
WORKING PAPER 165

MINI-ROBOT GROUP USER'S GUIDE

PART 1: The 11/45 SYSTEM

by

Meyer A. Billmers

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

June, 1978

Abstract

This USER'S GUIDE is in two parts. Part 1 describes the facilities of the

mini-robot group 11/45 and the software available to persons using those

facilities. It is intended for those writing their own programs to be run

on the 11/45 system.

A.I. Laboratory Working Papers are produced for internal circulation, and

may contain information that is, for example, too preliminary or too
detailed for formal publication. Although some will be given a limited

external distribution, it is not intended that they should be considered

papers to which reference can be made in the literature.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N00014-75-C-0643.

fSst INSTMITUn E OF TECHNOLOGy 197

PAGE 2-

TABLE OF CONTENTS

1.0 Introduction 5

1.1 General description of system 5

1.2 Operating system references 7

2.0 The mini-robot operating system 8

2.1 Logging on: LO 8

2.2 Logging on: LOG and LOGIN 8

2.3 Conventions for prompt characters 9
2.4 The escape character: ^C vs. ^D 9
2.5 ":" commands 10

2.6 Device names 11

3.0 The GT40 12

3.1 Loading the GT40 12
3.2 DISP 14

3.21 Console mode 14

3.22 Datapoint mode 16

3.23 Real-time edit mode 17

3.24 Switch-selectable features 17

3.3 PICT 18

3.4 PLOT and PLTPKG 19

3.5 Display programming support 31

3.51 GTMAC 31

3.52 GTROS 33

3.53 P 34

4.0 11/45 System programs 38

4.1 DHTIO

PAGE 3

4.11 Using DHTIO 38

4.12 The command interpreter 40

4.13 I/O routines 41

4.14 Miscellaneous routines 43
4.15 Special considerations 44

4.16 The SWITCH file 45

4.2 EDIT 46

4..3 MACRO 52

4.4 RUG 53

4.41 Location opening commands 55

4.42 Typeout modes 56

4.43 Typein modes 56

4.44 Breakpoints 57

4.45 Monitor mode 59

4.46 Miscellaneous commands 62

4.5 PRINT 64
4.6 LIST and RELIST 64

4.7 ITS 65

4.8 SEND and RECEIV 65

4.9 USERS 67

4.A BATCH 67

4.B COPY 69

4.C VERIFY 69

4.D MAIL and MSGS 71

4..E LISP 72

4.El LISP control characters 73

4.E2 File specification 'errors 74

4.E3 LISP functions 75

4.F The STAR macro 78

5.0 The 11/40. 80

5.1 Loading the 11/40 80
5.2 RUG40 81

PAGE 4

5.3 TROS and BOS

6.0 The Devices

6.1 The ANALOGIC converter

6.2 The X-Y table

6.3 The Photowriter

6.4 The Scheinman arm

6.5 The VIDICON

7.0 System Maintainance Notes

7.1 Installing New Users
7.2 Reading diagnostics

7.3 Formatting a disk pack

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

11/40

11/45
GT40

11/45

GT40

BOOTSTRAP PROCEDURE

BOOTSTRAP PROCEDURE

BOOTSTRAP PROCEDURE

CORE MAP

CONVENTIONS

PAGE 5

1.0 Introduction

This document describes the resources available to users

of the mini-robot

group (micro-automation group) of the Artificial
Intelligence Laboratory. It is in two parts: PART 1,

THE 11/45 SYSTEM, and PART 2, ACCESS FROM ITS.

PART 1 is intended for the user who will be dealing

to -a large degree with the PDP11/45 operating system, file
structure, and system programs such as EDIT, RUG, and MACRO.

The user in question will be writing software to run on the 11/45 system,

and may refer to this USER'S GUIDE for the necessary documentation

of the 11/45 system and associated facilities. The discussion

given in the body of this document will be detailed for the sake

of completeness, and should be suitable reading for a new user

unfamiliar with the mini-robot system.

PART 2, published separately as working paper 166, documents

those mini-robot peripherals for which software has been developed

on ITS. This partitioning of function relieves the PHOTOWRITER,

PHOTOSCANNER, VIDICON or ARM user, who has applications which the

ITS utilities can handle, from having to know any details of the

11/45 system itself. Of course, users of those devices who wish

to write their own special purpose programs directly on the 11/45

system may still do so; these users are referred to PART 1.

1.1 General description of the system

The mini-robot system consists of two Digital Equipment

Corporation minicomputers, a PDP11/40 and a PDP11/45.

The PDP11/45 runs the operating system which supports the

system software necessary for most user programming
applications. There are essentially only two languages supported
on the 11/45, FORTRAN and PDP11 assembler language (MACRO).
There is a working version of LISP, but core limitations
render it impractical for most non-trivial applications.

PAGE 6

The 11/45 has associated with it:

.1) Two RK05 moving head disks, capable oflstoring 1.2 million
words each

2) 31K words of core memory

3) A Vidicon TV camera ("computer eye") and digitizer for
obtaining visual information about a real world scene

4) A light sensitive P.I.N. diode camera, for highly linear,
randomly accessible visual input

5) Two mechanical manipulators ("arms")

6) An x-y table, capable of extremely high precision positioning
of objects in a plane

7) A high speed link and a low speed link to ITS, the AI
laboratory's time-sharing system

8) A GT40 graphic display terminal, used as the system console
and for various display programs

9) A GE1200 Terminet, used primarily as a line printer, and

10) Assorted-interfaces and other system peripherals, enumerated
in Appendix D

The PDP11/40 exists primarily to support a number of special
purpose devices, which may be used off-line in conjunction
with a program running on ITS:

1) An Optronics photowriter, used to make high quality photographic

transparencies from digital picture data

2) An Optronics photoscanner, which can scan transparencies or opaque
prints in black and white or color with high resolution, and return
a digitized picture on disk

PAGE 7

3) An X-Y tablet, with which the user can enter line traces

with a special pen, and have the trace digitized and stored on disk.

4) 24K of core memory

5) Assorted system interfaces

In addition, a small operating system is provided for the user

who wishes to program the 11/40 for his own applications.

1.2 Operating system references

The operating system on the 11/45 is a modified version of DOS,

the Digital Equipment Corporation's Disk Operating System. The

modifications to DOS are described in this paper, but throughout

it is assumed that the user is familiar with basic DOS. Before continuing,
anyone not familiar with DOS is urged to read the following references.

In the following, AL denotes sections of interest only to assembly

language programmers and F denotes sections of interest only to

FORTRAN programmers. Keep in mind that the mini-robot operating system

is based on DOS version 8; any references to BATCH should be ignored

(our own version of BATCH is described later). The references given should

avoid discussion of DOS features which pertain only to version 9.

AL only: PDP11 Processor handbook (1975 ed.) sections 1.6, 2.2, 2.3, 2.4,

chapters 3, 4, 5

AL, F: DOS/Batch Handbook (April. '74 ed.)Ipart 1, part 2 chapter 2

sections 2.3.1.2, 2.3.1.3, 2.3.1.4, chapters 3, 5, 6 sections 6.1,

6.2, 6.4.1, chapter 7 sections 7.1, 7.2

part 3 chapter 1 sections 1.1, 1.2, 1.6, 1.7,

chapters 2, 3, 4, 6

(AL only) part 6

(F only) part 7

(AL and F) part 9, part 10, part 12, appendices D, E, I, J, K

PAGE 8

2.0 The mini-robot operating system

The operating system which runs on the mini-robot 11/45 is a modified
form of DOS version 8, as described in the DOS/BATCH Handbook. This
chapter describes the significant modifications to that operating system.

.2.1 Logging on: LO

Most frequently, the system will be powered on and in an idle state, as
indicated by the words "WELCOME TO THE MINI-ROBOT GROUP DOS V08-02" on the
system console (if the system is not up, see Appendix B). The user should
log onto the system by typing

SLO N,M

where N,M is your user identification code (UIC) which identifies you to
the system and specifies your file area on disk. The system will respond
with the date and time. However, if that information had been lost due to
a crash there will be a delay while the date and time are fetched from ITS.
In the event that ITS is down, a message to that effect will be typed on
the console and the user should then enter the date and time himself using
the DA and TI commands (see DOS/BATCH Handbook part 3 sections 2.8.4 and
2.8.20).

Next, the system will search your mailbox to see if there are undelivered
mail or messages waiting to be read (mail is information directed to a
single user, messages are information directed to the entire community).
If you wish to read a given item, type a "space"; typing <CR> (carriage

return) will cause the remaining items to remain in your mailbox, where
they will be waiting when you next log in.

2.2 Logging on: LOG and LOGIN

Alternatively, one can log onto the system with the commands LOG or LOGIN
(they are equivalent). These will serve to specify your UIC to the system,
but will omit the steps of searching your mailbox and obtaining the date
and time from ITS. It may be desirable to have these steps skipped if you
are in a debugging mode and are constantly and frequently crashing and

PAGE 9

bootstrapping the system, so that the seconds spent in searching your mail

directory and setting the date and time may be worth saving.

This is strictly a time-saving means of logging in for use in a debugging,

crash-prone environment. For normal system use, the standard LO command

should be used.

2.3 Conventions for prompt characters

The following conventions are used for prompt characters throughout

this document:

S - top level prompt by the monitor. Indicates that DOS is

waiting for a monitor command.

- file specification prompt. Indicates that the program

is waiting for a file specification. File specifications

are of the form #<ofield> "<" <ifield>, where the output

field and input fields are of the form DEV:FILNAN.EXT[uic]

and where DEV may be DKO or DKI and <uic> may be omitted

-if the file is on your directory.

* - command prompt. Indicates that the program.is waiting for

a command.

2.4 The escape character: ^C vs. ^D

The DOS method for interrupting a program and returning to monitor

level is the sequence ^C and KI(LL). For ease of typing and support of

other features, this sequence has been replaced by the single character,

^D. All 11/45 software obeys the convention of using ^D as the escape

character, and ^C should not be used (except as noted in a later section

for a special application). One caution: ^D should never be used to

interrupt a program which is running; running programs should not in

general be interrupted until they have printed a prompt character (either
"#" or "*") and are waiting for user input. In general, it is not safe to

interrupt running programs with either ^C or ^D because I/O in progress

PAGE 10

cannot finish correctly, causing the system to crash and disagreements to
arise on disk between a file and its directory entry.

2.5 ":" commands

Normal syntax for DOS commands is a 2 letter command name following the
"$" prompt character. Since the most frequently used command by far is RU,
it has been replaced by ":". Thus, to run the editor, one now types

:EDIT

Programs run using ":" instead of RU may have arguments passed to the
program on the same line as the call of the program. Thus, to edit the
program PROG on device DKL, one.may enter

:EDIT DKI:PROG

instead of waiting for EDIT's initial file specification prompt character,
"#", and then entering the name of the file to be edited.

Multiple arguments may be entered in-line, separated by spaces, where each
argument will be treated as one line of input to be passed to the program.
Thus, for example:

$;PIP DKl:FILEl.MAC/DE DKl:FILE2.MAC/DE

will run PIP and cause the files FILEl.MAC and FILE2.MAC to be deleted. If

the character "^E" appears on the line, it will be translated into the

escape character "^D" and the program will return to top level, as in

$:PIP DKI:FILEI.*/DE ^E

Caution is advised when using this feature to pass multiple arguments to a

program, however. Output is turned off while there are unfetched arguments
left in the string. (This is so that the prompt characters the program

PAGE 11

uses to ask for the already-supplied arguments will not appear.) *An

unfortunate side effect of this disabling of output is that any error

messages associated with any of the arguments are also lost. Normally,

therefore, only one argument should be passed to the program in-line.

2.6 Device names

The DOS system provides for a two or three letter device name for each

device known to the system. In general, any device name may be used as an

argument to any system program expecting a file specification (although for

some applications, only a file-structured device may be permitted). The

devices known to the system, and their. device names, are given in the

following table.

DEVICE NAME

Disk 0 DK or DKO ; system disk

Disk 1 DK1 ; user disk

GE Terminet (output) GE ; line printer

GE Terminet (input) GK ; keyboard

GT40 (input, output) KB ; system console

Null device NL ; output only; output

; is discarded

The .two disk drives provide for a strict partitioning of disk space into
system storage and user storage. The upper disk, DKO, is always for system

use and should have the disk cartridge labelled SYSTEM loaded at all times.

The user should NEVER write on this disk. Backup copies of the system disk

will be kept in case of a crash, but they may not be current. The user

should always mount his disk on the lower drive, DKl, and refer to DK1

whenever writing out files on his directory. Unfortunately, it is the

nature of the DOS system that the system disk may not be write-protected,

so user care and cooperation are needed to prevent the system disk from

being overwritten.

PAGE 12

3.0 The GT40

The GT40. display.processor (and associated PDP11/05 processor) serves

as a general purpose system console for the mini-robot system and also as a

special purpose graphics terminal. As a system console, it replaces the

traditional TTY terminal; the GT40 can display up to 30 lines of ASCII

text (up to 68 characters per line) and can buffer hundreds of lines of
text in its memory when loaded with the console display program, DISP.

Scrolling is available to allow the user to look at text not currently on

the screen -- in effect, the user has a window into the text buffer which
.he can scroll around at will.

In addition, a number of special application display programs are

available to display graphs and two-dimension images, or to aid the user in

developing his own display programs.

3.1 Loading the GT40

The GT40 is loaded from the 11/45 system, either from top level or by

program control using a system call. In order to be loaded, the GT40 must

be running one of the following programs:

1) Any of the display programs described in this chapter

2) A user-written graphic program which conforms to the

conventions given in Appendix E, or

3) The 11/05 ROM loader.

Ordinarily, (1) or (2) will be true (DISP, the console program, survives

the process of powering the system down, so it should not normally need

reloading on a day-to-day basis). Should the GT40 crash, condition (3) can

be made true by bootstrapping (see Appendix C).

To load the GT40 from top level, type :DISP (to load the general console

program) or :GTLOAD (to load any of the special graphics programs described

here, or to load a user-written program). The syntax of the call is

:GTLOAD PROG

PAGE 13

where the file extension, if omitted, defaults to .BIN and the UIC defaults

-to [3,3]. All of the standard display programs are .BIN files on directory

[3,3].

