5.2.3 Extensibility to Other Applications

The two approaches presented in this Thesis are for the RFID applications of Elec-

tronic Drug Pedigree. However, these approaches may also be applicable to other

applications. They may serve as starting points for building other discovery service

systems such as that for EPC Information Service. The EPCIS Repository contains

information about business events related with particular EPCs. These data are

managed locally by individual businesses with different EPCIS applications.

For the decentralized approach, a Discovery Service Unit may connect with a EPC

Information Service (EPCIS). Its Lookup Table may store EPCs instead pedigree

attributes. The information returned to the client may be EPC events instead of

pedigree documents. For the centralized approach, the same logic applies-one may

submit and query for EPCIS events instead of pedigree documents. The metadata

extracted from EPC events used by the search engine can be EPCIS query parameters,

such as EPC Values and Record Times, instead of Serial Numbers and Drug Names.

59

60

Chapter 6

Conclusion

In this Thesis we have presented two approaches for the design of the Electronic

Drug Pedigree (e-pedigree) discovery system-one decentralize, one centralized. The

decentralized service is desired when businesses in the health care industry-such as

drug manufactures, wholesaler, and retailers-do not trust third parties to manage

their company information and prefer to store and maintain their pedigree documents

locally. A discovery service protocol is proposed for this approach, and the building

blocks of the service are referred to as Discovery Service Units. Each Discovery

Service Unit is attached to a local server belonging to a particular business. It has

a Partner Registry of other service units in the network and answers client requests

by communicating with its partners services. Client requests are forwarded from one

service unit onto another.

For this approach, quality results are returned when a client has a good under-

standing of the service unit to which he or she has connected. An e-pedigree document

is already a track-and-trace record and shows transactions between business partners.

If a company's Discovery Service Unit includes all the businesses it works within the

Partner Registry list, it would not be surprising if one or multiple of its business part-

ners have information on a pedigree document that it also has. Hence, choosing the

Discovery Service Unit with which to initiate a connection is critical in determining

the time delay for a client to receive a response and the completeness of matching

pedigree documents returned. For the same reason, choosing the Time-to-Live (TTL)

61

value of a client's request also plays an important role in determining the quality of

results returned.

The centralized service does not require a new discovery protocol to be designed.

It simply requires that e-pedigree documents be stored in one location and a search

engine be implemented to effectively answer client queries. The search engine should

use heuristic information of pedigrees, such as metadata of characteristic attributes,

to query for desired results.

In the currently implementation, Google Base is used to fulfill the role of the search

engine. When pedigree documents are being submitted, characteristic attributes are

extracted and pushed onto Google Base along, with the server file location. Metadata

are being pushed as an RSS feed, and each pedigree is associated with one entry of the

deed. When a client sends a request to the server, these attributes are can be used as

query parameters. Therefore, we can see that the role of the search engine is the heart

of this design. Furthermore, a good search engine cannot function without effective

searching parameters. Determining what attribute data of a pedigree document from

which the service should extract also becomes a significant factor that affects its

performance.

In terms of pedigree capturing, both designs perform the same and can store

document in constant time. In terms of pedigree querying, the performance of the

two approaches vary significantly. For instance, the performance of the decentralize

approach depends heavily on the size of the network, such as the number of service

partners each discovery service unit have. The larger the network, the longer it would

take a request to return matching results, the less complete the results would be.

On the contrary, the centralized approach is much more scalable. Its performance

does not depend on the number of business participants, but simply the number of

documents submitted to the server. If the server becomes overloaded, the documents

can be redistributed among others servers. Replicas can be made to prevent server

failures. Therefore, although further performance analysis needs to be conducted

for both pedigree discovery service implementations, it seems that by design, the

centralized approach may potentially outperform the decentralized approach.

62

Appendix A

Class Diagrams for the

Decentralized Implementation

63

iLocallookupService
Interface

Methods

* Getioca(Data

LocalLookupServi e
Class

C'Methods

* GetLocalData

UtifltiesLocal
Class

G Methods

V LoadMySerial
34 RetrievePedigrees

nagement SerialLookUp
class

1 Fields

f serialTable

B Properties

SerialTable

9 Methods

:4 SerialLookUp

LocaUni*Iost
Class

Fields

[L mySerialIS
LA quit

0- seriallookup

Methods

.Main

Figure A-1: Class Diagram for the Local Lookup Service

64

Serial
Class

E Fields

j# value

B Properties

J Value

0 Methods

4 Serial

BMethods

-4 Manage Se rialTable
4 imeToReload

SUpdateSerialTable

Moca#,okup$... V
Interface

"0 14claluejkup~e vc

+cliretChannea

LocEt.ookup5fr~ J

A toadPartnerinfo
4 d Rewo-A

Parte okwp. CA

SM ethod5
wo GeftarterData

Properties

:YRegistryTable

methods

r .

