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ABSTRACT

A simple slender-ship wave resistance formula and
the related approximations of Michell, Hogner and Yim
are compared to one another. Differences between these
four wave resistance approximations reside in that the
waterline integral is included and the thin-ship approxi-
mation is used in some of the approximations and not in
the others. Calculations are performed for several
Shull forms, namely a family of Wigley hulls, the Inui
hull, the parabolic strut used by Sharma, the high speed
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experimental measurements and to other numerical results.
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INTRODUCTION

The main object of this thesis is to present results

of wave-resistance calculations based on three simple

wave-resistance formulas. These are the "zeroth-order

slender-ship wave-resistance approximation given in

[1], the Hogner approximation, and the classical Michell

thin-ship approximation.

The zeroth-order slender-body approximation

corresponds to simply taking the velocity potential of

the disturbance flow caused by the ship as zero. This

wave-resistance formula involves a surface integral

over the ship hull surface and a line integral along

the ship waterline. The Hogner approximation is the

particular case of the zeroth-order approximation obtained

by neglecting the waterline integral. Finally, the

Michell approximation may be obtained as the thin-ship

limit of the Hogner approximation.

Numerical results are presented for a variety of

hull forms. Some of these are idealized mathematical

hull forms with fine ends, while others are more real

ship-like hull forms. The theoretical predictions given

by the three above-mentioned wave-resistance formulas

are compared to experimental measurements.



-8-

CHAPTER I

BASIC FORMULAS

A nondimensional wave resistance, R say, is

defined as R E R*/pV2L2 , where R* is the dimensional

resistance, g is the acceleration of gravity, p is the

density of water, V is the speed of the ship and L is a

reference length which will be taken as half the length

of the ship in this study. R can be evaluated by means

of the well known "Havelock wave-resistance formula"

4 "0 It2 2 -3/2 dt.R = (4F /w) IK(t) (t2) - 3/ 2 dt.(1-1)

0

where F is the Froude number based on the ship half

length, i.e. F = V/(gL)1/2

The function K(t) in formula (1-1) is the "Kochin

free-wave spectrum function." It is related to the

free wave pattern trailing behind the ship. In the

zeroth-order slender-ship approximation where # is taken

equal to zero [1], K(t) is given by

2K0 (t) = E(x,y,z;t)v( x)a(x)
h

+F2  E(x,y,0;t)v2 (x)p(s)ds (1-2)
c

where

E(x,y,z;t)=(l+t2 )F-4exp[zF- 2 (+t 2)

-i(xF-2+yF-2t) (l+t2 )1 / 2 (1-3)
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The significance of the various symbols will now

be explained. The z-axis is vertical, positive upwards,

with the undisturbed free surface taken as the plane

z=0, and the x-axis is parallel to the direction of

motion of the ship and pointing toward the ship stern.

The plane y=O corresponds to the ship center plane. The

coordinates x, y, z and indeed all the variables which

appear in this study are made nondimensional with

respect to the above defined characteristic length L.

The nondimensional coordinates x (x, y, z) are thus

defined as x=.X/L where X is dimensional. In the

surface integral in formula (1-2), (h) represents the

wetted-hull surface of the ship in position of rest,

da is the differential element of area of (h) and v(x)
-++

is defined as v(x) n(•x) .,where n(x) represents the

unit inward (that is, n is pointing towards the interior

of the ship) normal vector to (h) at point x of (h), and

i is the unit positive vector along the x axis. In

the line integral around the waterline (c), ds represents

the differential element of arc length of (c), v(s) is

defined as v(s) -E (s) -, where n(s) is the normal to (h)

at point s of (c), and i(.s) is defined as U(.s)E n' (s)'1,

where n is the unit inward normal vector to (c) in

the plane z=0 (see Figure 1-1).
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4k~

Figure 1-1

In the common case where the ship has port and starboard

symmetry, the above formula for the Kochin free-wave

spectrum function becomes

K0 (t) = (l1+t 2 )F-4exp[(l+t 2) 1 /2F-2(-ix+(l+t 2 ) 1/ 2 z]
h+

-2 2 1/2 -

cos(ytF- 2 (1+ t )12  v(x)da(x)

- (l+t2)F-2exp [ - F - 2 (1+t 2 ) 1/2ix]

cos(ytF -2(1+t2 )1/2 ) 2(s) (s)ds (1-4)
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In the hull surface integral in formula (1-4), (h+ )

represents the starboard half of the wetted surface (h),

that is the portion of the hull corresponding to y

positive. In the line integral, (c ) is the intersection

of (h+ ) with the plane z=0.

The waterline integral in (1-4) is especially impor-

tant for blunt hull forms (for which v and j are not

small at the bow and/or stern) for ship forms with small

draft, and in the low speed limit ([2],[3]).

If the ship is sufficiently "fine," that is if the

angle between the waterline (c) and the x-axis is

sufficiently small, we have v21jI<<1jv<<l. If the

line integral in formula (1-4) is neglected in comparison

with the surface integral, the Kochin free-wave spectrum

function KH say, becomes

KH(t)= (+t)F4expF-2 (l+t ) 1/2 (-ix+(l+t ) /2z)
h+

cos(ytF-2 (l+t ) 1 /2 v(x)da(x) (1-5)

KH(t) corresponds to the Hogner approximation. If the

ship is "thin," that is if y(x,z) is sufficiently small

that the term cos(ytF - 2 (1+t2 ) 1 / 2 ) may be approximated by

1, the Hogner "fine-ship approximation" KH(t) given in

equation (1-5) becomes the well known Michell "thin-ship

approximation" KM(t) say, which is given by
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KM(t) = (l+t 2 ) F 4expF-2 2l+t 2 11 /2

(.-ix +(1+t 2 ) 1/2z)]v()da (x) (1-6)

The "thin-ship approximation" y<<l used in deriving

(1-6) for KMCt) from the Hogner approximation (1-5) not'

only implies geometrical thinness, characterized by

e=B/L<<1 (where B is the dimensional half beam and L

the dimensional half length) but also "Froude thinness,"

E/F2< <l: the differences between RH and RM (the wave

resistance obtained by using KH and KM respectively in

(1-1)1 may be expected to be larger the bigger the beam

and the smaller the Froude number.

Another formula of interest is obtained by keeping

the waterline integral in (.1-41, but approximating the

term cos(ytF-2(l+t2 )1 / 2 ) by 1. (The ship is "thin,"

but we allow for the influence of "large" angle between

(c) and the x-axis at the bow and/or stern.) The ex-

pression for the Kochin free-wave spectrum function

becomes

112.

Ct
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This expression was actually used by Yim [4].

In the case where, in addition to port and starboard

symmetry, the ship hull has fore and aft symmetry, the

expressions for K0, KH and Ky may be shown to become

2 ( . cos(4r1 (r *L ) sist k (Pct e t*i) ) d e.-i)ck>

t 2. ( fC ( (P))i) c (1-8)
IP "

ft IA\

KLAQ)
(1-9)

01 it L ))exp ?(l+@)h ] v (2)d a- )
(1-10)

S Fsin( )d()

. 2. FT(l~ f sin (F.4. )lt 2 )A) l (MA) A (1-11)
C;
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In the surface integrals in formulas (1-81 through

(1-11), (h+) represents the quarter of the hull for

which y is positive and x is negative. (cf) in the

waterline integrals is the intersection of (h.) with
+

the. plane z=O.
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CHAPTER II

NUMERICAL RESULTS FOR A SERIES OF THREE HULL FORMS:

WIGLEY, INNUI, ATHENA

The calculations presented in this Chapter were

performed so as to make possible our participation to a

workshop on wave resistance organized by the DTNSROC in

Washington, D.C. in November 1979. It was requested

that we compute the wave resistance of several hull

forms, some of which were defined analytically (like

the Wigley hull) and some were not (Inui, high speed

hull Athena). A general numerical technique was thus

selected, which we briefly describe below.

As far as the definition of the hull is concerned,

all dimensions of the ship are made nondimensional with

respect to the half length L of the ship, that is

x=X/L where X is dimensional. As a consequence, x varies

from -1 to +1, y from -b to +b and z from -d to zero

(where b and d are the nondimensional half beam and

the draft respectively). (See Figure 2-1).

The hull surface is defined either analytically

by a relation in the form y=+y(x,z;b,d), or numerically

by a series of cross-sections.



Figure 2-1

The wave resistance is given by formula (1-1) and

the Kochin free-wave spectrum function K(t) by (1-8)

in the case where the hull has fore and aft symmetry

(Wigley and Inui hull forms) and by (1-4) when the

hull has only port and starboard symmetry (high speed

hull Athena).