GTLOAD may be used to load multiple programs into the GT40; the names of
the files should all appear on the command line, separated by commas. The

effect of supplying GTLOAD with multiple arguments is to cause each

program, in turn, to be loaded into the GT40. If this is to be meaningful,

the address space occupied by the various modules should be

non-overlapping, and only the last program listed should have a start

address specified. After the GT40 is loaded, the last .program loaded in
will be started at its start address.

The /R switch may optionally be appended to the last argument to GTLOAD.

If it.appears, that program is assumed to be a .LDA file instead of a .BIN

file, and is loaded into the 11/45 and run. In this case, the next to last
program listed is assumed to contain the start address.

To load the GT40 from your program, the macro .GTLD should be declared in
the .MCALL statement, and should be called as follows:

.GTLD PTR or .GTLD #STRING

where:

PTR: STRING

STRING.: .ASCII *<ARGS>*<15)<12>

and where "<ARGS>" is an argument list with the same syntax as for the
:GTLOAD call (optionally including the /R switch, as well), such as:
<ARGS>= PROG1,PROG2,DK1:PROG3[100,100]. Calling .GTLD in this fashion
causes control to pass back to the monitor (if no IR was specified) or to
the user program which was the last item in the argument list (if /R was

present). If you want control to return to the.instruction after the .GTLD
call in your program, the following syntax is necessary:

.GTLD PTR,S or .GTLD #STRING,S

PTR: STRING

STRING: .ASCII *<ARGS>/S*<15><12>

PAGE 14

While the GT40 is being loaded by the 11145, it displays the word
"LOADING".

Note that when calling .GTLD from a user program, the area in memory from
50000 to 60000 must not be used, as GTLOAD will occupy this area. If .GTLD
is to be called as a subroutine (using the /S convention), the area
50000-60000 may be a user buffer whose contents may be clobbered by the
call. This area may not contain part of the user stack, however, or any
interrupt routines which could occur during .GTLD, as this will cause .GTLD
to be clobbered.

3.2 DISP

DISP is a general purpose console program which displays up to 30 lines
of text and buffers many additional lines which may be viewed by scrolling
a "Window" throughout the text buffer. DISP is the program which is
normally running in the GT40, and may be reloaded from top level at any
time by typing ":DISP".

DISP has three principal modes of operation: console mode, datapoint

mode, and real-time edit mode. The normal mode of operation is console
mode. Programs which have need for DI P to be in a specific'mode can
change modes under program control, so th t ordinarily the user need not be

aware of the multi-mode status.of DISP. Some brief familiarity with the

various modes is advised, however, since DISP may get out of agreement with
a program's intention for it, necessitating user intervention.

3.21 Console mode

Console mode DISP is the normal mode of operation when the GT40 is being

used as a system console. .In console mode, DISP displays characters
rbceived from the 11/45 program, transmits characters typed at the GT40

keyboard, and performs a number of housekeeping chores. Tabs, rubouts,

^U's, carriage returns and line-feeds are interpreted, and scrolling is
supported when in SCROLL mode (see below). In addition, DISP keeps a0

PAGE 15

buffer of approximately 12000 characters received from the 11/45.

Ordinarily, the last 29 lines received are displayed on the GT40 screen,

and a rectangular cursor indicates the position of the buffer's end, which

is where the next character received by DISP will be displayed.

Console mode DISP has two sub-modes, which govern the effect of certain

control characters on scrolling. In TRANSMIT mode, all characters typed at

the keyboard are transmitted to the 11/45 program for interpretation; in

SCROLL mode, certain control- characters are interpreted by DISP to allow

the user to scroll a window 29 lines high and 68 characters wide through

the text buffer. To enter SCROLL mode, type HOME. To enter TRANSMIT mode,

type "LOCK-EOL" (hold down LOCK while typing EOL).

When DISP is first loaded, it will be in console mode, and in SCROLL

sub-mode.

In SCROLL mode, the following characters have special meaning to DISP:

(up-arrow) -- begin scrolling the text up (or the window down),

towards the end of the text buffer. If already scrolling up,

(up-arrow) causes the scroll speed to increase. If scrolling

down, (up-arrow) stops downward scrolling.

(down-arrow) -- begin scrolling the text down. If scrolling down,

increase speed. If scrolling up, stop upward scrolling.

(right-arrow) -- begin scrolling to the right. If already scrolling

right, increase speed. If scrolling left, stop leftward

scrolling.

(left-arrow) -- begin scrolling to the left. If already scrolling

left, increase speed. If scrolling right, stop rightward

scrolling.

(HOME) -- causes DISP to jump the display window to the last
screenful.

(LOCK-EOS) -- causes DISP to jump the display window to the

.end of the text buffer (actually, to the last line).

PAGE 16

This effectively clears the screen.

Note that the various ARROWS, HONE, and LOCK-EOS are also the control

characters ^Z, ^K, ^X, ^H, and ^]. Thus if the 11/45 program expects to

receive any of these characters from the user, DISP will have to be in

TRANSMIT mode; in SCROLL mode, DISP will interpret these

control-characters as scrollin'g commands.

Note also that attempting to scroll past the beginning of the text buffer

(oldest text) will merely cause scrolling to stop. Scrolling may be

performed while DISP is receiving characters; DISP normally keeps the last

line of text and the cursor in view by scrolling one line of text off the

top of the screen each time a new line of text is received (if the screen

is full), but this "cursor following" feature may be overridden by

scrolling the display window away from the cursor while charaters are being

received. DISP will then allow you to look at the screenful selected.

Normally, as new characters are received, old characters are discarded so

that the text buffer always contains the most recent (buffersize) number of

characters received. If the screen window has been scrolled away from the

cursor, DISP will give priority to the characters being viewed; characters

shown on the screen will not be overwritten, and as new characters are
received, DISP will discard the new characters (ringing the console bell

once for each character discarded) until the screen window has been moved

off the beginning of the buffer. "Cursor following" will resume once the

screen window has been scrolled forward so that the cursor and end of

buffer are visible, or if you type HOME or LOCK-EOS.

3.22 Datapoint mode

In datapoint mode, DISP effectively converts the GT40 into a datapoint.

This means that the scrolling features of display mode are disabled, and

the text buffer contains only the text visible on the screen. (In this
mode, like a datapoint, DISP has no "memory".) Datapoint mode is entered
.under control of the ITS program (see Section 4.7); when that program has

completed execution, it restores DISP to console mode.

PAGE 17

3.23 Real-time edit mode

When DISP enters real-time edit mode, the rectangular cursor disappears and
only an EDIT cursor should be present on the screen. In this mode, special
real-time edit commands move the edit cursor around, and only this mode
allows for the insertion of text into the center of the buffer (at the
location of the edit cursor). Real-time edit mode is entered under control
of the program EDIT (see Section 4.2), and return of DISP to console mode
is ordinarily handled by EDIT as well.

3.24 Switch-selectable features

DISP features may be enabled or disabled by the switches in the 11/05
switch register, as follows:

(switch 15) -- causes lines which are too long for the GT40 screen
to be continued on the next line. A continuation character
(down-arrow) at the end of the line will indicate such a
continuation.

(switch 14) -- cursor blink

(switch 13) -- edit cursor blink

(switch 12) -- noisy mode. Causes the console bell to ring each
time a character is received.

(switch 11) -- literal mode. Causes control characters to be
displayed, so that tabs, carriage returns, line feeds, etc.
will appear on the screen. Useful if a spurious control
character has infiltrated your file, and you need to find it.

(switch 10) -- datapoint mode. If the DISP gets out of phase
with your program, so that it is in datapoint mode when
you're not talking to ITS, for example, toggling switch 10
will return you to console mode.

PAGE 18

(switch 7) -- super-literal mode. Causes meta-characters to

display (but only if they are received while this switch

is up, unlike switch 11, which toggles the display of

control characters as the switch is toggled).

Meta-characters are characters preceeded by a ̂ \, and can cause DISP to

take an action (rubout and clear-the-screen are meta-characters; so are

the mode changing commands, the blink-the-next-character command, the

italics command) or to display a special character, such as a Greek letter

or mathematical symbol (the cursor and the, edit cursor are both special

characters which are represented by meta-characters). Any meta-characters

received while switch 7 is up will be displayed as (right-arrow) followed

by the non-meta-character analog. DISP's special character set is

enumerated in a documentary message which fills most of the text buffer

when DISP is first loaded; to see it, type :DISP and then scroll

backwards.

One switch which is not part of. DISP but which affects the user at type-in
time nonetheless is the two-position switch (incorrectly labelled ON) on
the back of the GT40 keyboard. In the ON position, this switch causes

every character typed at the keyboard to be upper-case; when OFF, upper

and lower-case letters may be typed.

3.3 PICT

PICT is a GT40 program (actually two programs) for the display of digitized

pictures on the GT40 screen.. PICTB6 displays binary pictures, and PICTB7

displays full 256 grey-level images (although the GT40 only displays 8

grey-levels, so that some image quality is lost). In addition to the

.picture display, which occupies the upper two-thirds of the screen, PICT

maintains a text buffer like DISP's, and displays a display window into the

text buffer of 9 lines (full width) in tle bottom one-third of the screen.

The user may scroll the display window using the ARROW keys, HOME, and

LOCK-EOS, as in DISP (but left and right scrolling are not implemented) and

may enter TRANSMIT and SCROLL modes, as in DISP. This text area

facilitates communicating with the 11/45 program which has generated the

PAGE 19

image, or with RUG in the debugging stages.

The 11/05 switch register is not implemented in PICT except for switches

0-2, which govern the size of the image. With the switch register set to 0
the picture will be at maximum size (as if switches 0-2 were all on); the

user may select a smaller size by placing a number less than 7 in these

switches.

The two PICT's are loaded by GTLOAD, (see Section 3.1), and data in a
user's memory area may be sent to PICT using the system macros .PCTB6 and
.PCTB7. The appropriate MCALL must be issued in the declarations area.

.PCTB6 BUFPTR,(THRESH) --
sends a 64 x 64 point picture to the GT40 in binary mode.
THRESH is an optional pointer to a threshold value.
The default threshold is 0. All points of intensity

less than or equal to the threshold will be considered

zero in the binary representation. BUFPTR points to
the data buffer containing the picture.

.PCTB7 BUFPTR, (BUKPTR) --
sends a 64 x 64 point picture to the GT40 in normal
mode. BUKPTR points to a buckets table. The default

buckets, if BUKPTR is omitted, are linear. The

bucket table, if supplied, should be 8 words long.

A point will be sent at an intensity which corresponds

to the first bucket that its value is less than or

equal to.

3.4 PLOT and PLTPKG

This section describes the programs PLOT and PLTPKG which provide software
support for plotting and examining graphs of data on the mini-robot system.
PLOT runs in the GT40; PLTPKG is its counterpart in the 11/45.

The user can display up to 4 graphs at one time, can turn any or all of the

PAGE 20

graphs on and off with the use of the 11/05's bit-switches, and can examine
the function values corresponding to any point on the graphs by scrolling a
set of cursors which provide data readout on the GT40. In addition, PLOT
supports 9 lines of ASCII text at the bottom of the screen, for use in

communicating with the program running in the 11/45. Here too, scrolling is

possible, allowing the user access to more than 9 lines (though only 9

lines are visible at one time).

PLOT is loaded into the GT40 under program control, and when the user is

finished with PLOT, it may be unloaded (by loading the regular display

program, DISP) by executing the command :DISP from top monitor level (S

level) anytime PLOT is resident in the GT40. Most programs that run in the

11/45 with PLOT in the GT40 automatically reload DISP when exited (e.g. via

a ^D when in PLTPKG).

The 4 graphs PLOT can display are generally referred to as the upper right,

upper left, lower right, and lower left graphs. Since there are two sets

of coordinate axes, upper/lower refers to the axis. Left/right refers to
the identifying ASCII message that appears to the left and right of each

axis -- the message on the left labels the left plot, etc.

Each plot may be turned on by raising one of the 4 bit switches, 0,1, 2 or

3 on the GT40 console. When a graph is turned on, its labelling ASCII

message will.increase in intensity, and the message Y=+O will appear below
the message. This number is the data readout corresponding to the point on

the graph indicated by the cursor arrow and blinking spot. There will be

one such number for each of the graphs whose bit switches are turned on.
The message X=O which appears at the left center of the screen indicates

the X position of all the cursors (0 is far left). The message R=n which
appears below the X value reflects the current setting of the programmable
resolution (see below). The arrows may be scrolled (that is, the value of
.X may be changed) by typing the left and right arrow keys on the upper
left-most area of the keyboard. Similarly, the text at the bottom of the

screen may be scrolled by typing the up and down arrows.

LEFT-ARROW => Scroll cursors left. If already scrolling left,

increase scrolling speed of cursors. If already

scrolling right, stop scrolling.

PAGE 21

RIGHT-ARROW => Same as LEFT-ARROW, but to the right.

UP-ARROW => Scroll text at bottom of screen up. If already

scrolling up, increase scrolling speed. If

already scrolling down, stop scrolling.

DOWN-ARROW => Same as UP-ARROW, but down.

HOME => Enter "SCROLL" mode. "SCROLL" mode is the only

mode in which any scrolling may be done.

If for any reason, PLOT should get out of "SCROLL"
mode and refuse to scroll, type the HOME key.

LOCK-EOS => (hold down LOCK key and type EOS while holding it).
Jumps to the end of the ASCII text in the
buffer (where the cursor is). Equivalent to
Typing UP-ARROW and then waiting a (possibly)
long time.

LOCK-EOL => leaves SCROLL mode. Scrolling will be disabled, and the
control-letter equivalent of.the various arrows
will be transmitted to the user program (for

example, UP-ARROW is ̂Z and DOWN-ARROW is ̂ K when
not in SCROLL mode).

PLOT has room on the GT40 screen for only the first 256 points of each
graph. When graphs are sent to PLOT for display, it will automatically
display the first 256 points and truncate the rest. The resolution is
initially 1, indicating that the graph is being viewed atmaximum detail
(every point is being displayed). If the user's graph is longer than 256

points, and he wishes to view the rest of it, there are two options. If
the cursors are scrolled off the right edge of the graph, more new points
will be brought into view. Or, the user can increase the resolution. As
an example, if the resolution-is 2, the first 512 points of the graph will
be visible, though only every other point will be displayed. In this mode,
the points that are displayed may be examined directly by scrolling the
cursors; once the cursor points to the area of interest, changing the
resolution to 1 will cause a section of the graph centered around the
cursor',s position to be displayed in detail. And of course, the resolution

PAGE 22

may be increased as much as desired.

