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Abstract

Human learners routinely make inductive inferences, or inferences that go beyond
the data they have observed. Inferences like these must be supported by constraints,
some of which are innate, although others are almost certainly learned. This thesis
presents a hierarchical Bayesian framework that helps to explain the nature, use and
acquisition of inductive constraints. Hierarchical Bayesian models include multiple
levels of abstraction, and the representations at the upper levels place constraints
on the representations at the lower levels. The probabilistic nature of these models
allows them to make statistical inferences at multiple levels of abstraction. In par-
ticular, they show how knowledge can be acquired at levels quite remote from the
data of experience—levels where the representations learned are naturally described
as inductive constraints.

Hierarchical Bayesian models can address inductive problems from many domains
but this thesis focuses on models that address three aspects of high-level cogni-
tion. The first model is sensitive to patterns of feature variability, and acquires
constraints similar to the shape bias in word learning. The second model acquires
causal schemata—systems of abstract causal knowledge that allow learners to discover
causal relationships given very sparse data. The final model discovers the structural
form of a domain—for instance, it discovers whether the relationships between a
set of entities are best described by a tree, a chain, a ring, or some other kind of
representation.

The hierarchical Bayesian approach captures several principles that go beyond
traditional formulations of learning theory. It supports learning at multiple levels
of abstraction, it handles structured representations, and it helps to explain how
learning can succeed given sparse and noisy data. Principles like these are needed
to explain how humans acquire rich systems of knowledge, and hierarchical Bayesian
models point the way towards a modern learning theory that is better able to capture
the sophistication of human learning.

Thesis Supervisor: Joshua Tenenbaum
Title: Associate Professor of Cognitive Science
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Chapter 1

Inductive inference

One of the most striking human achievements is routinely observed in homes around

the world. Take a young child and expose her to light waves, sound waves, and

other patterns of sensory stimulation. Somehow she will learn words, causal relation-

ships and grammatical rules, and will develop abstract knowledge about numbers,

objects, space, time, and the beliefs and desires of others. The acquisition of human

knowledge raises many challenging questions, but many are elaborations of a single

fundamental question: how do learners make inferences that go beyond the data they

have observed? Psychologists and philosophers alike have struggled to understand the

relationship between the “meager input” and the “torrential output” (Quine, 1969).

Inferences that go beyond the available data are sometimes called ampliative or

non-deductive inferences, but I will refer to them as inductive inferences. Some of the

earliest inductive inferences may be inferences about visual scenes. At 4 months of

age, for instance, infants make inductive predictions about the shapes of objects that

are partially concealed by an occluder, and about the trajectories of moving objects

that pass behind an occluder (E. S. Spelke, 1990). Inductive inferences, however, can

be found in almost every domain of cognition. Consider a child who observes her

mother point at a bird and utter the word “swan.” This observation is consistent

with many hypotheses about the meaning of the word: perhaps it refers to the beak

of the bird, or to any object that is white, or to any creature with a long neck. A

single labeled example, however, is often enough for children to grasp the meaning of a
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novel word. Other aspects of linguistic knowledge are also acquired given very sparse

data. To mention one familiar example, children acquire grammatical constructions

that are rarely found in the sentences that they hear (Chomsky, 1980).

A partial explanation of human inductive abilities has been available for many

centuries. Since inductive inferences arrive at conclusions that go beyond the available

data, additional elements are needed to bridge the gap between data and conclusions.

These additional elements might be given different names, but I will refer to them as

inductive constraints. There is room for debate about the nature of these constraints,

but the need for constraints of some sort has been widely recognized by philosophers,

psychologists, statisticians, and machine learning researchers (Keil, 1981; Chomsky,

1986; Holland, Holyoak, Nisbett, & Thagard, 1986).

Many ideas about inductive constraints can be traced back to the philosophical

literature. Peirce points out that any set of observations can potentially be explained

by a vast number of hypotheses, and asks how a learner might identify the hypotheses

that turn out to be productive. His answer is that the mind has innate tendencies

which lead it towards appropriate hypotheses: “if men had not come to [Nature]

with special aptitudes for guessing right, it may well be doubted whether in the

ten or twenty thousand years that they may have existed their greatest mind would

have attained the amount of knowledge which is actually possessed by the lowest

idiot” (Peirce, 1931–1935). Other philosophers have demonstrated the need for in-

ductive constraints, and two of these demonstrations are particularly memorable.

Goodman (1955) discusses constraints which help a learner identify lawlike hypothe-

ses, or hypotheses that are supported by their positive instances. For instance, ob-

serving a green emerald supports the hypothesis that “all emeralds are green,” but

does not support the hypothesis that “all emeralds are green if examined before 2050,

or blue if not so examined.” Quine (1960) focuses on the problem of language acqui-

sition, and suggests that the evidence available to learners is insufficient to establish

the meanings of the words in their native language. A common conclusion is that

language learners must rely on constraints which limit the word meanings that they

entertain (Markman, 1989).
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Inspired in part by the philosophical literature, psychologists have argued that

learning depends critically on inductive constraints and have proposed specific con-

straints that may play a role in human learning (Table 1.1). Researchers including

Markman (1989) have explored how children learn novel words, and have identified

several constraints that can help children overcome the challenges identified by Quine.

One of these constraints is the whole object bias: the expectation that novel labels

tend to refer to entire objects (such as swans) instead of object parts (such as beaks),

or object attributes such as size, color, or texture. Chomsky (1986) has suggested that

children are exposed to linguistic data that are relatively sparse, and are able to learn

the grammar of their native language only because they begin with constraints that

limit the class of possible grammars. E. S. Spelke (1990) has studied inductive infer-

ences about the shape and motion of physical objects, and has suggested that these in-

ferences are constrained by abstract knowledge, including the knowledge that objects

tend to follow smooth trajectories through space and time. Other psychologists have

identified constraints that appear to support inferences about space (Landau, Gleit-

man, & Spelke, 1981), number (R. Gelman & Gallistel, 1978), living kinds (Atran,

1998), and the goals and beliefs of others (Wellman, 1990).

Computer scientists and mathematicians have supported these philosophical and

psychological arguments by providing formal demonstrations of the importance of

inductive constraints (Watanabe, 1969; Schaffer, 1994). One well-known result is the

No Free Lunch Theorem which states that there is no learning algorithm that can suc-

ceed in all possible contexts—averaged across all conceivable contexts, no algorithm

can perform better than random guessing (Wolpert, 1995). It follows that even the

most powerful learning algorithm cannot avoid the need for inductive constraints, and

will succeed only if the constraints it incorporates are well-matched to the problem

at hand. The assumptions made by a learning algorithm are often referred to collec-

tively as its inductive bias (Geman, Bienenstock, & Doursat, 1992; Mitchell, 1997),

but these assumptions might equally well be described as inductive constraints.

Although few researchers deny the importance of inductive constraints, there are

fierce debates about the nature and origin of these constraints. A strong empiricist
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Domain Constraints Reference
Word learning Shape bias Landau, Smith, and Jones (1988)

Whole object bias Markman (1989)
Taxonomic bias Markman (1989)
Principle of contrast Clark (1987)

Predicability M-constraint Keil (1979)
Causal learning Causal schemata Kelley (1972)
Kinship Social schemata D. Jones (2003)
Folk biology Taxonomic principle Atran (1998)
Folk physics Spelke principles E. S. Spelke (1990)
Folk psychology Theory of Mind Wellman (1990)
Spatial reasoning Geometric principles Landau et al. (1981)
Number Counting principles R. Gelman and Gallistel (1978)
Syntax Universal grammar Chomsky (1965)
Phonology Faithfulness constraints Prince and Smolensky (1993)

Markedness constraints Prince and Smolensky (1993)
Music Well-formedness rules Lerdahl and Jackendoff (1983)

Preference rules Lerdahl and Jackendoff (1983)

Table 1.1: Constraints that guide inferences about several domains.

view proposes that only a handful of constraints need to be innate. The constraints

in this class include properties of sensory transducers that determine how sensory

data are represented, and constraints that take the form of a domain-general learning

algorithm. Given this learning algorithm, all remaining constraints are thought to be

learned from sensory input. A strong nativist view challenges the notion of domain-

general learning, and proposes that learning is guided by strong constraints that

are specific to individual domains—for example, that the acquisition of linguistic

knowledge is guided by innate constraints that are specifically linguistic (Chomsky,

1986). Both sides of this debate must face some challenging questions.

The empiricist side must confront the problem of explaining how constraints might

be acquired. At least two issues arise. First, if inductive learning is impossible

without constraints, then any method for learning constraints must rely on meta-

constraints of some sort, and we are faced with the threat of an infinite regress.

Second, even if we grant that constraints might be learned in principle, it is difficult

to understand how they are learned fast enough to be useful. Studies suggest that
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many inductive constraints are available relatively early in development (Mehler et

al., 1988; E. S. Spelke, 1990; Wynn, 1992), and there is a good reason to expect this

result: constraints must be in place relatively early in order to support subsequent

learning. Explaining how constraints can be learned is a difficult enough challenge,

but explaining how they are learned rapidly is even harder.

The difficulty of explaining how constraints might be learned may explain in part

why most discussions of constraints adopt a nativist perspective. Some constraints are

almost certainly innate, but others appear to be learned, and a strong nativist account

must address two challenges. First, how can humans successfully learn about novel

contexts, including contexts that emerged only recently on an evolutionary timescale?

Human reasoning is remarkably flexible, and our ability to reason about fields like

mathematics, chemistry, and molecular biology stands in need of some explanation.

Inductive constraints appear to play a role: for instance, skilled mathematicians rely

on constraints which help them identify which of the many possible approaches to a

problem is most likely to succeed (Polya, 1990). Similarly, most chess positions can be

developed in many different ways, but expert chess players rely on constraints which

prune away all but the handful of possibilities that turn out to be most promising.

The second challenge for a strong nativist view is that some of the constraints

that guide inferences about more fundamental cognitive domains also appear to be

learned (Goldstone & Johansen, 2003). One such constraint is the shape bias—the

expectation that all of the objects in a given category tend to have the same shape,

even if they differ along other dimensions, such as color and texture. Smith, Jones,

Landau, Gershkoff-Stowe, and Samuelson (2002) provide evidence that the shape bias

is learned by showing that laboratory training allows children to demonstrate this bias

at an age before it normally emerges. Other constraints that appear to be learned in-

clude constraints on the rhythmic pattern of a child’s native language (Jusczyk, 2003),

and constraints on the feature correlations that are worth tracking when learning

about artifacts or other objects (Madole & Cohen, 1995).

This thesis develops an approach that draws on ideas from both nativist and

empiricist approaches to development. Consistent with a nativist approach, I ac-
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knowledge that induction is impossible without constraints, and argue that human

inferences are often guided by domain-specific constraints. Consistent with an em-

piricist approach, I focus on learning and argue that domain-specific constraints can

be acquired by general-purpose learning mechanisms. Attempting to reconcile na-

tivism and empiricism is not especially novel, and many psychologists presumably

believe that their own theoretical orientation strikes the ideal balance between these

philosophical traditions. This thesis suggests, however, that the dialogue between

nativism and empiricism can be enriched by models that explain how constraints

might be learned. Suppose, for instance, that we want to decide whether a certain

kind of constraint is learned or innate. A good way to support an empiricist posi-

tion is to provide a formal model that can acquire this constraint. A good way to

support a nativist position is to develop the best possible strategy for acquiring the

constraint, then to show that even this strategy must fail. Both approaches rely on

formal models, and I attempt to show how these models can be developed.

The primary contribution of this thesis is a formal framework that helps to explain

the nature, use and acquisition of inductive constraints. I explore models that include

representations at multiple levels of abstraction, and where the representations at the

upper levels place constraints on the representations at the lower levels. Each model

is a hierarchical Bayesian model, and the probabilistic nature of these models allows

them to make statistical inferences at multiple levels of abstraction. In particular,

they show how knowledge can be acquired at levels quite remote from the data given

by experience—levels where the learning problem can be described as the problem of

learning inductive constraints.

Although I focus on the acquisition of inductive constraints, the larger goal of the

work described here is to develop a comprehensive theory of human learning. Learn-

ing can be broadly defined as the acquisition of knowledge (Simpson & Weiner, 1989),

and learning so defined includes topics like the acquisition of language and mathe-

matical knowledge, the development of folk biology, folk physics, and folk psychology,

and the development of scientific theories. As these topics suggest, the study of learn-

ing can help to explain the origin of human knowledge in all of its forms. Within
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psychology, however, “learning” is sometimes given a technical meaning that is much

narrower than its colloquial meaning. Kimble (1961) for instance, defines learning as

a “relatively permanent change in a behavioral potentiality that occurs as a result

of reinforced practice.” Contemporary psychologists may prefer definitions that are

less explicitly behaviorist, but the link between learning and behaviorism remains

strong. Introductory textbooks, for instance, often include a chapter on learning that

discusses classical and operant conditioning and little else.

A casual glance at an introductory textbook might suggest otherwise, but most

psychologists agree that knowledge acquisition involves much more than the tracking

of simple associations. Developmental psychology has been a particularly rich source

of alternative views. Piaget, for instance, has argued that children create rich and sys-

tematic mental structures to explain their experience (Piaget & Inhelder, 1969), and

other researchers have described learning mechanisms such as “bootstrapping” which

go well beyond stimulus-response learning (Carey, 2004). The study of language

has also led to alternative views of knowledge acquisition, and few contemporary

researchers would argue that language acquisition can be explained by simple asso-

ciative mechanisms. As these examples suggest, alternatives to associationism have

been developed, but these alternatives have not led to the creation of a modern theory

of learning. Traditional learning theory focused on the contributions of researchers

like Thorndike, Pavlov, Hull, Tolman and Skinner (Hilgard & Bower, 1975). Although

traditional learning theory has fallen out of favor, no modern equivalent has risen up

to replace it.

Some psychologists will argue that there are good reasons to abandon the pursuit

of a theory of learning. Traditional learning theory was based on the idea that

a handful of general principles could explain how much of human knowledge was

acquired. Perhaps, however, there can be no general theory of learning. If most forms

of human learning are guided by domain-specific constraints, perhaps psychologists

should aim for multiple theories of learning, one for each domain (Gallistel, 2000).

Even if different kinds of knowledge are acquired in very different ways, it will still

be useful to identify general themes which apply across many different settings. The
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(a) Traditional learning theory

1. Learning takes place at a single level of abstraction.

2. The representations learned are simple, and are often pairwise associations.

3. Animals are more prepared to learn some associations than others, but rich
systems of prior knowledge play little role.

4. Formal models focus on cases where many training examples are observed.

(b) Modern learning theory

1. Learning takes place at multiple levels of abstraction.

2. Representations with rich and systematic structure can be learned.

3. Learning is guided by sophisticated, domain-specific knowledge.

4. Learning can succeed given sparse and noisy data.

Table 1.2: For many psychologists, “learning theory” has come to refer to the study of
simple associative learning. Modern approaches to learning can differ from traditional
learning theory along the four dimensions shown here.

aim is not necessarily to develop a monolithic theory of learning, but to understand the

general principles that support learning in all of its forms. Four principles that seem

particularly important are collected in Table 1.2b. The first principle recognizes that

human knowledge is organized into multiple levels of abstraction, and that learning

can take place at all of these levels. There are different proposals about how knowledge

might be represented, but structured representations are useful for capturing rich

systems of knowledge, and the second principle suggests that these representations

can be learned. Some discussions of learning focus on what can be achieved with a

minimum of prior assumptions, but the third principle recognizes that learning often

relies on systems of domain-specific knowledge, some of which are listed in Table 1.1.

The third and fourth principles are closely related, since systems of prior knowledge

help to explain how humans can learn so much from sparse and noisy data.
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Each principle in Table 1.2b has been emphasized by previous researchers, includ-

ing some of the most prominent opponents of traditional learning theory. The third

and fourth principles, for instance, are compatible with the approach of researchers

like Chomsky who are usually regarded as nativists. The first and second principles

are closely related to the constructivist approach of Piaget, who is much more of an

empiricist than Chomsky, but is not usually regarded as a learning theorist (Hilgard

& Bower, 1975). By developing a framework that incorporates all four principles,

psychologists can lay the foundations of a modern theory of learning—a theory that

incorporates the insights of researchers like Chomsky and Piaget, and that goes well

beyond learning theory as it is traditionally conceived.

The hierarchical Bayesian framework I describe is consistent with all four princi-

ples in Table 1.2b, but this thesis will focus on the first principle. My primary goal

is to explain how inductive constraints might be acquired, and I begin in Chapter 2

by reviewing existing views of inductive constraints and describing the criteria that

a constraint-learning framework should satisfy. Chapter 3 introduces the hierarchical

Bayesian framework that I will adopt, and the following chapters apply this frame-

work to three inductive problems. Chapter 4 explores how constraints related to

feature-variability (e.g. the shape bias) are acquired and used to support categoriza-

tion. Chapter 5 considers the problem of causal learning, and introduces a model

that helps to explain how causal schemata are acquired and used. Causal schemata

can be viewed as systems of causal knowledge that place strong constraints on causal

reasoning. The final application of the hierarchical Bayesian framework considers

how learners might discover which kind of representation is best for a domain. Chap-

ter 6 presents a model that discovers the structural constraints that characterize a

given domain: for instance, the model discovers that anatomical features of biological

species are best explained by a taxonomic tree, political views are best explained by a

linear spectrum, and friendship relations are best captured by a set of discrete cliques.

Although I describe models that acquire some of the constraints listed in Table 1.1,

I do not claim that all or even most of these constraints are learned. There are

formal arguments, however, which suggest that all of these constraints are learnable
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in principle (Solomonoff, 1978; Chater & Vitanyi, 2007). Given enough data that

are consistent with a certain constraint, learners should be able to realize that this

constraint is the best explanation for the data they have encountered. The real

question for psychologists is whether the constraints in Table 1.1 can be learned

given the data typically available to human learners. This thesis provides a necessary

first step towards answering this question. Once we have a clear idea how constraints

can be learned in principle, we can explore how feasible it is for constraints to be

learned in practice.
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Chapter 2

Inductive constraints

Although most researchers agree that induction is impossible without constraints,

there are competing claims about the nature of these constraints. This chapter

presents a taxonomy of constraints, and argues that the constraints which can be

learned correspond to forms of abstract knowledge. I review several existing propos-

als about the acquisition of abstract knowledge, then argue for a hierarchical Bayesian

approach to this problem.

A taxonomy of constraints

Different researchers work with different ideas about what can count as an inductive

constraint. Nelson (1988) assumes that constraints are innate and domain-specific,

and can be distinguished from soft preferences or biases. This thesis takes a more

inclusive view, and suggests that there are many kinds of constraints. Unlike Nelson,

I will suggest that some constraints are learned, some constraints are domain-general,

and some constraints are soft. This section describes some of the dimensions along

which constraints can vary, and identifies the kinds of constraints that can be learned

by the framework I will introduce. Keil (1990), D. L. Medin et al. (1990) and R.

Gelman and Williams (1998) have made previous attempts to chart the space of

constraints, and the taxonomy I present draws on the perspectives of all of these

authors.
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Constraints

Epistemic

Abstract
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Inductive

Figure 2-1: Epistemic constraints correspond to an abstract kind of knowledge. The
framework developed in this thesis helps to explain how these constraints can be
learned.

Epistemic versus non-epistemic

There is a fundamental distinction between constraints that correspond to an ab-

stract kind of knowledge and constraints that do not. I will refer to constraints of

the first type as “epistemic constraints” (Figure 2-1). Each of the principles of object

perception identified by E. Spelke (1994) is an epistemic constraint. For instance,

the principle of continuity makes a defeasible claim about the world—it states that

“a moving object traces exactly one connected path over space and time” (E. Spelke,

1994). The M-constraint (Sommers, 1963; Keil, 1979) is a second example of an

epistemic constraint, and corresponds to a claim about the possible relationships be-

tween sets of predicates and sets of arguments. As these examples suggest, epistemic

constraints might alternatively be defined as constraints that can be represented as

statements with truth values. Additional examples of epistemic constraints can be

found in Table 1.1.

Non-epistemic constraints include mechanistic constraints of various kinds. Mem-

ory limitations are familiar examples: Newport (1990), for instance, suggests that

some aspects of language acquisition are easier for children than adults because chil-

dren are less able to keep track of the many potentially confusing details that they

hear. Several authors argue similarly that early visual limitations (including poor

acuity) may make object recognition easier rather than harder for infants (Turkewitz

& Kenny, 1982; French, Mermillod, Quinn, Chauvin, & Mareschal, 2002). Note that

memory limitations and perceptual limitations will both shape inductive inferences,
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and will be responsible in part for the beliefs that a learner ends up acquiring. A

non-epistemic constraint will usually have epistemic consequences, but the constraint

itself must not correspond to a form of knowledge about the world.

Although there is an important difference between constraints like the Spelke

principles and constraints like working memory limitations, the distinction between

epistemic and non-epistemic constraints is not always perfectly clear. Constraints

on the architecture of neural networks (Elman et al., 1996) include some borderline

cases. Some of these constraints appear to be non-epistemic—for instance, the fact

that mammalian cortex has six layers rather than seven or eight does not appear to

correspond to any kind of knowledge about the world. Other architectural constraints

might capture knowledge about the world that has been internalized through evolu-

tion. For instance, the particular recurrent structure of an auditory network might be

viewed as implicit knowledge about the temporal properties of a certain kind of sig-

nal. As cases like these suggest, deciding whether a constraint is epistemic or not may

sometimes require elaborate scientific investigation, and tentative decisions about the

status of any given constraint may be overturned by future scientific discoveries.

Even if the boundary between epistemic and non-epistemic constraints turns out

to be fuzzy, there are important differences between these classes of constraints. Since

epistemic constraints can be associated with degrees of belief, it is natural to explore

how these constraints might be learned. After seeing data consistent with an epistemic

constraint, for instance, a learner might become more confident that the constraint

is generally applicable. The idea that non-epistemic constraints might be learned

usually makes less sense—for instance, it is not particularly useful to ask how a

memory limitation might be learned. A strong conjecture is that the class of epistemic

constraints is coextensive with the class of constraints that can be learned. It may turn

out, however, that the distinction between epistemic and non-epistemic constraints

is close but not identical to the distinction between constraints that can and cannot

be learned.

Since this thesis explores how constraints might be learned, I will focus almost

exclusively on epistemic constraints. My goal is to characterize the computational
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benefits that epistemic constraints can bring, and the computational principles that

allow these constraints to be acquired. Although this section has suggested that epis-

temic constraints can be represented as statements with truth values, I do not claim

that these constraints are explicitly represented as propositions. Spelke’s principles

of object perception, for instance, can be represented as a set of propositions, and

these propositions may help to explain the visual abilities of an infant, but it does not

follow that these propositions are located somewhere within the infant’s mind. Even-

tually it will be important to consider how epistemic constraints are represented, and

to study the psychological mechanisms that operate over these representations. This

thesis, however, provides a computational investigation of the nature and acquisition

of epistemic constraints.

Domain-general versus domain-specific

Inductive constraints range from general expectations about a broad class of settings

to expectations about a relatively narrow context. Consider, for example, the expec-

tation that stimuli are often composed of modular units, and that the units which

appear in one configuration might appear again in the future. Knowledge this gen-

eral might apply across many domains—for instance, it might lead a learner to break

visual scenes into configurations of visual objects, and auditory scenes into config-

urations of auditory objects (Kubovy & Van Valkenburg, 2001). Within any given

domain, learners will often rely on more specific constraints. For instance, people

have expectations about the characteristic motions of animals and vehicles, and rely

on these expectations when interpreting the content of a visual scene.

This thesis describes a learning framework that will accommodate constraints

at many points along the spectrum from general to specific. The key idea is that

constraints can occupy different levels of abstraction: abstract constraints may apply

across many domains, but less abstract constraints may hold only within a single

domain. Even within a single domain, however, there may be general constraints

(e.g. constraints on the properties of all human languages) and less general constraints

(e.g. constraints on the morphology of a child’s native language). I will therefore focus
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more on the distinction between abstract and specific constraints than the distinction

between domain-general and domain-specific constraints.

Innate versus learned

As suggested in the previous chapter, inductive learning is impossible without con-

straints. It follows that any method for learning constraints must rely on meta-

constraints of some sort. It is natural to ask where these meta-constraints come

from, and we can develop models that explain how they are learned with the help of

meta-meta-constraints. We can continue to push the learning question up to higher

levels, but eventually we must assume that the constraints at some level of abstraction

are fixed from the start. I will refer to these constraints as background assumptions

to distinguish them from constraints that can be learned.

The ultimate goal of this approach is to develop models where each background

assumption corresponds to a form of innate knowledge. Constraint-learning models

will usually fail to reach this goal, but may be useful nonetheless. For instance, a

model that relies on a certain set of background assumptions can become a platform

for future efforts to explain how these assumptions are acquired given new background

assumptions that are simpler, more general, or both. Each of the models I present

should be viewed in this way, and I do not propose that the background assumptions

required by these models are innately provided.

Although it is clear that some inductive constraints must be innate, the nature of

these constraints is a matter for psychological investigation. One important question

is whether these constraints are domain-general or domain-specific (Chomsky, 1980;

Keil, 1981; Elman et al., 1996), and the framework I present does not commit to either

position. It is natural to aim for models that rely on background assumptions which

are as simple and as general as possible, but it may turn out, for instance, that any

adequate model of language learning will need to include background assumptions

that are language-specific.
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Soft versus hard

Some constraints are soft probabilistic expectations that might alternatively be called

biases or preferences, and others are hard constraints that categorically rule out cer-

tain hypotheses. The framework I describe will have room for both kinds of con-

straints. Since I take a probabilistic approach, it will be natural to specify constraints

that make some hypotheses more likely than others. A probabilistic approach, how-

ever, can also incorporate constraints that assign zero probability to some hypotheses.

Even though the world is complicated, simple constraints may still be useful as

long as they are soft. It is obviously not the case that all English words refer to

entire objects, but the whole object bias (Markman, 1989) may still be useful as long

as it can be overruled when necessary. Similarly, the M-constraint (Sommers, 1963;

Keil, 1979) captures a principle which appears to be useful in general, even though

there may be exceptions to this principle (Carey, 1985b). Soft versions of constraints

like these help to explain how human learning can be both highly constrained and

highly flexible. When few observations are available, a learner may make inferences

that are guided almost entirely by soft constraints. Once many observations are

available, these soft constraints can be overruled, and a learner can make inferences

that are guided primarily by the data she has observed. Both patterns of inference are

important: together, they produce a learner who can make strong inductive inferences

when data are sparse, but can learn almost anything given sufficient data.

Enabling versus limiting

There are two very different reasons to take an interest in inductive constraints. For

some researchers, the most pressing goal is to explain how human inferences are so

successful—to explain, for instance, how humans make inferences that go well beyond

the capacities of our best formal models. In many situations, the observations made

by a learner are consistent with a vast number of hypotheses, and the overwhelming

problem is to identify the hypotheses that are most likely to be correct. Inductive

constraints provide a critical part of the solution, since they narrow down the space
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of hypotheses. Researchers who adopt this perspective tend to take a positive view

of constraints, and argue that constraints deserve much of the credit for successful

learning (Keil, 1990; R. Gelman & Williams, 1998). Other researchers begin with the

problem of explaining why human inferences fall short of optimality in some settings.

These researchers adopt a more negative definition of constraints, and reserve this

term for factors (e.g. memory limitations) that rule out useful hypotheses and prevent

learners from reaching optimal decisions.

This thesis will focus on constraints that enable rather than impede learning.

My primary goal is to describe computational theories (Marr, 1982) that help to

explain how people solve challenging inductive problems. Enabling constraints play a

critical role in these theories, since they guide learners towards accurate conclusions

when the available data are sparse or noisy. Computational theories, however, will

never provide a complete account of cognition, and eventually it will be important to

specify the psychological mechanisms that might carry out the computations required

by these theories. Limiting constraints will become important at this stage, since we

will need to explain why people’s inferences sometimes fall short of the predictions

made by computational theories (Anderson, 1991). Here, however, I attempt only to

develop computational theories of human inference, and I leave detailed discussions

of limiting constraints for future work.

Other distinctions

Although I have identified several dimensions which are relevant to psychological dis-

cussions of constraints, constraints may vary along several other dimensions. Many

authors distinguish between constraints on the structure of mental representations,

and constraints on the processes that operate over these representations (D. L. Medin

et al., 1990). A related distinction is made by computer scientists when discussing the

inductive bias of a learning system. The representational bias of a system character-

izes the hypothesis space that will be explored by the learner, and the procedural bias

determines the order in which the hypotheses will be explored (desJardins & Gordon,

1995). Although the distinction between structural and processing constraints may
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be far from clean, I will focus on constraints that are probably best described as

structural constraints.

A comprehensive taxonomy of constraints is likely to include dimensions that I

have not discussed, and should also attempt to capture the relationships between

different dimensions. This section made some effort in this direction—for instance, I

suggested that any constraint that is learned is probably an epistemic constraint—but

other regularities are also apparent (Keil, 1990). If we consider the constraints that

are discussed most often in the psychological literature, enabling constraints tend

to be epistemic constraints, learned constraints are often domain-specific, and soft

constraints are often enabling constraints.

Developing a taxonomy of constraints is useful in part because researchers who

disagree about the value of constraints (Nelson, 1988; Keil, 1990; Behrend, 1990;

Deák, 2000) often seem to disagree about the meaning of this term. This thesis has

adopted a very broad definition, and I will continue to use “constraint” to refer to

any factor which bridges the inferential gap between a body of data and an inductive

conclusion. I hope, however, that researchers who disagree with this usage (Deák,

2000) will agree that the value of my theoretical claims does not rest on any particular

label used to describe them.

Constraints and abstract knowledge

Any taxonomy of constraints will include many dimensions, but the dimension most

useful for picking out the constraints I will discuss is the distinction between epistemic

and non-epistemic constraints. The framework I describe can model the acquisition

of many different constraints, but each of these constraints must correspond to a

kind of abstract knowledge. An alternative title for this thesis might have been

“the acquisition of abstract knowledge,” and my work is inspired in part by previous

attempts to describe the nature, acquisition and use of abstract knowledge.

Many kinds of abstract knowledge have been discussed by philosophers, psy-

chologists and computer scientists. Some of the most familiar examples are over-
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hypotheses (Goodman, 1955), theories (Carey, 1985a; Wellman & Gelman, 1992;

Kuhn, 1970), schemata (Kelley, 1972; D. E. Rumelhart, 1980), learning sets (Harlow,

1949), scripts (Schank & Abelson, 1977), and frames (Minsky, 1975). Each kind of

knowledge can be viewed as an abstract representation that places constraints on

representations at lower levels of abstraction. For instance, an overhypothesis sets

up a more concrete space of hypotheses, a learning set captures expectations that a

learner brings to a specific learning problem, and a theory captures general principles

that make predictions about specific phenomena that fall under the theory. There are

important differences between these varieties of abstract knowledge, but I will focus

on the similarities rather than the differences. For instance, each kind of abstract

knowledge suggests the need for inferential frameworks that include multiple levels of

abstraction.

Figure 2-2 shows several cognitive domains where knowledge can be organized into

several levels of abstraction. Language (Chomsky, 1957), vision (Han & Zhu, 2005)

and action (Cooper & Shallice, 2000) provide the most familiar examples (Figure 2-2).

We can hear a speech signal and recognize the phonemes and words that it contains.

We may know how a given sentence should be parsed, and we may know a grammar

which allows us to parse many different sentences. In the visual domain, we know

which objects are likely to appear in a street scene or an office scene, we know about

the parts of these objects, and we have some idea about the shapes and the relative

orientations of the surfaces that compose these parts. Our abilities to form plans and

carry them out can also be described at several levels—for instance, we know how to

make coffee, and how to open a packet of sugar.

Figures 2-2c, 2-2e and 2-2f show hierarchies that address three aspects of high-level

cognition. When grouping items into categories, we rely on knowledge about specific

categories (balls tend to be round) as well as general knowledge about patterns of

feature variability (all instances of a given object category tend to have the same

shape). Causal inferences can draw on knowledge about specific entities (Lariam pills

tend to cause headaches) as well as more abstract kinds of knowledge (medications

may cause headaches). Learning structured representations may also require infer-
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ences at several levels of abstraction. The most general problem is to decide whether

the relationships between a set of entities are best captured by a tree, a ring, a set

of clusters, or some other kind of representation. If the entities, say, are believed to

belong to some latent tree structure, the next problem is to identify the specific tree

that best accounts for the available data.

The hierarchies in Figure 2-2 all rely on multiple levels of abstraction, but the

representations at adjacent levels are related to each other in many different ways.

Let Ri be a representation at level i in a hierarchy, where R1 is a representation at the

lowest level. In some cases, Ri is a Ri+1—for instance, a bouncy round object may

be a ball. Ri may also be part of Ri+1—for instance, an object part is a constituent

of an object. Although is a relationships and part of relationships are often used to

construct hierarchies, many other relationships are possible. For instance, a speech

signal is a realization of a string of phonemes, and a structural description can be

built from a grammar.

Since many kinds of relationships between levels are possible, the hierarchies I

consider include examples (e.g. Figure 2-2a) that go beyond simple class-inclusion

hierarchies (Collins & Quillian, 1969). A hierarchy can be defined as a system of

latent variables that captures expectations about the data observed at the bottom

of the hierarchy. In most cases, the levels in the hierarchy will not correspond to

simple summaries of the observable data. Instead, the levels are best viewed as

components of a system which explains the observable data. The role of these levels

is therefore similar to the role of the concepts in a scientific theory. As philosophers

have argued, scientific concepts are more than simple abstractions from experience.

