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Abstract

Any given object in the world can cast an effectively infinite number of different images onto the 
retina, depending on its position relative to the viewer, the configuration of light sources, and the 
presence of other objects in the visual field.  In spite of this, primates can robustly recognize a 
multitude of objects in a fraction of a second, with no apparent effort.  The computational mecha-
nisms underlying these amazing abilities are poorly understood.  This thesis presents a collection 
of work from human psychophysics, monkey electrophysiology, and computational modelling in 
an effort to reverse-engineer the key computational components that enable this amazing ability 
in the primate visual system.
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Preface

We recognize visual objects with such ease that it is easy to overlook what an impressive compu-
tational feat this represents.  Any given object in the world can cast an effectively infinite number 
of different images onto the retina, depending on its position relative to the viewer, the configu-
ration of light sources, and the presence of other objects in the visual field.  Further compound-
ing the problem, there are at least hundreds of thousands of distinct object classes that we must 
recognize, and we must also be able to deal with fundamentally novel objects that we have never 
seen before.  In spite of these issues, the visual system is able to robustly identify objects, all in a 
fraction of a second. 

Neurons in the inferotemporal cortex (IT) of primates – the finally exclusively visual area in the 
ventral temporal visual pathway – respond selectively to complex visual objects while at the 
same time tolerating a range of variation in the objects’ retinal image.   By the time visual in-
formation passes through IT, many of the “hard” problems in object recognition have somehow 
been solved.  IT thus represents an attractive target for reverse engineering object recognition

However, our understanding of how IT works is still in its infancy.  From a computational per-
spective, we lack models that can produce realistic or useful recognition behavior, except in the 
context of “toy” problems.  At the same time, from a neurophysiology perspective, there exists 
no coherent plausible description of what visual features IT neurons are tuned for, nor can we 
generate models that will predict the responses of IT.  This is not to say that the problem is in-
soluble; rather it is to say that much work remains to be done.

This thesis seeks to clearly identity some of the fundamental “core” problems of object recogni-
tion and to provide some basic empirical footholds in tackling these problems, using techniques 
spanning from human psychophysics to primate neurophysiology to computational modeling.

Chapter 1 (Untangling Object Recognition) presents a perspective on the true core challenges of 
object recognition and serves as an introduction to the rest of the thesis.  In particular, we intro-
duce the notion of manifold “tangling” as a way of conceptualizing why the problem is hard and 
suggesting what kinds of computations might be useful in solving the problem.  We also lay out a 
potential path forward, and relate this path to the remainder of this thesis.

Chapter 2 (“Breaking” Position-Invariant Object Recognition) describes one effort using human 
psychophysics to test the hypothesis that time may play in learning visual invariance.
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Chapters 3 & 4 (Multiple Object Response Normalization in Monkey Inferotemporal Cortex 
and Can Inferotemporal Cortex Simultaneously Represent Multiple Objects?) describe efforts 
to understand how single unit and population responses in inferotemporal cortex behave when 
multiple objects are present.  In particular, we use approaches outlined in Chapter 1 to ask what 
kinds of information can be extracted from an IT representation.

Finally, Chapter 5 (“Why is Natural Vision Hard?”) presents an early attempt to understand 
what are the primary challenges in the construction of artificial visual object recognition systems.  
In particular, we show that currently available “gold standard” object recognition test sets do not 
properly exercise those aspects of the problem that are truly difficult.  
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Chapter 1:
Untangling Object Recognition

The chapter was submitted to Trends in Cognitive Sciences in February 2007

Any given object can cast an infinite number of different images onto the retina, depend-
ing on its position and pose relative to the viewer, the configuration of light sources, and the 
presence of other objects in the visual field.  In spite of this, primates can recognize a multi-
tude of objects, each in a fraction of a second, with no apparent effort.  The computational 
mechanisms embedded in the brain that enable this invariant object recognition ability are 
poorly understood, and their elucidation would have broad implications for perceptual and 
cognitive science.  Here, we present a graphical perspective on invariant object recogni-
tion, drawing on key ideas from the neurophysiology and computational literature.  The 
perspective is intended to foster insight into the computational crux of the problem – what 
we term object “tangling”— and to illustrate what solutions might look like.  We then set 
neuronal data from the primate visual system in that perspective and argue that it has 
achieved a potentially optimal solution where strict invariance is not necessarily the goal.  
Finally, we speculate on the step-wise operations the visual system may use to achieve this 
solution, and outline steps towards understanding these mechanisms.

 

Introduction

Humans are highly dependent on visual object recognition: our daily activities rely on accurate 
and rapid identifications of objects in our visual environment.  The apparent ease of object rec-
ognition belies the magnitude of this feat – we effortlessly recognize objects from among tens 
of thousands of possibilities, and we do this within a fraction of a second, in spite of tremendous 
variation in the appearance of each one.  Understanding the brain representations and mecha-
nisms that underlie this ability would be a landmark achievement in neuroscience.

Object recognition is computationally difficult for a number of reasons, but the most fundamental 
reason is that any individual object can produce an infinite set of different images on the retina, 
due to variation in (e.g.) object position, scale, pose, illumination, and the presence of visual 
clutter.  Indeed, although we typically see each object many times, virtually every image on our 
retina is different from all previous images.  Thus, the key computational challenge of object rec-
ognition is extracting object identity, in spite of large amounts of image variation (e.g. Ullman, 
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1996; Ashbridge and Perrett, 1998; Edelman, 1999; Riesenhuber and Poggio, 1999; Rolls, 2000).  
Although a large number of computational efforts have attacked this so-called “invariance prob-
lem” (e.g. Biederman, 1987; Olshausen et al., 1993; Bengio et al., 1995; Wallis and Rolls, 1997; 
Edelman, 1999; Riesenhuber and Poggio, 1999; Ullman and Soloviev, 1999; Arathorn, 2002; 
Yuille and Kersten, 2006; Serre et al., 2007), a robust, real-world machine solution still evades 
us, and we are far from a satisfying understanding of how the problem is solved in the brain. We 
believe that these two achievements will be accomplished nearly simultaneously by an approach 
that is savvy to both the computational issues and the biological clues and constraints. 

In this opinion piece, we use a graphical perspective to provide intuition about the invariance 
problem, show that the primate ventral visual processing stream produces a particularly effective 
solution in inferotemporal cortex (IT), give our opinion on how the ventral stream approaches 
the problem, and propose directions for future research.  To do this, we bring together some of 
the most important ideas from computation and neurophysiology.   Individually, several of these 
ideas have been raised previously by others in related contexts.  However, because it is easy for 
one to get lost in the very large sea of previous studies and ideas, the central contribution of this 
manuscript is to clear the table, to bring forth what we believe to be the key ideas in the con-
text of what is known about the primate brain, and to pull those threads together into a coherent 
framework.  Along the way, we show that some ideas and approaches that may appear important, 
are only tangential to, or even distract from, the goal of understanding invariant object recogni-
tion. 

What is object recognition?

We define invariant object recognition (from here on, simply “object recognition”) as the ability 
to: 1) accurately discriminate each named object (“identification”) or set of objects (“categoriza-
tion”) from all other possible objects, materials, textures, etc. found in a visual world, and 2) do 
this over a range of transformations of the retinal image of that object (“identity preserving trans-
formations”).  

Of course, vision encompasses many disparate challenges besides object recognition, such as 
materials and texture recognition, object similarity estimation, object segmentation, object track-
ing and trajectory prediction, etc.  Although some of these challenges may interact with object 
recognition either as underlying requirements for object recognition or as natural extensions of 
object recognition, exploring those possible relationships is not our goal.  Instead, we aim to see 
how far a clear focus on the problem of object recognition will take us.  For even more clarity, 
we concentrate on what we believe to be the core of the brain’s recognition system -– the ability 
to rapidly report object identity or category after just a single brief glimpse of visual input (<300 
ms; Potter, 1976; Thorpe et al., 1996).

What computational processes must underlie object recognition?

The problem of object recognition is fundamentally a problem of data representation and re-
representation ((also see Marr, 1982; Johnson et al., 1995)).   The visual system takes incoming 
information from the retina and transforms (“re-represents”) this information into a form that 
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can be easily used for a variety of tasks (object identification, object categorization, etc.).  By 
“representation” we simply mean the visual information in the activity of a population of neurons 
(though others have used this word to mean more Edelman, 1999).  Below, we will see that the 
activity of the population of neurons in IT cortex is a particularly good representation of object 
identity.  However, first we must motivate our focus on representation.

When a subject correctly solves a perceptual task, such as recognition, the subject must be using 
some internal neuronal representation of part or all of the visual scene to make a decision (e.g. 
Johnson, 1980; Ashby and Gott, 1988): “Is object A present or not?”   Computationally, the brain 
must apply a decision function (Johnson, 1980) to divide an underlying neuronal representational 
space into regions where object A is present and regions where it is not (Fig. 1b; one function for 
each object to be potentially reported).  Given that brains compute with neurons, the subject must 
have neurons somewhere in its nervous system -- “read-out” neurons -- that can successfully re-
port if object A was present (Barlow, 1995).  Of course, there are many relevant mechanistic de-
tails such as: how many such neurons are involved in computing the decision, where are they in 
the brain, is their operation fixed or dynamically created with the task at hand, and how do they 
code choices in their spiking output?  But these are not the central computational issues of object 
recognition. The central computational issues are:  1) what is the format of the representation 
used to support the decision (the substrate on which the decision functions directly operate), and 
2) what kinds of decision functions (i.e. “read-out” tools) are applied to that representation?

These two central computational issues are two sides of the same coin.  For example, one can 
cast object recognition to be the problem of finding very complex decision functions (highly-
nonlinear) that operate on the retinal image representation.  This is like trying to swallow the 
recognition problem whole.  Alternatively, one can cast the recognition problem as one of finding 
operations that gradually transform that same retinal representation into a new form of represen-
tation, followed by the application of relatively simple decision functions (e.g. linear classifiers 
Duda et al., 2001) to that new representation. From a computational perspective, the difference 
is largely terminology, but we and others (e.g. Johnson, 1980; Hung et al., 2005) argue that the 
latter viewpoint is more productive because it starts to take the problem apart in a way that is 
consistent with what we know about the architecture and response properties of the ventral visual 
stream, and because such simple decision functions can be easily implemented in a single, bio-
logically-plausible neuronal processing step (a thresholded sum over weighted synapses). This 
point of view also meshes well with the conventional wisdom in the field of pattern recognition 
-- choice of representation is often more important than the “strength” of the classifier used.  As 
show below, a variety of recognition tasks can be solved in IT population responses using simple, 
linear classifiers (Hung et al., 2005), suggesting that our decision to focus on such operations is 
not unreasonable.  That is, even if the brain does have access to substantially more complex deci-
sion rules, many real problems in recognition can be solved without invoking greater complexity 
(in addition, more complex decision functions would generally also benefit from better linear 
separability).  Finally, even from this viewpoint, one is still completely free to consider the pos-
sibility that the computations to implement “representation” are not substantially different from 
those applied during “classification” using that representation.   Thus, with little loss of general-
ity and only minimal assumptions of underlying neuronal mechanisms, below we use simple 
(linear) decision functions to examine the usefulness of representations that might underlie object 
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Figure 1.  Conceptual illustration of object tangling.  

In a neuronal population space, each cardinal axis is the activity of a single neuron (e.g. a retinal gan-
glion cell).  Although such high-dimensional spaces cannot be visualized, the three-dimensional version 
portrayed here provides the fundamental intuitions.  a) A given image of a single object (in this case, a 
particular face) is represented as a single point in retinal image space.  We conceptually illustrate what 
happens as the face is gradually transformed in pose in the external world (relative to the eye of the 
viewer) and projected onto the viewer’s retina.  Because only two dimensions of pose are varied here, the 
point representing the object travels through a two-dimensional space (the blue surface).  In retinal image 
space, such identity-preserving transformations cause the point not to move in a straight line, but along a 
curved path.  Thus, the two-dimensional space is not a flat plane, but a curved surface called a manifold. 
A key point is that all possible images of this particular object are contained within its manifold. b) The 
manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In 
this case, a flat decision plane (a biologically-plausible decision rule) can be drawn cleanly between them. 
If the world consisted only of these two objects over this amount of variation, this neuronal representation 
is “good” for supporting visual recognition.  c) In this case, the two object manifolds are intertwined, or 
tangled.  The decision plane can no longer separates the two manifolds no matter how the plane is tipped 
or translated. d)  The pixel (retinal-like) manifolds generated from actual models of faces, undergoing two 
types of pose changes.  The 3D display axes were chosen by finding the best projections that separate 
identity, pose azimuth and pose elevation as the two manifolds as the two faces were varied over pose, 
position, size and illumination.  Clearly, even in this simple two-object world, the object manifolds are 
hopelessly tangled in the retinal image, and this is fundamentally due to natural variation, not ambiguity in 
the image.
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recognition.   

Why is object recognition hard?  Object manifold tangling

Object recognition is hard because useful forms of visual representation are not easy to build.  In 
part, this is because we do not have good intuition about visual representations because vision 
operates in very high dimensional spaces.  Our eyes fixate the world in ~300 ms intervals before 
moving on to a new location. During this brief glimpse, a visual image is projected into the eye, 
transduced by ~100 million photoreceptors arrayed along the retina, and conveyed to the brain 
in the spiking activity pattern of ~1 million retinal ganglion cells (Wandell, 1995).  Such a repre-
sentation can be conceptualized as a high-dimensional extension of a simple three-dimensional 
Cartesian space in which each axis of the space is the response of one retinal ganglion cell (e.g. 
Roweis and Saul, 2000; Tenenbaum et al., 2000; see Fig. 1). Ignoring temporal information and 
measuring each neuron’s response to each glimpse as its mean spiking rate, each possible image 
projected into the eye is one point in a ~1 million dimensional retinal ganglion cell representa-
tion. 

To gain intuition about high-dimensional visual representations, note that, within this immense 
retinal representation space, different encounters with the same physical object lie in contiguous 
regions.  For example, consider just one glimpse of a particular face.  That single glimpse of that 
face, in exactly that position, scale, pose, lighting, and background produces just one pattern of 
activity on your retina – it is just one point in the retinal image space (note that we ignore inter-
nal “noise,” which would blur the point around a true mean, but this is not fundamental to our 
arguments).   Now imagine all the possible retinal images that that particular face could ever pos-
sibly produce (e.g. due to changes in its pose, position, size, etc.), and the corresponding set of 
points in the retinal image space.  Together, that set of potential data points arises from a continu-
ous, low-dimensional, curved surface inside the retinal image space called an object “manifold”  
(e.g. see Edelman, 1999; Roweis and Saul, 2000; Tenenbaum et al., 2000).  Different objects 
have different manifolds (see Fig. 1b-d).

Given this framework, we start with a simple world of just two possible objects (Joe and Sam, 
see Figure 1), to graphically show the difference between a “good” and “bad” representation for 
directly supporting object recognition.  The representation in Figure 1b is good: it is easy to de-
termine if Joe is present, in spite of pose variation, by simply placing the linear decision function 
(i.e. a plane) between Joe’s manifold and the rest of the other potential images in the visual world 
(just images of Sam in this case).  In contrast, the representation in Figure 1c is not well suited to 
recognition, because, in this representational space, the object manifolds are “tangled,” such that 
it is impossible to reliably separate Joe from the rest of the visual world with a linear decision 
function. 

Are object manifolds tangled this way in real life?  Figure 1d shows actual 14,400-dimensional 
pixel data (120x120 images) for the two face objects in the presence of mild variation in their 
pose, position, scale, and lighting, projected into a three dimensional space with linear axes cho-
sen to maximally separate the two objects.  Even in this simple example that only exercises a 
fraction of typical real-world variation, the manifolds are hopelessly tangled.  This demonstration 
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graphically reveals why the retinal representation cannot directly support object recognition -- 
because each object’s manifold is hopelessly tangled together with other object manifolds. 

Note, however, that the two manifolds in Figure 1c,d do not cross or superimpose -- they are like 
two sheets of paper crumpled together. This means that, although this representation cannot di-
rectly support recognition, it still implicitly contains all of the information needed to distinguish 
which of the two individuals was seen.   We argue that this describes the computational crux of 
“everyday” recognition:  the problem is typically not a lack of information (ambiguous) or noisy 
information, but that that information is badly formatted in the retinal representation –- it is 
tangled.  Although the example in Figure 1 contains only two objects, the same arguments apply 
when more objects are added to the world of possible objects -- it just makes the problem harder, 
but for exactly the same reasons.

T(•)

V1

V2

V4

IT

pixel RGC LGN V1 V2 V4 IT

10 mm

T(•)T(•)T(•) T(•) T(•) T(•)T(•)T(•)

Figure 2.  Neuronal populations along the ventral visual processing stream

Although we seek to ultimately understand how object recognition is accomplished by the hu-
man brain, the rhesus monkey is our current best model system.  Like humans, this species 
has high visual acuity, relies heavily on vision (~50% of macaque neocortex is devoted to vi-
sion), and easily performs visual recognition tasks.  Moreover, many visual areas of the rhe-
sus monkey have been well mapped and are hierarchically organized 71. A battery of previ-
ous work tells us that the ventral visual stream is important for complex object discrimination 
(Tanaka 1996, Logothetis & Sheinberg 1996, Miyashita 1993, Ungerleider & Mishkin 1982, 
Afraz et al. 2006).   We show a lateral schematic of a rhesus monkey brain, with the areas of 
the ventral visual stream colored (adapted from Felleman & Van Essen 1991).  Lower panels 
illustrate neuronal populations in early visual areas and at successively higher stages across 
the ventral visual stream. A given pattern of photons in the world (here a face) is transduced 
into neuronal activity at the retina.  Here we conceptualize each processing stage of the ven-
tral stream as a new population representation (each population is known to span ~10 deg 
of central vision; for simplicity they are each shown as equal in size).  A single image can be 
considered as a point in each ventral stream population representation (red dot, see Fig. 1).  
Arrows indicate the direction of visual information flow based on neuronal latency, but this 
does not preclude fast feedback both within and between areas. The population representa-
tions for the retina, V1, and AIT are considered in Figure 1e and 3a,b.
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One way of viewing the overarching goal of the brain’s object recognition machinery, then, is 
as a transformation from visual representations that are easy to build (e.g. center-surround filters 
in the retina), but are not easily decoded (as in Fig. 1c,d), into representations that we do not yet 
know how to build, but are easily decoded (e.g. IT; Fig. 1b, see below).  Although the idea of 
representational transformation has been stated under a number of guises (2 1/2D sketch, feature 
selection, etc. Marr, 1982; Johnson et al., 1995; Duda et al., 2001), we argue below that the un-
tangling perspective goes further, by suggesting the kinds of transformations the ventral visual 
system should perform if its goal is to accomplish good representation for object recognition.  
But first we look at the primate ventral visual stream from this untangling perspective.

The ventral visual stream transformation untangles object manifolds

In humans and other primates, the key information processing to support visual recognition 
likely takes place along the ventral visual stream (for review see Logothetis and Sheinberg, 1996; 
Tanaka, 1996).  We, like some others (e.g. Felleman and Van Essen, 1991; Riesenhuber and Pog-
gio, 1999), consider this stream to be a progressive series of visual re-representation, from V1 to 
V2 to V4 to IT (see Fig. 2).  Since the pioneering studies of Gross and colleagues (Gross et al., 
1972; Desimone et al., 1984), a wealth of work has shown that single neurons at the highest level 
of the monkey ventral visual stream – the inferotemporal cortex (IT) – display spiking responses 
that are likely useful for object recognition (Logothetis et al., 1995; Tanaka, 1996; Rolls, 2000).  
Specifically, many individual IT neurons respond selectively to particular classes of objects, such 
as faces (Perrett et al., 1982; Desimone et al., 1984; Tsao et al., 2006) or other complex shapes 
(Ungerleider and Mishkin, 1982; Desimone et al., 1984; Miyashita, 1993; Logothetis et al., 1995; 
Logothetis and Pauls, 1995; Logothetis and Sheinberg, 1996; Tanaka, 1996; Sheinberg and Logo-
thetis, 2001), yet show tolerance to limited changes in object position and size (Schwartz et al., 
1983; Sary et al., 1993; Tovée et al., 1994; Ito et al., 1995; Logothetis et al., 1995; Op de Beeck 
and Vogels, 2000; DiCarlo and Maunsell, 2003), pose (Logothetis et al., 1995; Booth and Rolls, 
1998), illumination (Vogels and Biederman, 2002) and low level shape cues (Sary et al., 1993). 

How does one use the response of these individual ventral stream neurons (e.g. IT, above) to 
gain insight into object manifold untangling in the brain?  To do this, our group has focused on 
characterizing the initial wave of neuronal population “images” that are successively produced 
along the ventral visual stream as the retinal image is transformed and re-represented on its way 
to IT (see Fig. 2).  For example, looking at the end of the stream, we and our collaborators found 
that simple linear classifiers can rapidly (within <300 ms from image onset) and accurately de-
cide an object’s category from an IT population of ~200 neurons, despite object position and size 
changes (Hung et al., 2005).  Because the type of classifier did not much matter, and the same 
classifiers fail at the same task when applied to a simulated V1 population of equal size (Hung et 
al., 2005), this performance is not due to the classifiers themselves, but to the powerful form of 
visual representation conveyed by IT.  This shows that, compared with early visual representa-
tions, object manifolds are less tangled in the IT population representation.