In addition to the arrow keys' role in scrolling as mentioned above, the
following control keys are implemented in PLTPKG:

^L - redisplay the graphs at the current resolution, centered
around the current position of the arrow (that is to say,
with the arrow in the center of the screen).

^A - halve the resolution, then redisplay the graphs centered
around the current arrow position.

^S - double the resolution, then redisplay the graphs centered
around the arrows.

^W - advance the arrows to the next screenful.

^Q - move the arrows back one screenful.

^E - go to the beginning of the graph.

^R - go to the end of the graph.

The user who wishes to use PLOT will surely also need to have access to it
from his program. The package of macros and subroutines called PLTPKG
makes that access easy. It is assembled together with the user's program,
as follows:

$:MACRO

#DKI:PROG,PROG<PLTPKG,DKI:PROG

and then the macros are available to the user. If the user intends to

assemble with DHTIO, the following will suffice:

#DKI:PROG,PROG<DHTIO[3,3],PLTPKG[3,3],DKl:PROG

Note' that the user program should then contain a .END RCOMM statement (see
section 4.1).

PAGE 23

The plot package will support left/right cursor scrolling, and data

readout. It will also automatically reload the display program DISP if a

^D is typed.

A list of these macros, along yith sample calls and an explanation of each,

follows.

CLRUL

-- clears the upper left plot.

CLRUR

-- clears the upper right plot.

CLRLL

-- clears the lower left plot.

CLRLR

-- clears the lower right plot.

CLRALL

-- clears all plots.

The user should clear a plot before sending over new data to that plot, and
should clear all the plots with CLRALL before sending over a new set of
plots. All plots on the screen at one time should be the same length, so
if you are sending over a single new graph, it should be the same length as
the others. To change the lengths of the graphs, first CLRALL should be
called.

ULMSG #MSG

-- sends the ASCII text at MSG to PLOT to

be used as a label for the upper left plot.

The text should be 7 characters or less, and should

PAGE 24

end in a 0 byte (e.g. use ASCIZ)..
Example: ULMSG #MSG

MSG: .ASCII/Fn. #12/<0>

URMSG #MSG

-- sends out ASCII text to label the upper right plot.

LLMSG #MSG

-- sends out text to label the lower left plot.

LRMSG #MSG

-- sends out text to label the lower right plot.

LDPLOT

-- loads the PLOT program into the GT40. Should be called
before any of the other macros in this package.

If using DHTIO, you might want to make a subroutine

which does a LDPLOT and include the name of

that routine in your ICOMND string.

LDDISP

-- unloads PLOd and loads the standard display program, DISP.
LDDISP should be called before the user's program
returns to monitor; otherwise, system parameters
which PLTPKG has saved will not be restored

correctly, and the system may crash.

The user who also uses DHTIO should implement
an EX command which executes LDDISP and then
does a JMP EXIT so that those system parameters
which DHTIO saves can be correctly restored

(EXIT is a DHTIO label).

PAGE 25

RAD8

-- causes the X coordinate, the resolution, and the

data readout to appear in octal on the screen.

RADO1

-- causes the X coordinate, the resolution, and the

data readout to appear in decimal on the screen. When in

decimal, these numbers will have a ".. after

them.

ARROW XNUM

-- sets the X coordinate of the cursors to be XNUN.

This is for use by the user who wants to move

the cursor around under program control

instead of or in addition to having it moved by

the scrolling keys (see LEFT-ARROW and RIGHT-ARROW,

above) and PLTPKG's control-keys. User scrolling

will still work and will resume moving the cursor

from the position last set by an ARROW statement.

Example: ARROW #100. Also, ARROW R2.

ARWPOS N

-- gets the current arrow position, and returns it

in N.

Example call: ARWPOS Rý

CENTER

-- redisplays the graphs on the screen, centered

around the current cursor.(arrow) position,

at the current resolution. Same as typing ^L.

PAGE 26

SETRES R

-- sets the resolution to R. The R= message on the

screen will change to reflect the resolution,
but the graphs will not be re-displayed. If

SETRES is called before doing CLRALL and sending
new graphs, the new graphs will appear at

the desired resolution, but if existing graphs
are not cleared, then CENTER should be called
immediately after SETRES, so that the graphs
will be re-displayed at the correct new resolution.
Sample call: SETRES #4

GETRES R

-- gets the current resolution in R.

Sample call: GETRES RO

SETSH S

-- sets the value of an internal variable called SHIFT

to S. SHIFT determines how many new points are

shifted onto the screen when the arrows are scrolled

off either edge. Default setting is 200. Setting
this variable to 256 would cause a whole new

screenful to appear, with the arrow on the far

left (with the default, the arrow will appear

indented 56 points). Setting it to 128 will cause

the arrow to appear in the middle.

Sample call: SETSH #256.

SNDGRF PTR,CTR,C1,C2,SR,INCR

-- sends a graph to PLOT for plotting. PTR should point to
the beginning of the data buffer. CTR should contain
the number of words in the buffer (or the number of

points in the graph -- they are the same). Cl and C2

PAGE 27

are codes to determin which of the four plots

this will be:

Cl = 0 CZ 0 => upper left plot
C1 = 0 CZ = 1 => upper right plot

C1 = 1 C2 = 0 => lower left plot
Cl = 1 CZ = 1 => lower right plot

These four arguments, PTR, CTR, Cl and C2 must

be present in all calls of SNDGRF. SR and INCR are optional.

If present, SR should be the address of a scaling
routine to expand or contract the range of the data
so that it will fit onto the graphs on the GT40

screen (the range that will fit is +160 to -160).
SR should scale the number in R3, and return.

IMPORTANT NOTE: The graph in question should be cleared by

the user before SNDGRF is called. Use

one of the CLR macros (CLRUL, CLRUR, etc.)
or CLRALL.

An example of a call:

SNDGRF #BUFFER,#200,#O,#1,#SCALER

where BUFFER is the data, 200 is the number of

points in the graph, the graph is to go in the
upper right, and the data is to be scaled with

SCALER: ASH #-3,R3

RTS PC

that is, the data is to be divided by 8.

If present, argument INCR should be an increment
(in words) to be added while accessing the
data from the graph table. The default value
for INCR is 1, meaning that SNDGRF will plot
every point in BUFFER. If INCR is 2, SNDGRF

PAGE 28

will plot every other point (starting with the

first one), etc. This is for use in buffers which

have more than one function intermixed. For

example, if the format of the buffer is

BUFFER: XO

YO
X1

Y1

X2

etc., then to plot the X's, one might call

SNDGRF #BUFFER,#1000.,#O,#O,#SR,#2

and to plot the Y'S,

SNDGRF #BUFFER+2,#1000.,#1,#O,#SR,#Z

Note: SR, if present, must not disturb any

other registers besides R3. The call may

have more indirectionithan in the

example, e.g. SNDGRF RO,Rl,#O,#1 where RO contains

the address of the buffer, and RI contains the count, etc.

Note also that BUFFER, the data to be graphed,

should be one graph point per word.

S=> There are two scaling routines supplied with

the package for the user who needs some scaling

done to get his data to fit on the screen, and

who doesn't want to do it himself. If'the data

is all positive, use #ASPO (auto-scale, positive

only), and if it is signed, use #ASPN (auto-scale,

positive/negative) in the SR position of the macro.

call for SNDGRF. Both will take the data and

scale it to the maximum range that will fit on

the graph, e.g. if max(data) > 160 it will scale

the data down, and if max(data) < 160, it will

scale it up, so that you get the greatest possible

magnification. The scaling is done to the displayed

PAGE 29

data only; original data in the buffer is untouched.

Sample call: SNDGRF #BUFFER,#200,#O,#1,#ASPN

Using ASPN on positive data will cause it to

be scaled to use the upper portion of the

graph (above the zero axis), wasting the lower

portion. Using ASPO on positive data will cause

the data to fill the entire plot, making the

zero axis meaningless and moving zero to the

bottom of the plot. Using ASPO on signed data

will not work.

BGRAPH

-- begin graph mode. Used only in conjunction with SNDPNT

(see below).

EGRAPH

-- end graph mode. Used only in conjunction with SNDPNT.

SNDPNT PNT,C1,C2

-- sends one point to PLOT when PLOT is in graph mode.

This is for the user who doesn't want to use SNDGRF,

because he wishes to send the graph one point at a

time as it is computed, rather than after it is

all stored in a buffer. PNT is the data item to

be plotted, and Cl and C2 have the same meaning as

in SNDGRF (but note that now, after the BGRAPH and

until the EGRAPH, points may be sent to any of

the 4 graphs, in any order desired.)

If the user does use SNDPNT rather than SNDGRF, he will
have to inform PLTPKG himself of the size of the

graphs and their names, or else the cursor scrolling
will not function correctly. The variable GRFCTR should

PAGE 30

be set to contain the number of graph points, and the

table DSPTBL should contain the addresses of the four.

graphs, in the following order:

DSPTBL: UL ; UPPER LEFT GRAPH

LL ; LOWER LEFT etc.

UR

LR

Also, INCTBL will have to be filled in with the INCR

values for the four graphs (same as the INCR argument

to SNDGRF), and SRTBL will have to be filled in with

the addresses of the four scaling routines. INCTBL

and SRTBL, like DSPTBL, are four-word tables, and

the order of the entries is the same as in DSPTBL.

If SRTBL contains the address of the user's scale routines,

they will be executed automatically when SNDPNT is called.

Thus, there is no need for the user to call them to scale the data.

Once again, they should scale the data to the range +160 to -160.

Note however that the automatic scaling feature (ASPN and ASPO)

which was available in SNDGRF cannot'be used here. The

user must provide his own scale routines if SNDPNT is used.

When using SNDPNT, it is not necessary to CLR the graph

first. CLRALL etc. will reset the pointers to the beginning

of the screen, and should be called when a new graph is

being sent. But the SNDPNT user can call the EGRAPH macro

when only part of the graph has been sent, type some stuff

to his program, call BGRAPH, and send the rest of the

graphs. The new points will be appended to the end of

the existing graphs.

These variables, GRFCTR, DSPTBL, INCTBL, and SRTBL are already

present in PLTPKG, so your program need only fill

them in. Remember that if you use SNDGRF they will

be filled in automatically. This note applies only

to users of SNDPNT.

PAGE 31

TIMING INFORMATION: SNDPNT takes approximately 2 msecs.

per point, BGRAPH takes 1 msec., and EGRAPH takes 2 msecs.

Please note that in order for the cursor scrolling to function correctly,

the user program must have control (and should be waiting for a command

from the user). If the user.is debugging the program and is in RUG (e.g.

at a breakpoint, etc.) scrolling will not work (RUG will try to interpret

the scroll characters as RUG commands). In order to use the scrolling

.feature the user must first proceed his program (type altmode-P to RUG).

When using DHTIO, there should be a DHTIb prompt character on the screen,

indicating that DHTIO is waiting for a command, when you try to scroll.

3.5 Display programming support

The remainder of this chapter describes the facilities available to the
user who wishes to write his own display programs for the GT40. Facilities
available are GTMAC, a. set of macros which implement a GT40 instruction set

for the MACRO assembler; GTROS, the GT40 Trivial Operating System, which

implements an extension of the GT40 instruction set, and P, a GT40 program
which implements the 9 line mini-DISP feature found in PLOT and PICT, while
allowing the user to write his own display routines to use the upper
two-thirds of the screen.

3.51 GTMAC

The PDPl1/05processor is, with only minor differences, capable of

executing the same instruction set as the 11/40. Thus 11/05 programs may
be written as if they were to run on the 11/40, assembled in absolute mode

(with the Assembler switch .ENABL ABS) and then loaded into the 11/05 with
GTLOAD. The instruction set for the GT40 scope processor is, of course,
markedly different, and the MACRO-11 assembler does not recognize any
standard mnemonics for the GT40 scope instructions.

To enable the user to program easily for the scope processor, the macro

PAGE 32

'file OTMAC.MAC[3,3] has been made available. GTMAC.MAC contains macros
which expand into the various scope instructions. These macros are:

SGM MODE,INTEN,K1,K2,K3 -- set graphic mode. MODE may be

CHAR (character mode), SVEC (short vector), LVEC (long vector),

PNT (point mode), RPNT (relative point), GRFX (graphplot x),
or GRFY (graphplot y). It is a required argument; all other
arguments to SGM are optional. INTEN sets the intensity

level. If present, it must be an integer from 0 to 7.
K1,K2, and K3 are keywords. None or all three may appear;

note that if INTEN is omitted, the first keyword must
still be the third parameter. Their order is arbitrary,
and they may be chosen from the following three sets:

LPI,NOLPI -- enables or disables light pen interrupts.

BLK,NOBLK -- blinking is on, off.

SOLID,LDASH,SDASH,DDASH -- line type (solid, long dash, short

dash, dotted dash).

LDA Kl,K2,K3,K4,K5 -- load status register A. The keywords

KI-K5 may be chosen in any order and number from the. following

sets:

HALT - stops the scope

HI,NOHI - interrupt on scope halt is enabled, disabled.

LPY,NOLPY - the point of light pen interaction is intensified,

not intensified.

ITX,NOITX - characters are italicized, not italicized.

SYNC - halt scope and restart on next 60 HZ clock pulse.

LDB NUN -- load status register B.. NUN it the 6 bit positive

graphplot increment.

The following group of macros uses the parameter conventions:

X6,Y6 are signed, 6 bit coordinates
X10,Y10 are signed, 10 bit coordinates
X1OA,Y1OA are positive 10 bit coordinates

HIDE is an optional keyword that specifies that

PAGE 33

the item is not to be intensified.

SVEC X6,Y6 -- short vector mode instruction

LVEC X10,Y10 -- long vector mode instruction

PNT X1OA,Y1OA -- point mode instruction

RPNT X6,Y6 -- relative point mode instruction

GRFX X1OA -- graphplot x instruction
GRFY Y1OA -- graphplot y instruction

As in MACRO programs, the .ASCII / text / statement is used to insert.

characters into a scope program.

To use these macros in your scope program, specify the following command

.string to the assembler:

$RUN MACRO

#DK1:,DKI:<GTMAC.MAC[3,3],DKl:PROG.MAC

and your file, PROG.MAC, will be assembled with GTMAC.MAC and all these

macros will be defined.