Scientific concepts are components of theories, and it is entire theories that make

contact with experience (Hempel, 1972).

The notion of an abstraction hierarchy is the starting point for the formal frame-

work described in the next chapter. I formalize this notion using nested hypothesis

spaces: X is more abstract than Y if X sets up a hypothesis space that can be

used when learning Y . The framework I describe supports hierarchies with multi-

ple levels of abstraction, and the representations at the upper levels can be viewed
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as epistemic constraints. Since I take a probabilistic approach, Bayesian inference

can explain how the constraints at the upper levels are learned given observations

at the bottom level of the hierarchy. Even though I will focus on relatively simple

constraints, the hierarchical Bayesian approach can help to explain the acquisition

of many kinds of abstract knowledge, including representations that might be best

described as schemata or intuitive theories.

Conceptual approaches to constraint learning

The acquisition of abstract knowledge has been a central concern for epistemolo-

gists and developmental psychologists alike. This section introduces three views of

knowledge acquisition that have been popular in the psychological literature. One

prominent approach grows out of the work of the British empiricists (Locke, 1998;

Hume, 1748), who argued that even our most abstract ideas correspond to combi-

nations of perceptual primitives. Abstract knowledge is thought to emerge when

associative learning mechanisms combine these primitives to create new concepts.

Some kinds of abstract knowledge may correspond to higher-level associations, or

associations between associations (Colunga & Smith, 2003). As discussed in the next

section, connectionist models can be viewed as modern attempts to formalize asso-

ciative learning.

Piaget and his colleagues developed an alternative empiricist approach that em-

phasizes the construction of increasingly abstract cognitive structures (Piaget, 1970;

Piaget & Inhelder, 1969). This constructivist approach suggests that infants begin

with relatively simple perceptual and motor abilities, and move through a series of in-

creasingly complex stages. Each stage is characterized by the kinds of representations

that are available and the operations that can be carried out over these representa-

tions. These computational resources can be viewed as domain-general constraints:

for example, the concrete and formal operations are abstract structures that help

learners to address problems from many different domains. Two mechanisms are

thought to explain how children move from one stage to another: assimilation, or the
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integration of external elements into a structure, and accommodation, or the modi-

fication of a structure by the elements it assimilates. The interaction between these

mechanisms is believed to lead to the emergence of abstract knowledge.

A third view works with the idea that abstract knowledge is embedded in theories,

or rich systems that specify concepts and relationships between these concepts. This

theory-based approach is clearly relevant to the study of scientific knowledge, but

psychologists have proposed that much of our everyday knowledge is organized into

intuitive theories that are similar to scientific theories in important respects (Carey,

1985a; Murphy & Medin, 1985; Wellman & Gelman, 1992; Gopnik & Meltzoff, 1997).

From this perspective, the problem of understanding how abstract knowledge is ac-

quired turns into the problem of characterizing the process of theory formation. Un-

like associationism and constructivism, the theory-based approach need not explain

how theories are built from raw perceptual primitives: many supporters of this ap-

proach suggest that infants begin with innate theories of several core domains, and

that learning is a matter of moving from one theory to another (Gopnik, 1996; Well-

man & Gelman, 1998). High-level descriptions of theory change are sometimes pro-

vided (Popper, 1935/1980; Kuhn, 1970)—to mention one typical example, Gopnik

(1996) suggests that theory formation is a matter of accumulating counterevidence

to an existing theory, proposing an alternative theory, then searching for evidence for

this new theory. Accounts like this are convincing as far as they go, but understanding

theory change in detail remains a major challenge.

This section has described three influential approaches to the acquisition of ab-

stract knowledge, and these approaches have inspired many of the ideas in this thesis.

Although I draw on previous work from the philosophical and psychological litera-

ture, I take on the challenge of developing computational theories that go beyond

verbal descriptions of the emergence of abstract knowledge. The next section de-

scribes some of the issues that arise when attempting to model the acquisition of

abstract knowledge.
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Figure 2-3: (a) Cognitive models typically make inferences at two levels. Given data
(e.g. contingency data or a set of features), these models learn a latent representation
R2 (e.g. a causal model or a set of network weights) and use this representation to
make inferences about any missing entries in the data (R1). These models always
rely on background assumptions which must be fixed in advance. (b) A constraint-
learning model makes inferences at three or more levels. The model shown here
relies on background assumptions which are fixed, but can learn inductive constraints
(R3), discover a latent representation (R2), and fill in missing data (R1). The models
developed in Chapters 4, 5 and 6 are all instances of this schema.

Formal models of constraint learning

Many cognitive models can be seen as instances of the two-level schema shown in

Figure 2-3a. The schema indicates that observable data R1 are consistent with some

underlying structure R2, and that the representations at both levels depend on a set

of background assumptions. These assumptions might equally well be described as

inductive constraints, and include assumptions about the class of possible structures,

the class of possible data sets, and the relationship between structure R2 and the data

observed at level 1. The background assumptions are fixed in advance and grayed

out in Figure 2-3a, but the schema supports inferences at level 1 and level 2.

Some concrete examples may help to explain the schema in Figure 2-3a. Models of

causal learning often work with contingency data (R1), and discover a causal network

(R2) that accounts well for the patterns in the data. All of these causal models rely

on background assumptions of some sort: for instance, Bayesian approaches use a

prior distribution on causal networks, and make some assumptions about how data
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are generated from these networks. All of these models support inferences at two

levels: they learn a causal network R2, and can use this network to make inferences

about any missing entries in the data set R1.

To give a second example, connectionist models often take a collection of features

as input (R1), and learn a set of weights (R2) that accounts well for the data. These

models rely on background assumptions which may include assumptions about the

architecture of the network, the initial state of the network and the parameters that

specify the learning rule (Elman et al., 1996). Since the learned network weights (R2)

support predictions about unobserved features (R1), again the model makes inferences

at two distinct levels.

To give a third and final example, models for multidimensional scaling (MDS) be-

gin with a similarity matrix (R1), and discover a low-dimensional representation (R2)

that accounts well for the data. Again, these models rely on background assumptions

which may or may not be explicitly stated: for instance, MDS models assume in

advance that a spatial representation is appropriate for the data. In principle, MDS

models make inferences at two levels: they discover a representation R2, and can use

this representation to make predictions about any pairwise similarity ratings that are

missing from the data set R1.

From one perspective, any conventional model of learning (Figure 2-3a) acquires

inductive constraints, since it learns a representation R2 which shapes inductive in-

ferences about the unobserved entries in data set R1. The conventional approach,

however, does not provide a general framework for explaining how constraints might

be learned. Many constraints of interest correspond to assumptions about repre-

sentation R2, and the background assumptions in Figure 2-3a will always include

constraints of this sort. To explore how these constraints might be learned, we need

models with at least three levels of abstraction, and the simplest models that satisfy

this criterion are instances of the schema in Figure 2-3b. This schema indicates that

data are generated from some underlying structure, that this structure conforms to a

set of constraints (R3), and that the representations at all levels are consistent with

a set of background assumptions. The background assumptions are fixed in advance
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and grayed out in Figure 2-3b, but the schema supports inferences at levels 1, 2 and

3.

Given any two-level model (Figure 2-3a), we can move to a three-level model by

carving out some of the background assumptions about structure R2 and introducing

them as a level in their own right. Some additional assumptions will need to be added

as we move from two to three levels—in particular, we will need to add background

assumptions that capture expectations about the representation at level 3. The aim,

however, is to achieve a net reduction in background assumptions whenever we add

a level. There is no reason to stop at just three levels, and we can continue to add

levels, again aiming to shrink the set of background assumptions at each stage.

The schema in Figure 2-3b does not explain how all of the constraints that guide

inferences about R2 and R1 might be learned. As in Figure 2-3a, the background

assumptions might equally well be described as inductive constraints, but I have

chosen a different label to distinguish the constraints that are learned (R3) from

the constraints that are not (the background assumptions). Any model of learning

will rely on some set of background assumptions, and the schema in Figure 2-3b

is no exception. This schema, however, can help to explain the acquisition of many

constraints discussed by psychologists, including many of the constraints in Table 1.1.

Whether a given model matches the schema in Figure 2-3b will depend on what

it learns and what it takes as input. Consider, for example, two methods for learning

probabilistic context-free grammars. The first is a supervised model and takes a set of

parse trees as input. The second is an unsupervised model: it takes a set of sentences

(R1) as input, and must discover parse trees for each sentence (R2) and a grammar

(R3) that accounts well for these (unobserved) parse trees. Even though the two

models may discover identical grammars, only the unsupervised model qualifies as a

constraint-learning model. The unsupervised model deserves this description since

the grammar it learns captures constraints which help to solve the inductive problem

of parsing. As required by Figure 2-3b, it makes inferences at three levels: it learns

a grammar and a set of parse trees, and if any of the sentences contain words that

are garbled or unobserved, it can predict what those missing words might be. The
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supervised model does not address the parsing problem, and makes inferences at only

two levels of abstraction: it discovers a grammar, and can use this grammar to fill in

parts of the parse trees that might have been unobserved.

Researchers from several disciplines have developed formal models that help to

explain the acquisition of abstract knowledge. Some, but not all of these models

match the three-level schema shown in Figure 2-3b. These models can be organized

into four broad classes: connectionist approaches, AI approaches, machine learning

approaches, and statistical approaches. Note, however, that these classes overlap,

and that some models are valid representatives of two or more classes.

Connectionist approaches

Connectionist models represent a modern attempt to implement some of the ideas

behind associationism, and some of these models appear to acquire knowledge at

multiple levels of abstraction. A particularly clear example is provided by Colunga

and Smith (2005), who show that a recurrent network can acquire a shape bias for

object categories and a material bias for substance categories. In other words, the

network learns about the features of specific categories (balls tend to be round) and

about the features of categories in general (all instances of a given object category

tend to have the same shape). Constraints on word-learning have also been explored:

for example, Regier (2003) reviews work suggesting that something like the principle

of mutual exclusivity can emerge from associative learning. Finally, I suggested earlier

that the abstract knowledge which guides induction can sometimes be described as an

intuitive theory, and Rogers and McClelland (2004) argue that connectionist models

provide a mechanistic account of many inductive phenomena that are commonly

thought to rely on intuitive theories.

There is at least one kind of connectionist model that matches the three-level

schema in Figure 2-3b. Cascade-correlation models grow in complexity as more data

are encountered: in other words, they learn both the architecture of a network (R3)

and the weights for this network (R2) (Fahlman & Lebiere, 1990; Mareschal & Shultz,

1996). Cascade-correlation models seem particularly appropriate for modeling cogni-
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tive development, and psychological applications of these models are often inspired

by Piaget’s constructivist approach to development (Shultz, 2003). Most connection-

ist models, however, learn at only two levels—a level which includes the data and a

level which specifies the weights of the network. These models match the schema in

Figure 2-3a, and raise the question whether models that make inferences at three or

more levels are necessary to account for the acquisition of abstract knowledge. I take

up this question towards the end of this chapter.

AI approaches

Logic provides a powerful tool for representing inductive constraints, and the artifi-

cial intelligence research community has long been interested in methods for learn-

ing logical representations. Some of these methods can be viewed as techniques for

learning the epistemic constraints that are the focus of this thesis. One class of

methods (Davies & Russell, 1987) aims to identify determinations, or abstract logical

statements that identify patterns of dependency between attributes. For example,

the statement that “people in a given country usually speak the same language” is

a constraint that supports confident generalizations from very sparse data. A visitor

to Brazil, for example, can conclude that Brazilians speak Portugese after meeting a

single Portugese-speaking local (Russell & Norvig, 2002).

Another approach is known as Explanation-Based Learning, or EBL (Mitchell,

Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986). Given a single observation

of a novel concept, EBL systems attempt to identify a schema (or a set of general

rules) that include the individual observation as a special case. Suppose, for example,

that an EBL system is given a single example of a kidnapping narrative—a story

about Mary, who was kidnapped by Bill when she was out running one evening, and

released only when Mary’s father gave three hundred thousand dollars to Bill (DeJong

& Mooney, 1986). An EBL system will attempt to identify general rules that are

true of all kidnapping narratives. For instance, a kidnapping narrative is one where

a person x captures another person y, and x releases y only when associates of y

pay x money. Note that this schema abstracts away from the idiosyncratic details
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of the story provided—kidnapping victims are not always captured while running,

and the ransom can vary from case to case. EBL approaches usually work with a

domain theory, or a collection of background knowledge that is usually expressed as a

collection of logical statements. Although conventional EBL approaches are only able

to learn schemata that are deductive consequences of the background theory, some

systems attempt to combine EBL with inductive learning.

A third approach is known as inductive logic programming, or ILP (Muggleton &

De Raedt, 1994; Quinlan, 1990). Given a set of observations, ILP systems attempt

to find the simplest logical theory that accounts for the data. For instance, given

information about the kinship relations between a large set of people (Andrew is

Alice’s father, Chris is Andrew’s brother, Chris is Alice’s uncle, etc.), an ILP system

attempts to discover logical rules that allow the observations to be concisely expressed

(the brother of one’s father is one’s uncle).

Although methods for learning functional dependencies can learn at three levels

of abstraction, most formulations of EBL and ILP learn only at two levels: the level

of the data, and a level which includes a logical representation of the data. All of

these approaches acquire abstract knowledge, which again raises the question whether

multiple levels (Figure 2-3b) are needed to account for the inferences I wish to explain.

Machine learning approaches

The overlap between the machine learning community and the AI community is sub-

stantial, but these two communities have produced literatures on constraint learning

that are somewhat distinct. Much of the relevant machine learning research is found

in the literature on transfer learning (also known as “lifelong learning,” “multitask

learning,” or “learning to learn”). The idea behind transfer learning is that an agent

who has faced several inductive problems should be able to extract regularities (or in-

ductive constraints) that will help it deal with the next problem it encounters (Thrun

& Pratt, 1998). Transfer learning has been approached from several angles: Ando and

Zhang (2005) and Baxter (1997) provide theoretical analyses of the problem, and there

are many heuristic approaches which have not been given a principled justification,
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but which yield good empirical performance on selected real-world problems (Caru-

ana, 1997).

The problem of learning inductive constraints is also discussed within the small

but growing literature on developmental robotics. The goal of this work is to design

robotic agents that begin with low-level motor and sensory data, and bootstrap their

way to higher-level ontologies that include knowledge about objects, actions, and the

structure of physical space (Kuipers, Beeson, Modayil, & Provost, 2006). Ontological

knowledge of this sort provides strong inductive constraints that can help an agent to

solve specific inductive problems—for instance, knowing that objects persist in time

should help an agent to understand that some specific object of interest still exists

even if it is currently occluded.

Statistical approaches

Bayesian statistics provides a principled framework for understanding inductive in-

ference, and the next chapter shows in some detail how probabilistic models can be

defined over hierarchies that include representations at multiple levels of abstraction.

The resulting models are known as hierarchical Bayesian models (A. Gelman, Car-

lin, Stern, & Rubin, 2003; Tenenbaum, Griffiths, & Kemp, 2006), and these models

support statistical inferences about the representations at all levels of abstraction. In

particular, they show how the abstract knowledge at the upper levels of a hierarchy

can be acquired given observations only at the lowest level.

My approach to constraint learning

As the previous sections suggest, there are several formal approaches to the problem

of learning inductive constraints. I will adopt the hierarchical Bayesian approach,

and this choice can be justified on several grounds.
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Why Bayes?

As Marr (1982), Anderson (1990) and others have emphasized, cognition can be stud-

ied at several levels. Some researchers focus on neural mechanisms, others focus on

cognitive processes, and others attempt to understand the computational principles

that support our cognitive abilities. Ultimately it will be important to understand

cognition at all of these levels, but often it is useful to start at the level of computa-

tional theory. Until we clearly understand the nature of a given cognitive problem,

it is difficult to make useful proposals about the psychological or neural mechanisms

that might contribute to its solution.

Since there are few computational theories of constraint learning in the psycho-

logical literature, our first task is to identify the computational principles that allow

constraints to be learned. Computational theories of cognition do not always rely

on Bayesian methods (Marr, 1982), but computational theories of learning often do.

Bayesian statistics provides a normative account of inference under uncertainty, and

is useful for exploring the principles that allow a learning system to succeed given

sparse and noisy data. Bayesian approaches have previously been used to model

many cognitive abilities, including stimulus generalization (Shepard, 1987), catego-

rization (Anderson, 1990), reasoning (Oaksford & Chater, 1994), causal learning (Gly-

mour, 2001), property induction (Heit, 1998), and word learning (Xu & Tenenbaum,

2007). The models in this thesis are motivated by some of the same goals as these

previous approaches, and share many of their strengths and limitations.

The Bayesian approach offers several advantages over the connectionist approach,

which is the main alternative available in the psychological literature. We have al-

ready seen that models with multiple levels of abstraction are useful for explaining

how constraints are acquired and used (Figure 2-3b). As discussed in the next chap-

ter, Bayesian models naturally handle multiple levels of abstraction. Connectionist

networks do not clearly distinguish between knowledge at different levels of abstrac-

tion, and it is difficult to analyze a successful network and decide which constraints

are responsible for its success, and how they might have been acquired. The connec-
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tionist approach has been useful for developing models of psychological processing,

but is not ideal for developing computational theories of constraint learning.

A second advantage of the Bayesian approach is that it naturally handles struc-

tured representations. Many inductive constraints are thought to emerge from in-

tuitive theories (Keil, 1991), and these theories are perhaps best captured using

structured representations. Other inductive constraints are explicitly formulated as

constraints on structured representations: for example, the M-constraint states that

ontological knowledge is better described by a tree structure than by a set of arbi-

trarily overlapping clusters (Keil, 1979), and Universal Grammar may specify many

constraints that set up a hypothesis space of possible grammars. Some researchers

have explored “structured connectionist models” (Smolensky, 1990; Regier, 1996),

but the connectionist approach has struggled in general to account for inferences that

appear to rely on structured representations.

A third strength of the Bayesian approach is the clarity it brings to the debate

between nativism and empiricism. Bayesian methods make two key contributions to

this debate. First, they provide an upper bound on the abilities of a human learner:

if a Bayesian learner cannot acquire a certain kind of knowledge from a given initial

state, then a human learner must also fail to learn in this situation. Second, the

Bayesian approach requires a modeler to clearly specify the background knowledge

that supports inductive learning. Typically this knowledge is captured by a prior

distribution, and a set of assumptions about how observable data are generated.

A final advantage of the Bayesian approach is its ability to handle noise and

exceptions, and to account for the graded generalizations that are characteristic of

human inferences. Connectionist models share this advantage, but some of the logical

models developed within the AI community have found it difficult to tolerate noise

and exceptions. Models that combine logic and probability are an important excep-

tion (Milch et al., 2005; Kok & Domingos, 2005), but models of this sort tend to be

compatible with the Bayesian approach advocated here.

The greatest limitation of the Bayesian approach is that at best it will provide an

incomplete account of human learning. Understanding the computational principles
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that guide human learning is a good start, but understanding how these principles

are implemented by the mind and the brain will also be important. Successful com-

putational theories can guide investigations of psychological and neural mechanisms,

but understanding these mechanisms in detail will require insights that a Bayesian

analysis is unable to provide.

Why hierarchical Bayes?

Most Bayesian models in the psychological literature match the schema in Figure 2-

3a, and make inferences at only two levels of abstraction. These models are useful

for many purposes—for instance, they help to explain how inductive inferences are

guided by prior knowledge, which can also be described as a collection of epistemic

constraints. My aim, however, is to describe models that simultaneously explain how

inductive inferences rely on constraints and how these constraints might be acquired.

At a minimum, we will need models that match the schema in Figure 2-3b and

distinguish between three levels of abstraction. The next chapter describes how the

hierarchical aspect of the hierarchical Bayesian approach allows us to capture as many

levels as we need for a particular problem.

As mentioned already, some computational methods for acquiring abstract knowl-

edge do not explicitly distinguish between multiple levels of abstraction. Connec-

tionist approaches view abstract knowledge as an emergent property of a learning

system: in other words, abstract knowledge is somehow implicit in the connection

weights learned by the system. Although connectionist networks can capture some

aspects of knowledge acquisition, there are several reasons for working with explicit

hierarchies like the examples in Figure 2-2.

Hierarchies are valuable in part because they provide a clean way to transfer

knowledge from one context to another. As a computer scientist might say, abstrac-

tion is valuable because it promotes reuse. Consider, for instance, the problem of

learning about the causal powers of a collection of medications (Figure 2-2e). One

option is to learn a causal model for each medication separately, but this approach

does not capture the intuition that learning about 10 medications should shape our
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expectations about medication number 11. An alternative approach might learn a

single causal model that describes medications in general, but this approach can-

not acquire specific information about individual medications (e.g. that medication

number 3 is particularly likely to cause headaches). Instead of treating all the med-

ications separately or collapsing them into one big category, we can allow two levels

of abstraction—one for medications in general and one for individual medications—

and carry out inferences at both of these levels (Figure 2-2e). Similar approaches

are useful when learning about many categories (Figure 2-2c), or learning about the

appearance and behavior of many physical objects. In general, hierarchies provide

an appealing solution to the problem of sharing information between related contexts

while maintaining the potentially important distinctions between these contexts.

Connectionist networks have traditionally struggled with the problem of learning

about contexts that are related but distinct. Networks which attempt to handle

several contexts are often subject to catastrophic interference (McCloskey & Cohen,

1989), which occurs when information about a new context interferes with knowledge

that has previously been acquired. When a network is applied to a single context, a

modeler may notice emergent network properties that appear to correspond to forms

of abstract knowledge (Rogers & McClelland, 2004). Unless the network can transfer

these emergent properties to new contexts, however, it is not clear that any abstract

knowledge has actually been acquired.

There are at least two additional reasons to pursue a hierarchical approach. Hi-

erarchies are desirable in some cases because they lead to the simplest explanation

of some phenomenon of interest. Suppose, for instance, that we want to understand

how people decide whether a string of phonemes qualifies as a valid English utter-

ance. It is possible in principle to develop a non-hierarchical model (Figure 2-3a)

that directly characterizes all grammatical strings of phonemes. Chomsky (1975),

however, argues that this project amounts to an “immense and unmanageable” task.

A better approach is to introduce levels for morphemes, words, and phrases, and to

characterize the grammaticality of a phoneme string in terms of all of these levels.

Even if current technology provides no way to directly probe the psychological reality
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of the representations at the more abstract levels, linguists can argue for the existence

of these representations by showing how they contribute to the linguistic theory that

is simplest overall. Similar considerations apply in non-linguistic settings, including

the cases shown in Figure 2-2.

Considerations of theoretical simplicity can provide indirect support for a hierar-

chical approach, but direct evidence for multiple levels of abstraction is available in

some settings. Suppose that a learner is exposed to contingency data that provide

evidence about the effects of several different medications (Figure 2-2e). A successful

learner may make statements that reflect representations at all three of the levels in

Figure 2-2e. For instance, the learner may say that “Jane had a headache on June

14” (bottom level), that “Lariam causes headaches” (middle level), and that “medi-

cations cause headaches” (top level). The ability to learn from statements like these

provides further evidence for the existence of multiple levels of abstraction. For in-

stance, a learner who is told that “Lariam causes headaches” is likely to learn about

the causal powers of Lariam much quicker than a learner who is given contingency

data alone. As these examples suggest, verbal reports can provide strong evidence for

the existence of multiple levels of abstraction, and informal analyses can be followed

up by experimental manipulations that explore how inferences change when abstract

knowledge is directly provided.

This section provided several reasons to develop models with multiple levels of

abstraction, but two-level models (Figure 2-3a) may satisfy all of our requirements as

long as the representation at level 2 can distinguish between different sublevels. For

instance, methods for learning logical theories (e.g. ILP) can learn a single represen-

tation that includes both general statements (e.g. ∀x∀y Spouse(x, y) ← Spouse(y, x))

and specific facts (e.g. Spouse(Sally, Andrew)). For our purposes, it will not be crit-

ical to decide whether these general statements should occupy a sublevel within level

2, or should belong to a distinct level in their own right. As long as we agree that

representations at multiple levels of abstraction are needed, there is room for debate

about how best to organize these representations into levels and sublevels.
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My contribution

Previous work in psychology and philosophy raises a fundamental question: how can

inductive constraints be acquired? Previous work in machine learning and statistics

has led to a theoretical approach—the hierarchical Bayesian approach—that explains

how knowledge can be acquired at multiple levels of abstraction. This thesis brings

these two literatures together and argues that the hierarchical Bayesian approach

helps to explain how people learn inductive constraints.

To support this argument, the later chapters of this thesis describe computational

theories that address three aspects of high-level cognition: categorization, causal rea-

soning, and knowledge representation. Computational theories of cognition derive

support in several ways. Like all theories, they should be judged according to their

coherence, elegance, and explanatory power. Like other psychological theories, they

can be evaluated according to their ability to account for behavioral data. Finally,

computational approaches derive support from demonstrations that they can be im-

plemented by psychologically plausible mechanisms. I will focus on the first two

criteria and will leave the third for future investigation.

Statistics and machine learning provide a sound theoretical foundation for models

of human learning, but psychologists can repay the debt by suggesting new problems

for these fields to explore. Although I focus on the psychological implications of

the models I describe, each model may also find applications to machine learning

problems. The first model is a modest extension of a familiar statistical model (the

Dirichlet-multinomial model), but the remaining two models represent more of a

departure from existing statistical models. Understanding human learning is a worthy

goal in its own right, but progress towards this goal should also lead to machine

learning systems that are better able to match the sophistication of human learning.
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Chapter 3

Hierarchical Bayesian models

The previous chapter suggested several criteria that a constraint-learning framework

should satisfy. It must allow representations at multiple levels of abstraction, and

support inferences at all of these levels. It must allow adjacent levels to depend

on each other in many different ways. Finally, it must be able to tolerate sparse

and noisy data. We satisfy all of these criteria by taking a hierarchical Bayesian

approach (Lindley & Smith, 1972; Good, 1980; A. Gelman et al., 2003).

To convert any of the examples in Figure 2-2 into a fully specified model, the

first step is to formalize a set of hypothesis spaces, one for each level of abstraction.

Let Hi be the hypothesis space at level i, and let Ri refer to one of the elements

in this hypothesis space (Figure 3-1a). In Figure 2-2a, for example, the hypothesis

space at level 2 (H2) includes all possible strings of phonemes, and R2 refers to one

particular string of phonemes. Background assumptions are needed to set up the

hypothesis spaces at each level, but are not shown in Figure 3-1. I will adopt the

same convention in all remaining figures: background assumptions are always present

but never shown.

After specifying hypothesis spaces at each level of abstraction, a hierarchical

Bayesian model can be defined by placing a prior distribution P (Rn) on the space

at the top level, and by specifying distributions P (Ri−1|Ri) which indicate how the

representation at each level generates the representation at the next level down. By

specifying different distributions P (Ri−1|Ri) we can capture many kinds of relation-
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Figure 3-1: (a) A hierarchical model with representations Ri at multiple levels of
abstraction. (b) Hierarchical Bayesian models can allow many patterns of dependence
between levels.

ships between adjacent levels, including is a relationships, part of relationships and

many other possibilities. When combined, these distributions define a joint distribu-

tion over the set of representations at all levels:

P (R1, R2, . . . , Rn) = P (R1|R2)P (R2|R3) . . . P (Rn−1|Rn)P (Rn). (3.1)

All of the distributions in Equation 3.1 depend on a set B of background assump-

tions about the hypothesis space at each level and the process by which each level is

generated from the level immediately above. We can make these assumptions explicit

by rewriting Equation 3.1 as

P (R1, R2, . . . , Rn|B) = P (R1|R2, B)P (R2|R3, B) . . . P (Rn−1|Rn, B)P (Rn|B),

but we will keep our notation simple and again adopt the convention that background

assumptions are always present but never shown.

The joint distribution in Equation 3.1 contains enough information to model in-

ferences about any set of levels given observations at any other set of levels. If we

are working with a five level model, for instance, and representations at three of the

levels are known (R1, R3 and R5) then the joint distribution induces a conditional
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distribution P (R2, R4|R1, R3, R5) that can capture inferences about the remaining

two levels in the model.

Hierarchical Bayesian models can include any number of levels, but three levels

are enough to demonstrate the main message of this thesis. We will focus on models

that match the three-level schema shown in Figure 2-3b, and Figures 2-2c, 2-2e and

2-2f show the three instances of this schema that we will consider in detail. Each

model assumes that the relationships between levels form a linear structure, and

Equation 3.1 also makes this assumption. Technically speaking, we have assumed

that each representation Ri−1 is conditionally independent of the representations at

all higher levels given the representation Ri at the next level up. This assumption,

however, can easily be relaxed, and hierarchical Bayesian models can capture many

patterns of dependence between levels, including the case shown in Figure 3-1b. The

joint distribution for this model is

P (R1, R2, R3, R4, R5) = P (R1|R2, R3)P (R2|R3, R4)P (R3|R4, R5)P (R4|R5)P (R5)

and again we can use this distribution to capture inferences about any level in the

model. Many other patterns of dependence are possible, and a hierarchical Bayesian

model can be defined over any acyclic graph.

Inferences supported by hierarchical models

Hierarchical Bayesian models can be used for many purposes. Although Equation 3.1

supports many kinds of inferences, these inferences can be divided into three broad

classes: top-down inferences, bottom-up inferences, and inferences at multiple levels

of abstraction.

Top-down inferences

If the representations at some of the higher levels are fixed, a hierarchical model can

make top-down predictions about the representations at the lower levels. In Figure 2-
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2a, for instance, suppose that a phrase structure grammar is known (R4) and we want

to identify the structural description and sentence (R3) that best account for a string

of phonemes (R2). The posterior distribution P (R3|R4, R2) can be used to model

a top-down inference where observed data (R2) are combined with prior knowledge

(R4) to make predictions about the representation at level 2.

Previous psychological applications of the hierarchical Bayesian approach have

mostly focused on top-down inferences (Tenenbaum et al., 2006). Griffiths (2005)

discusses the case of causal reasoning in detail, and argues that hierarchical Bayesian

models can explain how people make top-down causal inferences given very sparse

data (Figure 2-2e). Similar kinds of top-down inferences can be made about all of

the cases in Figure 2-2.

Bottom-up inferences

If the representations at some of the lower levels are fixed, a hierarchical model can

make bottom-up inferences about the representations at the higher levels. In Figure 2-

2d, for instance, suppose that a collection of pixels is observed (R1) and we want to

identify the scene context (R5) that best explains these observations. The posterior

distribution P (R5|R1) captures our beliefs about the representation at level 5 after

observing data at the lowest level of the model.

Bottom-up inferences about the highest levels in a hierarchical model can help to

explain the acquisition of inductive constraints, and the remaining chapters of this

thesis will apply this idea to the examples in Figures 2-2c, 2-2e and 2-2f. In each

case, we will see how the representation at the top level can be learned given data at

the lowest level of the model.

Simultaneous inferences at multiple levels

Most of the examples so far have showed that inferences at a given level of abstraction

can be guided by information at higher or lower levels of abstraction. Often, however,

a learner will need to make simultaneous inferences about multiple levels of abstrac-
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tion, and information will need to flow back and forth between several levels. For

instance, when viewing a collection of pixels (R1) a learner may need to extract sur-

faces (R2) and object parts (R3), recognize objects (R4) and identify the scene context

(R5). The objects identified (R4) may constrain the surfaces that are extracted (R2)

and vice versa, which means that bottom-up approaches and top-down approaches

will not succeed. Instead, we need an interactive approach that allows representations

at several levels to jointly constrain each other. A hierarchical Bayesian model meets

this description, and the posterior distribution P (R2, R3, R4, R5|R1) can be used to

model interacting inferences about many of the levels in Figure 2-2d.

Several psychologists have argued that human inferences are characterized by in-

teractive processing over several levels of abstraction. The TRACE model of speech

perception includes levels that correspond to acoustic features, phonemes, and words,

and allows information to propagate from acoustic features up to words, and from

words down to the acoustic features (McClelland & Elman, 1986; McClelland, Mir-

man, & Holt, 2006). Interactive processing is also discussed by vision researchers,

who argue that the visual pathway includes feedback connections which allow infer-

ences at higher levels to influence early visual areas (Lee & Mumford, 2003; Ullman,

1995). Interactive approaches like these have their detractors (Fodor, 1978; Norris,

McQueen, & Cutler, 2000), but formal models of interactive processing can bring

clarity to both sides of this debate.

Different patterns of learning can emerge when a model learns simultaneously

about many levels of abstraction. Depending on the task and the data set, learning

may be faster at the lower levels than the upper levels, equally rapid at all levels, or

faster at the upper levels than the lower levels. The next chapter provides concrete

examples of all three cases. Cases where learning is fastest at the upper levels of a

model are especially interesting, and may help to explain how inductive constraints

are acquired relatively early in development.
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Choosing a hierarchy

Figure 2-2 shows hierarchies which capture several kinds of abstract knowledge, but

we have seen no general recipe for constructing these hierarchies. This thesis will

focus on problems where a hierarchy is specified in advance, and the main point of

interest is whether inferences over this hierarchy can capture the kinds of inferences

made by human learners. There are, however, informal principles that help modelers

decide which hierarchies to explore, and that may ultimately help to explain how

these hierarchies emerge over the course of cognitive development.

The previous chapter identified several reasons for working with explicit hierar-

chies like the examples in Figure 2-2. The same ideas provide criteria for choosing

between competing hierarchies, including hierarchies with different numbers of levels.

