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ABSTRACT

A simple slender-ship wave resistance formula and
the related approximations of Michell, Hogner and Yim
are compared to one another. Differences between these
four wave resistance approximations reside in that the
waterline integral is included and the thin-ship approxi-
mation is used-in some of the approximations and not in
the others. Calculations are performed for several
- hull forms, namely a family of Wigley hulls, the Inui
hull, the parabolic strut used by Sharma, the high speed
hull Athena and a mathematical hull with a fine bow and
a blunt stern. The results are compared to available
experimental measurements and to other numerical results.
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" INTRODUCTION

The main object of this thesis is to present results
of wave-resistance calculations based on three simple
wave;resistance formulas. These are the "zeroth-order
slender-ship wave-resistance approximation given in
(11, tﬁe Hogner approximation, and the classical Michell
thin-ship approximation.

The.zeroth-order slender-body approximation
corresponds to simply taking the velocity potential of
the disturbance flow caused by the ship as zero. ‘This
wave-resistance formula involves a surface integral
over the ship hull surface and a line integral along
the ship waterline. The Hogner approximation is the
particular case of the zeroth-order approximation obtained
by neglecting the waterline integral. Finally, the
Michell approximation may be obtained as the thin-ship
limit of the Hogner approximation.

Numerical results are presented for a variety of
hull forms. Some of these are idealized mathematical
hull forms with fine ends, while others are more real
ship-like hull forms. The theoretical predictions given
by the three above-mentioned wave-resistance formulas

are compared to experimental measurements.
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CHAPTER I

BASIC FORMULAS

A nondimensional wave resistance, R say., is

defined as R = R*/pV2L2

, where R* is the dimensional
resistance, g is the acceleration of gravity, p is the
density of water, V is the speed of the ship and L is a
reference length which will be taken as half the length
of the ship in this study. R can be evaluated by means

of the well known "Havelock wave-resistance formula"

R = (4F%/m) J Ix(t) |2 (1+£2) 732 g¢. (1-1)
0
where F is the Froude number based on the ship half

length, i.e. F = V/(gL)l/z.

The function K(t) in formula (1-1) is the "Kochin
free-wave spectrum function." It is related to the
free wave pattern trailing behind the ship. 1In the
zeroth-order slender-ship approximation where ¢ is taken

equal to zero (1], K(t) is given by

2K, (x) = f E(x,y,zit)v(§)da(§)
h

+F2 { E(x,y,O;t)v2(§)u(s)ds (1-2)
c

where

E(X:Y'Z:t)=(i+t2)F-4exp[zF-z(1+t2)

~i (xF 24y 2ty (1462 12, (1-3)
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The significance oiwthe various symbols will now
be explained. The z-axis is vertical, positive upwards,
with the undisturbed free surface taken as the plane
z=0, and the x-axis is parallel to the direction of
motion of the ship and pointing toward the ship stern.
The plane y=0 corresponds to the ship center plane. The
coordinates X, y, 2z and indeed all the variables which
appear in this study are made nondimensional with
respect to the above defined characteristic length L;
The nondimensional coordinates x (x, vy, z) are thus
defined as §=,§/L where X is dimensional. In the
surface integral in formula (1-2), (h) represents the
wetted-hull surface of the ship in position of rest,
da is the differential element of area of (h) and V()
is defined as v(§)5 3(%)-§,where ;(Q) represents the
unit inward (that is, E is pointing towards the interior
~ of the ship) normal vector to (h) at point X of (h), and
1 is the unit positive vector along the x axis. 1In
the line integral around the waterline (c), ds represents
the differential element of arc length of (¢), v(s) is
defined as v(s)' =n(s)-1, where n(s) is the normal to (h)
at point s of (c), and u(s) is defined as u(s)= n'(s)-1,
where %' is the unit inward normal vector to (c) in

the plane z=0 (see Figure 1l-1).
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Figure 1-1

In the common case where the ship has port and starboard
symmetry, the above formula for the Kochin free-wave

spectrum function becomes

2

Ko (t) = j (1+e2) F dexp [ (1+t2) /2572 (Cixs (14£2) 1/ 25

h+

2 2)1/2

cos (ytF < (1+t v (X)da (%)

- f (1+t2) F 2exp[-F 2 (1+t2) /254
c+

1/2

cos(th‘2(1+t2) )vz(s)u(s)ds (1-4)
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In the hull surface integral in formula (l-4), (h™)

represents the starboard half of the wetted surface (h),
that is the portion of the hull corresponding to y
positive. In the line integral, (c+) is the intersection
of (h*) with the plane 2z=0.

The waterline integral in (l1l-4) is especially impor-
tant for blunt hull forms (for which v aﬁd U are not
small at the bow and/or stern) for ship forms with small
draft, and in the low speed limit ([2],[3]).

If the ship is sufficiently "fine," that is if the
angle between the waterline (c) and the x-axis is
sufficiently small, we have vzlui<<[v[<<l. If the
line integral in formula (1-4) is neglected in comparison
with the surface integral, the Kochin free-wave spectrum

function KH say, becomes

4 1/2

K, (£)= f (1+£2) P exp (F2 (1+2) 1/ 2 (cixr (1462 1/ 22) ]

h+

2 2)1/2

cos (ytF © (1+t v (%) da (%) (1-5)

KH(t) corresponds to the Hogner approximation. If the
ship is "thin," that is if y(x,2z) is sufficiently small

that the term cos(th_z(l+t?‘)l/2

) may be approximated by
1, the Hogner "fine-ship approximation” KH(t) given in
equation (1-5) becomes the well known Michell "thin-ship

approximation" KM(t) say, which is given by
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Ry () = J (1+t2)F‘4exp[F"2(1+t2)1/2
+ '
h

1/2

(~ix +(1+t2) Y 22)1v (X)) da (%) (1-6)

The "thin-ship approximation" y<<l used in deriving
(1-6) for Ky(t) from the Hogner approximation (1-5) not’
only implies geometrical thinness, characterized by
e=B/L<<1l (where B is the dimensional half beam and L
the dimensional half length) but also "Froude thinness,"

e/F2<<l: the differences between RH and R, (the wave

M
resistance obtained by using K and KM respectively in
(1-1)) may be expected to be larger the bigger the beam
and the smaller the Froude number.

Another formula of interest is obtained by keeping
the waterline integral in (1-4), but approximating the
term cos(th-2(1+t2)1/2) by 1. (The ship is "thin,"
but we allow for the influence of "large" angle between
(c¢) and the x-axis at the bow and/or stern.) The ex-

pression for the Kochin free-wave spectrum function

becomes

Kylt)= ‘L*(“&") F.kexP[F'z(H l;z)m(-i. x4 (14€ }llz})] Y(X)dal\X)

-] F(1+€) exPEF'z(HE)mi x| (4 p(4)d 4 (1-7)
Cf
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This expression was actually used by Yim [4].
In the case where, in addition to port and starboard
symmetry, the ship hull has fore and aft symmetry, the

and K may be shown to become

expressions for KO’ KH v

K (t)= 2F° l*})facos l*f:\*g)sm(:—";r_(m-\ )evc[ (152 —,J(x. da(T)

iz

+ 2 F (|+t2ﬁ,COS(F &(hc)"oa)s""( J’—(““'} )J(‘),U(‘)A‘i (1-8)
C-

?

K (L-) vid (l-l't JG}COS(F HHE")%)SM(F Ot.(l*t CXP[F Wt ?]y AQ(:L)
(1-9)

K (8)= 2F ht)j,csm Yutt) )exp[ (+t)}]v )da(%)

(1-10)
L-) 2F L'(M: ) R&sm( z(_l+l:")uz:c) exp[F'z (Htl)"a'] V(C? )C\Q-(i, )
+ ZF'z(l*t")fi sin (F° (|+‘=) )V (4) p(Ad A (1-11)

<
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In the surface integrals in formulas (1-8) through
(1-11), (h:) represents the quarter of the hull for
which y is positive and x is negative. (c]) in the
waterline integrals is the intersection of (h;) with

»*

the. plane z=0.
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CHAPTER II

NUMERICAL RESULTS FOR A SERIES OF THREE HULL FORMS:

WIGLEY, INUI, ATHENA

The calculations presented in this Chapter were
per%brmed so as to make possible our participation to a
workshop on wave resistance organized by the DTNSROC in
Washington, D.C. in November 1979. It was requested
that we compute the wave resistance of several hull
forms, some of which were defined analytically (like
the Wigley hull) and some were not (Inui, high speed
hull Athena). A general numerical technique was thus
selected, which we briefly describe below.

As far as the definition of the hull is concerned,
all dimensions of the ship are made nondimensional with
respect to the half length L of the ship, that is
§=§/L where X is dimensional. As a consegquence, X varies
from -1 to +1, y from -b to +b and z from -d to zero
(where b and d are the nondimensional half beam and
the draft respectively). (See Figure 2-1).

The hull surface is defined either analytically
by a relation in the form y=+y(xX,z;b,d), or numerically

by a series of cross-sections.
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Figure 2-1

The wave resistance is given by formula (1-1) and
the Kochin free-wave spectrum function K(t) by (1-8)
in the case where the hull has fore and aft symmetry
(Wigley and Inui hull forms) and by (1-4) when  the
hull has only port and starboard symmetry (high speed
hull Athena).

The determination of K(t) requires the evaluation
of a surface integral on the hull of the ship and of a line
integral along the waterline.

In order to evaluate the surface inteéral, the
surface of the hull is divided into small planar triangles.
On each of these triangles, v is constant and the integral

can be evaluated analytically (see Appendix I). The
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surface integral over the entire hull is then taken as
the sum of the integrals over all the planar triangles.
The choice of the triangles is made as follows.
The centerplane is divided in small triangles as shown
on Figure 2-2. The horizontal lines must cross the
fore (respectively aft) border line of the centerplane
at points where vertical lines end; in order for the

centerplane to be partitioned in triangles only.

