
A Fair Payment System with Online Anonymous Transfer

by Binh D. Vo
B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2005

SUBMITTED TO
THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2007

@2006 Binh D. Vo. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole and in part in any medium now known or hereafter created.
A A

Signature of Author

Certified by

Certified by

Accepted by

OF TECHNOLOGY

OCT 0 3 2007

LIBRARIES

SvI"

Department of EECS
October 26 2006

Ronald Rivest, Viterbi Professor of EECS
Thesis Supervisor

Susan Hohenberger, Department of EECS
The ' Co- upervisor

•.•,., •- •-,--- • r."/.• %/
Arthur C.
Chairman,

Smith, Professor of EECS,
Department Committee on Graduate Theses

A Fair Payment System with Online Anonymous Transfer
by

Binh D. Vo
Submitted to the

Department of Electrical Engineering and Computer Science
on October 26, 2006 In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Physical cash can be anonymously transfered. Transferability is a desirable property because it
allows for flexible, private commerce where neither the seller nor the buyer must identify themselves to
the bank. In some cases, however, anonymity can be abused and lead to problems such as blackmail
and money laundering. In 1996, Camenisch, Piveteau, and Stadler introduced the concept of fairness for
(non-transferable) ECash, where a trusted authority can revoke the anonymity of certain transactions as
needed.

To our knowledge, no current ECash system supports both anonymous transfer and fairness. We have
designed and implemented such a system. Also, we formally describe a set of desirable properties for
ECash systems and prove that our system meets all of these properties under the Strong RSA assumption
and the Decisional Diffie-Hellman assumption in the random oracle model. Furthermore, we provide
extensions for our system that could allow it to deal with offline payments and micropayments.

Our system has been implemented in java. Tests have shown that it performs and scales well, as
expected.

Thesis Supervisor: Ronald Rivest
Title: Viterbi Professor of EECS

Thesis Co-Supervisor: Susan Hohenberger
Department: Electrical Engineering and Computer Science

1 Introduction

Electronic payment systems, also known as ECash systems, were introduced by Chaum [4]. These systems
aim to allow users to engage in digital payment, while providing anonymity. Unlike other digital payment
systems, such as credit cards, ECash allows a person to keep their personal commerce private - from how
much he spends on groceries to where he buys his gas. For more details on ECash systems, refer to the
NSA's survey of payment systems [9]. Unconditional anonymity, however, also has drawbacks. It is some-
times desirable that law enforcement agencies be able to revoke the anonymity of certain transactions when
blackmail, money laundering, or other illegal activities are suspected. To handle this, Camenisch et al. [8]
proposed fair ECash, where a trusted authority can revoke the anonymity of transactions as needed, and
introduced a simple payment system with this property. In fair ECash systems, payments are anonymous
under normal circumstances; however, when a bank observes suspicious activity, it can ask for the help of
a trusted authority, colloquially called the judge, to uncover the cash owner. As a matter of checks and
balances, it should be noted that neither the judge nor the bank can trace any transaction on their own.

The notion of transferability is fundamental to normal cash. That is, a recipient of a coin can reuse
that coin to pay someone else. Transferability in an ECash system also increases flexibility in its use. For
example, "coin shops" can be opened to obtain electronic coins and sell them to users without direct inter-
action with the bank. In addition to making the system easier to use, this limits the amount of information
mining the bank can perform about users' spending (or receiving) habits, improving privacy. Or, electronic
coins could be printed onto normal paper and used as cash at properly equipped real stores. This also
greatly improves ease of use in the system, for example the aforementioned "coin shops" could simply be
local software stores selling ECash cards that can be scanned into users' computers at home. However, as
with normal cash, the increased flexibility afforded by transferability makes illegal activities like money
laundering easier. Thus, in a transferable payment system, fairness is even more important.

ECash systems are conventionally divided into those that are online and those that are offline. In an
online system, the bank must be contacted for each transaction, although the anonymity of at least the
payer remains protected (our system will also protect the anonymity of the payee). In an offline system,
a transaction can occur without contacting the bank. Offline systems offer a greater degree of flexibility,
while online systems better protect the bank by instantly detecting double spending of coins. The only
online anonymous transfer system known to us was first proposed by Burk and Pfitzmann [3], and later
rediscovered by Simon [18]. Unfortunately, neither the Burk-Pfitzmann system nor the Simon systems
provide any form of traceability, i.e., they are not fair payment schemes.

We have designed a system, which we will describe below, that provides both fairness and anonymous
transfer in the online model by extending the Burk-Pfitzmann system. To achieve this, we make use of the
group signature protocol, which was introduced by Chaum [5] to allow any one of a group of authorities to
sign a value in a way that allows anyone to verify a signature under the group's public key without revealing
the identity of the authority who signed it. Further, the group owner can uncover the identity as needed.

We also show how to extend our system to work in the offline model, and also to efficiently handle
large volumes of micropayments. We begin by fully articulating a formal set of desirable properties for
any electronic payment system, so as to have clearly defined goals for our extensions. These properties are
designed to describe both online and offline payment systems.

1.1 Contributions

In this paper, we describe a number of contributions. First, we introduce and discuss the SAFT properties,
a set of desirable properties we have constructed to evaluate existing payment systems. These properties

include definitions of different levels of security and anonymity, two properties that describe the degree to
which money and identity are protected by the system. They also define the traits of transferability and
fairness, which describe abilities that are useful for a system to provide. With this framework, we can more
cleanly compare and contrast existing payment systems.

This framework also serves to outline the goals the SAFCT system, a new payment system we have
introduced that aims to completely satisfy all of the SAFT properties. We have designed and implemented
this system, as well as proven that it meets each of the SAFT properties. We have also proposed two
extensions to this system which are not implemented: a probabilistic payment protocol that allows the
system to be used for large volumes of micropayments while alleviating computational and network load for
the bank, and an offline payment protocol that allows a number of transactions to occur in sequence before
the bank must be contacted.

1.2 Roadmap

In section 2, we will layout and discuss the SAFT properties, which serve as a basis to evaluate other
payment systems described in the paper and as a set of goals to achieve in our own payment system.

In section 3, we will discuss and evaluate several existing payment systems, to give an idea of the current
states of payment systems, and to show how the SAFT properties work. Our system will attempt to improve
upon these systems by satisfying all of the SAFT properties.

In section 4, we will discuss some basic signature protocols we will need to make use of in our system
and its extensions. We will describe what types of signatures we need and how they are used, and then we
will give an example of each type of signature that we will use in our system.

In section 5, we will describe our SAFCT payment system, which is the first payment system to satisfy
all of the SAFT properties. We'll begin by showing the protocols which comprise the system, then formally
prove how our system meets all of the properties.

In section 6, we describe possible extensions to our system. These extensions take form as additional
protocols to the system, and aim to allow payments to be made offline, or probabilistically with expected
value in increments less than the minimum coin size of the system.

Finally, in section 7, we will describe our implementation of the SAFcT system in Java and show timing
results for all of the protocols and resulting coin sizes.

2 The SAFT properties in payment systems

This section defines a set of desirable properties for any ECash system P. First, we need to establish some
notation. Let P have security parameter k. For every discrete time period t, there are a set of users Ut and a
set of coins Ct. For every coin c and time t, let O(c,t) be the owner of c at t. For every user u and time t, let

C(u,t) be the set of coins owned by u at t. The system P may have the following entities:

* Bank: The bank is responsible for keeping track of which coins are owned by which users in the
system. Users exchange physical cash for electronic coins from the bank.

* User: A user is any person participating in the payment system as either a buyer or a seller. User may
obtain electronic coins from the bank, trade the coins amongst themselves, and deposit the coins with
the bank.

* Judge: The judge is a trusted authority who remains passive until envoked by the bank to help revoke
the anonymity of a suspicious transaction.

The system P is also comprised of the following protocols, to be discussed in detail in section 5, Setup,
Register Purchase, Transfer, Deposit, and Trace.

2.1 Properties

Below are the SAFT (pronounced 'safety') properties that an ECash system may possess:

* Security: A requirement of any payment system is to protect coin value. We define two levels of
security: a strongly secure system protects coin value absolutely, while a weakly secure system detects
entities that adversely affect coin value so they may be appropriately penalized.

1. Weak: Except with probability negligible in k,

(a) No party or parties can generate a new coin or increase a current coin's value without
identifying themselves.

(b) No party or parties except the owner of a coin, can transfer, destroy, or decrease a coin's
value without identifying themselves.