The determination of K(t) requires the evaluation

of a surface integral on the hull of the ship and of a line

integral along the waterline.

In order to evaluate the surface integral, the

surface of the hull is divided into small planar triangles.

On each of these triangles, v is constant and the integral

can be evaluated analytically (see Appendix I). The

-16-

2--

32'

t=·
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surface integral over the entire hull is then taken as

the sum of the integrals over all the planar triangles.

The choice of the triangles is made as follows.

The centerplane is divided in small triangles as shown

on Figure 2-2. The horizontal lines must cross the

fore (respectively aft) border line of the centerplane

at points where vertical lines end, in order for the

centerplane to be partitioned in triangles only.

Xo

I
I
Cl

I-.

/
i

/

Figure 2-2

It is also obrious that the fore (and aft) part of

the centerplane are generated by triangles of a

different orientation. As a consequence, we change the

orientation of the triangles at a value, x0 say, of x

which may (but need not) be chosen equal to zero (cf

Figure 2-2).

\,t--i
i

111
1;

s

I ap-
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In the case of fore and aft symmetry however (Wigley,

Inui), this problem does not arise since we only consider

the first half of the centerplane.

Having done this partition of the centerplane, we

generate a "partition of the hull" by associating to

each triangle of the centerplane, a triangle on the hull.

This new triangle has vertices with the same x and y

coordinates as the vertices of the corresponding triangle

on the centerplane and y-coordinates so chosen that the

vertices are on the hull.

The evaluation of the line integral follows a simi-

lar approach. The waterline is divided in linear segments

over which v and U are constant. Analytical integration

is performed on each interval (see Appendix II) and the

line integral over the waterline is taken equal to the sum

of the integrals over all the linear segments.

It is important to know how many horizontal and

vertical lines to choose, that is how small the planar

triangles on the hull and the linear segments on the

waterline should be in order for the surface and line

integrals to be determined with satisfactory accuracy.

At low values of the Froude number, the wave length of

the radiated waves is small. Since we expect the

influence of the waterline integral to be larger, the

smaller the Froude number, we must choose our linear
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segments small enough compared to the wavelength so that

the precision on the line integral is sufficient.

Numerical evaluation of the line integral for the

Wigley hull and for a rhombus-like hull form have shown

that the number NL of segments necessary for the line

integral to converge increases when F decreases. For

F=0.1, the value of NL was found to be 60. However the

surface integral did converge for a number of horizontal

lines M=10 and a number of vertical lines NS= 20 .

Numerical investigations were made with NS=20,

M=10 and NL=80 (for nonanalytical hull (Inui, Athena)

there is a practical limitation on M and N).

The use of the triangles made possible a calculation

of the surface area of the hull which can be valuable to

compute the wave resistance coefficient for a nonanalytical

hull or for a series of hull forms like, say, a set of

Wigley hull forms with different draft or entrance angle.

II-1 Wigley Hull

The Wigley hull has parabolic framelines and parabolic

waterline. It is analytically defined by the equation

Ji= ,-p/V
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where x, y, z, b and d are made nondimensional with

respect to the half length L of the ship, b is the non-

dimensional half beam and d the nondimensional draft.

The evaluation of the wave resistance coefficient

was made for b=0.l and d=0.125.

In order to determine the wave resistance, one has

to integrate the Kochin free-wave spectrum function K(t)

from t=0 to t==, as indicated in equation (1-1). The

upper limit += was replaced by tF=6, corresponding to

an angle 6=80 , where e is the angle between the x

axis and the direction of propagation of the radiated

wave, as shown on FIgure (2-3). It was assumed that

such diverging waves would have only little effect on

the overall wave resistance. This assumption is again

considered in Chapter III-2 where it is justified.

L_

ve rs
ve

xet

Figure 2.3
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Results obtained by Michell's and Hogner's wave

resistance formulas are given in Table I and results

are given by the zeroth approximation in Table II. All

results are shown on Figure 2-4, where calculations

based on Hogner's formula, Michell's formula and the

zeroth approximation are identified by the symbols H,

M and 0 respectively.

The experimental results provided by the DTNSROC

were obtained for a model free to trim and sink whereas

the effect of sinkage and trim is not taken into account

in the present study. Direct comparison of our results

with the experimental results is thus not relevant.

However we know that the wave resistance coefficient is

appreciably decreased when the model is constrained (see

[61 and [7] for example). Thus the effect of the line

integral can be seen to be inthe "right direction," where-

as Hogner's and Michell's approximations will over

predict the resistance.

On Figure (2-4) are also shown the results obtained

numerically by C. W. Dawson [8]. These can be seen to

be in surprisingly good agreement with the results given

by the zeroth approximationl

Results obtained by K. J. Bai [9] are also shown

in the case of a large and deep towing tank (W/L=D/L=1.25)
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which is the closest the author comes to the assumption

of unbouded fluid. Here again, agreement with the results

given by the zeroth approximation is fairly good for

relatively high values of the Froude number, say Fn>0.40.

(where Fn is the Froude number based on the length of

1/2_ 1/2the ship Fn=V/Cg-2L) -V/2 2  .

Note that the results obtained by Dawson and

Bai are for fixed models like in our case, which makes

these comparisons meaningful.

II-2 The Inui Hull

The Inui hull, as the Wigley hull, is still a thin

ship with fine ends and fore and aft symmetry. But,

unlike the Wigley hull, it is not defined analytically.

It is defined as the hull form obtained by Inui, by

tracing streamlines for infinite flow past a linear

source strength distributed on the centerplane. The

nondimensional half beam b and draft d are given by

b = 0.2458

d = 0.3916.

The first quarter of the hull (y>0, x<0) is defined

by a series of 14 cross-sections. These are given in

Table III. Like for the Wigley hull, the integral in

equation (1-1) was evaluated with an upper limit of

integration tF= 6. CIt was verified that increasing tF

up to 18 did not lead to any significant change).
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Results obtained by Hogner's wave resistance

formula are given in Table IV together with the

results given by the zeroth approximation.

These results are also shown on Figure (2-5) where

the curves corresponding to the Hogner formula and the

zeroth approximation are identified by H and 0 respectively.

The same remark as before applies here to the previously

drawn conclusions [5].On Figure (2-51 are the

results given by Dawson j8], Bai 19] and Chang [10]. The

results by Bai fit almost exactly with the results

obtained by Hogner's formula.

Values given by Dawson are lower, i.e. closer to

the results obtained by the zeroth approximation, except

at Froude numbers less than say 0.35, where they

seem to be out of phase with our results, and much more

oscillatory. On the other hand, results given by Chang

are very close to the experimental results. This may

appear surprising in view of the fact that these results

were evaluated for a model fixed (see [10]).

It is interesting to note that the numerical results

obtained with the simple Hogner formula are similar

to the results obtained with much more sophisticated

numerical procedures. In addition, the zeroth
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approximation appears to give results closer to

experimental measurements than the results given by

Hogner's formula or Dawson, for relatively small Froude

numbers, say Fn<0.32. At relatively high Froude numbers,

say Fn>0.35, the zeroth approximation consistently pre-

dicts wave resistance coefficientslower than the ones

obtained for a model free to sink and trim, like Dawson

but unlike Chang.

II-3 The high speed hull "Athena"

This hull differs in many ways from the hulls

studied previously. Specifically it is defined numeri-

cally, does not have fore and aft symmetry, and is not

vertical sided at the waterline. In addition, it has

a transom stern, is- broader at midship and less deep than

the two previous hull forms. The nondimensional half

beam b and draft d are given by

b = 0.1470

d = 0.0642.

The hull is defined by a series of 25 cross-sections,

given in Table V.

Figure (2-6) shows a top view of the hull.
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Figure 2-6

The transom stern will obviously cause some difficult

probldm. Potential flow theory assumes that there is no

separation, i.e. the streamlines remain close to the

actual ship hull.

Thus one should consider the wave resistance as given

by a source distribution over the whole surface of the

hull. The simplified theory presently used predicts

that the wave resistance will be the same, no matter the

direction in which the ship moves. It is intuitively

obvious however that the wave resistance of the Athena

hull going backwards will be much larger than the resistance

of the same hull going forwards.
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It is commom practice to disregard the transom end

of the hull. The underlying reasoning is that, due to

separation, the stern does not participate to the wave

making.

Figure (2-7) presents the results obtained by the

Hogner approximation and by the zeroth approximation.

The wave resistance curve is seen to oscillate much less

than previously. The influence of the waterline increases

with increasing Froude numbers. This figure also shows

the calculated values of the wave resistance obtained

by Dawson [8] and Chang 110].