Az

Figure 2-2

It is also obrious that the fore (and aft) part of
the centerplane are generated by triangles of a
different orientation. As a consequence, we change the

orientation of the triangles at a value, x, say, of %

0
which may (but need not) be chosen equal to zero (cf

Figure 2-2).
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In the case of fore and aft symmetry however (Wigley,
Inui), this problem does not arise since we only consider
the first half of the centerplane.

Having done this partition of the centerplane, we
generate a "partition of the hull" by associating to
each triangle of the centerplane, a triangle on the hull.
This new triangle has vertices with the same x and y
coordinates as the vertices of the corresponding triangle
on the centerplahe and y-coordinates so chosen that the
vertices are on the hull.

The evaluation of the line integral follows a simi-
lar approach. The waterline is divided in linear segments
over which v and ﬁ are constant. Analytical integration
is performed on each interval (see Appendix II) and the
line integral over the wéterline is taken equal to the sum
of the integrals over all the linear segments.

It is important to know how many horizontal and
vertical lines to choose, that is how small the planar
triangles on the hull and the linear segments on the
waterline should be in order for the surface and line
integrals to be determined with satisfactory accuracy.

At low values of the Froude number, the wave length of
the radiated waves 1is small. Since we expect the
influence of the waterline integral to be larger, the

smaller the Froude number, we must choose our linear
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segments small enough compared to the wavelength so that
the precision on the line integral is sufficient.
Numerical evaluation of the line integral for the

Wigley hull and for a Trhombus-like hull form have shown
that the number-NL of segments necessary for the line
integral to converge increases when F decreases. For
F=0.1l, the value of NL was found to be 60. However the
surface integral did converge for a number of horizontal
lines M=10 and a number of vertical lines NS%ZO.

Numerical investigations were made with N_=20,

S
M=10 and NL=80 (for nonanalytical hull (Inui, Athena)
there is a practical limitation on M and N).

The use of the triangles made possible a calculation
of the surface area of the hull which can be valuable to
compute the wave resistance coefficient for a nonanalytical
hull or for a series of hull forms like, say, a set of

Wigley hull forms with different draft or entrance angle.

II-1 Wigley Hull

The Wigley hull has parabolic framelines and parabolic

waterline. It is analytically defined By the equation

y=2b(-o)1- /)
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- where x, vy, 2, b and 4 are made nondimensional With
respect to the half length L of the ship, b is t@g non-
dimensional half beam and d the nondimensional draft.
The evaluation of the wave resistance coefficient
was made for b=0.1 and d=0.125.
In order to determine the wave resistance, one has
to integrate the Kochin free-wave spectrum function K(t)
from t=0 to t=«, as indicated in equation (1-1). The
upper limit +» was replaced by tF=6, corresponding to
an angle 9=80°, where © is the angle between the x
axis and the direction of propagation of the radiated
wave, as shown on FIgure (2-3). It was assumed that
such diverging waves would have only little effect on
the overall wave resistance. This assumption is again

considered in Chapter III-2 where it is justified.

Eransverse
wave
crests

diverging wave crests

V.
\

Figure 2.3
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Results obtained by Michell's and Hogner's wave
resistance formulas are given in Table I and results
are given by the zeroth approximation in Table II. All
results are shown on Figure 2-4, where calculations
based on Hogner's formula, Michell's formula and the
zeroth approximation are identified by the symbols H,

M and O respectively.

The experimental results provided by the DTNSROC
were obtained for a model free to trim and sink whereas
the effect of sinkage and trim is not taken into account
in the present study. Direct compariscon of our results
with the experimental results is thus not relevant.
However we know that the wave resistance coefficient is
appreciably decreased when the model is constrained (see
[6] and [7] for example). Thus the effect of the line
integral can be seen to be inthe "right direction," where-
as Hogner's and Michell's approximations will over
predict the resistance.

On Figure (2-4) are also shown the results obtained
numerically by C. W. Dawson [8]. These can be seen to
be in surprisingly good agreement with the results given
by the zeroth approximationl

Results obtained by K. J. Bai [9] are also shown

in the case of a large and deep towing tank (W/L=D/L=1.25)
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which is the closest the author comes to the assumption
of unbouded fluid. Here again, agreement with the results
given by the zeroth approximation is fairly good for
relatively high values of the Froude number, say Fn>0.40.
(where Fn is the Froude number based on the length of
the ship Fn=v/(g-2L) /%=y 21/2

Note that the results obtained by Dawson and
Bai are for fixed models like in our case, which makes

these comparisons meaningful.

II-2 The Inui Hull

The Inui hull, as the Wigley hull, is still a thin
ship with fine endg and fore and aft symmetry. But,
unlike the Wigley hull, it is not defined analytically.
It is defined as the hull form obtained by Inui, by
tracing streamlines for infinite flow past a linear
source strength distributed on the centerplane. The
nondimensional half beam b and draft 4 are given by
b = 0.2458
d

0.391s6.
The first quarter of the hull (y>0, x<0) i§ defined
by a series of 14 cross-sections. These are given in
Table 1IIT. Like for the Wigley hull, the integral in
equation (1-1) was evaluated with an upper limit of
integration t_= 6. (It was verified that increasing t

F

up to 18 did not lead to any significant change).

F
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Results obtained by Hogner's wave resistance
formula are given in Table IV together with the
results given by the zeroth approximation.

These results are also shown on Figure (2-5) where
the curves corresponding to the Hogner formula and the
zeroth approximation are identified by H and O respectively.
The same remark as before applies here to the previously

drawn conclusions [5].0n Figure (2-5) are the
results given by Dawson [8], Bai [9] and Chang [10]. The
results by Bai fit almost ekactly with the results
obtained by Hogner's formula.

Values given by Dawson are lower, i.e. closer to
the results obtained by the zeroth approximation, except
at Froude numbers less than say 0.35, where they
seem to be out of phase with our results, and much more
oscillatory. On the other hand, results given by Chang
are very close to the experimental results. This may
appear surprising in view of the fact that these results
were evaluated for a model fixed (see [10]).

It is interesting to note that the numericél results
obtained with the simple Hogner formula are similar
to the results obtained with much more sophisticated

numerical procedures. In addition, the zeroth
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approximation appears to give results closer to
experimental measurements than the results given by
Hogner's formula or Dawson, for relatively small Froude
numbers, say Fn<0.32. At relatively high Froude numbers,
say Fn>0.35, the zeroth approximation consistently pre-
dicts wave resistance coefficientslower than the ones
obtained for a model free to sink and trim, like Dawson
but unlike Chang.

II-3 The high speed hull "Athena"

This hull differs in many ways from the hulls
studied previously; Specifically it is defined numeri-
cally, does not have fore and aft symmetry, and is not
vertical sided at the waterline. In addition, it has
a transom stern, is broader at midship and less deep than
the two previous hull forms. The nondimensional half
beam b and draft 4 are given by
b = 0.1470

d 0.0642.

The hull is defined by a series of 25 cross-sections,
given in Table V.

Figure (2-6) shows a top view of the hull.
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b4

— |

Figure 2-6

The transom stern will obviously cause some difficult
probleém. Potential flow theory assumes that there is no
separation, i.e. the streamlines remain close to the
actual ship hull.

Thus one should consider the wave resistance as given
by a source distribution over the whole surface of the
hull. The simplified theory presently used predicts
that the wave resistance will be the same, no matter the
direction in which the ship moves. It is intuitively
obvious however that the wave resistance of the Athena
hull going backwards will be much larger than the resistance

of the same hull going forwards.
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It is commom practice to disregard the transom end
of the hull. The underlying reasoning is that, due to
separation, the stern does not participate to the wave
making.

Figure (2-7) presents t?g results obtained by the
Hogner approximation and by the zeroth approximation.

The wave resistance curve is seen to oscillate much less
than previously. The influence of the waterline increases
with increasing Froude numbers. This figure also shows
the calculated values of the wave resistance obtained

by Dawson [8] and Chang [10].

The results presented by Chang were referred to as the
resistance coefficient in [10]. Théy were explained to
be the sum of the wave resistance and of the "hydrostatic
pressure resistance." We thus show the values given in
the reference and the difference between these and
the hydrostatic resistance. The same remark holds for
the experimental results which are shown, one curve
corresponding to the residual resistance and the other
being deduced from the former by subtracting the hydro-
static resistance.

If we compare results obtained by Hogner's formula
and the zeroth approximation with the "experimental®
results obtained by subtracting the hydrostatic resistance

from the residual resistance, we note the following: at
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low Froude number 0.27<Fn<0.35 say, both the Hogner

and the zeroth approximation give results very close

to the experimental results. For moderately high

Froude numbers, 0.35<Fn<0.65 say, both the Hogner and
the zeroth approximation overpredict the wave resistance,
whereas the results presented by Chaﬁg are close to

the experimental values. For high values of the Froude
number, Fn>0.65 say, the Hogner and the zeroth approxi-
mations underpredict the wave resistance. The zeroth
approximation curve is closer to the values obtained by
Chang and the Hogner curve is closer to the experimental
results.

The results obtained by Dawson are very close to
the residual resistance curve, and much higher than the
experimental wave resistance coefficients given by
Chang. It must be noted that Dawson computed both the
residual resistance coefficient and the wave resistance
coefficient and they were very close to one another.
This seems to imply that the influence of the hydrostatic
presume resistance is weak, which is at variance with
the conclusion arrived at by Chané.