First, we should be sensitive to cases where learners transfer knowledge from one

context to another. Cases like this provide evidence for a level of abstraction that

captures the elements that are shared across the two contexts. Second, we should aim

for the simplest possible model that will account for the data: in other words, levels

should be added to a hierarchy whenever they increase the overall simplicity of a

model. I suggested, for instance, that the simplicity of a model that characterizes the

grammaticality of phoneme strings can be increased by adding levels corresponding

to morphemes, words and phrases. Finally, we should look for direct evidence of the

existence of certain levels. Successful learners, for instance, may make statements

which indicate that they have made inferences at several levels of abstraction.

Deciding which of several hierarchies to prefer is a special case of the problem of

choosing between scientific theories, and can be addressed in principle by standard

theories of confirmation. The Bayesian approach to confirmation is one candidate,

although philosophers continue to debate the strengths and weaknesses of this ap-

proach (Earman, 1992). The final chapter of this thesis discusses the steps needed to

develop a Bayesian framework that identifies the best hierarchy for a given problem.
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Other hierarchical approaches

As Figure 2-2 suggests, hierarchical approaches are prominent in the psychological lit-

erature (Greenwald, 1988), and have been used to explore language (Chomsky, 1957),

memory (Bartlett, 1932), vision (Fukushima, 1980; Marr, 1982), action (Cooper &

Shallice, 2000), categorization (Collins & Quillian, 1969), social behavior (Heider,

1958) and many other topics. Most of these hierarchical approaches are compatible

with a hierarchical Bayesian approach and can be modeled within the framework I

described. I illustrate by focusing on two well-known hierarchical approaches: Chom-

sky’s view of language acquisition, and previous work on multilevel neural networks.

Hierarchical approaches in linguistics

Chomsky (1975) suggests that the study of linguistics amounts to the abstract study

of “levels of representation,” and argues for an approach that distinguishes at least

six levels: phonemes, morphemes, words, syntactic categories, phrase structure, and

transformations. According to Chomsky, a set of linguistic levels should specify the

representations that can occur at each level, and the compatibility relationships that

connect representations at different levels. A grammar is a system of rules that allows

representations at each of these levels to be recovered given a phonetic spelling, or a

string of units at the lowest level. Some aspects of this approach differ from the hier-

archical Bayesian approach: for instance, I allow compatibility relationships between

levels to be probabilistic, but Chomsky describes these relationships as determinis-

tic rules. Despite some superficial differences, the hierarchical Bayesian framework

is consistent with Chomsky’s basic proposal that sentences have structured repre-

sentations at multiple levels of abstraction, and that different kinds of compatibility

relationships specify how the representations at different levels depend on each other.

A Bayesian approach to learning is mostly consistent with the view of learning

presented in Chomsky’s early work. According to Chomsky (1975), “linguistic theory

characterizes a system of levels, a class of potential grammars, and an evaluation pro-

cedure with the following property: given data from language L and several grammars
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with the properties required by linguistic theory, the procedure of evaluation selects

the highest-valued of these.” Given this evaluation procedure, a language learner can

“select the highest-valued grammar of the appropriate form compatible with available

data.” A hierarchical Bayesian account of learning matches this basic pattern. Given

a hierarchy of levels where a grammar Rn appears near the top and phonetic data R1

appear at the bottom, grammar learning can be captured by an “evaluation proce-

dure” that identifies the grammar that maximizes P (Rn|R1).
1 I have not described an

algorithm which implements this evaluation procedure, but the hierarchical Bayesian

approach can be evaluated without committing to a specific mechanism for searching

the space of grammars.

Although Chomsky’s view of learning appears closely related to my own, he often

describes this view using language that is inconsistent with the terminology I have

chosen. For instance, he argues that a child’s knowledge of language “goes far beyond

the presented primary linguistic data and is in no sense an ‘inductive generalization’

from these data” (Chomsky, 1965). I prefer to say that a child’s knowledge of language

goes far beyond the primary linguistic data and is therefore an inductive generalization

from these data—in other words, if linguistic data contained enough information to

fully specify a grammar, then grammar learning would be a deductive rather than

an inductive problem. Disagreements like these are of little consequence and indicate

only that certain phrases (e.g. “inductive generalization”) can be used in different

ways. Chomsky’s preferred usage helps to emphasize that language learning must

go well beyond enumerative induction or any of the bottom-up learning methods

that are traditionally linked with empiricist approaches. My preferred usage focuses

on the distinction between deduction and induction, and acknowledges that there is

much more to learning than the simple bottom-up methods dismissed by Chomsky

(Table 1.2).

As this brief excursion into linguistic theory suggests, the hierarchical Bayesian

1Chomsky describes a grammar as a body of knowledge that determines a system of levels. To
accurately capture this idea we need to allow the grammar Rn to directly influence the representation
at each of the lower levels, but a model like this is entirely consistent with the hierarchical Bayesian
approach (see Figure 3-1b).
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framework incorporates several ideas that have been part of cognitive science from the

very beginning. Hierarchical approaches have been explored for many years, and it

has long been clear that learning can be understood computationally as the problem

of searching for a representation that maximizes some measure of goodness. The

advantage of the hierarchical Bayesian approach is that it can handle soft probabilistic

relationships between representations at different levels, that it provides a principled

method for dealing with uncertainty, and that it helps to explain which “measure of

goodness” is relevant to a given learning problem. When learning representation R

from data D, the measure of goodness should always be P (R|D), or the posterior

probability of R given the data.

Multilevel neural networks

As presented here, the hierarchical Bayesian approach relies on three central ideas.

First, multiple levels of abstraction are needed to capture human knowledge. Second,

the representations at each level and the relationships between levels can be rich and

complex. Third, probabilistic inference helps to explain how the representations at

all levels are acquired and used. We have just seen that linguists have long argued

for the first two claims, but have tended to resist the third. Research on multilevel

neural networks has emphasized the first and third claims, but not the second.

Inspired in part by the structure of visual cortex, vision scientists have suggested

that pattern recognition can be achieved by a multilevel network where the repre-

sentations at the higher levels become increasingly invariant to changes in position

and other transformations (Fukushima, 1980). Several groups of researchers have de-

scribed probabilistic multilevel networks that are motivated by similar ideas (Lee &

Mumford, 2003; Hinton, Osindero, & Teh, 2006; D. George & Hawkins, 2005). There

are significant differences between the networks proposed by different researchers,

but all of them share two properties: the representations at each level are formalized

as feature vectors, and the relationships between feature vectors at adjacent levels

tend to be the same across the entire hierarchy. Models of this sort are compatible

with the hierarchical Bayesian approach described in this chapter, and may help to
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explain some aspects of cognition, including visual perception. Importantly, how-

ever, the hierarchical Bayesian approach can handle grammars, logical theories, and

other representations that are richer than feature vectors. The hierarchical Bayesian

approach also handles cases where adjacent levels are related to each other in very

different ways: for instance, a hierarchical language model should acknowledge that

the relationship between a string of phonemes and a sentence is qualitatively dif-

ferent from the relationship between a structural description and a phrase structure

grammar.

Each individual component of the framework I described has been extensively

explored in the psychological literature. There are models that rely on hierarchies,

models that incorporate richly structured representations, and models that explain

learning in terms of Bayesian inference. This section reviewed some well known ap-

proaches that combine two of these ideas. Few models, however, combine all three

ideas, and this thesis proposes that all three are needed to account for human cogni-

tion.

Belief formation or belief fixation?

By now it should be clear that hierarchical Bayesian models can make inductive

inferences at multiple levels of abstraction, but some readers will wonder whether

these models can really discover abstract knowledge. Terms like discovery and belief

formation are sometimes reserved for cases where a system comes up with a hypothesis

(e.g. a concept or a theory) that is qualitatively new (Reichenbach, 1938; Fodor, 1980).

Terms like justification or belief fixation are used for cases where a system chooses

between two or more pre-existing hypotheses. For instance, a system that starts out

with few preconceptions about language may form a new belief when it realizes that

English sentences are hierarchically structured. A system that starts out with two

possible grammars and identifies the candidate that best accounts for a corpus has

only adjusted the weights of two pre-existing beliefs.

At first sight, Bayesian models may seem like accounts of belief fixation rather
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than belief formation. Any Bayesian model begins with a hypothesis space, and

“learning” is a matter of identifying the element in this space that best accounts for

the data. Since a Bayesian learner can never step outside its hypothesis space, in one

sense it can only perform belief fixation, since it must begin with all the hypotheses

that it will ever need (Suppes, 1966).

Bayesian models, however, are best viewed as operating at a level of explanation

where the distinction between belief formation and belief fixation breaks down. From

a computational perspective (Marr, 1982), every learning system relies on a fixed

hypothesis space which represents the abstract potential of the system. If we imagine

all streams of input that the system could possibly receive, the hypothesis space

includes all states of knowledge which the system could possibly reach. Even systems

that appear to recruit new representational resources must implicitly rely on a fixed

hypothesis space. For instance, constructivist neural networks grow by adding new

units (Fahlman & Lebiere, 1990), but the fixed hypothesis space in this case includes

all configurations that can be reached by adding new units.

Since every learning system relies on a fixed hypothesis space, every system is

computationally equivalent to a method of belief fixation. The distinction between

belief formation and belief fixation must therefore distinguish different ways in which

a computational theory can be implemented. For instance, an implementation that

entertains only a few hypotheses at a time may be said to form a new belief every

time it generates a hypothesis that has never previously been entertained. An imple-

mentation that has access to the entire hypothesis space (for instance, that explicitly

considers all possible hypotheses whenever it needs to make a prediction) might be

better described as a model of belief fixation.

The primary goal of this thesis is to develop computational theories that explain

how constraints can be learned. Each of these theories can be implemented in many

ways: some implementations will seem like models of belief formation, and others will

seem like models of belief fixation. Once we commit to a specific implementation,

we can decide whether or not it succeeds as an account of belief formation. Here,

however, I focus almost entirely on the level of computational theory.
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Summary

This chapter introduced the hierarchical Bayesian approach and showed how prob-

abilistic models can be defined over hierarchies with multiple levels of abstraction.

These hierarchies can incorporate richly structured representations, and the repre-

sentations at different levels can be related to each other in many different ways.

Statistical inference over these hierarchies can be used to learn about the representa-

tions at any level of abstraction, and I showed how these models support top-down

inferences, bottom-up inferences, and simultaneous inferences about multiple levels

of abstraction.

The next three chapters of this thesis describe hierarchical Bayesian models that

address three aspects of high-level cognition: categorization (Figure 2-2c), causal rea-

soning (Figure 2-2e) and knowledge representation (Figure 2-2f). The representations

at the upper levels of each model can be viewed as inductive constraints, and we will

see how these constraints can be acquired given data at the bottom levels of these

models.
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Chapter 4

Learning about feature variability

Imagine that a child is visiting the zoo with her parents, and that her mother points

at something and utters the word “wombat.” The child might be excused for thinking

that the word refers to any object that is furry and brown, to the corner of the nearest

enclosure, or to the snout of the animal that is currently hiding in the corner of the

enclosure (Quine, 1960). There are an indefinite number of more exotic hypotheses—

for instance, the word could refer to burrowing marsupials when used on Tuesday and

to teapots when used on any other day of the week (Goodman, 1955). Although the

space of logically possible hypotheses is vast, a single labeled example is often enough

for young children to make accurate inferences about the meaning of a novel word.

Inferences like these must be supported by strong inductive constraints, and models

of constraint learning can help to explain how children become such proficient word

learners.

The problem of word learning is a natural target for a hierarchical approach since

it appears to involve inferences at two or more levels of abstraction. Children need

to learn about individual categories—for example, they need to discover that balls

tend to be round, and that teacups tend to have a handle. Children also need to

acquire more abstract knowledge about categories in general. One instance of more

The work in this chapter was carried out in collaboration with Amy Perfors and Joshua Tenen-

baum. The chapter is a revised version of Kemp, Perfors, and Tenenbaum (2007) and is reproduced

with permission.
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abstract knowledge is the shape bias, or the expectation that the members of any given

category will tend to have the same shape, even if they vary along other dimensions

such as color or size. The shape bias supports inferences from very sparse data: given

a single labeled example of a novel category, young children will extend the category

label to similarly-shaped objects ahead of objects that share the same texture or

color as the exemplar (Heibeck & Markman, 1987; Landau et al., 1988). This chapter

describes a hierarchical Bayesian model that acquires inductive constraints like the

shape bias.

Learning the shape bias is one instance of the more general problem of learning

about feature variability. The general problem can be introduced using an example

given by Goodman (1955). Suppose that S is a stack containing many bags of marbles.

We empty several bags and discover that some bags contain black marbles, others

contain white marbles, but that the marbles in each bag are uniform in color. We

now choose a new bag—bag n—and draw a single black marble from the bag. On its

own, a single draw would provide little information about the contents of the new bag,

but experience with previous bags may lead us to endorse the following hypothesis:

H: All marbles in bag n are black.

If asked to justify the hypothesis, we might invoke the following constraint:

C: Each bag in stack S contains marbles that are uniform in color.

Goodman refers to C as an overhypothesis, but C can also be described as an epistemic

constraint. C is a constraint since it limits the possible hypotheses about the marbles

in each bag: for instance, the marbles in bag n could be uniformly black or uniformly

white, but may not be mixed in color. Once this constraint has been acquired, a

learner can make confident predictions about bag n after seeing exactly one marble

sampled from this bag.

Although Goodman did not give a formal account of how overhypotheses might be

acquired, a simple hierarchical model helps to explain how constraints like C might

be learned. Consider a model with three levels (Figure 4-1a). Level 1 records ob-

servations that have been made by drawing marbles from one or more bags. Level

62



Level 3: Constraints

Level 2: Category means

Level 1: Data

...

...

...

(a)

(b) Level 3: Constraints

Level 2: Category means

Level 1: Data

θn

y
n

y
1

θ1

α, β

y
2

y
3

y
4

θ2 θ3 θ4

θ1 θ2 θ3 θ4 θ5 θ6

α1, β1 α2, β2

y
1

y
2

y
3

y
4

y
5

y
6

Figure 4-1: (a) A categorization model that formalizes the intuition behind Figure 2-
2c. Each category is shown as a bag of colored marbles. Individual marbles represent
category exemplars, and θi is the color distribution for category i. α and β place
constraints on the {θi} variables: β is the color distribution across all categories, and
α represents the variability in color within each category. (b) A categorization model
with two ontological kinds meant to correspond loosely to objects and substances.
α1 represents knowledge about feature variability within the first ontological kind
(object categories are homogeneous in shape but not in material), and β1 captures
the characteristic features of the entities belonging to the first kind (objects tend to
be solid).

2 specifies information about the color distribution of each bag, and Level 3 speci-

fies information about bags in general. For instance, Level 3 may indicate that the

contents of each bag tend to be homogeneous in color.

A Dirichlet-multinomial model provides one way to formalize the hierarchical ap-

proach in Figure 4-1a (A. Gelman et al., 2003). Suppose we are working with a set

of k colors. Initially we set k = 2 and use black and white as the colors. Let yi

indicate our observations of the marbles that have been drawn from the ith bag in

the stack. If we have drawn 5 marbles from bag 7 and all but one are black, then

y7 = [4, 1]. Let θi indicate the true color distribution for bag i: if 60% of the marbles

in bag 7 are black, then θ7 = [0.6, 0.4]. Formally, we assume that yi is drawn from a
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Figure 4-2: The Dirichlet distribution serves as a prior on θ, the color distribution of
a bag of marbles. Assume that there are two possible colors—white and black—and
let θ1 be the proportion of black marbles within the bag. Shown here are distributions
on θ1 when the parameters of the Dirichlet distribution (α and β) are systematically
varied. When α is small, the marbles in each individual bag are near-uniform in color
(θ1 is close to 0 or close to 1), and β determines the relative proportions of bags
that are mostly black and bags that are mostly white. When α is large, the color
distribution for any individual bag is expected to be close to the color distribution
across the entire population of bags (θ1 is close to β1).

multinomial distribution with parameter θi: in other words, the marbles responsible

for the observations in yi are drawn independently at random from the ith bag, and

the color of each depends on the color distribution θi for that bag.

The representation at level 3 captures knowledge about the distribution of the

θi variables. We will assume that this knowledge can be captured using using two

parameters, α and β (Figure 4-1a). Roughly speaking, α captures the extent to which

the marbles in each individual bag are uniform in color, and β captures the color

distribution across the entire stack of bags. Formally, we assume that the vectors

θi are independently drawn from a Dirichlet distribution with scale parameter α

and mean β. Figure 4-2 shows how the distribution on θ changes as α and β are

systematically varied. When α is small, the marbles in each individual bag are near-

uniform in color, and β determines the relative proportions of bags that are mostly

white and bags that are mostly black. When α is large, the color distribution for any
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individual bag is expected to be close to β, the color distribution across the entire

population of bags.

To complete the model in Figure 4-1a, we need to formalize our a priori ex-

pectations about the values of α and β. We use a uniform distribution on β and

an exponential distribution on α, which captures a weak prior expectation that the

marbles in any bag will tend to be uniform in color. The mean of the exponential

distribution is λ, and the value of this variable is specified by one of the background

assumptions. All simulations described in this chapter use λ = 1. Using statistical

notation, the entire model can be written as

α ∼ Exponential(λ)

β ∼ Dirichlet(1)

θi ∼ Dirichlet(αβ)

yi |ni ∼ Multinomial(θi)

where ni is the number of observations for bag i.

So far, we have assumed that we are working with a single dimension—for Good-

man, marble color. Suppose, however, that some marbles are made from metal and

others are made from glass, and we are interested in material as well as color. A

simple way to deal with multiple dimensions is to assume that each dimension is

independently generated, and to introduce separate values of α and β for each di-

mension. When working with multiple features, we will often use α to refer to the

collection of α values along all dimensions, β for the set of all β vectors, and y for

the set of counts along all dimensions.

To fit the model to data we assume that counts y are observed for one or more

bags. Our goal is to compute the posterior distribution p(α,β, {θi}|y): in other

words, we wish to simultaneously discover level 3 knowledge about α and β and level

2 knowledge about the color distribution θi of each individual bag i. Figures 4-3b and

4-3c show posterior distributions on log(α), β and θi for two sets of counts. We can

approximate the distribution p(α,β|y) using numerical integration or a Markov chain
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Figure 4-3: Generalizations made by the model in Figure 4-1a. (a) Prior distributions
on log(α), β and θi indicate the model’s expectations before any data have been
observed. (b) Posterior distributions after observing 10 all-white bags and 10 all-
black bags. The model realizes that most bags are near-uniform in color (α is small),
and that about half of these bags are black (β1 is around 0.5). These posterior
distributions allow the model to predict that the proportion of black marbles in the
new, sparsely observed bag (θ new

1 ) is very close to 1. (c) Posterior distributions after
observing 20 mixed bags inspired by the obesity condition of the Barratos task. The
model realizes that around 25% of marbles are black (β1 is around 0.25), and that
roughly 25% of the marbles in each individual bag are black (α is high). These
posterior distributions allow the model to predict that the new, sparsely observed
bag is likely to contain more white marbles than black marbles (θ new

1 is not close to
1).
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Monte Carlo (MCMC) scheme. Inferences about the θi are computed by integrating

out α and β:

p(θi|y) =

∫

α,β

p(θi|α,β,y)p(α,β|y)dαdβ.

To compute some of the model predictions in this chapter we implemented a sampler

that uses Gaussian proposals on log(α), and proposals for β that are drawn from

a Dirichlet distribution with the current β as its mean. The results in Figure 4-6

represent averages across 30 Markov chains, each of which was run for 50,000 itera-

tions (1000 were discarded as burn-in). The model predictions in Figures 4-3, 4-5,

4-4 and 4-7 were computed using numerical integration. Note that both inference

schemes (MCMC and numerical integration) are merely convenient ways of comput-

ing the predictions of our computational theory. Any computational theory can be

implemented in many ways, and the particular implementations we have chosen are

not intended as models of cognitive processing.

Modeling inductive reasoning

Since Goodman, psychologists have confirmed that children (Macario, Shipley, &

Billman, 1990) and adults (Nisbett, Krantz, Jepson, & Kunda, 1983) have knowledge

about feature variability and use this knowledge to make inductive leaps given very

sparse data. This section provides an initial demonstration of our model using data

inspired by one of the tasks of Nisbett et al. (1983). As part of this task, participants

were asked to imagine that they were exploring an island in the Southeastern Pacific,

that they had encountered a single member of the Barratos tribe, and that this

tribesman was brown and obese. Based on this single example, participants concluded

that most Barratos were brown, but gave a much lower estimate of the proportion of

obese Barratos (Figure 4-4). When asked to justify their responses, participants often

said that tribespeople were homogeneous with respect to color but heterogeneous with

respect to body weight (Nisbett et al., 1983).

To apply the Dirichlet-multinomial model to this task, we replace bags of marbles

with tribes. Suppose we have observed 20 members from each of 20 tribes. Half the
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Figure 4-4: Generalizations about a new tribe after observing 1, 3, or 20 obese,
brown-skinned individuals from that tribe. Human generalizations are replotted from
Nisbett et al. (1983). For each set of observations, the Dirichlet-multinomial model
learns a distribution over the feature proportions θnew for a new tribe (Figure 4-3).
Plotted here are the means of those distributions. A single observation allows the
model to predict that most individuals in the new tribe have brown skin, but many
more observations are needed before the model concludes that most tribe members
are obese.

tribes are brown and the other half are white, but all of the individuals in a given

tribe have the same skin color. Given these data, the posterior distribution on α

indicates that skin color tends to be homogenous within tribes (i.e. α is probably

small) (Figure 4-3b). Learning that α is small allows the model to make strong

predictions about a sparsely observed new tribe: having observed a single, brown-

skinned member of a new tribe, the posterior distribution on θnew indicates that

most members of the tribe are likely to be brown (Figures 4-3b and 4-4). Note

that the posterior distribution on θnew is almost as sharply peaked as the posterior

distribution on θ11: the model has realized that observing one member of a new tribe

is almost as informative as observing 20 members of that tribe.

Suppose now that obesity is a feature that varies within tribes: a quarter of the

20 tribes observed have an obesity rate of 10%, and the remaining quarters have rates

of 20%, 30%, and 40%. Obesity is represented as a second binary feature, and the

posterior distributions on α and β (Figure 4-3c) indicate that obesity varies within

tribes (α is high), and that the base rate of obesity is around 25% (β1 is around
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Figure 4-5: Generalizations of a conventional Bayesian model that learns only at
the level of θ (α and β are fixed). The model does not generalize correctly to new,
sparsely observed bags: since α and β are fixed, observing 20 previous bags provides
no information about a new bag, and the posterior distributions on θ new

1 are identical
in cases (b) and (c).

0.25). Again, we can use these posterior distributions to make predictions about a

new tribe, and now the model requires many observations before it concludes that

most members of the new tribe are obese (Figure 4-4). Unlike the case in Figure 4-3b,

the model has learned that a single observation of a new tribe is not very informative,

and the distribution on θnew is now similar to the average of the θ distributions for

all previously observed tribes.

Accurate predictions about a new tribe depend critically on learning at both level 2

and level 3 (Figure 4-1a). Learning at level 2 is needed to incorporate the observation

that the new tribe has at least one obese, brown-skinned member. Learning at level 3

is needed to discover that skin color is homogeneous within tribes but that obesity is

not, and to discover the average rate of obesity across many tribes. Figure 4-5 shows

inferences drawn by an alternative model that is unable to learn at level 3—instead,

we fix α and β to their expected values under the prior distributions used by our

model. Since it cannot adjust the α and β variables, this alternative model cannot

incorporate any information about the 20 previous tribes when reasoning about a new

tribe. As a result, it makes identical inferences about skin color and obesity—note
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that the distribution on θnew is the same in Figures 4-5b and 4-5c. Note also that

the mean of this distribution (0.75) is lower than the mean of the distribution in

Figure 4-3b (0.99)—both models predict that most members of the new tribe have

brown skin, but our model alone accounts for the human judgment that almost all

members of the new tribe have brown skin (Figure 4-4).

Learning the shape bias

The Barratos task does not address an important class of inferences made by human

learners: inferences about new feature values along known dimensions. Based on the

data in Figure 4-1a, a learner could acquire at least two different constraints: the first

states that the marbles in each bag are uniform along the dimension of color, and the

second states that the marbles in each bag are either all white or all black. One way

to distinguish between these possibilities is to draw a single green marble from the

new bag. A learner with the first constraint will predict that all marbles in the new

bag are green, but a learner with the second constraint will be lost.

There are many real-world problems that involve inferences about novel features.

Children know, for example, that animals of the same species tend to make the same

sound. Observing one horse neigh is enough to conclude that most horses neigh,

even though a child may never have heard an animal neigh before (Shipley, 1993).

Similarly, by the age of 24 months children show a shape bias: they know that shape

tends to be homogeneous within object categories. Given a single exemplar of a novel

object category, children extend the category label to similarly-shaped objects ahead

of objects that share the same texture or color as the exemplar (Heibeck & Markman,

1987; Landau et al., 1988).

The model in Figure 4-1a deals naturally with inferences like these, and I il-

lustrate using stimuli inspired by the work of Smith et al. (2002). In their first

experiment, these authors trained 17-month olds on two exemplars from each of four

novel categories. Novel names (e.g. “zup”) were provided for each category, and

the experimenter used phrases like “this is a zup—let’s put the zups in the wagon.”
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Category 1 1 2 2 3 3 4 4
Shape 1 1 2 2 3 3 4 4
Texture 1 2 3 4 5 6 7 8
Color 1 2 3 4 5 6 7 8
Size 1 2 1 2 1 2 1 2
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Figure 4-6: Learning the shape bias. (a) Training data based on Smith et al. (2002).
Each column represents an object: for instance, the first two columns represent two
“zups.” There are 10 possible shapes, textures and colors, and 2 possible sizes. (b)
First-order generalization was tested by presenting the model with exemplar T1, and
asking it to choose which of three objects (a shape match, a texture match and a
color match) was most likely to belong to the same category as T1. (c) Second-order
generalization was tested using T2, an exemplar of a category that was not seen during
training. (d) Model predictions for both generalization tasks. Each bar represents
the probability that a choice object belongs to the same category as the test exemplar
(probabilities have been normalized so that they sum to one across each set of choice
objects). The model makes exact predictions about these probabilities: we computed
30 estimates of these predictions, and the error bars represent the standard error of
the mean.
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Within each category, the two exemplars had the same shape but differed in size,

texture and color (Figure 4-6a). After eight weeks of training, the authors tested

first-order generalization by presenting T1, an exemplar from one of the training cat-

egories, and asking children to choose another object from the same category as T1.

Three choice objects were provided, each of which matched T1 in exactly one feature

(shape, texture or color) (Figure 4-6b). Children preferred the shape match, showing

that they were sensitive to feature distributions within a known category. Smith et

al. (2002) also tested second-order generalization by presenting children with T2, an

exemplar from a novel category (Figure 4-6c). Again, children preferred the shape

match, revealing knowledge that shape in general is a reliable indicator of category

membership. Note that this result depends critically on the training summarized by

Figure 4-6a: 19-month olds do not normally reveal a shape bias on tests of second-

order generalization.

We supplied the model with counts yi computed from the feature vectors in Fig-

ure 4-6a. For example, y1 indicates that the data for category 1 include two observa-

tions of shape value 1, one observation of texture value 1, one observation of texture

value 2, and so on. The key modeling step is to allow for more values along each

dimension than appear in the training set. This policy allows the model to handle

shapes, colors and textures it has never seen during training, but assumes that the

model is able to recognize a novel shape as a kind of shape, a novel color as a kind of

color, and so on. We allowed for ten shapes, ten colors, ten textures and two sizes:

for example, the shape component of y1 indicates that the observed exemplars of

category 1 include two objects with shape value 1 and no objects with shape values

2 through 10.

Figure 4-6d shows the patterns of generalization predicted by the model. Smith

et al. (2002) report that the shape match was chosen 88% (66%) of the time in

the test of first-order generalization, and 70% (65%) of the time in the second-order

task (percentages in parentheses represent results when the task was replicated as

part of Experiment 2). The model reproduces this general pattern: shape matches

are preferred in both cases, and are preferred slightly more strongly in the test of
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first-order generalization.

Smith et al. (2002) also measured real-world generalization by tracking vocabulary

growth over an eight week period. They report that experience with the eight exem-

plars in Figure 4-6a led to a significant increase in the number of object names used

by children. The Dirichlet-multinomial model helps to explain this striking result.

Even though the training set includes only four categories, the results in Figure 4-6b

show that it contains enough statistical information to establish or reinforce the shape

bias, which can then support word learning in the real world. Similarly, the model

explains why providing only two exemplars per category is sufficient. In fact, if the

total number of exemplars is fixed, the model predicts that the best way to teach the

shape bias is to provide just two exemplars per category. I illustrate by returning to

the marbles scenario.

Each point in Figure 4-7a represents a simulation where 64 observations of marbles

are evenly distributed over some number of bags. The marbles drawn from any given

bag are uniform in color—black for half of the bags and white for the others. When 32

observations are provided for each of two bags (Figure 4-7b.i), the model is relatively

certain about the color distributions of those bags, but cannot draw strong conclusions

about the homogeneity of bags in general. When two observations are provided for

each of 32 bags, (Figure 4-7b.ii), the evidence about the composition of any single bag

is weaker, but taken together, these observations provide strong support for the idea

that α is low and most bags are homogeneous. When just one observation is provided

for each of 64 bags, the model has no information about color variability within bags,

and the posterior distribution on α is identical to the prior on this variable, which

has a mean value of 1. If the total number of observations is fixed, Figure 4-7a

suggests that the best way to teach a learner that bags are homogeneous in general

is to provide two observations for as many bags as possible. The U-shaped curve in

Figure 4-7a is a novel prediction of the model, and could be tested in developmental

experiments.

Although the Dirichlet-multinomial model provides some insight into the findings

of Smith et al. (2002), it does not account for all of their results. Their second
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Figure 4-7: (a) Mean α values after observing 32 white marbles and 32 black marbles
divided evenly across some number of homogenous bags. The model is most confident
that bags in general are homogeneous (i.e. α is low) when given 2 samples from each
of 32 bags. (b) Three possible outcomes when learning occurs simultaneously at level
2 and level 3. (i) After observing 2 homogeneous bags, the model is more certain
about the variables at level 2 than the variables at level 3. (ii) After observing pairs
of marbles from 32 homogeneous bags, the model is fairly certain about levels 2 and
3. (iii) After observing pairs of marbles from 32 bags (5 white pairs, 22 mixed pairs,
and 5 black pairs), the model is more certain about level 3 than level 2.
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experiment includes a no-name condition where children received the same training

as before (Figure 4-6a) except that category labels were not provided. Instead of

naming the training objects, the experimenter used phrases like “here is one, here is

another—let’s put them both in the wagon.” Children in this condition showed first-

order but not second-order generalization, which supports the view that the shape

bias reflects attention to shape in the context of naming (Smith, Jones, & Landau,

1996). An alternative view is that the shape bias is not specifically linguistic: shape is

important not because it is linked to naming in particular, but because it is a reliable

cue to category membership (Ward, Becker, Hass, & Vela, 1991; Bloom, 2000). The

Dirichlet-multinomial model is consistent with this second view, and predicts that

learning in the no-name condition should not have been impaired provided that chil-

dren clearly understood which training objects belonged to the same category. This

discrepancy between model predictions and empirical results calls for further work on

both sides. On the modeling side, it is important to develop hierarchical models that

allow an explicit and privileged role for linguistic information. On the empirical side,

it seems possible that children in the no-name condition did not achieve second-order

generalization because they did not realize that each pair of identically-shaped ob-

jects was supposed to represent a coherent category.1 Observing associations between

similarly-shaped objects may have led them only to conclude that shape was a salient

feature of each of these objects, which would have been enough for them to pass the

test of first-order generalization.

Learning constraints fast

As mentioned in Chapter 1, there are empirical and theoretical reasons to believe that

many inductive constraints are available relatively early in development. Any attempt

to argue that these constraints might be learned must therefore explain how they can

1For those who support an essentialist view of categories (D. Medin & Ortony, 1989; Bloom, 2000),
the issue at stake is whether the identically-shaped objects were believed to have the same essence.
A shared name is one indication that two objects have the same essence, but other indications are
possible—for example, children might be told “Here’s one and here’s another. Look, they are both
the same kind of thing. I wonder what they’re called.”
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be learned very rapidly. Our analysis of the task in Smith et al. (2002) suggests

one potential explanation: constraints may be available early because they can be

extracted from very small amounts of training data. We saw, for instance, that two

exemplars from each of four categories are enough to allow the Dirichlet-multinomial

model to discover a version of the shape bias. The hierarchical Bayesian approach

suggests a second explanation that may apply in some cases. When learning occurs

simultaneously at multiple levels of abstraction, “abstract-to-concrete” trajectories

can emerge: in other words, the representations at the upper levels can be acquired

before the representations at the lower levels are firmly in place. Abstract-to-concrete

learning may help to explain how children acquire inductive constraints early enough

to guide subsequent learning at lower levels.