2. Strong: Except with probability negligible in k,

(a) No party or parties, except the bank, can generate a new coin or increase a current coin's
value.

(b) No party or parties, except the owner of a coin, can transfer, destroy, or decrease a coin's
value.

The first point of either level of security guarantees that no entity can manipulate the system for profit,
and the second point guarantees that no entity can manipulate the system to harm another. We shall
use s to denote a weakly secure system and S to denote a strongly secure system.

* Anonymity: We provide definitions of anonymity in terms of two stage adversarial games, against
an adversary A who knows the public parameters of the payment system and all information held
by some subset U of corrupted users and the bank. Under these conditions, we describe three types
of anonymity, weak anonymity which describes a system that protects privacy but allows linking of
payments originating from the same user, strong anonymity which describes a system that protects
against such linking, but allows linking sequential payments with the same coin, and total anonymity
which prevents any kind of linking of payments.

1. Weak: In the first stage, A requests a series of actions to be performed by the other entities
without knowing the results (e.g., A may request that ul transfer a coin to u2 without seeing
any information that would be held by users not in the corrupted set U). The system is now
in some arbitrary, but adversarially-chosen state. Now, A must select users u0 and ul not in U
such that each own a non-zero number of coins. Let b E {0, 1} be randomly selected by the
experiment. In the second stage, uO chooses a coin c and transfers it to ub. Now, ub and A run
the transfer protocol, where Ub attempts to transfer c to A. Finally, A must guess the identity of
the user paying him, by outputting b' E {1, 2}. The system is weakly anonymous if b = b' with
probability • 1/2 + negl(k).

2. Strong: In the first stage, A requests a series of actions to be performed by the other entities and
is shown the results. The system is now in some arbitrary, but adversarially-chosen state. Now,
A must select a user uo not in U that owns a non-zero number of coins, and users ul and u2 not

in U. Let b E {1, 2} be randomly selected by the experiment. In the second stage, u0o shows a
coin c to A and transfers it to Ub. Now, Ub and A run the transfer protocol, where Ub attempts
to transfer c to A. Finally, A must guess the identity of the user paying him, by outputting
b' E {1, 2}. The system is strongly anonymous if b = b' with probability 5 1/2 + negl(k).

3. Total: In the first stage, A requests a series of actions to be performed by the other entities
and is shown the results. The system is now in some arbitrary, but adversarially-chosen state.
Now, A must select users ul and u2 not in U such that each own a non-zero number of coins.
Let b E {0, 1} be randomly selected by the experiment. In the second stage, ub and A run the
transfer protocol, where Ub attempts to transfer a coin c to A. Finally, A must guess the identity
of the user paying him, by outputting b' E {0, 1}. The system is totally anonymous if b = b'
with probability < 1/2 + negl(k).

We shall denote a weakly anonymous system with a, a strongly anonymous one with A, and a totally
anonymous one with A*.

Note that only a transferable system can be strongly anonymous, since the definition of strong anonymity
contains a coin that is transferred twice. A non-transferable system is either weakly anonymous or to-
tally anonymous. Strong anonymity is a type of anonymity which provides protection for users against
linking of their payments, but still allows coins to have a traceable history of expenditures, similar to
the fashion in which real cash is stamped with serial numbers. See below for further discussion.

* Fairness: Fully anonymous systems can be abused for blackmail and money laundering purposes. To
prevent this, anonymity breaking powers can be granted to a collaboration of the bank and a trusted
authority known as the judge. There are two types of anonymity breaking:

Fe: Given any electronic coin c, the bank and judge can cooperate to identify its owner without
learning any information about the ownership of other coins.

F,: Given any user u, the bank and judge can cooperate to identify the set of coins owned by u
without learning any information about the ownership of other coins (aside from the knowledge
that they are not owned by u).

We note that no weakly anonymous system can possess F, because if it is possible to guess that two
coins cl and c2 have the same owner with better than random chance, then information about one of
them can be inferred from the other.

* Transferability: A system is transferable if the recipient of a coin can use the same coin to pay
another person without having to deposit and withdraw it at the bank. We use T to denote a system
with transferability.

Thus, we can classify any payment system by analyzing to see what subset of the SAFT properties
that it possesses. We shall see next that currently known payment systems do not always possess all of the
SAFT properties.

2.2 Strong anonymity vs total anonymity

As was mentioned earlier, strong anonymity is a type of anonymity that applies only to transferable systems.
In a transferable system, there are potentially two ways in which payments could be linked. Either an adver-
sary could identify two payments which originated from the same spender, or he could find two payments

that were both sequential transfers of the same coin. Strong anonymity prevents the first type of linking, but
not the second, whereas total anonymity prevents any kind of linking of payments.

This type of linking allowed by strong anonymity is similar in fashion to real cash having serial numbers.
Because real cash is stamped with these numbers, if a user payed a shop with a bill that had been given to
him by that same shop, or by some entity collaborating with that shop, then the shop could identify him.
Thus, strong anonymity only protects a user so long as the entity he receives a coin from and the entity he
sends it to are not collaborating. However, this can be seen as only a minor weakness, one that the user
could easily work around by transferring each coin he receives to himself before spending it elsewhere if he
so wished. Note that in this way, strong anonymity does improve slightly upon the serial numbers of real
cash, since a real person could not mask the serial numbers of his cash by giving it to himself. This method
allows a user to protect himself against two colluding other users, but not against authorities asking the bank
to reveal the history of a coin's transfers.

It can be argued that strong anonymity is actually desirable in some ways over total anonymity, especially
in fair payment systems aiming to prevent blackmail and money laundering. It allows suspicious funds to
be tagged and monitored, and gives a basis for tracing coins in a fair system. For example, if a kidnapper
demanded payment in blackmail case, coins given to him could still be linked back to the victim forced to
give payment. This would enable the judge to choose appropriate coins to trace to identify the criminal.
Thus, this kind of linkability helps authorities decide which coins should be traced. This is functionally
similar to the manner in which authorities might record the serial numbers of real cash to eventually track
down criminals it was paid to.

3 Related Work

This section presents four well-known ECash schemes and discusses how they satisfy the SAFT properties.

3.1 Chaum's blind signature ECash system

Protocol Payment

1. To obtain a coin, U chooses a random number N and blinding factor M.
2. U sends [N]M along with payment to B.
3. B accepts payment and signs [N]M with skB.
4. U unblinds this signature with M to obtain {N}skB.
5. U pays merchant V with {N}skB.
6. V verifies this signature with pkB before accepting payment.
7. V deposits {N}skB with B, who also verifies with pkB before returning cash.

Figure 1: U paying V anonymously through Chaum's blind signature ECash system

Figure 1 shows Chaum's ECash system implemented based on the RSA assumption. Here, all coins
have the same fixed denomination and cannot be destroyed. Since only the bank, as owner of skB, can
generate coins, and only the possessor of {N}skB can transfer it, this system is secure. Also, by the nature
of blind signatures, no entity can identify the owner of a coin or trace a transaction. Furthermore, no two
transactions can be linked in any way. This system is thus totally anonymous. However, the system does

not provide transferability of ECash as each payment must begin with a withdrawal by the spender, and end
with a deposit by the receiver. In addition, this scheme does not provide fairness since there is no way to
trace the spender. So Chaum's ECash system is an SA* scheme.

3.2 Burk-Pfitzmann anonymous transfer system

Protocol PurchaseCoin

1. U generates random public/private key pair pkc and skc.

2. U sends pkc to B with payment.

3. B adds pkc to a public list of valid coins.

4. U confirms that pkc is now on the list.

Protocol TransferCoin

1. V generates random public/private key pair pkcv and skcv.

2. V sends pkcv to U.

3. U selects pkcu and skcu from amongst his coins.

4. U sends {pkcu, pkcv }skcu to B via mixnet.

5. B confirms that pkcu is on the list of valid coins and uses it to verify the signature.

6. B removes pkcu from the list and adds pkcv.
7. V confirms that pkcv is on the list.

Protocol DepositCoin

1. V selects pkc, and skcv from amongst his coins.

2. V sends {pkcv }skcv to B.

3. B confirms that pkcv is on the list of valid coins and uses it to verify the signature.

4. B removes pkcv from the list and sends payment to V.

Figure 2: Burk-Pfitzmann online anonymous transfer ECash system

Figure 2 shows the Burk-Pfitzmann ECash protocol, which can be built upon any signature system,
for example, the RSA signature. In this scheme, only the bank can generate coins in the PurchaseCoin
protocol. In addition, only a coin's owner can transfer the coin to another via TransferCoin or redeemed it
to real money via DepositCoin. Since coin cannot be destroyed or modified, this system is secure. Also,
since no identities are stored by any entity, coins cannot be linked to owners. Separate coins also share no
information, so the bank cannot link them. This ensures total anonymity. However, payments cannot be
traced, therefore, the system does not support fairness. So the Burk-Pfitzmann system is an SA*T scheme.