Quer~roess pi~t A
Class

fields

JO serial

A EcuteQuety

a Methods

4 ManageSeriafL
:* updateCsche

F ields

* pange
* rslk5Cache

Methods

4 Main

(QWeryR*#uhs

Fields
retrievalTime
seria

/ urIUst

40RettievalTim-e

URLLKt

Methods

-4 QueryResults

IetuiltsCache

resultstable

* ResultsTabh
V dho,

Figure A-2: Class Diagram of the Partner Lookup Service

65

nrtertokup.

66

Appendix B

Class Diagrams for the Centralized

Implementation

67

PedigreeCapture
Class

8 Fields

f developerKey
j filename

Spassword

depedigree
usemame

8 Methods

4 ExtractAttributes

4 GetNodes
4 GetSingleNode
4 GetStorageloc ...

4 PedigreeCapture
4 PublishEntry
- StorePedigree

Figure B-1: Class Diagram of the Web Service

68

PedigreeService
Class
+ WebSerice

Methods

-v PedigreeCapture

,y PedligreeQuey

Class

Fields

developerKey

password
queryParams

JOusemame

Methods

4 PedigreeQuery
-4 Run

Quaeryiyp
class

G Fields

L DestinationRou
DrugName

L RecipientBizNa...
LA, SenderBizName

ED SerialNumber
W SourceRouting...

t TransactionlD

Pedigreemttriu..
Class

Fields

destinationRou.

drugName
fileLocation

recipient

sender
serialNumber

L sourceRouting...
* transactionID

8BProperties

! DestinationRou...

: DrugName
FileLocation
RecipientBizNa...
SenderBizName
SerialNumber
SourceRouting...

2 TransactionlD

Bibliography

[1] Steve Beier, Tyrone Grandison, Karin Kailing, and Ralf Rantzau. Discovery

services-enabling traceability in epcglobal networks. Delhi, India, December

2006. Indian Institute of Technology. International Conference on Management

of Data.

[2] Mike Celentano, Daniel Engels, and Ted Ng. Staying ahead of pedigree laws,

May 2007.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

Bigtable: A distributed storage system for structured data. Seattle, WA, USA,

November 2006. USEMX. OSDI.

[4] Salutation Consortium. Salutation Architecture Specification, Version 2. Oc, June

1999.

[5] Microsoft Corporation. Universal Plug and Play Device Architecture, Version

1.0, June 2000.

[6] EPCGlobal. The EPCGlobal Architecture Framework. EPCGlobal Standard

Specification, July 2006.

[7] EPCGlobal. EPC Information Services (EPCIS), Version 1.0. EPCGlobal Stan-

dard Specification, April 2007.

[8] EPCGlobal. Low Level Reader Protocol (LLRP), Version 1.0. EPCGlobal Stan-

dard Specification, April 2007.

69

[9] EPCGlobal. Ratified Pedigree Standard, Version 1.0. EPCGlobal Standard Spec-

ification, January 2007.

[10] Alex Ferrara and Matthew MacDonald. Programming .NET Web Services.

O'Reilly, September 2002.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

Bolton Landing, NY, USA, October 2003. ACM SIGOPS. SOSP.

[12] Google. Google query language specification,

http://code.google.com/apis/base/query-lang-spec.html.

[13] Google. Using the Google Base Data API C# Client Library, 2007.

http://code.google.com/apis/base/csharpdevguide.html.

[14] GS1. Building radio frequency identification solutions for the global environment,

March 2005.

[15] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,

Version 2. IETF Network Working Group, June 1999.

[16] Sergio Herrero, Abel Sanchez, and John Williams. Distributed in-memory

database for epc information services. April 2007.

[17] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infras-

trcture Certificate and CRL Profile. IETF Network Working Group, January

1999.

[18] Sun Microsystems. Jini Architecture Specification, Version 1.2, December 2001.

[19] Sanjay Sarma, David Brock, , and Daniel Engels. Radio frequency identification

and the electronic product code. IEEE Micro, 21(6):50-54, 2001.

[20] Dave Winer. RSS Specification, Version 2.0. Berkman Center for Internet and

Society, July 2003.

70

2007.