The Dirichlet-multinomial model (Figure 4-1) can be used to demonstrate the

basic notion of abstract-to-concrete learning. At least three outcomes are possible

when learning proceeds in parallel at levels 2 and 3. Figure 4-7b.i shows a case

where the learner is more confident about concrete knowledge (level 2) than abstract

knowledge (level 3): note that the distributions for the two individual bags (θ1 and θ2)

are more tightly peaked than the distributions on α and β, which capture knowledge

about bags in general. Figure 4-7b.ii is a case where the learner is relatively confident

about the values of the variables at both levels. Figure 4-7b.iii is a case where the

learner is more confident about abstract knowledge (level 3) than concrete knowledge

(level 2). In this case, two observations are provided for each of 32 bags: 22 of the

observed pairs are mixed, and there are 5 white pairs and 5 black pairs. The model

is now relatively uncertain about the color distribution of any individual bag, but

relatively certain about the values of α and β.

The diagrams in Figure 4-7b show static snapshots of a learner’s state of knowl-

edge. Figure 4-8 shows developmental trajectories where the second state in Figure 4-

8a corresponds to Figure 4-7b.i, and the second state in Figure 4-8b corresponds to

Figure 4-7b.iii. In Figure 4-8a, the inductive constraint (level 3) is acquired after

some of the category means (level 2) are learned with high confidence. This tra-

jectory matches the common intuition that constraints are acquired by abstracting
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over more concrete forms of knowledge. For instance, Smith et al. (2002) describe a

four-step account of word-learning where learners acquire the shape bias by realizing

that many of the categories they have already learned are organized by shape. In

Figure 4-8b, the inductive constraint is acquired before any single category mean is

securely known. Note that both trajectories in Figure 4-8 suggest that the inductive

constraint supports top-down inferences about novel categories once it has been ac-

quired. The crucial difference between the two is whether some variables at level 2

must be securely known before learning can take place at level 3.

Both trajectories in Figure 4-8 are consistent with a hierarchical Bayesian ap-

proach, and the trajectory that emerges in any particular situation will depend on

the task and the available data. It may turn out that the four-step account of Smith

et al. (2002) is accurate, and that Figure 4-8a provides the best description of the

emergence of the shape bias. Figure 4-8b, however, may apply to situations where

a child has access to a large number of sparse or noisy observations—any individ-

ual observation may be difficult to interpret, but taken together they may provide

strong support for a general conclusion. For example, a hierarchical Bayesian model

of grammar induction may be able to explain how a child becomes confident about

some property of a grammar even though most of the individual sentences that sup-

port this conclusion are poorly understood. Similarly, a hierarchical approach may

explain how a child can learn that visual objects are cohesive, bounded and rigid

(E. S. Spelke, 1990) before developing a detailed understanding of the appearance

and motion of any individual object.

Discovering ontological kinds

The Dirichlet-multinomial model in Figure 4-1a is a simple hierarchical model that

acquires something like the shape bias, but to match the capacities of a child it

is necessary to apply the shape bias selectively—to object categories, for example,

but not to substance categories. Selective application of the shape bias appears

to demand knowledge that categories are grouped into ontological kinds and that
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Figure 4-8: Two developmental trajectories that can emerge from a hierarchical
Bayesian approach. In each trajectory, a learner acquires an inductive constraint
(e.g. the shape bias) after receiving data at level 1 of the model (information about
the features of several categories). The learner starts out by observing exemplars from
the first three categories (the first three category means are drawn in red), and later
observes exemplars from five additional categories. Filled circles indicate cases where
the learner is near-certain about the value of a category mean or confident that she
has discovered the inductive constraint. (a) The inductive constraint is discovered
after the learner is near-certain about some of the category means (cf. Figure 4-7b.i).
(b) The inductive constraint is discovered before the learner is confident about the
values of any of the category means (cf. Figure 4-7b.iii). Both trajectories indicate
that the inductive constraint supports inferences about novel categories once it has
been acquired.
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there are different patterns of feature variability within each kind. Before the age

of three, for instance, children appear to know that shape tends to be homogeneous

within object categories but heterogeneous within substance categories (Soja, Carey,

& Spelke, 1991; Imai, Gentner, & Uchida, 1994; Samuelson & Smith, 1999), that

color tends to be homogeneous within substance categories but heterogeneous within

object categories (Landau et al., 1988; Soja et al., 1991), and that both shape and

texture tend to be homogeneous within animate categories (S. S. Jones, Smith, &

Landau, 1991).

Figure 4-1b shows a hierarchical model with two ontological kinds. The model

includes trees for each kind: the first three categories are grouped into one kind, and

the remaining three categories are grouped into a second kind. There are separate

parameters αk and βk for each ontological kind k, and these parameters capture the

features and the patterns of feature variability that are characteristic of each kind.

For instance, α1 will indicate that categories of the first kind are homogeneous in

shape but not in material, and α2 will indicate that categories of the second kind

are homogeneous in material but not shape. The parameter β1 will indicate that

members of the first kind tend to be solid, and β2 will indicate that members of the

second kind tend not to be solid.

We can develop a model that learns for itself how to partition a set of categories

into ontological kinds. Formally, let each possible partition be represented by a vector

z. The partition in 4-1b has z = [1, 1, 1, 2, 2, 2] which indicates that the first three

categories belong to one ontological kind, and the remaining three belong to a second

kind. As before, we assume that feature counts y are observed for one or more

categories. Given these observations, the best set of ontological kinds will correspond

to the z which maximizes P (z|y). This posterior distribution can be written as a

product of two terms:

P (z|y) ∝ P (y|z)P (z).

The first term will be high when z accounts well for the data: in other words, when

categories belonging to the same kind tend to have similar features and similar pat-
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terns of feature variability. The second term captures prior knowledge about the

partition of categories into ontological kinds. We use a prior P (z) that assigns some

probability to all possible partitions, but favors the simpler partitions—those that

use a small number of kinds. Many different priors satisfy this criterion, and we use

a prior induced by the Chinese Restaurant Process (CRP, Aldous, 1985):

p(zi = a|z1, . . . , zi−1) =







na

i−1+γ
na > 0

γ

i−1+γ
a is a new kind

(4.1)

where zi is the kind assignment for category i, na is the number of categories previously

assigned to kind a, and γ is a hyperparameter (we set γ = 0.5). This process prefers

to assign new categories to kinds which already have many members, and therefore

favors partitions that use a small number of kinds.

Using statistical notation, the entire model in Figure 4-1b can be written as fol-

lows:

z ∼ CRP(γ)

αk ∼ Exponential(λ)

βk ∼ Dirichlet(1)

θi ∼ Dirichlet(αziβzi)

yi |ni ∼ Multinomial(θi)

where most components of the model are carried over from our formalization of Fig-

ure 4-1a.

When fitting the model to data (y), our goal is to simultaneously infer the partition

of categories into kinds, along with the αk and βk for each kind k and the feature

distribution θi for each category. If z were already known, the model would reduce

to several independent copies of the model in Figure 4-1a, and model predictions

(including p(θi|z,y)) could be computed using the techniques already described.
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Since z is unknown, we integrate over this quantity:

p(θi|y) =
∑

z

p(θi|z,y)P (z|y). (4.2)

Since we are interested in problems where the number of categories is small, we

compute this sum by enumerating all possible partitions.2

S. S. Jones and Smith (2002) showed that training young children on a handful of

suitably structured categories can promote the acquisition of ontological knowledge.

We gave our model a data set of comparable size. During training, the model saw

two exemplars from each of four categories: two object categories and two substance

categories (Figure 4-9a). Exemplars of each object category were solid, matched

in shape, and differed in material and size. Exemplars of each substance category

were non-solid, matched in material, and differed in shape and size. Second-order

generalization was tested using exemplars from novel categories—one test exemplar

(S) was solid and the other (N) was not (Figure 4-9b). Figure 4-9c shows that the

model chooses a shape match for the solid exemplar and a material match for the

non-solid exemplar.

Figure 4-9d confirms that the model correctly groups the stimuli into two onto-

logical kinds: object categories and substance categories. This discovery is based on

the characteristic features of ontological kinds (β) as well as the patterns of feature

variability within each kind (α). If kind k includes only the object categories, then

αk will indicate that shape is homogeneous within categories of this kind, and βk

will indicate that categories of this kind tend to be solid. The β parameter, then, is

responsible for the inference that the category including S should be grouped with

the two object categories, since all three categories contain solid objects.

2To compute the sum in Equation 4.2 we use P (z|y) ∝ P (y|z)P (z), where P (z) is the CRP
prior on z. Computing P (y|z) reduces to the problem of computing several marginal likelihoods

P (y′) =

∫

α,β

P (y′|α,β)p(α,β)dαdβ

for the model in Figure 4-1a. We estimate each of these integrals by drawing 10,000 samples from
the prior p(α,β).

81



0.4

0.45

0.5

0.55

0.6

shape
match

material
match

S

5 ? ?
7 7 8
7 8 7
1 1 1
1 1 1

Category 1 1 2 2 3 3 4 4
Shape 1 1 2 2 3 4 5 6
Material 1 2 3 4 5 5 6 6
Solidity 1 1 1 1 2 2 2 2
Size 1 2 1 2 1 2 1 2

N

6 ? ?
8 8 9
8 9 8
2 2 2
1 1 1

0.4

0.6

0.8

1

Second-order
generalization

Choice object

Probability of 
mutual kind
membership

solid non-solid

(c)

(d)

Training(a) (b)

Probability (normalized)
that choice object
belongs to the same
category as the test
exemplar

ca
te

go
ry

4

3

2

1

1 64352

category

S

N

Figure 4-9: Learning a shape bias for solids and a material bias for non-solids. (a)
Training data. (b) Second-order generalization was tested using solid and non-solid
exemplars (S, N). In each case, two choice objects were provided — a shape match
and a material match. (c) The model chooses the shape match given the solid exem-
plar and the material match given the non-solid exemplar. The model makes exact
predictions about the probabilities plotted, and the error bars represent standard
error across 8 estimates of these probabilities. (d) The model groups the categories
into two kinds: objects (categories 1, 2 and 5) and substances (categories 3, 4 and 6).
Entry (i, j) in the matrix is the posterior probability that categories i and j belong
to the same ontological kind (light colors indicate high probabilities).
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The results in Figure 4-9 predict that a training regime with a small number of

categories and exemplars should allow children to simultaneously acquire a shape

bias for solids and a material bias for substances. Samuelson (2002) ran a related

study where she attempted to teach one group of children a precocious shape bias

and another a precocious material bias. Only the shape bias was learned, suggesting

that the shape bias is easier to teach than the material bias, but leaving open the

possibility that the material bias could have been acquired with more training. Si-

multaneously teaching a shape bias for solids and a material bias for substances may

raise some difficult practical challenges, but S. S. Jones and Smith (2002) have shown

that children can simultaneously learn two kind-specific biases. By the end of their

training study, children had learned that names for animate exemplars (exemplars

with eyes) should be generalized according to shape and texture, and that names

for objects (exemplars without eyes) should be generalized only according to shape.

The model in Figure 4-1b accounts for these results: given the data provided to the

children in these experiments, it discovers that there are two ontological kinds, and

makes selective generalizations depending on whether or not a novel exemplar has

eyes.

Related models

The models described in this chapter address tasks that have been previously modeled

by Colunga and Smith (2005). These authors developed a connectionist network that

acquires a shape bias for solid objects and a material bias for non-solid objects. The

network uses a set of hidden nodes to capture high-order correlations between nodes

representing the shape, material, and solidity of a collection of training objects, and

generates results similar to Figure 4-9c when asked to make predictions about novel

objects. The Dirichlet-multinomial model is similar to this connectionist model in

several respects: both models show that abstract knowledge can be acquired, and

both models are statistical, which allows them to deal with noise and uncertainty

and to make graded generalizations. These models, however, differ in at least two
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important respects.

First, the two models aim to provide different kinds of explanations. Our contri-

bution is entirely at the level of computational theory (Marr, 1982), and I have not at-

tempted to specify the psychological mechanisms by which the Dirichlet-multinomial

model might be implemented. Colunga and Smith (2005) describe a process model

that uses a biologically-inspired learning algorithm, but provide no formal description

of the problem to be solved. Their network can probably be viewed as an approx-

imate implementation of some computational theory,3 but the underlying computa-

tional theory may not be ideal for the problem of word learning. For instance, it

is not clear that the network adequately captures the notion of a category. In tests

of second-order generalization (e.g. Figure 4-9c), the Dirichlet-multinomial model is

able to compute the probability that a choice object belongs to the same category as

the test exemplar. Colunga and Smith (2005) compute model predictions by compar-

ing the similarity between hidden-layer activations for the choice object and the test

exemplar. Objects in the same category may often turn out to have similar repre-

sentations, but there are some well-known cases where similarity and categorization

diverge (Keil, 1989; Rips, 1989).

A second limitation of the connectionist approach is that it does not extend nat-

urally to contexts where structured representations are required. So far we have

seen models that generate scalars (α) and vectors (β,θ,y), but hierarchical prob-

abilistic models can generate many other kinds of representations, including causal

models (Chapter 5), graph structures (Chapter 6), ontologies (Schmidt, Kemp, &

Tenenbaum, 2006), parse trees (Perfors, Tenenbaum, & Regier, 2006), and logical

theories (Milch et al., 2005).

Previous researchers have developed Bayesian models of categorization (Anderson,

1991) and word learning (Tenenbaum & Xu, 2000), and our work continues in this

tradition. The hierarchical approach, however, attempts to address a problem raised

by most Bayesian models of cognition. A conventional Bayesian model matches the

3The network used by Colunga and Smith (2005) is related to a Boltzmann machine (Ackley,
Hinton, & Sejnowski, 1985), which is an exact implementation of a known computational theory.
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schema in Figure 2-3a: the elements in its hypothesis space represent level 2 knowl-

edge, and the prior distribution over this space belongs to the collection of background

assumptions. One common reservation about Bayesian models is that different priors

account for different patterns of data, and the success of any given Bayesian model

depends critically on the modeler’s ability to choose the right prior. Hierarchical

models disarm this objection by showing that the prior distribution over level 2 need

not be specified in advance, but can be learned from raw data.

Hierarchical Bayesian models still rely on some background assumptions, includ-

ing a prior distribution over the representations at the highest level. The ultimate

goal, however, is to design models where this prior is simple enough to be unob-

jectionable. The Dirichlet-multinomial model demonstrates that hierarchical models

can sometimes rely on much simpler priors than conventional Bayesian models. If

we were only interested in inferences about level 2 knowledge (inferences about the

θi for each bag i), α and β (Figure 4-1a) would not be essential: in other words,

a conventional Bayesian model could mimic the predictions of our model if it used

the right prior distribution on the set {θi}. If specified directly, however, this prior

would look extremely complicated—much more complicated, for example, than the

prior used by the conventional model in Figure 4-5, which assumes that all of the

θi are independent. We avoided this problem by specifying the prior on {θi} indi-

rectly. We introduced an extra layer of abstraction—the layer including α and β—and

placed simple priors on these variables. These simple distributions on α and β induce

a complicated prior distribution on {θi}—the same distribution that a conventional

Bayesian model would have to specify directly.

Conclusion

This chapter presented our first fully-specified example of a hierarchical Bayesian

model (Figure 4-1a). The model is one of the simplest possible hierarchical models,

and provides a gentle introduction to the hierarchical Bayesian approach. Despite its

simplicity, the model addresses a problem of cognitive interest, and helps to explain
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how people learn simultaneously about the features of individual categories and about

categories in general. Word learners who acquire the shape bias appear to solve an

instance of this problem, and the model helps to account for word-learning data

collected by Smith et al. (2002).

The Dirichlet-multinomial model addresses several psychological phenomena that

we have not explored, but which may repay additional study. When shown a circle

with a diameter of three inches, participants report that the circle is more likely to be

a pizza than a quarter, even though the circle is closer in size to the average quarter

than the average pizza (Rips, 1989). The model suggests that this decision is driven by

knowledge about the variability of the size feature and predicts that people also know

that exemplars of any given currency are usually the same size, but that exemplars of

any given food tend to vary in size. This prediction could be tested using novel foods

and currencies: for instance, a coin and a circular food from a novel country. The

model also accounts for some of Harlow’s experiments on “learning to learn” (Harlow,

1949). Harlow gave monkeys a blocked forced-choice decision task, where the same

object was rewarded within each block regardless of whether it appeared on the left

or the right. After many blocks, Harlow found that his monkeys were almost always

choosing correctly after the second trial in each block. They had evidently learned

that the rewarded objects in each block were homogeneous in shape and color, but

heterogeneous in position.

There are many proposals about constraints that guide word learning, and it will

be important to develop models that acquire constraints other than the shape bias.

Future models can also explore how inferences about novel words differ from infer-

ences about novel properties. It should be possible to develop a single model that

acquires one set of constraints when learning about the extensions of words, and a

different set of constraints when learning about the extensions of properties. Sup-

pose, for instance, that a given set of objects can be organized into two cross-cutting

systems of categories: a taxonomic system and a thematic system (cf. Shafto, Kemp,

Mansinghka, Gordon, and Tenenbaum (2006)). A constraint-learning model might

discover that words tend to pick out the taxonomic categories (a constraint known
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as the taxonomic bias (Markman, 1989)), and that different words are likely to have

different extensions (a constraint known as the principle of contrast (Clark, 1987)).

The same model might discover that properties are subject to different constraints:

properties that respect the thematic categories may be fairly common, and there are

might be many cases where different properties (e.g. “renate” and “chordate”) have

the same extension. As this example suggests, a successful constraint-learning model

should be able to discover how words are different from properties, and should also

serve as a model of property induction.

The most intriguing suggestion to emerge from this chapter is the idea that in-

ductive constraints can be learned relatively fast (Figure 4-8). Constraints that are

present early in development are sometimes thought to be innate, but some of these

constraints might be learned extremely rapidly. Hierarchical Bayesian models predict

that some constraints can be learned given very small amounts of data, and that

some constraints can emerge before more concrete kinds of knowledge are securely

established. Exploring how well these ideas account for developmental data is an

important direction for future work.

87



88



Chapter 5

Learning causal schemata

People often make confident causal inferences given very sparse data. Imagine, for

instance, that you are travelling in the tropics, and on your very first morning you

take an anti-malarial pill and wash it down with guava juice. Soon afterward you

develop a headache and wonder what might have caused it. Suppose that you have

very little direct information about the two potential causes—you have never before

tasted guava juice or taken anti-malarial pills. Even so, you will probably correctly

attribute your headache to the pill rather than the juice.

Accurate inferences from sparse data are often a sign that learners are relying on

strong inductive constraints. In this case, your decision to blame the anti-malarial

pill is probably constrained by knowledge about the causal powers of pills and juices.

Even if you have never come across anti-malarial pills or guava juice, you probably

believe that pills tend to cause headaches but that juices do not. Abstract causal

beliefs of this sort are sometimes called causal schemata (Kelley, 1972) or intuitive

theories.

This chapter describes a hierarchical Bayesian model that helps to explain how

causal schemata are acquired. Part of our task is to formalize the notion of a causal

schema. Suppose that we are interested in a set of objects—for example, a set of pills.

The work in this chapter was carried out in collaboration with Noah Goodman and Joshua

Tenenbaum. An early version of this work was presented at the 29th Annual Conference of the

Cognitive Science Society in 2007.
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We will work with schemata that assign each object to a causal type, and that specify

the causal powers and features of each type. Our pills, for instance, may represent

four causal types—pills of type A cause headaches, pills of type B relieve headaches,

and pills of types C and D neither cause nor relieve headaches. A causal schema may

also specify how causal types interact. For instance, a C-pill and a D-pill may cause

a headache when taken together, even though neither pill causes a headache on its

own.

The work described in this chapter extends previous work on learning a causal

model that captures the relationship between a single object (e.g. a pill) and an effect

(e.g. a headache) (Figure 5-1a). Causal models for several objects can be learned in-

dependently, but this approach ignores any information that should be shared across

objects: for instance, two blood-pressure medications are likely to have similar side

effects, suggesting that a new blood-pressure medication will cause headaches if sev-

eral others already have. To capture the idea that similar objects may have similar

causal powers, we will work with causal schemata that organize a set of objects into

causal types. (Figure 5-1b). This chapter shows how these schemata can be acquired

in settings where learners must learn a schema at the same time as they are learning

causal models for many different objects.

By tracking the characteristic features of causal types, learners can often make

strong predictions about a novel object before it is observed to participate in any

causal interactions. For instance, predictions about a pill with a given color, size,

shape and imprint can be based on the effects produced by previous pills which shared

these features. We will extend the notion of a causal schema by including information

about the characteristic features of each causal type (Figure 5-1c). Although we

begin with cases where at most one object is present at any time, the chapter ends by

discussing cases where multiple objects may be present. We will extend the notion of

a schema one more time by allowing interactions between different types (for instance,

pills of type C may interfere with pills of type D), and will see how these characteristic

interactions can be learned.

Although this thesis focuses on bottom-up learning of inductive constraints, hier-
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archical Bayesian models are valuable in part because they support both top-down

and bottom-up inferences (Griffiths, 2005). Top-down and bottom-up approaches

are sometimes seen as competitors, and causal reasoning is one area where both ap-

proaches have been prominent. The top-down approach (Shultz, 1982; Bullock, Gel-

man, & Baillargeon, 1982) emphasizes inferences that are based on knowledge about

causal powers, and the bottom-up approach emphasizes statistical inferences that are

based on patterns of covariation. As P. W. Cheng (1993) and others have argued,

these perspectives are best regarded as complementary: top-down knowledge about

causal power plays a role in many inferences, and bottom-up statistical learning helps

to explain how this knowledge is acquired. The apparent conflict between these per-

spectives may have developed in part because there is no well-established framework

that accommodates them both. Kelley, for example, argued for both top-down (Kel-

ley, 1972) and bottom-up approaches (Kelley, 1973) to causal reasoning, but did not

develop a single theoretical framework that properly unified his two proposals. This

chapter argues that a hierarchical Bayesian approach provides this missing theoretical

framework, and the model I describe shows how top-down constraints support causal

reasoning, and how these constraints can be acquired by statistical learning.

Learning about a single object

Although we will eventually consider inferences about multiple objects, suppose for

now that we are interested in the relationship between a single object o and an effect

e. Let V represent a set of trials where object o is present or absent on each trial,

and effect e is or is not observed. For instance, if object o is a pill and effect e is a

headache, each trial in V might indicate whether or not a patient takes a pill on a

given day, and whether or not she subsequently experiences a headache. To simplify

our notation, o will denote both the pill and the event of the patient swallowing the

pill.

We will assume that the outcome of each trial is generated from a causal model M

that captures the causal relationship between o and e (Figure 5-3). Having observed
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Figure 5-1: (a) A generative framework for discovering the causal powers of a single
object. (b) A generative framework for learning a schema that guides inferences about
multiple objects. The schema organizes the objects into causal types, and specifies
the causal powers of each type. (c) A generative framework for learning a schema
that includes information about the characteristic features of each type. Concrete
examples of each framework are shown in Figures 5-3a, 5-4, and 5-14.

the trials in V , our beliefs about the causal model can be summarized by the posterior

distribution

P (M |V ) ∝ P (V |M)P (M). (5.1)

We build on the approach of Griffiths and Tenenbaum (2005) and parameterize the

causal model M using four causal variables (Figures 5-2 and 5-3). Let a indicate

whether there is an arrow joining o and e, and let g indicate the polarity of this causal

relationship (g = 1 if o is a generative cause and g = 0 if o is a preventive cause).

Suppose that s is the strength of the relationship between o and e.1 To capture the

possibility that e will be present even though o is absent, we assume that a generative

background cause of strength b is always present. We specify the distribution P (e|o)

by assuming that generative and preventive causes combine according to a network

of noisy-OR and noisy-AND-NOT gates (Glymour, 2001).

Now that we have parameterized model M in terms of the triple (a, g, s) and the

background strength b, we can rewrite Equation 5.1 as

p(a, g, s, b|V ) ∝ P (V |a, g, s, b)P (a)P (g)p(s)p(b). (5.2)

To complete the model we must place prior distributions on the four causal variables.

We use uniform priors on the two binary variables (a and g), and assume that s is

1To simplify the later development of our model, we assume that g and s are defined even if a = 0
and there is no causal relationship between o and e. When a = 0, g and s can be interpreted as the
polarity and strength that the causal relationship between o and e would have if this relationship
actually existed.
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Figure 5-2: Causal graphical models which capture three possible relationships be-
tween an object o and an effect e. a indicates whether there is a causal relationship
between o and e, g indicates whether this relationship is generative or preventive,
and s indicates the strength of this relationship. A generative background cause of
strength b is always present.
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Figure 5-3: (a) Learning a causal model M from event data V (see Figure 5-1a). The
event data specify the number of times the effect was (e+) and was not (e−) observed
when o was absent (∅) and when o was present. The model M shown has a = 1,
g = 1, s = 0.9 and b = 0.2, and is a compact representation of the graphical model
in (b).

drawn from a logistic normal distribution:

logit(s) ∼ N (s̄, σ̄2)

s̄ ∼ N (η, τ σ̄2) (5.3)

σ̄2 ∼ Inv-gamma(α, β)

The priors on s̄ and σ̄2 are chosen to be conjugate to the Gaussian distribution on

logit(s), and we set α = 2, β = 0.3, η = 1 and τ = 10. The background strength b is

drawn from the same distribution as s, and all hyperparameters are set to the same

values except for η which is set to -1. Setting η to these different values encourages b

to be small and s to be large, which matches standard expectations about the likely

values of these variables.

To discover the causal model M that best accounts for the events in V , we can

search for the causal variables with maximum posterior probability according to Equa-
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ā, ḡ, s̄ :

z :

e

o2

e

o3

e

o6

e

o5

e

o4

e

o1

a, g, s :

b : +0.2

∅ o2o1 o4 o5o3 o6

e+ :
e− :

Schema

−0.75

8

20

80

4 6 5

96 94 95

92 95 90

105

∅

e

Figure 5-4: Learning a schema and a set of causal models (see Figure 5-1b). z specifies
a set of causal types, where objects belonging to the same type have similar causal
powers, and ā, ḡ, and s̄ specify the causal powers of each type. Note that the schema
supports inferences about an object (o7) that is very sparsely observed.

tion 5.2. There are many empirical studies that explore human inferences about a

single potential cause and a single effect, and Griffiths and Tenenbaum (2005) show

that a Bayesian approach similar to ours can account for many of these inferences.

Here, however, we turn to the less-studied case where people must learn about many

objects, each of which may be causally related to the effect of interest.

Learning about multiple objects

Suppose that we are interested in a set of objects {oi} and a single effect e. We

begin with the case where at most one object is present at any time: for example,

suppose that our patient has prescriptions for many different pills, but takes at most

one pill per day. Instead of learning a single causal model our goal is to learn a set

{Mi} of causal models, one for each pill (Figures 5-1b and 5-4). There is now a triple

(ai, gi, si) describing the causal model for each pill oi, and we collect these variables

into three vectors, a, g and s. Let Ψ be the tuple (a, g, s, b) which includes all the

parameters of the causal models. As for the single object case, we assume that a

generative background cause of strength b is always present.

One strategy for learning multiple causal models is to learn each model separately

using the methods described in the previous section. Although simple, this strategy
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does not capture the intuition that inferences about sparsely observed objects should

be shaped by experience with previous objects. We can allow knowledge about famil-

iar objects to influence predictions about novel objects by introducing the notion of

a causal schema. A schema specifies a grouping of the objects into causal types, and

indicates the causal powers of each of these types. The schema in Figure 5-4 indicates

that there are two causal types: objects of type t1 tend to prevent the effect, and

objects of type t2 tend to cause the effect. Formally, let zi indicate the type of oi, and

let ā, ḡ, and s̄ be schema-level analogues of a, g, and s: ā(t) is the probability that

any given object of type t will be causally related to the effect, and ḡ(t) and s̄(t) are

the expected polarity and causal strength for objects of type t. Even though ā and

ḡ are vectors of probabilities, Figure 5-4 simplifies by showing each ā(t) and ḡ(t) as

a binary variable.

To generate a causal model for each object, we assume that each arrow variable ai

is generated by tossing a coin with weight ā(zi), that each polarity gi is generated by

tossing a coin with weight ḡ(zi), and that each strength si is drawn from the logistic

transform of a normal distribution with mean s̄(zi) and variance σ̄(zi). Let Ψ̄ be the

tuple (ā, ḡ, s̄, σ̄). To complete the model, we specify prior distributions on z and Ψ̄.

As in Chapter 4, we use a Chinese restaurant process prior on z (Equation 4.1) and

set the γ parameter to 0.5. This prior assigns some probability mass to all possible

partitions but favors partitions that use a small number of types. We assume that the

entries in ā and ḡ are independently drawn from a Beta(0.1, 0.1) distribution, and

that the means and variances in s̄ and σ̄ are independently drawn from the conjugate

priors in Equation 5.3.

Having defined a generative model, we can use it to learn the type assignments z,

the schema parameters Ψ̄ and the parameters Ψ of the causal models that are most

probable given the events V we have observed:

p(z, Ψ̄, Ψ|V ) ∝ P (V |Ψ)P (Ψ|Ψ̄,z)p(Ψ̄|z)P (z). (5.4)

Figure 5-4 shows how a schema and a set of causal models (top two sections) can be
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simultaneously learned from the events V in the bottom section. All of the variables

in the figure have been set to values with high posterior probability according to

Equation 5.4: for instance, the partition z shown is the z with maximum posterior

probability. Note that learning a schema supports confident inferences about object

o7, which is very sparsely observed (see the underlined entries in the bottom section of

Figure 5-4). On its own, a single trial might not be very informative about the causal

powers of a novel object, but experience with previous objects allows the model to

predict that o7 will produce the effect about as regularly as the other members of

type t2.

To compute the predictions of our model we used Markov chain Monte Carlo

(MCMC) methods to sample from the posterior distribution in Equation 5.4. Since

we use conjugate priors on the schema parameters Ψ̄, we can integrate out these

parameters and sample from p(z, Ψ|V ). To sample the schema assignments in z, we

combined Gibbs updates with the split-merge scheme described by Jain and Neal

(2004). We used Metropolis-Hasting updates on the parameters Ψ of the causal

models, and found that mixing improved when the three parameters for a given object

i (ai, gi and si) were updated simultaneously. To further facilitate mixing, we used

Metropolis-coupled MCMC: we ran several Markov chains at different temperatures

and regularly considered swaps between the chains (Geyer, 1991). All of these details,

however, are of little psychological importance. The implementation described here

is not intended as a process model, and the primary contribution of this section is

the computational theory summarized by Equation 5.4.

Experiment 1: One-shot causal learning

The schema-learning model attempts to satisfy two criteria when learning about the

causal powers of a novel object. When information about the new object is sparse,

predictions about this object should be based primarily on experience with previous

objects. Relying on previous objects will allow the model to go beyond the sparse and

noisy observations that are available for the novel object. Given many observations

of the novel object, however, the model should rely heavily on these observations
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GO

Figure 5-5: (a) A machine and some blocks. The blocks can be placed inside the
machine, and the machine sometimes activates (flashes yellow) when the GO button is
pressed. The blocks used for each condition of Experiments 1 and 2 were perceptually
indistinguishable. (b) Blocks used for Experiment 3. The blocks are grouped into two
family resemblance categories: blocks on the right tend to be large, blue and spotted,
and tend to have a gold boundary but no diagonal stripe. These blocks are based on
stimuli created by Sakamoto and Love (2004).

and should tend to ignore its observations of previous objects. Discounting past

experience in this way will allow the model to be flexible if the new object turns out

to be different from all of the previous objects.

We designed two experiments to explore this tradeoff between conservatism and

flexibility. Both experiments used blocks and machines like the examples in Figure 5-

5. The machine has a GO button, and may activate and flash yellow when this button

is pressed. Blocks can be placed in the machine, and whether or not the machine is

likely to activate might depend on which block is inside. In terms of the language I

have been using, each block is an object oi, each button press is a trial, and there is

a single effect e which indicates whether the machine activated on a given trial.
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p = {0.1, 0.9}
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Figure 5-6: Training data for the four conditions of Experiment 1.

Our first experiment explores the idea that experience with several training blocks

can guide inferences about a sparsely observed test block. The experiment includes

several one-shot learning problems where participants make predictions about a test

block after seeing a single trial involving that block.

Participants

24 members of the MIT community were paid for participating in this experiment.

Materials and Methods

The experiment includes four within-participant conditions, and the training data

for each condition are summarized in Figure 5-6. The first condition (p = {0, 0.5})

includes blocks of two types: blocks of the first type never activate the machine,

and blocks of the second type activate the machine about half the time. The second

condition (p = {0.1, 0.9}) also includes two types: blocks of the first type rarely

activate the machine, and blocks of the second type usually activate the machine. The

remaining conditions each include one type of block: blocks in the third condition
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(p = 0) never activate the machine, and blocks in the fourth condition (p = 0.1)

activate the machine rarely.

At the start of each condition, participants are shown an empty machine and asked

to press the GO button 10 times. The machine fails to activate on each occasion.

One by one, the training blocks are introduced, and participants place each block in

the machine and press the GO button one or more times. The outcomes of these

trials are summarized in Figure 5-6. After the final trial for each block, participants

are asked to imagine pressing the GO button 100 times when this block is inside the

machine. They then provide a rating which indicates how likely it is that the total

number of activations will fall between 0 and 20. All ratings are provided on a 7 point

scale where 1 indicates “very unlikely” and 7 indicates “very likely.” Ratings are also

provided for four other intervals: between 20 and 40, between 40 and 60, between

60 and 80, and between 80 and 100. After the training phase, two test blocks are

introduced, again one at a time. Participants provide ratings for each block before it

has been placed in the machine, and after a single trial. One of the test blocks (o+)

activates the machine on this trial, and the other (o−) does not.

