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Abstract

Data anonymization is the process of conditioning a dataset such that no sensitive
information can be learned about any specific individual, but valid scientific analysis
can nevertheless be performed on it. It is not sufficient to simply remove identifying
information because the remaining data may be enough to infer the individual source
of the record (a reidentification disclosure) or to otherwise learn sensitive information
about a person (a predictive disclosure).

The only known way to prevent these disclosures is to remove additional informa-
tion from the dataset. Dozens of anonymization methods have been proposed over the
past few decades; most work by perturbing or suppressing variable values. None have
been successful at simultaneously providing perfect privacy protection and allowing
perfectly accurate scientific analysis.

This dissertation makes the new observation that the anonymizing operations do
not need to be made in the original basis of the dataset. Operating in a different,
judiciously chosen basis can improve privacy protection, analytic utility, and compu-
tational efficiency. I use the term ‘spectral anonymization’ to refer to anonymizing in
a spectral basis, such as the basis provided by the data’s eigenvectors.

Additionally, I propose new measures of reidentification and prediction risk that
are more generally applicable and more informative than existing measures. I also
propose a measure of analytic utility that assesses the preservation of the multivari-
ate probability distribution. Finally, I propose the demanding reference standard of
nonparticipation in the study to define adequate privacy protection.

I give three examples of spectral anonymization in practice. The first example
improves basic cell swapping from a weak algorithm to one competitive with state-
of-the-art methods merely by a change of basis. The second example demonstrates
avoiding the curse of dimensionality in microaggregation. The third describes a pow-
erful algorithm that reduces computational disclosure risk to the same level as that
of nonparticipants and preserves at least 4thorder interactions in the multivariate dis-
tribution. No previously reported algorithm has achieved this combinaton of results.

Thesis Supervisor: Peter Szolovits
Title: Professor

Thesis Supervisor: Staal A. Vinterbo
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Data Anonymization

The goal of data anonymization is to allow the release of scientifically useful data
about individuals while simultaneously protecting their privacy. It is not enough to
remove explicit identifiers such as names or phone numbers. We must also remove
enough additional information so that an attacker cannot infer an identity based on
what remains (a reidentification disclosure) or otherwise infer sensitive information
about a person (a prediction disclosure). These disclosures could be made by exam-
ining the remaining data for combinations of variables that might uniquely identify
an individual. For example, a record that lists a 50 year old man with a new tumor
that usually first appears in childhood could easily be enough to identify a particular
person. In general, each variable we add to a record narrows the field of individu-
als who could have produced it, and given enough variables we can always infer an
identity.

Data anonymization has been an area of active research for three decades, yet
nearly every aspect of it remains an open question: How do we measure privacy
protection, and what amount of protection do we want? What is the optimal method
of perturbing the data to achieve this protection? How do we measure the impact of
the perturbation on scientific analysis, and what is an acceptable impact?

Good anonymization techniques are becoming essential for medical research, and
I will use this domain as my primary motivation. Medical research often depends on
large disease registries and clinical trial databases. Physician researchers complain
that patients are opting out of these registries and trials for fear that their information
might be disclosed to unknown — and unscrupulous — third parties. These growing
opt-out rates are significantly reducing the usefulness of registries and causing bias
in their datasets [1, 2, 3]. Less than 40% of patients, for example, signed informed
consent for inclusion in the Canadian Stroke Network Registry, despite a major effort
to enroll them[4]. Although simple pledges of confidentiality have not altered opt-out
rates in behavioral surveys [5], the idea that a patient’s identity could be provably
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14 CHAPTER 1. INTRODUCTION

and irreversibly removed from their data may help assuage fears of that data being
used against them. If anonymization can provide a provable and permanent barrier
to associating a particular patient with a particular record, then it may even reduce
some of the legal burdens associated with creating and maintaining such registries.

The United States Congress has recognized the need to protect patient privacy in
the face of rapidly increasing electronic exchange of medical information. It therefore
included in the Health Insurance Portability and Accountability Act of 1996 (HIPAA)
a mandate to adopt Federal regulations for the protection of medical information.
In response to this, the US Department of Health and Human Services issued the
HIPAA Privacy Rule that specifies how this information should be protected. Among
other things, the Privacy Rule lists 18 data elements that it considers identifying
information, that must be removed from a dataset in order to release the dataset
without restriction (Figure 1-1) [6].

Removing this identifying information, or deidentification, is a necessary but in-
sufficient step in anonymization. The remaining data don’t directly reveal individual
identities, but they may be combined to form a unique identifier or key. The key
could be used to link a deidentified record with a record from a different source that
does include an individual identifier. Thus, a deidentified database can be linked with
outside information to reidentify its data and expose the individuals they describe.
This is exactly what happened to when a reporter reidentified records in released,
deidentified AOL search engine data [7].

A well-known example of key formation is that the simple combination of birth
date and 5-digit zip code uniquely identified 69% of registered voters in Cambridge,
MA [8]. An otherwise deidentified database with this information intact can thus be
reidentified by linking it with voter registration records. The HIPAA Privacy Rule
restrictions are intended to prevent this sort of thing, and in fact they do not allow
data releases that include full dates of birth or 5-digit zip codes without a contractual
agreement that the recipient will not attempt to reidentify the data.

Anonymization therefore requires us to prevent reidentification. The only known
way to do this is to remove additional information from the data to prevent a link
between an anonymized record and an identified record from an outside source. The
most powerful known method of making such a link is by forming a unique key
that either exactly or approximately matches the same information in an identified
record from the third source. For inexact key matches, the closest such match is
taken as the correct one. Since any variable of the dataset can potentially contribute
to a key, this means we must perturb all variables. Moreover, the more columns
there are to contribute to a key, the greater the perturbation must be to prevent
the key’s formation, since each additional variable adds discriminating power [9, 10].
The impact on analysis of the larger perturbations grows quickly, often exponentially,
leading one researcher to conclude that “when a data set contains a large number of
attributes which are open to inference attacks, we are faced with a choice of either
completely suppressing most of the data or losing the desired level of anonymity”
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1. Names.

2. All geographic subdivisions smaller than a state, including street
address, city, county, precinct, ZIP Code, and their equivalent
geographical codes, except for the initial three digits of a ZIP
Code if, according to the current publicly available data from the
Bureau of the Census:

(a) The geographic unit formed by combining all ZIP Codes with the
same three initial digits contains more than 20,000 people.

(b) The initial three digits of a ZIP Code for all such geographic
units containing 20,000 or fewer people are changed to 000.

3. All elements of dates (except year) for dates directly related to an
individual, including birth date, admission date, discharge date, date
of death; and all ages over 89 and all elements of dates (including
year) indicative of such age, except that such ages and elements may
be aggregated into a single category of age 90 or older.

4. Telephone numbers.

5. Facsimile numbers.

6. Electronic mail addresses.

7. Social security numbers.

8. Medical record numbers.

9. Health plan beneficiary numbers.

10. Account numbers.

11. Certificate/license numbers.

12. Vehicle identifiers and serial numbers, including license plate
numbers.

13. Device identifiers and serial numbers.

14. Web universal resource locators (URLs).

15. Internet protocol (IP) address numbers.

16. Biometric identifiers, including fingerprints and voiceprints.

17. Full-face photographic images and any comparable images.

18. Any other unique identifying number, characteristic, or code, unless
otherwise permitted by the Privacy Rule for re-identification.

Figure 1-1: Individual identifiers specified in the HIPAA privacy rule.
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[11].

Given the difficulty of preventing it, we might be tempted to downplay the risk of
forming a key from clinical data, relying on the notion that public sources of detailed,
personal clinical information must be rare, and so the risk of an attacker forming a
reidentification key with this information must be small (indeed the HIPAA Privacy
Rule seems to rely on this notion). In reality, this data is easier to come by than
we would like to think. On one hand, the pool of people with authorized access to
portions of our medical information is greater than most of us realize or desire [3].
And on the other hand, unauthorized disclosures happen with alarming frequency.
Medical records have been stolen on desktop computers during break-ins [12], stolen
on laptops during normal business operations [13, 14, 15], maliciously faxed to a
newspaper and radio station [16], sold to tabloids [17], mistakenly (but repeatedly
over six months) faxed to a bank [18], left in a filing cabinet donated to a thrift store
[19] and found blowing in the wind by the dozens in downtown Lewiston, Idaho [20],
and by the thousands in Mesa, Arizona [21].

These are direct disclosures, and anonymization methods aren’t designed to pre-
vent them. But if one of these patients has separately participated in a disease registry
or clinical trial, inadequate anonymization of those publicly-released datasets may al-
low an attacker to link the directly disclosed record with sensitive information in the
public datasets.

A simplified (and fictional) example of reidentification is shown in Figure 1-2.
In this example, heart rate (HR), mean arterial pressure (MAP), liver enzymes (AST
and ALT), CD-4 cell count (CD4), and HIV viral load (Vir Ld) have been measured
for these patients. The data has been deidentified by removing the patient names.
The attacker has access to outside information that for a particular patient gives the
values for the first four variables, which are commonly measured clinical parameters.
But he does not have access to the last two variables, which relate to the HIV status
of the patient. The information in these last two variables is what the attacker seeks
by attempting a reidentification. By forming a key from HR, MAP, AST, and ALT, the
attacker is able to match a name to the last record, and learn sensitive information
about that patient. (In reality, the matches would probably be inexact, especially if
the outside information consists of measurements made on a different occasion, but
for the moment we’ll keep it simple.)

Since we don’t know what information an attacker might have, our conservative
assumption is that he has the full original versions of the anonymized public datasets.
Obviously, if an attacker actually possesses the original dataset he wouldn’t need to
attempt reidentification because he already has all of the information. But if we assess
reidentification risk under the assumption that he has all of the original data, we are
assured of equal or smaller risk under the more realistic conditions of the attacker
possessing only partial information.

Unfortunately, reidentification is not the only disclosure risk undertaken by par-
ticipants in a clinical trial or disease registry. There is also the risk that an attacker
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Name             HR  MAP AST ALT CD4  Vir Ld
================ === === === === ==== ======
                  91 101  11   3 1010      0
                  86 106 100 150  800      0
                  88 110 220 187  200 110000
                  72  95  20  10  950      0
                 101  99 432 395  400  30000

(a) Data that has been deidentified by removing names.

Name             HR  MAP AST ALT CD4  Vir Ld
================ === === === === ==== ======
                  91 101  11   3 1010      0
                  86 106 100 150  800      0
                  88 110 220 187  200 110000
                  72  95  20  10  950      0
                 101  99 432 395  400  30000
Jones, Howard    101  99 432 395

(b) One record has been reidentified using the combination of HR, MAP, AST, and ALT
as the key. The attacker has learned the value for CD4 and Vir Ld for this patient.

Figure 1-2: Deidentification and reidentification.
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may be able to learn something new about a person, even if he can’t attach a name
to an anonymized record. Based on outside information and the anonymized data,
the attacker may be able to predict the value of some particular sensitive variable.
This predictive disclosure risk is slightly more difficult to assess than reidentification
risk because it is not uniquely borne by the participants in the study, and because
it represents only a prediction, not concrete information about an individual. We
would like an anonymization scheme to provide some kind of reassuring bound on
this risk, but there is currently no consensus on how to measure prediction risk, or
what a proper bound on it might be.

1.2 Non-technical Overview

Anonymization Methods Most approaches to anonymization arise from the in-
sight that the analyst or statistician working with the anonymized data is looking
for fundamentally different information than an attacker who wants to discover sensi-
tive information about an individual. The analyst is looking for associations between
variables: are the patients who took a certain drug less susceptible to HIV infection
than the ones who took a placebo? Does the effect depend on age, gender, race,
comorbidities, concurrent medication or some combination of these? The attacker is
looking for individual information: does my employee have HIV? The perfect anony-
mization would preserve all of the information of interest to the analyst and none of
the information of use to an attacker. Since these are different types of information,
we have some hope of being able to do this.

One way that researchers have approached this problem has been to slightly change
each little piece of information, such as by adding small random values to numeric
data or blanking out parts of each record. The hope is that the changes are small
enough that trends and associations can continue to be discerned, but large enough
that it is difficult to figure out which individual is associated with each record. The
problem is that “small enough for the analyst” and “large enough to stop the attacker”
may not actually overlap. In fact, it is common for existing methods to be able to
satisfy one but not the other. As the amount of information in each record grows,
it eventually becomes impossible to simultaneously satisfy both demands. Chapter 2
discusses many of these existing approaches in detail, and how effective they are at
satisfying these demands.

My approach to anonymization aligns with the idea previously proposed by others
that instead of changing each little piece of the information, we can create new records
using the information from the original records. No new record would belong to
any one person, and therefore no attacker could look up his employee, neighbor, or
professor to learn sensitive information. Yet the new records would contain (we hope)
all of the information of interest to the analyst.

What makes this hard is ensuring that the new records actually do contain all the
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needed information. In particular, whatever assumptions we make in the construction
of the new records will be exactly what the analyst learns about the process being
studied. If we think to include certain effects of race, gender, and comorbidities in our
HIV vaccine model, the analyst can learn about those from our anonymzied data, but
if we leave out effects due to concurrent medications, the analyst can never discover
them. What we need is a way to create new records without making consequential
assumptions about the structure of the data.

My approach attempts this by finding pieces of information in the old records that
are only associated by chance, and randomly rearranging them into new records. In
doing so, our challenge is to keep together truly related pieces of information. If we
do this properly, no new record will represent a real individual, but all of the analytic
information will remain intact.

For example, suppose we have a dataset that collects the variables a, b, c, d, and
e for a thousand people. We may find that variables a, b, and c are related in some
way, as are variables d and e, but that the set {a, b, c} is not probabilistically related
to the set {d, e}. (That is, if we know {a, b, c} for one record, that doesn’t tell us
anything at all about {d, e} for that record.) We would therefore create a new record
by combining the set {a, b, c} from a randomly chosen original record with the set
{d, e} from a different random record.

This can get more complicated if we also have a variable f that is partially related
to the set {a, b, c} and partially to the set {d, e}. In this case, we would take part of
the new value of f from the original record that provided {a, b, c} , and part from the
record that provided {d, e}. For example, if the value of f was 9 in the first record
and 3 in the second, and the original data shows that f is twice as strongly related
to {a, b, c} as to {d, e}, then we would create a new f that was 9(2

3
) + 3(1

3
) = 7.

Figure 1-3 illustrates these ideas using the example in Figure 1-2. Here, let’s
say that our analysis finds that the pairs {HR, MAP}, {AST, ALT}, and {CD4, Vir

Ld} are (mostly) mutually independent, but the components within each pair are
strongly related. The only dependence between pairs is that {CD4, Vir Ld} depends
in some weak but complex way on the other two pairs. The data set therefore gets
anonymized in a way that shuffles the pairs among records, but preserves the identified
dependencies. The color coding in the figure shows the main source of the information
for each value in the newly created records. The first anonymized record gets HR and
MAP from the last original record, but AST and ALT from the second record, and so on.
The anonymized values for CD4 and Vir Ld come mainly from the record indicated
by the color code, but are not exact copies of the originals because of the interactions
with the other variables. The detailed mechanism of generating the new values is
explained in Chapters 4 and 5.

The bulk of the work for this approach is in finding independent sets of informa-
tion, which is never as clean and simple as the examples above. In Chapter 4, I use
Singular Value Decomposition to find the independent sets. In reality, Singular Value
Decomposition solves the easier problem of finding uncorrelated sets rather than truly
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Original Data:

Name             HR  MAP AST ALT CD4  Vir Ld
================ === === === === ==== ======
                  91 101  11   3 1010      0
                  86 106 100 150  800      0
                  88 110 220 187  200 110000
                  72  95  20  10  950      0
                 101  99 432 395  400  30000

Anonymized Data:

Name             HR  MAP AST ALT CD4  Vir Ld
================ === === === === ==== ======
                 101  99 100 150 989      0
                  91 101 220 187 875      0
                  88 110 11   3  281  99000
                  72  95 432 395 760      0
                  86 106 20  10  455  33000

Figure 1-3: Simplified example of anonymization. Colors of anonymized values indi-
cate their primary source in the original data.
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independent sets, but it is useful enough to demonstrate the idea, and it turns out to
work at least as well as existing anonymization methods. In Chapter 5, I refine the
idea so that we first find groups of similar records, and then we look for independent
sets separately within each group. Since the groups are smaller, it is easier to find
truly independent sets of information, and the grouping allows us to find small re-
gions of the data that show relationships between variables where other regions may
show no relationship. For this refinement I use the technique of Independent Com-
ponents Analysis, which is a newer and for my purposes a more powerful technique
than Singular Value Decomposition. It turns out to provide a surprisingly faithful
anonymization with strong privacy protection. Chapter 6 summarizes my results and
discusses open research problems.