In summary, comparison between our results and
the experimental measurements shows that, they are out
of phase with, and very far from them. Furthermore, our

results are in relatively good agreement (at least at
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moderately low Froude numbers) with the experimental
curve obtained by subtracting from the residual

resistance the hydrostatic pressure resistance computed

by Chang.
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CHAPTER III

- WAVE RESISTANCE OF MATHEMATICAL HULL FORMS

In this section, calculations are performed for
several mathematical hull forms and the results are
compared with experimental measurements. The hulls
that are considered are i) a family of Wigley hulls,

ii) the parabolic strut used by sﬁarma and iii) a
hull with a fine bow and a blunt stern, which wé shall
refer to as the parabolic elliptic hull.

Instead of partitioning the hull in small planar
triangles as in Chapter II, it was decided to use the
equation defining the surface of the hull to perform
numerical evaluations of K(t) and R.

All the integrals which were performed were single
integrals (over one variable). It was thus possible to
study the behavior of the function (£(£) say) which was
to be integrated, in order to be sure to have sufficient
accuracy.

The formulas for R and K(t) used in this Chapter
are slightly different from the ones used in Chapter II
but are of course equivalent to them (see Appendix III

and IV).
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In the case where the hull has port and starboard

symmetry, the wave resistance is given by

R=R'/eVL - n“s"‘f\k(e)\z(ut‘)"‘dt (3-1)
K(a'—' Rt E nxda. = Fz'-l:* En} gydﬁ N (3-2)

1,‘3,6—) exp‘: (Ht)fb« LF (118 q;]ms é(uh)g) (3-3)

where all the symbols have the same meaning as before
(see Chapter I).
In the case where the hull also has fore and aft

symmetry, the above formulas become:

R W/?VL _lLT.‘F /’IKU:“ H't ll‘l (3-4)
Kb Encda - F°| Eng agydf | (3-5)
e enre

E{%“&:})= exP[F°z(l+t")3—J c'os(F'z(:(htz)”aa)sm(l: (M._)"" ) (3-6)
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For the Wigley models and the parabolic elliptic
hull, some plots of the Kochin free-wave spectrum
function K(t) are pfesented for some values of the
Froude number F. The wave resistance curves predicted
by the zeroth approximationfénd Hogner's and Michell's
formulas are also shown.

III-1 A family of Wigley hull forms

In his studies of the Michell wave resistance
formula, Wigley [6,11] selected a family of hull forms

defined by the equation
*3:b(l-?/d")(l-(u“{)x’wb’x‘*) jolgxgrl j-deyg0 . @-T)

where %X, v, 2, b and 4 are made dimensionless with
respect to the half length L of the ship; b and 4 are
the half beam and the draft respectively. Y 1s a
coefficient which will be given the values -0;2, 0., 0.6
and 1.0. This will enable us to compare our results
with the experimental results obtained by Shearer [7].
The parameter y characterizes the angle of entrance.
It is easily verified that for values of y less than
0.2, the hull is convex and for y greater than 0.2, the

hull is concave (see Figure 3-1).
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- Figure 3-1

By using equation (3-7) in equations (3-4), (3-5)

and (3-6), we may obtain
)

R=R"/eViL. AN lK(H\z (14 ti)mé!: (3-8)

(-]

1
YGE 6/I(4{6’-23’3.2)81'1\(F°1(\*t:z)\{2i)1 dx (3-9)

1
1= oF " xel-F (3 cod 1) bl (w02 ¥2)(-34)]1-343

Bl el )] oo
‘4B (e T-2¥ 2t

(see Appendix V for the derivation of (3-8), (3-9) and

(3-10)).
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In order to simplify the numerical evaluation of K(t)

(and of R), the integrél over ¢ in I .(equation 3-10) is

approkimately evaluted. One can first simplify the

expression of I by introducing two new variables B and §:

§= F2IvE)d

P= | l+l:7')_‘hlad.‘ [1- (14t +7>’3;l+]

2
I-4F 7'I((}, 5)- Wb ot (WF-2722) oS F !:(|+l:‘)mb{s-(ht)x?}z'm‘*)]
et (kT2 T2 )

where

l

T8l [orlseeslpsli-31)i-3)d3

(3-11)

(3-12)

(3-13)

(3-14)

Replace the range [0,1] of integration over ¢ by three

intervals: [0,a], [¢,l-0] and [l-a,1]; over each of these

intervals, the function (l-;z) in the argument of the
cosine function in (3-14) is replaced by a linear

function, as shown in Figure 3-2.
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> 3

Figure 3-2

0<z<a f(z) is replaced by f1=l
a<g<l-a £(g) is replaced by f2=F(;)
l-a<z<l £f(z) is replaced by f3=2(l-;).

The functions fl and f2 are so chosen as to conserve the
slope of £(z) at =0 and z=1;

a is a priori arbitrary (it will be taken equal to 1/t
in the actual calculations);

G(Z) is the function describing the linear segment Jjoining

the points (a,l-az) and (l-o,a(2=-a));
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F(Z) is the function describing a linear segment,
parallel to the one described by G(z) and chosen so

that we have A3=A1+A2, where Al’ Az'and A_ are the

3
surface areas between the curve f£(z) and the three linear
segments used to approximate it (see Figure 3-2).

It is easy to see that F () is of the form

F\3); __3 +C (3~15)

The requirement that A,+A_=A, leads to

17273

¢ = (-2a)" (36-20-42) (3-16)
If we choose c=1/3, we obtain c=7/6.
It may be noted that in the Michell approximation,
f(C)=l-C2 is replaced by g(z)=0.
In order to check that the replacement of £(z), by
the three linear functions previously described permits
a precise evaluation of I(8,9), we evaluated numerically
the differeﬁce between the exact value of I(B,8) and

the value of I(B,8) obtained with the simplification of

£f(z), and which we call 12. The method was as follows:
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) |- 1
I=J'“a(3)33*/9j(5333 +/ 9(3)d3
° o (=d

where g(z)=expl-67]cos[86(1-22)] (1-z2)

We can rewrite (3-17) as

T lzo-10)+(Th - IQ)*(I\&- I‘h)
or 1- {Ig'-t I&\-\-X?’)’(xg 'fIn: +I‘“)
or I * Iq"ln

where

!

) _/;exP(-SS) cos [ 8)(1-37) 43

a
o]

I

®*
n

I, =j;exp(-XS)[ws((SS)-—ws(@ﬂl%z}ﬂ(“?}és

=

- exp (-89 p5(e-3)(1-57)43

3¢

1

-«

I [ erp (-7 s(ps () -os [p80- 30305

|

I?':j exP<_53) cos(z (55(!'3)) (|-37'>c]3

(3-17)

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)
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o QXP(-SS)[Cos(zFS(h'S))_Los(f:rf(l-Sz))](\-'Sz)JS (3-24)

I, I +Tm T (3-25)

=

n n o) n
I = I.+Im + L (3-26)

12 can be evaluted in closed form (see Appendix VI)
1% was computed numerically.
Comparison of 12 and 1" was made for several values of
F, vy=0, a=1/3 and c=7/6.
The difference was of a few percents. The expression
I(B,8) is thus well approximated by 12.

The Kochin free-wave spectrum function can now be

obtained from the simple integral

!
CERETENES

where g(x) is given by

ETENCY .
9(1) z x(le-Z?Scnz)Sin(F 7’(H—!:) x)_l_ (3=27)
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and I is now given by

2\ . )
. 1“'_ . Lzm‘(\-rT- 295%) cos[F 7'(;(\1—@')‘“\: (\-( n—‘&) | oc'*)] (3~28)
b Bt (14 7-202)"

If I were not an oscillatory function of x, equation (3-27)

would indicate that the function g(x) would oscillate

with a pseudo period T stemming from the term

1/2

sin(xF~2(1+t%)1/2) ang having the value

T 27wF? (|+t‘)°‘/2' (3-29)

The range of integration over x is 1. Imposing to take
24 points over each period when integrating g(x), would
make it necessary to take a number C; of points to

integrate g(x) over the whole interval [0,1]. Ci would

be given by

Co= 2b axlT = 24 f1 2 3.8 ¥ (1)

. 2 |
Cie g PR ()] (3-30

Since I also oscillates when x varies, it is not

obvious that the pseudo period of g(x) will be the one
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given by equation (3-29).

Plots of g(x) are shown in Figures (3-3) through
(3=5) for F=0.3 and t=0, t=1 and t=2; y was always taken
equal to 0. It can be seen that the number of points
necessary to carry out the integration of g(x) with
sufficient accuracy is fairly well §redicted by equation

(3-30). It was decided to use C; as given by

- I
Ci= 2 INT(2F 2 (1+t%) ") . (3-31)

where we are careful to take Ci as an odd integer. (This
will enable us to use Simpson's rule, for example.)
The next step is to integrate K(t) in order to obtain

the wave resistance as given by equation (3-8) which we

can rewrite as

Ee
R e[ guude (3-22
o}
whgre 3 ((‘.‘) = \ K{t) \7- (H’ tz)”z (3-33)

and where tF' strictly speaking, is infinite.
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When t tends to infinity, the amplitude of the
corresponding waves decreases very much. The value of
g(t) is expected to become negligible for t greater than
a value t,. Plots of g(t) are thus presented for

F
'several values of F, in order to determine how t

F
and the pseudo period of g(t) (and so the number of
points necessary to compute the integral of equation (3-32))
depend on F. These curves are presented on Figures (3-6)
through (3-15) for values of Yy equal to 0, 1 and -0.2, and
values of F equal to.0.2, 0.3, 0.4, 0.5 and 1. Several
interesting features can be observed.

The amplitude of g(t) decreases very rapidly when
t increases. The function g(t) also oscillates when t
increases, with a frequency which decreases when F
increases. The value tF of t, after which the amplitude
of g(t) becomes negligible is also dependent on F and
increases where F increases.