The set of four conditions is designed to test the idea that inductive constraints

and inductive flexibility are both important. The first two conditions test whether

experience with the training blocks allows people to extract constraints that are useful

when making predictions about the test blocks. Conditions three and four explore

cases where these constraints need to be overruled, since test block o+ is surprising

given that the training blocks in these conditions activate the machine rarely if at all.

To encourage participants to think about the conditions separately, machines and

blocks of different colors were used for each condition. The order in which the condi-

tions were presented was counterbalanced, and the order of the training blocks and

the test blocks within each condition was also counterbalanced.2
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Figure 5-7: Experiment 1: predictions of the schema-learning model. Each subplot
shows the posterior distribution on the causal power of a test block.

Model Predictions

Figure 5-7 shows predictions when the schema-learning model is applied to the data

in Figure 5-6. Each plot shows the posterior distribution on the activation strength

of a test block: the probability p(e|o) that the block will activate the machine on a

given trial.3 Since the background rate is zero, this distribution is equivalent to a

distribution on the causal power (P. Cheng, 1997) of the test block.

The plots in the first row show predictions about a test block before it is placed in

the machine. The first plot indicates that the model has discovered two causal types,

and expects that the test block will activate the machine either very rarely or around

half of the time. The two peaks in the second plot again indicate that the model

2There was one exception: in condition 3, test block o+ was always presented second, since this
block is unlike any of the training blocks, and may have had a large influence on predictions about
any block which followed it.

3Recall that participants were asked to make predictions about the number of activations expected
across 100 trials. If we ask the model to make the same predictions, the distributions on the
total number of activations will be discrete distributions with shapes similar to the distributions in
Figure 5-7.
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has discovered two causal types, this time with strengths around 0.1 and 0.9. The

remaining two plots are unimodal, suggesting that only one causal type is needed to

explain the data in each of the p = 0 and p = 0.1 conditions.

The plots in the second row show predictions about a test block (o−) that fails

to activate the machine on one occasion. All of the plots have peaks near 0 or 0.1.

Since each condition includes blocks that activate the machine rarely or not at all,

the most likely hypothesis is always that o− is one of these blocks. Note, however,

that the first plot has a small bump near 0.5, indicating that there is some chance

that test block o− will activate the machine about half of the time. The second plot

has a small bump near 0.9 for similar reasons.

The plots in the third row show predictions about a test block (o+) that activates

the machine on one occasion. The plot for the first condition peaks near 0.5, which

is consistent with the hypothesis that blocks which activate the machine at all tend

to activate it around half the time. The plot for the second condition peaks near

0.9, which is consistent with the observation that some training blocks activated the

machine nearly always. The plot for the third condition has peaks near 0 and near

0.9. The first peak captures the idea that the test block might be similar to the

training blocks, which activated the machine very rarely. Given that none of the

training blocks activated the machine, one positive trial is enough to suggest that the

test block might be qualitatively different from all previous blocks, and the second

peak captures this hypothesis. The curve for the final condition peaks near 0.1, which

is the frequency with which the training blocks activated the machine.

Results

The four columns of Figure 5-8a show the results for each condition. Each participant

provided ratings for five intervals in response to each question, and these ratings can

be plotted as a curve. Figure 5-8a shows the mean curve for each question. The first

row shows predictions before the first test block has been placed in the machine, and

the second and third rows show predictions after a single trial for test blocks o− and

o+.
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Figure 5-8: Each column shows results for one of the four conditions in Experiment
1. (a) Mean responses across 24 participants. Each subplot shows predictions about
a new object that will undergo 100 trials, and each bar indicates the probability
that the total number of activations will fall within a certain interval. The x-axis
shows the activation strengths that correspond to each interval, and the y-axis shows
probability ratings on a scale from 1 (very unlikely) to 7 (very likely). Error bars for
this plot and all remaining plots show the standard error of the mean. (b) Individual
responses classified by curve shape. The y axis shows the number of participants who
gave responses of 7 different types, including flat curves (−), curves that increase (Á)
or decrease (Â) monotonically, unimodal curves (⌢), and bimodal curves (⌣, ∼, ∽).
The ? category includes all curves that did not match any of these shapes.
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Note first that the plots in the third row are rather different from each other.4

Each plot shows predictions about a test block (o+) that has activated the machine

exactly once, and the differences between these plots confirm that experience with

previous blocks shapes people’s inferences about a sparsely observed novel block. Note

also that all of the plots in this row peak in the same places as the curves predicted

by the model (Figure 5-8a).

The plots in the second row are all decaying curves, since each condition includes

blocks that activate the machine rarely or not at all. Again, though, the differences

between the curves are interpretable, and match the predictions of the model. For

instance, the p = 0 curve decays more steeply than the others, which makes sense

since the training blocks for this condition never activate the machine.

The curves in the first row are again different from each other, and the curves for

p = 0 and p = 0.1 suggest that participants realize that blocks in these conditions

rarely activate the machine. The curves for the first two conditions show the most

substantial discrepancy between model predictions and human judgments. The model

predicts that both curves should be bimodal, and there is a trend in this direction

for the p = {0, 0.5} condition, but the p = {0.1, 0.9} curve is flat or unimodal. This

result is consistent with previous findings that participants expect distributions to

be unimodal, and may need to observe many samples from a distribution before

concluding that it is bimodal (Flannagan, Fried, & Holyoak, 1986). An alternative

interpretation is that learners rely on deterministic rules: they distinguish between

blocks that never produce the effect and blocks that sometimes produce the effect,

but not between blocks that produce the effect with different strengths. The first

interpretation seems more plausible, and we predict that people will recognize the

existence of two types in the p = {0.1, 0.9} condition when many blocks are observed

of each type. Our third experiment supports this prediction, although it does not

test it directly.

4We analyzed the results summarized in the third row using a two factor ANOVA with repeated
measures. There is no significant main effect of interval (F (4, 92) = 0.46, p > 0.5), but there is a
significant main effect of condition (F (3, 69) = 4.20, p < 0.01) and a significant interaction between
interval and condition (F (12, 276) = 6.90, p < 0.001).
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In all cases except one, the average responses in Figure 5-8a are consistent with

the responses of some individual participants. In Figure 5-8b, the curves provided by

individual participants have been grouped into eight categories based on their shapes.

In the p = {0, 0.5} condition, for instance, most participants generate a descending

curve (Â) after observing o− fail to activate the machine once, and most participants

generate an inverted-U curve (⌢) after observing o+ activate the machine once. Both

responses match the shape of the mean curves shown in Figure 5-8a. Given no trials

for the test block, however, some participants (−) appear unwilling to make inductive

predictions, others (Â and ⌢) appear to guess whether the test block will be a 0 block

or a 0.5 block, and a minority give a response (∽) that matches the mean curve and

indicates that the block could be a 0 block or a 0.5 block.

Although the responses of individual participants are revealing, I will focus on the

mean response, which indicates the consensus opinion about the causal strength of

a test block. Consider for instance the inference about test block o+ in the p = 0

condition, which is the only case where no participant gives a response that matches

the mean curve. Some participants seem confident that the o+ block will activate

the machine rarely, and that the single positive trial is an aberration. Others seem

confident that the test block will activate the machine most of the time. Even though

no single participant appears to entertain both hypotheses, the mean curve captures

the finding that both hypotheses are plausible. A model that generates a similar

curve has captured both of the hypotheses considered sensible by people.

Predicting the responses of individual participants is also a worthy challenge, and

future models may wish to address this problem. An accurate model of individual

behavior will need to consider some issues that we have been able to ignore. Individual

responses, for instance, are likely to have been influenced by the order in which blocks

were presented: a participant in the p = {0, 0.5} condition might reason that the last

block she saw was a 0 block, and that the next block will probably be similar. Some

models of categorization can capture order effects (Anderson, 1991; Love, Medin,

& Gureckis, 2004), and future work can explore how these effects play out in the

experimental paradigm we have chosen. We decided, however, to ignore these effects
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by counterbalancing presentation order across participants and by focusing on the

mean response.

Experiment 2: Learning about new causal types

Although a single observation of a new object is sometimes enough to overrule expec-

tations based on many previous objects, several trials may be required before learners

are confident that a new object is unlike any of the previous objects. We designed a

second experiment where participants receive increasing evidence that a new object

is different from all previous objects.

Participants

16 members of the MIT community were paid for participating in this experiment.

Materials and Methods

The experiment includes two within-participant conditions (p = 0 and p = 0.1) that

correspond to conditions 3 and 4 of Experiment 1. Each condition is very similar

to the corresponding condition from Experiment 1 except for two changes. Seven

observations are now provided for the two test blocks: for test block o−, the machine

fails to activate on each trial, and for test block o+ the machine activates on all test

trials except the second. Participants rate the causal strength of each test block after

each trial, and also provide an initial rating before any trials have been observed. As

before, participants are asked to imagine placing the test block in the machine 100

times, but instead of providing ratings for five intervals they now simply predict the

total number of activations out of 100 that they expect to see.

Model Predictions

Figure 5-9 shows the results when the schema-learning model is applied to the tasks

in Experiment 2. In both conditions, predictions about the test blocks track the
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Figure 5-9: Experiment 2: predictions of the schema-learning model.

observations provided, and the curves rise after each positive trial and fall after each

negative trial.

The most interesting predictions involve test block o+, which is qualitatively dif-

ferent from all of the training blocks. The o+ curves for both conditions attain similar

values by the final prediction, but the curve for the p = 0 condition rises more steeply

than the curve for the p = 0.1 condition. Since the training blocks in the p = 0.1

condition activate the machine on some occasions, the model needs more evidence

in this condition before concluding that block o+ is different from all of the training

blocks.

The predictions about test block o− also depend on the condition. In the p = 0

condition, none of the training blocks activates the machine, and the model predicts

that o− will also fail to activate the machine. In the p = 0.1 condition, each training

block can be expected to activate the machine about 15 times out of 100. The curve

for this condition begins at around 15, then gently decays as o− repeatedly fails to

activate the machine.
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Figure 5-10: Average learning curves for Experiment 2.
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Results

Figure 5-10 shows the average learning curves across 16 participants. The curves

are qualitatively similar to the model predictions, and as predicted the o+ curve for

the p = 0 condition rises more steeply than the corresponding curve for the p = 0.1

condition.5 Note that a simple associative account might predict the opposite result,

since the machine in condition p = 0.1 activates more times overall than the machine

in condition p = 0. Learning curves for individual participants are summarized in

Figure 5-11. In the p = 0 condition, six participants show learning curves for o+ that

match the shape of the mean curve (∼), but curves that increase monotonically (Á)

are more common. The preference for increasing curves is even more pronounced in

the p = 0.1 condition.

Alternative models

As mentioned already, our experiments explore the tradeoff between conservatism

and flexibility. When a new object is sparsely observed, the schema-learning model

assumes that this object is similar to previously encountered objects (Experiment

1). Once more observations become available, the model may decide that the new

object is different from all previous objects, and should therefore be assigned to its

own causal type (Experiment 2). We can compare the schema-learning model to

two alternatives: a reactionary model that is overly conservative, and a revolutionary

model that is overly flexible. The reactionary model assumes that each new object

is just like one of the previous objects, and the revolutionary model ignores all of its

previous experience when making predictions about a new object.

We implemented the revolutionary model by assuming that the causal power of a

test block is identical to its empirical power—the proportion of trials on which it has

activated the machine. Predictions of this model are shown in Figure 5-12. When

5Since we expect that the p = 0 curve should be higher than the p = 0.1 curve from the second
judgment onwards, we ran a two factor ANOVA with repeated measures that excluded the first
judgment from each condition. There are significant main effects of condition (F (1, 15) = 6.11,
p < 0.05) and judgment number (F (6, 90) = 43.21, p < 0.01), and a significant interaction between
condition and judgment number (F (6, 90) = 2.67, p < 0.05).
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Figure 5-12: Predictions of the revolutionary model. (a) Experiment 1 (b) Experiment
2.
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applied to Experiment 1, the most obvious failing of the revolutionary model is that

it makes identical predictions about all four conditions. Note that the model does

not make predictions about the first row of Figure 5-7a, since at least one test trial is

needed to estimate the empirical power of a new block. When applied to Experiment

2, the model is unable to make predictions before any trials have been observed for

a given object, and after a single positive trial the model leaps to the conclusion

that test object o+ will always activate the machine. Neither prediction matches the

human data, and the model also fails to predict any difference between the p = 0 and

p = 0.1 conditions.

We implemented the reactionary model by assuming that the causal power of each

training block is identical to its empirical power, and that each test block is identical

to one of the training blocks. The model, however, does not know which training

block the test block will match, and makes a prediction that considers the empirical

powers of all training blocks, weighting each one by its proximity to the empirical

power of the test block. Formally, the distribution dn on the strength of a novel block

is defined to be

dn =

∑

i widi
∑

i wi

(5.5)

where di is the distribution for training block i, and is created by dividing the interval

[0, 1] into eleven equal intervals, setting di(x) = 11 for all values x that belong to the

same interval as the empirical power of block i, and setting di(x) = 0 for all remaining

values. Each weight wi is set to 1 − |pn − pi|, where pn is the empirical power of the

novel block and pi is the empirical power of training block i. As Equation 5.5 suggests,

the reactionary model is closely related to exemplar models of categorization (D. L.

Medin & Schaffer, 1978; Nosofsky, 1986).

Predictions of the reactionary model are shown in Figure 5-13. The model ac-

counts fairly well for the results of Experiment 1, but is unable to account for Exper-

iment 2. Since the model assumes that test object o+ is just like one of the training

objects, it is unable to adjust when o+ activates the machine more frequently than

any previous object.
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Figure 5-13: Predictions of the reactionary model. (a) Experiment 1 (b) Experiment
2.
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Overall, neither baseline model can account for our results. As their names sug-

gest, the revolutionary model is too quick to throw away observations of previous

objects, and the reactionary model is unable to handle new objects that are qualita-

tively different from all previous objects. Other baseline models might be considered,

but we are aware of no simple alternative that will account for all of our data.

Our first two experiments deliberately focused on a very simple setting where

causal schemata are learned and used, but real world causal learning is often more

complex. The rest of this chapter will address some of these complexities: in partic-

ular, I show that our framework can incorporate perceptual features and can handle

contexts where objects interact to produce an effect.

Learning causal types given feature data

Imagine that you are allergic to nuts, and that one day you discover a small white

sphere in your breakfast cereal—a macadamia nut, although you do not know it. To

discover the causal powers of this novel object you could collect some causal data—

you could eat it and wait to see what happens. Probably, however, you will observe

the features of the object (its color, shape and texture) and decide to avoid it since

it is similar to other allergy-producing foods you have encountered.

A hierarchical Bayesian approach can readily handle the idea that instances of a

given causal type tend to have similar features (Figures 5-1c and 5-14). Suppose that

we have a matrix F which captures many features of the pills in our study, including

their sizes, shapes, colors, and imprints. We assume that objects belonging to the

same type have similar features. For instance, the schema in Figure 5-14 specifies

that objects of type t2 tend to have features f1 through f4, but objects of type t1

tend not to have these features. Formally, let the schema parameters Ψ̄ include a

matrix F̄ , where f̄j(t) specifies the expected value of feature fj within causal type

t.6 Building on previous models of categorization (Anderson, 1991), we assume that

6To apply Equation 5.6 we need to specify a prior distribution p(F̄ ) on this matrix. We assume
that all entries in the matrix are independent draws from a Beta(0.5, 0.5) distribution.
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Figure 5-14: Learning a schema and a set of causal models given event and feature
data (see Figure 5-1c). Objects belonging to the same type have similar causal powers
and similar features, and f̄i specifies the expected value of feature fi within each type.
The event and feature data shown are similar to the data used for Experiment 3.

the value of fj for object oi is generated by tossing a coin with bias f̄j(zi). Our goal

is now to use the features F along with the events V to learn a schema and a set of

causal models:

p(z, Ψ̄, Ψ|V, F ) ∝ P (V |Ψ)P (F |Ψ̄,z)p(Ψ|Ψ̄,z)p(Ψ̄|z)P (z). (5.6)

There are many previous models for discovering categories of objects with simi-

lar features (Anderson, 1991), and feature-based categorization is sometimes pitted

against causal categorization (Gopnik & Sobel, 2000). The schema-learning model

is based on the idea that real-world categories are often distinguished both by their

characteristic features and their characteristic causal interactions. More often than

not, one kind of information will support the categories indicated by the other, but

there will also be cases where the causal data and the feature data conflict. In cases

like this, the schema-learning model may discover the feature-based categories, the

causal categories, or some combination of both—the categories preferred will depend

on the relative weights of the statistical information present in the two kinds of data.
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condition o13 o14 o15

Human
horizontal 6 24 43

vertical 73 90 98

Model
horizontal 4 5 7

vertical 83 86 88

Preference for f1-match

Figure 5-16: Predictions for the sorting task of Lien and Cheng (2000). The first
two rows show the percentage of participants who grouped a novel object (o13, o14

or o15) with the f1-match (o1) rather than the f8-match (o10). Only participants in
the vertical condition tend to sort according to f1. The model predictions represent
the relative probability that each novel object belongs to the same causal type as the
f1-match.

Lien and Cheng data

Lien and Cheng (2000) ran several experiments that explore how perceptual features

and causal observations can both inform causal judgments. The schema-learning

model appears to handle all of their tasks, but here I will focus on a simplified version

of their first task. The effect of interest is whether a certain kind of plant blooms,

and the potential causes are 15 chemicals (objects o1 through o15). Figure 5-15a

shows that the features of these objects (f1 through f14) support two systems of

categorization. The first system is based on color: each object has a cool color (f7)
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or a warm color (f8), and the warm-colored objects are either yellow (f11), red (f12)

or orange (f14). The second system is based on shape: each object has an irregular

shape (f1) or a regular shape (f2) and there are three kinds of irregular shapes (f13,

f3 and f4).

The schema-learning model is shown 10 trials for each of the first 12 objects,

and Figure 5-15b summarizes the results of these trials. In the horizontal condition,

each object with a cool color (f7) causes blooming on 8 out of 10 occasions, and

the remaining objects lead to blooming less often. In the vertical condition, objects

with irregular shapes (f1) are the only ones that tend to cause blooming. In both

conditions, the model is shown that blooming occurs on 2 out of 10 trials when no

chemicals are applied.

The model can be tested by requiring it to reason about three objects (o13, o14

and o15) for which no trials were observed. Object o13 has a novel shape, o15 has a

novel color, and o14 is a novel combination of a known shape and known color. Each

novel object was presented as part of a trio that also included o1 and o10, and we

computed whether the model preferred to group each novel object with the shape

match (o1) or the color match (o10).
7 In the horizontal condition, the model prefers

to sort each trio according to color (f8), but in the vertical condition the model sorts

each trio according to shape (f1) (see Figure 5-16). Note that the feature data and

the causal data must be combined to produce this result: a model that relied on the

features alone would predict no difference between the two conditions, and a model

that used only the causal data would be unable to make useful predictions about the

three novel objects.

Since we modeled a simplified version of the Lien and Cheng task, the quantitative

predictions of the schema-learning model are not directly comparable to their results,

but Figure 5-16 shows that the model captures the main qualitative patterns in their

data.8 Note first that corresponding pairs of numbers fall on the same side of 50%:

7We implemented this sorting task by computing the posterior distribution p(z|V, F ), and com-
paring the probability that the novel object and its color match belong to the same causal type with
the probability that the novel object is grouped with the shape match.

8Lien and Cheng report that a handful of participants did not group the novel objects with
either the shape match or the color match. These participants were dropped before computing the

115



in other words, the model prefers to sort according to shape (f1) only in the cases

where people show the same preference. Note also that the numbers for both people

and the model increase from left to right. For instance, out of the three novel objects,

participants and the model are most confident that o15 belongs with the f1-match.

This result makes sense since o15 is the only novel object with features that are more

similar to the f1-match (o1) than the f8-match (o10).

Although the schema-learning model accounts well for the Lien and Cheng data,

their task suggests an extension of our approach that is worth exploring. The schema-

learning model assumes that all features are weighted equally, and tends to prefer sets

of categories that account at least partially for all of the features. There are situations,

however, where some features correlate with the causal types but others should be

treated as noise. Each condition of the Lien and Cheng task is one of these situations:

in the horizontal condition, the shape features are uninformative, and in the vertical

condition, the color features are uninformative. To better capture cases like these we

can define a model that learns and uses weights for each feature. There is a chicken-

or-egg problem here: features with high weights should correlate well with the causal

types, and causal types are determined in part by the features with high weights.

Bayesian methods, however, can deal with this problem, and we can define a model

that simultaneously learns a set of causal types and an appropriate set of feature

weights.9

Neither of the baseline models described earlier can account for the data collected

by Lien and Cheng. The revolutionary model has no basis for making predictions

about the causal powers of the novel objects, (o13, o14 and o15) since no trials have

been observed for any of these objects. The reactionary model can be extended by

defining weights wi (Equation 5.5) such that wi is high if the empirical power of a

novel object is close to the empirical power of object oi and if these two objects have

similar features. This model, however, is also unable to account for the data. In the

vertical condition, object o13 has features that are more similar to the color match

percentages in Figure 5-16.
9See, for instance, work on Bayesian feature selection (E. I. George & McCulloch, 1993) and

automatic relevance determination (R. M. Neal, 1996).
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(o10) than the shape match (o1), yet people prefer to group o13 with the shape match

rather than the color match.

Lien and Cheng describe an alternative approach that does account for their data.

As we have seen, their experiment uses stimuli that can be organized into one or more

hierarchies, and where there are perceptual features that pick out each level in each

hierarchy. Each perceptual feature is assumed to be a potential cause of blooming, and

the probabilistic contrast for each cause c with respect to effect e is P (e|c) − P (e|c̄).

Lien and Cheng suggest that the best explanation of the effect is the cause with

maximum probabilistic contrast. The theoretical problem addressed by this principle

of maximum contrast is somewhat different from the problem of discovering causal

types. Lien and Cheng appear to assume that a learner already knows about several

overlapping causal types, where each type corresponds to a subtree of one of the

hierarchies. They do not discuss how these types might be discovered in the first

place, but they provide a method for identifying the type that best explains a novel

causal relation. We have focused on a different problem: the schema-learning model

does not assume that any causal types are known in advance, but shows how a single

set of non-overlapping types can be discovered.

The schema-learning model goes beyond the Lien and Cheng approach in at least

one important respect. Our model handles cases like Figure 5-14 where the features

provide a noisy indication of the underlying causal types, but the Lien and Cheng

approach can only handle causal types that correlate perfectly with an observable

feature. Although observable features are often a good guide to category membership,

many categories appear not to have defining features, and if defining features do exist,

they may not be easily observable. Two metal bars, for instance, may appear identical

on the surface, even though only one has micro-properties that make it a magnet. Our

first two experiments have already suggested that people discover causal types in the

absence of defining perceptual features. To further explore this claim, we developed

a task where the features of a set of objects correlate roughly with the underlying

causal types, but where there is no single feature that perfectly distinguishes these

types.
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∅ o− o1 o2 o3 o4 o5 o6 o7 o8 o+

e
+ : 10 0 3 2 1 2 18 18 17 19 0

e
− : 10 0 17 18 19 18 2 2 3 1 0

f1 : 1 0 0 0 0 0 1 1 1 1
f2 : 0 1 0 0 0 1 0 1 1 1
f3 : 0 0 1 0 0 1 1 0 1 1
f4 : 0 0 0 1 0 1 1 1 0 1
f5 : 0 0 0 0 1 1 1 1 1 0

Figure 5-17: Training data for Experiment 3.

Experiment 3: Combining causal and feature data

Participants

24 members of the MIT community were paid for participating in this experiment.

Experiment 3 was run immediately after Experiment 1, and the same participants

completed both tasks.

Materials and Methods

Participants are initially shown an empty machine that activates on 10 out of 20 trials.

10 blocks then appear on screen, and the features of these blocks support two family

resemblance categories (see Figures 5-5 and 5-17). Before any of the blocks are placed

in the machine, participants are informed that the blocks are laid out randomly, and

are encouraged to drag them around and organize them in a way that will help them

predict what effect they will have on the machine. Participants then observe 20 trials

for blocks o1 through o8, and see that blocks o1 through o4 activate the machine

rarely, but blocks o5 through o8 activate the machine most of the time. After 20

trials for each block, participants respond to the same question used in Experiment

1: they imagine 100 trials involving the block, and indicate how likely it is that the

total number of activations will fall into each of 5 intervals. After this training phase,

participants answer the same question for test blocks o− and o+ without seeing any

trials involving these blocks. Experiment 1 explored one-shot learning, and this new

task might be described as zero-shot learning. After making predictions for the two
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Figure 5-18: Results for Experiment 3. (a) Predictions of the schema-learning model.
(b) Mean responses across 24 participants. (c) Ratings for individual participants
classified by curve shape.

test blocks, participants are asked to sort the blocks into two categories “according

to their effect on the machine,” and to explain the categories they chose.

Model predictions

Predictions of the schema-learning model are shown in Figure 5-18a. Each plot shows

the posterior probability that a test block will activate the machine on any given

trial.10 Both plots have two peaks, indicating that the model has discovered two

causal types, but is not certain about the type assignments of the test blocks. The

plots are skewed in opposite directions: based on the features of the test blocks, the

model predicts that o− will activate the machine rarely, and that o+ will activate the

machine often.

Predictions about the sorting task are summarized in Figure 5-19a. The top

three sorts are included, and the most probable solution according to the model is

the family resemblance sort. Although the model allows sorts with any number of

10Unlike Experiment 1, the background rate is non-zero, and these posterior distributions are not
equivalent to distributions on the causal power of a test block.
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categories (including one, three or more), the probabilities shown in Figure 5-18a are

calculated with respect to the class of all two-category solutions.

Results

Mean responses for the two test blocks are shown in Figure 5-18b. Both plots are

U-shaped curves, suggesting that participants realize that some blocks activate the

machine rarely and others activate the machine often, but that few blocks activate

the machine half the time. As predicted, the curves are skewed in opposite direc-

tions, indicating that o+ is considered more likely to activate the machine than o−.11

Responses made by individual participants are summarized in Figure 5-18b. Most

participants chose U-shaped curves, but the next most popular choices are decreasing

curves (for o−) and increasing curves (for o+).

The U-shaped curves in Figure 5-18b resolve a question left open by Experiment 1.

Responses to the s̄ = {0.1, 0.9} condition of the first experiment did not indicate that

participants had identified two causal types, but the U-shaped curves in Figure 5-

18b suggest that participants recognized two types of blocks. All of the blocks in

Experiment 3 produce the effect sometimes, and the U-shaped curves suggest that

participants can use probabilistic criteria to organize objects into causal types. Two

differences between Experiment 3 and the second condition of Experiment 1 seem

particularly important. In Experiment 3, more blocks are observed for each type

(4 rather than 3), and more trials are observed for each block (20 rather than 10).

Experiment 3 therefore provides more statistical evidence that there are two types of

blocks.

Responses to the sorting task are summarized in Figure 5-19b. All sorts that

were chosen by two or more participants are shown, and there are eight additional

sorts that were chosen by one participant each. The most popular sort organizes

the blocks into the two family resemblance categories, and is chosen by 8 out of 24

11We ran a two factor ANOVA which compared ratings for the first (0-20) and last (80-100)
intervals across the two test blocks. There is no main effect of interval (F (1, 23) = 0.056, p > 0.5)
or of test block (F (1, 23) = 1.50, p > 0.1), but there is a significant interaction between interval and
test block (F (1, 23) = 6.90, p < 0.05).
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Figure 5-19: Sorts for experiment 3. (a) Relative probabilities of five sorts according
to the schema-learning model. Each sort is represented as a vector that specifies
category assignments for the ten objects in Figure 5-17. The model prefers the family
resemblance sort. (b) Top five sorts chosen by participants. Any sort not shown was
chosen by at most one participant.

participants. Studies of feature-based categorization have consistently found that

family resemblance sorts are rare, and that participants prefer instead to sort objects

according to a single dimension (e.g. size or color) (D. L. Medin, Wattenmaker, &

Hampson, 1987). Figure 5-19b therefore suggests that the causal information provided

in Experiment 3 overcomes the strong tendency to form categories based on a single

perceptual dimension.

Note that the sorting task is relatively demanding, and that participants who do

not organize the blocks carefully as they go along are likely to forget how many times

each block activated the machine. Even though participants were asked to sort the

blocks according to their effect on the machine, only 13 out of 24 assigned blocks

o1 through o4 to one group and blocks o5 through o8 to the other group. Some of

the remaining participants may have deliberately chosen an alternative solution, but

others gave explanations suggesting that they had lost track of the training trials.

The schema-learning model accounts well for our results, but other models will

make similar predictions. For instance, a feature-based version of the reactionary

model predicts that o+ is likely to activate the machine, since this test block has

features similar to blocks that have previously activated the machine. The schema-
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Figure 5-20: Learning about interactions between objects. The schema specifies the
causal powers of each type and of each pair of types (the pair t1+t2 is not shown).
The collection of causal models includes a model for each pair of objects. The event
data are inspired by the experiment of Shanks and Darby (1998). The model groups
the objects into two types: objects belonging to type t1 cause the effect on their own
but not when paired with each other, and objects belonging to type t2 cause the effect
only when paired with each other.

learning model is not alone in accounting for Experiment 3, but this experiment does

rule out approaches (such as the principle of maximal contrast) which assume that

causal types have defining features.

Discovering interactions between causal types

So far we have considered problems where at most one object oi can be present at a

time. Suppose now that multiple objects can be present on any trial. For instance,

consider the problem of discovering which drugs produce a certain allergy—two drugs

which are innocuous on their own may produce the allergy when combined. Our goal

is to discover a schema and a set of causal models that allow us to predict whether

any given combination of drugs is likely to produce an allergic reaction. Formally, we

would like to learn a causal model M for each possible combination of objects.

We assume that each combination of objects corresponds to a conjunctive cause

that may be generative or preventive, and extend Ψ to include an arrow a, a polarity

g and a strength s for each combination of objects. We extend the schema in a

similar fashion, and include schema parameters ā, ḡ, s̄ and σ̄ for each combination
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of causal types. The causal model parameters for sets of objects are generated, as

before, from the schema parameters for the corresponding set of types. For instance,

Figure 5-20 shows how the causal model for o13+o14 is generated from the schema-level

knowledge that pairs of objects drawn from type t2 tend, in combination, to generate

the effect with strength 0.9. As before, we assume that a generative background cause

of strength b is always present.

There are several possible strategies for handling conjunctive causes and our ap-

proach makes several simplifying assumptions. For instance, we assume that the

causal power of a conjunction of objects is independent of the causal powers that

correspond to any subset of these objects. Future work can aim to relax these simpli-

fying assumptions, and to combine the schema-learning model with a sophisticated

approach to conjunctive causality. As an initial step, it should be relatively straight-

forward to combine our framework with the model of conjunctive causality developed

by Novick and Cheng (2004).

Shanks and Darby data

Shanks and Darby (1998) ran an experiment which suggests that humans can acquire

abstract knowledge about interactions between causal types. These authors used a

task where the potential causes were foods, and the effect of interest was an allergic

reaction. The data observed by participants in their second experiment are shown in

Figure 5-20.12 When supplied with these data, the schema-learning model discovers

two causal types: foods of type t1 (o1 through o8) produce the allergy on their own,

but foods of type t2 (o9 through o16) do not. The model also discovers that two foods

of type t2 will produce the allergy when eaten together, but two foods of type t1 will

not (Figure 5-20).

Shanks and Darby were primarily interested in predictions about cases which

had never been observed in training—the cases underlined in the bottom section of

Figure 5-20. Their participants can be divided into two groups according to their

scores when tested on the training data. Learners in the high group (learners who

12Different participants saw different amounts of training data, but we overlook this detail.
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scored well on the test) tended to make the same predictions as our model: for

instance, they tended to predict that o7 and o8 produce the allergy when eaten in

isolation, that o15 and o16 do not, that the combination of o13 and o14 produces the

allergy, and that the combination of o5 and o6 does not. Learners in the low group

tended to make the opposite predictions: for instance, they tended to predict that

o7 and o8 do not produce the allergy when eaten in isolation. Since the schema-

learning model does not suffer from memory limitations or lapses of attention, it is

not surprising that it accounts only for the predictions of learners who absorbed the

information provided during training.

Conclusion

This chapter described a hierarchical Bayesian model (Figure 5-1c) for learning causal

schemata. Each schema organizes a set of objects into causal types, and specifies the

causal powers and characteristic features of each type. The schema-learning model

supports several kinds of inferences. We focused on bottom-up inferences and saw

that the model helps to explain how a causal schema and a set of specific causal

models can be simultaneously learned given event data and feature data. If the

causal schema is known in advance, then the model serves as a computational theory

of top-down causal inference, and explains how inferences about a set of causal models

can simultaneously draw on low-level event data and high-level knowledge.

The schema-learning model exploits the fact that probabilistic approaches are

modular and can be composed to build integrated models of inductive reasoning.

The model in Figure 5-1c can be created by combining three models: probabilistic

causal models (Pearl, 2000) specify how the event data are generated given a set of

causal models, the infinite relational model (Kemp, Tenenbaum, Griffiths, Yamada,

& Ueda, 2006) specifies how the causal models are generated, and Anderson’s rational

approach to categorization (Anderson, 1991) specifies how the features are generated.