Assessment Methods Of course, to decide how faithful or strong an anonymiza-
tion is, we need some way to measure it. As with other aspects of anonymization,
there is no consensus on these measures, and existing measures have various problems
that makes them inadequate for my purposes.

I propose three new measures that are more informative and more generally ap-
plicable than existing measures. The first measure, prediction distance, determines
how closely an attacker can predict the contents of an original record, given the anon-
ymized data. It basically finds the distance between an original record and its closest
anonymized record, where ‘distance’ can be defined any way we like. The second
measure, prediction ambiguity, characterizes how easy it is to find the best match
or prediction of an original record. If there are several equally close matches in the
anonymized data, this is high ambiguity, and if one stands out from the rest, this is
low ambiguity. The third measure, prediction uncertainty, characterizes how much
of a difference it makes to choose between the best matches. If there are a bunch of
equally-likely matches, but they’re all nearly identical, this is low uncertainty (and
likely poor privacy protection).

Which of these measures is most important to an anonymization depends on the
algorithm used and perhaps the particular context it is used in. For an algorithm that
removes any deterministic correspondence between original and anonymized data,
so that no anonymized record is the direct image of any particular original record,
reidentification risk is zero (subject to subtle caveats discussed in Section 2.1), and
prediction risk is the dominant threat to privacy. Therefore prediction distance is
probably the primary interest, since as long as the best prediction is far enough from
the truth, it may not matter as much how easy it is for an attacker to find it.

On the other hand, an algorithm that does preserve a unique, deterministic rela-
tionship between original and anonymized records may be more accurately assessed
using prediction ambiguity, which is the most relevant in a matching attack. If the
best match clearly stands out from the crowd, it may not matter as much how far
away that crowd is.

I also propose a new method of measuring analytic utility that is also generally
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applicable and measures whether complex structure within the dataset is preserved.
This method uses kernel principal components analysis, a powerful tool that finds the
most important nonlinear associations between several variables at once, and allows
us to specify the class of nonlinear associations we wish to look for. Each kernel
principal component represents a particular nonlinear association within that class.
The first component finds the largest association and separates its effects from the
rest of the information. The second component finds the second largest association,
and so on. My proposed measurement method finds these associations within the
original data and then looks within the anonymized data to see if those associations
have the same distribution as the original data. A statistical test measures whether
the distributions are the same or different. And we can see even more subtle effects
by plotting the components against each other.

Chapter 2 describes all of these measures in detail, and Chapters 4 and 5 demon-
strate their use.



Chapter 2

Background

Survey statisticians have been concerned about the problem of disclosure control
since at least as early as the 1920’s, but the research efforts aimed at preventing
large-scale disclosures began in earnest in the 1970’s with the increasing availability
of both survey information and computer systems [22]. Since then a surprisingly
large number of different and creative anonymization methods have been proposed.
These methods have come from the international statistical and census communities
[23, 24], the computer science community [25], the cryptography community [26, 27],
and probably many others whose origins are not as clear.

Though there are books on the subject [28, 29], I know of no comprehensive sur-
vey of the field, and I suspect this is in part due to its breadth. There are proposed
methods to prevent disclosure from tabulated data [30, 28], queried database systems
[31, 26], and detailed, individual-level data termed microdata [24]. This dissertation
focuses on the problem of preventing disclosure of sensitive information about indi-
viduals contained in a set of detailed microdata, released as a whole into the public
domain.

Disclosure control is a difficult problem, and even in the narrower domain of micro-
data anonymization, none of the existing methods has demonstrated clear superiority
over the others for general use. Part of the difficulty is in defining with mathemati-
cal precision what makes a good method. It is clear that an anonymization method
must provide both privacy protection and what is called analytic utility. That is, the
method must simultaneously prevent the disclosure of sensitive individual informa-
tion and allow accurate analysis, usually of statistical trends or associations. One of
the contributions of this dissertation is the proposal of precise but general definitions
and measures of both analytic utility and privacy protection.

Conventions and Assumptions For the rest of this dissertation, I will be as-
suming that the data is in the form of either a matrix or a set, with each row or
record having a constant number of columns or variables. The variables can poten-
tially be continuous, ordinal, categorical, or binary. For many methods, including my

23
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examples of spectral anonymization, categorical attributes can be accommodated by
converting variables with q categories to either q or q − 1 binary variables. I have
found that converting q categories to q binary variables is the most helpful. This
includes originally binary variables that are more usefully thought of as two-category
categorical variables. For example, a Gender variable with M and F values becomes
two binary variables: Gender-M, which can be true or false, and Gender-F, which can
be true or false.

The anonymization of these binary variables may produce continuous values for
them. One way to interpret these is to normalize them and consider them proba-
bilistic. I have found that a {−1, +1} encoding works best during anonymization,
with either simple thresholding at zero to produce binary values or a normalized in-
verse logit function to produce values in the [0, 1] range. These can be interpreted as
anonymizing a categorical or binary variable in part by giving a probability distribu-
tion over possible values.

I will call the original dataset A, and the anonymized dataset Ã. Their columns
or variables will be aj and ãj, and their rows or records will be Aj or Ãj. In general,
I will refer to a column of a matrix M as m or mj, and a row as Mj. To refer to a
particular cell of a matrix, I will use the usual notation Mij.

I will sometimes call a record a point without warning, because I find it helpful
to visualize the records of a dataset as points in an n-dimensional space, with each
dimension corresponding to a variable of the dataset. In fact the main contribution
of this dissertation depends on visualizing the dataset this way. I will also use the
terms anonymization, perturbation, and masking interchangeably; all have wide use
in the literature.

2.1 Assessing Privacy Protection

The threat to privacy from released anonymized data is technically that of breach
of confidentiality. More specifically, it is the threat of specific types of disclosure of
information that the data collectors have pledged to keep confidential. I will group
these under the term computational disclosure, and they are different from direct
disclosure, which is the malicious or accidental release of the raw information. Com-
putational disclosure risk can be divided into two types [32, 33]. The primary risk
is of reidentification disclosure, where an attacker manages to match a particular
person’s identity to a particular record in the released anonymized dataset using in-
formation that the attacker has learned independently about the person. Attempting
to make this match is called a matching attack, and it is usually assessed under the
extremely conservative assumption that the attacker knows the entire original dataset
[34]. Under this assumption, the attack becomes a problem of matching each anony-
mized record with its corresponding original record. If we can prevent the matching
attack from succeeding under these conditions, we can prevent it when the attacker
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knows far less about the individuals involved. The easiest way to prevent this attack
is to perturb the data such that there is no one-to-one correspondence between an
anonymized record and an original record. I will illustrate one way this can be done.

The secondary risk is of predictive disclosure, where an attacker manages to predict
the approximate, and perhaps partial, content of a target record with the help of
the released anonymized dataset. This risk is secondary, first because it is only a
prediction, not a proof, but also because it is not uniquely undertaken by subjects
of the data. Similar risk is borne by those in the same underlying population but
who did not participate. Furthermore, it is difficult to imagine an application where
predictive disclosure is not a desired outcome of the study. In medical applications,
the primary motivation for releasing anonymized data is to allow analysts to draw
valid conclusions regarding associations between the data’s variables. We want the
anonymized data to preserve associations between smoking and heart attack, for
example, or between a particular drug and its side effects. We want physicians to be
able to predict disease risk from patients’ symptoms and behavior. This unavoidably
allows an attacker to make these same predictions.

The degree of predictive disclosure risk is of interest to the anonymizer, however,
because if the prediction can be made sufficiently accurate, privacy protection is
broken. In fact, high predictive accuracy is fundamentally what facilitates a matching
attack. We would like the release of anonymized data to pose no greater risk of
predictive disclosure to the participants of the study than it does to non-participants.
If, for example, we added an amount of random noise to each variable that was small
compared to the variance of that variable, an attacker could predict the information
for participants with much greater accuracy than for non-participants.

Under certain conditions, the distinction between reidentification disclosure and
prediction disclosure can become blurred. For example, synthetic data methods (see
below) anonymize by sampling new records from a model built on the original records.
For these methods, there is no deterministic relationship between a particular anon-
ymized record and any original record, meaning that no anonymized record is the
unique image of any original record. Under these conditions, reidentification loses its
meaning, so we consider their reidentification risk as zero.

But it can happen that the model generates an anonymized record that randomly
reproduces (or nearly reproduces) an original record. This synthetic record is then
at risk for reidentification. But it’s not quite that simple, because other synthetic
records may match an attacker’s target record on the fields known to the attacker,
but not on the unknown fields that the attacker is trying to learn. The attacker does
not know whether the match he finds faithfully reproduces the unknown information,
so this situation is still more of a prediction than a reidentification, where the attacker
knows the unknown fields are (at least close to) the true data.

Some datasets, especially binary or categorical datasets, may be distributed such
that there are many identical records generated, and the probability of reproducing
an original is high. In this case, an attacker may calculate a very high probability
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that a prediction is correct, and the situation looks like a reidentification. Existing
methods of quantifying risk don’t assess these distinctions very well, but I propose
methods in Chapter 3 that distinguish between them. For simplicity, I will describe
methods that provide no unique deterministic relationship between an anonymized
record and any original as having zero reidentification risk, but it will be understood
that the above subtleties apply.

The following sections describe existing methods to quantify disclosure risks. My
proposed new methods and their relationships to existing ones are described in Chap-
ter 3.

2.1.1 Prior Measures

In previous work, the empirical reidentification rate [34] and k-anonymity [35] have
been common anonymity measures. These measures are suboptimal for several rea-
sons detailed below, but more importantly, they are not general enough to assess all
of the methods I use in my examples, and they don’t estimate predictive disclosure
risk. Both measures assume a one-to-one match between original and anonymized
records that does not exist with some of our examples, and k-anonymity additionally
requires the anonymization to produce groups of k records that are functionally iden-
tical. It is also difficult to make a principled decision of what value of these measures
represents adequate protection.

The empirical reidentification rate One common measure of reidentification
risk is the estimated success of a matching attack against the anonymized data. I
will call this estimate the empirical reidentification rate. The matching attack has
its origins in the record linkage algorithm of Fellegi and Sunter [36]. The record
linkage algorithm was originally intended to identify records from different sources
that referred to the same individual, such as might be done when two hospitals merge.
This method takes a pair of candidate records a and b that might constitute a match,
and examines a set of variables from each record in the pair. These variables form a
pattern γ of match closeness. The algorithm examines the pattern γ and calculates
the likelihood ratio L of the pair (a, b) belonging to a set G of matching records,
where

L =
Pr(γ|(a, b) ∈ G)

Pr(γ|(a, b) /∈ G)
. (2.1)

In other words, L is the ratio of the probability that the pattern γ was produced by a
pair that is a true match vs. the probability that it was produced by a pair that was
not a match. If the ratio is above a chosen threshold, the pair is declared a match,
and if it is below a second threshold, it is declared a non-match. Pairs with likelihood
ratios between the two thresholds are declared possible matches and held for clerical
review.

For merging real records from different sources, the dependencies between variable
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match probabilities in (2.1) can be difficult to calculate, especially for non-matches.
Some have used the iterative Expectation Maximization (EM) algorithm [37] to es-
timate the probabilities, considering membership in G to be the latent variable [38].
Researchers have used software based on this method to test some of the anonymiza-
tion algorithms described below [34, 39]. EM can work for records with few variables,
but for high-dimensional data the computation time becomes prohibitive.

Other researchers simply assume independence between the variables in γ, and
compute a value for L by multiplying likelihood ratios of each variable alone [40].
The probabilities in (2.1) could also be replaced by some sort of distance or difference
measures, although the difficulties with dependent data remain [41].

In a matching attack, one of the pair (a, b) is the known, identified record, and
the other is a candidate match from an anonymized dataset. In this case, the task
of estimating the probabilities in (2.1) is actually much easier because the attacker
presumably knows the mechanisms by which the anonymized table is created from the
original. We will see that some methods use univariate masking mechanisms that treat
each variable independently, and this makes calculating the required probabilities
quite simple. Others modify the original data according to known joint probability
distributions that we can use directly in (2.1). Since the anonymization parameters
are often included with the dataset to enable statistical analysis, this makes the
matching attack a feasible approach to reidentification. Even if the parameters were
not included, relying on this to thwart the attack would be attempting “security
through obscurity”, which is a well-known bad idea.

The anonymizer can also estimate the success of a matching attack, and therefore
the risk of reidentification, based on the anonymization parameters. The anonymizer
may, for example, simply carry out a matching attack between the original and the
anonymized database and measure the reidentification rate. Since the original dataset
is the best possible source to use in a matching attack, this empirical reidentification
rate can be seen as a conservative estimate of the reidentification risk.

There are some subtle issues with the empirical reidentification rate, however.
We might think that we would like this rate to be zero for an anonymized medical
database, but it’s not actually that simple. A zero empirical reidentification rate
would mean that the true match is never the most probable match, and therefore it
leaks information.

The biggest hurdle in mounting a matching attack is for the attacker to identify
which of his matches are likely to be correct and which are not. In the original
application of record linkage, a threshold on L was used, but how can an attacker have
confidence in his chosen threshold? The problem is amplified when, in the interest of
computational simplicity, a distance measure is used in place of the likelihood ratio L.
The empirical matching rate does not take these difficulties into account, but instead
represents an upper bound on attack success, assuming that the attacker can identify
the correct matches.

Instead of designing an anonymization scheme that reduces the empirical matching
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rate to zero, a better approach might be to reduce the reidentification risk to zero by
removing one-to-one correspondence between the original and anonymized dataset.
For methods that don’t do this, it would still be better to thwart the matching
attack by producing some number of records that are roughly equally good candidate
matches for any target. The attack would then come up with a set of candidates
that are all approximately equally likely to be the target’s match, and an attacker
essentially has to choose one at random. If one of these is trivially more likely than
the others, and a naive attacker chooses it, he will be correct with a probability of
1/k, if there are k equally good candidates. The empirical reidentification rate does
not provide the information needed to assess this property of an anonymization.

k-anonymity The notion that we want at least k functionally indistinguishable
matches for any given target carries the name k-anonymity[35]. The value of k is a
parameter of the anonymization, although it is difficult to make a principled argument
for the choice of any particular value of k.

This is an important and useful measure of anonymization, and was touched on
several times in the literature before being made explicit. It was first hinted at
by observations in early work that if there are k datasets that could produce the
same summary table (such as might be obtained by swapping certain entries in the
dataset), then releasing the summary table does not allow one to reconstruct the
dataset with confidence greater than 1/k [22]. It was touched on later in the context
of data releases [9] by observing that unique records are the ones at most risk, and
masking methods should seek to reduce the number of unique records. The concept
of uniqueness as the main problem in anonymization caught on and was frequently
targeted by masking methods and as a measure of privacy protection [42]. It was
incorporated as a stopping parameter (for k = 2) where the masking of a particular
record was rejected unless there was at least one other masked record that could
reasonably be the image of the same original [10]. Finally it was recognized that
there are different degrees of non-uniqueness, and a record that is indistinguishable
from 2 others is at greater risk of reidentification than one indistinguishable from 100
others [8].