To show that this untangling happens as suggested in Figure 1b, Figure 3 illustrates object mani-
folds in primary visual cortex (V1) and IT.  These are the manifolds of the faces of Sam and Joe 
from Figure 1d (retina-like representation), but now shown re-represented in cortical population 
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space.   To generate these, we took populations of simulated response functions from previous 
single unit work in V1 (e.g. Hubel and Wiesel, 1977; Ringach, 2002) and IT (e.g Ito et al., 1995; 
Logothetis et al., 1995; Op de Beeck and Vogels, 2000), and applied them to all the images of 
Joe and Sam.  This reveals that the V1 representation, like the retinal representation, still contains 
highly curved, tangled object manifolds (Fig. 3a), while the same object manifolds are flattened 
and untangled in the IT representation (Fig. 3b).  It is easy to see that, from the point of view of 
(potentially simple) downstream decision neurons, the retina and V1 representations are not in a 
good format to separate Joe from the rest of the world, while the IT representation is.  In sum, the 
experimental evidence suggests that the ventral stream transformation (culminating in IT) solves 
object recognition by untangling object manifolds.  For each visual image striking the eye, this 
total transformation happens gradually (i.e. step-wise transformations along the cortical stages), 
but rapidly (i.e. <100 ms from V1 to IT, ~20 ms per cortical stage).  But what is this transforma-
tion?  That is, how does the ventral stream do this?

How does the ventral visual stream untangle object manifolds? 

We do not yet know the answer to this question.   As a start, Hubel and Weisel’s (Hubel and 
Wiesel, 1977) observation that V1 simple cells are shape selective (orientation) and V1 com-
plex cells create some tolerance to identity-preserving transformations (esp. position) has been 
computationally implemented and extended to higher cortical levels including “IT” (Fukushima, 
1980; Riesenhuber and Poggio, 1999; Serre et al., 2007).  But, beyond this early insight, systems 
neuroscience has not provided a breakthrough as to how the ventral visual stream constructs key 
aspects of high-level population responses (e.g. V4 or IT). 

Some important neurophysiological effort has focused on characterizing the tolerance of individ-
ual IT neurons to variation in each object’s image (e.g. Tovée et al., 1994; Ito et al., 1995; Logo-
thetis et al., 1995; Op de Beeck and Vogels, 2000; Vogels and Biederman, 2002; DiCarlo and 
Maunsell, 2003; Zoccolan et al., 2005), which is central to object tangling. However, much more 
effort has been aimed at understanding effects of behavioral states (e.g. task, attention Moran 
and Desimone, 1985; Sato, 1988; Chelazzi et al., 1993; Motter, 1994; Maunsell, 1995; Vogels et 
al., 1995; McAdams and Maunsell, 1999; DiCarlo and Maunsell, 2000; Naya et al., 2003; Reyn-
olds and Desimone, 2003; Suzuki et al., 2006).  While such studies have made great progress in 
showing the ways in which neuronal responses are modulated by behavioral state, they side-step 
the key problem of untangling, because these effects can be measured without a deep understand-
ing of the format of visual representation in the brain area examined.

Substantial effort has also been aimed at understanding the features or shape dimensions in visu-
al images to which V4 and IT neurons are most sensitive (e.g. Gallant et al., 1993; Tanaka, 1996; 
Pasupathy and Connor, 2001; Tsunoda, 2001; Pollen et al., 2002; Kayaert et al., 2003; Brincat 
and Connor, 2004; Yamane et al., 2006).  Such studies are important in that they help define the 
feature complexity of neuronal tuning at each level of the ventral stream, which is indirectly re-
lated to object tangling (because object tangling implicitly assumes a representation that is untan-
gled with respect to “objects” or, at least, conjunctions of features).   Following on this line, cur-
rent, ambitious approaches to fully understand the response functions of individual neurons (i.e. 
the non-linear operators on the visual image) would, if successful, lead to a full understanding of 
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visual representation and thus bring an implicit understanding of object recognition.   However, 
given the enormity of this task, it is not surprising that progress has been slow.

In contrast, the object untangling perspective presented here leads to a complementary, but quali-
tatively different approach. First, it shifts one from thinking about ideal single unit response 
properties in IT (Barlow, 1995; Gross, 2002) – which is akin to studying individual feathers to 
understand flight 17– to thinking about ideal formats of population representation with the com-
putational goals of the behavioral task clearly considered (see Fig. 3b vs. 3c) (Salinas, 2006).  
Second, it suggests the immediate goal of determining how well neuronal representations along 
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Figure 3. Untangling of object manifolds along the ventral visual stream

As visual information progresses through the ventral visual pathway, it is successively re-represented 
in each visual area into formats that are better for performing object recognition.  a) A population of five 
hundred V1 neurons was simulated as a bank of Gabor filters with firing thresholds.  Axes in this 500-di-
mensional population space were chosen to maximally separate two face stimuli undergoing a range of 
identity-preserving transformations (pose, size, position, and lighting direction) as in Figure 1.  Manifolds 
are shown for the two objects (red and blue) undergoing two-axis pose variation (azimuth and elevation).  
As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are 
hopelessly tangled together.  Below, the responses of an example single unit are show in response to the 
two faces undergoing one-axis of pose variation (horizontal rotation). b) In contrast, a population of simu-
lated IT neurons gives rise to object manifolds that are easily separated.  Five-hundred IT neurons were 
simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-preserving transfor-
mations, and with varying levels of preference for one or the face.  Such an arrangement is analogous 
to what is observed in single unit recording in IT.  In addition to being able to separate object manifolds 
corresponding to different identities, such a representation also allows one to recover information about 
object pose.  The lines going through the two manifolds show that the manifolds are coordinated – they 
are lined up in such a way that multiple orthogonal attributes of the object can be extracted using the 
same representation.  It is important to note that, in contrast to the V1 simulation, we do not yet know how 
to create a model that would generate single unit responses like this.  c) A “textbook,” idealized IT repre-
sentation also produces object manifolds that are easy to separate from one another in terms of identity.  
Here, IT neurons were simulated with idealized, perfectly invariant receptive fields (i.e. they respond the 
same irrespective of identity-preserving transformations of each object).  However, while this representa-
tion may be good for recovering identity information, it “collapses” all other information about the images.
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the ventral stream have untangled object manifolds, and it shows how to quantitatively measure 
untangling (see linear classifiers above, Fig. 1).  Third, this perspective points to new ways to 
compare computational models to neuronal data. The evaluation of computational models at 
the single unit level is problematic because such comparisons are typically under-constrained 
– that is, to make a comparison, we must typically fit a large number of model parameters to a 
relatively small amount of neuronal data, and the flexibility of the model often overwhelms the 
constraints placed on it by the data.  The untangling perspective suggests that such comparisons 
might be more meaningful at the population level (e.g. one could make predictions of degree 
of untangling at different levels of the ventral stream). Fourth, it suggests a clear focus on the 
causes of tangling – identity-preserving transformations – rather than the traditional focus on 
‘shape’ or ‘features’.  Indeed, because we fundamentally lack an understanding of the dimen-
sionality of ‘shape’ or how to manipulate those dimensions experimentally, we speculate that 
computational/experimental approaches that focus on tolerance across identity-preserving trans-
formations while simply preserving/measuring sensitivity to other real-world image variation 
(e.g. learned to flatten object manifolds, see below) will be vastly more tractable.  Finally, this 
perspective steers experimental effort toward testing hypothetical mechanisms that might un-
derlie untangling (e.g. Wallis and Bulthoff, 2001; Cox et al., 2005), and it steers complimentary 
computational effort toward finding new, biologically-plausible algorithms that might gradually 
untangle object manifolds (e.g. Wallis and Rolls, 1997; Riesenhuber and Poggio, 1999).   We 
close by discussing our views on this point.

Flattened object manifolds are a good solution

The illustrations in Figure 3 suggest a strategy for building good object representations: if the 
goal is to untangle manifolds corresponding to different objects, then we seek transforms that 
“flatten” these manifolds, while preserving selectivity across object identity axes (e.g. “shape” 
axes). This perspective is partly a restatement of the problem of invariant object recognition, but 
not an entirely obvious one.  For example, the textbook conception of IT suggests a different set 
of goals for each IT neuron: very high shape selectivity and “invariance” to identity-preserving 
image transformations.  To illustrate how object manifold untangling gives fresh perspective, 
Figure 3b and c show just two simulated IT populations which have both successfully untangled 
object identity, but which have very different single unit response properties.  In Figure 3c, each 
single unit has somehow met the textbook ideal of being selective for object identity, yet invari-
ant to identity-preserving transformations.  At the IT population level, this results in untangling 
object manifolds by “collapsing” each manifold to a single point.  By comparison, in Figure 3b, 
every single IT unit has good sensitivity to object identity, but only limited tolerance to object 
transformation (e.g. position, scale, view) and, by textbook standards, seems less than ideal.  
However, at the population level, this also results in untangled object manifolds, but in a way 
that has coordinated (i.e. “flattened”), rather than discarded, information about the transformation 
variables (pose, position, scale, etc.).   This suggests that the IT representation should not only 
be able to directly support object recognition, it should also directly support tasks such as pose, 
position, and size estimation, as previously suggested by theorists ((e.g. Edelman, 1999)).  In-
deed, real IT neurons are not position and size invariant in that they have limited spatial receptive 
fields (Op de Beeck and Vogels, 2000; DiCarlo and Maunsell, 2003). It is now easy to see that 
this “limitation” is an advantage, as long as the object manifolds are nearly flat and coordinated 
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(i.e. if the individual IT neurons have response properties like those in Figure 3b).  

Ways the brain might learn to flatten object manifolds

Although the flattening of object manifolds might be partly accomplished by hard-wired trans-
forms (e.g. Fukushima, 1980; Riesenhuber and Poggio, 1999), it has been noted that one could 
also learn the structure of the manifold from the statistics of natural images (e.g. Roweis and 
Saul, 2000; Tenenbaum et al., 2000), which would potentially allow a flattened re-representation 
of the manifold.  However, while most previous “manifold learning” efforts have emphasized 
learning structure in the ambient pixel/retina space in one step, we impose no such requirement.  
In particular, the transforms need only flatten object manifolds little by little in many successive 
steps ((this is consistent with physiological data which show that response properties progress 
gradually along the ventral stream Kobatake and Tanaka, 1994)). The notion of progressive flat-
tening is a matter of both emphasis and substance: there is no need to swallow the entire problem 
whole – representations can be flattened locally at small scales (both in term of visual space and 
input dimensionality of the neurons working at the next level) which can ultimately produce flat-
tening at a much larger scale.  Indeed, one advantage of the manifold tangling perspective is that 
it still makes sense at a variety of scales – V1 neurons in a local neighborhood only “see” the 
world through a small aperture (and thus cannot see whole objects), but they can perform flat-
tening operations with respect to their (relatively restricted) inputs; V2 can do the same on its 
V1 inputs, and so on (see the discussion of time, below, for thoughts on how neurons can have 
access to information about manifold degrees of freedom).  Thus, we believe that the most fruit-
ful computational algorithms will be those that a visual system (natural or artificial) could ap-
ply locally and iteratively at each cortical processing stage (e.g. Heeger et al., 1996) in a largely 
unsupervised manner (e.g. Einhauser et al., 2005), and that achieve some local object manifold 
flattening.  Even though no single cortical stage or local ensemble within a stage would “under-
stand” its role in this process, we imagine the end result to be globally flattened, coordinated ob-
ject manifolds with preserved shape selectivity.

In our view, their are three important computational ideas that are consistent with physiology 
and that, together, may allow flattening to happen. First, the visual system projects incoming 
information into a higher-dimensional, overcomplete space (e.g. there are ~100 times more V1 
neurons than retinal ganglion cells, see Fig. 2).  This  dimensionality explosion can “spread out” 
the data into this much larger space.  The additional constraint of sparseness can reduce the size 
of the effective subspace that any given incoming visual image “lives” in and thus make it easier 
to find projections where object manifolds are flat and separable (see Olshausen and Field, 2004).  
A second, related idea, is that, at each processing stage, neuronal resources (i.e. neuronal tuning 
functions on the previous stage) are allocated in a way that matches the distribution of visual in-
formation encountered in the real world (e.g. Ullman et al., 2002; Simoncelli, 2003). This would 
increase the effective over-completeness of visual representations of real-world objects (and thus 
help flatten object manifolds).   Indeed, a variety of biologically plausible algorithms developed 
in other contexts (e.g. Schwartz and Simoncelli, 2001 , Heeger et al., 1996), may have a yet-to-
be-discovered roles in achieving coordinating flattening within local neuronal populations.  For 
example, divisive normalization is a powerful nonlinearity that can literally “bend” representa-
tional spaces. 
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A third, potentially key idea is that time can implicitly supervise manifold flattening.  A number 
of theorists have noticed that the evolution of a retinal image over time provides clues for learn-
ing which image changes are identity-preserving transformations and which are not (Foldiak, 
1991; Wallis and Rolls, 1997; Ullman and Soloviev, 1999; Edelman and Intrator, 2002; Wiskott 
and Sejnowski, 2002).  In the language of object tangling, this is equivalent to saying that the 
evolution across time spells out the degrees of freedom of the object manifold.  We hypothesize 
that the ventral stream may use this temporal evolution to achieve progressive “flattening” of ob-
ject manifolds across each neuronal processing stage.  Recent studies in our lab (Cox et al., 2005) 
and others (Wallis and Bulthoff, 2001) have begun to connect this computational idea with the 
biological vision, showing that invariant object recognition can be predictably manipulated by 
the temporal statistics of the environment.   We are actively pursing this exciting new direction in 
the neurophysiology of the ventral stream.

A Path Forward

Although we still have a long way to go to achieve a deep understanding of how the brain ac-
complishes object recognition, it is a very exciting time to be working on the problem.  There is 
a rapid blurring of lines between traditionally separate fields that each have an interest and each 
have something unique to bring to the table. We hope that the untangling perspective presented 
here will facilitate this progress. As we move forward, we propose these overarching guidelines: 

 • Neuroscience and psychophysical efforts should be aimed at conducting targeted experiments 
to distinguish among “real” computational models (hypotheses), and developing new methods to 
obtain such data.  Chapters 2-4 of this thesis are aimed at dissecting the computational under-
pinnings of invariant object recognition, using a variety of methods.  Chapter 2 explores the role 
of time as a possible component in invariance learning, using human psychophysics.  In the con-
text of manifold tangling, such temporal learning could represent a powerful flattener / untangler.  
Chapter 3 explores potential normalization mechanisms in monkey inferotemporal cortex using 
multiple simultaneous objects.  Chapter 4 examines how inferotemporal cortical population re-
sponses might support representation of multiple simultaneously present objects. 

• Another important outstanding task is the establishment and construction of concrete specifica-
tions and benchmark tests of what problems visual recognition is expected to solve.  These tests 
must directly engage the key challenges of real-world recognition (e.g. outlined here) and thus 
avoid limited domain heuristics. Practically, these might consist of input / output parings of la-
beled data (image and video databases) that are freely available to benchmark performance from 
any field (psychophysics, computation, neurophysiology). Given that we will not have the fore-
sight to develop a complete set of benchmarks, they should naturally grow in difficulty as prog-
ress is made.  Chapter 5 of this thesis presents an early step in this direction.  In particular, we 
show some of the pitfalls inherit in choosing a test set, and we present a possible path to avoid 
these pitfalls.
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Chapter 2:
“Breaking” Position-Invariant Object Recognition

The following chapter originally appeared as:

Cox DD, Meier P, Oertelt N, DiCarlo JJ (2005).“Breaking” Position Invariant Object Recognition. Nature 
Neuroscience 8(9): 1145-1147.

It is often assumed that objects can be recognized irrespective of where they fall on the ret-
ina, yet little is known about the mechanisms underlying this ability.  By exposing human 
subjects to an altered world where some objects systematically changed identity during the 
transient blindness that accompanies eye movements, we induced predictable object con-
fusions across retinal positions, effectively “breaking” position invariance.  Thus, position 
invariance is not a rigid property of vision but is constantly adapting to the statistics of the 
environment. 

Any given object can cast an essentially infinite number of different images on the retina, due 
to variations in position, scale, view, lighting, and a host of other factors.  Nonetheless, humans 
effortlessly recognize familiar objects in a manner that is largely invariant to these transforma-
tions.  The ability to identify objects in spite of these transforms is central to human visual object 
recognition, yet the neural mechanisms that achieve this feat are poorly understood, and trans-
form-tolerant recognition remains a major stumbling block in the development of artificial vi-
sion systems.  Even for variations in the position of an image on the retina, arguably the simplest 
transform that the visual system must discount, little is known about how invariance is achieved. 

Several authors have proposed that one solution to the invariance problem is to learn representa-
tions through experience with the spatiotemporal statistics of the natural visual world (Foldiak 
1991, Wallis & Rolls 1997, Wiskott & Sejnowski 2002, Edelman & Intrator 2003).  Visual fea-
tures that co-vary across short time intervals are, on average, more likely to correspond to dif-
ferent images of the same object than to different objects, and thus one might gradually build 
up invariant representations by associating patterns of neural activity produced by successive 
retinal images of an object.  While some transformations of an object’s retinal image are played 
out smoothly across time (e.g. scale, pose), changes of an object’s retinal position often occur 
discontinuously as a result of rapid eye movements that sample the visual scene (saccades).  A 
possible strategy, then, for building position-invariant object representations is to associate neural 
activity patterns across saccades, preferably taking into account the direction and magnitude of 
the saccade.

If correct position invariance is created through experience with the statistical properties of the 
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Figure 1. Experiment 1 and 2 design  Twelve naïve subjects participated in each experiment and pro-
vided informed consent in accordance with the MIT Committee on the Use of Humans as Experimental 
Subjects.  a) During the exposure phase of each experiment, subjects received two different types of 
exposure trials randomly interleaved.  In all trials, subjects started a trial by fixating on a point, and then 
an object appeared in the periphery (6º to the left or right, randomly).  Subjects spontaneously saccaded 
to the object, and were required to decide if this object was the same object as in the preceding trial.  In 
normal exposure trials, the object identity did not change, so the same object was presented to both the 
peripheral retina (pre-saccade) and the central retina (post-saccade).  In “swapped” exposure trials, 
unknown to subjects, one object was swapped for a different object in mid-saccade, such that one object 
was presented to the peripheral retina (pre-saccade), and a different object was presented to the cen-
tral retina (post-saccade).  b) The objects used in this experiment were modified versions of the publicly 
available “greeble” stimuli (see Supplemental Methods online) and were arranged in three pairs, with the 
differences within pair (e.g. A and A’) being qualitative smaller than the differences between pairs (e.g. A 
and B).  Objects were chosen to be relatively natural, but unfamiliar to the subject.  c) A schematic rep-
resentation of the twelve exposure trial types for one subject.  All such exposure trials occurred equally 
often (pseudo-randomly selected).  Thus, each subject received an equal number of presentations of all 
objects in each retinal location. The letter on one side of the arrow indicates the peripherally presented 
object (either on the right or left), with the arrow indicating the object identity before (arrow tail) and after 
(arrow head) the saccade. For all subjects, one object pair was swapped on the right, but normal on the 
left (first row of boxes), one pair was normal on the right but swapped on the left (second row of boxes), 
and one pair was not swapped on either side (third row of boxes).  Subjects were run in two sets of six, 
with each set of six counterbalancing across all possible assignments of the three object pairs to each of 
these three roles.
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visual world, it might be possible to create unnatural or “incorrect” invariances by manipulating 
those statistics. In particular, if objects consistently changed their identity as a function of retinal 
position, then the visual system might incorrectly associate the neural representations of differ-
ent objects at different positions into a single object representation.  The resulting representation 
would be activated by one object at one retinal position, and another object at another position, 
and thus the two objects would be perceived as being the same object at different positions.

In the present study, we engineered 
such a situation, taking advantage of 
the fact that humans are effectively 
blind during the short time it takes 
to complete a saccade (Ross et al. 
2001, McConkie et al. 1996).  By 
monitoring eye position in realtime, 
we were able to present one object to 
a subject’s peripheral retina that was 
replaced by a particular different ob-
ject in mid-saccade when the subject 
attempted to foveate it.  None of the 
subjects reported being aware that 
objects were being swapped, despite 
being asked in a post-session debrief-
ing whether they had seen objects 
change or appear otherwise unusual.  
Following a brief period of exposure 
to these altered spatiotemporal sta-
tistics (240-400 altered exposures in 
Experiment 1, and 120-180 altered 
exposures in Experiment 2), we used 
a same-different task to probe the 
subject’s representations of these ob-
jects across changes in position.  The 
layout of Experiments 1 and 2 is de-
scribed in Fig. 1, and in the Supple-
mentary Methods online.