Since all three models work with probabilities it is straightforward to combine them

and create a single integrated framework for causal reasoning.
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We saw that the schema-learning model helps to explain some aspects of the data

collected by Lien and Cheng (2000) and Shanks and Darby (1998), and it also ac-

counts for several other results in the literature. Waldmann and Hagmayer (2006)

showed that a known set of categories can influence future causal learning, and the

model predicts a similar result if we fix the causal types z then use the model to

discover a set of causal models given event data. Our approach can also model ex-

periments carried out using the blicket detector (Gopnik & Sobel, 2000) or causal

blocks world (Tenenbaum & Niyogi, 2003) paradigms. Many aspects of these ex-

periments have been previously modeled, but the schema-learning model captures

phenomena that are not addressed by most existing models. For instance, the model

suggests why two identical looking blocks might both be categorized as blickets even

though a handful of observations suggest that they have different effects on a blicket

detector (Gopnik & Sobel, 2000).

Our experiments used adult participants but some of the most fundamental causal

schemata are probably acquired relatively early in development. Several studies con-

firm that young children know that objects of certain types tend to have certain kinds

of effects: for instance, children know that flashlights generate spots of light (Shultz,

1982), and that hammers can break brittle objects (R. Gelman, Bullock, & Meck,

1980). It is less clear how this knowledge emerges, but experiments similar to ours

might be able to trace the developmental course of schema acquisition. Experiments

using blicket detectors (Gopnik & Sobel, 2000) have been used to study the causal

knowledge of preschoolers, and the tasks I described rely on a very similar paradigm.

Several extensions of the schema-learning model may be worth exploring. We re-

stricted ourselves to problems where the distinction between a set of potential causes

and a set of effects13 is known in advance, but in some cases this distinction may

need to be learned (Mansinghka, Kemp, Tenenbaum, & Griffiths, 2006). A second

limitation is that we focused on cases where feature data and contingency data rep-

resent the only input to our model. Human learners are sometimes directly supplied

13This chapter has focused on problems where there is a single effect, but our approach also
handles problems with multiple effects, and can group these effects into types.
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with abstract causal knowledge—for example, a science student might be told that

“pineapple juice is an acid, and acids turn litmus paper red.” Statements like these

correspond to fragments of a causal schema, and future experiments should explore

how schemata are learned when parts of these schemata are directly supplied.

Causal inferences are guided by many kinds of constraints, and the schemata

discussed in this chapter only capture some of these constraints. The schemata I con-

sidered are closely related to the grouping schemata described by Kelley (1972), but

Kelley also discusses some other kinds of schemata. Some of these schemata specify

the manner in which multiple causes interact: for instance, a schema for multiple suf-

ficient causes indicates that any of several causes is sufficient to produce an effect, and

a schema with additive effects indicates that the strength of the effect is determined

by the cumulative strength of the relevant causes. Other causal constraints specify

the temporal properties of causal interactions, and one basic example is a constraint

which specifies that causes precede effects. Still other constraints may indicate the

expected properties of interventions: for instance, Pearl’s “do-calculus” can be seen

as a set of constraints on causal reasoning. Although this chapter has focused on one

class of causal constraints, many different constraints can be captured by hierarchical

Bayesian models, and future work can explore how some of these constraints might

be learned.

Top-down and bottom-up approaches to learning are sometimes seen as competi-

tors, and the debate between these approaches is especially prominent in the literature

on causal learning. More often than not, competing accounts of a phenomenon both

capture some element of the truth, and situations like this can be handled by building

unified models that subsume the two competing views. This chapter described a hi-

erarchical Bayesian model that unifies top-down and bottom-up approaches to causal

reasoning. The model recognizes that abstract causal knowledge is crucial for making

inferences about objects that are sparsely observed, and suggests how this knowledge

is acquired by bottom-up learning. Similar conflicts between top-down and bottom-up

approaches are found in other areas of cognitive science, and the hierarchical Bayesian

approach can help to resolve these conflicts wherever they occur.
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Chapter 6

The discovery of structural form

The previous chapters described models which incorporate two kinds of represen-

tations: category structures (Chapters 4 and 5) and graph structures (Chapter 5).

Neither kind of representation is especially complex, but these models do demon-

strate that the hierarchical Bayesian approach can handle structured representations

(Table 1.2b). One reason why structured representations matter is that they capture

inductive constraints which guide inferences about different domains. Grammars

guide inferences about sentences (Chomsky, 1965), folk taxonomies guide inferences

about living kinds (Atran, 1998), and causal graphical models (Pearl, 2000) guide

inferences about the causal consequences of actions. Since different domains call for

different representations, we are faced with the problem of form discovery : how can a

learner discover which form of representation is best for a given domain? This chapter

describes a hierarchical Bayesian model that addresses a special case of this problem.

Some of the clearest examples of form discovery come from the history of science.

For centuries, Europeans believed that the natural representation for biological species

was the “great chain of being,” a linear structure in which every living thing found a

place according to its degree of perfection (Lovejoy, 1970). In 1735, Linnaeus famously

proposed that relationships between plant and animal species are best captured by a

The work in this chapter was carried out in collaboration with Joshua Tenenbaum. A very

preliminary version of this work was presented at the 26th Annual Conference of the Cognitive

Science Society in 2004.
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tree structure (Figure 6-1b), setting the agenda for all biological classification since.

Mendeleev made a similar breakthrough when he recognized the periodic structure

of the chemical elements and proposed a specific representation with this form—his

periodic table of 1869.

Scientific breakthroughs like these occur relatively rarely, but children may make

analogous discoveries when learning about the structure of different domains. Chil-

dren may learn, for example, that social networks are often organized into cliques,

that temporal categories such as the seasons or the days of the week can be arranged

into cycles, that comparative relations such as “longer than” or “better than” are

transitive (Piaget, 1965; Shultz, 2003), and that category labels can be organized

into hierarchies (Rosch, 1978). Structural forms for some cognitive domains may

be known innately, but many appear to be genuine discoveries. When learning the

meanings of words, children initially seem to organize objects into non-overlapping

clusters, with one category label allowed per cluster (Markman, 1989): hierarchies

of category labels are recognized only later (Rosch, 1978). When reasoning about

comparative relations, children’s inferences respect a transitive ordering by the age

of seven but not before (Shultz & Vogel, 2004). In both of these cases, structural

forms appear to be learned, but children are not explicitly taught to organize these

domains into hierarchies or dimensional orders.

A learner who discovers the structural form of a domain has acquired a powerful

set of inductive constraints. The story of Mendeleev includes a compelling example

of the inductive leverage that structural forms can provide. Mendeleev used his pe-

riodic table to predict both the existence and the properties of several undiscovered

elements, and to demonstrate that some of the atomic weights he had been using were

inaccurate. Children make inferences that are analogous, if somewhat less dramatic.

Discovering the clique structure of social networks can allow a child to predict the out-

come of interactions between individuals who may never have interacted previously.

Discovering the hierarchical structure of category labels allows a child to predict that

a creature called a “chihuahua” might also be a dog and an animal, but cannot be

both a dog and a cat.
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Figure 6-1: Discovering the structure that best accounts for a matrix of binary fea-
tures. (a) A conventional model (cf. Figure 2-3a) which assumes that the form of
the structure is fixed in advance (here assumed to be a tree). Two possible trees are
shown: traditional taxonomies group crocodiles with lizards, snakes and turtles, but
contemporary phylogenies assert that crocodiles are better grouped with birds (Purves
et al., 2001). (b) A hierarchical model (cf. Figure 2-3b) that simultaneously discovers
the form and the structure that best account for the data. Three possible pairs of
forms and structures are shown. The tree is inspired by the Linnaean taxonomy, and
the chain is inspired by Bonnet’s version of the “great chain of being” (C. White,
2001). A ring structure might not seem suitable for the species shown here, but has
recently been proposed as the best model of relationships between microbes (Rivera
& Lake, 2004).
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This chapter argues that the hierarchical Bayesian approach helps to explain how

humans discover the best kind of representation for a domain. The problem of form

discovery is not addressed by conventional models of learning, which search only for

structures of a single form that is assumed to be known in advance (Figure 6-1a). Clus-

tering or competitive-learning algorithms (Anderson, 1991; D. Rumelhart & McClel-

land, 1986) assume that the data fall into some number of disjoint groups, algorithms

for hierarchical clustering (Duda, Hart, & Stork, 2000) or phylogenetic reconstruc-

tion (Huelsenbeck & Ronquist, 2001) assume that the data are tree-structured, and

algorithms for dimensionality reduction (Pearson, 1901; Spearman, 1904) or multidi-

mensional scaling (Torgeson, 1965) assume that the data have an underlying spatial

geometry. Unlike these algorithms, our model simultaneously discovers the structural

form and the instance of that form that best explain the data (Figure 6-1b). Our ap-

proach can handle many kinds of data, including attributes, relations, and measures

of similarity, and I will show that it successfully discovers the structural forms of a

diverse set of real-world domains.

Here we make the simplifying assumption that there is a single best representa-

tion for each data set that we consider. Often, however, a single domain will have

several useful representations (Moray, 1990; Heit & Rubinstein, 1994; Shafto et al.,

2006). For instance, a taxonomic tree might capture the anatomical relationships

between a set of animals, but a set of ecological categories (including land animals,

sea animals, predators and prey) might be a better representation of the ecological

relationships between the animals. The problem of learning multiple representations

for a given data set can be approached in several ways (see Shafto et al. (2006) for

one example), and some of these approaches can be incorporated into future models

of form discovery.

A hypothesis space of structural forms

Any algorithm for form discovery must specify the space of structural forms it is able

to discover. We represent structures using graphs, and use graph grammars (En-
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Structural Form Generative process

Partition ⇒

Chain ⇒

Order ⇒

Ring ⇒

Hierarchy ⇒

Tree ⇒

Grid Chain × Chain

Cylinder Chain × Ring

(b)

(c)

(d)

(a)

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Figure 6-2: A hypothesis space of structural forms. (a) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of objects:
a hierarchy has clusters located internally, but a tree may only have clusters at its
leaves. The first six processes are node-replacement graph grammars. Each grammar
uses a single production, and each production specifies how to replace a parent node
with two child nodes. The seed for each grammar is a graph with a single node (in
the case of the ring, this node has a self-link). (b)(c)(d) Growing chains, orders and
trees. At each step in each derivation, the parent and child nodes are shown in grey.
The red arrows in each production represent all edges that enter or leave a parent
node. When applying the order production, all nodes that previously sent a link to
the parent node now send links to both children.
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gelfriet & Rozenberg, 1997) as a unifying language for expressing a wide range of

structural forms (Figure 6-2). Of the many possible forms, we assume that the most

natural are those that can be derived from simple generative processes (Leyton, 1992).

Each of the first six forms in Figure 6-2a can be generated using a single context-free

production that replaces a parent node with two child nodes, and specifies how to con-

nect the children to each other and to the neighbors of the parent node. Figures 6-2b,

6-2c and 6-2d show how three of these productions generate chains, orders and trees.

In each case, we grow a representation by starting with a seed graph and repeatedly

splitting nodes according to the grammar. For all forms except the ring, the seed is

a graph with one node and no edges. For the ring, the seed is a single-node graph

with a self link. The remaining forms in Figure 6-2—the grid and the cylinder—can

be expressed as products of simpler forms. A grid is the Cartesian graph product

of two chains, and a cylinder is the product of a ring and a chain.1 We grow grids

by representing the two dimensions separately, and using the chain grammar to grow

each dimension. Cylinders are generated similarly.

It is striking that the simple grammars in Figure 6-2a generate many of the struc-

tural forms discussed by psychologists (Shepard, 1980) and assumed by algorithms

for unsupervised learning or exploratory data analysis. Partitions (Anderson, 1991;

Fiske, 1992), chains (Guttman, 1944), orders (Fiske, 1992; Inhelder & Piaget, 1964;

Bradley & Terry, 1952), rings (Guttman, 1954; Wiggins, 1996), trees (Inhelder & Pi-

aget, 1964; Sneath & Sokal, 1973; Huelsenbeck & Ronquist, 2001), hierarchies (Collins

& Quillian, 1969; Carroll, 1976) and grids (Kohonen, 1997) appear again and again

in formal models across many different literatures. To highlight just one example, In-

helder and Piaget (1964) suggest that the elementary logical operations in children’s

thinking are founded on two forms: a classification structure that can be modeled as a

tree, and a seriation structure that can be modeled as an order. The popularity of the

forms in Figure 6-2 suggests that they are useful for describing the world, and that

1A two dimensional Euclidean space can be generated as the regular Cartesian product of two
chains, where each chain is viewed as a continuous dimension rather than a graph. Our generative
model for feature data extends naturally to continuous spaces, but here we consider only graph
structures.
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(d)

⇒

⇒

⇒

⇒

Figure 6-3: Generating graph grammars from a meta-grammar. (a) A meta-grammar:
the six grammars in Figure 6-2 correspond to subsets of the production shown here.
(b)(c)(d) Subsets of the meta-grammar that grow chains, orders and trees.

they spring to mind naturally when scientists seek formal descriptions of a domain.

Although we focus on the eight forms in Figure 6-2, it is natural to consider other

possibilities. I have suggested that graph grammars provide a unifying language

for expressing many different structural forms, and ultimately it may be possible to

develop a “universal structure grammar” (cf. Chomsky (1965)) that generates all and

only the cognitively natural forms. As an initial step towards this goal, it is useful

to recognize that all of the grammars in Figure 6-2 can be generated as subsets of

the meta-grammar in Figure 6-3. This meta-grammar generates grammars for many

other structural forms, some of which (although certainly not all) are likely to be

useful for structure discovery. In principle, a learning system could begin with just

this meta-grammar and go on to discover any form that is consistent with the meta-

grammar.

Each of the grammars we consider uses a single production, but additional forms
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Figure 6-4: Cluster graphs and entity graphs. (a) A cluster graph that is incompatible
with the grid form, since the middle node will be empty if the graph is projected onto
the vertical axis. (b) A cluster graph that is compatible with the grid form. (c) An
entity graph corresponding to the cluster graph in (b).

can be generated if we allow grammars with multiple productions, and productions

where the edges on the right hand side are chosen probabilistically. This chapter

will focus on simple grammars that generate some of the most frequently used forms,

but further exploration of the space of grammars is an important direction for future

work.

Now that we have a hypothesis space of structural forms, the problem of form

discovery can be posed. Given a data set D that contains information about a set of

entities, we wish to find the form F and the structure S of that form that best capture

the relationships between these entities. We approach this problem by defining a

hierarchical Bayesian model (Figure 6-1) and searching for the structure S and form

F that maximize the posterior probability

P (S, F |D) ∝ P (D|S)P (S|F )P (F ). (6.1)

To complete the model we must formally specify the terms on the right hand side

of Equation 6.1. P (F ) is a uniform distribution over the forms under consideration,

and the remaining two terms are described in the next sections.
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Generating structures from structural forms

Suppose that we are working with a set of n entities.2 Let S be a cluster graph, or a

graph where the nodes correspond to clusters of entities. S is compatible with F if S

can be generated by the generative process defined for F , and if S contains no empty

nodes when projected along any of its component dimensions (Figure 6-4).3 There is

a finite collection of structures that are compatible with a given form F , and P (S|F )

is non-zero only for graphs in this collection. To encourage the model to choose the

simplest adequate representation for a domain, we weight each structure according

to the number of nodes it contains:

P (S|F ) ∝







0 S is incompatible with F

θ(1 − θ)|S| otherwise
(6.2)

where |S| is the number of nodes in S.4

The parameter θ determines the extent to which graphs with many clusters are

penalized, and is fixed for all of our experiments. We set θ = 1−e−3, which means that

each additional node reduces the log probability of a structure by 3. The normalizing

constant for P (S|F ) depends on the number of structures compatible with a given

form, and ensures that simpler forms are preferred whenever possible. For example,

any chain Schain is a special case of a grid, but P (Schain|Fchain) > P (Schain|Fgrid) since

there are more possible grids than chains given a fixed number of entities. Computing

the normalizing constant for P (S|F ) requires some simple combinatorics, and details

are provided in an appendix.

2There are methods for learning partitions (Escobar & West, 1995) and trees (R. Neal, 2003)
when the set of entities is countably infinite, and future work should consider whether these methods
can be used to develop a framework for learning many kinds of forms.

3In the case of trees, internal nodes are required to be empty, but we do not allow empty leaf
nodes.

4If S is a tree, since entities may only appear at its leaves, we adopt the convention that |S| is
equal to the number of leaf nodes in S.
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Feature data

The remaining term in Equation 6.1, P (D|S), measures how well the structure S

accounts for the data D. Its definition depends on whether the data are feature

values, similarity ratings or relations. We consider all three cases, but we assume first

that D is a feature matrix where the (i, j) entry in the matrix indicates the value of

entity i on feature j (see Figure 6-1).

When working with feature data, we represent the structure of a set of entities

using undirected entity graphs. Cluster graphs are converted to entity graphs by

adding a node for each entity, connecting each entity to the cluster node that contains

it, and replacing each directed edge with an undirected link (Figure 6-4). We set

P (D|S) = P (D|Sent) where Sent is the entity graph corresponding to cluster graph

S.5

Given an entity graph Sent, P (D|Sent) should be high if the features in D vary

smoothly over the graph—that is, if entities nearby in Sent tend to have similar feature

values. In Figure 6-1a, for instance, feature f1 is smooth over both trees, f3 is smoother

over the left tree than the right tree, and f6 is smooth over neither tree. We capture the

expectation of smoothness by assuming that the features are independently generated

by a zero-mean Gaussian process over the graph Sent (Zhu, Lafferty, & Ghahramani,

2003). Under this model, each candidate graph Sent specifies how entities are expected

to covary in their feature values, and the distribution P (D|Sent) favors graphs that

capture as much of this covariance as possible. A more detailed description of the

model is provided in the appendix.

Now that we have fully specified a hierarchical model we can use it for several

purposes. If the form of a data set is already known, we can search for the structure

S that maximizes P (S|F ) (Figure 6-1a). If the form of the data is not known,

at least two strategies might be tried. For some applications it may be desirable

to integrate over the space of structures S and compare forms according to their

posterior probabilities P (F |D). We chose, however, to search for the structure S and

5Note that an order becomes a fully connected graph when directed edges are converted to
undirected edges.
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form F that jointly maximize P (S, F |D) (Equation 6.1). Two factors motivate this

approach. First, we are interested in discovering the structure S that best accounts for

the data. Maintaining a posterior distribution over structures may lead to optimal

predictions about unobserved features, but human learners often appear to choose

just one representation for a problem. Second, even if we wanted to integrate over

the space of structures, computing the integral P (F |D) =
∫

P (F, S|D)P (S|D)dS is

a difficult challenge. Future research should attempt to address this challenge, since

integrating over structures may prove useful when applying the form-discovery model

to machine learning problems.

Experiments

We generated synthetic data to test the form-discovery algorithm on cases where the

true structure was known. Figure 6-5 shows graphs used to generate five data sets,

and the structures found by fitting five different forms to the data. The final column

in Figure 6-5 compares the scores for the five forms, and shows that the true form

is correctly recovered in each case. Special-purpose learning algorithms already exist

for several of these forms, including partitions and trees (Shepard, 1980; Duda et al.,

2000). The form-discovery model subsumes many of these previous algorithms, and

discovers in addition which form is best for each data set.

Animals

Next we applied the model to several real-world data sets, in each case considering

all forms in Figure 6-2. The first data set is a matrix of animal species and their

biological and ecological properties. It consists of human judgments about 33 species

and 106 features, and amounts to a larger and noisier version of the data set shown

schematically in Figure 6-1. We collected the data by asking a single subject to

make binary decisions about whether 106 features applied to 60 animal species. The

data include perceptual features (is black), anatomical features (has feet), ecological

features (lives in the ocean) and behavioral features (makes loud noises). The data
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Figure 6-5: Structure discovery results for synthetic data. Five sets of features were
generated over the graphs in the left column, and five forms were fit to each dataset.
The structures found are drawn so that entity positions correspond to positions in
the picture of the true structure. Each entity has been connected to the cluster node
to which it belongs: for instance, all graphs in the top row have six clusters. The
final column shows log posteriors log(P (S, F |D)) for the best structures found, and
the best scoring structure is marked with an asterisk. The difference between the
scores for the top two structures ranges from 0.63 (indicating that the chain is about
twice as likely as the grid on the chain-structured data) to 2245 (indicating that the
grid is many orders of magnitude more likely than the ring on the grid-structured
data). Each plot has been scaled so that the worst performing structure receives a
score close to zero.
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analyzed here include 33 species (the species in Figure 6-6a) that were chosen to be

representative of the full set.

Given these biological data the model concludes that the best scoring form is

the tree. This result is consistent with the finding that cultures all over the world

appear to organize living kinds into tree-structured representations (Atran, 1998).6

The ultimate reason why trees are useful for representing relationships between living

kinds is that species were generated by a branching process—the process of evolution.

The best tree found by the model (Figure 6-6a) includes subtrees that correspond to

categories at several levels of resolution, including mammals, primates, rodents, birds,

insects, and flying insects.

Scores for each form on the biological data set are shown in Figure 6-7. Since

our search algorithm is not deterministic, these figures were generated by running

the algorithm 10 times and choosing the best structure found. Note that the scores

in Figure 6-7 represent log probabilities: for instance, the best tree-structured rep-

resentation for the biological data is around 10 times more probable than the best

hierarchy, and around 150 times more probable than the best chain. Recall that a

hierarchy is a tree where entities (here animals) are located both at the leaves and

at the internal nodes. Since the tree and the hierarchy can both capture branch-

ing structures, it makes sense that both forms provide a relatively good account of

biological data.

Judges

The second data set is a matrix of votes from the United States Supreme Court,

including 13 judges and their votes on 1596 cases. The data include all cases heard

between October 1987 and June 2005.7 This period covers all of the Rehnquist natural

6Given that folk taxonomies appear to be systems of nested categories, it is interesting that
scientists took so many years to formalize this idea. One possible explanation is that the hierarchical
structure of folk taxonomies is only implicit, and that it took a Linnaeus to make this structure
explicit.

7The unit of analysis is the case citation (ANALU=0), and we included cases where DEC TYPE
equals 1 or 5 (Spaeth, 2005). Voting behaviors were converted to binary values: regular concurrence
(3) and special concurrence (4) were converted to majority votes (1), and non-participation (5) was
treated as missing data. Any case with a voting behavior other than 1 through 5 was removed from
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courts except the first. Since at most 9 judges voted on any of the cases, the data

include many missing entries. We assume that the unobserved entries are missing

completely at random, and integrate over all possible values for these entries.8

Some political scientists (Grofman & Brazill, 2002) have argued that a unidimen-

sional structure best accounts for variation in Supreme Court data and in political

beliefs more generally, although other structural forms (including higher-dimensional

spaces (Wilcox & Clausen, 1991) and sets of clusters (Fleishman, 1986)) are also

considered. Consistent with the unidimensional hypothesis, the model identifies the

chain as the best-scoring form, and the best chain (Figure 6-6b) organizes the thirteen

judges from liberal (Marshall and Brennan) to conservative (Thomas and Scalia). The

next best form is the hierarchy, which is not surprising since each chain is a special

case of a hierarchy.

Even though our generative model for features assumes that the data are contin-

uous, Figures 6-6a and 6-6b were learned from binary features. If possible, it would

be better to analyze these data sets using a generative model for binary data. Gen-

erative models analogous to Equation 2 can be defined for binary features (Ackley

et al., 1985), but structure learning becomes more difficult: in particular, computing

P (D|S) is challenging when S is multiply connected. Future models can attempt to

address the computational challenges we have avoided by working with a Gaussian

generative process.

Similarity data

If similarity is assumed to be a measure of covariance, the feature-based model can

also discover structure in similarity data. Under the generative model for features, the

the analysis.
8In general, we cannot simply ignore the missing data when learning structural forms. If two

judges never sat on the same court, there are no features observed for both of them, which encourages
the model to assign them to the same node in the structure if their ideological positions are even
roughly similar. (Given fully observed data, two entities will usually be assigned to the same node
only if they are highly similar.) Groupings of this sort can affect the relative scores of different
structural forms. We excluded the first Rehnquist court since Kennedy and Powell (who sat only
on that court, and whom Kennedy replaced in 1988) tended to be assigned to the same node, and
this grouping appears to be heavily influenced by the fact that these judges never served together.
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Figure 6-6: Structures learned from (a) biological features, (b) Supreme Court votes,
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Figure 6-7: Scores for eight structural forms on feature and similarity data. (a) Each
score represents log(P (S, F |D)) where S is the best structure found for form F . The
scores have been translated that the lowest score in each case is close to zero. Recall
that a connected structure is the same as an undirected order. (b) Relative scores
for the top four forms for each data set. The differences between these scores are the
same as the differences in (a).
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equation for P (D|S) includes only two components that depend on D: the number of

features observed (m), and the covariance of the data ( 1
m

DDT). As long as m and the

covariance matrix are provided, our approach to structure discovery can be used even

if none of the actual features is observed. This insight allows us to learn structural

forms from similarity data, if we assume that a given (symmetric) similarity matrix

is a covariance matrix.9 Additional details can be found in the appendix.

Experiments

Color

We applied the similarity model to a matrix containing human judgments of the

similarity between all pairs of 14 pure-wavelength hues (Ekman, 1954). The ring in

Figure 6-6c is the best structure for these data, and corresponds to the color circle

described by Newton. Configurations similar to Figure 6-6c have been found using

multidimensional scaling to locate the colors in two dimensions (Shepard, 1980), but

a ring provides more appropriate constraints on inductive inference. The ring implies

that other pure-wavelength hues will be located somewhere along the ring, but if a

two-dimensional configuration were chosen, other hues would be incorrectly expected

to fall in any region of the space.

Faces

Next we analyzed a similarity data set where the entities are faces that vary along two

dimensions: masculinity and race. We created 16 faces using the FaceGen program.

The program includes dimensions for race and gender, and we used four possible values

along each dimension. The dissimilarity between faces was defined as the Euclidean

distance between their pixel vector representations. Given these data, the model

chooses a grid structure that recovers the two underlying dimensions (Figure 6-6d).

9In many cases the similarity matrix will already be positive definite, but if not we make it so by
replacing all negative eigenvalues with zeroes.
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Cities

As a final demonstration of the similarity model we analyzed a data set of distances

between 35 world cities. Dissimilarity was defined as distance along the surface of the

earth. Assuming that the earth is spherical, these distances can be calculated using

the latitude and longitude of each city. Given these data, the model chooses a cylinder

where the chain component corresponds roughly to latitude, and the ring component

corresponds roughly to longitude. A spherical representation would presumably score

even better than a cylinder, but note that a sphere does not currently appear in the

hypothesis space of structural forms.

Relational data

The framework already described can be used to discover structure in relational data

if we modify the distribution P (D|S) appropriately. We define two generative models,

one for frequency data and the other for binary relations. Suppose first that D is a

square frequency matrix with a count dij for each pair of entities (i, j). If the entities

are people, for example, dij may indicate the number of times that person i spoke to

person j. We define a generative model where P (D|S) is high if the large entries in D

correspond to edges in the cluster graph S. A more detailed description is provided

in the appendix.

A similar approach can be used to analyze binary relations. Suppose that D is

a square binary matrix where dij is 1 if the relation holds between i and j and 0

otherwise. In a social setting, for instance, dij may capture whether i gives orders to

j. We define a generative model where P (D|S) is high if the non-zero entries in D

tend to correspond to edges in the cluster graph S. Again, details can be found in

the appendix.

When working with relational data, for convenience we restrict the analysis to

graphs where each node represents a non-empty cluster of entities. Trees, grids and

cylinders allow nodes to be empty, and we remove these from our collection of struc-

tural forms, leaving five forms in total. Given a relation it is important to discover
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Figure 6-8: The four chain-structured forms used for relational data.

whether the relation tends to hold between elements in the same cluster, and whether

the relation is directed or not. The forms in Figure 6-2 use nodes without self-links,

and therefore assume that the relation does not hold within clusters. We create a

set of 10 forms by supplementing each form with an alternative that uses nodes with

self-links, but is otherwise identical. Each of these 10 forms uses directed edges, and

for each we include an additional form with undirected edges. In total, then, the hy-

pothesis space of relational forms includes 20 candidates.10 The four chain-structured

forms in this hypothesis space are shown in Figure 6-8.

Experiments

Mangabeys

We applied the relational model to a matrix of interactions among a troop of sooty

mangabeys. The data represent interactions where one animal submitted to another.

Range and Noë (2002) consider two types of submissive behavior: in the first, “the

actor jumps or walks away from an approaching individual,” and in the second, “the

actor leans aside or shifts body position in response to another individual that ap-

proaches or walks by.” These data were recoded so that a count in the (i, j) cell of

the matrix indicates that i caused j to submit.

Scores for each form on this data set are shown in Figure 6-10. As expected,

the model concludes that a directed order is the most appropriate form, and the two

10Only 17 of these forms are actually distinct. A partition (with or without self-links) remains
the same when converted to an undirected graph. An undirected order with self links is a fully
connected graph, and is very similar to a partition graph without self links (a graph with no edges).
In both cases, all clusters stand in the same relationship to each other.
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Figure 6-9: Structures learned from relational data (top row), and the raw data
organized according to these structures (bottom row). (a) Dominance relationships
among a troop of sooty mangabeys. The sorted data matrix has most of its entries
above the diagonal, indicating that animals tend to dominate only the animals below
them in the order. (b) A hierarchy representing relationships between members of
the Bush administration. (c) Social cliques representing friendship relations between
prisoners. The sorted matrix has most of its entries along the diagonal, indicating
that prisoners tend only to be friends with prisoners in the same cluster. (d) The Kula
ring representing armshell trade between New Guinea communities. The positions of
the communities correspond roughly to their geographic locations.

kinds of directed order (one with self-links, the other without) score better than the

other forms. A fragment of the best-scoring order is shown in Figure 6-9a, and this

order is consistent with the dominance hierarchy inferred by primatologists studying

this troop.

Bush Cabinet

Next we explored whether the model could discover the structural form of a human

organization. The data set D is now a matrix of interactions between members of

George W. Bush’s first-term administration. Entry Dij in the matrix is the number of

Google hits for the phrase “i told j,” where i and j vary over 13 members of the Bush

administration.11 Although there are some hits for phrases like “Bush told Bush,”

11These Google searches were carried out on January 26, 2006.
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we set all counts along the diagonal to zero.

When applied to these data, the model concludes that the best form is an undi-

rected hierarchy. The best hierarchy found (Figure 6-9b) closely matches an orga-

nizational chart built by connecting individuals to their immediate superiors, and

the undirected nature of this representation indicate that information travels in both

directions along each link in the hierarchy. Studying the raw data in Figure 6-9b

indicates that the undirected hierarchy cannot be recovered by simply thresholding

the matrix D. For instance, “Libby told Bush” has a higher weight than “Whitman

told Bush,” even though Bush is directly connected to Whitman but not Libby in

the representation chosen by the model. Heuristics like thresholding may discover

interpretable structure in some cases, but probabilistic approaches are useful when

dealing with noisy real-world data.

Prisoners

Next we analyzed a relational matrix D that represents friendships between 67 prison

inmates. The inmates were asked “What fellows in the tier are you closest friends

with?” (MacRae, 1960). Each inmate mentioned as many friends as he wished, and

entry Dij is set to 1 if inmate i listed inmate j. Clique structures are often claimed

to be characteristic of social networks (Girvan & Newman, 2002), and the model

discovers that a partition (a set of cliques) provides the best account of the data.

Armshell Trade

Our final relational example considers trade relations between New Guinea commu-

nities (Hage & Harary, 1991). The 20 communities in the data set belong to the Kula

ring, an exchange structure first described by Malinowski (1922). The raw data are

represented as a matrix D where entry Dij in the data matrix is set to 1 if community

i sends mwali (armshells) to community j. As expected, the model concludes that a

directed ring provides the best account of these data.
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Figure 6-10: Scores for eighteen structural forms on relational data. U indicates an
undirected form, and S indicates a form with self links (see Figure 6-8). The scores
have been translated that the lowest score in each case is close to zero.

Related models

Although there have been few comprehensive studies of form discovery, our model is

related to several lines of previous work. Our general approach can be viewed as an

application of statistical model selection (Kass & Raftery, 1995). From a Bayesian

perspective, model selection can be achieved by describing a hypothesis space of

models (for us, each model is a pair (S, F )) and using Bayesian inference to choose

between them. Other approaches are sometimes proposed: Pruzansky, Tversky, and

Carroll (1982) decide whether a similarity matrix is better described by a tree or a
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two dimensional space by finding the best instance of each form, and choosing the

structure that accounts for the most variance. Several authors (Waller & Meehl, 1998;

Boeck, Wilson, & Acton, 2005) have proposed methods for distinguishing between

cluster structures and dimensional structures.

A key feature of a Bayesian approach is that it automatically penalizes unneces-

sarily complex models. Some such penalty is essential when considering structural

forms of different complexities, since complex forms (e.g. fully connected graphs) can

easily mimic simpler forms. Each chain, for example, is a special case of a grid, and

it follows that the best grid Sgrid will account for any data set D at least as well as

the best chain Schain: P (D|Sgrid) ≥ P (D|Schain). The approach of Pruzansky et al.

(1982) will therefore never choose the simpler model class, even when the data D

were actually generated over a chain.12

Feature data

The feature-based model is related to previous work on learning the structure of

graphical models (Dempster, 1972; J. Whittaker, 1990; Dobra, Jones, Hans, Nevins,

& West, 2004). Previous models usually belong to one of two families. The first

family includes models that impose no strong constraints on the form of the graph

structures that are learned. Bayesian approaches within this family generally use a

prior that includes all possible graph structures, and the prior over this space is usually

relatively simple—for example, Dobra et al. (2004) use a prior that favors graphs with

small numbers of edges. Models in the second family assume strong constraints on

the form of the graph to be discovered, but these constraints are fixed from the

start, not learned from data. Approaches in this second family include algorithms for

phylogenetic reconstruction (Huelsenbeck & Ronquist, 2001) that attempt to discover

tree-structured graphical models.