Ensuring k-anonymity seems on its face to be an effective guarantee of privacy, but
there are some pitfalls in its application. If all k indistinguishable records are literally
identical, for example, then matching an original to the group of k gives an attacker
the same information as matching to a single record. This would produce an exact
predictive disclosure that is functionally equivalent to a reidentification. If the records
have identical values for a few variables, then we have an exact prediction for those
variables, with some uncertainty for the remaining ones. This is most problematic
when the exact prediction is for a sensitive variable. One solution to this is to measure
k-ambiguity instead [43], where the records are indistinguishable on the variables used
for matching, but not on the sensitive variables. This presupposes the identification
of sensitive variables.
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Originally, the paradigm for achieving k-anonymity was the combination of global
recoding and local suppression for categorical variables (see Section 2.3). These meth-
ods globally broaden categories and erase individual cell values so that each record
is an exact match to k − 1 other records, counting an erased cell as an exact match
to any value. Thus the patterns AB* and A*C both match the pattern ABC, where
the “*” represents an erased cell. Similarly, the patterns ABC and ABB could both
be transformed to the pattern ABD where the new element D represents the broad-
ened category of B ∪ C. The approach can be extended to continuous data using the
technique of microaggregation (see below), where k similar records are clustered and
replaced with k copies of a single record that is representative of the entire cluster
[44].

Besides not assessing predictive disclosure risk, k-anonymity also fails to describe
the continuum of reidentification risk, because suppressed values have a probability
distribution that can be estimated from the dataset as a whole. A suppression may
render two records logically equivalent matches, but one may be much more likely
than the other probabilistically. It would be helpful if our privacy metric could express
this difference and identify probabilistic risks, but k-anonymity doesn’t do it.

Ensuring k-anonymity is therefore insufficient to ensure a low risk of reidentifica-
tion, and it turns out also to be unnecessary. As we have seen above, we can have k
distinguishable records, but if they are all roughly equally good matches to the target
record, this can provide good anonymity.

(c, t)-isolation My prediction ambiguity measure (see Section 3.1) is related to and
inspired by the theoretic and powerful (c, t)-isolation bound [45]. The (c, t)-isolation
bound refers to how well an attacker can predict a complete original record given
the masked database and any amount of auxiliary information, which may include
portions of the original database. If an attacker can use the masked data and his
auxiliary information to compute a record that approximates a record in the original
database, he has succeeded in isolating that original record. If the distance from the
computed record to a particular original record is a factor of c closer than it is to the tth

closest record, then he has (c, t)-isolated the original record. The anonymizer’s goal is
to prevent an attacker from (c, t)-isolating any original record with a probability more
than trivially greater than he could if he didn’t see the masked dataset. Claiming
a (c, t)-isolation bound for a particular algorithm is a strong statement, and these
claims can be difficult to prove [45].

In contrast to the above metrics, however, the (c, t)-isolation bound is a property
of an anonymization method and not of an anonymized dataset. We can use it to
prove the privacy protection of a method, but not to estimate the risk in releasing a
given dataset. For example, we can show that releasing something as seemingly safe
as a uniformly spaced histogram allows (c, t)-isolation of a point in an exponential
distribution for certain values of c and t [45], but we couldn’t compute values for
c or t for a particular dataset that had been anonymized using this method. It
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appears difficult to prove (c, t)-isolation for other than the simplest anonymization
methods and data distributions. Bounds have been proven for histograms of uniform
density hypercubes in the absence of auxiliary information, and work is in progress
for histograms of other distributions [45].

2.2 Assessing Analytic Utility

The best assessment of analytic utility would be to compare the specific statistics of
analytic interest on the original vs. the anonymized data. With data intended for
general release, it is not practical to compare all possible statistics of interest, and so
other measures must be substituted. There is a large set of measures that have been
proposed over the years.

Historically, these measures have often been simple difference measures, such as
mean Euclidean distance, mean squared difference or mean absolute difference be-
tween the masked and corresponding original data points. Measures of whether vari-
ous statistics are conserved in the masking have also been used [46, 47].

The conserved statistics are commonly up to 2nd-order moments (means, variances,
covariances, correlations), and they are often conserved only asymptotically, meaning
if you anonymize many datasets, on average the change in the statistic will be near
zero [41]. Most methods only conserve their target statistics asymptotically, so I will
use the term conserved to describe asymptotic conservation. If the method conserves
the statistic in each instance, no matter how small the sample, I will say that the
statistic is exactly conserved. I will say a statistic is recoverable if the value of the
statistic for the original data may be different than for the masked data, but the
original value can be calculated from the masked data. An example of a recoverable
statistic would be covariances that are increased by a known amount with a particular
masking method.

2.3 Existing Anonymization Methods

This section is not an exhaustive survey of microdata anonymization, although it
is more comprehensive than any survey I have found. It covers all of the different
classes of methods of which I am aware — Additive Noise, Local Suppression and
Global Recoding, Data Swapping, Microaggregation, and Data Synthesis. Within
each class I give several variations on the theme, enough to give an idea of the
scope of strengths and weaknesses available within that class. I’ve included all of the
historically important and common methods of which I’m aware, but I’m sure there
are more variations waiting to be discovered in unsearched corners of the literature.

In discussing the merits of each method, I use the measures of privacy protection
and analytic utility with which they were assessed by their authors or other published
analyses. As described above, these measures vary widely among researchers, and not
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all of these measures are directly comparable, but I try to summarize what is known
about each method despite these differences.

2.3.1 Additive Noise

Adding random noise to the data is perhaps the most obvious perturbation method,
and was first investigated over two decades ago [9, 48]. This method adds a random
matrix R to A, so that

Ã = A + R. (2.2)

Uncorrelated noise The simplest approach is to construct R with independent
columns and variance proportional to that of the original column, so that

Rij ∼ N(0, b var(aj)), (2.3)

where b is the constant of proportionality that controls the overall level of masking.
This preserves variable means, and if b is reported, the variances can be recovered
with var(aj) = var(ãj)/(1 + b). The covariance matrix is also recoverable, since the
off-diagonal elements are preserved, and the diagonal elements are the variances. The
univariate distributions are not recoverable, however, since we are adding Gaussian
noise to an arbitrary original distribution, but they can be approximated using Ex-
pectation Maximization methods [49, 50]. Some statistical models such as decision
trees can also be successfully constructed from Ã [50], but in general, higher order
effects are not recoverable.

Empirical reidentification rates can be as high as 100% for datasets with 20-30 vari-
ables and 85% for only 4-6 variables [9]. Beyond this, the noise can be largely stripped
from Ã using singular value decomposition (SVD) [51]. Therefore this method is un-
usable in practice, but it can be a benchmark for others.

Correlated noise The first improvement we might make is to use correlated noise
where each row Rj of R is drawn from

Rj ∼ N(0, bΣ), (2.4)

where Σ = cov(A) is the original covariance matrix. The covariance matrix is recov-
erable from Ã by Σ = cov(Ã)/(1 + b) [52]. With extra effort, an analyst can perform
regression analysis on Ã [48]. The univariate distributions and higher order effects
are unrecoverable.

Alternatively, we can release a corrected matrix Ãc with the same mean and
covariance as A by converting each row Ãj into the row Ãc

j by

Ãc
j =

1

d1

Ãj +
d2

d1

μ
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where μ is the mean row vector of A, d1 =
√

1 + b, and d2 = d1 − 1 [52, 53].

The privacy protection is stronger than for uncorrelated noise, with resistance to
SVD noise stripping, although the protection remains insufficient for medical data.
To protect against a matching attack, the magnitude b of the additive correlated noise
must grow exponentially with the number of uncorrelated columns, which becomes
prohibitive on large databases. A test on a file of 1080 records with 13 masked
variables reidentified 31% after masking with b = 0.1 and 79% after masking with
b = 0.05 [39]. The same test on a file of 59,000 records and 8 variables masked
with b = 0.01 reidentified 6% of the records. It appears from the report that 4% of
the records probably represented unpredictably correct matches,and so were actually
protected by being members of sets of k ≥ 5 equally likely matches. This portion
probably accounts for more than 4%, but the report doesn’t contain enough detail
to discern the fraction of matches that were unpredictably correct. Less than 2%
were described as “clearly true matches” and were probably predictably correct and
vulnerable to reidentification. But even a fraction of a percent would be more than
we would like for medical record anonymization.

Correlated noise after normal transformation We can improve this method
further and conserve univariate distributions by taking advantage of the fact that the
sum of two normal random variables is itself a normal random variable [54, 55, 10].
We first transform a column a to a normal distribution using the CDF Pa of a and
the cumulative standard normal distribution Φ, by

aN = Φ−1(Pa(a)), (2.5)

where aN is the new normally-distributed column, and the collection of these columns
form the new matrix AN. Categorical variables are transformed using a similar but
slightly more complicated procedure that first transforms them to pseudo-uniform
random variables and then to normal random variables.

To the new matrix AN we can add correlated normal random noise where

Rij ∼ N(0, b cov(AN)) (2.6)

as before but, unlike previously, where masking resulted in a matrix of unknown
distribution, the result ÃN = AN + R in this case remains a multivariate normal
distribution. We can now reverse the transformation to the original scale giving

ã = P−1
a (Φ(ãN)). (2.7)

The univariate distribution of a is therefore conserved, and the original covariance
matrix Σ is recoverable with Σ = cov(Ã)/(b + 1) [55]. Consistent estimators of some
higher-order moments can be calculated, although in general they have high variance
[10].
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I am unaware of any privacy protection tests for this method, although it has been
tested in combination with row resampling (see below).

Row resampling Further protection can be provided by examining each row Ãi

before including it in the dataset. If Ãi is too close to Ai, or if there are no other
masked rows that would be an equivalent match to Ai, we can reject it, resample the
noise row Ri, and reconstruct the masked row Ãi. This is similar to rejecting rows
Ri that are too close to zero. Row resampling could affect the conservation of both
the univariate distributions and the covariance matrix if done too frequently, since
the rows of noise are no longer from a strictly normal distribution.

Row resampling improves privacy protection by removing ineffective masking.
Compared with simple correlated noise, correlated noise after normal transformation
and row resampling reduced empirical reidentification rates by roughly an order of
magnitude (0.6% vs. 0.07% for 1000 records with 7 variables and the severe masking
of b = 0.5) [10, 48]. Although the experiment didn’t investigate the effect of the row
resampling alone, it is a reasonable conjecture that much of the reduction came from
rejecting ineffective masking.

Mixture of normals An approach that is similar in spirit to row resampling but
more systematic uses a mixture of normal distributions [56]. Instead of constructing R
from a single, broad, multivariate normal distribution and rejecting the noise samples
near zero, we construct a mixture of narrow distributions spread out over a broad
range with means bounded away from zero, ensuring that most perturbations are not
too small. Thus we sample the rows Rj with

Rj ∼
∑

i

ωiN(μi, ci cov(A)) (2.8)

where μi is a vector of noise column means randomly generated but constrained away
from zero, and the mixture weights ωi sum to one. The resulting noise matrix R
will have an overall covariance matrix b cov(A), with b determined nonlinearly by the
mixture means μi, variances ci, and weights ωi. A nonlinear optimizer may be used
to find a set of parameters that produces a given value of b and fulfills other necessary
constraints.

One experiment found that the mixture method of (2.8) reduced the empirical
reidentification rate by roughly a factor of 6 over the simple correlated noise method
of (2.4) (6% reidentification vs. 33% for 1023 records with 7 variables and masking
constant b = 0.27), while conserving many direct statistics of the data. The mean
absolute variation was very high, however (meani,j[|Aij − Ãij|/|Aij|] = 45.3), since
only larger perturbations were generated.

We can save lots of computation, produce the same effect, and eliminate the
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nonlinear solver by producing the directly with colored white noise, with

Rj = (b
1
2 Σ

1
2 s)T, (2.9)

where

s ∼
∑

i

ωiN(μi, σ
2), (2.10)

Σ = cov(A), (2.11)

and σ2 is a common variance for all mixture components [39]. The parameters μi and
σ2 are randomly chosen and appropriately scaled so that the elements of s have mean
0 and variance 1. The notation Σ

1
2 denotes the square root of the matrix Σ, which is

defined as the matrix X that satisfies the equation XXT = Σ.

Data-dependent noise The latest refinement of the additive noise idea is the
notion that we can add noise that depends on the local data density at a particular
point [45]. Where the points are sparse, we add larger random values to better mask
them, but where they are dense, much smaller values will do. The earlier normal-
transform method produces a similar effect by effectively spreading out dense clusters
and condensing sparse clusters before masking, although points near the median are
condensed more than points farther away. One experiment has demonstrated that
Gaussian mixture parameters that produced original synthetic data are recoverable
under this masking method [27].

Analysis of the privacy protection provided by data-dependent noise has not yet
been made, although we would expect it to be an improvement over previous methods.

2.3.2 Local Suppression and Global Recoding

These two methods are historically common, and often used together [5, 1, 57, 8, 58],
despite the fact that they offer poor privacy protection at a cost of high information
loss.

Global Recoding We can reduce record uniqueness by replacing detailed categories
with more general categories [5]. We might, for example, replace a 5-digit zip code
with the first four digits, taking advantage of the hierarchical nature of zip codes. Or
we might replace date of birth with year of birth. If we generalize to sufficiently broad
categories for each variable, we can achieve k-anonymity for a categorical table. We
could similarly anonymize continuous data by discretizing and then generalizing [59].
The analytic price we pay for this is high, however, as we lose detail for an entire
variable each time we recode. A less drastic measure might be to recode only locally,
for particular rows, but this imposes a much greater burden on analysis, since masked
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records now come from many different sample spaces, and this is difficult to take into
account during analysis [60].

Local Suppression If, after global recoding, there are just a few records at risk of
reidentification, we can suppress the particular values that produce that risk. Com-
pletely suppressing a cell is a drastic step, however, and it can greatly distort analytic
properties [57]. For example, since cells are selected for suppression because they are
unique or extreme in some way, deleting them will affect statistics as simple as a
univariate mean.

We might try to suppress cells in a pattern that minimizes the distortion [5, 35],
but not only is this NP-hard [61], it is insecure, as it leaks information that can allow
suppressed cells to be reconstructed [62]. Consider, for example, a table of 100 rows,
with a gender category of 90 Male values and 10 suppressed values. If we know the
pattern is a minimal suppression, then we can infer that all 10 suppressed values
are Female. To see this, assume for contradiction that the suppression is minimal
and the suppressed value on a particular record r is Male. Un-suppressing the Male

value in r would not change the anonymity of the table, because any record that
matched r before revealing the Male value will still match it after, since all records
have the value Male in that variable. Therefore the pattern was not a minimal
suppression, contradicting the assumption. Hence all suppressed values are Female.
More complex reconstruction is possible if the attacker has prior knowledge of the
data — certainly a matching attack would succeed a substantial fraction of the time.
Additionally, suppressed values can be approximately reconstructed from information
in non-suppressed variables, if dependent sets of variables are not all suppressed at
once.

Randomized Suppression To my knowledge, an algorithm that randomly sup-
presses cells until k-anonymity is achieved has not been proposed or analyzed in
the literature. Such an algorithm could eliminate the risk of reconstruction due to
pattern-based information leaks and it would reduce the distortion of the data due to
suppression. The downside of the method is that in order to sufficiently anonymize
the data, it would have to suppress so many cells that it would greatly decrease the
statistical power of any analysis. It would also remain vulnerable to approximately
reconstructing the suppressed cells using information in remaining variables. These
may be two of the reasons why nobody has seriously proposed it.

2.3.3 Data Swapping

Data swapping is a perturbation method that was not originally intended to mask
data, but rather to prove that subjects were protected when summary tables were
released [22, 63]. The idea was that if there were multiple equivalent databases that
could be produced by swapping database cells while keeping the chosen summary
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counts constant, then there were multiple possibilities for which records produced the
counts of each variable, and individual data would not be leaked by publishing those
counts.

Despite its original abstract intentions, data swapping is a competitive practical
method for masking data. Since choosing swaps that exactly conserve our desired
statistics is often intractable, we generally look for swaps that only approximately
conserve them. One way to do this for categorical data is to use the original summary
tables as probability distributions and sample new elements from them to produce a
masked database [64].