3.52 GTROS

GTROS, the GT40 Trivial Operating System, is available to the user as

GTROS.BIN[3,3], and as the following macros in GTKAC:

SJMPR - position independent scope jump

SJSR - jump to scope subroutine.

SJSRR - position independent SJSR.

SRTS - return from scope subroutine.

SINT - interrupt the 11/05. The argument to this macro
specifies the address at which the 11/05 is to be started.

PAGE 34

SINTR - position independent SINT.

SINTH - interrupt the 11/05, and halt the scope program.

SINTHR - position independent SINTH.

BELL - ring the console bell.

SEXEC - start execution of the scope processor at the
specified address.

SREXEC - restart execution of the scope processor at the
last point at which it was stopped by a SINTH or SINTHR.

To use.the macros in GTMAC which are part of GTROS, the user must first
load GTROS into the 11/05. The procedure is as follows:

:GTLOAD GTROS,PROG.BIN (or use the .GTLD syntax in your program)

This will load GTROS and then your program which makes use of the GTROS
macros. GTROS is loaded from 320 to 740.

3.53 P

P is a utility for the programmer who wishes to write his own display
routines. P provides such users with an interface to the 11/45 in the form
of a mini-DISP with a 9 line display window which may be scrolled through a

text buffer, as in DISP. P receives ASCII characters "typed" by the 11/45

program and puts them in its text buffer; it transmits characters which

the user has typed at the GT40 keyboard to the 11/45 program; and it
displays the user's scope program in the upper two-thirds of the GT40

screen, and allows the user's 11/45 program to communicate with the scope

program, to dynamically change the display. P handles the 11/05

interrupts, and drives all the display (the 9 line text window and the

user's display) in "SYNC" mode so that brightness is constant as the amount

of display changes.

PAGE 35

P has a text mode, in which everything received from the 11/45 is treated

as ASCII text and placed in the text buffer, and a control mode, in which

data coming from the 11/45 is transferred to the user's display program for

control of his display graphics.

To use P, it must be assembled as follows:

:MACRO DKl:PROG,PROG/NL:TTM<GTMAC(3,3],P[3,3],DKI:PROG

and then should be loaded into the GT40 by the system macro .GTLD or from
top level by :GTLOAD (see section 3.1).

When done, PROG should be unloaded from the GT40, and DISP reloaded into

the GT40 by

.GTLD #STRING,S

where

STRING: .ASCIZ/DISP/<15><12>

The user's program should not.have a start address; instead, the user

should define a scope routine to display his picture, and an interrupt

routine to receive data from the 11/45 when P is .in control mode.

The user's scope routine should begin at location USCOPE, which he should

define. The GT40 code should be written in .GTMAC macros, but the P user

is not permitted to use GTROS macros. The last instruction of the user

scope program should be

SJNP PSCOPE ; JUMP TO P'S SCOPE ROUTINES

The user's scope program will begin to display its picture as soon as PROG
is loaded into the GT40. The user's 11/05 interrupt routine will not be
called until P goes from text mode into control mode. This happens when
the 11/45 program sends a ̂ A (ascii 1) to P. P will discard the ^A and
enter control mode, putting the address of the user's interrupt routine
into the interrupt vector. The address of the user's interrupt routine
should be contained in a symbol called UINTAD, and the status that should

PAGE 36

be loaded for user interrupts should be contained in UINTST, both of which
should be defined in the user's program. Once in control mode, data
*interrupts coming from the 11/45 will pass directly to the user's interrupt
routine. Two subroutines are available in P to help the user get this
data:

JSR PC,GET1C

will get one ASCII character of data from the 11/45 interface and return it
in RO. This is a seven bit binary number. If the 11/45 wishes to transmit
'data items which are more than 7 bits long, it must do so in 7 bit pieces.
GETIC returns immediately, and will return whatever data is in the 11/45
interface hardware buffer. Call it too often, and you'll just. get the same
data repeatedly. Ordinarily GETIC should be called once for each
interrupt.

JSR PC,PUTIC

takes the 7 bit number in RO and sends it to the 11/45. It does not return
until transmission of the data across the. interface is complete.

There is no special character analogous to ^A which signals the end of
control mode. The decision to go from control mode to text mode is made by
the user's interrupt routine. To effect the mode change, the user program
should call the macro

TXTMD

and then return from the interrupt (RTI).

In addition to UINTAD and UINTST, the user must also define the symbols

USCPAD and USCPST. These should contain the address and status of the

user's interrupt routine which is to receive control when the scope program
halts. The scope program halts inside of P once for each display cycle.

This. is done to ensure synchronization with the clock, and to enable the

various 11/05 sub-programs to modify the display code while the GT40

display processor is not running. (It is very dangerous in general for the

11/05 to modify display code while the GT40 display processor is executing

display code.) Since the user may wish to modify his display code based on

PAGE 37

data he received in control mode from his 11/45 program, he is given a

handle on these scope halt interrupts so that he may make his modifications

in this manner also. If you don't wish to do anything with the scope halt

interrupts, you can have

USCPAD: SCOPE

USCPST: 340

SCOPE: JMP PSCPAD

On the other hand, if the user wishes to change his scope program at scope

halt time, he should have the routine at SCOPE (pointed to at USCPAD) to

this. Since the changes are known at character interrupt time, the normal

programming practice is for the UINTAD routine to buffer the characters
received from the 11/45 in a ring buffer, and for the USCPAD routine to

empty this buffer, decide what to do to the scope code based on the data
received, and make the scope modifications. Note that the USCPST status
should be 340 (priority 7, uninterruptable) so that .the user will not
receive more characters in the ring buffer while emptying the buffer.

The USCPAD routine should not end with an RTI as UINTAD did, but rather

with a

JMP PSCPAD ; JUMP TO P'S SCOPE HALT ROUTINES

so that P can restart the display at the proper time and do its own

housekeeping chores. Remember that while you are at USCPAD, the screen is
dark and the priority is precluding interrupts, so the user should not take
excessive time at USCPAD (more than 16 milliseconds repeatedly will cause
noticeable flicker).

.IIPORTANT NOTE: the user's program must not end with the normal .END

statement. A special macro called END has been defined, and should be used
as the last statement in the user's program.

A trivial sample program to serve as an example of the various calls and
syntax is PTST.MAC[3,3].

PAGE 38

4.0 11/45 System programs

This chapter describes the various system programs available to the 11/45

user. Some system programs are part of the standard DOS package and thus
are described in the references listed in section 1.2. Those programs which
are "home grown" or which are part of the standard DOS package but which

-have been modified are described here.

4.1 DHTIO

DHTIO is a programming package designed to -simplify input/output drudgery
and to allow the neophyte system user to be able to write interesting and

useful code quickly. DHTIO provides a command interpreter with an argument

passing facility and various I/O and system subroutines, and macros. The

cost of using DHTIO is several thousand words of memory (though the exact

cost is variable and memory requirements may be cut if the user is willing

to sacrifice certain classes of features) and a loss of flexibility in

doing I/O (certain operations are impossible, such as renaming a disk file
or random-accessing a disk file). The DHTIO user is spared a large burden

of obscure programming needed to deal with the DOS system calls. The new

user is therefore advised to strongly consider using DHTIO until his

programming effort gets off the ground. If additional capablity is

necessary (and this is rare) he can always convert to DOS I/O.

DHTIO is named for its author, Dave Taenzer.

4.11 Using DHTIO

The user of DHTIO must follow several conventions, which will be the

subject of this section.

DHTIO is the file DHTIO.MAC[3,3], and should be assembled with the user's

program as follows:

PAGE 39

:MACRO DKI:PROG,/NL:TTM<DKI:SWITCH,DKO:DHTIO.MAC[3,3],DKI:PROG

where DK1:PROG is the user's 11/45 program, and where DK1:SWITCH is a DHTIO

assembly switch file (see section 4.16).

Two labels must be present in the user's program: HELLO and CONTAB. HELLO

is the address of an information message the user wants printed whenever

the command interpreter sees "?" on a command line. The message must be

ASCIZ (end in a zero byte). Traditionally, the HELLO message lists the
commands available to the user, with a brief description of each. COMTAB

should consist alternately of a word containing the two ASCII characters of

a command name, and a pointer to the subroutine which executes that

command. An example is in order:

COMTAB: "AB,ABRTN ; EXECUTES AB ROUTINE

"CD,CDRTN

"EF,EFRTN

0 ; MARKS END OF TABLE!

HELLO: .ASCII/Commands available: /<15><12><15><12>

.ASCII/AB -- does ABRTN/<15><12>

.ASCII/CD -- does CDRTN/<15><12>

.ASCII/EF -- does EFRTN/<15><12><15><12)

.ASCIZ/For more help, see DK1:HELP.INF[201,201]/<15><12><15><12>

The user's program will then consist of the three routines ABRTN, CDRTN,

and EFRTN. All three should return via the instruction RTS PC. Note that
the registers need not be saved, butlin turn DHTIO won't save your
registers between-commands.

Finally, the user program must end with

.END RCOMM

When started, this will place control in DHTIO, where a "*" will be
printed. Each time the user types a two-letter command at the keyboard,
one of the program's subroutines will be executed.

PAGE 40

4.12 The command interpreter

DHTIO allows the user to enter numeric arguments to any of the two-letter
commands. The user may enter the arguments on the same line as the
command, or they may be omitted. In this case, when the subroutine that
implements the command calls to DHTIO for its argument, DHTIO will ask the
user for the argument, using an ASCII query which the user supplies, and
printing the default value of that argument. (The user enters the default
by typing <CR> when asked for an argument.) Multiple arguments may be
entered separated by spaces or commas. The macro GPARAM is used in the
program to call for a set of arguments. An example will illustrate:

ABRTN: GPARAM TABLE

TABLE: ABMSG1

10

0

100

AB1

ABMSGZ

10

; EXECUTED WHEN USER TYPES AB

; AB QUERY MESSAGE IF ARG. OMITTED

; DEFAULT VALUE FOR FIRST ARG.

; MINIMUM PERMISSIBLE VALUE FOR FIRST ARG.

; MAX. PERMISSIBLE

; LOCATION IN WHICH TO STORE ARG. ENTERED

: TABLE ENTRY FOR SECOND ARGUMENT .

; ZERO MEANS' END OF TABLE, NO MORE ARGS.

ABMSGI: .ASCIZ/Value of AB1

ABMSG2: .ASCIZ/Value of AB2

Then, at run time, the user may type

*AB 20,30

or he may type

PAGE 41

*AB

Value of ABI (default is 10) ? 20

Value of AB2 (default is 10)*? 30

Note that typing (CR> at the query enters the default value for the

argument, and that entering the character "^" on the command line enters

all the default values for all arguments, as in

*AB ^

This causes ABI and AB2 to receive the value 10. Attempting to enter an

argument which is not within the specified minimum and maximum range will

elicit an error message from DHTIO.

4.13 I/O routines

DHTIO provides for a number of subroutines and macro calls to facilitate

I/O. 1/O may be done to the GT40 only, to the GE Terminet only, or to disk

only. Alternatively, output may be done to the "current output device",

which may be changed among the three devices listed above under program

control or by the user at the console. Output done to the "current output

device" will be routed to whichever device is currently selected.

Following are DHTIO's .1/0 functions:

TYPEGT ARG -- sends the single ASCII character contained in ARG

to the GT40.

Examples: TYPEGT #'A, TYPEGT RO

TYPEGE ARG -- same as TYPEGT, but to the GE terminet

CHAR ARG -- same as TYPEGT, but to the current output device

PRINT ARGPTR -- prints an entire ASCIZ string on the GT40.

PAGE 42

ARGPTR points to the string.
Example: PRINT ERROR

ERROR: .ASCIZ/ Error! /<15><12>

OUTPUT ARGPTR -- same as PRINT, but to current output device

OPENO STRING,[DELETE] -- opens a disk file for output.
STRING must point to an ASCIZ string containing the
file specification of the file to be opened. [DELETE]
is an optional argument; if omitted, and an attempt is made
to open an already existing file, DHTIO will ask you if
you wish to delete the old file. If [DELETE] is present
(its value is unimportant) and the file already exists,
DHTIO will delete the file without asking.

Example: OPENO FILEl,D

FILEL: .ASCIZ/DKl:OUT.TXT/<15><12>

-DUNP BUFFER,LENGTH -- dumps LENGTH bytes from memory

beginning at location BUFFER to the disk file currently
open for output.

Example: DUMP BUF1,#1000 ; dump BUFI to BUFl+777

OPENI [STRING.] -- opens a disk file for input. The file

specification may be pointed to by optional argument
[STRING]; if omitted, DHTIO will ask the user for the

name of the file to open.

Example: OPENI INFILE

INFILE: .ASCIZ/DKl:IN.TXT/<15><12>

LOAD BUFFER,LENGTH -- loads LENGTH bytes from the disk file

currently open for input into BUFFER.

Example: LOAD BUFI,#1000

JSR PC,RLINE -- gets a line of. text from the user into the

DHTIO buffer called TXTBUF.

PAGE 43

4.14 Miscellaneous routines

PUSH ARG -- pushes ARG onto the stack

POP ARG -- pops the stack into ARG

BIN2D #A1,A2 -- converts the value.of the number in A2 to a

five character ASCII string whose characters are the

decimal digits of A2, and puts the ASCII digits into

five bytes starting at Al.

Example: BIN2D #Al,A2

Al: .ASCII/XXXXX/
A2: 129.

causes Al to become

Al: .ASCII/00129/

BINZO #Al,A2 -- same as BINZD, but converts A2 into 6 octal digits

BINZA #A1,AZ -- does a BIN2D if the current radix is decimal, and

does a BIN20 if the current radix is octal.

Note that BIN2D, BIN20O and BIN2A will take negative numbers - in this case,

toey will put a "-" sign in the byte before Al (so the user should leave

this byte blank if he anticipates negative numbers).

RýDJ Al -- replaces leading zeroes in the 5 byte string beginning

at Al with blanks (right-justifies Al).

LADJ Al -- replaces leading zeroes in the 5 byte string beginning

at Al with pad characters which the various output routines

(such as PRINT or OUPTUT) will ignore (left-justifies Al).