The results presented by Chang were referred to as the

resistance coefficient in [10]. They were explained to

be the sum of the wave resistance and of the "hydrostatic

pressure resistance." We thus show the values given in

the reference and the difference between these and

the hydrostatic resistance. The same remark holds for

the experimental results which are shown, one curve

corresponding to the residual resistance and the other

being deduced from the former by subtracting the hydro-

static resistance.

If we compare results obtained by Hogner's formula

and the zeroth approximation with the "experimental"

results obtained by subtracting the hydrostatic resistance

from the residual resistance, we note the following: at
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low Froude number 0.27<Fn<0.35 say, both the Hogner

and the zeroth. approximation give results very close

to the experimental results. For moderately high

Froude numbers, 0.35<Fn<0.65 say, both the Hogner and

the zeroth approximation overpredict the wave resistance,

whereas the results presented by Chang are close to

the experimental values. For high values of the Froude

number, Fn>0.65 say, the Hogner and the zeroth approxi-

mations underpredict the wave resistance. The zeroth

approximation curve is closer to the values obtained by

Chang and the Hogner curve is closer to the experimental

results.

The results obtained by Dawson are very close to

the residual resistance curve, and much higher than the

experimental wave resistance coefficients given by

Chang. It must be noted that Dawson computed both the

residual resistance coefficient and the wave resistance

coefficient and they were very close to one another.

This seems to imply that the influence of the hydrostatic

presume resistance is weak, which is at variance with

the conclusion arrived at by Chang.

In summary, comparison between our results and

the experimental measurements shows that, they are out

of phase with, and very far from them. Furthermore, our

results are in relatively good agreement Cat least at
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moderately low Froude numbers) with the experimental

curve obtained by subtracting from the residual

resistance the hydrostatic pressure resistance computed

by Chang.
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CHAPTER III

WAVE RESISTANCE OF MATHEMATICAL EHULL FORMS

In this section, calculations are performed for

several mathematical hull forms and the results are

compared with experimental measurements. The hulls

that are considered are i) a family of Wigley hulls,

ii) the parabolic strut used by Sharma and iii) a

hull with a fine bow and a blunt stern, which we shall

refer to as the parabolic elliptic hull.

Instead of partitioning the hull in small planar

triangles as in Chapter II, it was decided to use the

equation defining the surface of the hull to perform

numerical evaluations of K(t) and R.

All the integrals which were performed were single

integrals (over one variable). It was thus possible to

study the behavior of the function (f(ý) say) which was

to be integrated, in order to be sure to have sufficient

accuracy.

The formulas for R and K(t) used in this Chapter

are slightly different from the ones used in Chapter II

but are of course equivalent to them (see Appendix III

and IV).
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In the case where the hull has port and starboard

symmetry, the wave resistance is given by

R=ek/e ' = 41TC' rf' Ote)' jE (3-1)

i((,-= E nx - F 2. nx' dt (3-2)

E e x + eJC4F5} - L (3-3)

where all the symbols have the same meaning as before

(see Chapter I).

In the case where the hull also has fore and aft

symmetry, the above formulas become:

p,= •I/V'L :16a~F "• l')"•d•t (--4

= E nx dao. - F E rnx de (3-5)

E( ,, ex pI.'(l-)•] cos (F l:t, (*Y) 7)si(F"k- ) (3-6
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For the Wigley models and the parabolic elliptic

hull, some plots of the Kochin free-wave spectrum

function K(t) are presented for some values of the

Froude number F. The wave resistance curves predicted

by the zeroth approximation and Hogner's and Michell's

formulas are also shown.

III-1 A family of Wigley hull forms

In his studies of the Michell wave resistance

formula, Wigley [6,11] selected a family of hull forms

defined by the equation

Z 7 - , ( 3 -7 )

where x, y, z, b and d are made dimensionless with

respect to the half length L of the ship; b and d are

the half beam and the draft respectively. y is a

coefficient which will be given the values -0.2, 0., 0.6

and 1.0. This will enable us to compare our results

with the experimental results obtained by Shearer [7].

The parameter y characterizes the angle of entrance.

It is easily verified that for values of y less than

0.2, the hull is convex and for y greater than 0.2, the

hull is concave (see Figure 3-1).
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Figure

By using equation (3-7)

3-1

in equations (3-4) , (3-5)

and (3-6), we may obtain

o

0•<trcl= J"lt • (.,•-•)
o

S 12.

1.

I=8F- IF

1+4 4 (k-1 )

(3-8)

(3-9)

(3-10)

(see Appendix V for the derivation of (3-8), (3-9) and

(3-10) ) .

c05IFs7 E1'" Plb(1- (Tr1+%*ddd) %
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In order to simplify the numerical evaluation of K(t)

(and of R), the integral over ý in I .(equation 3-10) is

approximately evaluted. One can first simplify the

expression of I by introducing two new variables 8 and 4:

&= FA-(i()d (3-11)

i; t 6V' [k- 12. r T 11(-2 (3-12)

where

(3-14)

Replace the range [0,1] of integration over 5 by three

intervals: [0,a], [a,l-c] and [l-a,l];over each of these

intervals, the function (1-2) in the argument of the

cosine function in (3-14) is replaced by a linear

function, as shown in Figure 3-2.
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f (C) = 1-52

G(3)

I-c(

Figure 3-2

f(ý) is replaced by fl=l

f(ý) is replaced by f 2=F(C)

f(C) is replaced by f3=2(1-).

The functions

slope of f(ý)

fl and f2 are so chosen as to conserve the

at ý=0 and ý=1;

a is a priori arbitrary (it will be taken equal to 1/ý

in the actual calculations);

G(ý) is the function describing the linear segment joining

the points (a,l-a 2 ) and (l-a,c(2-a));

i.ct

1c20(

Zo7~M I Y(
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F(ý) is the function describing a linear segment,

parallel to the one described by G(.) and chosen so

that we have A3 =A1 +A2 , where Al, A2 and A3 are the

surface areas between the .curve f(ý) and the three linear

segments used to approximate it (see Figure 3-2).

It is easy to see that F(C) is of the form

F 3)- -53-+ (3-15)

The requirement that A +A2=A3 leads to

S( (6-Z- ) (3-16)

If we choose a=1/3, we obtain c=7/6.

It may be noted that in the Michell approximation,

f(C)=1-,2 is replaced by g(ý)=0.

In order to check that the replacement of f(4), by

the three linear functions previously described permits

a precise evaluation of I(B,6), we evaluated numerically

the difference between the exact value of I(,cS) and

the value of I(B,6) obtained with the simplification of

f(ý), and which we call Ia . The method was as follows:
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I

I q3( 5) .S
I -J )d 3 tCl(sd30

where g(ý)=exp[-6ý]cos[~6(1-ý 2 ) ] (1-l 2 )

We can rewrite (3-17) .as

or I- = ,i)-+I 0Im +I, J
or

or I. I-I

where

fa- exp(le-e=-£)cs( )(s)d3

I= p(-f 3)oS

-c -3 (j- .))J (

I - exp

-3 Z3

(3-17)

a,.

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(- ) u I
1- f (

Im, = exr (-ss) e~ ~cCoes5- 3173

1 "0

L

; = exp(-f ) Coips i~ SI
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n e [Cos (z COS(p (3-24)

0_ a- -a (3-25)
I = I+I+m

(3-26)

I a can be evaluted in closed form (see Appendix VI)

In was computed numerically.

Comparison of Ia and In was made for several values of

F, y=O, a=1/3 and c=7/6.

The difference was of a few percents. The expression

I(B,6) is thus well approximated by Ia

The Kochin free-wave spectrum function can now be

obtained from the simple integral

where g(x) is given by

(3-27)
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and I is now given by

, , T- c+L(l÷*)Z)  (3-28)

If I were not an oscillatory function of x, equation (3-27)

would indicate that the function g(x) would oscillate

with a pseudo period T stemming from the term

sin(xF-2(l1+t 2 ) 1/2) and having the value

T- FT F'(-+t e- (.3-29)

The range of integration over x is 1. Imposing to take

24 points over each period when integrating g(x), would

make it necessary to take a number Ci of points to

integrate g(x) over the whole interval (0,11. Ci would

be given by

CL 2L cT = 2. rf "- 3.2 8 'F +

Ci 3.8 F- I(1+') 12 (3-30)

Since I also oscillates when x varies, it is not

obvious that the pseudo period of g(x) will be the one
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given by equation (3-29).

Plots of g(x) are shown in Figures (3-3) through

(3-5) for F=0.3 and t=O, t=l and t=2; y was always taken

equal to 0. It can be seen that the number of points

necessary to carry out the integration of g(x) with

sufficient accuracy is fairly well predicted by equation

(3-30). It was decided to use C. as given by

CL . 2= INT (F 2  ) +- (•1 (3-31)

where we are careful to take C. as an odd integer. (This

will enable us to use Simpson's rule, for example.)