The privacy protection of the data swapping class of anonymization methods
depends in general on the types and volume of swaps that are made. If the swapped-in
values look random compared to the swapped out values, then this could be effective in
preventing a matching attack, given enough swaps. Certainly most elements of most
records would have to be perturbed in order to prevent a matching attack, as leaving
even a few variables intact in each record can be sufficient to allow reidentification
[65], even if they are not the same variables in each record. Moreover, if the swapped-
in values are too close to the swapped-out values, the results would be similar to a
noise-addition algorithm with small noise values, and would be easily overcome.

Preserving k core variables We can make the problem easier by loosening the
constraints such that we only preserve the value of k core variables for each record
[66]. This requires swapping only between records that match on the values of those
core variables. This method preserves all interactions (up to order k + 1) that use
only one non-core variable. It does not preserve statistics that use more than one
non-core variable.

This is the method used to protect the 1990 U.S. Census 100 percent detail data
[67, 66]. This data was grouped by address block and a small number of household
records were matched between blocks on some chosen core variables. All non-core
variables were then swapped between these records. Smaller-sized blocks were masked
more often than larger blocks due to their increased risk of reidentification.

For the 2000 U.S. Census, the procedure was changed to mask only unique house-
hold records in small blocks, and then only with some probability and if the household
had not been masked using suppression followed by imputation. [68].

This method cannot and was not intended to protect against a matching attack;
the administrators relied on the fact that swapping a small fraction of records “has
the nice quality of removing any 100% assurance that a given record belongs to a
given household” [68].

Similar-value swapping An approach to conserve all statistics would be to swap
only similar values [69]. By swapping values that are within a certain percentile of
each other, we can hope to ignore the need to meet any other constraint. If the
variables are uniformly distributed, then we can choose the matching percentile to
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guarantee that no bivariate correlation is reduced by more than a specified constant,
and additionally that the 95% Confidence Interval (CI) for any large subset mean is
within specified bounds [69]. One experiment found that upper-bound distortion goals
were met in most cases despite the fact that the data was not uniformly distributed
[69].

The empirical reidentification rate in that experiment was 13% for a maximum
reduction of 0.975 in correlation and 95% CI of ±0.02% on large subset means. This
was roughly equivalent protection to additive correlated noise that caused about the
same correlation distortion (although opposite in sign — correlated noise tends to
increase the original correlation).

Ranked column swapping A similar approach is to randomly divide the data
into several subsets, rank-order the variables one at a time, and swap entire ordered
columns between subsets [70]. This appears to be roughly equivalent to similar-value
swapping under a binomial distribution over the difference in rank. Beyond preserving
univariate statistics, its statistical guarantees are unclear. It does not protect well
against matching attacks, with one experiment finding 61% reidentification of 1000
records with 2 variables, and 100% reidentification of 1000 records with 6 variables
[71].

Swapping within clusters In a variation that blurs the line between swapping
and microaggregation (see below) we might try to cluster the data into small groups
and then swap within the group [72]. We are not aware of any published analysis
of the data distortion or privacy protection produced by this method. We expect
that the multivariate distortion would probably be reduced compared to similar-value
swapping, since the swapping would be done among individuals that are similar on
the whole instead of on one variable alone, and we expect that the privacy protection
should be at least as good.

Synthetic-guided swapping In variation that blurs the line between data swap-
ping and synthetic data (see below), we can generate synthetic data and then replace
the values in each column with the equally-ranked values from the original data. If
we use a multivariate normal synthetic distribution generated with the means and
covariances of the original data, it will exactly conserve univariate distributions and
asymptotically conserve bivariate rank correlations [71]. As with all synthetic meth-
ods, this one reduces practical reidentification risk to zero, since there is no unique
deterministic association between original and anonymized records.

2.3.4 Microaggregation

Microaggregation groups k similar data points together and replaces them all with a
single point that is somehow representative of the group. Depending on the natural
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clustering of the data, allowing groups of k to 2k − 1 data points may preserve
information a little better than holding strictly to groups of size k [73]. Replacements
such as the mean [74] and the group range [72] have been proposed. Since each point
in the group is made identical to every other point in the group, this achieves at least
k-anonymity. Microaggregation was originally intended for continuous variables, but
it can be extended to work with ordinal or categorical data [44].

Microaggregation can be thought of as reducing the effective size of the dataset
while maintaining all of its statistical characteristics, subject only to the reduction in
size. This reduction is drastic, however, with a significant effect on the power of most
statistical tests performed on the dataset and the variance of the computed statistics.
To achieve k-anonymity, one must essentially discard k−1

k
of the information in the

dataset. Intuitively, microaggregation is a way of attempting to represent the data
using roughly 1/k of the information, but in a more systematic way than a 1/k random
sampling.

The challenge with masking by microaggregation is that grouping to maximize
some measure of within-group similarity is NP-hard [75]. Therefore all microag-
gregation proposals in the literature represent attempts to approximate the optimal
grouping in a reasonable time. Unfortunately, we will see that some of these attempts
significantly degrade the privacy protection.

Single variable microaggregation The simplest approach would be to group the
data based on a single variable and replace each record in the group with their mean.
Optimal grouping on a single variable can be done in polynomial time by reduction
to a shortest-path problem [76]. This is efficient and achieves k-anonymity, but it also
induces correlation where there was none (such as between two variables that were
both originally uncorrelated with the grouping variable), and it distorts regression
analyses when the dependent variable was originally uncorrelated with the grouping
variable [9].

Univariate microaggregation Another simple approach is univariate microaggre-
gations, where each column is aggregated and replaced independently of the others
[74]. This breaks the k-anonymity that microaggregation is meant to produce, and
naive reidentification rates were as high as 97% for 1080 records with 13 variables
aggregated with k as high as 10 [77]. We also suspect that this masking may be at
least partially reversible using SVD filtering.

Single variable projection A slightly more sophisticated approach would be to
project multivariate data onto a single variable, such as the first principal compo-
nent, and perform single-variable microaggregation with the projected variable [73].
This achieves k-anonymity, and is probably an improvement over plain single-variable
microaggregation, but it doesn’t preserve even low order statistics [77].
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Multivariate microaggregation A much better approach is to define a similarity
measure that uses the complete data record, and to aggregate records that are the
most similar. In this direction, a normalized distance vector would be an obvious
choice for a similarity measure. One algorithm [78] finds the two most distant points in
the cloud of data, then groups the k−1 nearest points with each of them. Using these
two groups as starting clusters, it then runs Ward’s clustering algorithm on the data
, with the exception that it never joins groups that both have more than k members.
When the clustering is finished, it recurses on groups with more than 2k members
[73]. This is time and space intensive, but there are few competing multivariate
microaggregation solutions. One evaluation measured an empirical reidentification
rate of 6.9% for a dataset of 77,000 rows with 7 variables and k = 5 [79]. Another
algorithm that may have slightly better information preserving properties is to find
the same two starting clusters, remove them, and recurse on the rest of the data
[73, 44].

Fuzzy clustering Instead of restricting membership to a single cluster, we can
allow each record to have fuzzy membership in multiple clusters. We then choose
the record’s replacement with probability equal to the membership function for each
cluster [80]. The privacy protection and analytic utility haven’t yet been well analyzed
for this method, but I conjecture that the distortion may be greater than with crisp
clustering. I also suspect that fuzzy clustering may provide better protection, since
the attacker must now deal with a probability distribution for the cluster membership
of an original record.

Randomized Clustering We could use a randomized optimization algorithm such
as Genetic Programming to find approximately the best clusters [73]. One experiment
found this to provide comparable analytic utility to deterministic clustering, and
reduced running time for high dimensional data [73].

Graph Theoretic Methods We can apply graph theory to come up with some
good clusters in a reasonable time, where we consider the dataset as a graph with
nodes corresponding to data points and edges weighted with a function of the similar-
ity between points. We might, for example, build a minimum spanning tree over the
nodes and then remove distance-weighted edges in decreasing order of length, leaving
in place edges whose removal would produce a group smaller than k, until all groups
are smaller than 2k− 1 [81]. Or we could start with a triangular mesh over the nodes
and do the same thing, which might give us a better solution because it starts with
a denser graph [82]. Good analysis on the information preserving properties of these
methods and their relative merits has not yet been done.

We could also use a graph-theoretic algorithm to build up clusters by making
optimum pairwise matches between nodes [72]. Optimal matching on groups of two
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is possible in O(n3) time [83], but is NP-hard for groups of three (see the Maxi-
mum Triangle Packing problem [84]). Using recursion, we could approximate optimal
matching for groups of 2m. This takes a long time even for paired matches, so for large
tables we might try tracking only the top l nearest neighbors for each row instead of
keeping a complete table of distances. The value of l needs to be high enough to get
a complete match-up; a value of l = 23 was required in one instance for a complete
match-up of 17,000 rows [72].

2.3.5 Data Synthesis

The tradeoff between analytic utility and privacy protection is usually presented as
inevitable (e.g. [85]). But it is not inevitable. Consider what would happen if instead
of releasing our data, we perturb it to match the data of a different sample from
the same population. The conclusions we could draw from the perturbed data would
be equally valid as those from the original data, but the original participants would
have zero reidentification risk and prediction risk as low as non-participants. This
is the underlying insight to releasing synthetic data [86]. We only have to tweak
this procedure so that the released data belongs to subjects that would exist in
an appropriate sample from an infinite population, but may not exist in the real
world. The synthetic data method is thus in a prime position to provide theoretically
perfect computational disclosure control. The limits are those of model accuracy,
not a tradeoff between utility and privacy. If we can come up way to provide an
accurate synthetic sample, this can provide perfect analytic utility (in the sense that
all statistical analyses are as valid as the original data), and perfect privacy protection
(in the sense that all computational disclosure risk is the same as non-participants).

To construct our synthetic data, we begin by viewing the original data as a sample
from a continuous underlying distribution and attempt to draw an entirely different
sample from that same distribution [86]. The challenge lies in accurately modeling the
underlying distribution — indeed, this is the central problem of the field of machine
learning. All of the work in this area therefore attempts to efficiently provide a
reasonably accurate model. The first effort along these lines used the summary tables
themselves as conditional probability models for sampling categorical data [64].

The idea of sampling from a model raises the important question of why we
wouldn’t release the model instead of the samples. The samples cannot contain any
more information than the model, after all, so the most an analyst can hope for is
to recreate the model from the data [87]. On the one hand, this is good, because it
means the subject’s data is as protected as if we had released only the model. But
on the other hand, is there any benefit to releasing synthetic samples instead of the
model itself? Moreover, if a model is imperfect, its synthetic data is useless to the
analyst looking for effects that the model doesn’t reproduce [87].

Let’s first address the issue of an imperfect model. Preserving as much information
as possible is one of the two great challenges of computational disclosure control, and
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the challenge applies to all of the masking methods described here. Indeed, we’ve
seen that the drawback to many methods is that they can preserve up to 2ndorder
statistics but nothing beyond that, making them useless for many applications. Other
methods don’t even preserve 2ndorder statistics. The major advantage of the synthetic
data methods is that they uncouple analytic utility from privacy protection. We are
therefore free to produce the most accurate model we can with virtually no impact
on the computational disclosure risk. The fact that the model may not be perfect is
small potatoes compared to the analytic hits we are forced to take at the hands of
other methods. So while this is certainly a limitation for synthetic data methods, it
is less of a limitation than for other existing methods.

So why wouldn’t we simply release the model instead of sampling from it? If
our model were simple enough, we should do just that, and for some of the methods
reviewed below, this would be appropriate and useful. A complicated model, however,
may be of no use whatsoever to an analyst, because the information (and limitations)
of interest may not be easy to identify or extract. But if we release a set of samples
from the generative model, this easily and efficiently transfers the complex information
to the analyst in a way that allows unrestricted analysis. The example in Chapter
5 illustrates this point, creating a type of model that would be difficult to describe
analytically or draw conclusions from directly.

An interesting irony is that while the argument that one could simply release
the model is usually applied to the synthetic anonymization method, it is actually
more applicable to any of the other methods that preserve a small number of analytic
results such as univariate distributions and covariances. For those methods, the
analyst would lose nothing if the anonymizer provided only those statistics. It is only
with methods like synthetic methods, that can preserve more complex statistics, that
the analyst gains any real benefit from examining the anonymized data.

Historically, when anonymization meant perturbing a small percentage of the data,
the analyst could gain from access to the anonymized data, but in today’s environment
when we must perturb all of the data to prevent a matching attack, this is no longer
true in general.

Privacy protection issues are roughly the same for all synthetic methods. The
reidentification risk is zero, but there may be undesirable prediction risk, especially for
outliers [42]. Since these issues don’t vary between synthetic anonymization methods,
my descriptions will focus on accuracy issues.

Summary tables The earliest idea for releasing synthetic data was to use summary
tables of original categorical data as a simple probability distribution for generating
synthetic data. [64]. The summary tables can be used as conditional probability
distributions from which samples can be drawn. This can be efficient for small, 2nd

order tables, but becomes intractable very quickly if we try to account for higher-order
interactions. And, of course, it doesn’t work well for continuous data.



42 CHAPTER 2. BACKGROUND

Univariate pdfs For continuous data, we would like to fit a probability density
function (pdf) and sample from that. Early work used univariate distributions that
were fit with piecewise uniform distributions if an appropriate parametric pdf couldn’t
be found [86]. This was a stepping stone to current methods, but obviously inadequate
for investigating multivariate effects.

Preserving generalized kth moments An early attempt to handle multivariate
effects aimed at conserving generalized kth degree moments, which are statistics of
the form ∑

j

As1
1jA

s2
2j · · ·Asm

mj,

where si are nonnegative integers that sum to at most k [88]. Preserving the gener-
alized 2ndmoments will preserve, for example, the means, variances and covariances
of the data. If we can preserve kth order statistics for arbitrarily high k, we can
theoretically meet any constraint on analytic utility (although such constraints may
increase disclosure risk).

We therefore seek synthetic replacements in a table of m variables that meet(
m+k

k

) − 1 constraints to preserve generalized kth moments. If there are more con-
straints than elements in the table (which is not hard to do given the exponential
growth with k), then the original table is the unique solution to the set of con-
straints, and no replacements can be made that exactly meet the constraints. The
constraints form a system of nonlinear equations of maximum degree k, and when an
exact solution exists, finding it is an NP-complete problem [88]. A polynomial-time
approximation algorithm has been proposed for k = 2 that finds random solutions
meeting all but one constraint exactly and then uses quadratic programming to max-
imize the final constraint [88]. Finding even approximate solutions can be difficult
for higher k.

We are not aware of any assessments of the privacy protection of this method, but
given the difficulties in extending it to larger values of k, it is not a good candidate
for practical use.

Latin Hypercube Sampling To model multivariate interactions, we can preserve
the original rank correlations using the technique of Latin Hypercube Sampling (LHS)
with rank correlation refinement [89]. We start with a matrix R in which each column
is a random permutation of i/(m + 1), (i = 1, 2, . . . , m). We generate a properly
correlated random matrix S by

S = Σ
1
2
AΣ

− 1
2

R R. (2.12)

where ΣA is the covariance matrix of A, and SigmaR similarly.
We then produce R∗ by rearranging the values in R for each column so that they

appear in the same rank order as the values in S. Note that all of its elements are in
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the interval [0, 1]. We find the masked matrix Ã by looking up the preimage of R∗ in
the appropriate CDFs, or

ã = P−1
a (r∗) (2.13)

This preserves univariate distributions and rank correlations, but no higher order
interactions. This looks very similar, if not identical to, synthetic-guided swapping
(see above).

The CDFs of the columns of A can be fitted as parametric distributions or non-
parametric empirical distributions. The usual caveats apply to the decision to para-
metrically fit a distribution, which would be more accurate if we correctly identify
the distribution family, or to non-parametrically fit an empirical distribution, which
would be more accurate if if we can’t correctly identify the family. The tails of the
empirical distribution can be smoothed to provide better protection against reidenti-
fication of extreme values.