Our form-discovery model falls in the little-explored territory between these two

12Pruzansky et al. (1982) recognize the importance of model complexity, and justify their approach
by arguing that the complexity of trees is approximately equal to the complexity of two dimensional
spaces.
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families of models. Instead of working with generic priors over the set of all possible

graph structures, we developed an approach that concentrates the prior probability

mass on graphs that correspond to one of a small number of structural forms.13 The

ultimate argument for such a prior is that it captures background assumptions that

are well-matched to the problems we wish to solve. The need for suitable background

assumptions is most pressing when dealing with sparse data, and sparse data are the

rule rather than the exception in both cognitive development and scientific discovery.

Relational data

The relational model also builds on previous approaches to structure learning (H. C.

White, Boorman, & Breiger, 1976; Nowicki & Snijders, 2001; Taskar, Segal, & Koller,

2001; Girvan & Newman, 2002). As for the feature-based case, previous approaches

to relational learning usually belong to one of two families. Consider, for instance,

the many previous models for relational clustering, or identifying clusters of entities

that relate to each other in predictable ways. The first family includes models that

impose no strong constraint on the form of the structures to be discovered. Stochastic

blockmodels (Wang & Wong, 1987; Kemp et al., 2006) are one example: they do not

incorporate the notion of structural form, and cannot conclude that a set of clusters is

organized into a simple form like a ring, or a set of cliques. The second family includes

models that assume that the structural form is known in advance. For instance, there

are several algorithms for discovering community structures in networks (Girvan &

Newman, 2002; Kubica, Moore, Schneider, & Yang, 2002). These approaches usually

assume that the data are organized into a set of cliques, and that individuals from

any given clique tend only to be related to others from the same clique. The form-

discovery model again occupies the little-explored territory between these two families

of approaches.

13Even though the notion of structural form is the most distinctive aspect of our model, this model
differs from previous structure learning models in at least three other respects. First, standard
methods for learning the structure of Gaussian graphical models do not allow latent nodes. Second,
these methods make no attempt to cluster the nodes. Third, these methods allow graphs where
some of the edges capture negative covariances. For the generative model in Equation 3, an edge
between two entities always encourages the entities to have similar feature values.
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Learning from sparse data

So far I have argued that structural forms can be learned, but we have seen few

concrete examples of the inductive benefits that form discovery can bring. The in-

ductive constraints provided by structural forms seem especially relevant to two kinds

of problems: problems where a novel entity is sparsely observed, and problems where

an entire system of entities is sparsely observed.

Novel entities

Inductive constraints are most important when data are sparse, and inferences about

novel entities are often based on very sparse data. Suppose, for example, that the 20

mangabeys in Figure 5a are confronted by a new animal—mangabey X. Mangabey X

has interacted with the troop on only one occasion, when he challenged and dominated

mangabey 1. A learner who knows that the troop is organized into a dominance

hierarchy can predict that mangabey X will dominate every other animal in the

troop. A learner with a diffuse prior over graphs, however, will be unable to draw

any conclusion from the single observation involving the new animal.

Similar problems arise when the data are features rather than relations. Suppose

that you glimpse a novel animal at the zoo, and you think you see that it has the head

of a bird and the body of a dog. If you know that biological species are organized into

a tree, you should begin to doubt what you saw, since there is no way of extending

your current tree so that the new animal is close to both the birds and the dogs. A

model with a diffuse prior over graphs, however, will happily create a new graph by

connecting the new animal to both the birds and the dogs.

Novel systems of entities

Structural forms are useful when new entities are encountered one at a time, but

form discovery also supports inferences about entire systems of new entities (Novick,

1990). Suppose, for example, that a primatologist has spent several months studying

one troop of mangabeys, and has discovered that the group is well described by a
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dominance hierarchy. Knowing that mangabeys organize themselves into dominance

hierarchies should allow her to quickly figure out the social structure of the next

troop she studies, but a scientist who has not discovered the structural form of the

first troop may take substantially longer.

Similar problems arise when the data are features rather than relations. Consider

the case of Joseph Banks, the botanist on Cook’s first voyage to the Pacific. As a

young man, Banks studied the works of Linnaeus and presumably concluded that

the species belonging to any given continent could be organized into a tree. Given

this knowledge, a relatively small number of observations should have been enough

for Banks to develop a tree-structured representation of the Australian species he

encountered. A naturalist who had not read Linnaeus might have taken much longer

to discover an adequate representation for the odd-looking animals he observed.

Form discovery in the laboratory

Structural forms are useful in part because they support inductive inferences, but we

can turn this relationship around and use inductive inferences to diagnose whether a

learner has successfully discovered the structural form of a domain. Two inductive

tasks were described in the previous section: tasks where learners make inferences

about new members of a known system, and tasks where learners make inferences

about entirely new systems of entities. We developed experiments based on both

tasks.

Experiment 1: Transfer to novel systems

In the first experiment, we trained participants on the structure of one relational

system and asked them to generate two additional systems with similar structures.

Identifying the form of the training system should allow learners to generate further

instances of this form.
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Figure 6-11: The six training systems used in Experiment 1. The first five systems
are instances of simple structural forms.

Participants

12 members of the MIT community were paid for participating in this experiment.

Materials and Methods

The experiment included six within-participant conditions. In each condition, par-

ticipants learned a single system (the training system) and generated two additional

systems (the transfer systems). The six training systems are shown in Figure 6-11: the

first five are instances of simple structural forms, and the final system was intended

to be a more random kind of structure.

The task was introduced as follows:

Mr Cheeryble is an eccentric billionaire who owns many small companies

across many different industries. Cheeryble strongly believes that com-

panies in the same industry should be organized similarly, although com-

panies in different industries can be organized differently. He also firmly

believes that important documents should be enclosed in red envelopes.

As a management consultant, you have been hired to secretly observe the

organization of five of Mr Cheeryble’s companies, each from a different

industry. You will begin your investigation in the mailroom and observe

how red envelopes are exchanged within each company.

The experiment was carried out on a computer, and during the learning phase

the interface had a single button labeled “Observe.” Upon clicking this button,

participants were told about an event corresponding to one of the edges in the current
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training system: they might be told, for example, that “John sends a red envelope to

Bill” (employee names were randomized across participants). After some number of

observations, participants were given a test which included a yes/no question about

each pair of employees (e.g. “Does John send red envelopes to Bill?”). Participants

continued to observe edges in the training system until they were able to answer all

of the test questions correctly.

Figure 6-11 shows that each training system included four or five nodes. After

participants had learned the training system, they were asked to write a brief descrip-

tion of the organization of this company. Participants were then told that “Cheeryble

has another company in the same industry with six employees,” and asked to “indi-

cate one way in which the company might be organized.” After generating the first

transfer system (a six node system), participants were asked to generate a transfer

system with seven nodes. Since participants were provided with only a single training

system for each condition, each of their inferences is an instance of one-shot learning.

Results

The six-node transfer systems are shown in Figure 6-12. The collection of seven-node

transfer systems is qualitatively similar, although not described in this thesis. For

each of the first five conditions, Figure 6-12 shows that at least five of the twelve

participants generated a transfer system that was consistent with the form of the

training system (counts for consistent systems are circled). These results support

the idea that humans are able to discover the abstract organizing principles of a

relational system. Responses for the random condition were more diverse, and no

transfer system was chosen more than twice. Note that the random system is similar

in many respects to the other training systems—for example, it has about the same

number of nodes and edges as the other systems. The random system, however, has

no recognizable structural form, which appears to explain the lack of consensus in

this condition.

The verbal descriptions of the training systems provide further evidence that par-

ticipants were able to discover the structural forms of the first five systems. When
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Figure 6-12: Transfer systems. Each row represents one of the conditions of experi-
ment 1. The number above each system is the number of participants (out of twelve
in total) who generated that structure. Circled numbers indicate systems that are
consistent with the structural form of the training system, and numbers with asterisks
indicate cases where the training system was simply reproduced. Only eight of the
ten systems generated for the random condition have been shown.
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describing the chain, one participant wrote:

There is an obvious chain of command. It goes from top to bottom through

two middle men.

The same participant described the ring as follows:

There is no clear ‘boss’. Envelopes are sent in a one directional circle that

cycles through the employees of the company.

and gave this description of the partition:

It appears that this company has two sections, a three man group and

a two man group. Within each group, everyone can send envelopes to

everybody. However, the one group does not send envelopes to the another

[sic].

Like all one-shot inferences, generating a transfer system is a problem that is

highly underconstrained. Although most participants appeared to rely on the notion

of structural form, many other strategies are logically possible. For each condition

except the chain condition, a handful of participants generated a transfer system that

was identical to the training system except that it had some extra, isolated nodes.

These generalizations are marked with asterisks in Figure 6-12. Simply reproducing

the training system is a sensible response to the transfer task, and the fact that so

many participants generated a structure different from the training system suggests

that the notion of structural form is relatively intuitive.

Some of the less popular responses suggest that participants may have detected

regularities in the training systems other than the regularities we had in mind. In

the partition condition, most participants appeared to interpret the training system

as a pair of cliques, but one participant may have represented it as a pair of rings, as

suggested by the fourth transfer system for this condition (Figure 6-12). In the order

condition, one participant may have interpreted the training system as a four-level

structure where multiple nodes can belong at each level. This interpretation is con-

sistent with the second transfer system for this condition (Figure 6-12), which is a
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Figure 6-13: The five training systems used for experiment 2. In each condition,
participants were initially trained on a structure with up to six nodes (a through
f). After training, two new nodes were introduced (x and y) and two interactions
involving these nodes were provided (the links shown in red). Participants then
predicted how x and y would interact with all of the nodes in the training system.

four-level structure with three nodes at the bottom level. Since there are many reg-

ularities that participants might have picked up, it is revealing that most responses

were consistent with the structural forms we had in mind when designing the ex-

periment. This result suggests that the structural forms indicated by the labels in

Figure 6-11 are psychologically natural—more natural, for instance, than the many

other regularities that are consistent with each training system in Figure 6-11.

Experiment 2: Predictions about novel entities

Structural forms allow knowledge to be transferred from one system to another, but

should also support inductive predictions about new members of a known system. In

a second experiment, we trained participants on the structure of a system then asked

them to make inferences about new members of this system.

Participants

Ten members of the MIT community were paid for participating in this experiment.
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Figure 6-14: Experiment 2: modal predictions. The number above each subplot
represents the number of participants (out of ten in total) who gave that response.
For each of the first four conditions, the modal prediction is consistent with the
structural form of the training system.

Materials and Methods

Experiment 2 was very similar to Experiment 1. There were five conditions: in each of

these conditions, participants learned a training system and generated a seven-node

transfer system. The training systems are shown in Figure 6-13. After each transfer

system had been generated, participants were told that

Two additional employees (x and y) were away on vacation when you

started in the mailroom. Now they are back at work, and you observe one

interaction involving x and another involving y.

Entities x and y and the observations associated with each are shown in Figure 6-13.

Participants were then asked to predict how x and y would interact with all of the

remaining nodes in the training system, and were asked in addition to explain their

responses.

Results

Predictions about the new entities x and y are shown in Figures 6-14 and 6-15.

For each of the first four conditions, the modal prediction was consistent with the

structural form of the training system, and was made by at least half of the ten

participants. In the order condition, for example, node x sends a link to the node
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Figure 6-15: Experiment 2: mean predictions.

that was previously at the top of the order, which suggests that x will send a link to

each of the remaining nodes. Node y receives a link from the node that was previously

at the bottom of the order, which suggests that y will receive links from all of the

other nodes.

Alternative explanations may account for the results observed in some of the five

conditions, but it is difficult to explain the full pattern of results in Figure 6-14

without invoking the notion of structural form. Since x has been observed only to

send a link to a, a simple baseline model might assume that x is just like a, and

participates in a given relationship only if a does. This model accounts fairly well for

the modal predictions in the order and partition conditions, but does not capture the

modal responses in the chain and hierarchy conditions (Figure 6-16). Other baseline

models might be considered, but there appears to be no simple alternative that will

account for all of the behavioral data.

The verbal descriptions provided by participants provide further evidence that

their inferences were often based on the notion of structural form. In the order con-

dition, for instance, one participant gave the following justification for his predictions

about x:

If x can send to a, x must be in the highest position. x can therefore send

to all the other employees.

and explained his predictions about y as follows:

159



to x
from x

to y
from y

a b c d
0

1

a b c d
0

1

a b c d e f
0

1

a b c d e f
0

1

a b c d e f
0

1

a b c d e f
0

1

a b c d
0

1

a b c d
0

1

a b c d
0

1

a b c d
0

1

Chain Partition Hierarchy Order Random

Rating

Rating

Figure 6-16: Experiment 2: predictions of a baseline model which assumes that nodes
x and y are just like the nodes they are linked to.

If d sends to y, y must be the most downstream employee. Therefore,

y will receive red envelopes from all the employees, but cannot send to

anyone.

Taken together, our two experiments support the idea that humans can discover

the structural form of a relational system, and can use this knowledge to make predic-

tions about new or sparsely observed entities. There are several promising directions

for future experiments to pursue. The inductive tasks we chose are inspired by real-

world problems that human learners must solve, but other experimental paradigms

may also be worth exploring. For instance, participants should be faster to learn an

instance of a simple structural form than a random system with a comparable number

of edges (DeSoto, 1960). Errors made by participants should also be revealing: when

learning a noisy instance of a given structural form, for instance, errors should tend

to “regularize” the structure, or transform it into a better instance of the underlying

form (Freeman, 1992).

Modeling cognitive development

Both of our experiments used adult participants, but some of the most impressive

feats of form discovery may occur as children learn about the structure of the world.

I predict that the ability to discover structural forms will be found relatively early
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in development, but testing this prediction may raise some interesting experimental

challenges. To motivate future work in this direction, I present one of the develop-

mental predictions made by the form-discovery model.

As children learn more about a domain, their mental representations appear to

undergo qualitative transitions that have been likened to paradigm shifts in sci-

ence (Carey, 1985a; Kuhn, 1970). The form-discovery model shares this ability to

move between qualitatively different representations of a domain. Given a small

amount of data, the model typically chooses a form that is simple, but that does not

capture the true structure of the domain. As more data arrive, the model should

reach a point where the true structural form is preferred.

To demonstrate a qualitative shift in biological knowledge, we presented the model

with more and more features of the animals in Figure 6-6a. We could have run this

simulation by randomly sampling smaller data sets from the full feature matrix, but

the results might have been influenced by idiosyncratic properties of the small data

sets sampled. To avoid this problem, we directly specified the covariance of each data

set and worked with the similarity version of the model. We analyzed data sets where

the effective number of features was 5, 20, or 110, and the similarity matrix in each

case was the covariance matrix for the full set of animal features. Even though the

similarity matrices are identical, increasing the effective number of features should

allow the model to discover more complex representations. When only 5 features are

provided, the model should attempt only to fit the broad trends in the data, but given

110 features, the model should attempt to explain some of the more subtle variation

in the data.

Figure 6-17 shows the representations chosen by the model for each data set. At

first, the simplest form is preferred, and the model chooses a set of clusters. Given

20 features, the tree form is preferred, but the chosen tree is simpler than the tree

in Figure 6-6a. The final tree is identical to the tree in Figure 6-6a: note that a

similarity data set with 110 features is effectively identical to the data set that led to

Figure 6-6a.

The developmental shift in Figure 6-17 is reminiscent of a trajectory that children
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appear to follow as they learn the meanings of words. Early in development, children

respect the assumption of mutual exclusivity: they organize objects into a set of non-

overlapping clusters, with one category label allowed per cluster (Markman, 1989).

Eventually, however, children realize that objects can be organized into taxonomic

hierarchies. Figure 6-17 suggests that this insight may be driven in part by the

amount of data available to older children.

The ability to learn from raw data may support some of the earliest and most

fundamental shifts in children’s thinking. Bottom-up learning, however, can only ex-

plain some aspects of cognitive development, and explicit instruction may contribute

to the majority of developmental shifts once children have become proficient language

users. Although I have focused on learning representations from raw data, hierarchi-

cal approaches can naturally handle linguistic input at multiple levels of abstraction,

including all three levels in Figure 6-1. Linguistic input can provide new features (e.g.

“whales breathe air”), and can also provide direct information about a structure S

(e.g. “whales belong with the mammals rather than the fish”) or a form F (e.g. “the

theory of evolution implies that animals should be organized into a tree”). Modeling

learning when input is simultaneously provided at several levels of abstraction is an

important goal for future work.

Conclusion

This chapter presented a hierarchical Bayesian model (Figure 6-1) that helps to ex-

plain how humans discover the structural form of a domain. I showed that the model

discovers interpretable structure in several real-world data sets, and described two

experiments which support the idea that humans can discover the best kind of rep-

resentation for a domain.

The form discovery model is broader in scope than the hierarchical models de-

scribed in Chapters 4 and 5. Word learning and causal learning are important areas

of study, but both of these areas are relatively self contained. Knowledge represen-

tation is a more general topic that is relevant to virtually every area of cognitive
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science: for instance, theories of language, perception, action, and reasoning must all

make claims about the structure of mental representations. By addressing a topic as

general as knowledge representation, this chapter demonstrated several key features

of the hierarchical Bayesian approach.

First, hierarchical Bayesian models help to explain how domain-specific constraints

can be acquired. A typical nativist view recognizes that inductive inference relies

on domain-specific constraints but assumes that these constraints are innately pro-

vided (Chomsky, 1980; Atran, 1998; Kant, 2003). Chomsky (1980), for instance, has

suggested that “the belief that various systems of mind are organized along quite

different principles leads to the natural conclusion that these systems are intrinsically

determined, not simply the result of common mechanisms of learning or growth.” The

form discovery model offers an alternative view, and suggests that domain-specific

constraints can be acquired using domain-general statistical inference. This per-

spective has been previously emphasized by connectionist modelers, who argue that

“domain-specific representations can emerge from domain-general architectures and

learning algorithms” (Elman et al., 1996).

Models that learn about many domains point the way towards unified accounts of

human learning. There are many special-purpose models in the literature, including

models of word learning (Chapter 4), grammar learning, causal learning (Chapter 5),

concept learning, perceptual learning, and motor learning. Each kind of learning is

distinctive in its own way, but there may be general principles that help to explain all

of these different abilities. The hierarchical Bayesian approach provides a natural way

to combine the insights behind several special-purpose models. Given several models

that are somewhat related, we can introduce a new level of abstraction that captures

their commonalities, and can treat each special-purpose model as a component of

a single, more general model. The form discovery model, for instance, shows how

models that learn trees, rings, chains, and partitions can be absorbed into a single

general framework for structure learning.

Connectionist models can also handle problems from many domains, but the form

discovery model departs from the connectionist approach in one particularly im-
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portant respect. Standard methods for learning connectionist networks (Rogers &

McClelland, 2004) use the same generic class of representations for every task, in-

stead of attempting to identify the distinctive kinds of structures that characterize

individual domains. Without these structural constraints, connectionist models can

require unrealistically large quantities of training data to learn even very simple con-

cepts (Geman et al., 1992). The form discovery model recognizes that different kinds

of representations are appropriate for different domains, and that the right kind of

representation is crucial for explaining how learning can succeed given sparse data.

Structured representations are important in part because of the inductive constraints

that they capture, and a comprehensive theory of learning (Table 1.2b) should aim

to incorporate many kinds of representations.

Our current model can be extended in several ways to provide a more compre-

hensive account of form discovery. A natural first step is to implement the idea that

the structure grammars used by the model are generated from a single underlying

meta-grammar. The meta-grammar in Figure 6-3 is one initial proposal, but there

may be important classes of graphs (e.g. small-world graphs) that are not generated

by this meta-grammar, and it will be important to consider alternative schemes for

generating graph structures. A longer term goal is to extend the model to handle

structured representations other than graphs. To mention only two possibilities, log-

ical representations are useful for capturing some aspects of semantic knowledge, and

Markov decision processes are useful for modeling action and decision making.

Even though I have focused on graph structures, the basic idea behind the form-

discovery model should apply more generally. Given a set of structure grammars, a

learner can identify the grammar that provides the best account of a data set, and

this approach can be pursued regardless of whether the grammars generate graph

structures, logical representations, or other kinds of representations. As mentioned

earlier, the ultimate goal is to develop a “universal structure grammar” that fully

characterizes the representational resources available to human learners. This uni-

versal grammar, for instance, might specify a set of representational units and a set

of rules for combining these units to create structure grammars of various kinds, in-
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cluding grammars that generate graphs, logical representations, Markov decision pro-

cesses, and many other families of representations. The notion of a universal structure

grammar is highly speculative at present, but attempts to characterize this universal

grammar should provide some insight into the growth of mental representations.
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Chapter 7

Conclusion

Inductive inferences depend critically on constraints. Some of these constraints must

be innate, but I have suggested that hierarchical Bayesian models help to explain how

the rest are acquired. Hierarchical Bayesian models include representations at multi-

ple levels of abstraction, and the representations at the upper levels place constraints

on the representations at the lower levels. Statistical inference over these hierarchies

helps to explain how the constraints at the upper levels are learned.

To demonstrate the psychological relevance of this approach I described models

that address three aspects of high-level cognition: categorization (Figure 2-2c), causal

reasoning (Figure 2-2e), and knowledge representation (Figure 2-2f). Each of these

models can be developed further and subjected to additional experimental tests, but

more important than any single model is the general theoretical framework I de-

scribed. Here I expand on four of the most important lessons that can be learned

from this framework. First, inductive constraints are often considered as prerequisites

for learning, but constraints can themselves be learned. Second, constraints can be

learned fast: in particular, constraints can be learned from small amounts of data, and

constraints can be learned before the hypotheses they constrain are securely in place.

Third, a statistical approach to constraint learning also explains how constraints are

used for induction. Fourth, working with abstraction hierarchies is a useful general

strategy for understanding the acquisition of human knowledge.
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Lesson 1: Inductive constraints can be learned

Constraints and learning mechanisms are sometimes seen as competing explanations

for cognitive abilities. Researchers who focus on constraints often adopt a nativist

approach and assume that these constraints are innately provided. Researchers who

focus on learning often adopt an empiricist approach and explore how much can be

achieved by mechanisms that are relatively unconstrained. The hierarchical Bayesian

framework suggests that inductive constraints and inductive learning can and should

be studied together. Constraints are critical for explaining how humans acquire knowl-

edge so quickly and from such sparse data. Learning can explain how some of these

constraints are acquired in the first place.

The formal framework developed in this thesis helps to explain the acquisition

of epistemic constraints, or constraints that correspond to forms of abstract knowl-

edge. Some constraints (such as memory limitations) do not qualify as epistemic con-

straints, but the set of epistemic constraints is relatively broad and includes examples

of domain-specific constraints, domain-general constraints, soft constraints, and hard

constraints. Despite this generality, the notion of an epistemic constraint helps to

clarify what it means to learn an inductive constraint. Any epistemic constraint is

potentially a target for learning frameworks including the framework developed here,

but it makes little sense to ask how non-epistemic constraints could be learned.

The framework I described relies on Bayesian inference, and suggests that epis-

temic constraints can be acquired in the same way that any other kind of knowledge

can be acquired. Given principles that generate a hypothesis space of epistemic con-

straints, a Bayesian learner can select the constraint in this space that best accounts

for a body of observed data. Loosely speaking, a Bayesian learner should increase

its degree of belief in a hypothesis to the extent that the data are compatible with

that hypothesis, and incompatible with most alternative hypotheses. The same ap-

proach goes through regardless of whether the hypotheses correspond to epistemic

constraints or other kinds of knowledge. This view of learning suggests that there is

nothing particularly special about the acquisition of inductive constraints, and that
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the same fundamental principles that explain other kinds of learning can also explain

how inductive constraints are acquired. To put the same idea in a more positive light,

I began with a problem that seemed mysterious at first—the problem of learning in-

ductive constraints—and showed how it can be handled by familiar computational

techniques.

Although this thesis has argued that constraints can be learned, I do not claim

that this learning takes place in the absence of any background assumptions. Any

Bayesian account will rely on prior knowledge, and each of our hierarchical models

assumes that the prior at the topmost level is fixed in advance, and that the process

by which each level is generated from the level immediately above is also known. We

can think about relaxing some of these assumptions, but any learning framework will

rely on initial knowledge of some sort. The hierarchical Bayesian framework helps to

explore how much initial knowledge is required, and what form this knowledge must

take.

Lesson 2: Inductive constraints can be learned fast

An important challenge for constraint-learning models is to explain how constraints

are learned fast enough to be useful. A word-learning model, for instance, does

not seem illuminating if it must acquire thousands of words before it discovers con-

straints like the shape bias. Constraints like the shape bias are supposed to support

word learning: instead of being extracted from a large database of words, they are

supposed to explain how these words could be learned in the first place. We saw two

ways to understand how word-learning constraints might be learned rapidly. First,

some constraints (including the shape bias) can be learned given just a few examples

from just a few categories. Second, abstract-to-concrete learning might explain how

children acquire word-learning constraints before they are confident about the mean-

ing of any single word. The same two ideas may help to explain how many other

constraints are rapidly acquired.

When abstract knowledge is available very early in development, it is natural to
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conclude that this knowledge is innate. Versions of this argument have been used to

support nativist claims about several of the domains in Table 1.1 (E. S. Spelke, 1990;

Wynn, 1992). The hierarchical Bayesian approach suggests an alternative view: in

some cases, abstract knowledge may appear to be innate only because it is acquired

much faster than knowledge at lower levels of abstraction. Exploring this possibility

will be critical when deciding which of the constraints in Table 1.1 might be learned

rather than innate.

There is some debate in the developmental literature about whether abstract

knowledge is acquired before more concrete knowledge, or vice versa (Keil, 1998;

Mandler, 2003). Hierarchical Bayesian models suggest that statistical inference can

lead to both patterns of development, and that the pattern which emerges in any given

case will depend on the task in question. Even though both patterns of development

are discussed in the literature, most computational models of development focus on

concrete-to-abstract learning. The work described here is one of the first formal

attempts to understand how abstract knowledge can be acquired before more concrete

knowledge is securely in place.

Lesson 3: Bottom-up and top-down inferences

It is possible that the acquisition and use of inductive constraints might turn out

to be two rather different problems. Perhaps, for instance, we need one theory to

explain how constraints are learned, and a second theory to explain how constraints

guide inductive inferences. We saw, however, that the acquisition and use of inductive

constraints can both be viewed as statistical inferences over a hierarchical architecture.

Cases where knowledge at lower levels supports inferences at higher levels can be seen

as instances of constraint learning. Cases where high-level knowledge guides inferences

at lower levels help to explain how constraints support induction.

Although I focused on the acquisition of inductive constraints, I described several

cases where constraints guide inductive inferences. We saw, for instance, how a con-

straint similar to the shape bias supports inferences about novel categories (Chap-
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ter 4), how causal schemata support inferences about the causal powers of novel

objects (Chapter 5), and how structural forms support inferences about new mem-

bers of a relational system (Chapter 6). In each case, the relevant constraints were

learned from prior observations, but we can also develop hierarchical models where

the constraints at the upper levels are thought to be innate.

Like all human beings, psychology researchers are attracted to binary oppositions,

and top-down and bottom-up approaches are sometimes presented as incompatible

approaches to induction. The hierarchical Bayesian approach provides a unifying

account which suggests that both kinds of inference are needed to account for cogni-

tive development. Early in development, inductive constraints are learned by making

bottom-up inferences based on observable data, and once established these constraints

guide top-down inferences about novel contexts (Figure 4-8). As this trajectory sug-

gests, bottom-up and top-down inferences are both needed to explain how knowledge

is acquired and used.

Lesson 4: A method for understanding induction

As shown in Figure 2-3, a conventional Bayesian model makes inferences at two levels

of abstraction, but the models in this thesis support inferences at three levels of

abstraction. Moving from two to three levels might not seem like such a big step, but

the important development is that we can now introduce as many levels as we need

for a particular problem.

The ability to build models with multiple levels of abstraction suggests a general

strategy for understanding inductive inference. I illustrate by describing how we came

to develop the model described in Chapter 6. Suppose that we want to understand

how a certain kind of inference can be made. Chapter 6 grew out of our interest

in problems where people learn a handful of facts about a novel property (e.g. dol-

phins have property P) and make inferences about the distribution of the property

(are seals or cows more likely to have P?). Inferences about biological properties can

be explained if biological species are mentally organized into a tree-structure, and if

171



people know that nearby species in this tree tend to have similar properties (Kemp &

Tenenbaum, 2003). This approach, however, introduces a second problem: how might

people learn a tree structure that captures the similarity between animal species? This

structure can be learned by observing physical, behavioral and ecological properties

of different species and constructing a tree such that species with similar properties

are close to each other. Again, though, our proposed solution opens up another ques-

tion. Learning a tree from observed properties seems plausible, but how can learners

know in advance that they should construct a tree rather than some other kind of

representation? The model presented in Chapter 6 provides a possible solution: if

learners start with structure grammars that characterize a space of possible represen-

tations, they can identify the representation that best accounts for the data they have

observed. The sequence of questions does not stop here: as mentioned in Chapter 6,

it is natural to ask how learners might acquire a set of structure grammars, and we

can speculate about the conceptual resources that might be needed to construct this

set.

This case study suggests a general strategy that can be applied to many cogni-

tive problems. The general theme is that inductive inferences can be explained by

identifying the knowledge on which they depend. That knowledge, in turn, can be

acquired by relying on a body of knowledge that is even more abstract, and we can

iterate this procedure and build models where knowledge is acquired at many levels of

abstraction. Each time we add a level to a model there is an explanatory gain, since

the new level helps to explain how knowledge at the second-highest level is acquired,

and the modified model can potentially handle many phenomena that require differ-

ent representations at this level. There is also an explanatory cost, since the modified

model must know how representations at the second-highest level are generated given

a representation at the highest level, and must include a prior distribution over the

representations at the highest level. Each level of the form discovery model provides

an explanatory gain that appears to outweigh its cost, and similar arguments can be

made for the levels used by the other models in this thesis.

Adding levels can increase the explanatory power of a model, but this process must
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stop at some level of abstraction. The stopping point will be reached when any addi-

tional level incurs a cost that outweighs any explanatory gain it might provide. This

stopping point might alternatively be characterized as a point where the background

assumptions about the highest level are simple enough or general enough that they

can be plausibly assumed to be innate. If the assumptions about the highest level do

not meet this criterion, then it is necessary to ask how they might be acquired, and

the answer is likely to involve another level of abstraction. I do not claim that any of

our current models has reached a stage where the assumptions about the highest level

can be taken for granted. We might, however, approach this goal by supplementing

the form discovery model with an extra level which indicates how graph grammars

can be generated from a set of very basic concepts including objects (nodes), rela-

tions (edges) and the concept of recursive rule application. The knowledge at this

new level might be general enough to generate grammars that support linguistic and

visual inferences (Chomsky, 1965; Han & Zhu, 2005) as well as the graph grammars

needed by our form discovery model.

Building models with many levels of abstraction should allow us to work towards

unifying frameworks that account for many aspects of cognition. Many models of

learning are designed to address a narrow family of phenomena: for instance, I pre-

sented a model of word learning (Chapter 4) and a separate model of causal reasoning

(Chapter 5). People, however, are capable of many kinds of learning and reasoning,

and eventually psychologists should aim to develop formal frameworks that are simi-

larly broad in scope. The hierarchical Bayesian approach suggests one way to proceed.

If we can identify the basic assumptions shared by several special-purpose models,

we can introduce a level of abstraction that captures these assumptions, and can ab-

sorb the special-purpose models into a single general framework. In Chapter 6, for

instance, we saw how methods for learning trees, rings, chains, and partitions can be

combined to create a general framework for structure learning.

It is natural to construct a hierarchical model by adding levels of increasing ab-

straction, but we can also think about growing a model in the opposite direction and

adding levels that become increasingly concrete. The form discovery model has a ma-
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trix of features at its lowest level, but some of these features correspond to complex

concepts in their own right (e.g. “is smart,” “is fierce,” and “lives in groups.”) By

adding a lower level to the model we can capture the idea that these complex features

are constructed out of more primitive microfeatures. Several psychologists have made

similar proposals about features and how they might be learned (Schyns, Goldstone,

& Thilbaut, 1998). The hierarchical Bayesian approach suggests how these propos-

als can be incorporated in a unified framework that addresses inductive questions

at many levels, including questions about the origin of features and the origin of

inductive constraints.

Developmental implications

This entire thesis has been motivated by developmental questions, and the lessons

just described are of obvious relevance to the study of development. Most sections in

this concluding chapter will touch on developmental themes, but this section brings

conceptual development into the foreground.

Models of learning and theories of cognitive development should have a great

deal to contribute to each other. Early childhood is the time when children acquire

the foundational concepts that will serve them for the rest of their lives, and the

most impressive feats of human learning probably occur during this period. Formal

models of learning can help to explain how children acquire so much knowledge so

quickly, and empirical studies of development can help to identify the main principles

that state-of-the art learning systems should aim to incorporate. Some approaches

to development have already established relationships with ideas from the modeling

literature. There are close ties, for instance, between the dynamic systems approach

to development (Thelen & Smith, 1996) and the literature on connectionist modeling.

Other perspectives on development have been pursued with very little input from the

modeling community. One influential approach that has largely resisted formalization

is known as the “theory theory” (Carey, 1985a; Gopnik & Meltzoff, 1997).