The next step is to integrate K(t) in order to obtain

the wave resistance as given by equation (3-8) which we

can rewrite as

tL

0

where / (3-33)

and where tF , strictly speaking, is infinite.
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When t tends to infinity, the amplitude of the

corresponding waves decreases very much. The value of

g(t) is expected to become negligible for t greater than

a value tF . Plots of g(t) are thus presented for

several values of F, in order to determine how tF

and the pseudo period of g(t) (and so the number of

points necessary to compute the integral of equation (3-32))

depend on F. These curves are presented on Figures (3-6)

through (3-15) for values of y equal to 0, 1 and -0.2, and

values of F equal to'0..2, 0.3, 0.4, .0.5 and 1. Several

interesting features can be observed.

The amplitude of g(t) decreases very rapidly when

t increases. The function g(t) also oscillates when t

increases, with a.freq.uency which decreases when F

increases. The value tF of t, after which the amplitude

of g(t) becomes negligible is also dependent on F and

increases where F increases.

Also when y increases from y=0 to y=1 (i.e. when

the bow becomes thinner) tp decreases, for a given value

of F. When considering a slightly thicker hull, by

taking y=-0.2, it cannot be seen any major difference

with the case y=0. Also, when F is large (F=l say) there

is no difference between the values of tF obtained for

y=0, y=l or y=-0.2.
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For the case y=0, the following empirical formulas

for tF and Cj (which is the number of points required

for integrating (t) with sufficient .accuracy) were used:

5F- 5F (3-34)

C INT ( F~) + (.3-35)

For determining Cj, it was chosen to impose 16 points for

each "period," instead of 24 as before. Equations (3-34)

and (3-35) were also used for other values of y. The

only consequence was to overpredict tF .

To compute the wave resistance in the Hogner

approximation, the line integral term in equation (3-28)

was deleted and (I) was thus made equal to (Ia ) in (3-27).

IH = Ia (3-36)

where the subscript H stands for Hogner.

To compute the wave resistance in the Michell appro-

ximation, we replace equation (3-10) by

8 5 F f expj7FZ(ItfU)d3] (i-SJ (3-37).

0
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This integral can be easily evaluted and I is then

given by

I = dF.[ -+ (t1)j -3 exp (-)- 2 - (3-38)

where the subscript (M) stands for Michell.

The results for y=0O are shown on Figure.0(3-16). The

case y=O was already examined in Chapter II. These

calculations were done nevertheless, in order to check

our previous results and the new program.

In Figure (3-16), R/Fn2 is presented for convenience,

2versus 1/Fn . R is the nondimensional wave resistance

and F the (real) Froude number based on the length ofn

the ship, i.e. F =U(2gL) /2=F/2.n

Again it can be noted that the wave resistance pre-

dicted by Hogner's approximation is the highest. Michell's

approximation yields a slightly smaller value of the wave

resistance. The zeroth approximation yields much smaller

values and results obtained by Yim's method are slightly

smaller than the latter.

It is interesting to note that the differences between

Hogner and Michell on the one hand, and the zeroth appro-

ximation and Yim on the other hand, are comparable, and

both much less than the difference between sa: "1-qner
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and the zeroth approximation. The results given by the

four methods are all in phase. The envelope of the maxima

-2is first increasing for values of F 2 comprised betweenn
0 and 18, and then slowly decreasing.

-" The line integral can thus be seen to decrease the

value of the wave resistance. The small difference

between the results obtained by the zeroth approximation

and Yim's method indicate that the latter can be used to

obtain results close to the ones obtained by the zeroth

approximation but with much greater simplicity.

Figure (3-17) presents the results obtained for

y=0.6 and the experimental results obtained by Shearer

[7]. At high values of the Froude number the results

given by the zeroth approximation are smaller than those

given by Hogner's approximation and closer to the

-2experimental results. But for F 2 >9, i.e. for F <.33,n n

the experimental results become larger than even results

obtained with Hogner's approximation, and much less

oscillatory.

-2Also, when F 2 increases, the difference betweenn

the Hogner and the zeroth approximation decreases and

-2becomes negligible for F- >16 (which corresponds to F =n n

0.25). For a hull with very fine bow and stern, the

line integral does not change the wave resistance

appreciably.
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Contrary to the case y=0 where the envelope of the

maximum was first increasing and then decreasing, for

y=0.6 this envelope decreases rapidly. We note that

the experimental results decrease much less rapidly

than the computed ones.

Figure (3-18) shows the results obtained for y=l.

The general configuration is the same as on Figure (3-17),

for y=0.6. There are negligible differences between the

Hogner and the Michell approximations and only relatively

small differences between the Hogner and the zeroth appro-

-2ximations. Again these differences decrease when Fn
-2increases. In this case, even at low values of F (i.e.
n

high values of Fn ) the presence of the line integral does

not bring a great improvement. The experimental results

are less out of phase with the computed ones and, at

-2
high values of F , much closer to the Hogner curve.n

The results obtained for y=-0.2 are shown on Figure

(3-19). y=-0.2 corresponds to a hull which is thicker

than in the case y=O. We see that the general shape of

the wave resistance curves is different from the one

we had with fine ends (y=0.6 and y=l).

It can be seen that the envelope of the maxima begins

to increase. The difference between results obtained
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with Hogner's formula and with the zeroth approximation

is much larger than before. The experimental results

are somewhere between the Hogner and the zeroth appro-

-2 -2
ximation curves for O<F2 <10. For F  >10 the experimentaln . n

results are much smaller than the computed ones, less

-2
oscillatory and decreasing when Fn  increases.

In summary, it can be seen that for this family of

Wigley hulls, when the angle of entrance increases

i) the width of the spectrum IK(t)1 2 (1+t2) 1/2 increases

for a given F and, ii). the influence of the line integral

increases.

111-2 Sharma's parabolic strut

We now consider a very thin body, defined by

the equation

(3-39)

where the nondimensional half beam b and draft d are

b = 0.05

d = 0.30

The wave resistance can be calculated by using equation

(3-18).
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The Kochin free-wave spectrum function is now

given by

Cosh) f s(ra&(+L) bz(i-x?)) $in (r(i+&Pz) I/a) Ir. (3-40)

where I is defined by

(3-41)
-2 - :Cz L

l4Ld,2~'~

(see Appendix VII for details).

Computations were performed by using the Michell

and by the Yim approximations. In the Michell appro-

ximation, equation (3-40) and (3-41) become

(13-42)I[' =J 'X (]0nd6 1

o+ ltr'~-~iF"rt)l (3-43)
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While in the Yim approximation, we have

Ky () x Sin( (I+t Fl d X (3-44)

ex ( F1 (3-45)

Results are presented in Figure (3-20), together

with the experimental data obtained by Sharma (131.

It can be seen that the effect of the line integral

is very weak. The experimental results are in very good

-2
agreement with computed results for O<F <7 and in goodn

-2
agreement for 7<F <14. The computed results are almostn

in phase with the experimental results. We also note

that, for this fine hull, the envelope of the maxima

-2
decreases when F 2 increases. The half angle of entrancen

of this parabolic strut is of about 5.70, compared to 4.50

for the Wigley hull with y=0.6. It is somewhat surprising

to note that the computed wave resistance for both hulls
-2

decrease when F2 increases (when oscillating of course)n

whereas the experimental wave resistance curve is seen

to slightly increase for the Wigley hull and to decrease

for the parabolic strut.
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The results obtained for the parabolic strut are

consistent with those obtained previously for 'the Wigley

hulls. The influence of the line integral is seen to be

negligible for hulls which have extremely fine ends.

III-3 The Elliptic-parabolic hull

The mathematical hulls that were studied until now

suffered from unrealistic features. First, they all

had fore and aft symmetry. Secondly, they had fine ends,

whereas a real ship often had a blunt stern.

We expect the influence of the line integral to be

important for blunt bodies. To study in more detail

the influence of the waterline, a hull form was selected

which i) is analytically defined, ii) does not have fore

and aft symmetry, and iii) has a fine bow and a blunt

stern.

The hull which was chosen has elliptic cross-sections.

The waterline is parabolic in the fore part (for O<x<a,

see Figure (3-21)) and elliptic in the after part

(a<x<l).
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paraboic pheC

jeb/Tp/ic.. eo

Figure 3-21

The hull surface is described by the following

equations:

a. In the fore part:

(3-46)

b(X/00)(0
(3-47)

-dcos(f)
(3-48)

for O<x<a

and 0_< <Tr/2

b. In the after part:

(31-49)

C

- X /L ) sin T

c. = Q.9 (\•- CL) Si 9

P
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c b/ -c sinf (3-50)

-= -d c .5 (3-51)

for 0<0<rr/2

and 0<ý<7/2.