3.3 Camenisch, Piveteau, Stadler anonymous accounts system

Figure 3 shows a payment system [8] proposed by Camenisch et. al based on the discrete logarithm problem
and the RSA assumption. In this system, each user has a unique personal account but can also generate
multiple anonymous accounts. For each of these, the user can present a signature from the judge proving

Protocol OpenPersonalAccount

1. U generates public/private keys pkpu and skpu .
2. U sends pkpu to B and identifies himself.
3. B stores pkpu as a personal account of U and returns {pkp, }skB.

Protocol OpenAnonymousAccount

1. U generates public/private keys pkAu and skAu.

2. U sends {pkpu }skB and pkAu to J and identifies himself.
3. J verifies {pkpu }skB, stores pkAu and U, and returns {pkAu }skj.

4. U sends {pkAu }skj anonymously to the bank.

Protocol DepositAnonymousAccount

1. U chooses a random number N and blinding factor M.
2. U sends {[N]M}skpu and pkp, to B.

3. B verifies, debits U, and signs [N]M with skB.
4. U unblinds this signature with M to obtain {N}skB.
5. U sends {N}skB and pkAu anonymously to B.

6. B verifies this signature with pkB and credits pkAu.

Protocol Pay

1. Vendor V identifies himself to user U and requests payment.
2. U chooses a random account Au to pay vendor V.
3. U sends {pkAu, V}skAU to B

4. B debits Au and credits V, recording this transaction

Protocol Trace

1. B chooses a transaction it needs to trace, having originated from Au.
2. B sends AU to J.
3. J looks up U who owns AU.

Figure 3: CPS anonymous accounts system

that the judge knows the identity of the account owner. Money is moved from the personal account to
the anonymous account via blind signature payment, and spent from there. Basic signatures are used to
ensure security of coins for the owner, and blind signatures are used to ensure security of coins for the bank.
This system possesses property F, because the bank and the judge can identify users of single anonymous
account but no further. On the other hand, the bank is capable of linking all payments made from any single
anonymous account allowing tracing that account to reveal all expenditures made from it. This means that
the system is normally not strongly anonymous unless users create an anonymous account for each coin, an
impractical solution. Thus, the CPS anonymous accounts system is a SaF, system.

3.4 Camenisch, Piveteau, Stadler fair blind signature system

Camenisch et al. also proposes a fair payment system based on a concept of fair blind signatures they
describe in [10], based on the strong RSA assumption. With fair blind signatures, a trusted third party can
reverse the blinding of a number by cooperating with the signer. This has straightforward applications in
fair payment systems. By using fair blind signatures in place of blind signatures in any payment system, the
bank can cooperate with the judge to identify the sender of any payment so long as they store the numbers
that are deposited and the blinded numbers that are withdrawn. This system is more convenient to use than
Camenisch anonymous accounts system. However, it cannot list all of the coins owned by a particular user.
This system is thus SA*F,.

4 Basic signature protocols

This section briefly recalls a set of protocols used as basic blocks in constructing various payment sys-
tems to be discussed later. As a notation for interactive protocols between entities U and V, we write
Protocol(U(x), V(y)) where x is the input by U and y is the input by V. If the protocol returns some
value z to U, we write that the protocol returns U(z). We need a basic signature scheme that is unforgeable
against adaptive chosen-message attacks [17]. This scheme will allow a user U to have a number N signed
by some authority A.

Protocol BasicSignature

1. U sends N to A.

2. A signs N with skA to generate {N}skA and sends this value back to U.

3. Anyone with pkA can verify that {N}skA was signed by an entity with access to skA.

Protocol RSASetup(U(1k))

1. U generates two random primes p and q, p! = q and computes n = pq

2. U picks random e where 1 < e < (p - 1)(q - 1) and gcd(e, (p - 1), (q - 1)) = 1

3. U computes d where 1 < d < (p - 1)(q - 1) and ed = 1 mod (p- 1)(q - 1)

4. U((n,e), d)

Protocol RSASign(U(m, d))

1. U computes s = hash(m)d mod n

2. Return the signature U(s).

Protocol RSA Verify(V(s, (n, e)))

1. Return V(TRUE) if hash(m) = se mod n, otherwise return V(FALSE).

Figure 4: Basic and RSA signature schemes

Figure 4 describes the structure of a basic signature scheme, and two implementations. The basic sig-
nature scheme allows a user U to prove to anyone that a number N was signed by some authority A with

knowledge of skA without revealing SkA. The most widely used implementation of this scheme was pro-
posed by Rivest, Shamir, and Adleman [15] which is GMR secure under the strong RSA assumption in the
random oracle model. We use a hash function on the message before signing it to protect against malleability
attacks [1].

We will also need a blind signature scheme. These types of schemes allow an authority to sign a value
without knowing what it is. In this scheme, a user U can again have a number N signed by an authority A,
without A ever seeing or able to compute N.

Protocol BlindSignature

1. U generates a blinding factor M.
2. U blinds N with M to obtain [N]M.
3. U sends [N]M to A.

4. A computes {[N]M }skA and sends it to U.

5. U unblinds {I[N]M}skA with M to obtain {N}skA.

Protocol ChaumBlindSetup(A(1k))

1. A chooses n = pq where p and q are RSA primes.
2. A releases (n, e) as a public key, where e is a prime less than (p - 1)(q - 1).
3. A keeps (p, q, d) as a secret key, where d = e- 1 mod (p - 1)(q - 1).
4. Return A((n, e), (p, q, d))

Protocol ChaumBlindSign(U(N), A(sk = (p, q, d)))

1. U picks a blinding factor b mod n and uses it to blind N as mB = behash(N) mod n and sends it
to A.

2. A computes VB = mdB mod n and returns it to U.

3. Return the signature U(v = Vbb - 1 mod n).

Protocol ChaumBlindVerify(V (N, v, pk = (n, e)))

1. Return V(TRUE) if ve = hash(N) mod n, otherwise return V(FALSE).

Figure 5: Basic and Chaum's blind signature

Figure 5 shows the structure of a blind signature protocol, and one implementation by Chaum [4]. In
addition to signing, these protocols enable the authority A to sign a number N without ever knowing its
value. The top part of the figure shows the basic blind signature scheme. In our system, we will use the
scheme proposed by Chaum, which is secure under the strong RSA assumption.

However, thus far, this scheme is only proven to be secure against forgeries up until an adversary has
obtained some number I of signatures, where 1 is poly-logarithmically bounded on the security parameter.
Pointcheval provides a method to extend existing blind signatures to provably protect against forgery attacks
where 1 is bounded polynomially. However, it has the further requirement that there exist a neutral third
party to moderate the transaction between the authority and the user [13]. For payment systems, this can
be awkward. Thus, for our purposes, we assume that the bank will use Chaum's system and simply change

its public and private keys after having given out a set number of signatures so as to protect itself against
forgeries.

Finally, we will need a group signature scheme that allows any member of a group of users to generate a
signature for a value, and have their identity protected until opened by a group owner. This scheme includes
a group owner G and n group members {G1...G }.

Figure 6 shows the group signature protocol, first proposed by Chaum et al. [5], to allow a group of
authorities G = {G 1...G,}, of size n, to produce signatures for the same public key. A single public key
pkG can be used to verify that some secret key skG, was used to sign the number N, but cannot be used
to identify which. A secret key skG can be used to identify the key that was used. In our system, we use
the group signature protocol by Ateniese, Camenisch, Joye, and Tsudik [6]. This protocol is shown in the
lower part of the figure. It is secure under the Strong RSA assumption and the Decisional Diffie-Hellman
assumption in the random oracle model. The assumed security parameters for this protocol are: E > 1, the
tightness of the group signature, k, the size of the output of a hash function hash(x), and lp, the size of the
group signature modulus.

5 The SAFCT payment system

In this section, we show how to use group signatures to extend the Burk-Pfitzmann system to provide both
online anonymous transfer and fairness. We will make use of RSA signatures and the group signature
scheme outlined in section 4, so our system is based on the strong RSA assumption. Users are required to
identify themselves to the judge, before sending and receiving anonymous cash. The judge uses a group
signature scheme and grants a group secret key to each identified user, keeping the master key for himself.
The judge is responsible for keeping the identity of each user in relation to his secret key. Users use their
group secret keys to sign transactions with the bank. When a single transaction needs to be traced, the bank
can show the record of this transaction to the judge, who then uses his master key to identify both the sender
and receiver. Note that no communication is necessary with the judge except when registering a new account
and tracing transactions. In addition, single transactions can be traced independently from others.