JSR PC,YESNO -- waits for the user to type a character. If he

types "N", YESNO returns to the location after the call;
if he types "Y", YESNO skips a word.
Example: PRINT QUERY ; ASK USER A QUESTION

JSR PC,YESNO ; WAIT FOR REPLY
BR NO

PAGE 44

YES: ... ; HERE IF "Y"

NO: ... ; HERE IF "N"

JsR PC,UCRNT -- done after a JSR PC,RLINE, this converts
the characters in TXTBUF to upper-case.

JSR PC,RDRTN -- change radix for all numbers to decimal

JSR PC,RORTN -- change radix for all numbers to octal

JSR PC,KBRTN -- make KB the current output device

JSR PC,GERTN -- make GE the current output device

JSR PC,DSRTN -- make DKL the current output device

JNP EXIT -- exit to monitor

4.15 Special considerations

ICOMND, if defined in the user program, will be an ASCIZ string of commands
(either DHTIO commands or user commands from CONTAB) to be executed by

DHTIO before printing the first "*". Thus any initialization routines can

be automatically executed.

Example: ICOMND: .ASCIZ/AB CD EF/<15><12>

'The character ^C, if typed at DHTIO, causes the routine currently being

executed to quit, and causes DHTIO to come to command level.

The character "D", if typed at the command interpreter while it is. awaiting

arguments, causes the command to be aborted along with any arguments

already typed.

All commands may be upper-case or lower-case.

PAGE 45

In RUG, executing RCOMMISG has the same effect as typing ^C to DHTIO.

The user should note that many of the routines which are available to the

program are also available at command interpreter level as pre-defined

commands. One feature (macros) is available at command interpreter level

which is not pertinent to the program. The pre-defined DHTIO commands are:

KB -- change current output device to KB

GE -- change current output device to GE

DS -- change current output device to DKI

FF -- output a form-feed (^L) to current output device

CR -- output a carriage-return to current ouput device

RD -- change the radix to decimal
RO -- change the radix to octal

EX -- exit to monitor

EM -- enter a macro into DHTIO's macro buffer. A macro is'a
string of DHTIO commands.

PM -- print contents of macro buffer
XM ARG -- execute the contents of the macro buffer ARG times

4.16 The SWITCH file

As was mentioned in section 4.11, the user assembles his program with

DHTIO.MAC[3,3] and a switch file. This switch file is optional; if

omitted from the assembly string, the user will receive all the DHTIO

features described in this section. If memory space is critical, and if
the user can afford to dispense with certain of the DHTIO features, then
DHTIO may be.selectively pared by defining certain assembly switches in the
SWITCH file mentioned earlier. These switches are:

ZNODSO=1 ; suppresses the disk output feature

; and saves 2440 bytes

ZNODSI=1 ; suppresses disk input (saves 720 bytes)
ZNOHIO=1 ; suppresses I/O printout in "?" message

; (saves 554 bytes)
ZNOMAC=1 ; suppresses macro feature (saves 1260 bytes)

PAGE 46

4.2 EDIT

EDIT is the 11/45 editor which is specially designed to take advantage of

the graphic capabilities of the GT40 and of DISP. The full format of the
EDIT call is

:EDIT DKI:PROG1<DKl:PROG2,PROG3

where PROGI is the file specification of the output file, PROG2 is the file
specification of the primary input file, and PROG3 is the file
specification of the secondary input file. The file extension in all three
defaults to .MAC.

The primary input file will be the file from which EDIT will read the first
page for display on the GT40 screen. Most EDIT commands reference this

file, but special commands exist to read from the secondary file. All

output of edited text goes to the output file (using NL: for the output

file is a convenient way to look at a file using EDIT without modifying

it). The most common protocol is for the primary input file to be the same

as the output file, with no secondary input file. This is the case when a

file is being modified. In this case, there is a special syntax; the user

merely types

:EDIT DKl:PROG

Note that if DK1:PROG.MAC doesn't already exist, EDIT will ask if you wish

-to create a new file by that name. Typing "Y" will create a new file by
that name, and give you an empty buffer tb fill.

EDIT will read one page from the file being edited and will display the
first 29 lines on the screen. When editing is complete (upon execution of
the EX command or the EF command, or ^X in real-time edit mode) EDIT will
write out the newly edited file as PROG.MAC, and will keep the old file

(prior to the editing session) as PROG.BAK. If the user decides to abort

an editing session without writing out the file, he may type ^D. This will

cause the .MAC and .BAK versions of the file to remain as they were before

the editing session started. Because of the seriousness of these

consequences, when the user types ^D he will be asked to confirm his

PAGE 47

decision: typing "Y" exits and loses the editing done so far, and typing

any other character leaves you back in EDIT.

In normal editing mode, DISP will display an EDIT cursor somewhere in the

text buffer and the regular DISP cursor at thebottom of the screen. The

user types one or two letter commands, including any arguments the command

requires (arguments are usually strings of characters and may be several

lines long). Commands may be separated by a single alt-mode; commands

that require no arguments may be terminated by a <CR>; all commands may be

terminated with two alt-modes. Separating commands with one alt-mode is a

syntactical convenience only. Commands will not be executed until either a

<(CR> or two alt-modes is typed. At that time, all commands typed in will

be executed. Once the pending commands have been terminated and executed,
EDIT redisplays the screen and shows you the new state of the text buffer;

the text you see is always centered around the current position of the EDIT

cursor.

The EDIT command list is as follows:

B - go to beginning of buffer (move edit cursor to beginning)

A - append a page to the buffer (pages are delimited by ̂ L's)

I - insert a string. String follows the I, ended with alt-mode

G - get contents of save buffer (put at edit cursor location)

S - search. String to search for follows S, ends in alt-mode.

Example: Ssearch for this string$$.
Keep going until end of page, then stop. If no argument,

(e.g. S$3) search for same string as last S.

N - search. If not found in this page, do a P, search
again, and keep going until end of file is reached.
If editing a multiple page,file, and an S search fails,
it is useful to be able to immediately do N$S. This
will search for the same string as the S search, but
not be limited the the current page.

PAGE 48

P - write out this page, read in new page

M - macro feature. This command is of the form

<N>M<ARG> where N is a count and ARG is a

string terminated by two alt-modes. If

ARG is present (it is optional) the string

is placed in the macro buffer. The contents

of the macro buffer is then executed N times

*(N may be 0, especially if ARG is non-null).

Example: 0MSstringS-2D$$ places the commands

into the macro buffer to search for "string"

and delete the "ng", but this won't actually

occur until the user types MSS. Each successive

MS$ will do another search and delete another "ng"

X - save ARG number of lines in the save buffer.

ARG is numeric, such as 3X.

Q - repeat last command line

O - alter ARG number of characters. Does <ARG>DSI

Example: 30new string is this$$

D - delete ARG characters. Examples: 4D, -3D

L - advance cursor ARG lines. Example: 5L

- delete (kill) ARG lines. Example: 5K

C - move cursor ARG characters. Examples: 5C, -4C

? - print out this command list

EN - same as N, but for secondary input file

ET - print ARG lines on the GE terminet.

EX - write out this file and exit to monitor.

PAGE 49

EX1 - go to beginning of file (this works for

multiple page files by writing the rest of

the file out onto a temporary file, and then

reading in the beginning. If you need to reference

something on an earlier page than the current page,

or if a search fails because the search falls off

the end of the file, it may be desirable to

use the sequence EX1SN$$.

EA - append a page from secondary input file to end

.of buffer (not at the cursor).

EF - do an EX and then start up a batch file (see Section 4.A).

The name of the batch file is the argument; file

extension defaults to .BAT, entire file name defaults

to PROG.BAT where PROG is the program being edited.

Examples: EFA.BT1, EFA, EF

Real-time edit mode has an entirely diflerent command set. In real-time

edit mode, each command is a single character, always a control character,

and commands are executed as soon as they are typed. There is no syntax

for most commands, and the user sees the effect of the command on the

screen immediately. The user enters real-time edit mode from regular mode

by typing ^R; the rectangular cursor will disappear from the bottom of the

screen. Characters other than control characters are self-inserting; so

for example, typing an "A" causes an "A" to appear at the location of the

edit cursor. The real-time edit commands are as follows:

^R - enter real-time edit mode. If in real-time edit mode,

display the list of real-time edit commands.

(this list will disappear when the next character

is typed).

^A - move the edit cursor to beginning of line

^E - move the cursor to the end of the line

^D - delete next character (after the cursor)

PAGE 50

'RUBOUT - delete one character before the cursor

^O - insert a blank line to the right of the cursor

^W - delete rest of this line (from cursor to the end
of the line), but leave the carriage-return

^K - kill a line. Deletes rest of line, including

carriage-return

^S - search for string. As you type the string, it will

appear at the bottom of the screen. It should

be terminated by two alt-modes

^C - same as ^S, but does an N search (across page boundaries)

^Q - quote the next character. Allows for insertion of

control characters.

^U - rub out from beginning of line to cursor

^F - move cursor forward one character

^B - move cursor back one character

^L - refresh the screen

^N - move cursor to next line

^P - move cursor to previous line

^T - move cursor forward 8 characters

- move cursor back 8 characters

^V - move cursor forward 29 lines (one screenful)

^Z - move cursor back 29 lines

PAGE 51

^Y - get next page (does a P)

^] - move cursor to beginning of page (does a B)

LOCK-EOS - move cursor to end of page

^\ - does an EX1

^X - does an EF (with no argument)

^@ - puts you temporarily in regular edit mode, allowing

one line of commands to be typed at the bottom of

the screen, then returning.you to real-time edit

mode automatically. Terminate with two alt-modes

ALTMODE - go to regular edit mode.

The user should note that there are several internal EDIT buffers. The

save buffer is filled with text by using the X command, and that text may

be deposited in the selected location with the G command. The macro buffer

contains EDIT commands to be executed repeatedly; it is filled by M and

also executed by M. The search buffer contains the string most recently

searched for (by either S or N) and allows that string to be searched for
again without being re-typed. The command line buffer holds the last line

of commands, and allows it to be executed again (by using the Q command).

The user should also note that the editor creates temporary files on his
direct6ry; these are ordinarily deleted by EDIT as well, so the user
should not be concerned with them. If EDIT should crash and the system

need to be bootstrapped, these files will appear on the user directory;

worse, they will be locked, so that EDIT will not be able to delete them,
and attempting to EDIT anything will result in a DOS error message. If
this happens, they must be unlocked:

:PIP DKI:EDITOR.TMP/UN

will do it.

PAGE 52

4.3 MACRO

MACRO is the DOS assembler. The description of MACRO in the DOS
programmer's handbook is accurate, with the following modification.:

The user has several levels of listing file he may create. The command
string

:MACRO DKI:PROG,/NL:TTI/CRF<DKI:PROG

will create a full listing file, using 120 columns (due to the /NL:TTM) and
a cross-reference file (CRF).

:MACRO DKI:PROG,/NL:TTM<DKI:PROG

will create the full 120 column listing file with no cross-reference.

:MACRO DKl:PROG,/LI:TTM<DKl:PROG

will create a full listing file using only 80 columns.

:MACRO DK1:PROG,/NL<DK1:PROG

will create a mini-listing file which consists only of the symbol table.

This. mini-listing file is not really suitable for listing, but satisfies

RUG's need for a listing file. Any of the longer listing files above will

be adequate for RUG also (see section 4.4) but if the user does not use the

listing feature and does not want an enormous .LST file on his disk area,

using the /NL switch is a convenient way to get by with a short .LST file

which is adequate for RUG's symbol definition needs.

Finally, the user.can specify

:MACRO DKI:PROG,/NL:TTM/CRF<DK1:PROG/L

This final /L will cause LINK to be started when the assembly is finished

(but only if there are no assembly errors).

PAGE 53

4.4 RUG

RUG is a powerful symbolic debugger which replaces DOS's non-symbolic

debugger ODT. RUG takes as an argument the name of the user program. It

loads the program into core, along with the symbol table for the program,

and allows the user to examine the contents of memory locations and to

change the contents. The user may reference symbol names that appear in
his program, and may have the contents of a location typed out as a number

(decimal, octal, signed, or unsigned), as a symbol in the program, or as a

PDP11 instruction. He may type in numbers (octal or decimal), symbols, or

PDP11 instructions. He may do integer arithmetic in octal or decimal.

Finally, the user may set breakpoints and execute his program in a

controlled way, examining the contents of selected locations as the program

is executed. It may even be single-stepped (executed one instruction at a

time).

Calling RUG with the command string

:RUG DKl:PROG

will cause RUG to take the following actions: 1) A search will be

.initiated for DKl:PROG.LST; this file must be present, or RUG will give an

error message.

2) The symbol table in DKl:PROG.LST will be searched and the symbols found
therein will be defined so that they may be referenced by name during the

debugging process.

3) RUG will attempt to locate DKl:PROG.MAP. If found, RUG will read the
relocation constants for PROG from it, which will be added to all
relocatable symbols in PROG's symbol table (those which have an "R" next to
them in the symbol table portion of the listing file). If no .HAP file is
found, RUG will warn the user of this fact, and then assume a relocation
constant of zero. (Recall that the relocation constant applies only to
relocatable symbols; if PROG is an .ASECT with no .CSECT, then the
relocation constant is never used.) 4) A search will be made for
DKl:PROG.LDA, and if it is found it will be loaded into core. If this file
does not exist, RUG will print an error message.

PAGE 54

The file DK1:PROG.LST must exist, but it need not be a full listing file.
See section 4.3 for the use of MACRO to create partial listing files.

If DKl:PROG.MAP does not exist, a relocation constant may still be supplied
to RUG by typing

:RUG DKl:PROG/RC:42642

If DKl:PROG.LDA was obtained by linking together the separately' assembled
modules DKl:PROGI.OBJ,DK1:PROG2.OBJ, and DKI:PROG3.OBJ, the user may type

:RUG DKl:PROG1,PROG2,PROG3

and RUG will load DK1:PROG1.LDA, use DK1:PROG1.MAP for the three relocation
constants (one for each module), and read in all the symbols from
DKl:PROG1.LST, DK1:PROG2.LST, and DKl:PROG3.LST.

When RUG prints its "#", (if the user just typed :RUG), the user may type
just a <CR>. This will cause RUG to enter debugging mode without defining
any symbols or loading any user programs into core.