The curve y(x) or y(G) describing the waterline,

is continuous and has a continuous slope at x=a, for

any value of a. To insure that also the curvature be

continuous at x=a, we must choose a so that

0C.= 1 1+1/ 0.586

The nondimensional beam b and draft d are respectively

chosen as

b=0.15

d=0.05

The half angle of entrance is then a=14036 '"

The nondimensional wave resistance R and the Kochin

free-wave spectrum function are given by

oO

%2. _1 1-/l[lihitlz ~t (3-52)
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a4.

CL exp Fl+P~quoQ(1 - X/.) I: I dx

(3-53)12 e -F ' P sin9)sinI
0

I =d/ e fTI/a

Iz= dJ
0

( Ccis~)so((r rms~rifD' ,ecef 2  
_________j~

a',t LC -j~c

exp(- s) coS sin i df- Fo
exp(-ýCOSý) Cos (RJsiny sib'yd?-~I ~

40

g= dFL(t+b2.)

co0s(t = b (Ad)pe d i(+ I)

(see Appendix VIII).

The integral in equations (3-54) and (3-55)

evaluated by using a number of points C1 and C2 respectively,

where

Ci 2IT( Z(b6/a)F' F (1+e) i ] +1

(3-54)

(3-55)
b62 IDe + sln

-
.as~bsi.

(3-56)

(3-57)

(3-58)

are

ba -'d- 't (l+ ]-'bi6 -) x/, / )

(3-59)
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and C 2 = 2 INT[ b6 F2 )(1+L)z1 + (3-60)

where INT stands for "integer part of." The expressions

for C1 and C2 were determined empirically by looking at

the shape of the function of ý which had to be integrated.

Similarly, it was found that the number of points Cx

and C0 say, necessary to evalute the integrals over x and

® respectively in equation (3-53) are given by

CX = 2 INT (1.5 F"  1+ P+9F I ) +l (3-61)

C : 2 INT (2.(l-&')F (4L÷i+ ))+ (3-62)

To determine the number of points necessary to evaluate

the integral in equation (3-52) as well as the limit of

integration, tF say, we plotted the function g(t) for

several values of the Froude number, where g(t) is

defined as

g(t) = IK(t)I 2 (1+t 2 ) 1/ 2

These plots are presented on Figures (3-22) to (3-25) for

F=0.25, F=0.4, F=0.707 and F=l.

It can be readily seen that the behavior of g(t) is

different from what it was for the Wigley hulls.
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While still oscillating, the function g(t) does

not vanish any more at the minima. This is due to the

fact that the hull does not have fore and aft symmetry.

The function g(t) is now less oscillating than for..

the Wigley hulls. This is particulary striking at low

Froude numbers. Also, g(t) becomes negligible at

values of tF which are much larger than those found for

the Wigley hull. (It is interesting to compare these

results with those obtained for the Wigley hull with

y=O. This hull had the same entrance angle as the hull

now considered. It was somewhat thinner at the mid-

shipsection and much deeper.)

The limit of integration tF and the number of points

Nt necessary to integrate g(t) was found to be accurately

predicted by the following empirical formulas:

S= 16 F (3-63)

Nt 2 INT (6/F) + (3-64)

The results for the wave resistance are presented in

Figure (3-26).
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The Hogner approximation (H) and the corresponding

Michell thin ship approximation (M) may be seen to be

very close to eachother, as for the Wigley hull (y=O)

(although the Michell curve is here very slightly above,

rather than below, the Hogner curve). The zeroth-order

approximation (0) and its corresponding Yim thin-ship

approximation (Y), on the other hand, are very far apart

(more precisely, the Yim curve is much higher than the

zeroth order curve), which is at variance with the

results obtained for the Wigley hull (y=0). The fact

that the Yim curve (Y) is quite different (much higher)

than the zeroth-order curve (0) mainly stems from the

use of the thin-ship approximation in the waterline

integral, rather than the hull integral. Indeed

differences between the zeroth-order curve (0) and the

curve (MW), which corresponds to the use of the thin-

ship approximation in the hull integral alone (that is,

the thin-ship approximation y=0 is not used in the

waterline integral) remain moderate, although larger

than the differences between the Hogner and Michell curves

and increasing with decreasing Froude number. Furthermore,

differences between the curve (w), which corresponds to

the use of the waterline integral alone (that is, the

hull integral is neglected) in Formula (3-21), and its

corresponding thin-ship approximation (w0 ) are very
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large; more precisely, the curve (w0) is much higher

than the curve (W), and this may explain why the Yim

curve (Y) is much higher than the curve (0). Comparison

between the curves (W) and (M), and between the curves

(w0 ) and (M) also demonstrate the primordial importance

of the waterline integral. It may finally be noted

that (due to the waterline integral) the differences

between the Michell approximation (M) and the zeroth-

order approximation (0) are quite large. In particular,

the Michell curve is lower than the zeroth-order curve

for sufficiently high values of the Froude number

(for 1/Fn2<39, i.e. for F n>.16, approximately), while

the opposite is true for sufficiently low speed (for

1/F 2>55,. i.e. for F <.13 approximately). An appreciablen n

phase shift between the Michell and the zeroth-order

curves may also be observed.

The fact that the line integral has a relatively

small influence for the very fine-ended hull forms

(Wigley, Sharma) and a very large influence for a

blunt-ended form may be verified by a crude "order of

magnitude analysis." For a fine-ended hull, if we denote

by 8 and 6 the beam/length ratio and the draft/length

ratio, respectively , the terms n and t in formulax y
(3-2) may be shown to be of order $, and the hull
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integral and the waterline integral can be seen to be

of order 86 and 83 , respectively, so that the waterline

integral is "an order of magnitude smaller" than the

hull integral.

For a blunt-ended form, the terms nx and Ty are

of order 1 at the ship stern or (and) bow (over a width

of order 8), and the hull and waterline integrals in

formula (3-2) are of order 86 and 8 respectively, so

that the waterline integral now is "an order of magnitude

larger" than the hull integral.

This order of magnitude analysis regarding the

relative importance of the hull and the waterline inte-

grals (and thus the conclusion that the waterline

integral is an order of magnitude smaller or larger

than the hull integral for a slender hull with fine or

blunt ends, respectively) is based entirely upon "geo-

metrical arguments," which evidently ignore any possible

influence of the Froude number. One would, however,

espect the relative importance of the hull and .the

waterline integrals in formula (3-2) to depend on the

Froude number, as well as on the shape of the hull.

Indeed, in the limit F0O, the hull and the waterline

integrals can be proved to be asymptotically equivalent
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[3], which results in a drastic reduction in the

wave resistance. This reduction in wave resistance

at low Froude number may in fact be observed in

Figure (3-26), where the zeroth-order curve (0) is

significantly below both the Hogner "hull-integral-

alone" curve (H) and the "waterline-integral-alone"

curve (W) for 1/F2>56, i.e. for F<0.13. One must

also expect the waterline integral to be primordial

in the high-Froude-number limit. Indeed, formula

(3-3) shows that we have Eal as Fo*, so that formula

(3-2)-yields

kIM) i% -- F' n d3 ncda. as F-P'0t4 0
The hull integral in the above formula can readily

be shown to be identically zero for any closed hull,

while the waterline integral vanishes for a waterline

with fore and aft symmetry. In summary, the waterline

integral may be seen to be important for blunt ship

forms, and in the low and high-Froude-number limits.
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CONCLUSION

For fine-ended hull forms, differences between the

Michell, the Hogner, and the zeroth order slender-ship

approximations have been found to be relatively small,

although not negligible. More precisely, the Hogner

wave-resistance is -slightly larger than the Michell

resistance while the .zeroth-order resistance is somewhat

lower than Michell's.

However, quite different results have been obtained

for the blunt-ended hull form examined in the last

chapter. Specifically, the effect of the waterline

integral has been shown to be predominant, and differences

between the zeroth-order approximation and the Hogner

and the Michell approximations are considerable.