In both Experiments, subjects sig-
nificantly more often confused object 
pairs when they were tested across 
the retinal positions where those 
particular objects had been swapped 
during the exposure phase, relative to 
tests across positions where the same 
objects had not been swapped (P = 
0.0082 in Experiment 1, P = 0.022 in 

Figure 2. Results  In testing following exposure, sub-
jects in Experiment 1 (two days of exposure; n = 12) and 
Experiment 2 (one day of exposure; n = 12) significantly 
more often confused objects across retinal positions 
where they had been swapped during the exposure phase 
(orange panels in Fig. 1c), as compared to the same 
objects across positions where they behaved normally 
during exposure (“unswapped”; blue panels in Fig. 1c).  
These effects were not significantly different for “same” 
trials and “different” trials in either Experiment 1 or 2 (P 
> 0.4 two-tailed paired t-tests).   Subjects in Experiment 
3 (replay experiment; n = 12), who received retinal expo-
sure matched to subjects in Experiment 1 did not show 
a significant effect.   Bars show effect magnitudes and 
standard errors for Experiment 1 (2-day), Experiment 2 
(1-day), data from Experiments 1 & 2 pooled together, and 
Experiment 3 (replay). Mean performance with the control 
objects was 74%, 72%, and 78%, in Experiments 1, 2 and 
3, respectively, and was not significantly different across 
the three experiments (P > 0.1,  one-way ANOVA). 
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Experiment 2; P = 0.0007, both experiments pooled; one-tailed paired t-test; Fig. 2). That is, for 
previously swapped objects, subjects were more likely to perceive different objects at two retinal 
positions as the same object, and the same object at two positions as different objects. 

These results show that confusions in invariant visual object processing occur after relatively 
brief exposure (< 1 hr total) to altered spatiotemporal statistics across saccades, even though 
subjects were unaware of this change.  Moreover, the confusions are predictable in that they are 
those expected if the visual system assumes that object identity is stable across the short time 
interval of a saccade.  While the magnitude of the observed effect is not large, and we have only 
shown it for relatively similar objects, it should be borne in mind that the anomalous exposure 
provided represents a tiny fraction of each subject’s lifetime experience with an unaltered, real-
world visual environment.  The ability to significantly shift object representations at all suggests 
that position-invariant visual object recognition is modifiable in adults, and points to possible 

mechanisms by which sets of invariant fea-
tures might be acquired, especially during 
early visual learning.

To test whether the observed effect de-
pends critically on the execution of active 
eye movements, as opposed to spatiotem-
poral experience alone, we ran a third set 
of twelve subjects (Experiment 3) with ret-
inal experience matched to the subjects in 
Experiment 1, but without saccades.  These 
subjects maintained fixation throughout 
each trial during the exposure phase, and 
the retinal positions and timing of object 
exposure was “replayed,” trial-by-trial, 
from the spatiotemporal retinal experience 
generated by their counterpart subject in 
Experiment 1.  The testing phase was iden-
tical to Experiments 1 and 2.   Subjects in 
Experiment 3 showed no effect of anoma-
lous spatiotemporal experience (P > 0.6; 
1-tailed paired t-test, Fig. 2), suggesting 
that anomalous experience across saccades 
may be necessary to produce later confu-
sions in invariant object processing.  

Although these results show that specific 
alterations in object spatiotemporal ex-
perience can alter position invariant rec-
ognition with test objects in the direction 
predicted by theory, we wondered if such 
anomalous experience might also produce 

Supplemental Figure 1. Subjects tended to per-
form slightly better with object pairs that were never 
swapped on either side (“control” conditions; green 
panels in Fig. 1c) than with test object pairs across 
positions where those objects had behaved normally 
during the exposure phase (“unswapped” condi-
tions; blue panels in Fig. 1c), though this trend was 
not significant in either Experiment.  Such a trend 
suggests at least the possibility that, in addition to 
effects on position invariance, anomalous exposure 
may also produce some general deficits with objects 
(i.e. position-independent effects) or deficits when 
at least one “misbehaving” position (the fovea in this 
case) is part of the test.
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more general deficits in recognition performance with those test objects.  To examine this, we 
compared recognition performance of test objects across positions where those objects had be-
haved normally (“unswapped” conditions) with recognition of control objects (which were never 
swapped in either position). Although both experiments showed a trend toward reduced perfor-
mance with objects whose spatiotemporal statistics had been altered (see Supplemental Fig. 1), 
no significant difference was found in either experiment (Experiment 1: P = 0.48; Experiment 2: 
P = 0.094, two-tailed paired t-tests). 

Like some recent perceptual learning studies, this study shows that visual processing can be al-
tered by visual statistics that do not reach awareness (Watanabe 2001). However, in contrast to 
standard perceptual learning paradigms, where subjects improve on some sensory task over the 
course of many training sessions (Karni & Sagi 1993), here, performance is impaired in a pre-
dictable way by brief exposure that runs counter to the subject’s past visual experience.  This re-
sembles other long-term perceptual adaptation effects, such as the McCollough effect and prism 
adaptation, and like these effects, might represent an ongoing process to adapt to the environ-
ment and keep perception veridical (Bedford 1999).

While adult transform-invariant object recognition is, for the most part, automatic and robust 
(Biederman and Bar 1999), this finding adds to a growing body of research suggesting that such 
invariance may ultimately depend upon experience (Dill & Fahle 1998, Nazir & O’Reagan 1990, 
Dill & Edelman 2001, Wallis & Buelthoff 2001).  More broadly, this finding supports the devel-
oping belief that visual representations in the brain are plastic and largely a product of the visual 
environment (Simoncelli & Olshausen 2001). Within this context, invariant object representa-
tions are not rigid and finalized, but are continually evolving entities, ready to adapt to changes 
in the environment.  

Methods

Subjects.  Twelve naïve subjects participated in each of the three experiments (ages 18-45; nor-
mal or corrected-to-normal vision, 9 male, 27 female), and provided informed consent in accor-
dance with the MIT Committee on the Use of Humans as Experimental Subjects.  

Stimuli. The objects used in this experiment were modified versions of the publicly available 
“greeble” stimuli1. Object images were approximately 2.5º wide by 4º high and were presented 
on a gray background on a 21” Trinitron CRT (viewing distance of approximately 65 cm), us-
ing custom software that also handled saccade detection, swapping of stimuli in mid-saccade, 
response collection and all other aspects of the experiment.  The same three pairs of objects were 
used in all three experiments, with subtle differences between members of each pair, and quali-
tatively greater differences between pairs (Fig. 1b).  Relatively similar objects were used for 
each pair under the logic it might not be possible to induce radical shifts in object representations 
within the time constraints of an experimental session.

Eye Tracking.   Subjects’ eye positions were tracked using an EyeLink II head-mounted infra-
red video eye tracking system (SR Research Ltd., Mississauga, ON, Canada) running at a rate of 
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250 Hz, with built in head-tracking.  Subjects were required to fixate within 1.5º of the central 
fixation point, and trials were aborted if the subject’s eye position deviated from this window.  
The endpoints of saccades to objects were repeatedly estimated in mid-saccade, and trials were 
aborted (i.e. the object was removed) on trials where saccades were estimated to be headed to 
land outside of the target object.

Exposure Phase (Experiments 1 & 2).  During the exposure phase, an object appeared 6º to 
the left or right of the fixation point (randomly, see Fig. 1a).  Subjects had been instructed to 
feel free to look at any object and, to ensure that they attended to the objects, decide if it was the 
same object that had appeared in the previous trial.  Unknown to subjects, some objects were 
replaced by the other member of their pair while the subject was making this saccade (see Fig. 
1a).   Thus, Object A might appear to the left of fixation, eliciting a saccade to the object, but be 
replaced by Object A’ by the time the subject’s eyes landed. Each subject experienced i) one of 
the three pairs of objects swapped in mid-saccade on the left, but behaving normally on the right, 
ii) another pair swapped on the right but not on the left, and iii) the third pair not swapped in ei-
ther position (control pair, see Fig. 1c).  Each subject experienced each of the six objects equally 
often in each position (see Fig. 1c), and object pairs were counterbalanced across subjects such 
that each of the three object pairs was equally often swapped on the left, swapped on the right, or 
not swapped at all.  None of the subjects reported being aware that objects were being swapped, 
despite being asked in a post-session debriefing whether they had seen objects change or appear 
otherwise unusual.  Subjects did not take longer to saccade to the to-be-swapped objects (P > 0.4, 
mean: 200.7 ms), nor did they did look at swapped objects for a significantly different amount of 
time (P > 0.8, mean: 354.5 ms).   

“Replay” Exposure Phase (Experiment 3).  Twelve subjects in Experiment 3 were each paired 
with one of the twelve subjects in Experiment 1 and received retinal exposure that was matched, 
trial for trial, to their counterpart in Experiment 1.  Subjects in this experiment were instructed to 
fixate the central fixation point while objects appeared first in the periphery, and then at the cen-
ter of gaze with timing generated from the saccades made by their counterpart subject in Experi-
ment 1.  The screen was left blank during the time that the Experiment 1 subjects’ eyes had been 
in flight, simulating the lack of appreciable form vision while the eyes are moving at high veloci-
ty. Failures to maintain fixation resulted in the trial being aborted and re-run.  Subjects performed 
an analogous 1-back task as in Experiment 1, in which they reported whether the object was the 
same or different than the object presented on the previous trial.   The instructions implied that 
the same object would appear in the periphery and at the center of gaze, even though different 
objects would in fact appear on the “swapped” trials.

Testing Phase (Experiments 1, 2 & 3).  During the testing phase, designed to probe object 
representations across retinal positions, subjects fixated while an object appeared briefly in the 
periphery (6º; 150 ms), followed by a 300 ms delay, and then either the same object or the other 
member of its pair at the center of gaze (150 ms).  Subjects indicated whether the two objects 
were the same or different. No feedback was given regarding accuracy of their responses.  Each 
testing block contained an equal number of all combinations of within-object-pair comparisons, 
and peripheral positions (right and left). Blocks where subjects did not perform significantly 
above chance with control objects (P > 0.2; less than 5% of all data) were excluded from further 



33

analysis.   

Experimental Sessions.  Experiment 1 was conducted across two days, with subjects receiving 
exposure on both days (720-1200 total exposure trials, of which 240-400 were swapped) and 
completing four testing blocks (120 trials each) at the end of the second day. Experiment 2 was 
conducted in a single session, with subjects receiving 360-540 exposure trials (120-180 swapped 
exposures), and completing three testing blocks (120 trials each) at the end of the same session.  
In Experiment 3, the number of sessions, training blocks, and testing blocks was exactly matched 
to Experiment 1.
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Chapter 3:
Multiple Object Response Normalization in 
Monkey Inferotemporal Cortex

This chapter originally appeared as:

Zoccolan DZ*, Cox DD*(contributed equally), DiCarlo JJ (2005). “Multiple object response normalization in 
monkey inferotemporal cortex” Journal of Neuroscience 25(36):8150–8164

Copyright 2005 by the Society for Neuroscience.

The highest stages of the visual ventral pathway are commonly assumed to provide robust 
representation of object identity by disregarding confounding factors such as object posi-
tion, size, illumination and the presence of other background objects (clutter). While ro-
bust tolerance to position and size changes has been reported for neuronal responses in the 
monkey inferotemporal cortex (IT), previous studies report that IT neuronal responses to 
preferred objects are usually weaker when a non-preferred object is present. However, we 
lack a systematic understanding of multiple object representation in IT and it is not known 
how to explain IT responses to multiple objects based on responses to those same objects in 
isolation. In this study, we systematically examined IT neuronal responses to the presenta-
tion of pairs and triplets of objects in three passively viewing monkeys across a broad range 
of stimulus conditions. Our results show that a large fraction of IT neuronal responses to 
multiple objects can be reliably predicted as the average of the responses to the constituent 
objects in isolation. That is, each IT neuron’s response to multiple objects depends largely 
on the relative effectiveness of each of the constituent objects, and it does not matter if that 
effectiveness is altered by changing object shape or the RF position at which an object is 
presented. These observations are consistent with mechanistic models in which the output 
of each IT neuron is normalized by a summation of synaptic drive into IT or spiking activ-
ity in IT and suggest that normalization mechanisms previously revealed at earlier visual 
areas may be operating throughout the ventral visual stream.

Introduction

Visual object recognition in cluttered, real-world scenes remains an extremely difficult problem 
for artificial vision systems, yet is somehow effortlessly solved by the brain. In primates, it is 
believed that object identity is extracted through processing along the ventral visual stream and 
that it is explicitly represented in patterns of neuronal activity in the highest stages of that stream 
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– the anterior inferotemporal cortex (IT). This hypothesis is based on IT lesion studies (Dean, 
1976, 1982; Weiskrantz and Saunders, 1984; Horel, 1996) showing impaired visual recognition 
and neurophysiological studies showing that IT neurons can be highly selective for complex ob-
jects while also being largely tolerant to some transformations (object position, scale, and pose; 
for review, see Logothetis et al., 1994; Logothetis et al., 1995; Logothetis and Sheinberg, 1996; 
Tanaka, 1996). In this context, it has been suggested that idealized IT neurons should also be 
tolerant to visual clutter (Rousselet et al., 2003, 2004). That is, if each IT neuron participates in 
the representation of some object or subset of objects, then, ideally, its response to that object(s) 
should be largely unaffected by the presence of other objects. However, this idealized notion of 
IT does not appear to be correct in that IT responses are altered in cluttered scenes (Sheinberg 
and Logothetis, 2001; Rolls et al., 2003), and responses to pairs of simultaneously presented 
objects are typically weaker than responses to the preferred object presented alone (Sato, 1989; 
Miller et al., 1993; Rolls and Tovee, 1995; Missal et al., 1997; Chelazzi et al., 1998; Missal et al., 
1999). 

Despite the obvious relevance of IT clutter-tolerance properties to theories of object representa-
tion, we do not have a systematic understanding of these properties, even in clutter conditions 
that involve only two objects. For example, one study reported that response suppression caused 
by the addition of a second object in the RF did not depend on the shape of that object (Miller et 
al., 1993), while another study reported the opposite (Missal et al., 1999). Similarly, while some 
studies hint at a systematic relationship between the response to object pairs and the response to 
the constituent objects (Miller et al., 1993; Rolls and Tovee, 1995; Chelazzi et al., 1998), another 
study (Missal et al., 1999) explicitly ruled out that possibility. Moreover, no study has systemati-
cally tested this relationship over a full range of stimulus effectiveness or with a large battery of 
testing stimuli, and there has been no attempt to understand how IT responses to multiple objects 
depend on the shape similarity of those objects. Although progress on understanding responses 
to multiple stimuli has been made in area V4 (Reynolds et al., 1999; Reynolds and Desimone, 
2003), a recent study calls those results into question by suggesting that, like idealized IT neu-
rons, V4 responses to preferred stimuli are largely tolerant to the presence of an additional stimu-
lus (Gawne and Martin, 2002). 

Although other studies have increased our understanding of how visual attention modulates 
processing of targets in the presence of distractors (Moran and Desimone, 1985; Desimone and 
Duncan, 1995; Maunsell, 1995; Connor et al., 1997; Chelazzi et al., 1998), such work has not 
provided a systematic characterization of neuronal responses to multiple objects (but see Reyn-
olds et al., 1999; Reynolds and Desimone, 2003). Notably, visual recognition shows remarkable 
clutter tolerance even for brief presentation conditions (e.g. ~100 ms) without explicit attentional 
instruction (e.g. Potter, 1976; Intraub, 1980; Rubin and Turano, 1992). This strongly suggests 
that, besides top-down attentional mechanisms, powerful, largely feedforward, clutter-tolerance 
mechanisms are at work. An understanding of these “core” mechanisms – the rapid IT population 
response in clutter – is not only fundamental, but should lead to improved understanding in situa-
tions where attention is manipulated.

In this study, we systematically examined the IT neuronal responses to rapid presentation of mul-
tiple objects in three passively viewing monkeys using two complementary experimental para-
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digms. Our results show that, across a wide range of stimulus conditions, IT neuronal responses 
to multiple objects are very well predicted by the average of their responses to the constituent 
objects. Moreover, most IT neurons are not idealized object detectors in that they do not respond 
equally to preferred objects in spite of the presence of non-preferred objects. These observations 
suggest that divisive normalization mechanisms analogous to those proposed to explain response 
re-scaling in early visual stages (Heeger, 1992; Desimone and Duncan, 1995; Heeger et al., 1996; 
Carandini et al., 1997; Reynolds et al., 1999; Schwartz and Simoncelli, 2001; Cavanaugh et al., 
2002) and area MT (Recanzone et al., 1997; Britten and Heuer, 1999; Heuer and Britten, 2002) 
could operate in IT. 

Methods

Animals and surgery. 

Experiments were performed on three male rhesus monkeys (Macaca mulatta) weighing approx-
imately 8, 9.5 and 10kg. Before behavioral training, aseptic surgery was performed to attach a 
head post to the skull of each monkey and to implant a scleral search coil in the right eye of mon-
keys 1 and 2. After 2-5 months of behavioral training (below), a second surgery was performed 
to place a recording chamber (18 mm diameter) to reach the anterior half of the left temporal 
lobe (chamber Horsley-Clark center = 15 mm A). All animal procedures were performed in ac-
cord with National Institute of Health guidelines and the Massachusetts Institute of Technology 
Committee on Animal Care.

Eye position monitoring 

Horizontal and vertical eye positions were monitored using the scleral search coil (monkeys 1 
and 2) or a 250 Hz camera based system (monkey 3; EyeLink II, SR Research Ltd., Osgode, ON, 
Canada). Each channel was digitally sampled at 1 kHz. Methods for detecting saccades and cali-
brating retinal locations with monitor locations are described in detail elsewhere (DiCarlo and 
Maunsell, 2000).

Visual stimuli. 

Stimuli were presented on a video monitor (43.2 x 30.5 cm, 75 Hz frame rate, 1920 x 1200 pix-
els) positioned at 81 cm from the monkeys (so that the display subtended approximately ±15 (h) 
and ±10 (v) deg of visual angle). Different visual objects were used in each experiment (see Fig.1 
and below). 

Experiment 1. Monkeys 1 and 2 were tested with three simple, solid geometric forms (a star, a 
cross, and a triangle, see Fig. 1A, left), presented at full-luminance (57 Cd/m2) on a gray back-
ground (27 Cd/m2). Each object was 2º in size (diameter of a bounding circle).

Experiment 2. Monkey 3 was tested using objects drawn from three object sets with parametri-
cally controllable shape similarity within each set (Fig. 1A, right). To assure generality of re-
sults, three different spaces of morphed shapes were generated: 1) a car space; 2) a face space; 
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3) a NURBS space (non-uniform rational B-spline generated two-dimensional silhouettes). Each 
space was generated from a set of 15 initial shapes: 1) 15 three-dimensional models of car brand 
prototypes; 2) 14 three-dimensional models of human heads plus their average; 3) 15 randomly 
generated NURBS (44 free parameters, see below). For each space, one of these initial shapes 
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Figure 1. Stimulus conditions during recordings. A. Left. The three geometrical shapes used in Experi-
ment 1. Right. An example morph-line (i.e., set of parametric shapes) from each of the three shape 
spaces (i.e., cars, faces and 2D silhouettes) used in Experiment 2. The horizontal line indicates the unit 
shape distance within a morph-line. This is the distance between the object prototypes used to gener-
ate the morph-line (i.e., the 2nd and 6th stimulus in each row). B. Single object conditions. Left. All 9 single 
object arrangements of Experiment 1 (3 shapes in each of 3 visual field locations: at center of gaze and 
2º above and below center of gaze). Right. Single objects sampled from the most selective morph-line 
(in the example, 2D silhouettes) were presented in two visual field locations: 1.25º above center of gaze 
(top) and 1.25º below center of gaze (bottom) in Experiment 2. C. Object pair conditions. Left. A subset of 
the 18 object pairs used in Experiment 1 (3 objects in 2 of 3 positions without duplicate objects). Right. 
Examples of objects pairs used in Experiment 2. In each pair, the neuron’s “preferred” object (indicated 
by the asterisk) is presented in either the top or bottom position and is paired to a second object drawn 
from a range of shapes along the morph-line containing the “preferred” object. D. Object triplet conditions. 
Left. All 6 object triplet arrangements used in Experiment 1 (the 3 objects in the 3 positions without du-
plicate objects). Right. No object triplets were tested in Experiment 2. E. Rapid visual presentation. Each 
panel is a schematic of the visual display (not to scale). The monkey was required to hold fixation on a 
central point while stimulus conditions were randomly interleaved and presented at a rate of 5 per second 
(see Methods).
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was chosen as “center” of the space and 14 sets of morphed shapes were built as blends (see 
below) of the center shape and each of the other 14 prototype shapes, thus resulting in 14 morph-
lines per space (see examples in Fig. 1A, right). In each of the three object spaces, the distance 
between the center shape and each of the 14 prototype shapes was defined to have value 1. As 
shown for the three exemplar morph-lines of Figure 1A, morphed shapes were generated not 
only between the “center” and each of the 14 prototypes (e.g. the five middle shapes in each row 
in Fig. 1A, right) but also by extrapolating beyond the initial prototypes (first and last shapes in 
each row in Fig. 1A, right), thus resulting in shape distances d > 1 and d< 0.