5.1 The basic SAFCT protocols

Figure 7 shows the protocols in the SAFCT system. We assume that coins are of fixed value although an
extension for multiple coin values is straightforward. Henceforth, we will refer to two users U and V, the
bank B, and the judge J. The judge J keeps a group signature secret key skj, and a publically available
public key pkj. The individual group signatures will be given out to users to keep, so U holds sky, which
is a group secret signature in J's group. The bank B maintains a list of valid coins, and a history of all coin
transfers.

Note that such a history can become cumbersome over time, but is necessary so the bank can prove that
users no longer own signed coins. Alternatively, coins could be made to include a signed expiration date,
so that the bank would not be forced to keep a history of all coins ever made. This would not overly restrict
users, since they could easily transfer coins to themselves to renew the expiration dates.

Below are the protocols:

* Setup: The bank must setup a pair of keys for both RSA signatures used to verify coin transfers, and
Chaum blind signatures used to verify coin withdrawals. The judge sets up a group for ACJT group
signatures. Recall from section 4 that the Chaum blind signatures scheme only guarantees security if
it is used to generate a number of signatures bounded polylogarithmically in the security parameter.

Protocol GroupSignature

1. Gi signs N by computing {N}skG and sends it to U.

2. U can now have {N}skGi validated by pkG.
3. skG and {N}skG0 are sufficient to compute Gi.

Protocol A CJTGroupSetup (G(1k, 1Gp))

1. G chooses lengths A1 > e(A2 + k) + 2, A2 > 41p, "/1 > e(72 + k), and 72 > A1 + 2

2. Let V = (2 1 - 2A2 , 2A1 A 2A2) and T = (2'1 - 2'2, 271 + 2-2).

3. G picks lp-bit primes p', q' such that p = 2p' + 1 and q = 2q' + 1 are prime. Let n = pq.

4. G chooses random elements a, ao, g, h from the group of quadratic residues modulo n.

5. G chooses x from the group of quadratic residues modulo p'q'.

6. Return G(pk, sk) such that pk = (n, a, ao, g, h, y = gx mod n) and sk = (p', q', x).

Protocol ACJTGroupJoin(U(), G(pk = (n, a, ao, g, h, y = gX mod n)))

1. U chooses random xu from V, and computes Yu = axz mod n, where Yu is a quadratic residue of
n.

2. G computes (Au, eU) where eu is a random prime from T and Au = (yuao)1/eU mod n.

3. Return U(xu, Au), G(eu)

Protocol A CJTGroupSign(U(N, (xU, Au)))

1. U picks random w of 21, bits and computes:
Ti = Auyw mod n, T2 = g mod n, and T3 = geuhw mod n.

2. U picks random numbers:
rl with E(72 + k) bits, T2 with E(A2 + k) bits,
r3 with e(7I + 21p + k + 1) bits, and r4 with C(21, + k) bits

3. U computes:
dI = T / (ar2yr3) mod n, d2 = T 1 / gr3s mod n,

d3 = gr4 mod n, d4 grlhr4 mod n, and
c = hash(glhl ly laol a| TllT2 JT3I dll d2I Id3 Id4 IN)

4. U computes sl = rl - c(eu = 2"1), s2 = r2 - c(xzu = 2A1) , s3 = r3 - ceuw, and s4 = r4 - cw

5. Return U(c, s1 , s2, s3, 4,T1,T2,T3)

Protocol A CJTGroup Verify(V((c, Sl , 2, S3, s4, T, T2, T3), pk = (n, a, ao, g, h, y = gX mod n)))

1. V computes vi = aTSt-c2z /(S2-c2 1yS3) mod n, v2 = Ts-c2 1/S3 mod n, v3 = TcgS4

mod n, v 4 T3cg -c2 1hs4 mod n, and c' = hash(gi hl y lao lai T, (T21IT3 IVl IV12 v3 I V41N)

2. Return V(TRUE) if c = c', otherwise return V(FALSE).

Protocol A CJTGroupOpen(G((c, s , s2 ,s 3 ,8 4, T1, T2, T3), sk = (p', q', x)))

1. Return G(Au = TI/T2 mod n).

Figure 6: ACJT group signature

13

Protocol Setup:

1. The judge J computes (pkj, skj) = A CJTGroupSetup(1k, E, i1p)

2. The bank B computes (pkB, skB) = RSASetup(lk)
3. B computes (pkb , skb) = ChaumBlindSetup(lk)

Protocol Register:

1. User U and J compute sku = ACJTGroupJoin(UO, J(skj))

Protocol Purchase:

1. User U computes (pkc, skc) = RSASetup(lk)
2. U pays B and they compute askb (pkc) = ChaumBlindSign (U(pkc), B(skb))

3. U computes asko (pkc) = ACJTGroupSign(pkc, sku)

4. U sends csk, (pkc) and csku (pkc) to B anonymously

5. B checks that ChaumBlindVerify(aokb (pkc), pks) = true

6. B checks that A CJTGroup Verify(asku (pkc), pkj) = true

7. B now computes askB (pkc) = RSASign(pkc, skB) and returns it to U

8. U keeps (Osku (pkc), cskB (pkc)) as a coin.

Protocol Transfer:

1. User V computes (pkcv, skcv) = RSASetup(1k)
2. V computes askv (pkcv) = A CJTGroupSign (pkcv, sky) and sends it to U

3. U computes Orskcu (pkcu, pkcv) = RSASign((pkcu , pkcv), skc)

4. V sends askcu ((pkcu, pkcv), Oskv (pkcv)) to B

5. B checks that RSA Verify(aoskcu (pkcu , pkcv), pkc,) = true

6. B checks that A CJTGroup Verify(Uskv (pkcv), pkj) = true

7. B keeps Uskcu (pkcu, pkcv) as proof this coin has been relinquished

8. The bank now computes rskB (pkcv) = RSASign(pkcv, skB) and returns it to V

9. V keeps (askv (pkcv), UskB (pkcv)) as a coin.

Protocol Deposit:

1. User U chooses a coin pkc and sends 'skc (pkc) = RSASign(pkc, skc) to the bank.

2. The bank checks that RSA Verify(Uskc (pkc), skc) = true

3. B keeps askc (pkc) as proof this coin has been relinquished and pays U

Protocol Trace:

1. B wishes to have coin (Usku (pkcu), UskB (pkcu)) traced to identify U, the owner of the coin

2. B sends Usku (pkc) to J.

3. J computes U = A CJTGroupOpen(osku (pkc))

Figure 7: The SAFCT payment system

Thus, for safe usage, the bank must choose a new blind signature secret key after using it to create this
many signatures. For the sake of simplicity, we write the protocols assuming the bank is operating
within this number of signatures.

* Register: To register with the system, a user U must join the group managed by J.

* Purchase: When user U wishes to purchase a coin from the bank B, U randomly generates a pub-
lic/private key pair pkc and skc. He holds skc as the coin representation while blinding pkc and
sending it to the bank with payment to get a blind signature. U anonymously sends this signature and
his pkc signed by his group private key back to B. B uses the group public key to verify that U is a
registered user, verifies his own blind signature, then adds pkc to the valid coin list. B also signs this
coin and returns the signature to U. In cases of disputes, the signature verifies that U still owns the
coin unless the bank can produce another signature by pkc shwoing that this coin has been transferred
or deposited,

* Transfer: When U pays V a coin, V first randomly generates a public/private key pair pkcv and skcv
and holds skcv. He signs pkcv with his group secret key and transmits it to U. U chooses a coin
CU to pay V with. He signs and sends a transfer request identifying pkcu and pkcv, the sending
and receiving coins. This, along with the signature by V's secret group key are signed with skcu and
sent to B. B confirms that this request was authorized by a valid coin's owner by verifying this with
pkcu and checking that pkcu is on the coin list. B also verifies that the recipient is a traceable user
by verifying the signature of pkc, with the group public key. B then removes pkc, from the list and
adds pkcv. B also stores a record of this transaction and returns to V a signed proof of coin creation
for dispute resolution.

* Deposit: When V wishes to deposit a coin for cash, he sends both the coin's secret and public keys to
the bank. B checks that this is a valid coin, then removes the coin from the list and credits V's bank
account.