Comparison between theoretical predictions and

experimental measurements for the fine parabolic strut

of Sharma show reasonably good agreement, although there

are appreciable discrepancies. The corresponding com-

parison for the family of Wigley hull forms however appears

to be less conclusive. In particular, very large dis-

crepencies have been found for the two largest entrance

angles. It must however be noted that the experimental

results for the three Wigley hull forms do not appear
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to be entirely consistent, so that the accuracy of

the measurements may be questionable.
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TABLE I

Wave resistance coefficient of the Wigley model

given by Michell's and Hogner's wave resistance formulas

WIGLEY: MICHELL WIGLEY: MICIIELL WIGLEY: HOGNER WIGLEY: HIOGNER

FN  C x 103  FN CR x 103 F x 10 3 Fn  C x 10 3

0.150 0.361 0.250 1.065 0.150 0.390 0".300 2.311

0.;152 0.442 0.260 0.847 0.155 0.422 0.313 2.098

0.155 0.380 0.270 1.092 0.157 0.345 0.330 1.638

0.157 0.307 0.280 1.603 0.160 0.380 0 340 1.477

0.160 0.348 0.290 2.016 0.166 0.598 C.350 1.472

0.163 0.512 0.300 2.142 0.170 0.464 .0.360 1.602

0.166 0.558 0.310 1.995 0.175 0.488 0.40~ 3.036

0.168 0.491 0.320 1.711 0.180 0.774 0.430 3.907

0.170 0.407 0.330 1.432 0.185 0.695 0.452 4.360

0.172 0.369 0.340 1.263 0.190 0.536 0.470 4.550

0.175 0.454 0.350 1.245 0.200 0.962 .0.482 4.618

0.177 0.570 0.360 1.378 0.210 0.908 0.500 4.661

0.180 0.715 0.370 1.634 0.220 0.741

0.185 0.652 0.380 1.96.8 0.230 1.248

0.190 0.475 0.390 2.344 0.240 1.494

0.200 0.886 0.400 2.730 0.250 1.171

0.210 0.832 0.410 3.095 0.260 0.978

0.220 0.653 0.430 3.718 0.266 1.077

0.230 1.166 0.440 3.957 0.290 2.169

. 249 ~ .38 0,450 ...... 4.146



TABLE II

Wave resistance coefficient of the Wigley model

given by the zeroth-order slender-ship approximation

WIGLEY: 0TH APPROX WIGLEY: 0TH APPROX. WIGLEY: 0 T11 APPROX.

3 3
FN  CR x 103 FN  CR x 10 F CR x 103

0.150 0.323 0.240 1.177 0.430 2.967

0.153 0.401 0.250 0.874 0.440 3.117

0.155 0.347 0.260 0.708 0.452 3.242

0.157 0.275 0.266 0.792 0.460 3.294

0.160 0.306 0.280 1.344 0.470 3.323

0.163 0.474 0.290 1.657 0.482 3.319

0.166 0.496 0.300 1.723 0.490 3.296

0.168 0.427 0.313 1.486 0.500 3.249

0.170 0.372 0.320 1.301 0.510 3.186

0,172 0.330 0.330 1.077 0.520 3.110

0.175 0.391 0.340 0.959

0.177 0.498 0.350 0.973

0.180 0.641 0.360 1.109

0.185 0.563 0.370 1.339

0.190 0.417 0.380 1.625

0.200 0.787 0.390 1.955

0.210 0.718 0.402 2.319

0.220 0.566 0.410 2.533

0.230 .0.997 0.420 2.772.



TABLE III
OFF-SETS FOR MODEL S-201 (from Inui, 1957)

Half Breadth, Y Height of

W.L. Keel LineW.L. L.W.L. 1 2 3 4 5 6 Keel Line

x=X/Z 0 .286 .571 .857 1.143 1.429 1.714

-1 1.000

-0.99 .057 .057 .057 .051 1.026

-0.95 .218 .210 .198 .175 .046 1.159

-0.90 .381 .371 .349 .309 .217 1.288

-0.85 .503 .495 .469 .419 .319 1.385

- .8 .606 .594 .571 .520 .415 .153 1.466

- .7 .762 .752 .730 .675 .570 .366 1.598

- .6 .893 .883 .858 .803 .705 .522 1.705

- .5 1.007 .994 .963 .906 .807 .635 .274 1.791

- .4 1.096 1.083 1.048 .984 .880 .710 .419 1.859

- .3 1.159 1.147 1.117 1.045 .937 .775 .504 1.908

- .2 1.198 1.189 1.153 1.087 .981 .822 .560 1.940

- .1 1.224 1.210 1.177 1.109 1.006 .846 .589 1.959

0 1.229 1.218 1.185 1.119 1.017 .857 .605 1.958

= Y/L

= Z/L
= Y/5
= z/5

b = B/L

d = D/L

0.2458

0.3916



TABLE IV

Wave resistance coefficient of the Inui model

given by the Hogner and the zeroth approximations

INUI: HOGNER INUI: HIOGNER INUI: 0T H APPROX.. INUI: 0 TI APPROX.

3 3 3 3
FN  CR x 10 3  FN  CR X 10 FN  CR x 10 FN  CR x 10 3

0.153 2.269 0.380 5.233 0.153 1.248 0.380 3.889

0.157 1.760 0.400 7.289 0.157 0.828 0.400 5.602

0.166 2.840 0.420 9.237 0.166 1.564 0.420 6.946

0.172 2.128 0.440 10.767 0.172 1.009 0.440 7.744

0.180 3.210 0.460 11.797 0.180 1.856 0.460 8.093

0.190 2.492 0.480 12.292 0.190 1.170 0.480 7.983

0.200 3.324 0.525 12.135 0.200 1.928 0.525 7.013

0.220 2.606 0.560 11.342 0.220 1.240 0.560 5.930

0.230 . 3.324 0.580 10.795 0.230 1.928 0.580 5.379

0.240 4.708 0.600 10.211 0.240 2.635 0.600 4.789

0.'255 3.409 0.620 9.637 0.255 1.527 .0.620 4.182

0.260 3.026 0.650 8.780 0.260 1.403 0.650 3.356

0.287 5.549 0.800 5.484 0.287 3.667 0.800 1.013

0.295 6.330 1.000 3.056 0.295 4.008 1.000 0.808

0.300 6.565 1.200 1.701 0.300 3.999 1.200 2.720

0.319 5.769 1.273 1.330 0.319 2.931 1.273 3.022

0.320 5.647 1.414 0.801 0.320 2.830

0.300' 4.110 0.340 1.935

0.360 3.945 0.360 2.424



TABLE V
OFFSETS FOR THE HIGH-SPEED HULL, ATHENA (from drawings for Model 4650-1)

x=X/L
.95
.90
.85
.80
.70
.60
.50
.40
.30
.20

1 .10
0

' -.10
-.20
-.30
-.40
-.50
-.60
-.70
-.80
-.85
-.90
-.95
-1

bN/bl=Max.
half
beam

0.125 .25 .50 .75 1.00
0.0000 0.0000 0.0000 0.0000 0.0000 0.0048

0.0000 0.0000 0.0246 0.0359 0.0451 0.0570
0.0000 0.0000 0.0525 0.0818 0.0959 0.1110
0.0000 0.0000 0.0838 0.1292 0.1462 0.1675
0.0000 0.0000 0.1162 0.1766 0.2035 0.2257
0.0000 0.0377 0.1955 0.2813 0.3104 0.3398
0.0000 0.1029 0.2849 0.3891 0.4218 0.4478
0.0000 0.1972 0.3989 0.4992 0.5280 0.5643
0.0000 0.3036 0.4972 0.6009 0.6246 0.6462
0.0000 0.4305 0.6190 0.6934 0.7070 0.7263
0.0000 0.5918 0.7262 0.7783 0.7830 0.7967
0.0000 0.7410 0.8346 0.8517 0.8448 0.8568
1.0000 0.8868 0.9240 0.9136 0.9002 0.9065
1.0000 1.0000 1.0000 0.9671 0.9420 0.9381
1.0000 0.8353 0.9519 1.0000 0.9762 0.9660
0.0000 0.4580 0.8424 1.0000 0.9942 0.9872
0.0000 0.0000 0.5765 0.9801 1.0000 1.0000
0.0000 0.0000 0.0581 0.9113 0.9865 0.9939
0.0000 0.0000 0.0000 0.7645 0.9575 0.9751
0.0000 0.0000 0.0000 0.4870 0.9227 0.9478
0.0000 0.0000 0.0000 0.0871 0.8731 0.9108
0.0000 0.0000 0.0000 0.0000 0.8545 0.8926
0.0000 0.0000 0.0000 0.0000 0.8345 0.8695
0.0000 0.0000 0.0000 0.0000 0.8068 0.8477
0.0000 0.0000 0.0000 0.0000 0.8023 0.8289

0.0073 0.3538 0.5431 0.7937 0.9424 1.0000

n = Y/bn y = Y/L = 0.1470*n*b,1/b" z = Z/L = (i-4)*0.0642
L I I
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APPENDIX I

EVALUATION OF THE SURFACE INTEGRAL OVER A PLANAR TRIANGLE

S

and T- X

S is the surface of the triangle.