RUG will allow the user to define approximately 600 symbols, and then will
print the message "TOO MANY SYMBOLS -- THERE WERE N UNDEFINED SYMBOLS".
Extra symbols will merely be ignored by RUG.

All symbols beginning with the letter "Z" and all symbols whose value is
less than 100 will not be defined by RUG. This allows the user to have
"garbage" symbols in his program which will not occupy space in RUG's
symbol table.

When RUG has completed the process of defining user symbols and loading the

user program, it will enter debugging mode and prompt with a "*". At this

point the user may execute any of the RUG commands described below.

Debugging mode may be entered at any time by starting the processor at

17000 if there is a copy of RUG in core.

If RUG is used in conjunction with a user program, the program cannot

extend below location 50000 in memory.

PAGE 55

4.41 Location Opening Commands

The following commands govern the opening and closing of core locations.

foo/ opens location foo and.closes currently open location

foo\ same as above, but opens foo in byte mode

/ when typed at an open location, opens the contents

of that location and closes the original location.

closes the currently open location and opens the

previous location

<CR> closes the currently open location

<LF> same as <CR>, and additionally opens the next location

[same as /, but opens the left hand (source)

argument of the currently openi location or of

the last location opened if no e is open

] same as [, but opens the right hand (destination)

argument

< undoes an indirection chain (of [,/, and] commands)
and opens the original open location.

When RUG opens a location, it types out the contents of that location and

then allows the user to change the contents by typing something to be

entered there. Anything the user types at an open location which is not a

RUG command and which makes sense to RUG will be stored in the open

location when it is next closed. If the location is closed without

anything being typed, its contents will be unchanged. Note that only one

location may be open at a time.

PAGE 56

4.42 Typeout Modes

-RUG has a number of typeout modes which govern the way in which the
contents of a location being opened are to be interpreted. Preceeding a
typeout mode with one alt-mode will set that mode temporarily (so that it
will only have effect until the next <CR> is typed), while preceeding it
with two altmodes sets the mode permanently. When RUG is started, it is' in
instruction mode.

The typeout modes are:

I - instruction mode

S - symbolic mode

C - constant (numeric) mode
A - ASCII mode

R - Radix50 mode

- decimal constant mode (typed again, goes back

to octal constant mode)
"-"- signed number mode (negative constants are printed

with a "-". (Typed again, goes back to unsigned mode.)
Q - radian mode

4.43 Typein Modes

Regardless of the typeout mode, RUG will always allow instructions,

numbers, symbols, or expressions composed of symbols, numbers and "+" and
"-" signs to be typed in to any open location. There are a number of

special typein modes which are available, however:

& - enters up to three radix50 characters
- enters one ASCII character
- enters two ASCII characters

37. - enters the decimal number 37

PAGE 57

4.44 Breakpoints

A breakpoint is a tagged iAstruction in a user program which, when

executed, causes control to return to RUG so that the state of the program

may be examined. The following RUG commands govern the use of breakpoints:

$B sets a breakpoint at the current value of "." (the

location currently open, or the last location to

have been opened)

fooSB sets a breakpoint at foo

$$B types out the locations of all current breakpoints

nSD if n < 10, deletes breakpoint number n. If n > 10,

deletes the breakpoint at location n.

SD deletes all breakpoints

SG starts execution of the user program at the program's

start address

SYMSG starts execution of the user program at SYM

$P proceeds with the execution of the user program. This

is valid only after at least one breakpoint has

been encountered.

nSP same as SP, but sets a proceed count of n for the

breakpoint being proceeded past. This count will

be decremented each time the breakpoint is

encountered, and RUG will not receive control

until the count has gone to zero, so that the

breakpoint will effectively be proceeded past
n times.

^P same as 1SP or just SP

PAGE 58

SN single step. Executes one instruction from the user

program and then re-enters RUG.

nSN Executes n instructions in the user program.

^N Same as 1$N or just SN

SF Same as SN if the current instruction is not a JSR.

If the current instruction (next fo be executed) is
a JSR, SF executes the entire subroutine and then
re-enters RUG.

^F Same as SF

^G Interrupts the user program and enters RUG as if
a breakpoint had just been encountered

In RUG the user is allowed to define 8 breakpoints. When a breakpoint is
encountered RUG will type a breakpoint message of the form:

Bn;SYM/ INC RO ; RO/ 123

where Bn is the breakpoint number, and SYM is the location of the
breakpoint. The user should note that the instruction at SY has not yet

been executed. Other messages RUG uses when entered from the user program

are:

SS; -- single stepping

SB; -- subroutine single step (from a $F)

IMR; -- illegal memory reference (non-existant memory or
attempting to reference an odd address with a word
instruction)

IOC; -- illegal operation code (attempting to execute an illegal

instruction)

BE; -- bad entry (RUG encountered a BPT instruction or bit 4 of

PAGE 59

the PSW when no breakpoint or single stepping was expected)

^G; -- control G (the user typed ^G)

Mn; -- monitor point. One of RUG's monitor points has become

true (see Section 4.45)

Note that including a BPT in the user program is often a'convenient way to
assemble in a breakpoint.

4.45 Monitor mode

Monitor mode allows the user to have RUG monitor his program for the

presence of certain conditions,.and to enter RUG if those conditions become

true.

First the user sets monitor points, which are similar to breakpoints,
except that the user specifies the location to be monitored, the value to

be monitored for, and the condition to monitor for (contents = value,
contents > value, etc.)

RUG will then execute the entire program in single step mode, checking the

conditions in each monitor point after each instruction. This is a slow

process; RUG, when in monitor mode, runs about 80 times slower than the

program executing at full speed. Consequently, monitor mode is only useful
in selected applications, but can provide a powerful tool for finding
obscure bugs.

The following commands are pertinent to m nitor mode:

^E - enters monitor mode. When.in monitor mode, RUG

will prompt the user with ">" instead of "".

This indicates that the program will be single
stepped and will run slowly; this is true even
if no monitor points are set. Conversely,
even if monitor points have been set, if RUG
is not in monitor mode then the program will

PAGE 60

not be single stepped and the monitor points

will not be checked.

^L - leave monitor mode.

SM or SYPNSM - sets a monitor point to monitor location

SYM (if SYM is omitted, monitors ".", the currently

open or most recently opened location). RUG

will ask for the value, the condition, and a

subroutine. The condition may be any-of the

branch instructions, less the initial "B",

e.g. GE, LT, HIS, EQ... the subroutine

should be omitted (type <CR>) unless you wish

to use this feature, which is explained below.

REMEMBER: setting a monitor point has no effect

until you place RUG in monitor mode (with ^E).

Once set, monitor points may be left in place,

and RUG may be shifted into and out of monitor

mode without affecting them.

$SM - lists all currently set monitor points

nSK - if n < 10, kills monitor point number n. If n > 10,

kills monitor point at (monitoring) location n.

SK - kills all monitor points (but does not necessarily

leave monitor mode)

.AND - a flag which, when non-zero, causes RUG to be entered

on a monitor point only when all of the monitoring

conditions become true at the same time. If .AND

is set, RUG will cease to test monitoring conditions

as soon as one is false; thus, if the first test

is the least likely to be true, the monitoring

will run much more quickly.

^T - when typed the first time, enters trace mode. This

effectively sets an internal monitor point and

does a ^E. The internal monitor point records

PAGE 61

the value of PC each time an instruction is

executed, and stores them in a ring buffer of

size 26. Successive ^T's print out the buffer

contents. Thus, if the user program is

jumping into data and halting, trace mode

will show you where the program was for the

last 26 instructions before it halted.

The user may set up to 8 monitor points.

Routines which run at interrupt level will not be monitored unless bit 4 of
the PSW entry of the interrupt vector is set.

If the user specifies a subroutine when setting a monitor point, then the

user subroutine will be run 'once for each instruction executed in the

single -stepping process, and it will be allowed to decide whether the RUG

should be entered. The user subroutine should:

1) not modify any registers

2) set the C bit if it wishes RUG to be entered on this monitor point

Note that the user subroutine may not look directly at the registers, since
they will contain RUG's values, not the program's values. However, RUG
will pass the subroutine a pointer to the first word of the MPT block;

specifying that the monitor point should monitor location RO when you set

it up will cause RUG to give the subroutine a pointer to the user program's

registers.

Examples of the use of monitor mode:

EXi: You want to know if R2 is ever > 100.

R2$M
VALUE: 100

CONDITION: GT

SUBR.:

For the rest of the examples, we will abbreviate the
above process as R2 <GT> 100

PAGE 62

EX2: You want to know if RO is ever 0 when in the subroutine

FOO. Suppose the next label after subroutine FOO is BAR:.
Then three monitor points are needed: RO <EQ> 0,
PC <HIS> FOO, and PC <LO> BAR. In addition, the .AND
flag must be set.

EX3: You have a subroutine called FOO, which takes its
argument in RO and returns the value of the function
FOO(RO) in RO. You want to monitor for FOO(RO) > 1000.
First, set the monitor point

ROSM

VALUE: 1000

CONDITION: GT

SUBR.: PATCH

and then enter, somewher

PATCH: MOV RO,-(SP)

MOV @(RO),RO

JSR PC,FOO

CMP RO,#1000

BGT PATCH1

NOV (SP)+,RO

CLC

RTS PC

PATCHl: MOV (SP)+,RO
SEC

RTS PC

e in unused memory,

; BECAUSE.WE CAN'T MODIFY IT

GET THE USER'S AO FROM RUG-SUPPLIED POINTER

; COMPUTE FOO(RO)

; THE TEST IS FALSE HERE. DON'T ENTER RUG

; THE TEST IS TRUE HERE. ENTER RUG.

4.46 Miscellaneous commands

nST types out the contents of the next n locations on

the GE Terminet

PAGE 63

fpoSE searches for words which reference effective address

foo (such as the offset word in an index mode

instruction)

fboSW searches for words which contain foo

foo: when typed at an open location, causes the symbol

foo to be defined and equal to the address of

the open location

N.!foo defines the symbol foo to be equal to N

foo^K half-kills foo, so that RUG will suppress its use
when doing typeout but will still accept it when

doing typein

symbol$L causes the value of symbol to be monitored constantly

in the 11/45 DATA lights (when the rotary switch

is in the DISPLAY REGISTER position).

^D returns to the monitor

The following are some useful RUG locations:

.H -- highest core address

.B+n-- location of breakpoint number n (if not set, this

location will contain the symbol NOBKPT)
.C+n -- proceed count for breakpoint n, normally set

by doing mSP

.RS -- RUG's program status word

.PS -- user program's program status word

.M -- mask used for SE and SW searches, to be ANDed with
items being matched

.M+1 -- low core limit for searches

.M+2 -- high core limit for searches

Note on searches -- if a SE or SW search succeeds, it will type the address
at which it first succeeds. To continue the search, type "!", and to

PAGE 64

terminate the search, type <CR>.

4.5 PRINT

PRINT is a system program for listing files on the GT40. The format of the
call is

:PRINT FILESPEC

PRINT will print the first screenful, then the word **MORE** and wait for a
user reply. If the user types "space", PRINT will list the next screenful;
if the user types anything else, PRINT will abort output of that file,

print a "#" and wait for a new FILESPEC, unless the user typed ^D (in which
case, PRINT returns to the monitor). PRINT can buffer "space"s, and
advance the correct number of screenfuls.

4.6 LIST and RELIST

LIST is a system program for listing files on the GE Terminet. The format

of the call is

:LIST FILESPEC/SW1/SW2/...

where the switches SW1, SW2 etc. are optional and may appear in any order,

*from this list:

/HE -- print a two-page header with the name of the file in

BIGPRINT, and the date and time of the listing.

/Hl -- print a one-page header with the name of the file

in BIGPRINT

/HZ -- same as Hi, but print an extra form-feed first, to

reverse the paper folding parity

PAGE 65

/NF -- no form-feeds. Suppresses the form-feeds that LIST

.will ordinarily put in every 60 lines

LIST has one very unique property not shared by most system programs: it

runs in background mode, while the user is running other programs. After

the bigprint header is typed out (if any), LIST returns to monitor. The

listing on the GE Terminet continues, and runs even if the user logs out.

The only unsafe operation while .a listing is in progress is to attempt

another listing.. The only ways to stop 4 listing once in progress are to

bootstrap the system or to exit from a program such as PIP with a ̂ C and a

.KI (exiting with a ̂ D will not disturb LIST). If in fact the system does

crash and you need to bootstrap while your listing is in mid-stream, it may

be resumed where it left off by typing

:RELIST

4.7 ITS

ITS is a system program which allows the user to log in on the Al ITS

timesharing system. The user types:

:ITS

and the screen clears, DISP switches to datapoint mode, a ̂ Z is sent to ITS

to attract its attention, and the 11/45 user is logged in to ITS using his

ITS login name (if the 11/45 system knows who you are). When you are done

using ITS, log off there as usual, and type u^ to terminate :ITS and
break the connection to ITS. When exited via "^^", ITS will also switch
DISP back to console mode.

ITS will print the message "ITS is down" if ITS does not respond to the
initial ^Z in 30 seconds.

4.8 SEND and RECEIV

PAGE 66

SEND and RECEIV are programs for transmitting files from the 11/45 system
to ITS, and vice/versa. The format of a call is

:SEND FILESPEC/SW1/SW2...,FILESPEC/SWI/SW2...

The switches, which may appear in any order, are selected from the
following list:

/A -- ASCII file (default)

/B -- binary file

/C -- contiguous file (RECEIV only). RECEIV will make the file
contiguous on the 11/45.

/P -- picture file (old format)

/TO:USER (SEND only)

/FR:USER (RECEIV only) - sets the ITS directory name to

which/from which the file is to be sent/received.

SEND/RECEIV know about most 11/45 users, will send/receive
files to the user who is logged in on the 11/45. The
TO and FR switches are used to override that.

/FI - indicates that this file is not to be sent/received,

but rather to be indirected through, e.g. taken as

a list of files to send or receive. This list may

contain switches or anything else you could type

from the keyboard, but it may not co tain another /FI.

I

/GT and /LT - cause the file being sent tý ITS to be named on

ITS with a file extension of ">" or "<", regardless

of the name of the file on the 11/45. Thus, sending

#DK1:FOO1.NAC/GT,F001.MAC/GT,FOO1.MAC/GT

will result in three files appearing on ITS: FOOl 1,

FOO1 2, and F001 3 (assuming there were no F001's
already there).