Also when y increases from y=0 to y=1 (i.e. when
the bow becomes thinner) tF decreases, for a given value
of F. When considering a slightly thicker hull, by
taking y=-0.2, it cannot be seen any major difference
with the case y=0. Also, when F is large (F=1 say) there
is no difference between the values of t_ obtained for

F
Y=0, y=1 or y=-0.2.
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For the case y=0, the following empirical formulas
for to and Cj (which is the number of points required

for integrating (t) with sufficient accuracy) were used:

tlz: 5 FO.Lt (3-34)

Ci=12 INT(EeF75) + 1 (3-35)

For determining Cj,.it»was chosen to impose 16 points for
each "period," instead of 24 as before. Equations (3-34)
and (3-35) were also used for other values of y. The

only consequence was to overﬁredict tF'
To compute the wave resistance in the Hogner

approximation, the line integral term in equation (3-28)

was deleted and (I) was thus made equal to (%) in (3-27).

I, = 12 (3-36)

where the subscript H stands for Hogner.
To compute the wave resistance in the Michell appro-
ximation, we replace equation (3-10) by

1
T=d F'zfexP[ F{iet)d 3] (1-39d3 (3-37)

]
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This integral can be easily evaluted and I is then

~given by

IM=dF-z[J-:—Z(Sﬂ)S-sexp(—S)_’2. 53] (3-38)

where the subscript (M) stands for Michell.

The reﬁults for y=0 are shown on Figure . (3-16). The
case y=0 was already examined in Chapter II; These
calculations were done nevertheless, in order to check
our previous results and the new program.

In Figure (3-16), R/Fn2 is presented for convenience,
versus 1/Fn2. R is the nondimensional wave resistance
and F  the (real) Froude number based on the length of
the ship, i.e. Fn=U(2gL)-l/2=F/7;

Again it can be noted that the wave resistance pre-
dicted by Hogner's approximation is the highest. Michell's
approximation yields a slightly smaller value of the wave
resistance. The zeroth approximation yields much smaller
values and results obtained by Yim's method are slightly
smaller than the latter.

It is interesting to note that the differences between
Hogner and Michell on the one hand, and the zeroth appro-

ximation and Yim on the other hand, are comparable, and

both much less than the difference between sa’ “ngner
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and the zeroth approximation. The results given by the
four methods are all in phase. The envelope of the maxima
is first increasing for values of ng comprised between

0 and 18, and then slowly decreasing.

The line integral can thus be seen to decrease the
value of the wave resistance. The small difference
between the results obtained by the zeroth approximation
and Yim's method indicate that the latter can be used to
obtain results close to the ones obtained by the zeroth
approximation but with much greater simplicity.

Figure (3-17) presents the results obtained for
vy=0.6 andlthe experimental results obtained by Shearer
{7]. At high values of the Froude number the results
given by the zeroth approximation are smaller than those
given by Hogner's approximation and closer to the
experimental results. But for F;2>9, i.e. for Fn<.33,
the experimental results become larger than even results
obtained with Hogner's approximation, and much less
oscillatory.

Also, when F;Z increases, the difference between
the Hogner and the zeroth approximation decreases and

becomes negligible for ng

>16 (which corresponds to Fn=
0.25). For a hull with very fine bow and stern, the
line integral does not change the wave resistance

- appreciably.
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Contrary to the case y=0 where the envelope of the
maximum was first increasing and then decreasing, for
y=0.6 this envelope decreases rapidly. We note that
the experimental results decrease much less rapidly
than the computed ones.

Figure (3-18) shows the results obtained for y=1.

The general configuration is the same as on Figure (3-17),
for y=0.6. There are negligible differences between the
Hogner and the Michell approximations and only relatively
small differences between the Hogner and the zeroth appro-
ximations. Again these differences decrease when F;2
ihcreases. In this case, even at low values of ng (i.e.
high values of Fn) the presence of the line integral does
not bring a great improvement. The experimental results
are less out of phase with the computed ones and, at

high values of F;Z, much closer to the Hogner curve.

The results obtained for y=-0.2 are shown on Figure
(3-19). y=-0.2 corresponds to a hull which is thicker
than in the case y=0. We see that the general shape of
the wave resistance curves is different from the one
we had with fine ends (y=0.6 and y=1l).

It can be seen that the envelope of the maxima begins

to increase. The difference between results obtained
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with Hogner's formula and with the zeroth approximation
is much larger than before. The experimental results
are somewhere between the Hogner and the zeroth appro-

2<10. For'F;2>10 the experimental

ximation curves for O{F;
results are much smaller than the computed ones, less
oscillatory and decreasing when F;Z increases.

In summary, it can be seen that for this family of
Wigley hullé, when the angle of entrance increases '

2)]'/2 increases

i) the width of the spectrum ]K(t)[2(1+t
for a given F and, ii). the influence of the line integral
increases.

III-2 sharma's parabolic strut

We now consider a very thin body, defined by

the equation

Y=t b(1-o?) ‘ (3-39)

where the nondimensional half beam b and draft 4 ére

b = 0.05

d = 0.30

The wave resistance can be calculated by using equation

(3-18).
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- The Kochin free-wave spectrum function is now

given by

|
K16)= | 2 e (el b (-a) sin (F (1) ) T a0

where I is defined‘by

1= U‘l't?')-‘[\-exp(-F'z(H-!:"Jd)] _ Lk (3~41)

1+ kP a®

(see Appendix VII for details).

Computations were performed by using the Michell
and by the Yim approximations. In the Michell appro-

Ximation, equation (3-40) and (3-41) become

N A SCPR 1
KM(L-):/OSCSM(F (1+£7) I) Imdx (3-42)

Tms= (H'tz)-‘ \-_(— exp (TF-?.(HE-)A)J} (3-43)
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While in the Yim approximation, we have

!
Ky(e]=fx s}n(F"'(wl:’-}‘g)]:«, dax (3~44)
= exp (- X L _
I, = (wt] [\ exp (-F (1t ) )} AT | (3-45)

Results are presented in Figure (3-20), together
with the experimental data obtained by Sharma [13].

It can be seen that the effect of the line integral
is very weak. The experimental results are in very good

agreement with computed results for 0<F;2<7 and in good

agreement for 7<F;2<14. The computed results are almost
in phase with the experimental results. We also note
that, for this fine hull, the envelope of the maxima
decreases when F;Z increases. The half angle of entrance
of this parabolic strut is of about S.7°, compared to 4.5°
for the Wigley hull with y=0.6. It is somewhat surprising
to note that the computed wave resistance for both hulls
decrease when ngvincreases (when oscillating of course)
whereas the experimental wave resistance curve is seen

to slightly increase for the Wigley hull and to decrease

for the parabolic strut.
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The results obtained for the parabolic strut are
consistent with those obtained previously for the Wigley
hulls. The influence of the line integral is seen to be
negligible for hulls which have extremely fine ends.

- III-3 The Elliptic-parabolic hull

The mathematical hulls that were studied until now
suffered from unrealistic features. First, they all
had fore and aft symmetry. Secondly, they had fine ends,
whereas a real ship often had a blunt stern.

We expect the influence of the line integral to be
important for blunt bodies. To study in more detail
the influence of the waterline, a hull form was selected
which 1) is analytically defined, ii) does not have fore
and aft symmetry, and iii) has a fine bow and a blunt
stern.

The hull which was chosen has elliptic cross-sections.
The waterline is parabolic in the fore part (for 0<2<a,

.see Figure (3-21)) and elliptic in the after part

(a<x<1l).
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elliptic

Figure 3-21 -

The hull surface is described by the following
equations:

a. In the fore part:

X=x (3-46)

y= blx/a)(1 - x/za)siny
(3-47)

noa-dcos(‘f) | (3-48)

for 0<x<a

and 0<¢<m/2

b. In the after part:

X=at(l-a)sind (3-49)
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Ajz b/z cosB sin'f (3=50)

o= d cosY (3-51)

for 0<0<m/2

and 0<¢<m/2.

The curve y(x) or y (@) describing the waterline,
is continuous and has a continuous slope at x=a, for
any value of a. To insure that also the curvature be

continuous at x=a, we must choose a so that
o= 1/(1+1/v?) ~ 0.586

The nondimensional beam b and draft d are respectively
chosen as

b=0.15

d=0.05
The half angle of entrance is then a=14%36"

The nondimensional wave resistance R and the Kochin
free-wave spectrum function are given by

Izcl.t (3-52)

Rz kb7 F"'flk(alz(wtl)‘
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a

K(t)= “fexp[ LE () oc](x x/a)T 4 dx

~-1/2 exp(-LF M: /cxP(LFt(H-E (1- asme)smeIzJa' (3-53)

I4= df@xp St.o.s‘f’) cos((s J-Sm‘?)sm Pde_ Fcos(fScS) ‘(1 oc/q)z

a4 ¥ (1-x/a)t (3-54)
T2
IZ -=d exp(-gws‘(’) (os(f&z Xsin‘f) sint (fd(f_ FZCOS({?_S) LLSMZQ (3-55)
° 4(1-0.)1w§e+g$in26
5= dF (1t (3-56)
(Sl = bCC'Cr‘ (':(H't'z)—‘lzm( \ - i/za_) (3-57)
P, = b(2d) L‘(HE")-‘IL ¢as® (3-58)

(see Appendix VIII).
The integral in equations (3-54) and (3-55) are
evaluated by using a number of points Cl and C, respectively,

where

C't = ZlNT[_ F t H’EL Uz} + 1 (3_59)
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and C,=2 ’NT[ bF.?- t(.“'bz)l]z] + | (3-60)

where INT stands for "integer part of." The expressions
for Cl and C2 were determined empirically by looking at
the shape of the function of ¢ which had to be integrated.
Similarly, it was found that the number of points CX
and C@ say, necessary to evalute the integrals over x and

@ respectively in equation (3-53) are given by
- ]
Cx = 2 INT (I.S F Z(H-“-'z) “) + | (3-61)
-2 \[2
Co= 2INT(201-a)F ()7 )41 (3-62)

To determine the number of points necessary to evaluate
the integral in equation (3-52) as well as the limit of
integration, tp say, we plotted the function g(t) for
several values of the Froude number, where g(t) is

defined as

g(t) = |x()]2@+e2)t/?,

These plots are presented on Figures (3-22) to (3-25) for
F=0.25, F=0.4, F=0.707 and F=1l.
It can be readily seen that the behavior of g(t) is

different from what it was for the Wigley hulls.
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While still oscillating, the function g(t) does
not vanish any more at the minima. This is due to the
fact that the hull does not have fore and aft symmetry.
The fuﬁction g(t) is now less oscillating than for..
the Wigley hulls. This is particulary striking at low
Froude numbers. Also, g(t) becomes negligible at
values of tF which are much larger than those found for
the Wigley hull. (It is interesting to compare these
results with those obtained for the Wigley hull with
y=0. This hull had the same entrance angle as the hull
now considered. It was somewhat thinner at the mid-
shipsection and much deeper.)