Copulas A different way to produce essentially the same result is to use copulas
[90], whereby variable values are replaced with equally ranked values drawn from a
univariate standard normal distribution. That is, we produce a normally distributed
column b in matrix B from column a in matrix A by

b = Φ−1(Pa(a)), (2.14)

where Φ is the cumulative normal standard distribution.

We then calculate the Spearman rank order correlation matrix R of the data A,
and the product moment correlation matrix Q by

Q = 2 sin

(
πR

6

)
. (2.15)

We can then use Q as the covariance matrix in a multivariate normal distribution,
where

B̃ ∼ N(μB, Q), (2.16)

and μB is the vector of column means of B. From B̃ we use the reverse transformation
to return to the original scale of A by

ã = Pa(Φ(b̃)). (2.17)

This procedure transforms the arbitrary distribution of A into the multivariate
normal distribution of B that can be described parametrically, and from which syn-
thetic samples can be drawn efficiently. The rank order correlation matrix of A, B, B̃,
and Ã are all approximately the same. This method preserves univariate distributions
and rank-order correlations, but no higher order interactions.
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Maximum entropy simulation We can fit a joint distribution that preserves
an arbitrary number of user-defined constraints (up to the number of records) us-
ing maximum entropy simulation, and sample from that distribution using Markov
Chain Monte Carlo methods [91]. This is an attractive approach, because it al-
lows the simulated data to conserve any properties of interest, but it is both labor
and CPU intensive. For n constraints, fitting the distribution requires solving an
n-dimensional nonlinear optimization problem, each step of which requires a numeric
integration. To maintain only means and variances of a 2-variable table, this requires
n = 6 dimensions for the optimization problem, and adding further constraints such
as interval-specific means or moments further increases the complexity. For high-
dimensional data this becomes intractable. One way to reduce the computational
burden is to fit a regression or other model to the data, sample only the independent
variables using maximum entropy simulation, and then calculate the dependent vari-
ables with the model. This certainly works to decrease the computational burden,
but again is labor intensive [91].

Multiple imputation Independent of our model construction method, if we are
uncertain about our fitted probability distribution, we can release data that reflects
this uncertainty. Instead of a single dataset of the same size as the original, we can
sample m synthetic sets of this size, in a technique named multiple imputation [92, 93].
Multiple imputation is usually used to fill in occasionally missing data in a dataset,
and in that application there is usually no need to go much beyond m = 5 [94]. But
in multiple imputation of full datasets it turns out that this rule of thumb does not
apply, and values for m in the hundreds are often needed to get an accurate estimate
of the model’s uncertainty [95]. As we would desire and expect, the extra uncertainty
in the model is reflected in increased standard error of the various statistics calculated
on the multiple samples, taking into account the between-sample variability [94].

If we are uncertain about even the appropriate family for the distribution, we can
incorporate that uncertainty by constructing hierarchical mixtures of models, and
sampling from that mixture [96].

Partially synthetic data In the interest of efficiency, we might try to generate
synthetic values for only those variables usable as keys, and then only for records
with fewer than k similar neighbors, building a Bayesian model that generates the
key values given the non-key values over some local neighborhood [97]. The idea
of multiple local models is promising for generating synthetic data, but limiting the
protection to only the highest risk records and then only on the most likely key
variables would be ineffective at preventing a matching attack. If we relax these
limitations and include all records and all variables, we find we are talking about
building a full Bayesian model over all records, which, as we have said, is intractable.
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Clustered synthetic data A promising idea is to first cluster the data as we would
do for microaggregation, and then instead of replacing all elements of the group with
a single representative value, we build a separate model for each group and sample
from that. This should give us the benefits of of both microaggregation and synthetic
data. Preserving the positions of the clusters should preserve much of the high-level
and nonlinear structure of the data, modeling each cluster should preserve much of
the substructure. We would hope that modeling the individual clusters would be
simpler than modeling the data as a whole.

The only known attempt at this found the clusters in a manner similar to the
multivariate microaggregation described above [73], where each cluster was found by
taking the k−1 nearest neighbors of a randomly chosen point and removing them from
the data. The models were uniform distributions fit along the principal components
of the clusters.

Experiments on some standard datasets showed that this approximately preserved
2ndorder statistics, and a k-nearest neighbor classifier worked roughly as well on
the masked data as on the original data (sometimes better, probably due to the
anonymization removing noise). It shouldn’t surprise us that a k-nearest neighbor
classifier worked well for an anonymization method based on preserving the k nearest
neighbors of random points, but the overall strategy of synthetic data drawn from
models of clusters is a promising one that I will extend in Chapter 5.
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Chapter 3

Proposed Assessment Measures

3.1 Disclosure Risk

Prior assessment measures for disclosure risk are unsatisfying, because they are either
unnecessary, insufficient, or not applicable in many cases (Section 2.1). I propose the
new measures prediction distance, prediction ambiguity, and prediction uncertainty to
better quantify disclosure risk. Each of these measures applies to a single original
data point given the anonymized dataset. We can calculate the measures for each
original point and compare distributions over all points to establish the adequacy of
privacy protection.

Prediction distance Prediction distance d(Aj, Ã) is the distance from a particular
original point Aj to the closest anonymized point in Ã, using some distance measure
s. It represents the closest an attacker can get to predicting the values of an original
data point. To allow scale- and dimensionality-invariant measures, s can be calculated
on standardized data and normalized by the number of dimensions, such as

s(x, y) =

[
1

m

m∑
i=1

(xi − yi)
2

]1
2

, (3.1)

where m is the number of dimensions of x and y, and xi refers to the ith variable in
record x. The prediction distance of an original record Aj would then be

d(Aj, Ã) = min
θ

s(Aj, Ãθ)

This and the following measures assume a rational attacker, meaning that he will
chose an anonymized data point as the best prediction, constructing one that is not
part of the anonymized database.

In Section 2.1 I discussed some subtle distinctions between prediction disclosure
and reidentification disclosure, and mentioned the possibility that a synthetic method

47



48 CHAPTER 3. PROPOSED ASSESSMENT MEASURES

could generate new records that reproduced originals. This situation would give
a prediction distance distribution with some probability density at zero distance,
indicating probably unacceptable risk, depending on the reference standard we use
to decide what is acceptable.

Prediction ambiguity Prediction ambiguity c(Aj, Ã, s, k) gives the relative dis-
tance from the record Aj to the nearest vs. the kth-nearest record in the set Ã.
Formally,

c(Aj, Ã, s, k) =
s(Aj, Ã(1))

s(Aj, Ã(k))

where Ã(i) is the ith-closest record in Ã to Aj, under the distance measure s.

An ambiguity of zero means Aj was an exact match to some record in Ã, and an
ambiguity of one means that the best match from Ã was a tie among k records. Note
that these k records are not necessarily identical, only equidistant from Aj. Intuitively,
ambiguity represents the difficulty in selecting the best match from among the k top
candidates. Low ambiguity suggests a prominent best match, high ambiguity suggests
a crowd of points all equally likely to be the best match.

Prediction uncertainty Prediction uncertainty u(Aj, Ã, s, k) gives the variation
among the k best matches to Aj. Formally,

u(Aj, Ã, s, k) = v(Ã(1:k))

where Ã(1:k) is the set of k closest matches to Aj under the distance measure s, and

v is a measure of variation, such as the average variance of each column in Ã(1:k).
Intuitively, prediction uncertainty measures the impact on making a poor choice of
the best match. If columns have different levels of importance, we could use a weighted
average of column variances. The measure v could also return a set of uncertainties,
once for each column.

Between these three measures of prediction risk we can calculate 1) how accurately
an attacker can predict the values of an original record, 2) how sure he will be that he
has made the best prediction, and 3) the predictive consequences of choosing among
the best possibilities. These properties are missed by the empirical reidentification
rate and k-anonymity. Depending on the application, the three measures may not
have equal importance. For anonymizations with no unique deterministic relation-
ship between original and anonymized records, there is no reidentification risk, so
prediction distance would be of primary importance. If we have strong limits on how
closely an attacker can predict the values of a target record, we may be satisfied with
weaker limits on how sure he is of the best match or what the range of uncertainty is.
For anonymizations that allow unique relationships to remain, we may want tighter
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bounds on ambiguity and uncertainty, as reidentification risk would be the biggest
risk. If a particular anonymized record is a clear best choice for a reidentification,
it may not matter as much to the attacker just how far away that best choice is.
In Chapters 4 and 5 I will demonstrate the use of these three measures in assessing
prediction risk more completely than the existing measures allow. In Chapter 4 I will
also demonstrate their use in assessing reidentification risk.

These measures happily lend themselves to defining a reference standard for what
constitutes sufficient protection against predictive disclosure. Consider a second
dataset A∗ consisting of a second sample from the same population as A, but including
none of the same individuals. Releasing this nonoverlapping sample A∗ would clearly
pose zero reidentification risk to the subjects of A, unless they contained identical
individuals. It would pose nonzero prediction risk, however, because the records in
A∗ are similar to those in A, and associations learned from one would apply to the
other.

I therefore propose using A∗ as a reference standard for anonymization. If releasing
any anonymized dataset Ã imposes a computational disclosure risk to the subjects of
A that is no greater than if we had released A∗ instead, Ã shall be deemed sufficiently
protective of its subjects’ privacy. This is a high standard, representing the same
protection against computational disclosure as we would get by not participating in
the study. (Of course, other privacy risks remain, such as accidental or malicious
direct disclosure of the original data, but these are very different types of risk, and
require preventive measures outside the scope of this dissertation.) We can attempt to
meet this standard by requiring that the distributions of our three privacy measures
are no smaller for Ã than for A∗. If subjective assessment of the distribution is unclear
on whether the standard is met, a Kolmogorov-Smirnov test can be used with a one-
sided null hypothesis that the obtained distribution is equivalent or higher than the
reference standard [98, 99]. This would require a statistical definition of ‘equivalent’
that is meaningful in practical terms, such as for example, a difference of 0.05 between
the cumulative distributions. Note that contrary to the common use of p-values, in
this case a high p-value would be desirable and indicates sufficient protection.

3.2 Analytic Utility

Previous utility measures assess the conservation of bivariate statistics, commonly
2nd-order moments. This is a good start, but it does not allow analysis of higher-
order interactions, such as with the subgroup analyses that are ubiquitous in medical
research. For example, if a study includes both men and women experiencing deep-
vein thrombosis, we may want to ask the question of how smoking affects deep-vein
thrombosis in women taking birth control pills vs. those not taking birth control pills.
This would probably not be accurately reflected in the anonymized data that only
conserved 2nd-order moments. Univariate distributions can also be important, and
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some methods try to conserve them [10]. Changes in many of these statistics due
to masking are sometimes averaged into a single measure [41]. Other suggestions
for measuring analytic utility include information-theoretic measures of entropy, mu-
tual information, or information loss [24], or other measures that are specific to the
anonymization method [73].

I propose that the ultimate measure of analytic utility is how well the multivariate
distribution of the data is preserved. For the statistical analyst looking for trends,
dependencies, and associations in the variables, this is all that matters. For the
computer scientist looking to build a predictive model of the data, the multivariate
distribution is the ultimate source of information for the model.

If we could find the multivariate distribution of both the original and the anony-
mized data, we could compare them and assess whether the anonymized data faith-
fully reproduces the distribution. Unfortunately, inferring this distribution from the
data is hard — it is the central problem of machine learning, and no general solu-
tion is in sight. Fortunately, finding the multivariate distributions of the original and
anonymized data is not required for deciding if those distributions are statistically
‘the same’.

We can make this decision as follows. Let’s take the example of a 2-column dataset
with variables x, y as the simplest example that illustrates the idea. If we plot this
2-dimensional dataset on a plane, we’ll see some regions with dense clusters of data
points and some regions with relatively few or no points. If we plot the bivariate
density on the third axis, we’ll have hills and valleys and ridges winding around the
plotted area in some complicated pattern.

Now on this plot we draw an arbitrary, possibly complicated curve, that can
describe some particular nonlinear feature important to us, or it can simply be a
randomly chosen curve. We project all of the data onto the closest point of this
curve, and we calculate the empirical univariate distribution of the projected data
along that curve. We then draw the same curve on the plot of the anonymized data.
If the univariate distributions of these two curves align, then we have one small piece
of evidence that the two datasets might have the same bivariate distribution. We can
again use the two-sided Kolmogorov-Smirnov test [99] to get an objective assessment
of the statistical equality of the univariate distributions. As with the privacy measure
comparison, a high p-value indicates equivalent distributions.

We can keep doing this for many arbitrary curves, and eventually we may convince
ourselves that the two distributions must be statistically equal, or at least close enough
for what we need. But there are (at least) two problems with this. First, the number
of curves we must draw may be so large as to make the problem intractable, especially
when the data have high dimension. Second, there is always the chance that our curves
may have missed the one important region of the data where there is a difference
between the original and anonymized distributions.

We can use the power of kernel methods [100] to handle these problems. Kernel
methods allow us to perform certain operations on data that has been projected into
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a higher-dimensional kernel space, without incurring the computational expense of
explicitly operating in that space. In other words, we can find the result of certain
operations in kernel space without actually performing them in that space.

For example, we may want to operate in a kernel space where each possible in-
teraction of degree 4 or less between the original variables corresponds to an explicit
variable in that space. The mapping would be

{x, y}→ {x4, x3y, x2y2, xy3, y4, x3, x2y, xy2, y3, x2, xy, y2, x, y, 1}.
With this transformation, any polynomial curve of degree 4 or less in data space
corresponds to a straight line in kernel space. So if we can be satisfied with only
looking at curves in this class, we can limit ourselves to looking at straight lines in
kernel space.

Moreover, we don’t have to look at all of the straight lines, we can satisfy ourselves
with the principal components of the data in kernel space. This is because the first
principal component lies along the line that covers the greatest variance of the data.
The second principal component lies along the line orthogonal to the first that covers
the next greatest variance, and so on. We can therefore examine distributions along
the principal components, in order, until we’ve accounted for the amount of cumula-
tive variation in the data that will convince us the distributions are statistically the
same.

Now it turns out that finding the principal components in a kernel space is one of
the operations that we can do without explicitly operating in that space [101]. To find
the kernel principal components, we calculate the kernel matrix K using our chosen
kernel function k(Ai, Aj). This kernel function gives the scalar result of performing
a dot-product between the records Ai and Aj in the kernel space. The key to kernel
methods is that this result can be calculated in terms of the original data, without
projecting into the higher-dimensional space. For our 4th-degree example, the kernel
function would be

k(Ai, Aj) = (AT
i Aj + 1)4. (3.2)

For any given kernel function k(Ai, Aj), the kernel matrix is calculated with

Kij = k(Ai, Aj).

The eigenvectors of the kernel matrix are the principal components we’re seeking.
Calculating the kernel principal components from the original data matrix A has
O(n3) time complexity if done exactly, where n is the number of rows of A. Good
approximations can be found in O(m2n) time using rank m approximations of K
[102].

To assess analytic utility, we first find the kernel principal components wi of the
original data and the distribution of elements within each component. Then we
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compare these distributions with those of the projections of the anonymized data
onto the same nonlinear features. Amazingly, we can also do this without computing
the nonlinear feature. The kernel-space projection F ·Φ(α) of the kernel-space image
Φ(α) of any record α onto the same nonlinear feature F that produced wi is found
by

F · Φ(α) =
m∑

j=1

wijk(Aj, α),

where wij is the jth element of wi and m is the number of rows of A.

The objective utility measure is the set of p-values produced by comparing the
distributions of original and anonymized data along the kernel principal components
of A. We can include as many components as we want in this measure, until the
number of components covers the desired amount of cumulative variation in the data.
If we examine enough components to collectively cover 99% of the total variance in
the data, then we can be sure that whatever we’ve missed accounts for only 1% of
the total variance. We can set this number to whatever threshold we want, in order
to convince ourselves that we haven’t missed any significant feature of the data.