PAGE 67

/EX - exits to the monitor after the file it is attached

to has been sent/received. It also logs you off ITS.
Ideal for use in BATCH files (see Section 4.A).

Note that ^D exits to monitor (but only type it after the prompt character
"#" has appeared) and also logs you off ITS.

Note that SEND allows the use of the wild-card feature "*" in much the same

way that PIP does. "*" may appear in place of either the filename or the
file extension for any file specification; SEND will find all files with

that file name (or with that file extension) and SEND them all.

SEND and RECEIV, like ITS, will time out after 30 seconds if they fail to

reach ITS. In this case, the user will get an "ITS is down" message. In

times of very heavy ITS use, it is possible to get the -"ITS is down"

message even if ITS isn't down, if the response time is greater than 30
seconds, or if there are no free job slots. If the user suspects this to

be so, he may try typing :ITS to see what ITS's status is, or he may try

the :SEND/RECEIV over again.

4.9 USERS

USERS prints out the current list of system users, including the UIC for

each user and the ITS login name which ITS, SEND and RECEIV will use when

communicating with ITS for that user.

4.A BATCH

BATCH (also B) is a system program for entering a batch stream, which is a
string of text to be used instead of keyboard typein whenever typein is
called for. If a batch stream is in effect, programs will fetch their
input from the batch stream.

The format of the call is:

PAGE 68

:BATCH FILESPEC

where the file extension, if omitted, defaults to .BAT. The file will be

read in, and used instead of typein until it is empty.

Batch files allow the user to perform long operations consisting of

executing many programs without the user's intervention. Batch files are

most commonly used in conjunction with EDIT. When debugging a program, the

most common sequence is to EDIT a change, MACRO to assemble the change,

LINK, and RUG to load and debug the program. The command strings to MACRO,

LINK, and RUG are likely to be the same each time; making a file called

PROG.BAT which contains this protocol saves the user from typing it in each

time, and waiting for MACRO to finish so that he can type the command

string 'to LINK, etc. A typical batch file might contain:

:MACRO DKl:PROG,/NL:TTM/CRF<DKl:PROG

:LINK PROG,PROG<PROG/E

:RUG DKl:PROG

Then, after each change is edited, the user can exit from EDIT by using the

EF command (or ^X) and the rest of the protocol will happen automatically.

A batch stream may be typed in from the keyboard, by typing:

:BATCH

#<CR>

and then entering the batch stream manually, terminated by a line

containing only a "."

If this manual entry of the batch stream is used, the last batch stream to

have been typed in may be repeated by typing:

:BATCH

#<CR>

$$ (alt-mode,alt-mode)

PAGE 69

Any batch stream which runs MACRO will be terminated if MACRO returns any

assembly errors.

Any batch stream may be terminated by typing ^G. The program which is

running will continue until it needs more input from the batch stream

(remember, it is dangerous to interrupt it before then), but no more input

will be fetched. Instead, input will resume coming from the keyboard.

4.B COPY

COPY is a system program which does disk backup. Each user should have two

disk packs, labelled #1 and #2. The #2 pack is intended for backup.

Periodically, such backup should be done by running COPY. The sequence is

as follows:

:COPY

(turn DKO to LOAD, and remove the SYSTEM disk. Place the backup

disk into drive 0)
DIRECTION OF COPY --

FROM DK1 TO DKO (you type the 1 and the 0 -- COPY waits

for them. They indicate the direction)

TYPE <CR> TO COPY ENTIRE DISK

<CR>

and COPY will copy your disk. When finished, it will inform you if.there

were any errors in the COPY; soft disk errors are recoverable, so that the

message may indicate that there were errors but that the disk has been

corre.ctly copied, or it may indicate total failure to copy the disk. When
COPY is through, you must reload the SYSTEM disk in DKO and bootstrap the
11/45.

4.C VERIFY

VERIFY is a DOS system program for verification of the file structure on

PAGE 70

your disk. VERIFY is described in the DOS/BATCH Handbook. This section
provides some examples of how and when to call VERIFY.

Occasionally, when the system crashes during disk I/O operations, the
directory structure of the disk may become corrupted -- the 'bit maps, free
block queue, and directory entries may cease to agree. When this is
suspected (because of inexplicable DOS errors or any other strange behavior
of the disk) VERIFY should be run as follows:

AS KB:,5

:VERIFY DK 1 N

If the disk file structure is good, VERIFY will run to completion without
errors and will return to the monitor with no output. There are two basic
types of errors: soft errors and hard errors. Soft errors are indicated

by the VERIFY error message LOST BLOCK and the block number, or by FREE

BLOCK and the block number. They are "softP' in the sense that VERIFY can

also fix them with no damage to any files on the disk. These errors should
be corrected immediately. To correct LOST BLOCK and FREE BLOCK errors,
type:

AS NL:,5

:VERIFY DK 1 F

There will be no output, and you are done. All other errors involve files
on disk. The error message will give the name of the file in question; to

correct the error, in general, it will be necessary to delete the file.

Often the file will be readable, and may be salvaged by SENDing it to ITS,

deleting it, then RECEIVing it. Some files/error combinations will not be

readable, and the file must be lost.

After correcting errors of this nature by deleting the file(s) in question,

VERIFY should be run again as above (with arguments DK 1 N) to ensure that

fixing one error has not uncovered another. Often, deleting a bad file

will generate soft errors, and VERIFY will need another pass in fix mode

(DK 1 F) to correct these.

Very occasionally, a file will appear which will not allow itself to be

.deleted in PIP. The user should first attempt to unlock it:

PAGE 71

:PIP FILESPEC/UN

If this fails, the program called SUPERD is designed to delete a certain

class of disk-corrupted files which are not otherwise deletable. Type:

:SUPERD FILESPEC

4.D MAIL and MSGS

MAIL is a system program for directing mail to another user of the 11/45

system, to be delivered the next time he logs onto the system (see Section

2.1). MSGS is a system program for directing a message to the entire user

community; each user will receive the message at login time. To send a

message, type:

:MSGS

and, when MSGS requests, type the message (it may be several lines long)

terminated by a line containing only a ".". To send mail to a particular

user, type

:MAIL USERNAME

and again, when asked, enter the message and a "." line. .If you do not

know the USERNAME of the person in question, you may type:

:MAIL

and then

and MAIL will type the list of known users and their USERNAMES.

If you change your mind while entering a message or while sending mail,
type ^D and it will be aborted.

PAGE 72

4'.E LISP

PDP11 LISP provides the user with most of the useful features of a full
scale LISP. Atom print names are restricted to being three characters in

length, and the print names should be alpha- numeric. This is a shallow

binding LISP with saved values of the variables kept on the stack, along

with function calls and associated information (such as function return

addresses and parameters being passed). There is only one stack.

Currently there is no way for a LISP program to do its own file structured
I-0.

The command :LISP will cause mini-robot LISP to identify itself and prompt

the user with a vertical bar. Expressions may then be evaluated directly
at top level, or the user may type a control-G, which causes LISP to print

a "#" and wait for a set of file specifications. The general form of the

file specifications is:

#DV:OFILEI.EXT[uic],OFILE2.EXT[uic]<IFILE.EXT[uic]

where all standard defaults are recoginized (DV defaults to DKO: and [uic]

defaults to the current user).

In this notation, OFILE1 is the primary output file, OFILE2 is the

secondary output file, and IFILE is the primary input file. If a non-file

structured device is specified, no filename, extension or uic need be

supplied. The primary input file and one of the output files must be

supplied.

Once this file specification has been typed in, followed by <CR>, control

will-be transferred to LISP. If the primary input file was KB: or GK:,

LISP will prompt the input device with a vertical bar and wait for an

S-expression. <CR> and <LF> may be used as atom name separators, but only

a matching number of right parentheses will close an expression. LISP will

then ignore any other characters typed except a following <CR>, evaluate
the expression, and send its value to the primary and secondary output
files. When the output is complete, LISP will once again prompt the input

PAGE 73

device with a vertical bar.

If the input file specified was other than GK: or KB:, LISP will read in,

evaluate, and output each s-expression on the input file. When the last
s expression has been read and evaluated, LISP will prompt the user with
another vertical bar. Bindings established'from previous inputs remain in

effect.

4.E1 LISP control characters

LISP recognizes the following control characters on an interrupt level,

regardless of the device open for input.

CONTROL-D returns control to the monitor.

CONTROL-P suppresses output to the primary output file for

the duration of the s-expression currently being EVAL'd.

If output is off, CONTROL-P will resume output.

CONTAOL-S similar to CONTROL-P, but for the secondary

output file.

CONTROL-G terminates computation of LISP, closes all

input and output files, prints a "##" and waits for a new

set of file specifications. When <CR> is typed, LISP will

resume its computation, but it will take input from the

new input file.

CONTROL-H is the debugging interrupt. It interrupts LISP
but preserves the state of the LISP computation and the state
of all I-0. It will temporarily open the GK: or KB: (whichever
was open last) for input. LISP will respond by issuing the
error message ERROR: EXTERNAL INTERRUPT, and come to top
level with a vertical bar.

The user may then examine the state of his program, change bindings, and
type (CNT) to close the keyboard for input, and tesume computation and I-0

PAGE 74

from the previously opened files.

4.E2 File Specification Error Messages

LISP maintains the following set of error messages which pertain to the
file specification entered at a "#":

SYNTAX ERROR

This error indicates an error in the file specification syntax.

LINKBLOCK ERROR

This error indicates that the monitor did not have

sufficient space for a

buffer for one of the devices specified.

I-0 ERROR

FILE TYPE: PI ERROR CODE: B

This error indicates a problem with one of the files in the

file specification. PI indicates that the file causing the

error was the primary input file; PO and SO are the other

possibilities. The error code is the ASCII character

obtained by adding 100 to the error code in the FILEBLOCK

(see DOS monitor manual, pages 3-82, for a complete

list of these error codes). The error codes which can

appear as a result of an improper file specification

to LISP are:

@ - an attempt was made to open a file for output twice.

B - file does not exists or an attempt was made to open

a file for both input and output.

F - file protection violation.

PAGE 75

J - the UIC referenced is not known to the system.

L - an attempt was made to create an output file with

an illegal name.

0 - the file extension was ".CIL".

END OF FILE ENCOUNTERED

BEFORE END OF EXPR

This error indicates that the input file did not
contain enough right parentheses.

4.E3 LISP Functions

The following are standard LISP functions:

LM -- lambda

NLM -- nlambda

EVL -- eval

-- quote

+ -- addition

- -- subtraction

* -- multiplication

/ -- division

GT -- greater than

GE -- greater than or equal to

PAGE 76

NOT -- boolean not

CAR -- car

CDR -- cdr

RPA -- replace car

RPD -- replace cdr

CNS ·- cons

NUL -- the null predicate

ATM -- the atom predicate

NUM -- the number predicate

LST -- the list predicate

OTH -- the none of the above predicate

= -- the equality predicate

STQ -- quoted assignment

SET -- assignment

AND -- boolean and

OR -- boolean inclusive or

CND -- cond

LIS -- list. Makes a list of its arguments (may take an indefinite

number).

PRG -- prog. Takes two arguments, a list of local variables and the prog
itself.

PAGE 77

RET -- returns a value from a prog.

GO -- jumps to a label within a prog.

GBG -- garbage collector. The value returned is the number of free cells.

CL -- characters to list. This will take input from the input device in

'the form of a character stream, build a list, and return the list as its

value.

LC -- list to characters. Takes a list as argument, and outputs the

character stream corresponding to that list on the current output devices.

SYS -- regenerates and restructures the system. (SYS) should be called
only in dire instances. SYS takes five arguments, which are the size of

the hash table, of atom space, of list space, of the "margins", and the
stack. The margins are areas not normally available to the system, but are
reserved in the event of a list space overflow or a stack overflow. When

an overflow occurs, a soft error message will be generated, and the user
will have access to the margin space while he tries to free more space.
Overflowing the margin causes a hard overflow error, which is not

recoverable. Null arguments to SYS leave the corresponding argument
position unchanged.

RST -- restore. Flushes the stack and restores top level bindings to all
atoms, then returns to top level evaluation.

BRK -- break. Used to set break points in program execution. It prints
out an ID which is determined by its first argument. If the first argument
to BRK is between one and twenty, it will print out one of the twenty
standard system error messages, and if the first argument is outside this
range it will print out BREAK: USER DEFINED, followed by the value of the
first argument. In any case, BRK will then print out the values of all
other arguments passed to it, and then will return to the top level
evaluator.

CNT -- continue. Restarts the program from its state at the occurrence of
*the last BRK. CNT flushes the stack down to the last BRK block, but
restores no atom bindings (thus, there Should be no open lambdas on the

PAGE 78

stack),. and then continues operation. CNT may be used after a user defined
break point, or after a CONTROL-H interrupt. If called with an argument,

CNT returns the value of that argument as the value of the last BRK.

TOP -- top level evaluator

BT -- backtrace. This is a diagnostic routine which has three modes: 1)

no arguments. BT will print out the name of every.function call on the

stack. 2) two numeric arguments. BT will print out everything on the

stack from the beginning of the (arg1th) function call and continuing for

(argZ) function calls. 3) two addresses. BT will dump core between the

two addresses, interpreting everything in between (i.e. pointers into list

space will be followed, and the corresponding lists will be printed out).

LISP's internal representations for numbers and for addresses are

different; numbers are represented internally by odd integers (N is

represented by 2*N+1) while addresses are always divisible by four. When

communicating with LISP, the user should prefix all addresses (for example,

the arguments to BT in dump mode) with @; all other numbers will be

assumed by LISP to be numbers. LISP will also use this convention when

outputting.

4.F The STAR macro

STAR is a macro which enables the user program (using DOS system.I/O calls

only; DHTIO users may not use this feature) to interpret the character ""n

.in a TTY file specification string in the filename or filext positions as a

wildcard, which matches all filnames or filexts on the directory in

question.