Slightly different morphing methods were used to generate the objects in each of the three shape 
spaces. Cars were built using an algorithm (Shelton, 2000) that found corresponding points 
in each pair of 3D car prototypes and represented each car prototype as a vector of point co-
ordinates. Car morphs were created as linear combinations of these vectors, then rendered as 
grayscale 2D images (with fixed viewpoint, illumination and size; first row in Fig. 1A, right). 
Faces were generated by a face morphing algorithm (Blanz and Vetter, 1999), in which point cor-
respondences between pairs of face prototypes were established based on the three-dimensional 
structure of the head models. Face morphs were created as linear combinations of corresponding 
points in the head pairs, then rendered as grayscale 2D images (with fixed viewpoint, illumina-
tion and size; second row in Fig. 1A, right). The center shape of the face space was the average 
face (second stimulus in the second row of Fig. 1A, right). NURBS objects were filled shapes 
defined by closed third-order NURBS curves with 22 equally-weighted control vertices (Rogers, 
2000). NURBS morphs were generated using weighted averages of control vertices of pairs of 
prototypes and all NURBS curves were filled at full luminance (72 Cd/m2; third row in Fig. 1A, 
right). All objects were presented at 2º in size (bounding circle diameter) on a gray background 
(12 Cd/m2). 

Behavioral task and training

All three monkeys were trained to fixate a central point (0.2 x 0.2 deg), for several seconds while 
a series of visual stimuli were presented in rapid succession (rapid, passive viewing paradigm). 
In particular, stimulus conditions were presented in a random sequence where each stimulus 
condition was on for 100 ms, followed by 100 ms of a gray screen (no stimulus), followed by 
another stimulus conditions for 100 ms, etc. (see Fig. 1E). That is, stimulus conditions were pre-
sented at a rate of 5 per second. At this presentation rate, IT neurons show robust object selec-
tivity (Keysers et al., 2001) and this rate is consistent with that produced spontaneously by free 
viewing monkey (DiCarlo and Maunsell, 2000). Single, pair and triplet object conditions were 
pseudoranomly interleaved (see schematic in Fig. 1E). The screen background was always kept 
at a constant gray. The total number of stimulus conditions presented on each fixation trial ranged 
from 3 to 20 and the monkey was rewarded for maintaining fixation throughout the trial (±0.5º 
fixation window in Monkeys 1 and 2; ±1.5º fixation window in Monkey 3). Failures to maintain 
fixation throughout the trial resulted in the trial being aborted, and all stimulus conditions in that 
trial were re-presented. 

The data presented in the current study were all acquired during this rapid, passive viewing para-
digm. However, all three monkeys are also involved in ongoing studies that require behavioral 
training with the stimuli used in this study. Monkeys 1 and 2 were trained to perform an object 



40

identification task with single geometrical shapes presented either at the center of gaze, 2º above, 
or 2º below fixation. Monkeys were required to saccade to a different, fixed peripheral target for 
each object. Monkey 3 was trained to perform a sequential object recognition task that required 
the detection of a fixed target shape (the “center” object in each object set) embedded in a tempo-
ral sequence of shapes drawn from the same object set (blocked trials). 

Recording and data collection

For each recording, a guide tube (26 G) was used to reach IT using a dorsal to ventral approach. 
Recordings were made using glass-coated Pt/Ir electrodes (0.5-1.5 MΩ at 1 kHz) and spikes 
from individual neurons were amplified, filtered, and isolated using conventional equipment. 
The superior temporal sulcus (STS) and the ventral surface were identified by comparing gray 
and white matter transitions and the depth of the skull base with structural MR images from the 
same monkeys. Penetrations were made over a ~10x10 area of the ventral STS and ventral sur-
face (Horsley-Clark AP: 10-20 mm, ML: 14-24 mm) of the left hemisphere of each animal. All 
recordings were lateral of the Anterior Middle Temporal Sulcus (AMTS). Thus, the recorded 
regions included AIT and CIT (Felleman and Van Essen, 1991). In all three animals, the penetra-
tions were concentrated near the center of this region, where form selective neurons were more 
reliably found. The animals cycled through behavioral blocks as the electrode was advanced into 
IT. Responses from every isolated neuron were assessed with an audio monitor and online histo-
grams, and data were collected according to specific criteria for Experiment 1 and 2.

Experiment 1. As the electrode was advanced into IT, Monkeys 1 and 2 performed the object 
identification task described above. Neurons that responded to any of the geometric objects at 
any of the three positions were further probed while the animal passively viewed the same ob-
jects (described above; see Fig. 1E). Neurons that responded with mean firing rate significantly 
higher than background rate to any shape at any position (t-test, p < 0.05) were studied further. 
The main experimental conditions included the following: 1) each of the three shapes presented 
in isolation in each of three positions (Fig. 1B, left; 3 shapes x 3 positions = 9 stimulus condi-
tions); 2) pairs of objects in all possible arrangements that did not include object duplicates (Fig. 
1C, left; 18 stimulus conditions); and 3) triplets of objects in all possible arrangements that did 
not include object duplicates (Fig. 1D, left; 6 conditions). Object size (2 deg) and positions (fixa-
tion, 2º above fixation and 2º below fixation) were chosen before data collection so that the ob-
jects did not touch or overlap but that objects were close enough to likely activate IT neurons in 
one or more positions. No attempt was made to optimize the objects or positions for the neuron 
under study. Instead, the exact same 33 stimulus conditions were tested for each neuron. These 
conditions were pseudo-randomly interleaved and presented using the rapid, passive viewing 
paradigm described above. All neurons in which these conditions were tested were considered in 
the Results if 10-30 presentations of each condition were completed during the time that the neu-
ron was isolated.

Experiment 2. As the electrode was advanced into IT, Monkey 3 was either engaged in the 
rapid, passive viewing paradigm or engaged in a recognition task similar to the behavioral task 
described above (except that the target object was a red triangle). To search for neurons with 
strongly selective responses across at least one of the morph-lines, each isolated neuron was test-
ed with a sequence of screening procedures that always included at least 10 repetitions of each 
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stimulus condition (pseudorandomly interleaved). During the first screening, 15 objects from 
each morphed space (a total of 45 objects) were presented at the center of gaze. These 15 objects 
were the center shape (see above) plus one stimulus randomly sampled (at a distance of 0.5 or 
1.0 from the center object) from each of the 14 morph-lines. Neurons who responded to one of 
these stimuli with mean firing rate significantly higher than background rate (t-test, p < 0.005) 
were further tested using objects within the space to which the most effective stimulus belonged 
(all tested during the rapid, passive viewing paradigm described above). In particular, the center 
object and 4 objects sampled (at distances d = 0.25, 0.5, 0.75, 1 from the center object) from each 
of the 14 morph-lines were presented in isolation at the center of gaze. A neuron was considered 
to be selective if the mean firing rates elicited by the set of 5 objects belonging to at least one 
of the morph-lines were significantly different (ANOVA, p < 0.05). If so, the object along this 
morph-line that was most effective in driving the cell was taken to be the neuron’s “preferred ob-
ject” and more tests of object selectivity were done using objects drawn from this morph-line.

The main experimental conditions in Experiment 2 included the following two primary condi-
tions: 1) 8 – 12 isolated objects from the most selective morph-line (morphing step distance d

step
 

ranging from 0.1 to 0.5). For most neurons, this set of objects included shapes generated by mov-
ing beyond the limits of the initial morph-line, as well as one randomly chosen object from one 
of the two other object sets. Each object was presented at each of two, fixed positions (1.25 deg 
above the center of gaze and 1.25 deg below the center of gaze; Fig. 1B, right). Thus, a total of 
16 – 24 isolated object conditions were tested for each neuron. As in Experiment 1, object size 
(2 deg) and positions were chosen and fixed before data collection so that the objects did not 
touch or overlap but that objects were close enough to likely activate IT neurons in one or more 
positions. However, unlike Experiment 1, the tested range of objects was both parameterized 
(morph-line) and chosen to obtain maximal selectivity from each neuron. 2) Pairs of objects were 
presented to all neurons to systematically test each neuron’s ability to tolerate the presence of a 
second object given the presence of a “preferred” object. In particular, the neuron’s “preferred 
object” (resulting from the previous screening at fovea) was presented at one position in combi-
nation with each of the objects tested in isolation (see above), including the preferred object itself 
(8 – 12 conditions; see Fig. 1C, right). This was also done with the preferred object in the other 
position (Fig. 1C, right). In sum, a total of 16 – 24 isolated object conditions and 16 – 24 paired 
object conditions were tested for each neuron. 15-30 repetitions of each stimulus condition were 
recorded for each neuron (pseudorandomly interleved) using the rapid, passive viewing paradigm 
described above.

Analysis

Only neuronal responses collected during correctly completed behavioral trials were included in 
the analysis. The background firing rate of each neuron was estimated as the mean rate of firing 
over all trials in a 100 ms duration window that directly preceded the onset of the first stimulus in 
each trial. For all the data recorded from the three monkeys, we quantified the response of each 
neuron to each of the stimulus conditions as the mean firing rate in a 100 ms window that began 
100 ms after stimulus onset. The statistical tests used to assess neuronal responsiveness and se-
lectivity to the different stimulus conditions are explained in the Results, as well as the criteria to 
include subsets of recorded neurons in each analysis. In the following, details about some of the 
analysis carried out in the Results are provided.
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Goodness Of Fit analysis (GOF). To assess, for each neuron, how much of the variance of the 
responses to objects pairs could be accounted by considering responses to the constituent objects 
presented in isolation, a Goodness Of Fit (GOF) index was computed. The GOF index provides 
an unbiased estimate of the percentage of true data variance explained by a given model, by re-
moving the fraction of data variance that is merely due to noise (i.e., the trial-by-trial variability 
of the neuronal response). The GOF index calculation is based on well known mathematical re-
lationships that are at the base of the ANOVA statistics. Following the convention used by (Rice, 
1995), let us assume we recorded J neuronal responses to each of I different stimulus pairs (I 
and J are, respectively, the number of groups and trials in the ANOVA statistics). Let σ2

expl
 be the 

true (or “explainable”) variance of the mean recorded responses to the stimulus pairs. Let σ2
noise

 
be the variance of the noise that contaminates neuronal responses. Let SS

B
 and SS

W
 be the sum of 

squares, respectively, between groups and within groups of the ANOVA statistics for the record-
ed responses. The following relationship holds for the expectation of SS

B
: E(SS

B
) = J(I-1) σ2

expl
 + 

(I-1) σ2
noise

 (Rice, 1995). Since the noise variance can be estimated as σ2
noise

 = SS
W
 / [I(J-1)], the 

explainable variance can be estimated as: σ2
expl

 = SS
B
 / [J(I-1)] - SS

W
 / [IJ(J-1)]. 

Given a model providing a prediction for the mean response to each object pair, the deviations 
from the model predictions can be computed for each trial J and each group (stimulus pair) I, so 
as to obtain trial-by-trial residual responses to each stimulus pair. Again, the variance of the mean 
residual responses to the stimulus pairs is composed of two terms: the noise variance σ2

noise
 and 

the variance σ2
res

 of the true deviations from the tested model. Therefore, σ2
res

 can be estimated 
by the same equation that gives σ2

expl
, but with SS

B
 and SS

W
 obtained for the ANOVA statistics of 

the residual responses.

Once σ2
res

 and σ2
expl

 are estimated from the data, the GOF index can be computed as: GOF = 100 
[1- σ2

res
 / σ2

expl
]. We verified that this method provides an unbiased estimate of the percentage of 

explainable variance explained by a model, by running simulations in which data points were 
generated according to a linear model contaminated by different amounts of noise.

The standard error (SE) of the GOF index was estimated by bootstrap resampling. For each of 
the I stimulus pair conditions, J responses were re-sampled with replacement 200 times from the 
J responses obtained during recordings. The GOF index was computed for each of these re-draw-
ing of the response matrix and the standard deviation of the resulting 200 bootstrapped GOF in-
dexes was taken to be the SE of the GOF (Efron and Tibshirani, 1998).

Selectivity and monotonicity criteria for the tuning curves included in the population averages. 
Neurons recorded in Experiment 2 were tested with parametric objects sampled from morphed 
object spaces (see above). Therefore, tuning curves of neuronal responses to objects along con-
tinuous, parameterized changed in object shape (i.e. along a morph-line) were obtained. The 
range of shape distances spanned by each morph-line during the probing phase of the recordings 
in the parafoveal positions varied from neuron to neuron. However, each morph-line spanned at 
least a unit shape distance (horizontal line in Fig. 1A, right) and included the neuron’s preferred 
stimulus obtained from the screening phase of the recordings, whose shape distance was defined 
as d = 0 (see above). To get a meaningful population average of the neuronal tuning properties, 
the following criteria were used to include each tuning curve in the final average: 1) Responses 
across all tested single object conditions (i.e., both top and bottom positions) were highly selec-
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tive (ANOVA, p < 0.001). 2) The tuning curve in the tested position was significantly selective 
in a shape range spanning the unit distance (i.e., in d ∈ [0, 1]; ANOVA, p < 0.05). 3) The tuning 
curve was approximately monotonic in d ∈ [0, 1], with peak at or near the “preferred” stimulus 
(i.e., at d <= 0.25).

Simulated neuronal responses. One goal of the present study was to understand if neuronal re-
sponses to pairs of objects could be more reliably modeled as: 1) the average of the responses to 
the constituent objects presented in isolation (average model), or 2) the maximum of the respons-
es to the constituent objects presented in isolation (Complete Clutter Invariance model – CCI 
model). To understand how well measures of explained variance or transformations of the data 
were suitable for comparing these two models, we simulated neuronal responses to object pairs 
that followed either the average model or the CCI model (see Fig. 6B). The response of each 
model neuron to single objects was assumed to have some tuning across a hypothetical continu-
ous shape dimension (a Gaussian tuning was assumed, but any arbitrary tuning function could 
be used). Then, the response R

AB
 to each pair of stimuli A and B sampled from the same shape 

dimension was modeled as: 1) the linear sum of individual responses, i.e. R
AB

 = p + m (R
A
 + R

B
), 

or 2) the maximum of individual responses, i.e. R
AB

 = MAX(R
A
, R

B
). Random fluctuations (zero 

mean noise) were added to the responses of the model neurons to the pairs, to simulate more re-
alistic neuronal responses. 

Results

Complete recordings using our battery of visual conditions were performed from 104 well-isolat-
ed single IT neurons of three monkeys (35 cells in monkey 1, 33 cells in monkey 2 and 36 cells 
in monkey 3). During recordings, all neurons were tested with both single and multiple objects 
using rapid visual presentation according to one of the two experimental paradigms (see Fig. 1 
and Methods). Each recorded neuron was tested for responsiveness to single objects and neurons 
that responded significantly to at least one of the presented single objects (relative to background 
rate) were included in the analyses described through the paper (t-test on each single object con-
dition, p < 0.05; 79 of 104 neurons; 29 of 35 cells in monkey 1, 19 of 33 neurons in monkey 2, 
and 31 of 36 neurons in monkey 3). This weak inclusion criterion without correction for multiple 
tests was done to minimize sampling bias in that even neurons with weak responsivity were con-
sidered.

Responses to pairs of objects

In Experiment 1, no attempt was made to optimize the objects or retinal positions for each neu-
ron. Instead, the same three objects (see Fig. 1A, left) were presented in each of three fixed posi-
tions to each neuron (center of gaze and 2 deg above and below the center of gaze). Using those 
same objects and retinal positions, all pair wise and triple wise combinations were also tested 
(see Methods and Figs. 1B-D, left). That is, a total of 33 stimulus conditions were tested for all 
isolated neurons (9 single object conditions, 18 object pair conditions, and 6 triple object condi-
tions). Figures 2A-B shows the response of a typical IT neuron to some of these conditions. For 
this neuron, the single object that produced the strongest response was the cross located at the 
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center of the gaze (middle panel in Fig. 2A). When the cross was flanked by a non-preferred ob-
ject located in one of the eccentric positions (2º above or below fixation; first and third panel in 
Fig. 2B), the response to the resulting object pair was intermediate between the responses to the 
individual constituent shapes. Similar intermediate responses were observed when the cross was 
flanked by two non-preferred objects (last panel in Fig. 2B). 

Intermediate responses to multiple objects (relative to the responses to single objects) were also 
obtained in Experiment 2 using sets of objects with parametrically-defined shape similarity (see 
examples in Fig. 1A, right) that were presented in isolation or in pairs at two fixed retinal posi-
tions (see Methods and Figs. 1B-C, right). Like Experiment 1, the same retinal positions were 
tested for all neurons, but, in contrast to Experiment 1, the presented objects were optimized for 
the neuron under study. Specifically, a large range of objects was tested across three object spaces 
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Figure 2. Examples of IT neuronal responses to single and multiple objects. A. The black histograms are 
the average firing rates (computed in time bins of 25 ms) of a neuron recorded in Experiment 1, following 
presentation of some of the single object conditions (stimuli are shown below the histograms). Objects 
were presented at time 0 and the neuron’s average response was computed between 100 and 200 ms 
(gray patch). B. Examples of responses of the same neuron to object pairs and triplets. C. Response of a 
neuron recorded in Experiment 2 to its “preferred” object presented in the bottom position. D. Responses 
of the same neuron to a range of objects sampled from the morph-line containing the preferred object and 
presented in the top location. The neuron’s response decays as the second object is made more dissimi-
lar to the “preferred” object (indicated by the asterisk). E. Responses of the same neuron to stimulus pairs 
composed by the preferred object (asterisk; bottom position) and the range of shapes previously shown in 
D (top position). In both B and E, responses to the object pairs are intermediate between responses to the 
constituent objects of the pairs.
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(see Methods and Fig. 1A, right) and the set of objects (morph-line) that yielded the most reliable 
selectivity was studied in detail. Figures 2C-E show a typical activation pattern of an IT neuron 
recorded in Experiment 2. The response of this neuron to individual objects was significantly se-
lective (ANOVA, p<0.01) across a set of eleven objects sampled at consecutive distances along 
one of the morph-lines of the NURBS space (responses to six of the eleven stimuli are shown in 
Fig. 2D). The selectivity pattern was unchanged and significant in all three tested locations (cen-
tre of the gaze, 1.25º above the center of gaze (top); and 1.25º below the center of gaze (bottom); 
data not shown). The neuron responded maximally to objects at one extreme of the shape space 
(the “preferred” shape; Fig. 2C and first histogram in Fig. 2D), while the response to the other 
extreme was not significantly higher than background (last histogram in Fig. 2D; t-test, p>0.05). 
Responses between these two extremes of object shape showed an approximately monotonic 
decrease from maximal response as the object was made more dissimilar to the preferred shape 
(Fig. 2D). The neuron’s response to pairs of objects was tested by presenting stimuli contain-
ing both the preferred object (bottom position) together with a non-preferred object (top posi-
tion) sampled across the whole morph-line. The resulting activation pattern is shown in Figure 
2E. For each stimulus pair, the neuron’s response was intermediate between its responses to the 
individual constituent shapes of the pair (compare Fig. 2E and 2D). A nearly identical response 
pattern was obtained when the identity of the object in the bottom position was varied while the 
preferred object was presented in the top position (data not shown).

To determine if a systematic relationship existed between responses to individual objects and 
multiple objects, we first plotted the response to each object pair against the sum of the responses 
to the constituent objects of the pair. Figures 3A and B (first panel) show the resulting scatter 
plots for the two neurons just described, respectively, in the left and right side of Figure 2. As 
expected from previous studies, responses to object pairs were smaller than the simple sum of 
individual responses (i.e. well below the diagonal dashed lines in Fig. 3). Nevertheless, the re-
sponses to each object pair condition (18 conditions and 22 conditions in these two cases) did not 
fall haphazardly on the scatter plot, but clustered along a line of slope 0.5 (solid line). That is, 
the response of these neurons to pairs of objects was in good agreement with the average of the 
responses to the constituent objects presented in isolation. To examine this more closely, we con-
sidered object pair conditions where each of the two constituent objects drove the neuron signifi-
cantly above background when presented alone (red dots) and conditions in which only one of 
the two objects did (blue dots). This did not reveal any obvious difference between such condi-
tions in that both sets of points cluster along the same line. Moreover, the fact that the blue points 
are well below the diagonal shows that objects that have no significant effect on IT neuronal 
responses when presented alone can strongly impact responses to more preferred objects. Similar 
relationships were obtained for most of the neurons recorded in the three monkeys. Figure 3 also 
shows two additional examples of data from single IT neurons, whose responses to objects pairs 
were again in good agreement with the average of the responses to the constituent objects over a 
range of conditions. 