The limit of integration t_, and the number of points

F

Nt necessary to integrate g(t) was found to be accurately

predicted by the following empirical formulas:

Ee = I6F (3-63)

Ne = 2 INT (6/F) + 1 (3-64)

The results for the wave resistance are presented in

Figure (3-26).
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The Hogner approximation (H) and the corresponding
Michell thin ship approximation (M) may be seen to be
very close to eachother, as for the Wigley hull (y=0)
(although the Michell curve is here very slightly above,
rather than below, the Hogner curve). The zeroth-order
approximation (0) and its corresponding Yim thin-ship
approximation (Y), on the other hand, are very far apart
(more precisely, the Yim curve is much higher than the
zeroth order curve), which is at variance with the
results obtained for the Wigley hull (y=0). The fact
that the Yim curve (Y) is quite different (much higher)
than the zeroth-order curve (0) mainly stems from the
use of the thin-ship approximation in the waterline
integral, rather than the hull integral. Indeed
differences between the zeroth-order curve (0) and the
curve (MW), which corresponds to the use of the thin-
ship approximation in the hull integral alone (that is,
the thin-ship approximation y=0 is not used in the
waterline integral) remain moderate, although larger
than the differences between the Hogner and Michell curves
and increasing with decreasing Froude number. Furthermore,
differences between the curve (w), which corresponds to
the use of the waterline integral alone (that is, the
hull integral is neglected) in Formula (3-21), and its

corresponding thin-ship approximation (w,) are very
0
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large; more precisely, the curve (wo) is much higher~
than the curve (W), and this may explain why the Yim
curve (Y) is much higher than the curve (0). Comparison
between the curves (W) and (M), and between the curves
(wo) and (M) also demonstrate the primordial importance
of the waterline integral. It may finally be noted

that (due to the waterline integral) the differences
between the Michell approximation (M) and the zeroth-
order approximation (0) are quite large. In particular,
the Michell curve is lower than the zeroth-order curve
for sufficiently high values of the Froude number

(for l/Fn2<39, i.e. for Fn>.16, approximately), while
the opposite is true for sufficiently low speed (for
l/Fn2>55,. i.e. for Fn<.l3 approximately). An appreciable
phase shift between the Michell and the zeroth-order
curves may also be observed.

The fact that the line integral has a relatively
small influence for the very fine-ended hull forms
(Wigley, Sharma) and a very large influence for a
blunt-ended form may be verified by a crude "order of
magnitude analysis." For a fine-ended hull, if we denote
by 8 and ¢ thé beam/length ratio and the draft/length
ratio, respectively , the terms o, and Ty in formula

(3-2) may be shown to be of order B, and the hull
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integral and the waterline integral can be seen to be
of order BS and 83, respectively, so that the waterline
integral is "an order of magnitude smaller" than the
hull integral.

For a blunt-ended form, the terms n and TY are
of order 1 at the ship stern or (and) bow (over a width
of order B), and the hull and waterline integrals ;n
formula (3-2) are of order B§ and B respectively, so
that the waterline integral now is "an order of magnitude
larger" than the hull integral. |

This order of magnitude analysis regarding the
relative importance of the hull and the waterline inte-
grals éand thus the conclusion that the waterline
integral is an order of magnitude smaller or larger
than the hull integral for a slender hull with fine or
blunt ends, respectively) is based entirely upon "geo-
metrical arguments,"” which evidently ignore any possible
influence of the Froude number. One would, however,
espect the relative importance of the hull and .the
waterline integrals in formula (3-2) to depend on the
Froude number, as well as on the shape of the hull.
Indeed, in the limit F-+0, the hull and the waterline

integrals can be proved to be asymptotically equivalent
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[3], which results in a drastic reduction in the
wave resistance. This reduction in wave resistance
at low Froude number may in fact be observed in
Figure (3-26), where the zeroth-order curve (0) is
significantly below both the Hogner "hull-integral-
alone" curve (H) and the "waterline-integral-alone"
curve (W) for 1/F2>56, i.e. for F<0.13. One must
also expect the waterline integral to be primordial
in the high-Froude-number limit. Indeed, formula
(3-3) shows that we have ExXl as F*», so that formula

(3-2) -yields

KlH ~ -szn;;z;cié +Jénxda, as Fye0, bceo
C

The hull integral in the above formula can readily
be shown to be identically zero for any closed hull,
while the waterline integral vanishes for a waterline
with fore and aft symmetry. In summary, the waterline
integral may be seen to be important for blunt ship

forms, and in the low and high-Froude-number limits.
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" CONCLUSION -

For fine-ended hull forms, differences between the
Michell, the Hogner, and the zeroth order slender-ship
approximations have been found to be relatively small,
although not negligible. More precisely, the Hogner
wave-resistance is-slightly larger than the Michell
resistance while thé.zefoth—order resistance is somewhat
lower than Michell's.

However, quite different results have been obtained
for the blunt-ended hull form examined in the last
chapter. Specifically, the effect of the waterline
integral has been shown to be predominant, and differences
between the zeroth-order approximation and the Hogner
and the Michell approximations are considerable.

Comparison between theoretical predictions and
experimental measurements for the fine parabolic strut
of Sharma show reasonably good agreement, although there
are appreciable discrepancies. The corresponding caom-
parison for the family of Wigley hull forms however appears
to be less conclusive. In particular, very large dis-
crepencies have been found for the two largest entrance
angles. It must however be noted that the experimental

results for the three Wigley hull forms do not appear
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to be entirely consistent, so that the accuracy of

the measurements may be guestionable,
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TABLE I
Wave resistance coefficient of the Wigley model

given by Michell's and Hogner's wave resistance formulas

WIGLEY: MICHELL WIGLEY: MICHELIL WIGLEY: HOGNER WIGLEY: HOGNER
Fy ¢, x 10° Fy cp x 10° By . [cg x 10° Py cg x 10°
0.150 0.361 0.250 1.065 0.150 0.390 0. 300 2. 311
0:152 0.442 0.260 0.847 0.155 0.422 0.313 2.098
0.155 0.380 0.270 1.092 0.157 0.345 0.330 1.638
0.157 0.307 0.280 1.603 0.160 0.380 0 340 1.477
0.160 0.348 0.290 " 2.016 0.166 0.598 €. 350 1.472
0.163 0.512 0.300 2.142 0.170 0.464 ,0.360 1.602
0.166 0.558 0.310 1.995 0.175 0.488 0.402 3.036
0.168 0.491 0.320 1.711 0.180 0.774 0.430 3.907
0.170 0.407 0.330 1.432 0.185 0.695 | 0.452 4.360
0.172 '0.369 '0.340 1.263 0.190 0.536 0.470 4.550
0.175 0.454 0.350 1.245 0.200 0.962 .0.482 4.618
0.177 0.570 0.360 1.378 0.210 0.908 0.500 4.661
0.180 0.715 0.370 1.634 0.220 0.741

0.185 0.652 0.380 1.968 0.230 1.248

0.190 0.475 0.390 2.344 0.240 1.494

0.200 0.886 0.400 2.730 0.250 1.171

0.210 0.832 0.410 3.095 0.260 0.978

0.220 0.653 0.430 3.718 0.266 1.077

0.230 1.166 0.440 3.957 0.290 2.169

0.249 0,450 4.146 :

1,386




TABLE II
Wave resistance coefficient of the Wigley model

given by the zeroth-order slender-ship approximation,

-89~

wicLEy: 0™ approx) wicrey: o™ approx.| wicLey: o™ appRoX.
Fy Cp X ;93 Fy cp % 107 Fy cp x 10°
0.150 0.323 0.240 1.177 0.430 2.967
0.153 0.401 0.250 0.874 0.440 3.117
0.155 0.347 0.260 0.708" 0.452 3.242
0.157 0.275 | 0.266 0.792 0.460 3.294
0.160 0.306 0.280 1.344 | 0.470 3.323
0.163 0.474 0.290 1.657 0.482 3.319
0.156 0.496 0.300 1.723 | 0.490 3.296
0.168 | 0.427 0.313 1.486 0.500 3.249
0.170 0.372 0.320 1.301 0.510 3.186
0,172 | 0.330 0.330 1.077 | o0.530° 3.110
0.175 0.391 0.340 0.959

0.177 0.498 .| 0.350 0.973

0.180 0.641 0.360 1.109 o

0.185 0.563 0.370 1.339

0.190 0.417 0.380 1.625

0.200 0.787 0.390 1.955

0.210 0.718 0.402 | 2.319-

0.220 0.566 0.410 2.533

0.230 .0.997 | 0.420 2,772, "
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TABLE III
OFF-SETS FOR MODEL S-201 (from Inui, 1957)

Half Breadth,

Height of
Keel Line

L.W.L. 1 2 3 4 5 6 ,
:ji;ér 0 .286 .571 .857 1.143 1.429 1.714

-1 1.000
-0.99| .057 .057 .057 .051 1.026
-0.95| .218 .210 .198 .175 .046 1.159
-0.90| .381 .371 .349 .309 .217 1.288
-0.85| .503 .495 .469 .419 .319 1.385
- .8 .606 .594 .571 .520 .415 .153 1.466
- .7 .762 .752 .730 .675 .570 .366 1.598
- .6 .893 .883 .858 .803 .705 .522 1.705
- .5 | 1.007 .994 .963 .906 .807 .635 .274 1.791
- .4 |1.096 1.083 1.048 . 984 .880 .710 .419 1.859
- .3 | 1.159 1.147 1.117 1.045 .937 .775 .504 1.908
- .2 | 1.198 1.189 1.153 1.087 .981 .822 .560 1.940
- .1 | 1.224 1.210 1.177 1.109 1.006 .846 .589 1.959
0 1.229 1.218 °  1.185 1.119 1.017 .857 .605 1.958

y = ¥Y/L = ¥/5 = B/L = 0.2458

z = /L = /5 = D/L = 0.3916
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given by the Hogner and the zeroth approximations

Wave resistance coefficient of the Inui model

TABLE IV

vui: 0" Approx.