* Trace: If B and J wish to trace a suspicious transfer from pkc, to pkcv, B reveals to J the record
of this transfer, along with the stored signatures which were generated with the secret group signature
keys held by U and V. Since J holds the group master key, he can identify the user whose key was
used to generate the coin.

5.2 Analysis

We will now show that the SAFcT satisfies the SAFcT properties.

5.2.1 Assumptions

There are a number of well-known assumptions we will need to make in order to prove our system meets all
of the SAFCT properties. This need arises from the signature systems we used as building blocks.

* Strong RSA Assumption: Given integers N, e, and C s.t. N is the product of two primes, 2 < e < N
is coprime to phi(N), and 0 <= C < N, it is intractible to find integer P s.t. pe = C mod N. At
the time of this writing, there is no known way to solve this problem more efficiently than to factor
N, which is hard for large N.

* Decisional Diffie-Hellman Assumption: Within a cyclic group G of order q, for a randomly chosen
generator g and random (a, b, c) such 0 <= a < q, O <= b < q, and 0 <= c < q, (g, ga, 9b, g ab) and

(g, ga, g b, gC) are computationally indistinguishable. This assumption is believed to be true as long as
taking discrete logs in G is hard.

These assumptions are further made within the Random Oracle Model. This is a model where we some
random oracle (typically a hash function) behaves in the following way:

* If given a query x that it has not seen before, it returns a random response with a uniform probability
being anywhere within the output space.

* If given a query x s.t. it has been given the query x before and returned y, it returns y.

5.2.2 Security

The SAFcT payment system provides security by protecting the bank and user's value with RSA signatures
in the same manner as in the Burk-Pfitzmann system.

Theorem 1 Under the strong RSA assumption in the random oracle model, no group of entities without the
bank can create a valid coin even if they have compromised all users and all keys except for that of the bank
and may adaptively choose coins to observe.

Proof: Assume for contradiction that an adversary A, given the judge's private key skj, the bank's
public keys pkB and pkb , a set of all users' private keys (sku, ..., sku,), and the ability to act within the
system as a complete set of corrupted users, can create a valid coin with the bank. We show that this enables
construction of an adversary A', that can break the security of RSA signatures with hashes, which are also
GMR secure [17] under the strong RSA assumption in the random oracle model.

A' is constructed as follows:
First, A' will perfectly create a simulated world of the SAFcT payment system. It runs the setup protocol

of the SAFcT system choosing keys for the bank pkB, skB, pkb , and sk b . It will also run the setup protocol
for some set of corrupted users U1... Un.

A' will now engage in the first stage of a challenge session with A, in which A will request that a series
of purchases, transfers, and deposits can occur between corrupted users.

* Purchase: If U, is to purchase a coin pkc., A' must produce (asku, (pkc.), IskB (pkc.)). Since A'
knows sku,, and can ask for any signatures by skB, it can do this.

* Transfer: If Ux is to transfer a coin pkc, into a coin pkc, owned by Uy, A' must produce

(askuy (pkc,), skB (pkcc), askc= (pkc., pkcy)). Since A' knows (sku,, skc.), and can ask for any
signatures by skB, it can do this.

* Deposit: Trivial, since A' needs not produce any new signatures.

A must now produce a valid coin X, consisting of (asku (pkx), askB (pkx). A' will then return askB (pkx)
as a valid signature by skB, thus breaking the security of RSA.

Theorem 2 Under the strong RSA assumption in the random oracle model, no group of entities without the

owner of a coin can cause that coin to be invalidated even if they have compromised all users and all keys
except for that of the coin (even including that of the owner), and may adaptively choose other coins to
observe.

Proof: Ownership of a coin pkc in the the SAFcT system is defined to be given to the person who
knows skc. Assume for contradiction that an adversary A, given the judge's private key skj, the bank's
public and private keys (pkB, skB) and (pkb , skb), a set of all users' private keys (skux, ..., sku,), and the
ability to act within the system as a set of corrupted users, can invalidate a coin pkc owned by Uh after
adaptively viewing any coins except for this coin. We show that this enables construction of an adversary
A', that can break the security of RSA signatures with hashes, which are also GMR secure [17] under the
strong RSA assumption in the random oracle model.

A' is constructed as follows:
First, A' will perfectly create a simulated world of the SAFcT payment system. It runs the setup protocol

of the SAFCT system choosing keys for the bank pkB, skB, pkb , and sk b . It will also run the setup protocol
for some set of corrupted users U1...Un, and one honest user Uh

A' will now engage in the first stage of a challenge session with A, in which A will request that a series
of purchases, transfers, and deposits can occur between corrupted users.

* Purchase: If Uz is to purchase a coin pkc., A' must produce (askU, (pkc), askB (pkc)). Since A'
knows sku., and can ask for any signatures by skB, it can do this.

* Transfer: If U. is to transfer a coin pkc. into a coin pkc, owned by Uy, A' must produce
(Usku, (pkc), askB (pkc), a kc. (pkc., pkc,)). Since A' knows (skuy, skc.), and can ask for any
signatures by skB, it can do this.

* Deposit: Trivial, since A' needs not produce any new signatures.

A new coin will now be placed into the system in the ownership of Uh by one of the following methods:

* Purchase: Uh will purchase a coin pkc, where skc is the secret key given as input to A'. A' must
produce (UskU. (pkc_), CskB (pkc.)). Since A' knows skuv and skB, it can do this.

* Transfer: A corrupted user Uz will transfer a coin pkc. into a coin pkc owned by Uh, where skc is
the secret key given as input to A'. A' must produce (asku, (pkcy), UskB (pkcg), askcx (pkc., pkcy)).
Since A' knows (sku,, skc., skB), it can do this.

Finally, A will now invalidate a coin in one of two ways:

* Deposit: A will compute a~sk c (pkc) to give to the bank to invalidate the coin pkc.

* Transfer: A will produce askc (pkc, pkc,) for some pkct.

In either case, this message will be output by A', breaking RSA security.

5.2.3 Anonymity

The SAFcT payment system maintains the anonymous attribute of the Burk-Pfitzmann system due to the
nature of group signatures. To show this, we will use the following result by Ateniese et al. [6]

Theorem 3 Under the strong RSA assumption and the DDH assumption in the random oracle model, the
group signature given by Ateniese, Camenisch, Joye, and Tsudik is resistant to the following two-stage
game: In the first stage, an adversary is given access to all members' secret keys and an oracle that will

reveal the authorship of any group signatures. It will choose two identities io and il, a message m and some
state information S. In the second stage, the adversary is given a group signature sig of m by io or ii with
equal probability. The adversary may continue to query the authors of any signatures besides sig. It cannot
guess the true identity with probability greater than 1/2 + negl(k).

Proof: Proven by Ateniese et. al. [6].

Theorem 4 Under the strong RSA assumption, the SAFeT payment system is weakly anonymous.

Proof: Assume for contradiction that an adversary A, given the judge's public key pkj, the bank's
public and secret keys (pkB, skB) and (pkb , sk b), a set of all users' public keys (pku1 , ..., pku,,), and a
set of some users' secret keys (skru, ..., sku,), can beat the game outlined for weak anonymity in section 2
with non-negligible advantage E. We show that this enables construction of an adversary A', which given
the group public key pk, and a set of all the users' secret keys (skuy, ..., sku,) of an ACJT group signature
system can break the game in theorem 5.2.3 with advantage E. A' is constructed as follows:

First, A' will perfectly create a simulated world of the SAFcT payment system. It runs the setup protocol
of the SAFcT system choosing keys for the bank pkB, skB, pkbB, and sk b . The judge's portion of the setup
protocol is left out, but it is assigned pkj equal to the challenge key pk. Furthermore, for each skul A'
receives, it mimics the register protocol, assigning each user a secret key to match the challenge skui.

A' will now engage in the first stage of a challenge session with A, in which A will request that a series
of purchases, transfers, and deposits can occur.

* Purchase: If U, is to purchase a coin pkc,, A' must produce (asktu (pkc.), skk, (pkc)). Since A'
knows (sku., SkB), it can do this.

* Transfer: If Ux is to transfer a coin pkc, into a coin pkc, owned by Uy, A' must produce

(asku, (pkc), UskB (pkc,), askc, (pkc , pkc,)). Since A' knows (skuv, sks, skc), it can do this.

* Deposit: Trivial, since A' needs not produce any new signatures.