The hierarchical Bayesian approach may help to build a bridge between researchers
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who work on formal models and researchers who study the emergence of intuitive

theories. I have focused on inductive constraints rather than theories, but many of

the constraints in Table 1.1 emerge from intuitive theories, and hierarchical Bayesian

models help to explain how these theories can be learned (Tenenbaum et al., 2006).

Although many models of development take a connectionist approach (Shultz, 2003;

Rogers & McClelland, 2004), there are several reasons why this approach is not ideal

for exploring the development of intuitive theories. One problem is that connectionist

models do not incorporate structured representations, and cannot naturally capture

the rich systems of knowledge discussed by many developmental psychologists. A

second problem is that most connectionist models do not incorporate multiple levels

of abstraction, and cannot clearly explain how learning proceeds at these different

levels. These criticisms suggest that connectionism suffers from many of the same

shortcomings as traditional learning theory (Table 1.2a), and new theories of learning

(Table 1.2b) are needed to explain how rich systems of knowledge are acquired and

used.

The hierarchical Bayesian approach is consistent with all four principles in Ta-

ble 1.2b, and can perhaps become the foundation of a comprehensive account of

cognitive development. There is more to development than learning, of course, but

models of learning provide ways to explore some developmental proposals that have

previously resisted formalization. I argued, for instance, that hierarchical Bayesian

models can capture abstract-to-concrete learning, (Chapter 4), can explain how lin-

guistic input shapes causal attributions (Chapter 5) and can capture developmental

shifts between qualitatively different representations (Chapter 6).

To establish the developmental relevance of the hierarchical Bayesian approach it

will be necessary to apply it to developmental problems from many domains. We made

a start in this direction by applying the shape bias model to data collected by Smith

et al. (2002), and Chapters 5 and 6 mention several developmental predictions of the

remaining two models. Much more work is needed before the hierarchical Bayesian

approach can be assessed as a serious theory of development, but our results so far

suggest that this direction is worth pursuing.

175



Limitations

Each model presented in this thesis is limited in several respects. The Dirichlet-

multinomial model assumes that each object is represented as a feature vector where

one dimension represents shape, another color, and so on. Explaining how visual

input might be parsed in this way is a problem that the current model does not

address. The schema-learning model assumes that each object belongs to a single

type, but some objects belong to multiple types. For instance, Bill Clinton is a male,

a politician and a physical object and displays the causal powers and characteristic

features of each type: he can grow a beard, he can charm a crowd, and he can break

a pane of glass when moving at high speed. The form discovery model assumes that

each data set has a single underlying structure, but different parts of the data may be

explained by very different representations. As mentioned previously, some biological

features are consistent with a taxonomic tree, but others are more consistent with

a set of ecological categories (Shafto et al., 2006). Other limitations of our models

might be listed, but it should come as no surprise that these models are limited in

many ways.

Any psychological model can be improved and extended in many ways, and our

models are no exception. Many limitations of these models can be addressed within

the hierarchical Bayesian framework, including all of the limitations mentioned above.

The real question is whether there are limitations that are intrinsic to my general

approach: limitations that cannot be addressed by any hierarchical Bayesian model,

no matter how sophisticated.

It is hard to imagine how the hierarchical component of my framework introduces

any fundamental limitations, but the Bayesian component will raise questions in

some readers’ minds. The value of Bayesian approaches to cognition has been vigor-

ously debated (Tversky & Kahneman, 1974; Anderson, 1990; Simon, 1991; Oaksford

& Chater, 2007) and most criticisms of Bayesian approaches fall under two broad

headings. Some researchers feel that Bayesian models can do too much: they argue

that there will be a Bayesian model to account for any conceivable pattern of data,
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and that the approach therefore offers little explanatory value. Others argue that

Bayesian models can do too little: in particular, they suggest that Bayesian models

will never be able to account for the many cases where people’s inferences depart

from normative standards.

The general claim that Bayesian models are too powerful may seem curious at

first. Psychologists and machine learning researchers have explored many different

models, but none comes close to matching the abilities of a five year old. None of these

models can compete with humans at tasks like recognizing the objects in a scene, or

answering commonsense questions about the narrative in a storybook. The first-order

task for psychologists should be to address the vast limitations of our current models,

not to develop models that achieve even less.

Concerns about the power of Bayesian models arise more naturally in specific

contexts. A Bayesian model relies on a set of background assumptions that formalize

the nature of the task and the prior expectations that the learner brings to the task.

A researcher interested in a specific problem such as associative learning or property

induction may worry that any conceivable pattern of data can be explained by adjust-

ing these assumptions appropriately (Shanks, 2006). Although understandable, this

concern seems motivated by some questionable views about the nature of scientific

explanation. There will always be multiple theories that account for a given set of

observations, including multiple theories that perfectly predict all of the observations.

Competing theories must therefore be assessed according to several criteria. Account-

ing for empirical data certainly matters, but simplicity and consistency with our best

current explanations of other scientific phenomena are also important. If background

assumptions of arbitrary complexity are permitted, a Bayesian modeler may be able

to account for any pattern of data.1 If the background assumptions must be plausible,

however, there will be many conceivable data sets that are not well explained by any

Bayesian account.

1Cases where people give probability judgments that do not form a coherent probability distri-
bution may appear to pose a problem, but our modeler can assume, for instance, that there is a
time-dependent process which switches the inductive context every second, and that each probability
judgment is accurate at the time it is given but soon out of date.
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Since Bayesian models cannot explain everything, it is natural to ask how well

they account for the human abilities we wish to explain. The Bayesian approach

has provided insight into many aspects of cognition (Anderson, 1990; Oaksford &

Chater, 2007), but there are some well-known cases where human behavior appears

to diverge from normative standards (Tversky & Kahneman, 1974). These cases can

be organized into at least three categories. In some cases, the proposed normative

standard does not capture the true structure of the task, and people’s behavior turns

out to be consistent with a Bayesian account once the true structure of the task is

recognized (Hertwig & Gigerenzer, 1999; McKenzie, 2003). In other cases, people’s

responses may be best explained as rational responses to an real-world problem that

is slightly different from the problem posed by the experimenter (Tenenbaum & Grif-

fiths, 2001). A third set of cases includes findings that a purely Bayesian analysis will

be unable to explain. At present there is no clear consensus about the findings that

belong to each category, but it seems likely that many cases will end up in the third

category.

There are good reasons to expect that some empirical findings will resist a sim-

ple Bayesian explanation. Bayesian methods are useful for developing computational

theories of cognition (Marr, 1982), but a complete account of cognition will also need

to describe the psychological mechanisms that carry out the computations required

by these theories. Since the computational resources of the mind are limited, some

computational theories will be implemented only approximately, and these approx-

imations may lead to patterns of behavior that have no adequate explanation at

the level of computational theory. In order to explain everything that psychologists

wish to explain, Bayesian models will need to be supplemented with insights about

psychological and neural mechanisms.

Understanding processing mechanisms and developing computational theories are

two separate projects, but successful computational theories can guide investigations

of processing mechanisms. Psychologists and neuroscientists have discussed how prob-

abilistic computations could be approximated by the mind (Anderson, 1990) and the

brain (Ma, Beck, Latham, & Pouget, 2006), and there are proposals about how hier-
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archical Bayesian approaches in particular could be implemented by the brain (Lee &

Mumford, 2003). Although there are reasons to believe that the mind and brain are

capable of approximating Bayesian computations, it is possible that different learning

mechanisms are used for different tasks. Detailed studies are needed to understand

the nature of these mechanisms, the settings in which they operate, and the extent

to which each one is compatible with a Bayesian approach.

The distinction between computational theories and mechanistic models may not

be as sharp as I have suggested, but some version of this distinction is essential for

understanding the strengths and the limitations of the hierarchical Bayesian approach.

This approach is a paradigm for developing computational theories of cognition, and

does not appear to suffer from any fundamental limitations when applied in this

way. The study of cognition, however, is more than just the pursuit of computational

theories, and my framework is not intended to answer the many questions that emerge

from the study of psychological and neural mechanisms.

Future directions

My framework opens up two general areas for further work. First, the framework

can be applied as it stands to several kinds of problems from psychology and other

disciplines. Second, the framework can be extended and improved in several ways.

Psychological applications

We saw that the hierarchical Bayesian approach can address three problems solved

by human learners, but in order to establish the generality of this approach it will

be necessary to develop hierarchical models that account for the acquisition of con-

straints in many different domains. Table 1.1 lists some of the constraints that have

been proposed by psychologists, and that are potential targets for constraint-learning

models. It is far from clear that all or even most of these constraints are learned by

humans. All of these constraints, however, could be learned in principle, and hierar-

chical Bayesian models allow us to explore whether they are learnable given the data
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available over the course of cognitive development.

Although I focused on cases where hierarchical Bayesian models learn something

interesting, cases where Bayesian models fail to learn can be just as important. Since

these models rely on rational statistical inference, any failure to acquire an inductive

constraint cannot be attributed to a faulty learning mechanism. Instead, failures

to learn indicate that the prior knowledge assumed by the model is too weak, or

that the data provided to the model is too sparse, or both. If the data provided are

representative of the data available to human learners, then models which fail to learn

provide important evidence about constraints which need to be available from the

start in order for learning to succeed. Gildea and Jurafsky (1996) provide a concrete

example of this research strategy, and describe a model for learning phonological rules

that succeeds only when some linguistically-motivated constraints are included.

Each model described in this thesis includes representations at several levels of

abstraction, and there are at least three ways to test the psychological reality of these

hierarchies. One strategy focuses on inferences at the bottom level of the hierarchy.

Experiment 1 in Chapter 5 explored one-shot causal learning, and I argued that the

upper levels of the schema-learning model explain how people make confident infer-

ences given very sparse data about a new object. A second strategy is to directly

probe what people learn at the upper levels of the hierarchy. Experiment 3 in Chap-

ter 5 asked participants to sort objects into groups, and the resulting sorts provide

evidence about the representation captured by the top level of our hierarchical model.

A third strategy that I did not explore is to provide participants with information

about the upper levels of the hierarchy, and to test whether this information guides

subsequent inferences. Chapter 5, for instance, mentioned the case of a science stu-

dent who is told that “pineapple juice is an acid, and acids turn litmus paper red.”

When participants are sensitive to abstract statements of this sort, we have additional

evidence that their mental representations are similar to the abstraction hierarchies

used by our models.

Of the three strategies just described, strategy one can be applied to learning

problems from any domain, but strategies two and three need to be applied more
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selectively. A language learner, for instance, may have acquired a grammar for her

native language even if she is unable to describe it (strategy two) or to incorporate

additional rules that might be provided by a linguist (strategy three). Although

strategies two and three are less general than strategy one, they are critical in many

cases of interest, since they help to explore the cultural transmission of inductive

constraints. Language allows abstract knowledge to be described and directly supplied

to others, and hierarchical models are valuable in part because they allow a role for

linguistic input. Testing this aspect of my approach is an important direction for

future work.

Natural language can capture inductive constraints that are much more sophis-

ticated than any of the examples I considered. Some of these constraints may be

best described as constraints that emerge from intuitive theories (Carey, 1985b; Keil,

1991), and a comprehensive attempt to explore the acquisition of inductive constraints

must therefore explore the acquisition of intuitive theories. The hierarchical Bayesian

approach can help to explain the acquisition of many kinds of abstract knowledge,

including scripts, schemata, and intuitive theories. The causal schemata discussed

in Chapter 5 may qualify as simple theories, since they specify the concepts (i.e.

causal types) that exist in a domain and the law-like regularities that relate these

concepts (cf. Carey (1985b)). Modeling the acquisition of more complex theories is

an important challenge for the future.

Applications to other fields

Philosophers of science have long been interested in theory formation, and computa-

tional accounts of theory acquisition can address the discovery of scientific theories

and intuitive theories alike. Many philosophers have argued that scientific theories

occupy different levels of abstraction, and that the development of specific theories

is guided by more abstract theories that are sometimes called paradigms (Kuhn,

1970) or research programs (Laudan, 1977). Henderson, Goodman, Tenenbaum, and

Woodward (2007) argue that a hierarchical Bayesian approach can incorporate scien-

tific theories at different levels of abstraction, and can help to explain how paradigms
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or research programs are created and eventually abandoned.

Inductive inference is particularly relevant to the philosophy of science, but is

also a topic of broader philosophical interest. The hierarchical Bayesian approach

provides a general-purpose account of inductive reasoning, and can be developed as

a contribution to the formal study of epistemology. In Chapter 4 I described one

of the most obvious connections between the hierarchical Bayesian approach and

the philosophical literature. Goodman (1955) argues that our degree of belief in

specific hypotheses will often depend on more abstract overhypotheses. The model in

Chapter 4 suggests how overhypotheses can be learned, and can perhaps be developed

into a comprehensive formal account of Goodman’s approach to induction.

Fields like machine learning and statistics can be seen as modern attempts to de-

velop a science of inductive inference. The hierarchical Bayesian approach is widely

used in both fields, and the approach in Chapter 4 is based on a well-known model—

the Dirichlet-multinomial model—that has been applied to many other problems.

The remaining two models may also find applications to machine learning problems.

Causal models have been applied to scientific problems in many fields (Spirtes, Gly-

mour, & Scheines, 2001), and models that incorporate causal types may be better

able to capture the structure of many real-world problems. Form discovery is a prob-

lem that has previously received little attention, but automated approaches to this

problem can address questions faced by biologists (Rivera & Lake, 2004; Doolittle

& Bapteste, 2007), ecologists (R. H. Whittaker, 1967), linguists (Ben Hamed, 2005),

psychiatrists (Waller & Meehl, 1998), and scientists from many other fields.

Theoretical challenges

My framework opens up several theoretical questions for further study. We previously

saw how hierarchical models can be built by starting at a relatively concrete level and

adding representations that occupy levels of increasing abstraction. This approach

is a useful strategy for model-builders to pursue, but note that I provided no formal

guidelines for choosing how many levels to introduce or deciding how each level is

generated from the level immediately above. Automating the process of building
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hierarchical models is a worthy challenge for at least two reasons. First, an automatic

model builder may reduce the time needed to apply the hierarchical approach to

new domains. Second and more important, an automatic model builder serves as a

hypothesis about how hierarchical architectures might be constructed in the mind.

In principle, a Bayesian approach can explain how hierarchical models are learned

for novel domains. The two components required are a prior distribution over a

space of possible models, and a set of assumptions about how data are generated

from the true underlying model. The prior over models will include a prior over

architectures that captures expectations about the number of levels and the kinds of

representations that are found at each level. The prior over models will also include

a prior over the distributions which specify how each level is generated from the level

immediately above. One method for defining this prior might make use of a set of

basic elements that can be composed in many ways to construct representations and

generative processes. Chapter 6 described a meta-grammar that can generate many

kinds of graph structures, and an expanded meta-grammar might also be able to

generate several other kinds of representations. I have not explored the possibility

of a meta-grammar for generating probability distributions, but one initial step is to

explore simple schemes for generating distributions that belong to the exponential

family (Bishop, 2006).

An automatic model builder is the natural culmination of the modeling approach

pursued in this thesis. I introduced this approach by suggesting that some of the

background assumptions required by conventional models might be learned. We saw,

for instance, that assumptions about the representations considered by a two-level

model (Figure 2-3a) can be learned by introducing an extra level of abstraction (Fig-

ure 2-3b). Any hierarchical model will rely on its own set of background assumptions,

including assumptions about the number of levels and the nature of these levels, but

an automatic model builder can explain how these assumptions might be acquired.

Background assumptions of some variety will still be required, but the ultimate goal

is to minimize the number and specificity of these assumptions. An automatic model

builder, for instance, may need to start with little more than a very general hypothesis
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space of representations and probability distributions, a preference for simple models,

and the ability to carry out Bayesian inference.

Implementing a fully general version of this model builder will demand solutions

to many difficult technical and conceptual problems. More limited implementations

of the basic idea, however, should be tractable. For instance, our model for discov-

ering ontological kinds (Chapter 4) can be viewed as a relatively simple method for

discovering the structure of a hierarchical model. Learning the number of ontologi-

cal kinds amounts to learning the structure of the hierarchical model in Figure 2-2b,

since there is a tree in this model for each ontological kind introduced. It may also

be relatively straightforward to learn the structure of a hierarchical model when all

of the conditional probability distributions are assumed to take a simple parametric

form (e.g. all distributions are Gaussian), and the main problem is to decide how

many levels to introduce.

A second direction for future theoretical work is to explore the relative difficulty of

learning at different levels of abstraction. When hierarchical models make simultane-

ous inferences at multiple levels, we saw that learning can proceed faster at some levels

than others. Future work can explore the conditions under which different patterns

of learning should be expected. It may be possible, for instance, to identify general

conditions under which learning at the upper levels will be faster than learning at the

lower levels. Progress in this area is likely to be particularly relevant to the study

of cognitive development. In some developmental settings, concrete knowledge is ac-

quired before more abstract knowledge emerges, but abstract-to-concrete trajectories

are observed in other cases. We saw that hierarchical Bayesian models can capture

both developmental patterns, but more work is needed to understand the principles

that determine which pattern applies in any given case.

Towards a modern theory of learning

Formal models have been part of psychology from the beginning (Ebbinghaus, 1885;

Thurstone, 1919; Hull, 1943) and have played a central role in the development of
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traditional learning theory. I identified four principles that go beyond traditional

learning theory (Table 1.2b), and a modern learning theory should explore how these

principles can be formally realized. This thesis focused on the first principle, and

showed how the hierarchical Bayesian approach can account for learning at multiple

levels of abstraction. The hierarchical Bayesian approach, however, is also consistent

with the remaining principles in Table 1.2b. Bayesian models can naturally incorpo-

rate structured representations (principle two), and this thesis described models that

learn graphs and causal networks. Richer representations will be needed to account

for some aspects of human knowledge, but representations of arbitrary complexity

can be incorporated within a Bayesian framework. Principles three and four are re-

lated: learning can succeed given sparse and noisy data as long as the learner relies

on strong background knowledge. Bayesian approaches rely on prior distributions,

and these priors can capture the sophisticated, domain-specific knowledge that often

supports learning.

The demise of traditional learning theory was due in part to an intellectual move-

ment that has been called the cognitive revolution (Bruner, 2004). It may be time

for a second revolution that leads to a modern theory of learning, and it is possible

that the computational foundations of this theory are already in place. Empirical

work over several decades has described many psychological phenomena that raise

challenges for traditional models of learning, but research in computer science and

statistics has led to computational approaches (including the hierarchical Bayesian

approach) that address some of these challenges. Young children are still much bet-

ter learners than even the best machine learning systems, but modern computational

techniques can help to close this gap between minds and machines.
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Appendix: Form discovery model

This appendix provides some of the technical details needed to fully specify the form

discovery model in Chapter 6. I also describe some issues that arise when implement-

ing this model.

Generating structures from structural forms

The normalizing constant for the distribution in Equation 6.2 is the sum

∑

S

P (S|F ) =
∑

S is compatible with F

θ(1 − θ)|S|.

To compute this quantity we must consider all possible ways of putting n entities

onto a graph of form F . Let S(n, k) be the Stirling number of the second kind: the

number of ways to partition n elements into k nonempty sets. Let C(F, k) be the

number of F -structures with k occupied cluster nodes. Expressions for C(F, k) for all

forms except the grid and the cylinder are shown in Table 1. The number of n-entity

structures with form F is
n

∑

k=1

S(n, k)C(F, k).

For all forms F except the grid and the cylinder, the normalizing constant for Equa-

tion 6.2 is

∑

S is compatible with F

θ(1 − θ)|S| =
n

∑

k=1

S(n, k)C(F, k)θ(1 − θ)k. (1)
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Form F C(F, k)
Partition 1
Directed Chain k!
Undirected Chain k!

2

Order k!
Connected 1
Directed Ring (k − 1)!

Undirected Ring (k−1)!
2

Directed Hierarchy kk−1

Undirected Hierarchy kk−2

Tree (2k − 5)!!

Table 1: Number of k-cluster structures for several different forms.

Equation 1 groups the F -compatible structures into classes that share the same

partition of the entities. To compute the normalizing constant for product structures

like the grid and the cylinder, it is more convenient to group the F -compatible struc-

tures into classes that share the same basic topology. Let G(n, i, j) be the number of

ways to put n entities on an undirected i by j grid so that no dimension of the grid

remains unoccupied. The normalizing constant for grids is now

∑

i≤j≤n

G(n, i, j)θ(1 − θ)ij.

Similarly, if Y (n, i, j) is the number of ways to put n entities on an undirected i by

j cylinder so that no dimension remains unoccupied, the normalizing constant for

cylinders is
∑

i≤n,j≤n

Y (n, i, j)θ(1 − θ)ij.

G(·, ·, ·) can be computed using the function L(·, ·), where L(n, i) is the number of

ways to put n entities on an undirected i node chain so that no node remains empty:

L(n, i) =







1 i = 1

i!
2
S(n, i) i > 1

where S(n, i) is the Stirling number of the second kind.
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We now have

G(n, i, j) =







L(n, i)L(n, j) i 6= j

L(n,i)2+L(n,i)
2

i = j

In the case where i = j, we have accounted for the fact that the grid can be rotated

without changing the configuration.

The counts for undirected cylinders can be computed similarly. Define

R(n, i) =
L(n, i)

i

where R(n, i) is the number of ways to put n entities on an i node ring so that no

node remains empty. Then

Y (n, i, j) = L(n, i)R(n, j).

Generating data from structures

Chapter 6 applies the form discovery model to feature data, similarity data, and

relational data. To handle each kind of data, we define a distribution P (D|S) which

indicates how data D are generated from an underlying structure S.

Feature data

Suppose that S is a graph that captures the relationships between a set of entities,

and that D is a feature matrix where the (i, j) entry in the matrix indicates the value

of entity i on feature j. The graph provides a good account of the feature data if the

features tend to be smooth over the graph: in other words, if nearby entities in the

graph tend to have similar feature values. We formalize this idea by assuming that

the features are generated by a Gaussian process over the graph.

Let Sent be a graph with n + l nodes, where the first n nodes correspond to

entities and the remaining l nodes are latent. Let f be a feature vector which assigns
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a continuous value fi ∈ R to each node i in the graph. Let W be a n + l by n + l

weight matrix, where wij = 1
eij

if nodes i and j are joined by an edge of length eij

and wij = 0 otherwise. We now define the graph Laplacian ∆ = E − W where E

is a diagonal matrix with entries ei =
∑

j wij. A generative model for f that favors

features which are smooth over the graph Sent is given by

P (f |W ) ∝ exp(−
1

4

∑

i,j

wij(fi − fj)
2) = exp(−

1

2
fT∆f) (2)

Zhu et al. (2003) point out that Equation 2 can be viewed as a Gaussian prior

over f with zero mean and covariance matrix ∆−1. This prior, however, is improper.

Note that any feature vector f has the same probability when shifted by a constant,

which effectively means that the variance of each fi is infinite. We obtain a proper

prior by assuming that the feature value fi at any entity node has an a priori variance

of σ2:

f |W∼ N (0, ∆̃−1) (3)

where ∆̃ = ∆ + V , and V is a diagonal matrix with 1
σ2 appearing in the first n

positions along the diagonal and 0 elsewhere.2

Equation 3 specifies how to generate a single feature only. Typically the data D

include multiple features, and we assume that the features are conditionally indepen-

dent given Sent.
3 To complete the generative model we place priors on the branch

lengths eij and the variance σ2. Both are drawn from exponential distributions with

2Zhu et al. (2003) use a matrix V that has 1

σ2 everywhere along the diagonal. We prefer the
approach described here because it allows empty nodes to be added to a weighted graph W without
changing the likelihood P (D|W ). Suppose that we convert graph W to W ′ by adding an empty node
k to the edge between i and j so that dij = d′ik +d′kj . Our model implies that P (D|W ) = P (D|W ′),
but this result does not hold for the approach of Zhu et al. (2003).

3We treat all features equally, but it is possible to introduce weights λj for each feature. Equa-

tion 3 then becomes P (f j) ∝ exp(−λj

2
fT∆f), where f j is the jth feature. Once we place a prior

on the feature weights (for example, a prior that encourages most weights to be small), we can
simultaneously discover the structure S and the weights for each feature. The weights will measure
the extent to which a feature is smooth over S—the features that match the structure best will end
up with the highest weights.
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hyperparameter β:

σ | β ∼ Exponential(β) (4)

eij |Sent, β ∼ Exponential(β) if sij = 1 (5)

For all analyses we set β = 0.4.

Even though we introduced edge weights wij, we are primarily interested in the

best graph topology Sent given the data D. The likelihood P (D|Sent) can be computed

by integrating out σ and the edge weights:

P (D|Sent) =

∫

P (D|Sent,W, σ2)P (W |Sent)P (σ2)dWdσ2

We can approximate this integral using the Laplace approximation. Since the

weights wij and the variance σ are both required to be positive, we map them to a

log scale before computing the Laplace approximation. To find modal values of the

transformed variables, we run a gradient-based search using the ‘Large Scale’ option

available as part of MATLAB’s unconstrained minimization routine.

Throughout this section we have not been careful to distinguish between proba-

bility density functions and probability distributions. Since we defined a generative

model for continuous vectors f , P (f |W ) should strictly be written as a probability

density function p(f |W ). In practice, however, f is only observable to some level of

accuracy, and we can quantize each feature vector:

P (f |W ) =

∫

|f−u|<ǫ

p(u|W )du (6)

where ǫ is a small constant. Equation 6 can be approximated as

P (f |W ) ≈ p(f |W )

∫

|f−u|<ǫ

du ∝ p(f |W ) (7)

where the constant of proportionality does not depend on the structure or the form

under consideration, and can be dropped from our calculations.
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Similarity data

According to the Gaussian model in Equation 3, the probability of feature matrix D

given a weighted graph W is

log(P (D|W,σ)) = −
mn

2
log(2π) −

m

2
log |∆̃−1| −

1

2
tr(∆̃DDT).

Note that the feature matrix D influences this distribution only through the number of

features (m) and the covariance matrix 1
m

DDT. As long as both of these components

are provided, the model for feature data can be applied even if none of the actual

features is observed. This insight is related to the “kernel trick” discussed by machine

learning researchers (Schölkopf & Smola, 2001).

Relational data

Suppose now that the data D specify relationships between entities rather than fea-

tures of the entities. We define two distributions P (D|S), one for frequency data and

another for binary relations.

Frequency data

Let D be a square frequency matrix with a count dij for each pair of entities (i, j).

Suppose that S is a graph which specifies the relationships between a set of clusters.

We define a generative model where P (D|S) is high if the large entries in D correspond

to edges in the cluster graph S. Formally, let |a| be the number of entities in cluster

a. Let C be a matrix of between-cluster counts, where Cab is the total number of

counts observed between entities in cluster a and entities in cluster b. Our model

assumes that P (D|S) = P (D,C|S) = P (D|C)P (C|S), and that C is generated from

a Dirichlet-multinomial model:

θ |S, β0, β1 ∼ Dirichlet(α)

C | θ, nobs ∼ Multinomial(θ)
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where αab = β0|a||b| if Sab = 0, αab = β1|a||b| if Sab = 1, and nobs is the total

number of observations. The pair (β0, β1) is drawn from a discrete space: β0 + β1 is

drawn uniformly from { 1
16

, 1
8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and β0

β0+β1
is drawn uniformly from

{0.05, 0.15, . . . , 0.45}. A count matrix C is assigned high probability under this model

if the large entries in C tend to correspond to edges in the cluster graph S.

As for the feature model, we integrate out the parameters:

P (C|S) =

∫

P (C|S, β0, β1)P (β0, β1)dβ0dβ1

=
1

50

∑

(β0,β1)

P (C|S, β0, β1)

where

P (C|S, β0, β1) =

∫

P (C|θ)p(θ|S, β0, β1)dθ

can be computed analytically, since the Dirichlet prior on θ is conjugate to the multi-

nomial P (C|θ).

Given C, we assume that the Cab counts are distributed at random between all

pairs (i, j) where i belongs to cluster a and j belongs to cluster b:

P (D|C) =
∏

a,b

(

1

|a||b|

)Cab

.

Binary data

Suppose now that D is a binary relation represented as a square matrix where dij is

1 if the relation holds between i and j and 0 otherwise. We define a generative model

where P (D|S) is high if the large entries in D correspond to edges in the cluster

graph S. Let zi denote the cluster assignment for entity i. Suppose that there is a

parameter θab for each pair of clusters, and that dij is generated by tossing a coin

with bias θzizj
. We place a prior distribution on the parameters θab that depends on

the edges in the cluster graph, and encourages dij to be true when there is an edge
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between cluster zi and cluster zj. The model can be written as:

θab |S, α0, β0, α1, β1 ∼







Beta(α0, β0), if Sab = 0

Beta(α1, β1), if Sab = 1

dij | θ ∼ Bernoulli(θzizj
)

The hyperparameters α0, β0, α1 and β1 are drawn from a four-dimensional grid

where α0 + β0 and α1 + β1 belong to { 1
16

, 1
8
, 1

4
, 1

2
, 1, 2, 4, 8, 16, 32} and β0

α0+β0
and β1

α1+β1

belong to {0.05, 0.15, . . . , 0.95}. We sample uniformly from all points on this grid

where β0

α0+β0
≤ β1

α1+β1
, which captures the assumption that relation D is most likely

to be true of pairs (i, j) that correspond to edges in graph S.

As for the frequency model, we integrate out the parameters:

P (D|S) =
∑

(α0,β0,α1,β1)

P (D|S, α0, β0, α1, β1)P (α0, β0, α1, β1)

=
∑

(α0,β0,α1,β1)

P (D0|α0, β0)P (D1|α1, β1)P (α0, β0, α1, β1)

where D1 represents the entries in D that correspond to edges in the graph S, and

D0 represents the remaining entries in D. As before, the terms P (D0|α0, β0) and

P (D1|α1, β1) are computed by integrating out θ:

P (D1|α1, β1) =

∫

P (D1|θ1)p(θ1|α1, β1)dθ1

where θ1 is a vector containing parameters θab for all pairs (a, b) such that there is an

edge between cluster a and cluster b. P (D0|α0, β0) is computed similarly.

Model implementation

The mathematical assumptions of the form discovery model have now been described,

but there are some practical issues that arise when implementing this model.
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Feature data

Given a matrix D with m features, we apply a linear transformation so that the mean

value in D is zero, and the maximum entry in 1
m

DDT is one. The first property is

useful since our model assumes that the features have zero mean. The second property

means that it should make sense to use the same value of the hyperparameter β for

both feature and similarity data (as mentioned above, we set β = 0.4). If D contains

missing entries, we group the features so that any two features in a given group are

observed for precisely the same set of entities. Suppose that the largest group has

j features. Consider the reduced matrix D̂ that is created by including only these j

features, and the enties for which these features are observed. We scale the data so

that the mean value in D is zero, and the maximum entry in 1
j
D̂D̂T is 1.

Our method for identifying the S and F that maximize P (S, F |D) involves a

separate search for each form. Since the prior on the space of forms is uniform, the

winning structure is the best candidate encountered in any of these searches. Each

search starts out with all the entities in a single cluster, then uses graph grammars

like those in Figure 6-2 to split the entities into multiple clusters. When a cluster node

is split, the entities previously assigned to this cluster must be distributed between

the two new cluster nodes. We choose two of these entities at random, assign one to

each of the new clusters, then go through the remaining entities in a random order,

making a greedy assignment for each one. Since this procedure for splitting a cluster

node is not deterministic, the search algorithm as a whole is not deterministic. At

each iteration, we attempt to split each cluster node several times, and of all splits

considered we accept the candidate that improves the score most. After each split, the

algorithm attempts to improve the score using several proposals, including proposals

that move an entity from one cluster to another, and proposals that swap two clusters.

The search concludes once the score can no longer be improved.

The structures encountered early on in the greedy search can be seen as low-

resolution versions of the structure that will eventually be identified as the best. This

perspective explains why a greedy search will often perform well. If we take some true

195



structure and construct a sequence of representations at increasingly low resolutions,

this sequence should provide a path by which a greedy search can proceed from the

lowest-resolution version (a structure with all the entities in one cluster) to the true

structure.

Relational data

A greedy search which moves from low-resolution structures to high-resolution struc-

tures should work well when fitting some structural forms (including partitions and

dominance hierarchies) to relational data. For other forms, however, a greedy search

will fail badly. Consider the case where the true structure is a ring, and each entity

sends a link to only one other entity. There is no low-resolution version of this struc-

ture that seems acceptable: we can group the entities into clusters and organize those

clusters into a ring, but the entities in each cluster will tend not to send links to the

entities in the next cluster along.

When analyzing relational data, we therefore rely on two initialization strategies.

The first is the strategy used for feature data: we begin with a graph where all the

entities are assigned to a single cluster. The second strategy uses the best clusters

found for one of the simplest structural forms: partitions with no self-links.4 These

clusters are then used to build initial configurations for each of the remaining struc-

tural forms. For example, when searching for rings, we start by connecting the two

clusters with the strongest link between them. We continue adding clusters to the

ends of this chain until we have a chain including all the clusters, then join the ends

of this chain to create the ring that will initialize the greedy search for the best ring

structure.

4When fitting this form, we initialize the search using the first strategy.

196



References

Ackley, D., Hinton, G., & Sejnowski, T. (1985). A learning algorithm for Boltzmann

machines. Cognitive Science, 9, 147–169.

Aldous, D. (1985). Exchangeability and related topics. In École d’été de probabilités
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