INUI: 0°Y AppPROX.

INUI: HOGNER INUI: HOGNER

F c. x 105 F ¢, x 103 F c, x 103 F % 10
N R X 1€ v [Cr N R T R
0.153 2.269 0.380 5.233 0.153 1.248 0.380 3.889
0.157 1.760 0.400 7.289 0.157 0.828 0.400 5.602
0.166 2.840 0.420 9.237 0.166 1.564 0.420 6.946
0.172 2.128 0.440 |10.767 0.172 1.009 0.440 7.744
0.180 '3.210 0.460 |11.797 0.180 1.856 0.460 8.093
0.190 2.492 0.480 |12.292 0.190 1.170 0.480 7.983
0.200 3.324 0.525 |12.135 0.200 1.928 0.525 7.013
0.220 2.606 0.560 |11.342 0.220 1.240 0.560 5.930
0.230 3.324 0.580 |10.795 0.230 1.928 0.580 5.379
0.240 4.708 0.600 |10.211 0.240 2.635 0.600 4.789
0.255 3.409 0.620 9.637 0.255 1.527 .0.620 4.182
0.260 3.026 0.650 8.780 0.260 1.403 0.650 3.356
0.287 5.549 0.800 5.484 0.287 3.667 0.800 1.013
0.295 6.330 1.000 3.056 0.295 4.008 1.000 0.808
0.300 6.565 1.200 1.701 0. 300 3.999 1.200 2.720
0.319 5.769 1.273 1.330 0.319 2.931 1.273 3.022
0.320 5.647 1.414 0.801 | 0.320 2.830

0.3¢0", 4.110 0.340 1.935

0.360 3.945 0.360 2.424
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TABLE V

OFFSETS FOR THE HIGH-SPEED HULL, ATHENA (from drawings for Model 4650-1)

‘t::ﬁ::f:: 0.125 .25 .50 .75 1.00
_ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048
x=X/L v
.95 0.0000 0.0000 0.0246 0.0359 0.0451 0.0570
.90 0.0000 0.0000 0.0525 0.0818 0.0959 0.1110
.85 0.0000 0.0000 0.0838 0.1292 0.1462 0.1675
.80 0.0000 0.0000 0.1162 0.1766 0.2035 0.2257
.70 0.0000 0.0377 0.1955 0.2813 0.3104 0.3398
.60 0.0000 0.1029 0.2849 0.3891 0.4218 0.4478
.50 0.0000 0.1972 0.3989 0.4992 0.5280 0.5643
.40 0.0000 0.3036 0.4972 0.6009 0.6246 0.6462
.30 0.0000 0.4305 0.6190 0.6934 0.7070 0.7263
.20 0.0000 0.5918 0.7262 0.7783 0.7830 0.7967
.10 0.0000 0.7410 0.8346 0.8517 0.8448 0.8568
0 1.0000 0.8868 0.9240 0.9136 0.9002 0.9065
-.10 1.0000 1.0000 1.0000 0.9671 0.9420 0.9381
~-.20 1.0000 0.8353 0.9519 1.0000 0.9762 0.9660
~.30 0.0000 0.4580 0.8424 1.0000 0.9942 0.9872
-.40 0.0000 0.0000 0.5765 0.9801 1.0000 1.0000
~.50 0.0000 0.0000 0.0581 0.9113 0.9865 0.9939
-.60 0.0000 0.0000 0.0000 0.7645 0.9575 0.9751
-.70 0.0000 0.0000 0.0000 0.4870 0.9227 0.9478
-.80 0.0000 0.0000 0.0000 0.0871 0.8731 0.9108
~.85 0.0000 0.0000 0.0000 0.0000 0.8545 0.8926
~-.90 0.0000 0.0000 0.0000 0.0000 0.8345 0.8695
-.95 0.0000 0.0000 0.0000 0.0000 0.8068 0.8477
-1 0.0000 0.0000 0.0000 0.0000 0.8023 0.8289

b,./b,=Max.
N1 hait |

beam | 0.0073 0.3538 0.5431 0.7937 0.9424 1.0000

n = ¥/bn y = Y/L = 0.1470%n*b/b_ = 2/L = (i-z)*0.0642
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APPENDIX I

EVALUATION OF THE SURFACE INTEGRAL OVER A PLANAR TRIANGLE

Ksll.')z fz-‘ F—L'(th)(exP(a-_o?) +GKP(0_()_§;>)) vda
S

where &“_ = FJ(HE')‘!L {-—L) Tk, (l"'t”)‘lz}

and z’{“/“ﬁ;}}

S is the surface of the triangle.

The triangle is defined by three points §i' §j’ §k
(see Figure 1-1). We will perforﬁ'the integration over
the two rectangle triangles 1 and 2 successively for
o, and a¢_, and then add all the partial results to

obtain KS.

K5=K*+ K-

S (I P Kf]

where the subscripts 1 and 2 stand for the triangles 1 and

2.



Ko - exp[Z)da

S

We shall make use of additional wvariables which are defined

below
— . — —
CCLJ - :IJ‘-CCL

® T = fiye F (1e}) 2 ¥ij

—3-

X %= = F (1 £ 12

T

It is obvious that (Sié?— {3&— ("L
and B/La = ¥ —XL

To be consistent, we should useBif'and Bi_. But,
for the sake of clarity, we will only use the "Bi"
notation, with the understanding that the B's involved
in the.calculation of KI,Z are B+'s and that the

B's involved in the calculation of KI , are B 's.

14



- - — T — e
| »
!I&' xC"’:}Ic‘ Te :'?)\It.d océ 5
l
>} [
] q
[ 3 Ty :
| I
l — =)
Ty
Figure 1-1

Figure 1-1 also shows the local frame of reference (g,n).

We express K+ in the form

+ + +
K' =K, +K,

The term Kl+ can be evaluated as follows
K* —_— -
4= exp (o(*-Jc)c‘a.
_ 5&

da - \ETJHELK-XEJ} d¥dM
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f.—. E’L-i- SZ‘J -r”}‘(.‘-?i.l( -)‘?{;j)
exp(o ) = explBy) exp(3py) exp((Bix -2 41))7)

\ 5/
= Kq = [ W) exe(®) | exp{53)d3 [ exp(pic-p) 747

(«}

T E T exr({'-u)[ 2y
pue = N By :

'\f:; (E'TK - )‘E‘d‘)




-97-

KZ :d/.exP(&:-S:)da,
S2
A3
1 A=)

Kz = \i’q \\ Tix - Rﬁ‘exﬁ(fﬂz)/)tx?(&g §)3§ oxpf big ‘M‘Q)‘?)”

K; < \E}“ak')‘.f‘}i\ ('1’)‘)3"?( i "3) _ Exp(ﬁ‘j) _ (1-1) exp(ﬁix)+ exp(}\ @iJUeXP( p')
Pic-Npiy - Py - fix iy Bi-fix B (1-2)

KI+~K;:=

\:?G\\ETK—XWW(M[P‘A exp(Bix)-Pis explf) 1} ) B -Pix (1-3)
plx - N B (ij- fix By pix

v=H'I where E is the unit inward vector to theée surface
of the hull and i is the positive unit vector along the

x-axis.
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. * .
One convenient way of defining n is:

= Ty AlXe =M xd)

T - M)

ye (d i 2 U 90) (- )

25\ ZTe -\ =) (1-4)

Using (1-4) in (1-3) and making use of B B BKj

yields

.‘. pa l%&'lgk *})wk '31)"%(‘34. ‘33){?5 QXP(P ) X ex P(PZ)*’X“"‘C"P(&D]

2
\6‘6' KXK.L (1=5)

A similar computation would give

K- ‘z""'t\?r%ﬂ*"b’a(‘*x Joeli- ""&3[‘6 aCXP“S) eYeeee(R e exr(f‘a)J(l-s)
88 B

ij ik
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APPENDIX II

EVALUATION OF THE LINE INTEGRAL OVER A LINEAR SEGMENT

4

P

Figure 2-1

(]
2 — —_ ) -
R f (exp (T3 exp( D))V e da KT
A

BX
ZF (5‘6

(2-1)
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When the hull is vertical-sided at the waterline, we have

V:r‘-— - M = Léd —‘éL
1) Ve e ly; -y,)

JETE il exelB)- exe(f) (2-2)
(o) + (99" i

When the hull is not vertical-sided at the waterline, we

still have

ko= %J'%L (2-3)
' \l%\
Figure (2-2) shows how one can construct a triangle

having §ij as a side, in order to define the normal

to the hull at the waterline, namely, n.