A' will then engage in the second stage of a challenge session with A, in which A will choose users

(uo, ul, u2) where uo possesses some coin c. A' must randomly select b E {1, 2} where c will be transferred

to Ub to become c'. It will then be transferred back to A, becoming c". A is then required to output a guess
b' E {1, 2} where b' = b with probability greater than 1/2 + E.

For the first transfer, A' must produce (skB, (pkAc), skc (pkc, pkc,)). It can do this, because it knows
(skB, skc). It must also produce UTskb (pkc,). To do this, it engages in its own challenge session where it
returns the message pk,, and requests that it be signed by either ul or u2. For the second transfer, it passes

askub (pkc,) back to A, along with Usk, (pkc,,), produced with skB.
A is now required to output b', and A' will output the same. Since A' perfectly simulates a world for A,

A' has the same advantage as A. Therefore, since A has non-negligible advantage, so too does A', which
contradicts theorem 5.2.3.

5.2.4 SAFcT

Theorem 5 Under the strong RSA assumption and the DDH assumption in the random oracle model, the
SAFcT system satisfies the SAFcT properties.

Proof: We know that the system has security and weak anonymity from theorems 1, 2, and 4. A system
is defined to have F, fairness if it contains an entity called the judge which can identify the owner of the
coin. The trace protocol of the SAFCT system allows the judge to do this because he holds the master
private key for the ACJT group by which every coin is signed. A system is defined to have transferability if
a coin can be respent by its recipient without the need to deposit it and purchase another at the bank. This
follows from the completeness of the transfer protocol.

6 SAFCT protocol extensions

6.1 Micropayments

Application of payments systems such as purchasing web content often generate a large volume of very small
payments called micropayments, pennies or even fractions of pennies. In such a case, the computational and
network resources of the bank must be considered so that the work of handling these payments does not
outweigh the value of the payments themselves. A payment system capable of efficiently dealing with small
payments is called a micropayment system.

Rivest [16] was first to propose the idea of using a probabilistic scheme for micropayment as follows.
Assume that each coin is valued at c dollars and let p be a positive value much less than 1. Then to handle a
payment of value pc dollars, the system allows a user to pay a merchant a coin with probability p. Thus, the
expected value of a payment is pc, but the bank is only involved in one out of every 1/p transactions on the
average, a significant load reduction. In fact, the bank handles about one transaction per c dollars. Thus, by
adjusting c, the bank can adjust how much work it must do per value handles.

6.1.1 MR1

Although there are many probabilistic payment systems, we need a model that does not require repeated
transactions between the sender and receiver, and that does not force either party to reveal information that
could potentially identify them. This is because our system aims to allow a probabilistic transfer of a coin
between two anonymous users who may or may not engage in multiple transfers.

We shall model our extension based on MR1, a recent probabilistic micropayment system introduced by
Micali and Rivest [12]. Let p < 1 be some probability value. MR1 makes use of a fixed public function
F() that takes as input arbitrary bit strings and outputs a random value between 0 and 1. Then if a user U
wishes to pay a user V, they agree on a string T which contains information about their transaction. This is
signed by U and given to V, who then signs that signature to generate av(au(T)). If F(v(o(r(T))) < p,
then the transaction is successful. Thus, the expected value of a payment in MR1 can be less than one coin.
Furthermore, the bank need only be involved in some small portion p of the total payments made.

MR1 relies on the use of a signature function that produces signatures indistinguishable from random bit
strings and is also deterministic. Micali and Rivest suggested using the RSA signature [15] which satisfies
these properties. A deterministic signature is defined strictly by the signing key and message, with no
additionaly randomness. Because of this U cannot cheat V because it must commit its signature before
knowing what final value will result from V's signature. Likewise, V cannot cheat U because it cannot
know what U's signature will look like before commiting the message, a description of the transaction T.

As a probabilistic micropayment protocol, MR1 is well suited to the SAFcT framework since, unlike
other non-probabilistic micropayment systems [7, 14], it does not require a user to obtain a large number
of "microcoins" that get collected into a macropayment, eliminating the need to change the types of coins
in circulation. Another advantage of MR1 is that a single transaction passes between a pair of users. This

Protocol Microtransfer:

1. 1 is a security parameter controlling the precision of probabilities of successful payment (1 should be
chosen such that 1 = O(logL) where L is the length of the RSA public keys in use)

2. p, the probability of successful payment, is agreed upon by U and V

3. U chooses a coin pkcu with which to pay and sends it to V

4. User V computes (pkcv, skcv) = RSASetup(lk)
5. V computes askv (pkcu, pkcv, p) = A CJTGroupSign(pkce, (pkcv, p), sky) and sends it to U
6. U checks that A CJT Verify(aUsk (pkcu, pkcv, p)) = true
7. U computes askcu (pkc , pkcv, p) = RSASign((pkc , pkcv, p), skc)

8. V checks that RSAVerify(askcu (pkc , pkcv , p)) = true

9. V computes Oskcv (askcw (pkcu, pkcv, p), p) = RSASign((Uskc (pkcu , pkcv , p), p), skcv), let 1
be the length of this signature

10. If F(askcv (oskcu (pkc, pkcv , p), p), 1) >= G(p, 1) then the payment is rejected. V informs U that
he may keep his coin, and the transfer ends.

11. Otherwise, V informs U that the transfer was successful and sends Uskcv (Uskcu (pkcu, pkcv, p), p))
and askcu ((pkcu, pkc , p), askv (pkcv)) to B.

12. B checks that F(Uskc (Uskcu (pkcu, pkcv ,p), p), 1) < G(p, 1), and that
RSAVerify (askc (askc, (pkcu, pkcv, p), p)) = true

13. B checks that RSA Verify(askcu (pkcu, pkcv, p), pkcu) = true
14. B checks that A CJTGroup Verify (askv (pkcv, p), pkj) = true

15. B keeps caskcv (askc (pkcu, pkcv, p), p) and Oskcu (pkcu, pkcv, p) as proof this coin has been re-
linquished

16. The bank now computes 0 kB (pkcv) = RSASign(pkcv, skB) and returns it to V

17. V keeps (Uskv (pkcv), asks (pkcv)) as a coin.

Figure 8: SAFCT Microtransfer Extension

is in contrast to some micropayment systems [14, 11] that require a history of payments between customer
and vendor which are eventually collected into a large macropayment. Finally, the MR1 protocol does not
require users to reveal their identities to each other, hence preserving anonymity.

6.1.2 Protocol

Our protocol makes use of a public function F(s, 1) which takes as input any arbitrary bit string s and based
on the low-order 1 bits of s returns an integer evenly distributed in the range [0, 2']. It also uses a public
function G(p, 1) which takes as input an arbitrary value p in the range (0, 1) and returns 21p rounded down
to the nearest integer.

Figure 8 shows the microtransfer protocol. This protocol is intended to be used in addition to the existing
SAFCT system, so the setup is the same. When U makes a micropayment to V, they must first agree on
p, a probability that dictates the quantity of the payment. U then chooses a coin with which to pay, and
sends pkc from that coin to V. V randomly generates a public/private key pair pkcv and skcv and holds
skc,. He signs both the sending coin and his new receiving coin with his group secret key and transmits it

to U. This serves as proof both that the judge can identify him, and as a commitment to use this coin for this
transaction in resolving later disputes.

U checks this signature, then signs and sends a transfer request identifying pkcu, pkc,, and p, the send-
ing and receiving coins and probability of transfer. This commits him to use this coin for this transaction.

V now signs this quantity with skcv. This final signature is passed to the public function F 0 , and
compared to the result of passing p to the public function G, both of which map to integers in the same
range. If the result is less, then the transfer succeeds, and the protocol continues. Otherwise V the transfer
fails, and V accepts the attempted transfer as payment (U possesses his group signature and can ask for
dispute resolution if he refuses to recognize this as payment).

This final signature, along with a signature of the transaction by skcu are sent to B. B confirms that
this request was authorized by a valid coin's owner by verifying this with pkcu and checking that pkcu is
on the coin list. B also verifies that the recipient is a traceable user by verifying the signature of pkcv with
the group public key. Finally, B verifies in the same manner that V did that the probabilistic transfer was a
success. B then removes pkcu from the list and adds pkcv. B also stores a record of this transaction and
returns to V a signed proof of coin creation for dispute resolution.

6.1.3 Analysis

The first thing to note is that since the buyer must show a coin to the seller regardless of whether or not
the transaction is successful, and that coin may be reused later if it was not, there is some anonymity is
lost since the seller might link multiple failed transactions to the same buyer. Because of this, this system
can only meet the weak anonymity property. However, a buyer can partially protect himself from this by
using different coins in multiple transactions with the same entity, and occasionally transferring his coins to
himself to refresh their keys.