The triangle is defined by three points x , xj, xk

(see Figure 1-1). We will perform the integration over

the two rectangle triangles 1 and 2 successively for

a+ and a_, and then add all the partial results to

obtain Ks.

K t +

where the subscripts 1 and 2 stand for the triangles 1 and

2.
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-1-

'Sz

We shall make use of additional variables which are defined

below

It is obvious that - (- (

and

+
To be consistent, we should use i and B. But,

for the sake of clarity, we will only use the "ýi

notation, with the understanding that the B's involved

in the calculation of K+ are B 's and that the

B's involved in the calculation of K, are I 's.1,2
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1 KC, - rXL )

I -I

Figure 1-1

Figure 1-1 also shows the local frame of reference (5,n).

We express K+ in the form

+ + +
K K +K1 2

+
The term K can be evaluated as follows15

ClL ijItLKX dd

S[~h;-
r

-t
SC

i

P
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4 K 4 =\ exp(r) ex( (3r) ex (~ - x @

0 --> KI~

K = IC1I O\U
- exP(X- ex _

(1-1)

+The evaluation of the term K is now considered.2

- K-l

-X'l exp~p
ýir -X

ir

+ j- :Cq--ft -,0,-41b~
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-t

K1 z
S7,

11-

- -X ý)Jd'
1(0

___IP2._I exp(F p( ) (ex)
L LK (1-2)

___C4____ ex PO CK) N()- exP(j-{) 40C______

LK -

v=n'1 where n is the unit inward vector to the surface

of the hull and i is the positive unit vector along the

x-axis.

exF p o*7) cZ X)
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One convenient way of defining n is:

~-- -W --- - x - -W ()

Using (1-4) in (1-3) and making use of 8 ij-SiKBKj

yields

A similar computation would give(1

A similar computation would give

4)

.5)

KU L ~'d'~~ 2~ ~)w(-i x(t 6Jrex ~Z4r~ xrYKLQlJ (1-6)

ka KU
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APPENDIX II

EVALUATION OF THE LINE INTEGRAL OVER A LINEAR SEGMENT

XL

Figure

2L F* (i p ,. , p

2-1

k/ -K'-t-C

L "
2. P2

V*-. ep, b) dA

< " ;: 0(C \*..+ = &+• - \

1-
k'L~ (2-1)

2.Fz

~ rl

@.?~Y~pda

eK

yp~rj/ ep~pd ~xpinA
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When the hull is vertical-sided at the waterline, we have

Ld -3

(2-2)
VK41+4 _______

2 3~-dULJ(i-

When the hull is not vertical-sided at the waterline, we

still have

________ (2-3)

Figure (2-2) shows how one can construct a triangle

having xij as a side, in order to define the normal

to the hull at the waterline, namely, n.

A-A

V

Figure 2-2

eq(P't)_ exp( +j

V L_ -ý ý
!

SO-%! • • -•-
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We can choose n as
7-0

making use of the fact that z.=z .=O we find13

V AI*L

(2 1/ 1) 2.
(ýOc , c (2-4)

Using (2-3) and (2-4) in (2-1) yields

(2-5)

Y 'L ). \ ("i-:0 4j- -t)

+ +Il
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APPENDIX III

EXPRESSIONS FOR R AND K(t)
USED IN CHAPTER III FOR PORT AND STARBOARD SYMMETRY

The formulas used in Chapter II were, we recall,

R; U'• - L' -fl•,l~(lL I dk
(1)

K (0%l J [f E mx d 8 a- + T E: 2 C
C(2

(3)

where h and C are defined as on the sketch below.

(2)
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On the counter clockwise oriented waterline C,

define the local frame of reference C, m, d.

'C

C (Cx, C )

m(m x,m y) where mx =-Cy

d=nxc.

Assume that the hull has port and starboard symmetry

and define C+ and C_ as shown in the sketch below

C-.

On C+ we have C =-C dl
On C we have dy=Cy

On C we have dy=C dl

(4)

(5)

m•

C-t
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wnere a± is tne e±ement or -engtn along C

On C+ we also have C dl=-y dl
y y

a. The line integral in equation (2) can be modified:

Eonzr d = E a-C -

CEnd Je 4
where E0+=E(x,y + ,0)

convention that

(E0- +E timd1c Je

and E0 =E(x,y ,0), using the

y <0 and y =-y .

E. +E ZF-

using (6) and (8) in (7) we obtain:

IC C -

or C

(6)

{t C~ de)

(7)

+>y >0,

) exp F- C(lo. A-1 I (8)

PZ&(1t+eI

(9)

~_ · ~__ -~_I__I _~ · 1-__iL1_ -·I-~__ A

E .rix

i~l~dor
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b. The surface integral in equation (2) is now modified:

Enx c E n d8e + Enir c
(10)

where h+ and h- are the positive -y and negative -y half

hulls repsectively, da+ and da- are the elementary surface

areas on h and h respectively and E are defined as

follows: E =E(x,y ,z); E =E(x,y ,z) where y and y are

defined as before.

SE7 n, d j- (Et E-) rxd(c

Ei dQ 2n,'&LL) exF F- Cosz(.t~)l- Qs(Fiii+)')J,
(ll)

define

5-rpF AF-i Filiq:i (12)
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and

Equations (1) and (3) now become:

R; RX/•U -' FC aX'] (15)tYi<(-)" t

o (14)

C- C.
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APPENDIX IV

EXPRESSIONS FOR R AND K(t) USED IN CHAPTER III
FOR PORT AND STARBOARD SYMMETRY TOGETHER WITH

FORE AND AFT SYMMETRY

a. - F?- riz (2)

a. The surface integral in equation (2) is modified as

follows:

S+q
where h and h+ are defined on the sketch below

+ +

V'-'K -
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+
n and n+ are the x component of the unit inward

+ +
vectors on h and h+ respectively and C and C are

defined as

where x =-x .

since nx-=-nx+ (4) becomes

(jt .fhr gQ
(5)

Use (6)in

e [(5) and obtain: CO(Fli s 1 (6)

(5) and obtain:

COS (F~ & iL t A)Si n (Fl(N @) )n d, (7)

b. We now modify the line integral in equation (2)

C. c; Ct

where C+- and C++ are the intersection of the plane z=0O

with h and h+ respectively.

. -=

I d fd y JCLtf
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Using the fact that

f3fl.c?

+-

y y
, obtain

I-) n . 't je
t

that is:

cs sin (F (A "')r C 3- j (8)

If we define K(t)

- R*/frU'L .

1= + •1i((t) we obtain:

ie T"r" F-4 0

K-L~ f Ern ~dd

F oS( F~)~ F-1

2;4In z 4

C"

(9)

(10)

(11)

FL

CO 5 (F ze( L



-110-

APPENDIX V

DERIVATION OF EQUATIONS (3-8) , (3-9) AND (3-10)

R=M R*/le U'LZ

E nxda F E xZ uýd

- ~/jz3) 1 (I±Y))l±br)

(1)

(2)

-= Vp

(3)

(4)

(5)

nx 8a. - /did d z

a- et

(6)

(7)

(8)

k(0)= tL

exp (F I(,,t I) co05 (F-zt1+ e)1)s
i.(fl(lit~llirj

= ý (oc / 1
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2.) flK 

(9)

Use (3), (6), (7), (8) and (9) in (2), we obtain:

K(tY;-
0

Ix, o
cl x J E (

j T

3 Y d)
- KO

) 'oSVF&(+ )

(10)

or

-Z 6

0
-2w) (11)

3Z))d3e -, C05 cc,) (t-o

Cos (F(-(I2+) t i t - - .4 )F• 4 0L t*- )

(9)

sin Fto (F-Z(I, C

~I~ (I+rd sin (F~-(1+ ) /

(12)

(I- 7 -) ex

-,· F2 1 L05 11os ?- 2
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Use (11) and (12) in (1), and obtain:

0

i+Y -_z'-)Sin

(o+te' 'I1 t

cd O

and

TI ,F f ex(-d F Y)o5 F1 (i-.