Subjectively, we can also look at bivariate plots of the data projected onto two
selected kernel principal components to examine even more subtle and complex depen-
dencies in the data. (Figure 3-1) is an example of such a plot. (The figure shows some
data from Section 4.2.1 after anonymization with the method of Section 4.1.1, but the
particular method is not important at this point). The kernel principal components
are plotted along the diagonal, with blue lines indicating the original distribution,
and red the anonymized distribution. The magnitude of the eigenvalue (denoted by
lambda), the cumulative variance explained by all components up to the given one
(denoted by cum), and the p-value of the Kolmogorov-Smirnov test for equivalency
(denoted by p) indicated on the plot. Above the diagonal, contour plots are shown,
with the plot in row m column n being that of the mth vs. the nth component. Again,
blue indicates the original contours and red the anonymized contours. The grey data
points in these plots are the anonymized data. Below the diagonal, the anonymized
data is again plotted, but in a way that emphasizes the tails of the distributions.

In this example plot, we see that the first kernel principal component is close to
the original, although we might want better agreement in some circumstances. The p-
value of 0.085 tells us this difference or greater should arise 8.5% of the time if these
were distributions of independent samples from the same population. The second
principal component is clearly not preserved by the anonymization, with the original
tail to the left not present in the anonymized data, and the anonymized data forming
a much broader peak. Objectively, the p-value of 10−6 tells us the distributions are
different. The third principal component seems to be well preserved, with a p-value
of 0.75. From the plot of the third principal component, we see that together the top
three components account for 75% of the variance in the data.
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The bivariate plot in column 3 row 2 is the plot of the third vs. the second principal
component. It shows the peaks of the two distributions in different places and the
downward tail of the blue distribution missing in the red. Overall, this plot shows us
an anonymization that is both objectively (via the p-values) and subjectively (via the
visual assessment of the plots) a different multivariate distribution than the original.
If we compared this plot to two samples from the same distribution, we would see
much closer agreement between the two samples than we see here.

lambda=5.5e+07
 cum=0.49, p=0.085

lambda=2e+07
 cum=0.66, p=1.9e−06

lambda=9.4e+06
 cum=0.75, p=0.88

Figure 3-1: Example analysis of analytic utility. See text for details.

Other kernels Amazingly, the computational efficiency of these calculations do
not depend on the polynomial degree of the transformation, despite the fact that
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the dimension of kernel space grows exponentially with this degree. In fact, we can
operate in spaces with infinite numbers of dimensions just as easily as we can operate
in the 4th-degree polynomial space of our example.

The particular kernel function in our example allows us to assess whether all 4th-
order dependencies between variables were preserved in the anonymization. Looking
at the bivariate plots between components we can subjectively assess whether much
higher dependencies are also preserved. We can objectively assess these dependencies
of up to any positive integer order η by using the polynomial kernel

k(Ai, Aj) = (AT
i Aj + 1)η.

We also might use an exponential kernel that would include infinitely high-order
polynomials (think of the polynomial expansion of the exponential function), or other
kernels that preserve features of interest. The question of the best kernel to use for
assessment of analytic utility is an open problem.



Chapter 4

Basic Spectral Anonymization

The main contribution of this dissertation is the observation that the anonymizer is
not required to operate in the original basis of the dataset, and that by switching to a
judiciously chosen alternative basis, we can improve some combination of the privacy
protection, the analytic utility, or the computational efficiency of the anonymization.
Specifically, I propose that a spectral basis, such as that provided by the data’s
eigenvectors and eigenvalues, can simplify anonymization methods, improve results,
and reduce the curse of dimensionality. I will use the term spectral anonymization
to refer to the use of a spectral basis in anonymization. The general approach is
to project the data onto a spectral basis, apply an anonymization method, and then
project back onto the original basis. The intuition is that projecting onto the spectral
basis rotates the axes of the dataset to align with the intrinsic structure of the data,
and anonymization algorithms can take advantage of that alignment.

This chapter explores basic aspects of this idea in more detail and gives some
examples of its use. Chapter 5 will give a more complex example that addresses
deficiencies in the simple ones.

4.1 Theory and Examples

Singular Value Decomposition (SVD) [103] provides a useful spectral basis for anon-
ymization. It decomposes a matrix A into A = UDV T, where D is diagonal, and U
and V are orthonormal. These matrices have special properties that can facilitate
anonymization.

The first useful property is that the columns of V represent a basis that is optimally
aligned with the structure of the data in A. Many datasets have internal structure
that keeps them from completely filling the space they reside in, filling instead a
potentially lower-dimensional manifold within the enclosing space. The matrix V
represents axes of the space that are rotated to optimally align with the embedded
manifold.

The second useful property is that the elements on the diagonal of D give the
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magnitudes of the data variance or manifold thickness in the directions of this new
basis, and the product UD gives the projections of the data onto that basis. Knowing
the values of D allows us to make engineering decisions about which axes we wish to
emphasize in our anonymization, under the reasonable assumption that the thicker
dimensions are worth more attention than the smaller ones. The ‘optimality’ of the
basis alignment refers to the fact that the first column of V describes the direction
with the greatest data variance, and each remaining column gives the direction of the
greatest remaining variance that is perpendicular to all previous columns.

A third useful property of SVD is that the columns of U are uncorrelated. This
allows us to anonymize U one column at a time, skirting the curse of dimensionality,
without affecting linear correlations among the variables.

4.1.1 Example - Cell Swapping

As described in Section 2.3.3, simple cell swapping anonymizes a dataset by exchang-
ing the values of selected cells within columns of the dataset [63]. This preserves the
univariate distributions of the data but swapping indiscriminately tends to destroy
relationships between variables. The challenge is to select cells for swapping that will
preserve the statistics of interest. Since choosing swaps that exactly preserve par-
ticular statistics is NP-hard [88], swaps are sought that only approximately preserve
them.

Approximately preserving even the correlations alone between variables is difficult
to do, because it implies several statistical constraints that need to be met [88].
Variations of swapping that attempt to preserve statistical properties have turned out
to provide little or no privacy protection [70, 69, 71], and variations focusing on privacy
protection have difficulty preserving multivariate statistics [63]. There is a recent
variation that generates synthetic data in a multivariate normal distribution, and then
replaces the values in each column with the equally-ranked values from the original
data [71]. This variation, named data shuffling by its authors, represents the state of
the art of cell swapping. It has been shown to provide reasonable privacy protection
and to conserve univariate distributions exactly and rank correlations asymptotically.

Cell swapping is well-suited to a spectral variation (Figure 4-1). Instead of produc-
ing the anonymized Ã directly, spectral swapping applies a uniform random permuta-
tion separately to each column of U to produce Ũ . We then construct the anonymized
Ã by Ã = ŨDV T. The permutations of U do not affect the correlations of Ã because
the correlation matrix of U is the identity matrix, and our permutations preserve this.
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Formally, UTU = I = ŨTŨ , so

cov(A) = ATA

= (UDV T)T(UDV T)

= V DTUTUDV T

= V DTŨTŨDV T

= ÃTÃ

= cov(Ã)

This assumes that we first subtract the column means of A, anonymize, and replace
the means. This method conserves means (exactly), variances, covariances, and lin-
ear correlations of the original data. It also conserves the univariate distributions
along the principal components of A, which in some cases may be more useful than
preserving the univariate distributions of the original variables.

In practice, the permutations won’t produce a Ũ with a correlation matrix of
exactly I, so the means and distributions are the only statistics that are exactly
conserved.

SVD-Swap(A, tol)

1 (U,D, V )← SVD(A)

2 repeat Ũ ← Column-Swap(U)

3 until max(cov[Ũ ]) ≤ tol

4 Ã← ŨDV T

5 return Ã

Figure 4-1: The SVD Swapping algorithm. Column-Swap applies a uniform
random permutation to each column.

Under anonymization by spectral swapping, the practical reidentification risk is
zero because there is no unique deterministic relationship between a released record
and any individual. The attacker could conceivably reverse the applied randomization
to reconstruct the original data, but it is not obvious how this might be done, or even
if it is indeed possible. At a minimum it is NP-hard to un-swap the cells to match a
given set of statistics (such as covariances of the original data that might be known
to the attacker) [88]. As the experiments below demonstrate, the protection that
spectral swapping provides against predictive disclosure is stronger than both our
reference standard and the comparison data-shuffling algorithm.
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4.1.2 Example - Microaggregation

My second example uses a microaggregation method. As discussed in Section 2.3.4,
microaggregation anonymizes a dataset by collecting similar data points into groups
and replacing all k members of the group with k copies of a single representative
record. The representative record may be chosen from the members of the group, or
it may be some kind of calculated central tendency like the mean.

For this example we’ll use the specific microaggregation method of Recursive His-
togram Sanitization (RHS)[45]. RHS is one of the few anonymization methods with
rigorously proven anonymity properties (although so far only for quite restrictive dis-
tributional assumptions), and it demonstrates a large benefit from using a spectral
basis. RHS operates by splitting the data in every dimension at the median, forming
in one pass a total of 2n potential groups for a dataset with n dimensions. For a high-
dimensional dataset, most of these potential groups will have no members. Of the
groups with nonzero membership, if any have membership greater than 2k samples,
it recurses on those groups.

A major problem with RHS that prevents its practical use is that for higher-
dimensional data, the first split produces many groups that contain only one sample,
preventing any anonymization for those samples. We will see that this is a problem
for our dataset.

Spectral-RHS is a spectral version of RHS that works on the T = UD product
matrix instead of the original A (Figure 4-2)). Spectral-RHS makes use of the
natural order of singular vectors to prevent the exponential explosion of group for-
mation. In the original RHS, the relative importance of each column of A is unclear,
and all columns are necessarily bisected simultaneously. In Spectral-RHS, each
successive column of the matrix T spans a smaller range than its predecessor, and
we can bisect one at a time based on that ordering. We select the column with the
largest range at any particular step, bisect it at the median, and recurse on the two
new groups. Upon the algorithm’s return, the thinner dimensions will probably not
have been partitioned at all for most groups, but that makes little difference to the
anonymization.

Since this algorithm replaces a cluster of membership between k and 2k − 1 with
copies of a single representative, we expect an empirical reidentification rate of some-
where between 1

k
and 1

(2k−1)
, because the representative must be nearest to some

member of the original cluster (barring a tie). However, this does not necessarily
mean that the correctly matched records are at higher risk of reidentification. For
identities to be at risk, the attacker must be able to distinguish correct from incorrect
matches. The ambiguity distribution can help us assess this distinction.

The strong, rigorously proven anonymity guarantees of RHS may or may not be
preserved by the spectral transformation - these guarantees depend on distributional
assumptions that may be violated by the change of basis. It is an open problem to
show whether the rotated distribution would degrade these strong guarantees. But
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Spectral-RHS(T, k)

1 if rows [T ] ≤ 2k
2 then return Mask(T )
3 i← Select-Column(T, k)
4 (A,B)← Partition(T, i)
5 return Merge(Spectral-RHS(A, k),Spectral-RHS(B, k))

Figure 4-2: The spectral adaptation of the Recursive Histogram Sanitization
procedure. T is the matrix to be anonymized with anonymization param-
eter k. Select-Column selects the column of T with the largest range.
Partition(T, i) divides T at the median of its ith column, returning two matri-
ces. Mask(T ) performs the desired masking, such as replacing all elements of T
with their mean. Merge concatenates its array arguments in a vertical stack.

Spectral-RHS only relies on the properties afforded by microaggregation in general,
and these are not affected by the spectral transformation.

4.2 Experiments

This section presents experimental results of these basic examples. The performance
of SVD Swapping and Spectral-RHS was compared to data shuffling, nonspectral
RHS, a reference standard, and an additive noise algorithm benchmark. The results
show the spectral algorithms matching or exceeding the performance of their non-
spectral counterparts in privacy protection and analytic utility. The SVD Swapping
results show the simple spectral algorithm providing competitive analytic validity
and stronger privacy protection than the complex, nonspectral state of the art. The
Spectral-RHS results show the spectral algorithm avoiding the curse of dimension-
ality that defeated the nonspectral RHS.

4.2.1 Methods

Dataset The dataset used for all experiments in this dissertation was a public
dataset obtained from the National Health and Examination Survey (NHANES)[104]
(Appendix A). The dataset contained 11763 records of 69 continuous, ordinal, and
binary attributes (after converting categorical attributes into binary). The attributes
included demographic, clinical, and behavioral variables. Binary attributes were re-
coded as {−1, +1}. Continuous variables were all strictly positive and were log trans-
formed and then standardized. From this we randomly sampled m = 2000 records
and selected a representative n = 28 attributes for computational efficiency.
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A sample of 2000 records that did not include any records in the above sample
were randomly selected from the same original dataset of 11763 records. This was
used as the reference standard in measures of disclosure risk and analytic utility.

Perturbation Algorithms SVD swapping and data shuffling [71] were imple-
mented and compared. Spectral-RHS and non-spectral RHS were implemented
with design parameter k = 5 and compared.

For a baseline comparison, (non-spectral) anonymization by adding zero-mean
multivariate normal noise was implemented with a noise covariance matrix bΣ, where
b = 0.1 and Σ is the covariance matrix of the original data. The anonymized data was
corrected for mean and variance distortion [52, 53]. Noise addition is not an effective
method for anonymizing high-dimensional data with many binary attributes, but we
include it here as a well-known benchmark.

Privacy Protection Measures Privacy protection was assessed using prediction
distance, ambiguity and uncertainty with the distance measure of (3.1) and k = 5.
All assessments were made with the continuous data in the standardized log form
described above, original binary data in {−1, +1} encoding, and anonymized binary
data thresholded at zero. For statistical comparison, the distribution of each measure
was compared against the corresponding distribution of the reference sample using
the one-sided Kolmogorov-Smirnov test.

For additive noise and Spectral-RHS, reidentification risk was assessed by
matching records with the distance measure of (3.1). The empirical reidentification
rate was assessed, and distributions of the three privacy measures were compared
between correctly and incorrectly matched records. The area under the receiver oper-
ating characteristic curve (AUC) [105] was calculated with the non-parametric empir-
ical method separately for each privacy measure. The AUC measures how accurately
each method distinguishes correct from incorrect matches, and is therefore used to
indicate whether correct matches are predictably or unpredictably correct.

Analytic Utility Measures Analytic utility was assessed by comparing the me-
dian differences in the univariate means, variances, and correlation matrices of the
original vs. anonymized datasets. To adjust for differences in variable scale, the dif-
ferences between means were normalized by the standard deviation of the variable
in the original data, and the differences between variances were normalized by the
variance of the original.

4.2.2 Results

Privacy Protection The two spectral algorithms improved the privacy protec-
tion of their nonspectral counterparts according to all three measures (Figure 4-3).
Nonspectral RHS failed to produce any anonymization due to the dataset’s high
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dimensionality - the first pass partitioned all but two records into their own cell, pro-
ducing distances, ambiguities, and uncertainties of zero. The baseline additive noise
algorithm produced some protection, but that protection was much weaker than the
reference standard despite the high amount of noise added. Spectral swapping and
data shuffling both produced privacy protection superior to the reference standard
in all three measures, with spectral swapping providing the stronger protection in
each case. Spectral-RHS provided larger (better) prediction distance than the ref-
erence standard; its uncertainty was zero (weaker than the reference standard) and
ambiguity was unity (stronger than the reference standard) by design.
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Figure 4-3: Privacy protection of basic spectral anonymization. The spectral al-
gorithms provide improved privacy protection over their nonspectral counterparts.
Nonspectral RHS failed to anonymize at all, and is not shown.

Under empirical matching, the data anonymized by Spectral-RHS allowed 170
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(8.5%) correct matches (Figure 4-4). With k = 5, we expected slightly more than this,
somewhere between 11% and 20% correct. Correct matches were indistinguishable
from incorrect matches on the basis of prediction distance (AUC 0.52), ambiguity
(AUC 0.50), or uncertainty (AUC 0.50) (Figure 4-4a).