As a first look at our entire population of IT neurons in the three monkeys, we pooled the data 
from all 79 responsive neurons in a scatter plot using the same axes shown for the example neu-
rons (Fig. 3C). Like the individual examples, responses to pairs of objects were highly correlated 
with the sum of responses to the constituent objects (r = 0.92) and the slope of the best linear fit 
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Figure 3. Responses to multiple objects as function of the sum of responses to single objects. In 
each scatter plot, responses to object pairs (A-C) or object triplets (D) are plotted against the sum 
of the responses to the constituent objects presented alone. The dashed and solid straight lines 
indicate, respectively, the sum and the average of the responses to single objects. The slope of the 
solid line is 1/2 in A-C and 1/3 in D. A. Examples data from two individual neurons recorded in Ex-
periment1. Data in the left panel are from the same neuron shown in Figs. 2A-B. Red and blue dots 
refer to pairs in which, respectively, both or only one of the objects in the pair produced a response 
significantly higher than background rate (t-test, p < 0.05). B. Examples of scatter plots for two in-
dividual neurons recorded in Experiment 2. Data in the left panel are from the same neuron shown 
in Figs. 2C-E. Color code as in A. C. Scatter plot including responses to object pairs for the whole 
population of 79 responsive neurons recorded in the three monkeys. Color code as in A. D. Scatter 
plot including responses to object triplets for the whole population of 48 responsive neurons re-
corded in Experiment 1. Red, blue and green dots refer to triplets in which, respectively, three, two 
or only one of the constituent stimuli evoked a response significantly higher than background rate. 
In both the individual examples and the population data, responses to multiple objects are in very 
good agreement with the average of the responses to the constituent objects presented alone.
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to the data was 0.55. This value is very close to the 0.5 slope expected if the responses to object 
pairs were the average of the responses to individual objects (solid line, referred to as the “aver-
age model”). Like the single neuron examples (Fig. 3A-B), this relationship was independent of 
the effectiveness of the less optimal object of each pair (red and blue dots are as in Fig. 3A-B). 
Neurons recorded in Experiment 1 were also tested with triplets of simultaneously presented 
objects (see Fig. 1D and Fig. 2B). Figure 3D shows that responses to triplets were also highly 
correlated with the sum of the responses to the constituent objects of the triplets (r = 0.91) and 
the slope of the best linear fit to the data was 0.37. This value is very close to 0.33, i.e. the slope 
expected if responses to the object triplets were the average of the responses to individual objects 
(solid line). These same analyses was repeated after normalizing all recorded responses in each 
neuron by the response to the neuron’s most effective stimulus. This removed variance in the 
responses to the pairs (Fig. 3C) and triplets (Fig. 3D) that is due to differences in the range of 
absolute firing rates over the population of neurons. Normalized responses to pairs and triplets of 
objects were still well correlated with the sum of normalized responses to the constituent objects 
(r = 0.58 and r = 0.43 respectively for pairs and triplets) and the slope of the best linear fit to the 
data was very close to the slope predicted by the average model (i.e., slope = 0.44 and 0.27 re-
spectively for pairs and triplets).

Since these previous analyses suggested that a simple average model might explain a great deal 
of the IT response to multiple objects, we sought to assess how well responses to object pairs 
could be accounted for by the average model. To do that, we determined the “goodness of fit” 
(GOF) of the average model for each recorded neuron (see Methods). The GOF provides an 
unbiased estimate of the percentage of data variance not due to noise (“explainable”) that is ex-
plained by the model. In this case, the data variance to explain for each neuron is the variance 
of responses across all of the tested object pair conditions, and our goal was to assess which 
fraction of this variance could be explained by modeling the responses to the object pairs as the 
average of the responses to the constituent objects. Since the primary model under scrutiny here 
(the average model) is a function of the responses to single objects, tests of GOF of this model 
require modulation in the neuron’s response to those objects. Therefore, we focused on neurons 
whose response across all tested single object conditions was highly selective (ANOVA, p < 
0.001). These neurons were 34 of the 79 responsive neurons (15/48 for Experiment 1 and 19/31 
for Experiment 2). For each of these neurons, the response R

AB
 to a pair of simultaneously pre-

sented stimuli A and B was modeled as a linear function of the sum of the responses R
A
 and R

B
 to 

the constituent stimuli presented in isolation, i.e. R
AB

 = p + m (R
A
 + R

B
). Two linear models were 

tested: 1) the average model, with p = 0 and m = 0.5 fixed for each neuron (this is simply the av-
erage of the individual responses); 2) the best linear fit to the data (with intercept p and slope m 
being free parameters of a Least Squares fit for each neuron). For both models, the GOF and its 
bootstrap standard error (SE) were computed (see Methods for details). The median GOF across 
the 34 tested neurons was 63.3% and 67.4% for the average and best linear model respectively. 
That is, allowing the two free parameters only explained an additional ~4% of variance. Figure 
4 shows the distribution of the GOF values obtained for the two models. Figure 4B (last panel) 
also shows the distribution of the slopes m obtained by the best linear fits to the data. The median 
of this distribution was 0.45, which is very close to the 0.5 slope expected for the average model. 
The distributions of GOF values was not significantly different in Experiment 1 and Experiment 
2 (Kolmogorov-Smirnov tests, p > 0.05). Overall, these analyses showed that, for most selective 
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IT neurons, responses to object pairs can be very reliably predicted as the average of the respons-
es to the constituent objects of each pair. Indeed, the median GOF values correspond to correla-
tion coefficients of ~0.8 (similar to the data shown in Fig. 3B, right panel).

 

Unfortunately, a similar analysis of GOF could not be carried out for the responses to triple ob-
jects because only 6 triplet configurations were tested in Experiment 1 (see Fig. 1D), thus yield-
ing only 6 data points per neuron. As a result, the amount of explainable variance in the response 

to the triplets was ~1/10 of the explainable variance in the response to object pairs. That is, al-
though our data indicate that the average model still holds for triple objects at the level of the IT 
population (Fig. 1D), the data do not have sufficient power to reliably assess the average model 
or any other model at the level of individual neurons. 

Responses to single objects and pairs of objects across continuous shape dimensions

One advantage of Experiment 2 is that it allowed us to closely examine each neuron’s response 
to pairs of objects over a continuous shape space with very similar objects (see Fig 1A, right and 
Fig. 2C-E). That is, we were able to find neurons that were sensitive to one of these continuous 
shape dimensions and measure each neuron’s response along that parametric shape dimension. 
This, in turn, allowed us to place the neuron’s preferred object in the RF and then measure the 
effect of adding a second object of decreasing effectiveness (when presented alone). The method 
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Figure 4. Goodness-of-fit (GOF) of the responses to pairs. A. GOF distribution for the 
average model (see Results). The GOF was computed for each of 34 highly selective 
neurons (see text). 29 of those 34 neurons with GOF bootstrap standard error < 40% 
are shown in the plot. B. GOF distribution for the best linear fit to the data (left) and dis-
tribution of the slopes resulting from that fit (right). Same neuronal population as in A. 
Both models explain a very large fraction of the response variance and the best linear 
model yields a slope distribution centered around 0.5.
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used to generate the parametric objects and screen neurons for shape selectivity is described in 
detail in Methods. In brief, during recordings, neurons were screened to have significantly selec-
tive responses across at least one of 42 possible shape dimensions (morph-lines) tested at fovea 
(ANOVA, p < 0.05). Objects sampled from the most selective morph-line were further tested 
in the top and bottom parafoveal positions (see Methods and Fig. 2D). Therefore, we were able 
to build tuning curves across a very selective shape dimension for each of the recorded neurons 
(Fig. 5) and the origin of each plot was set to be the neuron’s “preferred” shape (e.g. Fig. 2C 
and first plot in Fig. 2D) obtained during the initial screening at fovea. Examples of such tun-
ing curves are shown as red lines in Figure 5 (A and B) and black lines in the inset of Figure 
5C. During recordings in the parafoveal locations, we also presented paired object conditions in 
which the preferred object obtained from the screening procedure (defined as shape distance d = 
0) was always present, and a second object was drawn from along the tuned shape dimension (or, 
in some case, from another shape space, see Methods and Fig. 2E).

Figure 5A shows the data obtained from the neuron already described in Figures 2C-E and Figure 
3B (left). The red line shows the neuron’s response to 11 different objects sampled at increasing 
distances from the “preferred” object (defined as d = 0) along one of the shape dimensions (all 
presented at 1.25º above the center of gaze, see Fig. 2D). The black line shows the neuron’s re-
sponse to 11 object pairs conditions in which the neuron’s preferred object (1.25º below fixation) 
was presented along with a second object (whose identity is indicated by the abscissa) at 1.25º 
above fixation (see Fig. 2E). The addition of the second object clearly causes the neuron’s re-
sponse to drop below the response of the preferred object presented alone (i.e. the black line falls 
below the horizontal dashed line). In fact, the response to each object pair (black line) is always 
in between the response to each of the constituents of the pair (i.e. in between the dashed line and 
the red line). At a more quantitative level, the green line shows the average of the responses to 
the constituent objects in each pair, i.e. the average of the dashed line and the red line. The green 
and black lines are almost exactly superimposed, indicating that the responses to object pairs are 
well predicted by a simple average model, regardless of the similarity of the paired objects. 

Figure 5B shows neuronal tuning curves of another neuron (same cell analyzed in Fig. 3B, right) 
along a different shape dimension. Like the neuron described above, the responses to object pairs 
(black line) that include the “preferred” object were very close to the average of the responses 
to the constituent objects presented in isolation, i.e. to the average of the dashed and red curves 
(green line, see above). In addition, this neuron was also tested with objects sampled beyond the 
range of the morph-line unit distance (beyond the gray patch in Fig. 5B) and the response to pairs 
continued to largely track the average. Moreover, an object belonging to a different shape space 
(a car) was also tested both in isolation (last red point on right) and paired with the “preferred” 
shape (last black point on right). Even for this very dissimilar object drawn from a completely 
different set of shapes, the response to an object pair containing this object and the neurons “pre-
ferred” object was very close to the average of the response to each object presented in isolation 
(last green point on right). 

Building tuning curves of the responses to single and paired object conditions (Figs. 5A-B) al-
lowed us to test, for the neuronal population recorded in Experiment 2, if there were any consis-
tent deviations from the average model that depended on the degree of shape similarity between 
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Figure 5. Tuning curves of IT neuronal responses to single objects and object pairs along continuous shape 
dimensions. A-B. Individual examples of tuning curves obtained for two neurons recorded in Experiment 2 (A: 
same neuron as in Figs. 2C-E and 3B, left; B: same neuron as in Fig. 3B, right). The abscissa is the shape 
distance (i.e., shape dissimilarity) within the tested morph-line (shapes corresponding to some of the tested 
distances are shown below each shape axis). The origin of the shape axis is the neuron’s “preferred” shape 
obtained from the recording screening procedure (see Methods). The gray patch shows the region of shape 
space initially tested to obtain the preferred shape (unit shape distance, see Methods). The horizontal dotted 
line indicates the neuron’s background rate. Morphed shapes were sampled either within the unit distance (A) or 
within a larger shape range (B) that included a stimulus drawn from a different shape space (data points at the 
far right in B). For both neurons, responses to the objects pairs (black line) are very close to the average (green 
line) of the responses to the constituent objects of the pairs presented in isolation (i.e., to the average of the 
horizontal dashed line and the red line, see Results). Error bars are SE of the mean firing rate. C. Population av-
erage of 26 tuning curves obtained from the 15 most selective neurons recorded in Experiment 2 for single and 
pair object conditions (see Results). These tuning curves were background subtracted, aligned to the “preferred” 
object (0 on the abscissa), and normalized by the response to the “preferred” object. The inset shows these 26 
normalized tuning curves for responses to single objects (gray lines) and their average (red line). The red line 
in the main panel shows the population average of the responses to single objects and included single object 
conditions outside the unit shape distance (gray patch). The horizontal dashed line shows the population aver-
age of the responses to the “preferred” object of each neuron (i.e. the shape at value 0 on the abscissa). The 
black line shows the population average of the responses to object pairs containing both the “preferred” object 
and another object sampled along the abscissa. The green line shows the average model prediction (population 
normalized average of average model curves as in A and B). The cyan line shows the prediction of the complete 
clutter invariance (CCI) model (see Results). Error bars are SE of the population averages. Although different 
morph-lines were tested for different neurons, example shapes are shown below the abscissa from a represen-
tative morph-line. The dotted line is the background rate. Only 11/15 neurons (for a total of 18/26 responses) 
were tested outside the unit distance (gray patch) and contribute to the points outside this range. This plot is 
nearly identical when constructed from conditions where the “preferred” object was either in the best or second 
best RF position (top or bottom; data not shown), i.e. forcing every neuron to contribute only one tuning curve to 
the population average. 
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the objects in the pairs. To obtain a population measure of the dependence of pair responses from 
shape similarity, we considered the 19 highly selective neurons recorded in Experiment 2 that 
were included in the GOF analysis (see Figure 4) and built tuning curves for single object re-
sponses in top and bottom positions for each of these neurons, thus obtaining a total of 38 tuning 
curves. Because these 19 neurons were tested using different morph-lines (from different shape 
spaces or different axes within a shape space), the tuning curves were aligned on a single shape 
axis (abscissa in Fig. 5C) by choosing the origin to be each neuron’s “preferred” object obtained 
during the screening procedure (see Methods). This “preferred” object was always one of the two 
objects in each object pair tested during later recordings. To get a meaningful average neuronal 
tuning curve, the 38 single tuning curves were screened to be both selective and largely mono-
tonic in the unit shape distance range, i.e. within the gray patch of Figure 5C (see Methods). This 
resulted in a subset of 26 tuning curves recorded in 15 neurons (11 neurons contributed two tun-
ing curves, 4 neurons contributed one tuning curve). These tuning curves were then averaged af-
ter subtracting background firing rates and normalizing by the response to the “preferred” object 
(d = 0). These 26 normalized tuning curves are shown individually in the inset of Figure 5C and 
the resulting population average tuning curve is shown as the red line in Figure 5C and inset. By 
construction, the population average (red line) falls along the abscissa as the distance from the 
“preferred” object is increased (d > 0). Note that the response typically falls to near background 
firing rates (ordinate = 0; dotted line) for “distant” objects sampled both within the same shape 
space (e.g. d ≥ 1) and from other shape spaces (last red point on right). Note also that, although 
the “preferred” object (d = 0) was defined during initial screening, later tests sometimes included 
objects sampled to the “left” of the “preferred” object (d<0) and these tests often revealed that 
the response to single objects continues to increase even beyond what was taken to be the “pre-
ferred” object (i.e. red line continues to rise on the left side of 5C). 

The black line in Figure 5C shows the population average of the normalized tuning curves 
obtained for pairs of simultaneously presented objects, in which the identity of one object of 
the pair was fixed at d = 0, while the identity of the second object spanned the tested range of 
shapes. Like the individual examples (Fig. 5A and B), the population average response to object 
pairs (black line) was intermediate between the average response to the fixed object of the pair 
(horizontal dashed line) and the average response to the single objects (red line). For each of the 
tested neurons, the response to the object pairs was modeled as the average of the responses to 
the constituent objects of each pair, to obtain model prediction curves as shown in Figures 5A-B 
(green lines). These curves were normalized and averaged to obtain the population average mod-
el prediction curve shown in Figure 5C (green line). The fact that the black line and the green 
line almost perfectly overlap in Figure 5C, supports two conclusions. First, the average model 
holds regardless of the similarity of the shapes composing the pairs. Second, the agreement of 
neuronal data to the average model prediction becomes virtually perfect when responses of even 
a small population of IT neurons are pooled (as done here). 

Another model of responses to multiple objects

These findings clearly show that the responses of individual IT neurons are not unaffected by the 
addition of a second non-preferred object (i.e. they are not clutter-invariant), even when that sec-
ond object produces no response on its own (see right side of plots in Figure 5A-C). Instead, the 
response to an effective object is predictably reduced by the presence of a less effective “clutter” 
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object and largely follows an average model. However, given the relevance of this conclusion 
for theories of neuronal representation of multiple objects (Rousselet et al., 2003, 2004) and the 
disagreement with some work in area V4 (Gawne and Martin, 2002), we explicitly compared 
the predictions of the average model with the predictions of an alternative model: the Complete 
Clutter Invariance (CCI) model. The CCI model predicts that the response to a pair of simultane-
ously presented objects is equal to the response of the most effective object of the pair, i.e. to the 
maximum of the responses to the individual stimuli. 

The conditions used in Experiment 2 are optimized to distinguish among the CCI model and the 
average model because the object pairs almost always include at least one condition in which 
both a very effective object and a non-effective object are presented together (discussed further 
below). Examination of the example curves in Figure 5A and 5B clearly shows that the CCI 
model is not correct. In particular, the addition of a second, less effective object always causes 
the response to decrease below that produced by the effective object presented in isolation (the 
black line is well below the dashed line). To examine this for the population, CCI model predic-
tion curves were built for each neuron included in the population averages of Figure 5C. These 
curves were normalized and averaged to obtain the population average CCI curve shown in Fig-
ure 5C (cyan line). The CCI model was consistently much poorer than the average model (green 
line) in predicting the population response to the stimulus pairs (black line). This was especially 
true for object conditions in which a poorly effective object was part of the pair (i.e., for d ≥ 0.5 
and for the stimulus sampled from a different shape space). Nevertheless, this is only a subset of 
our data and we sought to fully test the predictions of the CCI model across both experiments for 
all of the individual IT neurons recorded in the three monkeys.

In general, testing if responses to object pairs are better predicted by the average model (or any 
other model that is a weighted sum of responses to individual objects) or by the CCI model is not 
trivial. Although these models sound very different, the predictions of the average model and of 
the CCI model can be nearly identical, depending on the object conditions used to test the neu-
rons. To illustrate this, Figure 6A shows data from our whole population of 79 responsive neu-
rons (the same data presented in Fig. 3C), but now with the prediction of the CCI model on the 
abscissa. The data largely fall along the diagonal and the correlation coefficient is high (r = 0.91), 
suggesting that the CCI model does a good job in predicting the responses to object pairs. How-
ever, the reason that Figure 6A looks so clean is that a large fraction of the variance in the data 
is due to the differences in the firing range of the individual neurons included in the population, 
rather than variations due to changes in object conditions for each individual neuron. In plots like 
these the variance is approximately equally well explained by the CCI model, the average model 
(see Fig. 3C), and by any other “reasonable” model that forces responses to the pairs of objects 
to be near the firing range of each individual neuron. 

Testing the prediction of the CCI model for each individual neuron (as done for the average mod-
el in Figs. 3A-B and Fig. 4) using measures of explained variance can also produce misleading 
results. If, as in Experiment 1, the identity of the most effective object in each pair is not fixed, a 
large fraction of the variance in the responses to pairs is due to variations in the response to the 
most effective object in each pair. This variance can be well explained by either the CCI model 
or the average model. Indeed, the median GOF index for the CCI model was 59.5% for the 15 
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high selective neurons recorded in Experiment 1 and included in the GOF analysis of the average 
model of Figure 4. However, if the neuron’s most effective stimulus is paired to a set of less or 
at most equally effective stimuli, there is no variation in the response to the preferred stimulus in 
each pair and, therefore no variation in the CCI predicted response to pairs. Thus, the CCI model 
will fail to explain any variance in the pair responses. This is why, for the 19 high selective neu-
rons recorded in Experiment 2 (see Figs. 4 and 5), the median GOF for the CCI model was only 
3.6%. 

In light of these issues, we obtained a meaningful comparison between CCI and average model 
by first transforming the data in the following way. Given a pair of objects A and B, with re-
sponses R

A
 and R

B
 to the individual objects and response R

AB
 to the pair AB, all three responses 

were normalized by dividing them by the maximum of the individual responses, i.e. MAX(R
A
, 

R
B
). As a consequence of this normalization, for each pair of objects, the normalized response to 

one object presented alone is equal to 1 and the normalized response to the other object presented 
alone is between 0 and 1. Thus, the sum R

A
 + R

B
 of the normalized responses to the objects pre-
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Figure 6. Comparison of the average model and the complete clutter invariance (CCI) model. A. Re-
sponses to each object pair are plotted as a function of the maximum of the responses produced by 
each of the constituent objects of the pair (i.e., the CCI model prediction). Data from all 79 responsive 
neurons are included in the plot. Color code as in Fig. 3. B. Simulated normalized responses of two 
model neurons, one following the “average” rule (open circles) and the other following the CCI rule 
(gray diamonds; see Methods). In the first case, the neuron’s response to object pairs was modeled as 
the average of the response to the constituent objects of the pair; in the latter case as the maximum of 
the constituent responses. Responses to each object pairs and the two constituents of that pair were 
normalized by the maximum of the latter two. As a consequence, the sum of the normalized single 
object responses (in abscissa) ranges from 1 to 2, while the normalized responses to pairs cluster 
around the solid line with slope = 0.5 for the average model simulated neuron and around the dashed 
line with slope = 0 for the CCI model simulated neuron. The gray patch shows the range in which the 
predictions of the two models can be most easily discriminated. C. Normalized responses for the whole 
population of 79 neurons (i.e. normalized as in B). Color code as in Fig. 3. The heavy black curve is the 
average response to object pairs as function of the sum of individual responses. The average is com-
puted in a running window of size 0.1 shifted in consecutive step of size 0.05. 
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sented alone is between 1 and 2. It is easy to show that, once data are transformed as described 
above, the predictions of the CCI and of the average model become distinguishable, regardless of 
the set of objects used to test them. This is shown in Figure 6B, where normalized responses to 
pairs (R

AB
) are plotted against the sum of normalized single responses (R

A
 + R

B
) for two different 

simulated neurons (one following a CCI rule and one following an average rule; see Methods). 
The scatter plots in Figure 6B shows that data points generated by the average model neuron 
(empty circles) line up along the straight line with slope 0.5. The data points generated by the 
CCI model neuron (gray diamonds) line up along the line with slope 0. When responses to the 
object pairs were modeled as a linear function of the sum of individual responses, i.e. R

AB
 = m 

(R
A
 + R

B
), with variable slope m, then scatter points lined up along straight lines with slope equal 

to m (simulation data not shown).