7

Figure 2-2
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We can choose K as —_— —_—
7. Xk ATy
\xikll x5

making use of the fact that zi=zj=0 we find

V=200 = %K(%'L't) -
ifz 2 AU
(\M-Iﬁﬂ‘h‘%ﬂa ’Jé)l . ((Ij’li) ’v(‘}; -Y43) ) (2-4)

Using (2-3) and (2-4) in (2-1) yields

¢ ool y ol enli) %
s i T ey RO

(2=5)
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APPENDIX III

EXPRESSIONS FOR R AND K(t)
USED IN CHAPTER III FOR PORT AND STARBOARD SYMMETRY

The formulas used in Chapter II were, we recall,

© .
R- R*/eU‘LZ-. TOE \k(&)lz(wt‘)'m dt

©

(1)

GE %{LE»\M@«- Fz/CEO nszgdf]

(2)

E ('X;"S/ ¥ t) = F"* (\*'tz) QXPXF "’(H. l:") . - i F-i (\+ tz)llzx] exi]- lF-l(:(\'i-tz)‘lzg]

(3)

where h and C are defined as on the sketch below.

AT

T’;_’ — x
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On the counter clockwise oriented waterline C,

define the local frame of reference 3, ﬁ, 3.

¢c.,c

(CyrCy)

->

m(mx,my) where mx---cy

d=nx2.

Assume that the hull has port and starboard symmetry

and define C, and C_ as shown in the sketch below
M

el B~
o~ 1 —

v

. .
On C e have C _=-C_dl
n w av v y (4)

On C we have dy=Cydl (S)
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where dl1 is the element of length along ct or c .

on cT we also have Cydl=-;ydl | (6)

a. The line integral in equation (2) can be modified:

F Eonidy =¥ Eooz eyt ¥ €l ok (cye0)

c- cr

;}gEn%JC z 9§+ (& +Eo*)n,% Cy JE. (7)

where E0+=E(x,y+,0) and E0—=E(x,y-,0), using the
convention that

y+>0, y <0 and y-=-y+.

E, +Eo= ZF"*U.-t E") exp[. { F"L:r.(\-l-t")‘l z:]c,os (F'Zi:(vft")'la) (8)

using (6) and (8) in (7) we obtain:

§E Edus o H{14E) Dex -LF-l(H:?')‘hg; 'zl:(\-l't")yZ n2 Zuat
i nx 3y o )fe P( \ )ws(F :7) g

C* (9)
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b. The surface integral in equation (2) is now modified:

fEnxch-./E*n:do: +/ £ 0z da
SR &

where h+ and h~ are the positive -y and negative -y half

(10)

hulls repsectively, da’ and da” are the elementary surface
areas on h+ and h~ respectively and E+ are defined as

follows: E =E(x,y ,z); E =E(x,y ,z) where y' and y are

defined as before.

h*:-n;

X
5 E nyda :\/ﬁ‘j“ (EH.E-) Nxda

f Engda = 2F i+ t%e[ﬁ*(wt’j -4 f'z(wt‘)"éc} cos(rze(wt‘)"g)m do
Q 4 (11)

define

——

3-_ exp \—F'Z(H (:") 3 - d F-Z(Ht?‘)vzm] ¢os (F'z(:(l-rt”)wfé)

(12)
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and

':KLE P (E) KUY (13)

Equations (1) and (3) now become:

R= R*oUL = ' F f K )] ()" dt

(14)

KB: ] Fneda - F* [ 3n2 Ty de as)
o5
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APPENDIX IV
EXPRESSIONS FOR R AND K(t) USED IN CHAPTER III

FOR PORT AND STARBOARD SYMMETRY TOGETHER WITH
FORE AND AFT SYMMETRY

Re R U e e [ | Kl (we)hdt (1)

(]

k(ﬁ) = L Sneda —F"}g 3nf Zt) 3¢ (2)

ct

(3)

5 -ty s et

a. The surface integral in equation (2) is modified as
follows:
- - +
$neda = | Fnrdax 3'nf da .
a--t ﬁ- ﬁ‘_ ( )
+ +
where h: and hi are defined on the sketch below
ANy Y




-108-

n, and nx+ are the x component of the unit inward
- + . - +
vectors on h+ and h+ respectively and £ and ¢ are

defined as

3—'-' §(x-;jl} /.t_) ) gtg(f’%, ¥i t) where x =-x .
since nx-=-nx+ (4) becomes |
\4 EMACL: '4‘(%1-‘ f-)h;ACL (5)

Py exF[F‘z( \+t‘)}] cos( FroE( )'lz»a)sin(? (|+l:‘)m:f) (6)

Use (6)in (5) and obtain:

ffn,‘cla_, - ZLJGXF(F-L(“'E')}) Los(F'zE(HE?')"%) sin(F'z(H l:")qlx)nx da. (4,
4 at

b. We now modify the line integral in equation (2)

$ 3t ssts [ Eniggace [ Tz de
ct c; et

where C+- and C++ are the intersection of the plane z=0

with h; and h: respectively.
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Using the fact that y+=- Y-' obtain

¥ snig - ¥ (5-3)0r o de
ct c}

that is:

éﬁ fnf Z-a"de =21 cos(F'zé(l&z)'h,a)sin(F'l(wl:‘)[%c,)n% gydl

(8)

ct
If we define K(t) = + E%fx(t) we obtain:

R- R*[PU*- 16 T F” /lk (1" gt

(9)

\(U‘)-./ﬁ;_ Enxda, - Fj E ﬂ% Zjde (10)
¥ C:

(11)

E - exP(F‘z(\r(:z) };) cos (F-zt(‘*tl)‘/z'é) sin ( i (\4,(;")\225)
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APPENDIX V

DERIVATION OF EQUATIONS (3-8), (3-9) AND (3-10)

o0
R- R¥/evi(® - len"F“*/olme)!z(ut‘]“zAﬁ

K[ Enda - F*f Enzzde
R: ct

E= exp (F'2(4+t") }) cOs(F‘z&(1+t‘)"z«4)sin(F"‘(Ht’“)‘lzm)
Y= b(!— ';/Jz)(l- (H'Y):Cz-(-XCCL') =Y (ct/ })

0%
P & 'a»:o

¢!
nxda = :3(1- ’bz'/clz) clccd'b,

Cuy = 4 {1+ ‘E)z)-“?-

40 (+39)" 4=

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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(3 =0) = 'jz(‘*";f)-‘ (9)

Use (3), (6), (7), (8) and (9) in (2), we obtain:

I ° b -
K(H:[dxféd}li‘j(l- }Z/AZ)_ F‘Lf £ ?Z(’*jz) ?J:x.

o

K(H:/; icla; 4 sin (F”'((ﬂf‘)lhg{,) g‘[: (1- }I/J?ex(; (FJ(HEL)})cosLF.I&(HE‘)‘{;)J}

-F*Y 2(!+3")~\L05(F’2E( () ‘P‘}o) K (10)

or

!
K(H= -zb/x (1+¥ - 2322) sm(F‘z(Ht‘y/?‘x) I dx (11)

\Nhefe :
I- f e‘xPQF'l(vft‘) d.;)(1~3‘) co s(ﬁ‘zttut‘)mb (1-(+%) ot +Y ) \-31)) d3

_ b T -2 %)

I+t Boc (14T -2 %

- os (F”’-&(Htl)![t },((r..(ﬁ‘g)x};h})) (12)
)
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Use (1l1l) and (12) in (1), and obtain:

plo)
R= R*/FUZLz = 6l+kzﬂ*/\K(e)\z (H-t‘)'h Jt (13)
where
l .
K(H :ffI(H-X-ZK@Z)SI'D(F-Z(HEZ)UZOL) T AOL (14)
0
and

A

T-d F‘Z/O ;xg(~d F t+t")3) . S(F‘lg(p{{‘)‘{\z [1-(18)2 Y13 z))( 3943

LB (1YY ) oS (F ~ E(th)‘lz L(l—-(H?f)lz »,’61‘*))

15
G L (1Y -2 Y ) s
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APPENDIX VI

EVALUATION OF Ia AND In

«

I, . i exp(~53) s (p8)(1-3% 43

I5- ws((;b')[E-‘(H(d‘-l)exP(- 5«))+ 2 J.s(w Sx)exP(-Ja() 2 X-SJ (1)

%

10 =fex§>(_é'3)[ws((g.5)~ws((sé'-/za'S?]{l-gz) 43

(o]

Io= Jexpl-§ 5)[cos (p 5)(\; (o3 3Y)~¢in ((ss)sin((ﬁ Sz)](l-ﬁé 5

° (2)

I:=[1 exe(—fi)(hg’-) cos(zpﬂi%))éj

Using the new variable x such that c=l—§%5 , we f£ind
2p 0

T~ 2.‘([5 5)46;?(- 5) T exf(m[zp) wsxdy -
0 Z_O((SJ
- 8“({55)-3&9(- 5)/ x? EXP(:L/Z[E) wsx dy

[+
making use of



-114-

/a‘. exp(a) wsba)dx =
[a*+ ‘»’")-‘ffXP(M)[( L) (a*g))‘os(gi) [bx-2ab e+ ) S‘"L”‘jm

([12] lp0198'2.667'6)

j:nz expax)@s(ba)dx =
@_z +L7.)'l exp(a 1) ﬂqf-z(m"- L")(al-tfo?-'x +2afa- I af’+lf)-z] 05 (EDC)-}‘

T[\)ll_[*a,\o(a}-tb) +'L‘o( :)Sm L:a(.(‘l)}

({12],p.198,2.667,8).

finally yields

I - 5-3(H‘§Gz)-:x?(-(g)[ex?(oxg)(Aws[zo((sg) +2pB sin(zo((ss))J, ¢] (5)
AL lb 6'[ %9 (2 -« +z(|-c()] PL*+ 3[0( 52(2 -o<)+’>:} {57' +