CO5 $ (F 7 &( e)1 2. LI

where

(13)

(14)

(15)
4b'~(l~a~-zbcr2)2

1+4 1~3CL(lt~-2`6s2~2

v uit'·)(

I
0 = cc F-t ez) 11 za) I

-ý )) (I -r) ý3
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APPENDIX VI

EVALUATION OF

- Os( )[ t (C -I1)exp(- ,4)) 2. (it ( ic)exe(-S) -,Z

A
Ee [ S

cos~cB s -sin p3,) 3

1

iI - exf - TF) (i-3 c os (2z p 6 3

Using the new variable x such that ý=l- x
5

:~I.. E~f~&T~e 0(~S .e~(q{)c~~cc

Ic ep (M/Z ý) coszc
0

making use of

AND I

(1)

(2)

, we find

~(1-37_) d3

_ S-' (ý S) -ey(- J)

o(
I . exp(-sE)

a o< [ (p S) (
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j T exp(ac) ccs(bx)cd

([12] ,p.l(98 ,2 .667 ,6) (-I-2 /(Lcinb2

([12],p.198,2.667,6)

f Jex pz )os(b lr L =

-CL (Qý e u - t 0

I[bc - ba _ V) + 7jt[ý17-4CL(0ý4TX +-ý(,

([12],p.1 98 ,2 .66 7 ,8).

finally yields

o,.( e (-)[. (.)(Ao(lA Cos

A 1 b sj sI cl rZ(Z

t 2. ± 1 f( d - 1)

sin(N (4)(4)

"~41.S:IIO (5)

tos$(b6,)

-0() + ý ý
- (Z -Z (6)

2.+e~~
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81 ( 6a (z -c0) f4 -cN' 3(

t o( z (z -d ) -1- 4 (

c = -3z Sp 4 4 +2(Z

(7)
1)

F1 )

I =1,4 =J-

(8)
V.

eXp f- T3 )Ics(7-AE(I-0))-tos( AS -3))
I' 1 1' - ~*1

','bI X.ex (I-3))j[ Icos((s5) cos(1 r3) -sin & ) siin (3)5 (9)

1 I- ok

Using the new variable x=$6(C-C)

Im -x eJ)t cosx

Qbl -rtc )
, xr(o -. )
X expcF i&) Cos()j Ax - ex?

#"'(-14C)

leads to:

8d, 2c(~)ex~ -

making use of (3), (4) and

Iex e C( ( x)gd-L. ex p (.) (cs cos ) ,tbsin(bx))6(e'tt)

J-)

(10)

z-ad) + 2 T ( 1) +]

(1 -37J

S 3) Cos (pt (C --3)) (I -_ ) j 3

/rlC) os x
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finally leads to

CL (Kt Y'`exp(-c

- exp(cSW)(F
(1)

where

L& C- O(

k.= C - to(

I =5 z0( t- (( +2 ( &Z

(12)

(13)

- C2)+ 3') e52.

(14)

E = '( Ir + ( -(I -o) -z . o 1) R(2.
r '7

+ E'(--t)-4 . -• (15)

IF -= cSz(1-)
(16)

r (0-( -2.

S'0( 2 -Y) *2 (ý(-I) -t1) P +

t t- 2.

G= b-o (?-ac<)
, t- (2 - 0( + (0 -

(17)

) - 6

Cosstl~-a~s(-s im, = (

Cos (p Ctr) , G s;n,

t (- 0(1) -2 C( - I

Zjs~(, -X) to) ý

( k- ý --ex F (-

S) [eX p CFU) -D CO ( ýA) t E i (ý ;,k)) -
S4 r)n

+ (2. -f() ý .

p++2
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Use z=ý-a and obtain

(18)

It is now possible to obtain I =I +Im +I1 and

I =I n+I n+I n

PQ= Hex -jo1 Los'

C.5 (Osur)t ±G Vi0

where A,

through

B, C, D, E,

(19)

F, G are defined by equations (6)

(8) and (14) through (17). H and J are defined

as follows:

j= [- 2.

(20)

(21)

It dý-z (1 -24330(q% U)

(P r) ,~l'rj "(I Coe E Sin A,10 I~

expS~dll ~CO~S PII 8).) (1 t n jý Pzl -3
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(I n ) on the other hand can be expressed as

X

U Ls I 3 vW) dJ
-I

where U, V and W are defined by

LoS ( f)(I-cos (' 2)-Sin (ý

-LOs( 7))4i

f 5

(23)

SS.)) -.sin (z PS3)ej

- ~io()~oC~ -exp(- c(&(4 (I-2o()d- -o( -(h-Zo)cC'))

Cos (I <r(4- .(., c-. ( .<K-3. G<-

(22)

U= (-3)

+ expr-(J-,)[ os

)sin szn +

(2. ý "p ý) ire(a ý 3) (\

(js rs2)jJ

(I --0 i )]
(24)

IV% -
J

-+ V.- 4 ) c

_ LoS (p sC(,-' -(L -< C)..- (i c c ,3-2 ) )- 1

J,3) (1 ýL0 5, (

I 'II

,pj~s(xi,-'(l u)J~CLor(ps(c-ail L~)d~J)~

= ex? (-l) COS (2.ý

S)jrms (pslL
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Seq - 6 [ Os ( p) (1 - cos( pS")) sin( JS)

t - ( -14c' exp(- CF(o*( + )(11 )) 3Fcos ((

Sin (P JT

c~os(k" cGo~2zzcI 1Zoi3 (- 2o4*ZoQZ

(25)

\4

etc -~-cl-~d·i'2~-
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APPENDIX VII

DERIVATION OF THE EXPRESSIONS FOR
R, K AND I FOR THE PARABOLIC STRUT

oCR- 16rr' F •4

= -2 6ox.

de - (I+p.)lit d x

Sx -
2. x *2.C

E nx aa- - ELJE

coS (ltoe) si s (F c(L* c )

Use the above equations to find

s~`')in (F~( +ei'.%.) 4l

(1)

E exp( -- (t3e)

62 -c iE Cos(F-' E 1 •f
0

(2)

\I (-)\ (,+e)'l 2 j t

ný jýý je

ý -W 6 (1 - ccz)

k N) -M f
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where fe "

or

_F Lo/( k + oa-2.)
ý fx oý ( ýO11

Afxr
0

We can rewrite

where

4

(1) as

(4)

(5)

and

(6)

o

The integral in equation (6) is straight forward and

becomes

- 4+k+ ( 7) 0

(3)

(6)

F-I- (I )) y -

(- F -7 ( t+ ) I. A

expj~df~~(~+t2~11 (7)

x toS F (it?(t\(t-s Sin FZ(ht+@tz )d

4 @ 3ý/(I xr 4 v

I = ýI+e ýk
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APPENDIX VIII

DERIVATION OF K(t) FOR THE
PARABOLIC ELLIPTIC HULL

The wave resistance is given by oR.~ ~ -t a dl(l·')lad
0

where K f i••• nx 8 -.. ; aon a

and i= e P F Fi~() i +F)'] CSt (i•-l ~ )'/ A)

In the fore part, the hull is defined by

-d cos A c
; --5, a - YW'x,

cc=0),1
The vector normal to the hull is defined by

The element of area da is given by

(1)

(2)

(3)

(4)

(5)

r~hQ- r(-- StLQ)sin
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So we get

Since XO

x do-- (=I7W

=(1j ,L /,o)

A -) d-a me

and 2,= (;, tI )

(6)

, (6) becomes

rNx d a--.

or, using (3), (4) and (5):

rf l deL b

If we define

,d cc' (0-

, the tangent vector to

the waterline, is given by

0 t (1,-t- ý( 7-)

The element of arc dl is given by

(9)

The normal vector at the waterline

(7)

(8)

/a.) sin' l

is defined by

I~io

8e, 0 +11 a11Z d

---Ob1 17
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So at the waterline we have

Define S= dF'(1t ')

and 6 , ba *'X(i- o/2z.-)LI1+ 17

Use (7) to (12) together with (2) in (1) to. obtain

k1()= Lba' ex -

i (-z
&cos

-FL cos( J)
cL , L?-(I- OL/C)I

In the after part, the hull is defined by

XC a.- ( I- ,. sin a

= (bl-.)cos % in

= - . Cos

= O (8 )
D = ý (B /)

(10)

(11)

(12)

(13)

Cos (p,ý .S)
•2- (I- -i .) " (14)

(15)

(16)

(17)

Y = ý(J) •

F^ d,- ) -= .)I- dO.
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The vector normal to the hull is defined by

AX)/1,Ao

and the element of surface area by

dC- .

= n x 80-- r AZC~) s

we obtain

• da, = - (bd/) Si. esin" de d (18)

Using again the convention

d~. ( •,.A) ' e •

21 d = ·dde

te =o
, we have

Since = • \ , o) and QV , o i'

(19)

(20)

(21)

n---V -

38

\1'.* A \Ob ed08
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n Ln-I

Defining PZ - (b /2d)b (~.~)1iZ.

Use (18) to (23) together with (2) in (1) to obtain

-

I

sine It.
(24)o

eS'LS) co's

" s i VI (25)
S(c-a.L~Losa St lesiv 9

(22)

(23)

C( F s' a.si8

p4 C IinSA) S;sY d ? -

- F cos

FdKW; iZ)~p(-~l~t`J'il 0

l -d
~,.dJ:ex(