In addition to the strict securities described in the basic SAFT properties which protect coin ownership
and regulate the existing coins in the system, it is necessary that neither the sender nor the receiver can
manipulate the probability of the success of the transaction unfairly.

Theorem 6 Under the strong RSA assumption, relative to a randomly chosen public key pk of size L, the
last clogL bits of an RSA signature using sk are computationally indistinguishable from a string of random
bits of the same size.

Proven by Alexi et al. [2].

Theorem 7 Under the strong RSA assumption, no input by the payer to the Microtransfer algorithm after
agreeing on the probability of success will alter that probability.

Proof: The only inputs U, the payer, are given in the algorithm are the choice of pkc from among
his coins to pay with, and the signature oskcu (pkcu, pkcv, p). It is clear that if the value of the input
Orskcv (askc (pkcu, pkcv,p), p) to F() can be modelled as a random oracle from the point of view of U,
then the probability of transfer remains fair.

U must pick his input pkc, which is the only portion of the signature Uskcv (O'skc u (pkcu, pkc, , p), P)
he can affect, without yet knowing the values pkcv or skcv. Since skcv is unknown to U, by the security
of RSA the resulting signature is random to U and thus the probability of transfer remains fair.

Theorem 8 Under the strong RSA assumption, no input by the payee to the Microtransfer algorithm after
agreeing on the probability of success will alter that probability.

Proof: Again, it is clear that if uskcv (°skcu (pkcu, pkcv, p), p) can be modelled as a random oracle
from the point of view of V, the payee, then the probability of transfer remains fair. V can only possibly
influence this signature with his choice of pkcv, which influences the value Uskcu (pkcu, pkcv, p) which is
signed, and his choice of skcv which is used to compute the signature.

Since skcu is unknown to V, the resulting signature askcu (pkcu, pkcv, p) is random or the strong RSA
assumption is false. It is proven by Alexi et. al. [2] that relative to a randomly chosen public key pk of size
L, the last clogL bits of a signature using sk are computationally indistinguishable from a string of random
bits of the same size. Thus, since V must choose the keys (pkcv, skcv) before seeing the random input

askcu (pkcu, pkcv, p), the final output of the signature Uskcv (aOskcu (pkcu , pkcv, p), p) must be random
as well. Therefore, the probability of transfer remains fair.

6.2 Offline transfer

We would also like to extend our system to allow for transfers which do not involve contacting the bank.
This can be useful when transactions need to occur in low connectivity situations. For example, a user
might bring his coins on removable media with him to a real store that is equipped to accept offline transfer
as payments.

However, it also potentially increases the risk of double spending, since there is no longer a central
authority in contact for each transaction to check if a coin has already been used. We will propose an
extension to our system that keeps track of offline transfers with a list of signatures for each transaction.
Since the coin contains a list of signatures, and the payment system is a fair system, the bank will eventually
be able to detect double spending once the coin is deposited, and the judge can identify the perpetrator.

6.2.1 Protocols

Our protocol is once again an extension of the basic SAFcT system. The extension includes two protocols.
The first is an Offline Transfer protocol, that is intended to allow a number of transfers to occur offline. It
removes either a regular online coin or an existing "offline coin" from the payer and generates an offline
coin for the payee.

This offline coin can be passed to a final Resolve protocol which resolves all of the offline transfers that
occured with the bank records and results in a normal coin that can be used in normal online transfers.

Our approach is straightforward; we append to the coin a list of signatures for each user that transfers
it to the next. In other words, a coin C has a history Ch which is a list that may be appended to. Once the
coin is finally deposited, the bank must verify each signature in Ch. In terms of computation, this does not
reduce work for the bank, but in terms of network communication, much is saved.

Figure 9 shows the offline transfer protocol. As with the microtransfer protocol, this is an extension to
the SAFcT system to allow a number of transfers to occur without contacting the bank.

To begin with, V must generate a new RSA signature pair to represent his new ownership of the coin.
He signs the public key with his group signature and transmits this to U. U chooses a coin with which to
pay V, and if this coin is not already an offline coin, he makes it one by adding to it an empty "history". He
transfers the coin to V by signing V's new signature pair with the coins old one. This signatures along with
the group signature by U are appended to the coin's history which is given in full to V.

To resolve this coin and return it to a normal coin without history, a user transfers the coin's entire history
to B. This history will contain a group signature by each owner, which can be uniformly verified with the
group public key. It will also contain a RSA signature by each public key that has been used to transfer the
coin. The current public key of the coin should be signed by the last signature in the history, which will then

Protocol OfflineTransfer:

1. User V computes (pkcv, skc) = RSASetup()
2. V computes askv (pkc,) = A CJTGroupSign (pkcv , sky)
3. User U chooses coin Cu with which to pay
4. Cu is made into an offline coin: If it is an online coin (i.e. it has no historyCuh), then Cu is trans-

formed by adding an empty history CUh. Thus Cu = (Usku (pkcu), OskB (pkcu), CUh)

5. U computes Uskcu (pkcu , pkcv) = RSASign((pkcv , pkcv), skc)

6. U sends USkcu (pkcu, pkcv), CUh, and asku (pkcu) to V
7. V checks that RSA Verify (Uskcu (pkcu , pkcv), pkcu)) = true
8. V checks that ACJTGroupVerify(ask(pkcu),pkj)) = true

9. V sets Cvyh = CUh and appends (askc (pkcu, pkcv), pkc), (Oskv (pkcU), pkj))
10. V keeps as a coin Cv = (Uskv (pkcv), askB (pkcu), CVh) (note that the signature by skB remains

for the original coin, which can be traced back to in Cvh)

Protocol Resolve:

1. U sends an offline coin C = (asku (pkc), 7 skB (pkc), Ch) to B
2. B verifies all signatures in Ch, if a RSA signature is invalid, or the bank records show that it originated

from a false coin, then the signer's group signature is traced. If that signature is unavailable or false,
then the user who accepted it is traced and held responsible for paying the final recipient. This
continues until a valid signature is found, or all of the signatures including the final recipient's are
invalid in which case the coin is valueless and ignored.

3. B checks that A CJTGroup Verify(arsku (pkc), pkj)) = true
4. B now computes asks (pkc) = RSASign(pkc, skB) and returns it to U
5. B stores all signatures as if each transaction had been an online transfer
6. U keeps (Usku (pkc), askB (pkc)) as a coin.

Figure 9: Offline Transfer

recursively be signed by each signature before it until the first signature in the history which was produced
by either a normal transfer or purchase and thus will be held by the bank. Since these intervals contain each
public key, each RSA signature should be verifiable.

If the same coin is used more than once, or if a payment is made with a fake coin, the bank's records
will show this in the same way it would detect it with online transfers. If a coin is doublespent, then the first
time it is resolved, the transfer will be successful. At this point, the bank records will be updated to show
that the originating coin, and all subsequent coins in the coin history, are no longer valid coins. Thus, when
the second coin is resolved, it will be handled in the same way as a forged coin.

Since each user is required to obtain and verify a group signature from the user paying him a coin, we
can always hold the owner of the earliest valid group signature responsible for forgeries. It is necessary to
hold this person responsible, otherwise a user can always invent a history of transactions leading to himself
and claim that he was the one who was cheated. If a user wishes to protect himself, he must always ensure
that the person he receives an offline transfer from has given him a valid group signature.

Once all signatures have been verified, the bank gives its own signature, and the coin's history is removed
and stored at the bank records, making the coin a valid online coin.

6.2.2 Analysis

In terms of security, allowing offline transfers weakens our system into a weaklysecure system, since
double spending will not be immediately prevented, but rather detected when a coin is eventually resolved
before depositing. We must show that improper behaviors will be eventually detected.

Theorem 9 Under the strong RSA assumption, a group of users conspires to transfer offline an invalid coin
to an honest user one of them will be detected.

Proof: For a coin C, the coin history Ch contains a list of group signatures of every owner the coin was
transferred through since last it was a valid online coin, in order. The initial coin contains a signature by
skB which is verified by pkB during the Resolve protocol. Thus, if the transfer begins with an invalid coin,
the verification must fail and the bank will detect this or the strong RSA assumption is false. At this point,
the bank will possess a group signature by the initial transferer Uo, who must be one of the conspiring users.
By the correctness of ACJT group signatures, this signature can be opened to identify Uo.