Data from the population of 79 responsive neurons recorded from the three monkeys were nor-
malized as described above and then plotted in the population scatter plot shown in Figure 6C. 
The data points were scattered around the straight line with slope 0.5 (solid line) and a running 
average of the responses to pairs as function of the sum of individual responses was almost su-
perimposed to the slope 0.5 line (heavy black line; see caption for details). This shows a virtu-
ally perfect agreement of neuronal data to the average model prediction when responses from 
the whole population of recorded neurons were averaged. Because the average slope in Figure 
6C remains at 0.5 across the entire range of possible abscissa values (1.0 − 2.0), this shows that 
agreement did not depend on the effectiveness of the individual objects, thus confirming the con-
clusions from the previous section (see Fig. 5). 

To further compare the average model and the CCI model, we focused on the stimulus conditions 
under which the predictions of the average and CCI model are most disparate. Specifically, as 
suggested by a previous study (Gawne and Martin, 2002), we considered only object pair condi-
tions in which the less effective objects in isolation evoked a response that was less than half 
the response evoked by the more effective object. In the transformed data described above, this 
corresponds to data that have abscissa values <1.5. We computed the median response to pairs 
(R

MED
) for each neuron across this subset of conditions (1<[R

A
+R

B
]<1.5; gray patch in Fig. 6B). 

If the pair responses follow the average model and the data were uniformly distributed across 
the 1-1.5 interval, then the R

MED
s for the recorded neurons should be distributed around 0.625 (in 

fact, the data were not evenly distributed over this interval so the average model predicted a R
MED

 
distribution centered around 0.68). On the other end, if the pair responses follow the CCI model, 
the R

MED
s should be distributed around 1.0. The observed median of the R

MED
s across a popula-

tion of 64/79 neurons recorded in the three monkeys was 0.7 (mean=0.7), i.e. very close to the 
value predicted by the average model (15 neurons were excluded from the analysis because they 
had no points in the interval 1<[R

A
+R

B
]<1.5). Put another way, this shows that, on average, the 

response of an IT neuron to an effective object is reduced by 30% when that effective object is 
presented with a “less than half” effective second object. At an individual neuron level, 43 of the 
64 neurons had median responses to these object pairs that were reduced by at least 20% (relative 
to the response to the preferred object presented alone). We also observed that ~12% of the neu-
rons (8/64) had responses to these object pairs that were reduced by less than 5% and might thus 
be taken to be consistent with the CCI model. Overall, however, the vast majority of IT neurons 
give responses to pairs of objects that are far from the CCI model prediction (see Discussion).
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Response to objects pairs as a function of RF sensitivity 

The present study was not designed to explicitly test the dependence of responses to objects as a 
function of their RF position in that the spatial separation of objects in the RF was not systemati-
cally varied and only two or three RF locations close to the center of gaze were tested. However, 
since IT neuronal RFs are not all centered at the same retinal position, have a broad range of siz-
es (Op De Beeck and Vogels, 2000), and can often be small relative to the separation of our ob-
jects (Op De Beeck and Vogels, 2000; DiCarlo and Maunsell, 2003), we used these RF variations 
to ask if there was any relationship between the averaging behavior described above and position 
in the RF. In particular, we might not expect the response to a pair of objects to be the average of 
the responses to the constituent objects if one of those objects was presented very far outside the 
RF (Missal et al., 1999), but we wondered if we might detect some breakdown in averaging be-
havior when one of the objects was near the edge of the RF. 

To examine this, we first defined the sensitivity of the RF at each tested position as the aver-
age response to objects that were effective in at least one position (i.e., eliciting a response 
significantly higher than background; t-test, p < 0.05). We then examined the average model 
as a function of the relative effectiveness of the two RF positions. Specifically, for each tested 
object pair condition, we com-
puted the response to the object 
pair as a fraction of the sum of 
the responses to the constituent 
objects, i.e. the ratio R

AB
 / (R

A
 

+ R
B
). As described above, this 

value tends toward 0.5 (average 
model) when all our data are con-
sidered together. Figure 7 shows 
this ratio as a function of the 
relative RF effectiveness of the 
two positions (the red line is a 
running average). Two points can 
be taken from Figure 7. First, as 
expected based on the placement 
of our objects and the distribution 
of IT RF sizes (Op De Beeck and 
Vogels, 2000), for most neurons 
both objects were well within the 
RF (relative effectiveness values 
are all > 0%), but, for some neu-
rons, one of the tested positions 
was near the edge of the RF (i.e. 
20% RF effectiveness). Second, 
over this range of RF sensitivity 
conditions, we see only a very 
slight trend away from averag-
ing (and towards no effect of the 
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Figure 7. Agreement between responses to object pairs and 
prediction of the average model as function of the receptive 
field (RF) sensitivity. The abscissa shows the RF effective-
ness of the less effective position occupied by one of the two 
objects. The ordinate is the ratio of the responses to object 
pairs to the sum of responses to the constituent objects. 
Each gray point is one pair condition from one neuron and 
all 79 responsive neurons are included. The solid red curve 
line is the average in a running window of size 10% shifted 
in consecutive steps of size 2.5%. The red shaded region 
is ±1 SE of the running average. The horizontal dashed line 
shows the ratio predicted by the average model (0.5). 
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Figure 8. Dynamics of the response normalization. A. Time course (solid line) of the median ratio between 
responses to object pairs and sum of the responses to the constituent objects of the pairs, for two indi-
vidual neurons recorded in Experiment 1 (left and middle panels) and one neuron recorded in Experiment 
3 (last panel). Neuronal responses are computed in overlapping time windows of 25 ms shifted in time 
steps of 5 ms. The light gray background shows the time course of the median response to object pairs 
for each neuron. The heavy bars along the abscissa show timing and duration of stimulus presentation 
(see Fig. 1E) and all calculations are based on single objects or object pairs presented at time zero. The 
dashed line is the prediction of the average model without dynamics. The dotted line is the prediction of 
a sum model (i.e. a model in which the response to a pair of objects is the sum of the responses to the 
constituent objects). B. The solid line is the median of the ratios between responses to object pairs and 
the sum of responses to the individual objects, median over all object pairs tested across the whole popu-
lation of 48 responsive neurons of Experiment 1. The shaded regions are ±1 SE of this median (the SE 
was computed by bootstrap re-sampling of the ratios). The light gray background is the median over the 
responses to object pairs across the 48 neurons. C. Same as in B, but obtained for the subpopulation of 
10 highly selective neurons recorded in Experiment 1 (i.e., neurons whose responses to all single stimu-
lus conditions were significantly different at p = 0.0001, ANOVA). 
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second object) as we approach the edge of the RF. This trend is consistent with the reduction of 
response suppression produced by the less effective shape in a pair as a function of its distance 
from the more effective shape (Missal et al., 1999).

Dynamics of the response to object pairs

In the previous analyses, IT neuronal responses were computed in a fixed time window of 100 
ms (i.e., between 100 ms and 200 ms from the stimulus onset; see Fig. 2). Because our observa-
tions appear consistent with some sort of normalization mechanism, we wondered if we could 
detect any temporal structure in the pattern of responses that might be consistent with such a 
mechanism. To do this, we first computed the average firing rate of the recorded neurons in small 
time bins (25 ms width) shifted in consecutive time steps of 5 ms. Then, for each neuron and 
each time bin, we computed the median ratio between responses to object pairs and the sum of 
responses to the individual objects, i.e. R

AB
 / (R

A
 + R

B
), median over all object pairs tested for 

each neuron. As described above, this ratio tends toward 0.5 (average model) when data are 
considered over our standard 100-200 ms post-stimulus interval. The resulting time course of 
the median ratio is shown for two neurons recorded in Experiment 1 and one neuron recorded in 
Experiment 2 (Fig. 8A). For comparison, the time course of each neuron’s median response to 
the object pairs is also shown in each panel (light gray background). Figure 8 shows that, for all 
three neurons, before the onset of the response (i.e., up to ~100 ms after stimulus onset) the me-
dian ratio fluctuates around 0.5. This is expected because the background rate during presentation 
of single objects and pairs of objects should be approximately the same. Then, at the beginning 
of the neuronal response (~100 ms post-stimulus onset), the median ratio increases above 0.5. 
The peak ratio then decreases, reaches a minimum (below 0.5) around 150 ms from the stimulus 
onset and then reaches a new peak (above 0.5) around 200 ms from the stimulus onset. 

This temporal pattern suggests that, at the onset of the neuronal response, responses to object 
pairs are above the average of the individual responses to the constituent stimuli, i.e., in the di-
rection predicted by the sum. This pattern was found for many neurons recorded in Experiment 
1 and for some neurons recorded in Experiment 2. To examine this across the recorded neuronal 
population, we computed the time course of the median ratio between responses to object pairs 
and the sum of responses to the individual objects, median over all object pairs tested across the 
whole population of 48 responsive neurons of Experiment 1. The resulting curve (Fig. 8B, solid 
line) showed dynamics very close to that observed in the individual neurons except that the peaks 
and trough were smaller. However, when only the 10 most selective neurons of Experiment 1 
were taken into account (see Fig. 8 caption), the peaks and the trough were much more pro-
nounced (Fig. 8C, solid line). Overall, these observations suggest that a short time lag is involved 
in the mechanisms underlying the average effect and thus hint at the possibility that competitive 
normalization may be the mechanism underlying the average response to multiple objects de-
scribed above (see Discussion).

The temporal pattern shown in Figure 8 was less pronounced in Experiment 2, although it was 
observed (e.g. Fig. 8A, last panel). When the 31 responsive neurons of Experiment 2 were con-
sidered (as in Figure 8B), the resulting curve had a time structure similar to that shown in Figure 
8B (not shown). However, the first peak at the time of response onset (~100 ms) was much less 
prominent. The absence of a clear peak may have been due to more frequent saturation of neuro-
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nal responses in Experiment 2 because, unlike Experiment 1, it involved an effective object in all 
paired conditions (see Fig. 2E). 

Possible role of attentional shifts

As a final step, we sought to understand if the average effect described throughout this study 
could have resulted from effects of visual attention. When two objects are present and the mon-
key is cued to attend a specific visual field location (Connor et al., 1997; Reynolds et al., 1999) 
or a specific target object (Treue and Maunsell, 1996; Chelazzi et al., 1998), neuronal responses 
in the ventral visual stream (including IT) move toward the response elicited by the attended ob-
ject, as if that object were presented alone. Thus, if one of the two objects in each pair were at-
tended on each presentation of the pair, and the choice of the attended object were random across 
the 10-30 trials in which the pair is tested, the mean response over all trials could look very much 
like the average of the responses to the constituent objects presented alone. Although our presen-
tation conditions (100 ms stimulus duration) are likely far too rapid for attentional shifts during 
a single presentation of a pair, if the animal’s attention were directed toward one position for ap-
proximately half of the trials and the other position for the rest, attentional shifts might explain 
the average effect. 

This hypothesis makes the explicit prediction that the distribution of responses across the 10-30 
presentations of each object pair contains responses that are drawn more or less equally from 
the distributions of responses to the two constituent objects. This, in turn, predicts that the dis-
tribution of responses to the pair should be very broad (and possibly bimodal), especially for 
cases in which one object is very effective and the other is non-effective. The broadness of spike 
discharges is typically quantified by the Fano factor, i.e. the ratio of the variance of the average 
spike count and its mean. The distribution of spike counts elicited by repeated presentations of a 
single visual stimulus is well known to approximately follow a Poisson distribution with mean 
equal to the average spike count and thus have a Fano factor of ~1 (Softky and Koch, 1993; 
Shadlen and Newsome, 1994; Rieke et al., 1997; Shadlen and Newsome, 1998). If attention were 
not a factor, the distribution of responses to pairs of objects should be the same as that produced 
by single objects and should have a Fano factor of ~1. Indeed, for the 79 responsive neurons, 
the average Fano factor obtained for pair conditions (1.05) was not significantly higher than the 
average Fano factor obtained for single conditions (1.13; one-tailed unpaired t-test, p = 0.98). 
Furthermore, we simulated response distributions to object pairs that should have resulted from 
the random allocation of attention by randomly sampling 10-30 responses from the distributions 
observed for each of the two constituent objects. The average Fano factor of these simulated 
pair responses was 1.24, i.e. ~ 20% higher than the Fano factor obtained from the actual pair re-
sponses. This difference was highly significant (one-tailed paired t-test; p < 0.001). Overall, these 
comparisons strongly suggest that the observed average effect described throughout this study 
cannot simply by explained by alternating attention shifts. 

Discussion

In pursuing an understanding of the mechanisms underlying visual recognition in cluttered, real-
world scenes, the goal of the present study was to systematically examine IT neuronal responses 
in limited clutter conditions, i.e. with multiple objects present, using two complementary ex-
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perimental paradigms. The approach of Experiment 1 was to test the exact same visual object 
conditions across an unbiased sample of IT neurons. This approach produced an IT population 
that was unbiased with respect to the objects tested for each neuron, but did not maximize the 
response range for each neuron. The complimentary approach of Experiment 2 was to optimize 
the tested object conditions for each neuron to produce maximal selectivity across a continuous 
shape dimension and, as a consequence, may have increased the probability that each neuron was 
involved in the representation of the objects tested. 

Our results show that, across this wide range of stimulus conditions a large fraction of the ex-
plainable variance (~63%) in the responses to object pairs was accounted for by the average of 
the responses to the constituent objects (i.e., average model; Fig. 4A). Because of the consis-
tency across the population of IT neurons, the average model becomes virtually perfect when 
responses of even a small population of neurons are pooled (Fig. 5C). One corollary of the aver-
age model is that the IT response to a pair of objects depends largely on the relative effectiveness 
of each of the constituent objects in driving the neuron, and that it does not much matter if that 
effectiveness is altered by changing the object identity (Fig. 5) or the RF position at which that 
object is presented (Fig. 7). Another corollary is that objects that are completely ineffective in 
driving a neuron when presented alone powerfully reduce the neuron’s response when paired to 
very effective objects (at least for the conditions tested here, see below). As such, it is clear that 
most IT neurons do not have complete clutter invariance (CCI), i.e. do not have responses that 
are completely independent of the presence of a less effective object (see Fig. 5C). This was con-
firmed by directly comparing the average model and the CCI model (Fig. 6).

Previous studies of multiple stimuli interaction in the ventral visual stream

Consistent with previous investigators (Sato, 1989; Miller et al., 1993; Rolls and Tovee, 1995; 
Missal et al., 1997; Chelazzi et al., 1998; Missal et al., 1999; Sheinberg and Logothetis, 2001), 
our study found that IT responses to very effective stimuli are typically reduced by the presence 
of less effective “clutter” stimuli. In particular, we found that, on average, responses of IT neu-
rons to an effective stimulus were decreased to ~ 70% when a “less than half” effective stimulus 
was also presented, which is very close to the magnitude of suppression reported by Rolls and 
Tovee (1995) and Missal et al. (1999) for similar object pairings. Although not systematically 
described, there are hints of an average rule in previous IT studies. For example, Miller et al. 
(1993) found a correlation between the degree of response suppression produced and the relative 
effectiveness of the RF location at which a second stimulus was presented − implying that the 
degree of suppression depends on the neuron’s response to the second stimulus presented alone. 

On the other hand, in apparent disagreement with the results found here, Missal et al. (1999) did 
not find correlation between responses to object pairs and the sum of the responses to the con-
stituent objects. This may have resulted from failure to probe IT neurons over a sufficiently large 
range of stimulus effectiveness. In particular, because a very effective shape was always paired 
with a poorly or non-effective shape, there would have been little or no variance in the sum of 
the responses to individual objects (abscissa in Fig. 6C), making it difficult to reliably detect the 
average effect. Thus, we believe that the data of Missal et al. do not contradict the average ef-
fect, but that the systematic relationship between responses to multiple and single stimuli report-
ed in our study may not be revealed under more limited testing conditions. 
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Previous studies also appear to disagree on whether and how response suppression depends on 
the identity of the second, less-effective object. Miller et al. suggested that the amount of sup-
pression did not depend on that identity, while Missal et al. found the opposite for 50% of neu-
rons. Our results indicate that the answer depends not on the object identity per se, but mainly on 
the amount of activation produced by that object when present alone (with important caveats for 
completely non-effective objects, see below). That is, on average, objects that produce the same 
response when presented alone produce the same amount of response suppression when paired 
to an effective object (compare, for instance, the points at the far right of Fig. 5C). This does not 
rule out the possibility of shape-dependent deviations from the average model at the level of 
single neurons (see example in Fig. 5B). However, our results suggest that any such deviations 
would be averaged out by pooling responses of an even small population of IT neurons.

Our results are in good agreement with previous investigations of the responses to multiple stim-
uli in areas V2 and V4 (Reynolds et al., 1999). Reynolds et al. found that responses of V2 and V4 
neurons to pairs of simultaneously presented stimuli can be reliably modeled as a weighted sum 
of the responses produced by the two stimuli in isolation. They also found that, when the atten-
tion of the monkey was not directed to any stimulus in the pair, V2 and V4 neuronal population 
responses to stimulus pairs tended to follow an average model. Thus, we speculate that the same 
interaction mechanisms engaged by multiple visual stimuli may operate across different stages of 
the ventral visual stream to produce the observed averaging effect. 

This conclusion does not fit with the results of a recent study (Gawne and Martin, 2002), in 
which V4 neuronal responses to stimulus pairs were similar to the maximal response of the con-
stituent stimuli presented alone (CCI model). To explore this possibility in IT, we directly com-
pared the average model and the CCI model (Fig. 6), and we also specifically examined object 
pair conditions with constituent responses in the same range tested by Gawne and Martin. In 
both analyses we found a clear agreement of population data to the average model (Fig. 6C), and 
that only a small percentage of neurons (~10%) have responses consistent with the CCI model. 
Nevertheless, it is important to realize that the average model cannot hold for all non-effective 
objects, e.g. if distractor objects were presented far outside the RF or with attributes that do not 
penetrate the visual system. That is, depending on the non-effective distractor objects used, the 
response to object pairs could appear to follow the average model, the CCI model, or something 
in between. Thus the apparent inconsistency of the results of Gawne and Martin with previous 
investigations in V4 and with our study in IT may be due to a higher degree of stimulus separa-
tion (as pointed out by the authors) or the possibility that some non-effective stimuli may have 
been of too high spatial frequency at the presented eccentricity to penetrate the visual system.

Possible neural mechanisms underlying the average model 

The average model presented in this paper is only a descriptive “model” and leaves open the 
question of underlying mechanisms. Reynolds et al. (1999) proposed a mechanistic implemen-
tation of the “biased-competition model” (Desimone and Duncan, 1995) that can explain the 
weighted average of responses to constituent stimuli of a pair in V2 and V4. That model assumes 
that each object in a pair activates a separate population of afferents to the neuron and a normal-
ization factor proportional to the total synaptic input rescales the neuron’s response to the pair. 
A similar mechanism by which the output of each IT neuron is normalized by its total synaptic 
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drive could also explain the average effect we observed. The average effect could also arise if 
the output of each IT neuron was normalized by the total spiking activity of a broad population 
of IT cells – similar to a class of divisive normalization (or gain control) models proposed to 
explain nonlinear behavior of neurons in early visual stages (Heeger, 1992; Heeger et al., 1996; 
Carandini et al., 1997; Schwartz and Simoncelli, 2001; Cavanaugh et al., 2002) and response re-
scaling in area MT (Recanzone et al., 1997; Britten and Heuer, 1999; Heuer and Britten, 2002). 
It is also possible that feedforward mechanisms leading up to IT could produce the average rule. 
For example, a biologically constrained computational model that can produce key selectivity 
and invariance properties of IT neurons may also provide an explanation of the average effect 
in IT, even though it was not explicitly constructed for that purpose (Riesenhuber and Poggio, 
1999a, b; Poggio and Bizzi, 2004). Our finding that the initial response to object pairs is often 
higher than the average of individual responses (Fig. 8) is suggestive of an initial linear-like sum 
of synaptic drive, which is rescaled by a gain mechanism after a short delay. 