2(§4) (4 0-1) S ©
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B= lbx Sz(z-o‘) Pq+3[°‘52(1““)*25(d"‘)+|] Fz—t-

cudile—a) 4 4d(a-) 6 . 7

C--% Sr»"- Zqﬁzefz(c)'ﬂ) | (8)
'_[: =[_;ex{> (-53){«:5(7_ p5(4-§))-cas[ [iJ(n-Sz))i (~39)d3

«
I?s expé 8 (|~’S)){[|- cos (3 Sz)]ccs(?.{s § 5)-.,sin(z 8l 3 sin (p J 32)} 3(-3)43

(9)

a -
Io = [ exp(-53)s [6e-3)(1-3943
Using the new variable x=88 (C-z) leads to:

po(e-%)

I& = l-cz (PJ) EXF( CJ)/ exp(xlp) 0sx dy + QQ(FQ exP ..c J)
(SJ(C -{4«)
bile~«) (so“ (¢~<)
* [ x exp(x/ )cos(x) dx - (PS) exp( CJ) ot exp( x/(s)coscc dz

B [e-r)
making use of (3), (4) and

{35((-l-toc]

fexp{q'x) Cos(L:x) dx < exp (o.ac) (Q. cos(b) 4 Bsin(bt))(“}‘l‘bz)-l

(10)
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finally leads to
I:\ N S-B(HF})_%@XP(-CS) [exF(Ju)(:D ws((&gu) YPE Sin ({35&)) -
- exp(J«r)(ﬂ: tos {P(Y«Y).&(SGsin([s{ftr))]

(11)
where
UW<-oA (12)
= C~-1+4
(13)
D= 9o (ZOH- é'((-a(’)) (5q+2(52((~dz)+ 3) (52-\-
w0 (-4 -2 8x-2 (14)
€= &M (1-e) ho o (53(1-a) -2 Swat) BT
. EZ(l_“I)_qSD( -’6 (15)
F = 8(20-0) +8u(a ) Bt 2 [ 0% (2 ) +3) p* 4
(16)
+ Jzo((z-d) +2 6 («-) -2
C: 3« (*’-"")Puz(ﬁd(z ux)*zg(d-‘)“) e (17)

¢ S (2-dtu (=) - 6

- =f‘.(°\(~3z) exp(- gg)gcos((sf(c‘3))-“’5(@’5-(“32))f d3

«
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Use z=z-a and obtain

I = / :"(l-zx) exp(~5) ex?(_&"(l-u)s)gc‘os[pé' (-4 = o (124 3)] i,

— tos] BT(1-ata1~2x)3 - -2 32)]} [1-a2 (1 =203 -

- (‘ ‘2"()1 0(-7 SZJ JS

(18)

It is now possible to obtain Ia=Ioa+Ima+Ila and

_.n,._.n
In—I +Im +I

n
0 1°

' SSIQ_ = expl- Ju)[ H tos 9 ...(\-tf})‘s(]) ws(pou) +pEsin {{56'44)}] +
+ exp(Ta-1) [(A cos [248)+ 2 Bsin [t F})(\wp")'}_

i (F cos [BSM)P Gsin (B 5"'))(!-&P2)-3+(‘f‘\(st)::xp(“ﬂ‘[ ‘*J“’S((’fllg)

where A, B, C, D, E, F, G are defined by equations (6)
through (8) and (14) through (17). H and J are defined

as follows:

He [z (v 3} 4 8 (a%1)] (20)

J= -2
(21)
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(In) on the other hand can be expressed as

X

Toe [ (-U3H V3 +W)d3

o

(22)

where U, V and W are defined by

U= Cx?(-S'S)[Los (FJ)(l- tos (P‘Ygz))-sn‘n ((S«S')sin ((3 {SZ)] +

+ exP(J'(3~\))[(os(zp5 3) (\-Los( (553‘)).4«1 (zfng)sin((\ Jg’-)]+
v (=207 expl- (e o (1- 243) [cos (93 (e - x={i=241” 5))-

_ ws(p{(;-a&z(hzx)g - ((-20()7-0(-232))]

(23)

V. exp(é'(S—l\)[cos (2893)(1~0s (85 3%) -sin (2 pS 3)sin (87 )]..
- - za()"‘o('*exp(. §(+ (1-2e) ™ 3))[(05 ((s J(e--1 ~zo<)a<"5))_

_ s (N(4~o<z.z (- 2)3- K-z(b?.d)zfz))]

(24)
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W. €;q>(— ) 3)[(,05 ({3 5)[(- Cos([&é’Sz))_ sin({}.é') Sin ((5(5_32)_‘) +
el = -2y exp(- S &+ (1 -2t 3))[«» (p4(c ~d=(1-23) -
- Cos(p (1~ %2(i-2) 3= (1- 4~ gz)):]

(25)
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APPENDIX VII

DERIVATION OF THE EXPRESSIONS FOR
R, K AND I FOR THE PARABOLIC STRUT

a4 m- d)- 2 + z‘h
R- 6 F “fo [R(8) (€)™ dE (1)

4 - b(1-x?

g =-2bx

Tu= (1)

3e = (w9y) " da
0t = Gy

nxda = 9§ dxdy

K(b’}: ﬁ_‘- Enxéd.-. FL‘/C‘*E n}' 3; Cle

E = exp(F {14t 3) c0s (F'zl:(tft")\ll;a) sin (F2(wt) o)
Use the above equations to find

1
KlH, -zbf T os(Fe(et] b (et sin (206 ) @
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o)

where Ta fAeXP(F-z(H—E")})A} - Q,F’- L"g}/(\.i.l.‘_@xz)

1
or I-4 exP(_F-‘L(H(:z)'S‘A)JS - LfFZLLOLZ/(\-\'hg'ocz)

o)

We can rewrite (1) as

: * 2 Tk
Ra 6o B [ Ic(l (1) ™ dE

where

1 \R kA Y
K(E)=[o I x s (F’zb(utz) ! \:(\*3‘-7'))%&\1(? (+6) Ioc) dx

and

1
T . e d [expldF(etde)is o bl ol o)

The integral in equation (6) is straight forward and

becomes

T - () [1-exp(-aF7 (2] - L o)

(3)

(4)

(5)

(6)

(6)

(7)
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APPENDIX VIII

DERIVATION OF K(t) FOR THE
PARABOLIC ELLIPTIC HULL

IS
The wave resistance is given by R-lﬂ\"' F-';'/"K(tﬂz (sz)‘l" c!t
©

where KlH-= J;\"’ Znxda _ Fzﬁ 3 ng 8’3&?
ana §= exp| FHHE)y _ixFTY th)llj cos (£ ()" ‘})

In the fore part, the hull is defined by

A=X

‘}: ba’ % (4- x/za) sin{

”'a,:-é CO_S‘{
Y=Y4,Y4) 5 ¥4 ; L= (xY)

The vector normal to the hull is defined by

N (’i’i A&’q)/\ar\?ﬂ

The element of area da is given by

Clo- =\§-’m ’\ET("CL’X-A?

(1)

(3)

(4)

(5)
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So we get Ny da = -SE: ’\—f‘-(’)x cl:;dkﬁ (6)
Since I;:('l,'jx,o) and 1 (03‘“}) , (6) becomes

Ny dCL‘- 3131A: Af

or, using (3), (4) and (5):

nxda = bdat(i- x/a)sin ¢ (7)

If we define ‘;' 29 l 9 =0 , the tangent wvector to

the waterline, is given by
= / it : 8
Z:(']_/;’)O)*(H-g’) (8)
The element of arc dl is given by

al= (\+‘3’z}“zdrx (9)

The normal vector at the waterline is defined by
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So at the waterline we have

,z

21— 1
nf =y (1+y)
Define S= C”:-l('.l fti)

and Pa= ba'd x(1- xjza)t(1+ {:l)"”'

[}

Use (7) to (12) together with (2) in (1) to obtain

a
18]« be [ expl-+F (€)% (- 2/0) Ty dx

Tz
Iy = df exp(- Scos‘{) cos ((S'SA'U"‘P) sinf 4y _

-F* c_os({SﬂJ) B (1 - x/“-)z
at +L2’(l- :)L/q-)?'

In the after part, the hull is defined by

L= a -\-(\-OLBSinB

y = (bl)osBsing

7=.-A.wsﬁf_
X = 3(.(9) J U:t’(e/‘f) ) b”}(&t)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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The vector normal to the hull is defined by

—
n

— — —_— =
= (X5 A 1&3)/‘16’\“‘{’\
and the element of surface area by

da~ |TonTe| dody

=> Nx da = (?fg /\EQLA ch(f,

Since _:-C'e = \:x.’,*jg,o) and E”% - ( o, :3&, 'b,’)) we obtain

Nxda= 4 %' dedy

Ny da,—-(\ad/?_)smesa P dedy (18)
Using again the convent:.on ta ’D \Lf o , we have
= ! 4 ‘Z.
= (o) g0)/ (aeyy)! 29)
40 = (w2 ") “de (20)

3*3 Af = ‘3'&:\9

(21)
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-1

nZ . ‘alz(i.zw,z) (22)
Defining {52 = (b /2 J)E (|+€')-‘Izcos & (23)
Use (18) to (23) together with (2) in (1) to obtain

y T/ '
iy A 2) 2 - if.
K(Q}: -QDIZ) CXP['L F (Hrl:) a—)/@xr (_ (F 2([+tz)l?|_o~)gin9> sind T,d46
o (24)
T2
To-d [ exp(-E059) cos (B Jsing) sit ¢4 ¢
- F* cos({ﬁj) L™ sin*B (25)

L (1-aY* 08D + B sin’®