Additive noise allowed 1982 (99%) correct matches. These were almost completely
distinguishable from incorrect matches on the basis of prediction distance (AUC 0.90)
or ambiguity (AUC 0.97), and to a lesser extent on the basis of uncertainty (AUC
0.76) (Figure 4-4b).
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Figure 4-4: Reidentification analysis using the new privacy measures. Correct
matches are distinguishable from incorrect under additive noise anonymization, but
not under Spectral-RHS. Reidentification risk is therefore high for additive noise,
low for Spectral-RHS. See Section 4.2.3 for further discussion of these figures.

Analytic Utility All methods that produced anonymized data approximately pre-
served all target statistics, with the exception that Spectral-RHS did not preserve
the variance of the original data (Table 4.1).
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Table 4.1: Target statistics were approximately preserved by all methods used, except
variance was not preserved by Spectral RHS. Values are median differences between
original and anonymized data. Mean and variance values were normalized as described
in the text.

Median difference in
mean var cor rank cor

Spectral Swapping 0.014 0.022 0.020 0.024
Spectral RHS 0.027 0.380 0.066 0.066

Data Shuffling 0.014 0.018 0.031 0.025
Additive Noise 0.015 0.023 0.020 0.020

Reference Standard 0.016 0.013 0.017 0.017

4.2.3 Discussion

These experiments demonstrate basic improvements in anonymization that can be
made by operating in a spectral basis. In the cell-swapping example, the spectral
form of simple swapping provided competitive analytic validity and stronger privacy
protection than data shuffling. The practical effect of the stronger privacy protection
may be less important, however, since both algorithms give stronger protection than
required by the reference standard, and would both therefore be sufficient by that
standard. But the example demonstrates that simply choosing a judicious basis for
anonymization allows the original, basic cell swapping method to transform from
a weak algorithm of mainly historical interest to one that performs as well as the
complex state-of-the-art method.

The experiments also demonstrate how spectral anonymization can help over-
come the curse of dimensionality. In the microaggregation example, the nonspectral
RHS method was unable to anonymize the high-dimensional dataset at all, whereas
Spectral-RHS provided sufficient privacy protection as measured by the reference
standard.

Additionally, these examples demonstrate some important added value of the new
privacy measures. The empirical reidentification rate allowed by the microaggregation
example was 8.5%, which would appear unacceptable. But this 8.5% in fact refers
roughly to a situation where each original record is approximately equidistant from
12 anonymized records, with an attacker being forced to choose randomly between
the 12 in a matching attack. We would expect the attacker to choose correctly about
one time in 12, but the attacker is unable to distinguish when that happens.

The distance, ambiguity, and uncertainty curves for Spectral-RHS are nearly
exactly the same for correct vs. incorrect matches (Figure 4-4a). An attacker therefore
cannot tell which candidate matches are correct on the basis of how close a candidate
match is. The AUC value of 0.52 for prediction distance is an objective demonstra-
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tion that for Spectral-RHS, closer match distance does not at all suggest a correct
match (Figure 4-4a), and by design of the algorithm neither ambiguity nor uncer-
tainty measurements aid in making that distinction. The privacy protection afforded
by Spectral-RHS could therefore be acceptable for many applications — but we
wouldn’t know that by looking at the empirical reidentification rate alone.

The privacy measures tell a different story about anonymization by additive noise.
They confirm what we already expected, that this method would be inadequate for
our data. Both prediction distance and ambiguity were weaker (lower) under additive
noise than for the reference standard, indicating high disclosure risk. Indeed, the
empirical reidentification rate was 99%, and correct matches are easily distinguishable
from incorrect matches on the basis of either distance, ambiguity, or to a lesser degree,
uncertainty (Figure 4-4b). Prediction distance, for example, is much lower for correct
matches than for incorrect matches, and would be a reliable indicator of a successful
reidentification — one could accept any match with a distance below 0.3, and this
would find 80% of the correct matches, and almost no incorrect matches. We suspect,
but did not investigate, that a model built on the combination of the three measures
would be even better at predicting correct vs. incorrect matches.

Intuitively, the benefits of spectral anonymization come from aligning the axes of
anonymization to better correspond to the inherent structure in the data. For data
with simple structure, the realignment can produce optimal results. Spectral swap-
ping on multivariate normal data, for example, would produce perfect anonymization
(in the sense that it meets or exceeds our reference standard) and perfect analytic
utility (in the sense that all statistics computed on the anonymized data would be
equally valid as those computed on the original data). But this type of data is uncom-
mon in the real world. For real-world data with nonlinear structure, the realignment
can help, but further improvements need to be made. The next chapter discusses
one adjustment we can make that significantly improves the analytic utility of the
anonymized data.



Chapter 5

Nonlinear Spectral Anonymization

As described in Chapter 4, SVD Swapping is a spectral anonymization algorithm
that provides strong privacy protection and analytic utility comparable to any known
method that provides equivalent privacy protection. There is ample room for improve-
ment, however, because SVD Swapping preserves only linear dependencies between
variables, and these are usually of only basic interest to analysts. We would like
an algorithm that can preserve at least some of the data’s nonlinear dependencies,
thereby allowing some subgroup analysis or nonlinear model building.

5.1 Theory and Example

We start by observing that n-dimensional data with non-trivial dependencies often
exist on a lower-dimensional manifold within the n-dimensional space. If we can iden-
tify the geometry of that manifold, we can try to maintain its structure by perturbing
the data only along its surface. The Laplacian Eigenmap method seeks to capture the
manifold geometry and transform the data to a low-dimensional basis corresponding
to the manifold surface in a way that preserves locality information [106]. That is,
points near each other in the original space remain so in the transformed space. This
property naturally preserves and emphasizes clusters in the original data.

Interestingly, spectral clustering methods [107, 108] transform the data to the
Laplacian Eigenmap basis before performing the clustering [106], and there are similar
ties to the Locally Linear Embedding technique of dimensionality reduction [109]. We
might therefore consider the manifold as patches of low-dimensional clusters hinged
together in some pattern, hanging in the n-dimensional space. We can identify these
with spectral clustering, anonymize them individually in their low-dimensional space,
and expect that this will preserve much of the structure of the manifold.

We transform the original data A (with row j denoted Aj) to the new spectral
basis by re-normalizing the eigenvectors of the Laplacian matrix [108]. To do this,
we first find the affinity matrix S, where
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Sij =

⎧⎨
⎩e

−‖Ai−Aj‖2
2σ2 if i 
= j

0 if i = j,
(5.1)

and σ is a parameter that determines the scale of the geometry we seek. We then
construct a diagonal matrix D, with

Dii =
∑

j

Sij (5.2)

and zeros off the diagonal. We then construct the Laplacian matrix L by

L = D− 1
2 SD− 1

2 . (5.3)

We now find the q largest eigenvectors x1, x2, . . . , xq of L, and collect them as
columns of a matrix X. The choice of q is a parameter of the method. For now we
will leave it as a free parameter, but our results will suggest a method of choosing
the optimal q for anonymization. The coordinates of the data in the desired basis are
the rows of Y , where

Yij =
Xij

(
∑

l X
2
il)

1
2

(5.4)

The Yij are the coordinates of the original points mapped onto the surface of the
manifold. For any given q, these points will naturally fall into q groups located in
mutually orthogonal directions from the origin, and can be easily partitioned into q
clusters with a standard clustering algorithm like k-means.

We now anonymize each cluster individually with spectral swapping using a basis
provided by Independent Component Analysis (ICA) [110, 111]. ICA uses an iterative
algorithm to find a linear basis V for the data such that the joint data distribution
is equal to the product of the marginal distributions in that basis. That is, if U
is the projection of the data onto basis V (so A = UV ), it seeks V such that the
multivariate probability distribution p(u1, u2, . . . , un) can be factored into univariate
distributions, or

p(u1, u2, . . . , un) = p(u1)p(u2) · · · p(un).

We can think of this basis as finding “independent directions” within the data.

ICA has historically been used to find independent signals that have been linearly
mixed to produce the measured data, such as might be done with two independent
audio sources recorded by two microphones, all located in different parts of the room.
Each microphone picks up a linear combination of the two sources, but in different
proportions. ICA provides a way to estimate the original sources and the mixing
matrix given only the measured data. It does this by finding a basis V that implies
the most independent sources U , giving the best fit to (5.1).

For most applications, ICA fails when the sources are Gaussian, since any set of
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orthogonal directions within a (standardized) multivariate Gaussian are independent.
Under these conditions, it is impossible to find any preference for any particular basis,
and the search for the original sources comes up empty. For our purposes, however,
this is not a problem. We want to find any set of directions vi that give mutually
independent projections ui, so the multivariate Gaussian distribution represents the
best of all worlds to us. We can pick any set of orthogonal directions, and they will
be perpendicular.

While SVD swapping preserves linear dependencies, ICA swapping preserves all
dependencies between variables, as long an exact factoring is found. In a large dataset
an exact factoring probably does not exist, but in clusters of smaller population and
smaller dimension, one or more may well exist. I will call this algorithm Partitioned
ICA Swapping (Figure 5-1).

PICA(A,q)

1 Calculate S using (5.1)
2 Calculate D using (5.2)
3 Calculate L using (5.3)
4 Calculate Y using (5.4)
5 C ← Cluster(Y, q) � C is a set of q clusters

6 Ã← nil
7 for each cluster c ∈ C
8 do (U, V )← Fast-ICA(c)

9 Ũ ← Column-Swap(U)

10 Ã←Merge(Ã, ŨV )

11 return Ã

Figure 5-1: The Partitioned ICA Swapping algorithm. Cluster can be any
standard clustering algorithm, such as K-Means. Column-Swap applies a
uniform random permutation to each column. Merge merges two arrays by
stacking their rows vertically.

5.2 Experiments

This section presents experimental results of this example of nonlinear spectral anon-
ymization. The performance of Partitioned ICA Swapping was compared to SVD
swapping and the reference sample. The results show that according to my measures,
Partitioned ICA Swapping provides equal or better privacy protection and analytic
utility as the reference sample, which is an extremely encouraging result. The analytic
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utility of Partitioned ICA was stronger than SVD Swapping, although the privacy
protection of SVD swapping was stronger than that of Partitioned ICA. The differ-
ence in privacy protection is probably less important, however, because both methods
met the standard of the reference sample.

5.2.1 Methods

Dataset The dataset used for these experiments (including the reference sample)
was the same as described in Section 4.2.1.

Perturbation Algorithms The dataset was anonymized in turn by SVD Swapping
and once each by Partitioned ICA Swapping with target partition sizes t = 100, 200
and 300 (that is, with a clustering parameter q = 2000/t. The ICA algorithm used
was the efficient fastICA algorithm [110], implemented as a package in R [112], using
the log cosh approximation to the negentropy cost function. The spectral clustering
implementation used was that provided by the kernlab package in R [113]. The scale
parameter σ was chosen automatically by the kernlab function, following a built-in
heuristic. After anonymization, originally binary variables were thresholded at zero
and continuous variables were transformed to their original scale. For brevity, these
algorithms will be referred to as PICAt.

Privacy Protection Measures Privacy measures were calculated using the dis-
tance function of (3.1) with continuous variables in their log-standardized form and
binary variables thresholded at zero. Distributions of the measures were compared
using the Kolmogorov-Smirnov test to the reference standard described above. For
this experiment, I arbitrarily chose a leftward shift of 5% of the data in the distance
measure to be to be of practical significance, and 10% in the other two measures. To
align statistical significance with practical significance, a random subset of 1296 data
points was taken to produce a power of at least 0.8 (and probably much higher [98]) to
detect a cumulative difference of 0.05 in the distance measures at a 0.05 significance
level, and 324 points sub-sampled to provide the same power for a difference of 0.1
in the other two measures [98].

Analytic Utility Measures Analytic utility was assessed using the kernel prin-
cipal components with polynomial kernel function k(x, y) = (xTy + 1)4 with binary
variables thresholded at zero and continuous variables in unstandardized log form.
Subjective assessment used the two-sided Kolmogorov-Smirnov test for equal distri-
butions of corresponding kernel principal components. I arbitrarily chose a threshold
of 5% of the data shifted in either direction to be of practical significance, and ran-
domly sub-sampled 1296 points for comparison as above [98]. Objective assessment
was by pairwise scatterplots of the data along kernel principal components.
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5.2.2 Results

Privacy Protection

SVD Swapping provided the strongest privacy protection of all methods tested (Figure
5-2). PICA200 and PICA300 provided equal or stronger protection compared to the
reference standard for all three measures (all p > 0.15 for PICA200, all p > 0.7 for
PICA300). PICA100 provided weaker protection in all three measures( all p < 0.02).
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Figure 5-2: Privacy protection of nonlinear anonymization methods. PICA200 pro-
vides prediction distance and prediction uncertainty at least as strong as a nonover-
lapping sample, and prediction ambiguity roughly the same.
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Analytic Utility

Distributions along the top 20 kernel principal components differed significantly from
the original for SVD Swapping but not for the other methods (Table 5.1). Objec-
tive assessment gives similar results, showing the distributions as well preserved for
PICA200 as for the reference standard. (Figure 5-3).

5.2.3 Discussion

In this chapter I have demonstrated a new spectral anonymization algorithm, Par-
titioned ICA Swapping, that preserves nonlinear structure with high fidelity and
reduces computational disclosure risk to that equivalent of non-participants. The
practical reidentification risk is reduced to zero since there is no unique deterministic
association between any study participant and any anonymized record. The predictive
disclosure risk reduced to a level that is statistically no greater than that of the refer-
ence sample. The overall computational disclosure risk to study participants due to
the released anonymized data is therefore no greater than if they had not participated
in the study at all. The analytic utility provided by this algorithm preserves complex
interactions of up to fourth order and possibly more. This is improved over the utility
provided by SVD Swapping, which preserves linear correlations among variables but
no nonlinear structure (Figure 5-3b). I know of no existing anonymization algorithm
that provides this level of combined utility and anonymity. Additionally, this algo-
rithm works on datasets of high dimension and on continuous, binary, ordinal, and
categorical variables.

The privacy results suggest a method to choose the cluster parameter q. The pre-
diction distance distribution appears to decrease monotonically with q (Figure 5-2),
so we should choose the smallest value that does not drop the privacy distributions
below the reference sample. In this experiment, a partition size of 100 produced a
statistically significant number of prediction distances below those of the reference
sample. Partition sizes of 200 and 300 provided well-anonymized data, so we would
choose q = 2000/200 = 10 for this anonymization. I suspect, but have not inves-
tigated, that the optimum partition size varies with the dimensionality of the data,
and probably also with the distribution of eigenvalues.

Partitioned ICA Swapping is similar to synthetic data methods in that it essen-
tially generates a new dataset with the information from a single original record
dispersed among many anonymized records. But it differs from most synthetic meth-
ods in that it explicitly encodes few assumptions about the data or their distribution.
This makes it much less likely that an unexpected or subtle feature of the data will
be lost because the synthesis model didn’t anticipate it. Since it is not an explicit
model, it would be also difficult to release a closed-form description of it suitable for
direct analysis.