If the group signature is invalid, then U1, the user that the coin was next transferred to, would not have
accepted the coin, according to the Offlinetransfer protocol. If he did accept it, then by definition he too is
a conspiring malicious user, and his group signature will be in Ch as well. Either his signature is correct and
he can be traced, or the person he transferred it to is also a conspiring malicious user. This continues until
we have a valid signature of a malicious user Ui, or until the coin is transferred to the malicious user Un
who initiated the Resolve protocol, or Uh, an honest user. If we have the signature of Ui, by the correctness
of ACJT group signatures, this signature can be opened to identify Ui.

According to the Offlinetransfer protocol, as an honest user Uh will attempt to verify the signature of
Uh-1 the malicious user who sent it to him without providing a valid signature. By the security of ACJT
group signatures, this verification will fail and thus Uh will not accept the coin. If Un as well did not provide
a valid group signature, then when the bank attempts to verify it, as in the Resolve protocol, by the security
of ACJT group signatures, the protocol will fail and the coin will not be converted into a valid online coin.
Thus, they cannot transfer this coin any further to an honest user.

7 Performance

7.1 Implementation

Our server, client, and judge for the SAFT payment system are implemented in Java. We have chosen this
platform because it has a number of existing libraries for many of the basic signature systems we need to
use as building blocks for our payment system, and is easy to develop in. Source code is available at

http://web.mit.edu/bdv/www/saft
The server and client are coded to run the online protocol without offline transfer and micropayment

extensions. It consists of three entities:

* Bank: A server application that acts as the bank. On startup, it engages in the Setup protocol. It then
maintains a list of valid coins in a hash table using their public keys as keys, and listens for requests
on a single port. Requests arrive flagged as Register, Purchase, Transfer, and Deposit protocols. It

runs with a Java GUI open that displays and logs all incoming requests. Users can also select items
from the log to have the Bank send a Trace request to the judge which will display a user ID in a
popup window.

* User: A client application that acts as a user. On startup, it must be given an IP and port address
for the judge, so that it may request that the Judge participate in the Register protocol, and for the
bank. In this implementation, its ID is simply its own IP address and a port it uses to receive Transfer
requests. It then maintain a list of coins owned by its user, visible in a GUI, and can request that the
Bank participate in Purchase and Deposit protocols. It can also make and listen for requests by or
of other users to engage in the Transfer protocol, for which it must also interact with the Bank. To
do these actions it must be given the IP and port address of the Bank or of another user (their ID).

* Judge: A server application that acts as the judge. On startup, it must engage in the Setup protocol. It
then maintains a list of registered users, and listens for requests by the Bank to engage in the Trace
protocol, and requests by users to engage in the Register protocol. In the current implementation,
it will respond to any Trace requests. In a practical situation, it should contain some mechanism to
verify the identity of the authority making requests.

7.2 Results

All tests were run on a Pentium 4-m 1.2 GHz processor with 512MB RAM running the Windows XP
Professional Operating System and the J2SE Runtime Environment 5.0 Update 2. All users and the bank
server were simulated on the same machine. As such, our data does not reflect network transfer times, which
in a practical situation would likely scale with coin sizes. Our system was only capable of measuring timing
to a precision of 10ms. Times are listed in increments of greater precision because each running time was
measured 5 times with an average taken. Results are shown in the table below:

Table 1: Running time (ms) for SAFT protocols
Users Bank Setup Judge Setup Register Purchase Transfer Deposit Trace
1 668 280 216 584 688 38 52
10 670 282 216 582 684 40 54
100 668 278 214 582 684 38 52
1000 672 280 216 582 686 40 52

As the Table 1 shows, the running times of the protocols did not vary much by the number of users.
Similarly, running times generally did not vary with number of coins in the system, with coins of up to
1000. We did not have resources to test, but we speculate that the trace and register protocols might slow
down marginally once a number of users reaches an amount that would impact the performance of the
hashtables used to store them. Similarly, purchase, transfer, and deposit might slow down marginally with
extremely large numbers of coins.

The slowest running protocols were the Purchase and Transfer protocols, which required group signa-
ture and verification and also RSA key generation. Also, the one time Setup protocol for the bank requires
the generation of signatures for both RSA and RSA blind signatures. Finally, Deposit and Trace, the only
protocols which did not involve any sort of key generation or group signatures, were the fastest.

Coin size was static and did not vary with number of users. Table 2 shows the space used by each entity
to store information about one coin.

Table 2: Memory use (bytes) to store one coin in the SAFT system
User Bank (active coin) Bank (spent coin)
1663 901 1191

8 Conclusion

We outlined the SAFT properties of security, anonymity, fairness, and transferability and discussed how
a number of current systems satisfied these properties. We then presented a method for acheiving fair and
transferable ECash based on previously known group signature schemes and provided an implementation
and performance data for this method. This ECash system satisfies more of the SAFT properties than any
other currently known system. This method was implemented as a payment system in Java.

It allows for the flexibility and privacy fundamental to electronic commerce, while providing an av-
enue for law enforcement to expose those users who abuse the system for illegal activities. Additionally,
extensions to this system were discussed to allow for probabilistic payment and offline payment.

References

[1] S.A. Vanstone A.J. Menezes, P.C. van Oorschot. Handbook of Applied Cryptography. CRC Press,
ISBN: 0-8493-8523-7, 1996.

[2] W. Alexi, B. Chor, O. Goldenreich, and C.P. Schnorr. RSA/Rabin functions: Certain parts are as hard
as the whole. In Siam Journal on Computing, volume 17/2, pages 194-209. Springer-Verlag, 1988.

[3] H. Burk and A. Pfitzmann. Digital payment systems enabling security and unobservability. Computers
& Security, 8/5:399-416, 1989.

[4] D. Chaum. Blind signature system. In Advances in Cryptology: CRYPTO '83, pages 153-156. Plenum
Publishing, 1984.

[5] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology: EUROCRYPT '91, volume
547, pages 257-265. Springer-Verlag, 1991.

[6] M. Joye G. Ateniese, J. Camenisch and G. Tsudik. A practical and provably secure coalition-resistant
group signature scheme. In Proceedings of the 20th Annual International Cryptology Conference on
Advances in Cryptology: CRYPTO '00, volume 1880, pages 255-270. Springer-Verlag, 2000.

[7] S. Glassman and et. al. M. Manasse. The millicent protocol for inexpensive electronic commerce.
In World Wide Web Journal, Fourth International World Wide Web Conference Proceedings, pages
603-618. O'Reilly, 1995.

[8] J.M. Piveteau J. Camenisch and M. Stadler. An efficient fair payment system. In Proceedings of the
3rd ACM conference on Computer and communications security: CCS '96, pages 88-94. ACM Press,
1996.

[9] J. Solinas L. Law, S. Sabett. How to make a mint: The cryptography of anonymous electronic cash.
National Security Agency, Office of Information Security Research and Technology, June 18, 1996.

[10] J. Piveteau M. Stadler and J. Camenisch. Fair blind signatures. In Advances in Cryptology: EURO-
CRYPT '95, volume 921, pages 209-219. Springer-Verlag, 1995.

[11] W. Mao. A simple cash payment technique for the internet. In Proceedings 1996 European Symposium
on Research in Computer Science: ESORICS '96. Springer-Verlag, 1996.

[12] S. Micali and R.L. Rivest. Micropayments revisited. In Proceedings of the The Cryptographer's Track
at the RSA Conference on Topics in Cryptology: CT-RSA '02, volume 2271, pages 149-163. Springer-
Verlag, 2002.

[13] David Pointcheval. Strengthened security for blind signatures. In Advances in Cryptology: EURO-
CRYPT '98, volume 1403, pages 391-405. Springer-Verlag, 1998.

[14] R. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment schemes. In Proceed-
ings of the International Workshop on Security Protocols, volume 1189, pages 69-87. Springer-Verlag,
1997.

[15] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital signatures and public key
cryptosystems. In Communications of the ACM, volume 21/2, pages 120-126. ACM Press, 1978.

[16] Ronald L. Rivest. Electronic lottery tickets as micropayments. In Proceedings of the First International
Conference on Financial Cryptography: FC '97, volume 1318, pages 307-314. Springer-Verlag, 1997.

[17] S. Micali S. Goldwasser and R. Rivest. A digital signature scheme secure against chosen message
attacks. In SIAM Journal on Computing: SIAM '88, volume 17(2), pages 231-308, 1988.

[18] Daniel R. Simon. Anonymous communication and anonymous cash. In Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology: CRYPTO '96, volume 1109, pages
61-73. Springer-Verlag, 1996.