Relevance of the average rule for object representation 

Whatever mechanism underlies the average rule, it will be crucial to understand its implications 
for object representation in IT. First, it should be noted that the average effect does not change 
the preferred objects of IT neurons but rescales their tuning properties (see Fig. 5), consistent 
with the preservation of selectivity profiles of IT neurons found in studies using natural visual 
scenes (Sheinberg and Logothetis, 2001; Rolls et al., 2003). Nevertheless, the presence of a sec-
ond object clearly changes each neuron’s magnitude of response to its preferred object and thus, 
at first glance, suggests that the average effect will negatively impact recognition of the preferred 
object. However, while no impact of a second object on the response to a preferred object may 
seem to be a desirable property of individual IT neurons for robust object recognition (Rousselet 
et al., 2003, 2004), it is not obvious that such a property is necessary or useful when populations 
of IT neurons are considered. Indeed, IT neurons following the average rule carry information 
about the identity of both objects in a pair that is lost by the CCI rule. Therefore, a population of 
IT neurons following the average rule might allow the simultaneous representation of multiple 
visual objects.



62



63

Chapter 4:
Can Inferotemporal Cortex Simultaneously 
Represent Multiple Objects?

The primate inferotemporal (IT) cortex is widely believed to code for object identity in a 
manner that is largely invariant to object position. However, primates function in complex 
visual environments and must be able to recognize both the identity and position of objects, 
even when multiple objects are present.  While position invariance would seem desirable 
for representing isolated objects, it poses computational problems when viewing multiple 
objects, because it becomes unclear how to combine information about “what” object is 
present with information about “where” it is.  This problem is compounded by the fact 
that IT neurons show nonlinear, suppressive responses when multiple objects are present 
– suggesting that representation of one object may interfere with representation of another 
object when both are present. However, by studying IT responses to single and multiple ob-
jects, we found that populations of IT neurons contain significant information about both 
the identity and position of each object in parallel, and that this information requires only 
simple mechanisms to read out.   This shows that reasonably sized IT populations contain 
enough information to avoid representational interference when multiple objects are pres-
ent and suggests that imperfect invariance in single-unit responses may not be shortcom-
ings, but desirable properties for real-world recognition. 

Introduction

Visual information flows through two relatively distinct processing streams in cortex: a ventral 
“what” stream, thought to be more involved in determining object identity, and a dorsal “where” 
stream, thought to be more concerned with spatial aspects of vision such as motion and object 
position (Ungerleider and Mishkin, 1982).    In its most extreme conception, this segregation 
leads to one form of the infamous “binding problem,” in which information about object iden-
tity and object position must somehow be “bound” back together to correctly interpret a scene.  
While many solutions to this problem have been proposed (e.g. Treisman, 1999; von der Mals-
burg, 1999), relatively few authors have considered the possibility that the ventral stream might, 
by itself, be capable of simultaneously representing both object identity and position (Edelman 
and Intrator, 2003; Rousselet et al., 2004).  Here, we ask empirically if the culmination of the 
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primate ventral stream, the inferotemporal cortex (IT), is capable of simultaneously representing 
both “what” and “where” when multiple objects are present.   

The suitability of a neural representation for jointly representing both object identity and position 
of multiple objects depends on a number of factors.  The simplest and most obvious requirement 
for such a joint representation is the presence of position information in the first place.  Put an-
other way, position invariance cannot be absolute.  Existing electrophysiological data with single 
objects are consistent with this idea: although the position “invariance” properties of IT neurons 
are often highlighted (Gross et al., 1969), IT neuronal responses exhibit only a relative form of 
position invariance.  While each IT neuron responds best to its preferred objects at its preferred 
position in the visual field (its receptive field center, RF), the overall magnitude of response de-
creases as the preferred object is positioned at increasing distances from the RF center (Op de 
Beeck and Vogels, 2000; DiCarlo and Maunsell, 2003).   In other words, even though IT RFs can 
be quite large, they do not span the entire visual field and are not uniformly responsive across 
their extent, and thus they may convey substantial position information in addition to object 
identity information. 

However, even if individual IT neurons carry some position information about objects viewed 
in isolation (as in the above studies), this provides little insight into how IT represents multiple 
objects, or whether it can represent those objects in parallel.  Answering these questions requires 
an understanding of how IT neurons respond when multiple objects are present in their RFs, and 
the reality of IT responses to multiple objects is far from straightforward.  In essentially all stud-
ies of IT responses to multiple objects, responses to preferred objects are significantly altered by 
the presence of non-preferred objects (Miller et al., 1993; Missal et al., 1999; Rolls and Tovee, 
1995; Zoccolan et al., 2005) or complex backgrounds (Rolls et al., 2003; Sheinberg and Logothe-
tis, 2001). In the face of such non-linear interference effects, it is difficult to see clearly how IT 
could accurately represent multiple objects simultaneously. 

Nevertheless, it is extremely difficult to intuit the behavior of neuronal populations from the 
response properties of individual neurons.  Indeed, when considered at the population level, 
such nonlinear effects may not constitute “interference,” but may instead reflect useful coding 
schemes (Wainwright et al., 2002, see Discussion).    In either case, what IT cortex does and does 
not represent at the population level remains an important, open, empirical question.  The goal of 
the present study was to ask if the IT population carries a simultaneous representation of multiple 
objects and their positions.

Results

We recorded the responses of a population of monkey IT neurons (n=68) to a common set of vi-
sual stimuli, including single objects and combinations of those objects (pairs and triplets, Figure 
1).  We then used linear discriminant classifiers (Fisher, 1936) as a simple, unbiased means to ask 
what information is directly conveyed by the IT population.   Note that we are not simply asking 
if any object information is conveyed by the population (e.g. we are not simply assessing Shan-
non Information; Shannon, 1963; Tovee et al., 1993).  Instead, because each linear discriminant 
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does nothing more complex than perform a weighted sum (with a threshold; Gochin, 1994; Mc-
Culloch and Pitts, 1943), this method allowed us to specifically assess information in the IT pop-
ulation that could be directly extracted by simple mechanisms that roughly parallel mechanisms 
available to real neurons that receive inputs from IT (see Experimental Procedures).  In other 
words, the amount of information that can be extracted using this method is a measure of infor-
mation that is carried in the IT population in a format readily available to downstream neurons. 

Since IT is widely thought to be 
involved in the recognition of ob-
ject identity irrespective of retinal 
position (e.g. Schwartz et al., 1983; 
Logothetis et al., 1995; Ito et al., 
1995; Op de Beeck and Vogels, 
2000), we first built linear discrimi-
nants to determine how well the IT 
population can report object identity, 
regardless of position.   We began 
by examining the simple situation 
in which each image contained just 
one object (three possible objects, 
three possible positions within 2º of 
the center of gaze; see Experimental 
Procedures for details).  We found 
that the IT population could support 
this task well above chance  (mean: 
69.1%; p << 10-6; chance = 50%; 
for a discussion of chance levels and 
p-values, see the Experimental Pro-
cedures section).  This performance 
(and all the performance results list-
ed in this paper) is that which could 
be achieved using the IT population 
spike response data on a single trial 
(100 ms image presentation, 100 
ms of response data), and those data 
were never previously seen by the 
linear discriminant classifier.   Be-
yond providing quantification, this 
result is perhaps not surprising given 
existing data showing position toler-
ance of IT neuronal selectivity with 
isolated objects (Schwartz et al., 
1983; Logothetis et al., 1995; Ito et 
al., 1995; Op de Beeck and Vogels, 
2000). 
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Figure 1. a) Position-invariant recognition in clutter.  
Three objects (star, triangle, and cross) were shown 
in isolation at each of three positions in the visual field 
(center of gaze, 2o above and below the center of 
gaze).  The same three objects were also presented 
in all pair-wise and triplet-wise combinations using the 
same three positions (see Supplementary Methods). We 
built linear dis-criminant classifiers to ask the IT popula-
tion “questions” about the identity of the presented ob-
ject(s) An example of one such question is shown, along 
with some of the visual conditions that served as posi-
tive and negative examples (“yes” or “no”).  We asked 
this particular linear dis-criminant to determine if the star 
object was present in any position, while ignoring the 
presence of other objects. b) Position-specific recogni-
tion in clutter. One example position-specific ques-tion is 
shown, along with several positive and negative exam-
ples.  In this case, the classifier was asked to determine 
if a star was present at the top position, irrespective of 
the presence of objects at other positions.
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Next, we considered a more complex situation in which we also included images containing 
multiple objects. Specifically, the image set included images of single objects (above), as well as 
images of two or three objects (see Fig. 1). Again, we built linear discriminants to ask if the IT 
population can report object identity, regardless of object position.  This is exactly the same as 
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Figure 2. a) Object recognition performance in clutter.  Average cross-validated performance is shown 
for the recorded population of neurons (n=68) for both position-invariant classification questions (blue 
bar; see Figure 1a) and position-specific questions (red bar; see Figure 1b).  In both cases, perfor-
mance is highly significantly above chance (50%, see Experimental Procedures).  b) Av-erage perfor-
mance as a function of synthesized population size (see Experimental Procedures) for position-invari-
ant classification questions (blue line) and position-specific questions (red line).  c) A detailed break-
down of performance for a synthesized population of 680 neurons (population size corresponds to the 
dotted line in Figure 2b).  Blue bars represent position-invariant questions (of the sort posed in Figure 
1a); red bars represent position-specific questions (of the sort posed in Figure 1b).
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the previous test except that it now assesses performance in the face of other “distractor” objects 
(i.e. multiple object conditions, see Fig. 1).  Because we have recently shown that the presence 
of such multiple objects strongly suppresses the responses of these individual IT neurons (Zoc-
colan et al., 2005; see Methods), one might predict poor IT population performance in this test. 
However, we found performance well above chance (mean: 68.9%; p << 10-6; Fig. 2a), and only 
slightly degraded from that observed with single objects (c.f. 69.1% above).  This shows that the 
IT population contains information to support position-invariant object identification, even in the 
face of visual clutter.

Finally, to directly address the question of representing multiple objects simultaneously, we 
asked if the IT population could report object identity at multiple positions in parallel.  To do 
this, we used the same set of images (single and multiple object conditions) and response data, 
and we built linear discriminants to perform the same object identification task at each individual 
position (see Figure 2).  At each of the three positions tested, these classifiers performed as well 
as, or better than, the position-invariant classifiers (mean: 73.6%, above chance at p << 10 -6; 
Fig. 2a), indicating that it is possible to determine stimulus identities at particular positions from 
IT population responses at least as well as it is to extract identity per se.  This means that down-
stream neurons could, in parallel, reliably report the identity and position of each object in the 
image (at least up to the limited clutter conditions tested here, see Discussion). 

One advantage of the quantitative approach we have take here is that is allows us to determine 
the amount of directly available information for such tasks under a number of different assump-
tions about how the representation is “read-out” by downstream neurons. In particular, it is well 
known that population size can strongly influence the reliability of signals and thus increase 
the total amount of conveyed information.  It is also known that cortical neurons can receive a 
number of synaptic inputs (~10,000; Braitenberg, 1978) that is much larger than the number of 
IT neurons that can reasonably be recorded with current techniques.   Thus, we used the linear 
discriminant approach to characterize how the amount of directly available information would 
scale with increasing numbers of IT neurons.  To do this, we synthesized larger populations of 
Poisson-spiking neurons from the response profiles of the measured IT population.  This proce-
dure does not assume any stimulus selectivity that was not already in the population (because all 
synthesized neurons are copies of one of the original 68 neurons), but it does allow for moderate 
amounts of pooling to overcome the high trial-to-trial variability of cortical neurons (Shadlen and 
Newsome, 1998) thus increasing the information that can be extracted from the IT population on 
a single trial (see Experimental Procedures for details). 

Figure 2b shows the average performance as a function of population size for classifiers built to 
determine identity irrespective of position (blue line; “position-invariant” recognition), and for 
classifiers built to determine identity at particular positions (red line; “position-specific” recogni-
tion).  Performance in both cases scales at a very similar rate as the population size grows.  No-
tably, the absolute performance levels are very high for population sizes that are similar to those 
postulated to support visual discrimination tasks in other visual areas (Shadlen et al., 1996; >80% 
correct for a population of several hundred neurons).  Figure 2c shows a detailed breakdown of 
performance across individual classification problems for a reasonably sized simulated popula-
tion (10 simulated neurons for each recorded neuron; 680 simulated neurons total).  For both 
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the position-invariant task (blue bars) and the position-specific task (red bars), each object was 
approximately equally well detected.  Consistent with the fovea bias of IT neuronal RFs (Op de 
Beeck and Vogels, 2000), a slight improvement in object identification performance was found 
for the position-specific task at the center of gaze position (0 deg). 

Discussion

In sum, these results show that even a small IT population simultaneously represents the identity 
and position of multiple objects in a format that is directly accessible to downstream neurons (up 
to three objects and three positions tested here).  More generally, these results show that the same 
IT population is capable of directly supporting several tasks:  position-invariant identification of 
isolated objects, position-invariant identification of objects when multiple objects are present, 
and object identification at each position when multiple objects are present.   

At a quantitative level, the performance in each task as a function of population size shows that 
highly reliable performance on these tasks is achieved for population sizes that are similar to 
those postulated to support visual discrimination tasks in other visual areas (Shadlen et al., 1996).  
Indeed, this level of performance is likely a lower bound since we did explicitly search for selec-
tive neurons, and the full IT population likely contains a greater diversity of response profiles, 
rather than duplications of the same response profiles, which would tend to increase the amount 
of information available in the population (although correlated noise in neuronal responses can 
limit the effect of increasing population size; Zohary et al., 1994).

We have shown here that simultaneous readout of several object identities can be achieved with 
only brief image presentations (~100 ms) and simple weighted sums of mean firing rates over 
a short time interval (100 ms) across a modestly-sized population of IT neurons under passive 
viewing conditions.  Our results cannot rule out a role for serial attention, synchronous firing, or 
other special mechanisms in disambiguating several, simultaneously present objects, nor do these 
results prove that the IT information we have exploited is actually used by downstream neurons. 
However, these results show that, without invoking any special mechanism, the IT population 
itself contains enough information to represent multiple object identities and positions in parallel 
(i.e. without incurring catastrophic representational interference). 

While we show here that the IT population reliably represents several objects near the fovea in 
parallel, previous work suggests that attentional mechanisms can enhance such representations 
(e.g. Treisman and Schmidt, 1982).  Furthermore, psychophysical studies (e.g. Posner et al., 
1980) and IT physiological studies (Sheinberg and Logothetis, 2001; Rolls et al., 2003) suggest 
that attention and eye movements are required to maintain reliable IT representations for more 
eccentric objects, especially as scene complexity increases (e.g., as the number of objects in-
creases). 

More generally, our results are a reminder that even simple rate codes in populations of neurons 
can convey information that is not readily apparent from the responses of single units (Kohn and 
Movshon, 2004; Riesenhuber and Poggio, 1999).  In particular, while examination of individual 
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IT neurons might suggest that their relative invariance to position (Gross et al., 1969; Ito et al., 
1995) and relative lack of invariance to clutter (Miller et al., 1993; Missal et al., 1999; Rolls and 
Tovee, 1995; Zoccolan et al., 2005) might pose a problem in the representation of multiple ob-
jects, direct examination of population responses shows that no such problem exists.  Interesting-
ly, our results show that it is possible to read out the identity and position of each object at a level 
of performance that is comparable to the read-out of identity invariant to position (see Fig. 2).  
This finding indicates that this extra position-specific information is available at no extra “cost” 
relative to position-invariant recognition (i.e. the task that IT is traditionally thought to support).  
Thus, the incomplete position and clutter invariance observed in individual IT neurons may not 
represent a representational failure or shortcoming.  Instead, it may reflect a balance at the popu-
lation-level to support multiple task goals, including the ability to extract object identity despite 
image variation (e.g., due to position and object clutter), as well as the ability to simultaneously 
represent the identity and position of multiple objects.  The factors and constraints that enter into 
such a balance could yield important insights into the neural coding of object information in IT.

Methods

Single Unit Recording.  We recorded from 68 well-isolated neurons in anterior IT in two rhe-
sus macaque monkeys (35 cells in monkey 1 and 33 in monkey 2).  Surgical procedures, eye 
monitoring, and recording methods were done using standard techniques (DiCarlo and Maunsell, 
2000), and were performed in accordance with the MIT Committee on Animal Care. 

Stimuli and Tasks.  Visual stimulus displays consisted of combinations of three possible object 
forms (star, triangle and cross shapes; white 57 Cd/m2 on a gray background of 27 Cd/m2) that 
could appear in three possible locations (at the center of gaze, 2º above, and 2º below, see Fig-
ure 1).  All combinations of a) one object in each possible position (9 stimulus displays) b) two 
objects (without duplicates, 18 stimulus displays), and c) three objects (with no object repeated 
in the same display, 6 stimulus displays) were presented to the passively viewing monkey (33 
stimulus displays total).  On each behavioral trial, monkeys were required to fixate a central point 
while five stimulus displays were presented in pseudorandom order. Each stimulus display was 
presented for 100 ms followed by an inter-stimulus interval of 100 ms. This rate of five stimulus 
displays per second is roughly comparable to the timing of spontaneously generated saccades 
during recognition tasks (DiCarlo and Maunsell, 2000), and well within the timeframe that al-
lows accurate object recognition (Potter, 1976).  Both monkeys had been previously trained to 
perform an identification task with the three objects appearing randomly interleaved in each of 
the three positions (in isolation), and both monkeys achieved greater than 90% accuracy in this 
task.  Monkeys performed this identification task while we advanced the electrode, and all iso-
lated neurons that were responsive during this task (t-test; p < 0.05) were further studied with the 
33 stimulus displays under the fixation conditions described above. Between 10 and 30 repeti-
tions of each stimulus display were presented while recording from each IT neuron.

Neuronal responses. For each neuron, we computed spike counts over the time window from 
100 to 200 ms post-stimulus onset for each presentation of each stimulus display (33 conditions 
total).  The start of this time window was based on the well-known latency of IT neurons (Baylis 
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and Rolls, 1987).  The end of the window is well below the reaction times of the monkeys when 
performing an identification task with these objects (DiCarlo and Maunsell, 2000), and is thus 
consistent with an integration window that could, in principle, be used by downstream neurons to 
extract object information.    

Neuronal populations. By using the neuronal data to create synthesized IT neuronal popula-
tions with the same response profiles, we were able to explore the ability of a range of reasonably 
sized IT populations to support the various recognition tasks. To synthesize such populations, 
mean spike counts were computed for each of the 33 stimulus displays (described above), and 
these mean rates were used as the λ (rate) parameter of a Poisson random number generator to 
generate synthetic spike counts for 10 repetitions of each stimulus display.  The spike counts of 
cortical neurons have been previously demonstrated in numerous contexts to be well approxi-
mated by Poisson statistics (Softky and Koch, 1992), and the response counts of the neuronal 
population measured here have a variance / mean ratio (Fano factor) close to unity (mean = 
1.07), consistent with Poisson statistics.  In all synthesized populations larger than the original 
set of recorded neurons (e.g. Figure 2b & c), multiple copies of each neuron were generated from 
the response profiles of each of the original recorded neurons.  Because this procedure only uses 
response profiles from the recorded neurons, it cannot create stimulus selectivity that was not 
empirically observed, but it effectively minimizes the high trial-to-trial variability of cortical 
neurons in a manner that could be accomplished by downstream neurons integrating over larger 
population sizes (Shadlen and Newsome, 1998).

Performance shown in Figure 2c is based on a synthesized population with ten duplicates of each 
the original 68 neurons (i.e. a population of 680 neurons).  Comparable performance levels could 
be achieved with smaller populations by only including neurons that showed significant selec-
tivity for the objects in isolation at a level of p < 0.05 (1-way ANOVA, 29 neurons).  The 290-
neuron population obtained in this way achieved 78.8% mean accuracy in the position-invariant 
classification problems (blue bars in Figure 2), and 85.1% mean accuracy in the position-specific 
classification problems (red bars in Figure 2).  In both cases this represents a performance re-
duction of less than 5% with the smaller population.  Other, more complicated neuron selection 
procedures (e.g. not including neurons that provide redundant information) could possibly reduce 
the population size even further while maintaining high levels of performance.