The most consequential assumption encoded by Partitioned ICA Swapping is that
data in small enough clusters lie in a factorable distribution. That is, our model
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kPC PICA 100 PICA 200 PICA 300 SVD Ref
1 0.9 0.11 0.42 0.0098 0.99
2 0.54 0.94 0.9 0.7 0.92
3 0.98 0.54 0.34 0.0025 0.31
4 0.7 0.54 0.27 0.0014 0.15
5 0.39 0.42 0.29 0.037 0.47
6 0.97 0.57 0.94 0.6 0.99
7 0.92 0.76 0.79 0.5 0.92
8 0.85 0.88 0.57 0.16 0.31
9 0.97 0.96 0.31 1.2e-05 0.15

10 0.96 0.79 0.42 0.021 0.47
11 0.9 0.14 0.54 1.4e-05 0.99
12 0.7 0.79 0.39 0.085 0.92
13 0.47 1 0.31 0.47 0.31
14 0.31 0.94 0.57 0.34 0.15
15 0.9 0.57 0.79 0.041 0.47
16 0.7 0.39 0.63 0.085 0.99
17 0.98 0.99 0.23 0.36 0.92
18 0.25 0.92 0.29 0.046 0.31
19 0.67 0.39 0.21 1.2e-05 0.15
20 0.79 0.57 0.7 0.0004 0.47

Table 5.1: Utility of Nonlinear Methods. The first column gives the number of
a kernel principal component (kPC) of the original data. Each remaining column
represents an anonymization method. Values in these columns report how well the
distribution along the principal components are preserved by the anonymization.
Higher values mean better preservation of the distribution. Specifically, row n gives
the p-values of the two-sided Kolmogorov-Smirnov test over the distribution of the
nth kPC, indicating the probability that a difference at least as large as that observed
between the original data and the anonymized data would arise in two independent
samples from the same population. Partitioned ICA swapping (PICA) preserved
the distributions of kPCs as faithfully as the reference standard (Ref) while SVD
swapping (SVD) did not.
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lambda=1.1e+09
 cum=0.20, p=0.73

lambda=9.2e+08
 cum=0.37, p=0.7

lambda=7.2e+08
 cum=0.5, p=0.99

lambda=4.7e+08
 cum=0.59, p=0.54

lambda=3.9e+08
 cum=0.66, p=0.25

(a) Reference sample. Plots are projections of the data onto the top five fourth-degree kernel
principal components. Blue lines represent curves of the original data, red indicate anonymized
data (in this case, the reference sample). cum represents the cumulative variance explained by the
components up to the given component, p values are for the Kolmogorov-Smirnov test for equality
of the distribution along the given component. Further explanation of these figures is given in
Section 3.2.

Figure 5-3: Analytic utility of nonlinear anonymization methods. Subjective evalu-
ation shows no substantial difference in utility between PICA200 and the reference
sample (continued on following pages).
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lambda=1.1e+09
 cum=0.20, p=0.0044

lambda=9.2e+08
 cum=0.37, p=0.077

lambda=7.2e+08
 cum=0.5, p=0.0016

lambda=4.7e+08
 cum=0.59, p=0.0086

lambda=3.9e+08
 cum=0.66, p=0.0044

(b) SVD Swapping. Differences in these plots appear subjectively much greater than those of the
reference sample (Figure 5-3a). Notation as in Figure 5-3a

Figure 5-3: Analytic utility (continued).
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lambda=1.1e+09
 cum=0.20, p=0.94

lambda=9.2e+08
 cum=0.37, p=0.44

lambda=7.2e+08
 cum=0.5, p=0.96

lambda=4.7e+08
 cum=0.59, p=0.23

lambda=3.9e+08
 cum=0.66, p=0.96

(c) PICA100. Differences in these plots appear subjectively similar to those of the reference sample
(Figure 5-3a). Colors in plots below the diagonal represent assigned clusters, other notation as in
Figure 5-3a

Figure 5-3: Analytic utility (continued).
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lambda=1.1e+09
 cum=0.20, p=0.8

lambda=9.2e+08
 cum=0.37, p=0.85

lambda=7.2e+08
 cum=0.5, p=0.6

lambda=4.7e+08
 cum=0.59, p=0.73

lambda=3.9e+08
 cum=0.66, p=0.42

(d) PICA200. Differences in these plots appear subjectively similar to those of the reference sample.
(Figure 5-3a). Colors in plots below the diagonal represent assigned clusters, other notation as in
Figure 5-3a

Figure 5-3: Analytic utility (continued).
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lambda=1.1e+09
 cum=0.20, p=0.96

lambda=9.2e+08
 cum=0.37, p=0.88

lambda=7.2e+08
 cum=0.5, p=0.85

lambda=4.7e+08
 cum=0.59, p=0.54

lambda=3.9e+08
 cum=0.66, p=0.23

(e) PICA300. Differences in these plots appear subjectively greater than in the reference sample
(Figure 5-3a). Colors in plots below the diagonal represent assigned clusters, other notation as in
Figure 5-3a

Figure 5-3: Analytic utility (continued.)
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finds patches on the surface of the data manifold and seeks directions within each
patch that factorize the distribution over the patch. To the extent the distribution is
truly independent along these directions, this model should capture all statistics of
interest. Patches that don’t meet this assumption will be imperfectly reproduced by
the anonymization.
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Chapter 6

Conclusions and Open Problems

6.1 Summary

The great challenge for anonymization is to simultaneously protect the privacy of
individuals and allow accurate scientific analysis of the data. In this dissertation I
have made the new observation that the anonymization does not need to be carried
out in the original basis of the data, and that simply choosing a judicious basis can
improve some combination of privacy protection, analytic utility, or computational
efficiency.

I have given examples of this observation in practice. First, I showed how pro-
jecting onto the spectral basis provided by singular value decomposition changes the
original cell-swapping algorithm from a weak algorithm of only historical interest to
one that provides competitive analytic utility and stronger privacy protection than
the state of the art swapping algorithm. Second, I showed how switching to a spectral
basis allows the RHS algorithm to overcome the curse of dimensionality that other-
wise prohibits its use on high-dimensional data. Third, I showed how clustering in
the lower-dimensional, nonlinear basis describing the surface of the manifold on which
the data lie allows us to factor the data’s distribution and produce an unprecedented
combination of high analytic utility and strong privacy protection.

Additionally, I have proposed new measures for privacy protection and analytic
utility that are both more general and more informative than existing measures. The
measures of prediction distance, prediction ambiguity, and prediction uncertainty
quantify how well an attacker can predict the values in a particular original record.
They also allow us to gauge the vulnerability of anonymized records to a reiden-
tification attack. I have also proposed the use of kernel principal components to
efficiently assess analytic utility, including the preservation of higher-order, nonlinear
dependencies in the original data.

And finally, I have proposed the nonoverlapping sample as the reference standard
by which we can judge privacy protection and data utility. If our anonymization
provides privacy to the original participants that is at least as strong as if we released
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data from an entirely different sample of people, I propose that this is sufficient
privacy for the original participants. Similarly, if the measures of data utility on the
anonymized data are at least as good as on the reference sample, I propose that this
is sufficient utility.

This work has application in medical research and survey statistics as noted, but it
also may have relevance to commerce. Especially with electronic commerce, retailers
are collecting huge databases of customer behavior. These retailers have privacy
policies which (sometimes) pledge not to disclose individual customer information.
Since individual information is irreversibly removed from anonymized data, releasing
it may turn out not to violate these policies, allowing a new source of revenue for
many companies. The valuable information of exactly who bought what would not
available in anonymized data, but perhaps equally valuable and detailed information
on aggregate purchasing behavior, trends, associations, and dependencies could be
sold without violating customer privacy.

6.2 Limitations

This method only applies to numeric data, whether continuous, ordinal, or categorical.
It is not obvious if it could be applied to non-categorical textual data.

As with many anonymization methods, the usefulness of spectral anonymization
is limited to analysis of relationships between variables of a monolithic dataset, al-
though those relationships may be complex and nonlinear. Fortunately, this is a large
domain — much medical research, for example, lies therein. But it is not useful for
analyses that depend on details of individuals, because those details are deliberately
suppressed. We could anonymize supermarket loyalty-card purchases, for example,
and still be able to analyze shopping trends, discover promising bundling possibili-
ties, and assess shelf placement effects. But we could not use the anonymized data to
generate targeted marketing offers, because it doesn’t contain the shopping history
of any real person.

Also in common with all methods, my results depend completely on the adequacy
of my assessment measures. If an attacker is able to find a measure that distinguishes
correct matches or predictions from incorrect ones, and this measure does not depend
on distance, ambiguity, or uncertainty between candidates, he may be able to discover
some sensitive information. What that measure would be is difficult to imagine, but
I have not proven it does not exist.

My privacy measures are also not foolproof. An anonymization algorithm that
simply adds a large offset to each element of data would show large prediction distance,
low ambiguity, and unchanged uncertainty. By anonymizing and assessing the data
in standardized form, we avoid this pitfall, but it shows that these measures can be
fooled by deliberate cheating. There may be other operations that clearly provide no
anonymity but assess well under my measures.
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6.3 Open Problems

Anonymizing in kernel space Partitioned ICA Swapping maps the data to a
lower-dimensional, nonlinear space corresponding to the surface of the embedded
data manifold in order to find clusters within the data. Once the data are assigned
to clusters, the anonymization proceeds by cluster, but in the original space of the
data. (Actually, the data are transformed to a spectral basis for anonymization,
but the point is this is not the same as the lower-dimensional space found for the
clustering.) While I did not emphasize the point earlier, the transformation to the
lower dimensional space is actually a kernel transformation similar to the polynomial
transformation used to evaluate analytic utility in Chapter 5. It would be a tempting
modification to anonymize the data directly in this kernel feature space and then
return it to the original space. This would correspond to sliding the data around on
the surface of this manifold, which would preserve much, perhaps all, of the data’s
important structure.

A similarly tempting modification would be, instead of projecting to a lower di-
mensional space, to project to a higher -dimensional space that inherently preserves
specific nonlinear dependencies. For example, if we have a dataset with the dimensions
{x, y}, we might operate in the higher-dimensional feature-space basis represented by
{x2, xy, y2, x, y, 1}. The covariance matrix in this space would include up to 4th-order
moments, and we could anonymize along the eigenvectors of this matrix and pre-
serve those moments. The number of feature-space dimensions can quickly become
intractably large for higher-degree interactions, but we have seen how kernel methods
can elegantly handle this, since they find the the principal components in feature
space without computing actual features [101]. Thus, we might in theory preserve
arbitrarily high-order interactions between variables in a clean and principled way.
The polynomial degree of the kernel transform would determine the maximum order
of preserved interaction, and the number of principal components used would deter-
mine how closely those interactions are conserved, trading off with computational
complexity.

The difficulty with both of these ideas arises when we try to map the data back
into its original space. While we have preserved all desired information up to this
point, it is easy to distort it in the reverse transformation. This happens because
in the anonymization we are likely to have created points in feature space that do
not correspond to any possible point in the original data space, and thus an exact
pre-image of the anonymized data does not exist. For example, we could construct a
point in feature space where x = 2 and x2 = 5. This is a perfectly acceptable point
in feature space, but it lies outside the manifold of points that come from data space,
and we must make an approximation in order to place it in that space. Identifying the
optimal reverse map to data space has come to be known as the pre-image problem,
and there are several approaches to solving it [114, 115, 116, 117]. These all work
well for certain applications, but in my experiments (not reported here) they all
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unacceptably distort the information we’d like to preserve in anonymization. In fact,
the distortion imposed by the reverse transformation turns out to be the dominant
factor in the quality of the anonymization. Identifying a usable reverse map, perhaps
in combination with a synergistic anonymization method, would be an intriguing
direction for future research.

This direction is perhaps more promising for the problem of returning from the
lower-dimensional manifold surface than for returning from the higher-dimensional
polynomial kernel space. One may be able to find a way to anonymize on the surface
of the manifold while maintaining the constraints of that space, such that projection
back into the original space does not suffer from the preimage problem.

Time-series data It is not obvious to me how to extend these methods to anony-
mize time-series data. The first hurdle is in representing time-series data as a matrix.
Instead of one row per subject, we now have a series of rows, with one row per time
point. One could concatenate these rows as one big row, but that is not quite sat-
isfying. One could extract features from the time series of each column, and form
those features into a row for analysis, but that may have problems as well. This is
an intriguing problem that would make for interesting research.

Hierarchical data Some categorical variables are arranged in a hierarchy, for ex-
ample {vehicle, car, Ford, Taurus, . . . }. Since the hierarchy is implicit in the
semantics of the data, rather than explicit in its structure, it may or may not make
sense when encoded as binary variables and interpreted probabilistically as described
in Chapter 2. It would be interesting to see if we could continue the probabilistic in-
terpretation with hierarchical variables, or if some extra pre-processing of the dataset
needs to be done to preserve the hierarchical semantics.

Very high dimensional data One of the benefits of Partitioned ICA swapping
compared to existing methods is that it handles high dimensional data with no greater
difficulty than low dimensional data. But it does assume that there are more rows than
columns in the data matrix. Both Singular Value Decomposition and Independent
Component Analysis can operate on matrices with more columns than rows, but they
will never find more components than the smaller of the two. One hot problem these
days is anonymizing genetic data, which tends to produce wide, short matrices. Three
billion base pairs per human genome with four choices per base pair leads to a very
wide matrix. This is reduced if we only look at single nucleotide polymorphisms
(also known as SNPs or ‘snips’), but even SNPs produce very wide matrices. On
top of the theoretical implications of very high dimension, there is also the practical
issue of computational efficiency. There are existing ways of improving the efficiency
of spectral clustering and kernel principal component analysis [102], but as far as I
know, no theoretical efficiency limits have yet been reached.
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Tree-dependent Component Analysis A generalization of ICA that relaxes the
requirements for a complete factorization of the data is Tree-dependent Component
Analysis (TCA). TCA seeks to find a set of basis vectors in which the dependencies
in the data can be described by a set of trees such as are used in graphical models
[118]. Components within the same tree are dependent, and components in different
trees are independent. This would allow us to capture more of the structure of the
data than pure ICA, if a complete factorization does not exist. Replacing ICA with
TCA in partitioned spectral swapping seems a very promising direction for future
research.

Assessment measures The assessment measures I propose here capture more de-
tailed information about the quality of the anonymization than previous measures,
but I do not claim that they are optimal. (In fact I have given an example above of
how they can be cheated.) There is plenty of room for improvement, even by such
simple steps as investigating different distance measures or kernels. An exponential
kernel, for example, is a generalization of the polynomial kernel (consider the expan-
sion of ex as powers of x), and may better capture all pertinent information about the
analytic utility of the anonymized data. Similarly, research into more useful distance
or variance functions for the privacy measures is likely to bear fruit. An attacker will
ultimately want to compare candidate matches or predictions in probabilistic terms,
and a distance function that captures this would be certainly useful. As it is, I used
a Mahalonobis distance, modified for use with mixed continuous/binary data, as a
proxy for a probabilistic distance function.

6.4 Conclusion

This dissertation demonstrates that it is possible to provide strong protection against
computational disclosure and still faithfully preserve even subtle features of the data.
This is a combination that some had guessed was impossible, but it was accomplished
in part by re-examining what is really required of an anonymization. Identifying the
fundamental requirements of analytic utility and privacy protection reveals that the
two do not actually conflict. The requirement for analytic utility is the preserva-
tion of the multivariate distribution. The requirement for privacy protection is the
conditional independence of variable values in the anonymized dataset from those
in the original dataset, given the multivariate distribution. These can coexist quite
peacefully, as they do any time one draws two independent samples from the same
population. The methods I have proposed here take advantage of this peaceful co-
existence to simultaneously satisfy demanding standards of both privacy protection
and analytic utility.
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Appendix A

Dataset Details

The dataset used in these experiments contained 15 binary variables, representing
the categorical variables of Gender, Race, Marital Status, HIV Status, and Previous
Drug Use. The categorical variables of Gender, Race, and HIV Status are represented
by one binary variable for each category. Categorical variables of Race and Previous
Drug Use are represented by selected categories only (Table A.1).

Variable Count
Male 996
Female 1004
Mexican American 581
Other Hispanic 103
Non-Hispanic White 846
Non-Hispanic Black 407
Other Race 63
Never Married 650
HIV Positive 1
HIV Negative 880
HIV Indeterminate 1
HIV Not Answered 1118
Ever Used Drugs 146
Drugs Unanswered 1167
Ever Used Needle 11

Table A.1: Binary Variables. ‘Count’ is the number of records with a positive value
for that variable.

The dataset contained 13 continuous variables representing laboratory values (Fig-
ure A).
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WBC
5 10 15 20

Hgb
8 12 16 20

Plts
200 600 1000

AST
0 200 400

ALT
0 100 300

AlkPhos
0 200 400 600

GGT
0 200 400 600

LDH
100 300

Tbili
0.0 1.0 2.0 3.0

Alb
3.0 4.0 5.0

TProt
6 7 8 9 10

Chol
100 300

HDL
20 60 100 140

Figure A-1: Continuous Variables. Names are the standard laboratory abbreviations.
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