Building linear discriminant classifiers.  Across each IT population data set (actual or synthe-
sized), the spike counts from each presentation of each stimulus display were assembled into t 
vectors of length n, where t is the number of trials used in the analysis (10 repetitions x 33 condi-
tions), and n is the number of neurons.  We analyzed this IT population response data set using 
Fisher linear discriminant analysis (Fisher, 1936).  In its basic form, this technique takes labeled 
multivariate data points (here, t points in a n-dimensional space) belonging to two classes (e.g. 
“star present in top position” and “star not present in top position”) and finds a hyperplane deci-
sion boundary that best separates the classes by maximizing the ratio of the difference between 
class means to the within-class variance. In practice, this involves first normalizing the input 
variables to have an identity within-class covariance matrix, and then finding the eigenvector 
corresponding to the largest eigenvalue of the between-class covariance matrix.  A detailed dis-
cussion of linear discriminants can be found in Duda, Hart and Stork (2001).  Although variants 
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on linear discriminant classification exist that can take into account the prior probability of a 
given label occurring, we explicitly did not use such variants to avoid improved guessing per-
formance based purely on knowledge of the distribution of labels in the test set.  We determined 
classification performance with respect to each particular question (e.g. Fig. 1) from each IT pop-
ulation data set using a leave-one-out cross-validation method in which one datum (i.e. one of the 
t points) is removed from the data set, the rest of the data is use to obtain the classifier boundary, 
and the removed point is tested for accurate classification.  This operation is repeated for each of 
the t data and the overall performance is taken as the percentage of correct classifications across 
all of these tests.  Standard errors of the mean performance (as in Figure 2) were computed by 
bootstrap resampling of these t cross-validation tests.

Since neurons were not recorded simultaneously, any trial-by-trial covariance structure between 
the dimensions of these vectors (i.e. between neurons) is meaningless and could lead to over-fit-
ting and reduced classifier performance.  To remove these spurious covariances (i.e. to “whiten” 
the covariance matrix), many data vectors were generated by randomly drawing which trials 
from each neuron went together into each vector (i.e. any stimulus display repetition from one 
neuron could “go with” any particular stimulus display repetition from another neuron), and re-
peating this procedure 10 times.  Importantly, this procedure was performed after one to-be-clas-
sified data vector was removed for cross validation, maintaining the absolute independence of the 
test and training sets (i.e. there was no data in common between the test and training sets).

Object identification tasks.  All problems were framed as simple two-class classification prob-
lems, in which a single linear discriminant (described above) was asked to report if a particular 
object was present or not, either in any position (blue bars in Figure 2), or just in one position, 
ignoring the presence or absence of objects in other positions (red bars in Figure 2).  Within this 
formulation, classification consists simply of taking a weighted sum of input responses, and ap-
plying a threshold.  As such, one could think of each classifier (and each bar in Figure 2c) as 
corresponding to a hypothetical downstream neuron, either hard-wired to perform a particular 
weighted sum, or perhaps dynamically set to this weighting by modulatory mechanisms.  High 
performance across conditions where the target could appear in any position (blue bars in Figure 
2a & c) and where only one position was relevant (red bars in Figure 2a & c) indicates that the 
same exact IT population can support the identity-extraction problem over a range of differently 
sized spatial regions. 

Chance Performance. Because all classification problems undertaken in this study were two-
class problems, “chance” (i.e. guessing) performance was 50% in all cases.  Significance values 
were computed with respect to this chance level using the cumulative distribution function of 
a binomial distribution, which dictates analytically the probability of attaining empirically-ob-
served performance levels, or greater, by random guessing.  Given the large numbers of trials 
that go into each classification problem (10 repetitions x 33 stimulus displays) and the high 
levels of performance overall, the p-values associated with classifier performance often became 
infinitesimally small (i.e. it is extremely unlikely to achieve such high performance by guessing).  
Values well below p = 10-6 are simply reported as p << 10-6. 

Since performance in determining which object was present in the center position was high, and 
because IT neurons typically respond best to objects at the center of gaze8, we wondered how 
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chance levels for the non-central positions would change if we simply took the identity of the 
central object as given.  Since we did not repeat the same object twice in one display, knowing 
that a given object was present in the central position would indicate that that object was not in 
the top or bottom position.  These assumptions lead to a slight elevation of the chance level to 
60.7%.  However, the observed performances of 85.2% and 87.3% in the top and bottom posi-
tions, respectively (Figure 2c) are well above this level (p << 10-6), indicating that the population 
responses contain highly significant information about which objects are present in all three loca-
tions. 
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Chapter 5:
Why is “Natural” Object Recognition Hard?

The construction of artificial vision systems and the study of biological vision are natu-
rally intertwined, representing simultaneous efforts to forward and reverse engineer sys-
tems with similar goals. In recent years, large databases of “natural” images have become 
popular in the study of both biological and artificial vision, and some in the machine vision 
community have claimed impressive recognition performance using such image sets. How-
ever, we demonstrate here the danger inherent in the use of such image sets, showing that 
a simple V1-like model can outperform existing state-of-the-art object recognition systems 
on a popular standard 101-category image database, while at the same time failing on a 
“simpler” two-category image set specially constructed to better span the range of variation 
observed in the real world. In addition to tempering some of the claims of progress from the 
machine vision community, these results highlight the importance of real world variation 
and the difficulties in using “natural” images. We hope that these results ultimately point to 
new paths forward in the study of vision.

Visual object recognition is an extremely difficult computational problem. Any given object in 
the world can cast an essentially infinite number of different 2D images onto the retina as the ob-
ject’s position, size, pose, and lighting vary relative to the viewer. A recognition system, whether 
biological or artificial, must be able to extract the object’s identity in spite of this variation.  
Artificial object recognition approaches seek to instantiate such recognition abilities in a com-
putational system, sometimes with biological inspiration, sometimes without (Serre et al 2007, 
Lowe 2004,  Zhang et al. 2006, Weber et al. 2000). Such computational approaches are critically 
important to understanding how the brain solves object recognition, because they can provide 
experimentally testable hypotheses and because instantiation of a working recognition system 
represents a particularly effective measure of success in understanding object recognition.

A major challenge in both biological and artificial object recognition is assessing performance 
– in part due to poor definition of what the recognition problem is.  Ideally, artificial systems 
should be able to do what our own visual systems can.  In practice, available computational pow-
er limits the number of images that can be tested, and the creation of large, labeled image exem-
plars can be extremely labor intensive.   Because we are still at an early stage of understanding, 
we would like to tackle problems that provide “evolutionary” force, in that they are challenging 
in the right way, and can be made progressively more difficult.  Partial success with a carefully 
constructed “easy” problem can often lead to more insight than complete failure on a problem 
that is far too difficult.

In recent years, “natural” images have become popular in the study of both biological and artifi-
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cial vision (Gallant et al. 1998, Felsen and Dan 2005, Reinagel 2001, Bell and Sejnowski 1997, 
Simoncelli and Olshausen 2001).  In artificial vision, the Caltech101 image set has a emerged 
as a “gold standard” for object recognition performance assessment (Li et al. 2004; http://www.
vision.caltech.edu/Image_Datasets/Caltech101).  The set consists of 101 classes of objects (e.g. 
planes, cars, faces, flamingos, etc. see Figure 1a) plus an additional “background” category (for 
102 categories total).  While a number of specific concerns have been raised with this set (see 
Ponce et al 2006 for more details), it is still widely used.  The logic of the Caltech101 set (and 
sets like it; e.g. Caltech256, http://www.vision.caltech.edu/Image_Datasets/Caltech256) is that 
the sheer number of categories and the diversity of those images place a high bar for object rec-
ognition systems and require them to solve the core computational crux of the recognition prob-
lem.  Because there are more than 100 categories, theoretical chance performance should be less 
than 1%.  In recent years, several groups have reported what appears to be impressively high per-
formance on this test – better than 60% correct across 102 categories (Wang et al. 2006, Mutch 
and Lowe 2006, Zhang et al. 2006, Lazbnik et al. 2006, Grauman and Darrell 2006).

Figure 1
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Figure 1. Performance of a simple V1-like model relative to current “state-of-the-art” objects 
recognition approaches on a standard image set. a) Examples images from the Caltech101 
set. b) Performance results from five computational object recognition systems on the standard 
Caltech101 image set are shown in gray ([1] Wang et al. 2006, [2] Grauman and Darrell 2005, 
[3] Mutch and Lowe 2006, [4] Lazebnik et al. 2006, [5] Zhang et al. 2006).  In this panel, fifteen 
training examples were used to train each system.  Since chance performance on this 100+-
way task should be less than 1%, performance values of greater than 40-50% have been taken 
as signs of great progress.  The performance of our simple V1-like model, with and without ad-
ditional “ad hoc” features (see Supplementary Methods) is shown in black.  In spite of the fact 
that these models are extremely simple and lack any invariance-building mechanisms, they do 
as well as, or better than, the other object recognition systems from the literature. c) This panel 
shows the same performance values, but when thirty training examples were used, instead of 
fifteen.
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However, it is not clear to what extent the Caltech101 test engages the core problem of object 
recognition.  While the set certainly contains a large number of images (9144 images), the varia-
tion between and within classes is not controlled, and object backgrounds strongly covary with 
object category. The majority of images are also “composed” photographs, that is, a human de-
cided how the shot should be framed, and thus the placement of objects within the image is not 
random and the set does not properly reflect the variation found in the real world.  Furthermore, 
if the Caltech101 object recognition task is hard, it is not easy to know what makes it is hard 
– different kinds of variation (view, lighting, exemplar, etc.) are all inextricably mixed together.  
This is not just a problem with the Caltech101 set, it is also a problem that is endemic to other 
uncontrolled “natural” image sets (e.g. www.pascal-network.org/challenges/VOC).

To explore this issue, we constructed a very basic V1 simple cell-like recognition “model” (see 
Supplementary Methods for details) and tested it on the Caltech101 object recognition task, us-
ing the standard procedures published in the literature (Grauman and Darrell, 2006).  To a neu-
roscientist, this model is a “null” model – it is arguably the simplest, most obvious starting point 
for describing the visual system.  Importantly, it contains no mechanisms that could produce 
invariance, nor does it contain a particularly sophisticated representation of shape.  It is a “straw-
man” model, and it should not be good for performing real-world object recognition tasks. 

However, this simple V1-like model not only performs well on the “gold-standard” Caltech101 
task, it outperforms all reported state-of-the-art computational efforts (Zhang et al 2006, La-
zebnik et al 2006, Mutch and Lowe 2006, Wang et al 2006, Grauman and Darrell 2006) – our 
V1-like model achieves 61% and 67% correct with 15 and 30 training examples, respectively.  
Figure 1 shows the cross-validated performance of two versions of this simple model: one where 
only the model outputs (normalized, thresholded Gabor functions) are fed into a standard linear 
classifier, and one where some additional ad-hoc features are also used (e.g. local feature inten-
sity histograms; see Supplementary Methods for details).  In both cases, performance is com-
parable to, or better than, the current best reported performance in the literature.  Portable code 
for building and evaluating this model is available online (http://web.mit.edu/dicarlo-lab/v1s/).  
Our claim from this result is not that our V1-like “model” is a good theory of recognition, or 
that  Caltech101 and other such sets were not an important early step in establishing performance 
benchmarks.  Instead, these results underscore that we must keep a clear understanding of why 
the problem is hard (Ullman 2000, Edelman 1999, Riesenhuber and Poggio 1999), that we must 
build performance tests that reflect that understanding, and that we should not assume that “natu-
ral” images automatically accomplish this goal. 

To point a way forward, we constructed a series of “simpler” two-category image sets, consist-
ing of rendered images of plane and car objects.   By the logic of the Caltech101 test, this task 
should be substantially easier – there are only two object categories (rather than 101), and only 
a handful of specific objects per category (Figure 2a).  In these sets, however, we explicitly and 
parametrically introduced real-world variation in the image that each object produced.  In spite 
of the vastly smaller number of categories that the system was required to identify, the problem 
proved substantially harder for the V1-like “model”, exactly as one would expect for an incom-
plete model of object recognition.   Figure 2 shows how performance rapidly degrades toward 
chance-level as even modest amounts real-world object image variation are systematically intro-
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Figure 2. The same simple V1-like model that performed well in Figure 1, fails badly on a “simple” 
problem that requires tolerance to image variation.  a) We used 3D models of cars and planes to 
generate a image sets for performing a cars-vs.-planes two-category test.  By using 3D models, 
we were able to parametrically control the amount of view variation that the system was required 
to tolerate in order to perform the task.  The models were rendered using raytracing software 
(POV-Ray), and were placed on a either a white noise background (shown here), a 1/f back-
ground, or a natural background (see Supplementary Methods).   b) As the amount of variation 
in view parameters was increased (x-axis), performance drops off, eventually reaching chance 
level (50%).  This result highlights a fundamental disconnect in the way object recognition sets are 
tested.  By the logic of the Caltech101 set, this task should be easy, because it has so few cat-
egories (just two categories, as compared to the 100+ in the Caltech101).  However, this V1-like 
model fails badly with this “easy” set, in spite of high performance with the supposedly more dif-
ficult “natural” image set.
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duced.  This result emphasizes that object recognition is hard, not because images are “natural” 
or “complex”, but because each object can produce a very wide range of retinal images. Indeed 
this complexity can be a double-edged sword: although the addition of complex, natural back-
grounds can make the problem more challenging, it can also make the problem easier (e.g. if the 
backgrounds highly covary with the object identity). 

We argue that these results suggest that a new direction is needed to guide the development of 
object recognition systems.  The issues cut deeper than simple performance evaluation – this is a 
question of how we think about the problem of object recognition and why it is hard.  Large un-
controlled “natural” image sets may, on their face, seem to provide the best way to test real-world 
performance.   However, as shown above, this is far from guaranteed.  This question is also not 
simply an academic concern – great effort is now being expended to test models against a new, 
larger  object recognition image sets (as if the smaller set has  been solved), the “Caltech256.”  
However, as with its predecessor, this new set fails to reflect real-world variation, and our “null” 
V1 model also performs well above chance (24% accuracy with 15 training examples to dis-
criminate 257 categories, chance is 0.39%), and competitive with early published performance 
estimates on this new set (see Supplementary Figure 2).

How should we test progress in object recognition?  One approach would be to a generate very 
large database of “natural” images, like the Caltech set, but captured in an unbiased way (i.e. 
with great care taken to avoid the implicit biases that occur in framing a snapshot).  Done cor-
rectly, this approach has the advantage of directly representing the true problem domain.  How-
ever, annotating such an image set is extremely labor intensive (but see the LabelMe project, 
Russell et al  2005).  More importantly, a set that truly reflects all real-world variation may not 
provide evolutionary force to guide improvement in recognition models.  That is, if the problem 
is too hard, it is not easy to construct a reduced version that still engages the core problem of ob-
ject recognition. 

Another approach, an extension of the one taken here, would be to use synthetic images, where 
ground truth can be known by design.  In addition to obviating labor-intensive and error-prone 
labeling procedures, such an approach has the advantage that it can be parametrically made more 
difficult as needed (e.g. when a given model has achieved the ability to tolerate a certain amount 
of variation, a new instantiation of the test set with greater variation can be generated).
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Supplementary Methods

A V1-like recognition system

Area V1 is the first stage of cortical processing of visual information and is the gateway of subse-
quent processing stages.  We built a very basic representation inspired by known properties of V1 
“simple” cells (a subpopulation of  V1 cells).  The responses of these cells to visual stimuli are 
well described by a linear filter, resembling a Gabor wavelet (<<ref hubel & wiesel >>), with a 
nonlinear output function (threshold and saturation) and some local normalization (analogous to 
“contrast gain control”).

Operationally, our V1-like system consisted of the following processing steps:

Image pre-processing. First we converted the input image to grayscale and resized by bicubic 
interpolation the largest edge to a fixed size (150 pixels for Caltech datasets) while preserving its 
aspect ratio. The mean was subtracted from the resulting two-dimensional matrix and we divided 
it by its standard deviation (sphering). The resulting matrix had zero mean, unit variance and a 
size of HxW.

Local input normalization. For each pixel in the input matrix we subtracted the mean of a fixed 
window containing the pixel and its neighbor and we divided by the euclidean norm of the result-
ing vector if above a given threshold.

Linear filtering with a set of Gabor filters. We convolve the normalized image with a set of N 
two-dimensional Gabor filters with a fixed size, 16 orientations equally spaced around the clock 
and 6 spatial frequencies (1/2, 1/3, 1/4, 1/6, 1/11, 1/18) for a total of N=96 filters. Each filter has 
zero-mean and euclidean norm of one. The result is a three-dimensional matrix of size HxWxN 
where each two-dimensional slice is the output of each filter.  To speed this step, the Gabor filters 
were decomposed via singular value decomposition into a form suitable for use in a separable 
convolution (this is possible because the Gabor filters are of low rank).  The decomposed filters 
were constructed retain at least 90% of the variation in the filter.

Non-linear activation. The output of each gabor is passed through a standard output non-linearity 
corresponding to activation threshold and response saturation.  Specifically all negative values of 
the three-dimensional matrix are set to 0 and all values greater than 1 are set to 1.

Output feature normalization. Finally, the output images (one per Gabor filter) were once again 
locally normalized as the inputs had been.

Classification

To test the utility of our V1-like representation for performing object recognition tasks, we per-
formed a standard cross-validated classification procedure on the high-dimensional outputs of the 
model.
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Dimensionality Reduction.  To speed computation and improve classification performance, we 
reduced the dimensionality of the model output prior to classification.  The output of this previ-
ous step was a stack of filtered images, one per Gabor filter.  Because the dimensionality of this 
stack can be very high (up to 2,160,000 dimensions), standard dimensionality reduction tech-
niques were used to prepare the data for classification.  The output image stacks were low-pass 
filtered and down-sampled to a smaller size (30 by 30), such that the dimensionality was reduced 
to 86,400.  The resulting data dimensionality was further reduced by PCA, keeping as many di-
mensions as there were data points in the training set.  For the Caltech101 experiments (e.g. Fig-
ure 1) this dimensionality was 1530.

Additional “Ad Hoc” Features.  To further explore the utility of this V1-like representation, we 
generated some additional easy-to-obtain features from our representation and concatenated 
these to the final feature vector, prior to PCA dimensionality reduction.   These features included: 
raw grayscale input images (downsampled to 100x100 by bicubic interpolation; 10,000 features), 
color histograms (255 bins per color; 765 features), and local model output histograms  (one per 
quadrant of the image) for each intermediate stage of the model: pre-normalization, post-normal-
ization, and post downsampling (roughly 30,000 features total).

Throughout the text, results from the system containing these extra “ad hoc” features are reported 
separately from those obtained with the system that did not have these extra features.  These ex-
tra features were added to demonstrate what was possible using additional obvious, “cheap” (but 
still fair) tricks that improve performance without incurring additional conceptual complexity.

Training. Training and test images were carefully separated to ensure proper cross-valida-
tion.  Fifteen training examples, and thirty testing examples were drawn from the full image 
set.  Sphering parameters and PCA eigenvectors were computed from the training data, and the 
dimensionality-reduced training data were used to train a linear support vector machine (SVM) 
using libsvm-2.82 (Chang and Lin 2001).  A one-versus-all approach was used to generate the 
multi-class SVM classifier.  The testing data were then sphered using parameters determined 
from the training data and were projected onto the eigenvectors computed from the training data.  
The trained SVM was then used to classify each of the testing examples.

Testing protocol. Training and testing of the classifier uses a fixed number of examples when 
possible. The score reported is the average performance from 10 random splits of training and 
testing sets.  Fifteen test images were classified per category, except in categories where there 
were not enough images available (in which case the minimum available was used).  Since the 
Caltech 101 contains a different number of images for each category, care must be taken to en-
sure that per-category performance was normalized by the number of test examples considered 
in each category.  This is a particular problem for the Caltech 101 set, because some of the larg-
est categories are also empirically the easiest.  For the performance values reported in this paper, 
categories were normalized such that the contribution of each category was equivalent.  Results 
obtained with just 15 training examples and 15 testing examples (such that no normalization is 
required, because all categories have enough images) were appreciably similar to the results re-
ported here.
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Supplementary Figures

Supplemental Figure 1
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Supplemental Figure 1.  Backgrounds used. Model performance for our “simple” 
two class image set was assessed with the 3D models rendered onto a variety of 
backgrounds – white noise, phase-scrambled scene images, and intact scene im-
ages.  Performance with each of these types of background is shown in Figure 2.

1 V1-like+

0

20

40

60

80

100

early performance report

Supplemental Figure 3

Caltech 256

Supplemental Figure 2. Performance on the Caltech 256. [1] Griffin, Holub, and 
Perona 2007.
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Supplemental Figure 3.  Performance fall-off for increasing numbers of object categories. We previ-
ously showed that relatively modest amounts of image transformation push the performance of our 
simple V1-like model down to chance.  Here we show that this fall-off becomes steeper as more 
categories-to-be-discriminated are added.  a) Four categories of objects (cars, planes, boats, and 
animals) were used to measure performance when 2, 3 or 4 categories are considered  b)  Average 
identification performance (“is object category X present or not”) is plotted as a function of view vari-
ation and number of object categories to be discriminated.  Chance performance is 50% for all three 
lines, because average one-vs-all performance is shown here, not n-way recognition performance 
(i.e. “which object is present”).  These plots show that performance falls to chance faster as the sys-
tem is required to deal with more object categories.
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