When called, the macro .STAR (it must be defined in the MCALLs) expands

into the code for a subroutine called .STAR. The subroutine should be

called as follows:

NOV #LNKBLK,-(SP) ; PTR. TO LINK BLOCK

NOV #FILBLK,-(SP) ; PTR. TO FILE BLOCK

NOV #COUNT,-(SP) ; MATCH COUNTER

PAGE 79

JSR PC,.STAR

MOV (SP)+,MATCH3 ; .STAR RETURNS 3 RESULTS ON THE STACK

MOV (SP)+,MATCH2

MOV (SP)+,MATCH1

.STAR will match the file specified in the linkblock and fileblock against

the directory and device specified in th4 linkblock and filblock. It will

match <COUNT> number of times, and return with details of the <COUNT>th

match. It will return <MATCHI> and <MATCH2> as the filname (radix 50) of

the <COUNT>th. match if the "*" was in the filname position; it will return

<MATCH3> as the filext (radix 50) if the "*".was in the filext position (it
is legal to have two : *,*). All three results will be 0 if there were no

match (at least, if there weren't <COUNT> matches. The user should
normally call .STAR with COUNT starting at 1, and increment COUNT until

.STAR gives the "no match" indication.

PAGE 80

5.0 The 11/40

The PDP11/40 in room 903 supports a number of devices on its own unibus,

and has a high-speed link to the 11/45 system and to ITS. The PHOTOWRITER

and PHOTOSCANNER may be accessed directly from ITS, or they may be

programmed from the 11/40 directly. The 11/40 has associated with it a

symbolic debugger, a loader, and a trivial operating system which

implements teletype I/O and disk I/O to the 11/45 disks.

5.1 Loading the 11/40

The 11/40 may be loaded anytime it is running its ROM loader. For

instructions on bootstrapping the 11/40 ROM loader, see Appendix A.

The program to be loaded into the 11/40 must be assembled with MACRO with

the following assembler statements:

.ENABL ABS

.ASECT

.=1000 ; LEAVE ROOM FOR TROS

or .=40000 ; LEAVE ROOM FOR RUG40

The ENABL ABS statement will cause MACRO Ito produce a .BIN file instead of

a .OBJ file. This .BIN file need not be LINKed. To load the 11/40, the

command syntax is

:11LOAD FILESPEC1,FILESPEC2,etc.

where the files FILESPECI, FILESPEC2, etc. are loaded into the 11/40

sequentially. The syntax of 11LOAD is virtually identical to GTLOAD (see

Section 3.1). The last module loaded in should have a start address. The

last entry on the command line to 11LOAD may have the /R switch; if so,

this file is assumed to be a .LDA file and is loaded and run on the 11/45,

and the next-to-last file should have the 11/40's start address.

PAGE 81

SPECIAL NOTE: There is an unfortunate situation in the 11/40 bootstrap

ROM. Due to the limitations on the length of the ROM program, the ROM

routine cannot clear location 112, yet it must be 0 before the 11/40 can be

loaded. Thus, if for any reason, location 112 becomes non-zero,

bootstrapping will not clear it and the 11/40 cannot be loaded. This is

normally not the case; but a user program may clobber this location. If

the 11/40 doesn't load, check location 112. If it is non-zero, clear it by

hand.

5.2 RUG40

RUG40 is a symbolic debugger for the 11/40. Its features and syntax are

identical to those of RUG (see Section 4.4). To load a user program and

RUG40 into the 11/40, type:

i:11LOAD RUG40,DKl:PROG.LST,PROG

The program must not extend below 40000 to be usable with RUG40. When

RUG40 is ready, it will print a "*" on the teletype (which must be turned

ON-LINE).

5.3 TROS and BOS

TROS is the Trivial Operating System for the 11/40, and BOS is its 11/45

counterpart, the Background Operating System. Together they implement a

set of system macros which handle teletype I/O and disk I/0 to the 11/45

disks. Disk I/O is done at background level on the 11/45 while the 11/45

is running another program. The 11/40 user can read or write a disk file

even while the 11/45 user is accessing the disk.

To call TROS alone (no disk I/O features), type:

:11LOAD TROS,DK1:PROG

or, if RUG40 is being used to debug PROG,

PAGE 82

:11LOAD TROS,RUG40,DKI:PROG.LST,PROG

Tp call TROS and BOS together (TTY I/O and disk I/O):

:'11LOAD TROS,DK1:PROG,BOS/R

or with RUG40 for debugging:

:11LOAD TROS,RUG40,DKI:PROG.LST,PROG,DKO:BOS/R

All macros which follow must be declared in the .MCALL statement.

Format for .TTYWT (teletype output) is .TTYWT PTR, where PTR points to an

ASCIZ string to be printed on the teletype.

Example:

.TTYWT PTR ; TTY OUTPUT

PTR: STRING

STRING: .ASCII/THIS IS THE TTY OUTPUT/<15><12>

.ASCIZ/IT MUST BE ASCIZ TO WORK./<15)<12>

.EVEN

Format for .TTYRD (teletype input) is .TTYRD PTR, where PTR points to a

buffer into which the line of text read from the TTY will be placed.

Unlike .TTYWT,.TTYRD will do only one line at a time.

Example:

.TTYRD #BUFFER

Format for .DKOPN (open a disk file) is .DKOPN PTR, where PTR points to a

disk name block containing the name, device, and UIC of the file to be

opened for input or output. Only one file may be open at a time.

Example:

.DKOPN #DSKNB

PAGE 83

; THIS CALL OPENS DKI:FILNAN.EXT[101,102]

DSKNB: .RAD5O

.RAD50

.BYTE

/FILNAN/

/EXT/

101,102

.BYTE

.BYTE

.WORD ERRRET

; UIC

; DRIVE NO. DKI. (ZERO HERE FOR DKO)
; ERROR FLAG. SET BY .DKOPN

;LOCATION OF THE ERROR RETURN

Note that the drive number must be 0 or 1 corresponding to DKO or DKI. The

UIC must be present -- there is no default UIC. In the event of an error,

control will be transferred to the error routine (here, ERRRET). The error

.flag will indicate the type of error. There are two possibilities: error

flag = 0 means the file was not found, and error flag = 1 means' the file
was a contiguous file. TROS will only ha dle linked files.

The format for .DKRD (disk read) is .DKRD PTR, where PTR points to a header
block which contains details of the transfer. Any number of bytes of data

may be transferred, but they will begin where the last .DKRD left off.

Attempting to read past the end-of-file will give a done indication. If it

is desired to read from the beginning of an already open file, it must be
closed and then re-opened to position the read pointer at the beginning.

Example:

.DKRD #DSKHB

DSKHB: DBC

ABC

DF

BUFPTR

DESIRED BYTE COUNT

ACTUAL BYTE COUNT (WRITTEN BY TROS)

DONE FLAG (END-OF-FILE) (WRITTEN BY TROS)

POINTER TO THE BUFFER TO BE FILLED.

BUFPTR: .BLKB DBC

The desired byte count indicates the number of bytes of data the user
wishes read. In general, the actual byte count will equal the desired byte
count unless'the end-of-file was encountered. If DF is set after the call,

PAGE 84

ABC tells you how many bytes in the buffer are meaningful.

The format for .DKWT (disk write) is the same as for .DKRD, except that ABC

and DF are now meaningless. Note that the same .DKOPN opens an input file

or an output file. TROS will not permit two files to be open at the same

time, so the user must do all input at once and close the file before doing

output, and vice/versa.

.DKCLS closes the disk file currently open.

The format for .CSI (command string interpreter) is .CSI PTR, where PTR is

a pointer to the CSI block, as in this example:

Example:

.CSI #CSIBLK

CSIBLK: TTYBUF

DSKNB

and where TTYBUF is the buffer into which a line of text containing the

file specification of the file to be opened has been read from the

teletype, and where DSKNB is an empty name block, as in .DKOPN.

Example:

.TTYWT #MSGI ; ASK USER FOR NAME OF FILE

.TTYRD #TTYBUF ; GET IT FROM HIM

.CSI #CSIBLK ; CONVERT TO A NAME BLOCK

.DKOPN #DSKNB ; OPEN THE FILE

.DKRD #DSKHB ; AND READ IN A BUNCH OF STUFF!

MSGI: .ASCII/ENTER FILE NAME/<15><12><15><12>

.ASCIZ/#/

.EVEN

TTYBUF: .BLKB 100

CSIBLK: TTYBUF

DSKNB

DSKNB: .BLKW 5

PAGE 85

ERRRET

DSKHB: 1000

0

0

BUFFER

BUFFER: .BLKB 1000

PAGE 86

6.0 The Devices

'The chapter describes the system macros available to interface the user's

program to the various devices on the 11/45 and 11/40 unibusses.

6.1 The ANALOGIC converter

The ANALOGIC converter is a black box which implements 8 D/A channels and

64 A/D channels for conversion of data to drive various devices. The D/A

and A/D channels are accessible to the user via a patch -panel to the left

of the ANALOGIC converter itself.

Two system macros exist for use with the Analogic converter. These are

.A2D and .DZA. To define these macros in your program, the assembler

directive is

.MCALL .D2A,.A2D

Note that there are 24 additional D/A channels which are separate from the

ANALOGIC converter. The .D2A macro will work for channels 10 to 30 as

well. If you intend to use only D/A channels 0-7, the macro .D2AF is

faster and shorter; the syntax is the same.

These macros will now be defined, and when called in a user program they

will expand into code necessary to do digital-to-analog and

analog-to-digital conversions. .D2A takes two arguements:

.D2A CHNUM,VALUE

where CHNUM is some variable which contains the channel number (from 0 to

7), and VALUE is a variable which contains the number to be converted. The

contents of VALUE may range from 3777 (which will produce nearly +10VDC on

the desired channel) to -4000 (-10OVDC). This macro requires approximately

5 usec. delay time for the conversion.

.A2D takes two arguments:

PAGE 87

.AZD CHNUM,VALUE

It will convert the voltage on the channel contained in variable CHNUM, and

will do a busy wait until the conversion is complete (this takes about 10

usec.) The converted value is left in the variable VALUE.

6.2 The X-Y Table

The assembler directive

.MCALL .TABLE

will define a macro called .TABLE which, when called, expands into a set of

subroutines for moving the x-y table. These routines are called using the
convention JSR PC,SUBR. The table subroutines are:

CALTBL calibrates the x-y table and leaves it in position

(0,0)

VELTBL sets up the velocity for the next table movement.

RO should contain the velocity for x and R1 should

contain the velocity for y

ABSTBL moves the table to the absolute location (x,y),

where x is contained in RO and y is contained in RI

RELTBL causes the table to move relative to its current

location. The x and y in RO and Rl respectively

are taken as offsets for the relative motion

and are.preserved so that successive calls of

RELTBL will reference them.

Note: neither ABSTBL nor RELTBL wait for the table to finish
moving. Neither should. be called if there is a chance that
the table is in motion without first calling WTTBL.

waits for the table's motion to finish. WTTBL willWTTBL

PAGE 88

take a skip return if the table motion completes

normally (without running into a limit stop). If

a limit stop is encountered, WTTBL will take a

non-skip return. Thus:

JSR PC,WTTBL

(error return)

(normal return)

WHRTBL returns the table's x position in RO and its y

position in R1.

NOTE: These macros will protect the user from moving the table to a

negative position; motion will stop at zero, and the table will not have

been decalibrated. Similarly, attempting to move the table too far forward

in either x or y will result in a cessation of the table's motion without

running into the physical limit stops or decalibrating the table. WTTBL

will take the error return whenever such a premature stoppage occurs. Note

also that all coordinates kept by the .TABLE routines are relative to the

calibration point, and thus CALTBL always should be the first routine

called.

6.3 The Photowriter

The photowriter is ordinarily accessed from ITS via PW (see PART 2 of this

USER's GUIDE, W.P. 166). The user who wishes to write his own software for

the photowriter may use the package called PW1. PWI is assembled with the

user's program, and implements a number of macros which allow for

line-at-a-time generation of the picture to be photowritten.

Since the photowriter is on the 11/40 bus, the user program will have to

have the MACRO directive .ENABL ABS in order to be suitable for loading

into the 11/40 with 11LOAD.

The user program should not contain a .END statement.

The user program should be assembled with PW1, as follows:

PAGE 89

:MACRO DK1:FOO,FOO<DKl:FOO,PW1[3,3]

This will create the listing file FOO.LST, and also the 11/40-executable

binary file FOO.BIN. To load this binary module into the 11/40 (after

bootstrapping the 11/40 (see Appendix A) the user should execute:

:11LOAD FOO

or, for debugging sessions,

:11LOAD RUG40,FOO.LST,FOO0

The user program should contain the following .MCALL's:

.MCALL .PW1,.PICT1,.PICT2,.LINE,.POINT

.PWI

(Note that the call of .PW1 must come before any user code.)

There should be three labels inside the user program, called PICTUR, LINE,
and POINT. These correspond to the three user subroutines, the three entry
points into the user program from PW1. PWI will transfer control to the

user program at the lable PICTUR once for each picture.. The address LINE
.will receive control at the beginning of each new line of the picture, and

POINT will receive control once for each.point in the picture.

The first thing at the label PICTUR in the user program should be the call
of the macro .PICTI, as follows:

.PICTUR: .PICT1 RASTER, XPOS, YPOS

where RASTER, XPOS and YPOS are locations or registers in the user program.
The raster setting of the three-position raster switch on the photowriter
will be put in RASTER, and will be either 25, 50, or 100. XPOS and YPOS

will be written into with the current location of the photowriter lens, in
cms.*100. (e.g. if the lens is at 3,4 then XPOS will be 300. and'YPOS will
be 400). All three arguments to .PICT1 are optional, and if omitted the
-values of these variables will be thrown away.

PAGE 90

The last item at PICTUR should be a call to the macro .PICT2 of the form:

.PICT2 XSIZ, YSIZ, XPOS, YPOS, RES, NEGPOS, DEIIN, DEMAX

where:

XSIZ and YSIZ are the dimensions of the picture, in points.

XPOS and YPOS are the x and y positions on the film at which

the picture is to start, in cms.*100. (e.g.

XPOS=300.,YPOS=400. for (3,4))

RES is the programmable resolution (see ER command of PW)

NEGPOS is 0 for negative, 1 for positive ¶see NI, PI commands of PW)

DEMIN and DEMAX are minimum and maximum values for data enhancement

(see ED command of PW).

XSIZ, YSIZ, XPOS and YPOS are mandatory arguments. The rest may

be omitted and reasonable defaults will be put in (e.g. resolution

1, negative image, no data enhancement).

Remember, too, that arguments like XSIZ may be variables which hold the

size, or they may be numbers. If numbers, don't forget the "#'.

IMPORTANT: The call of .PICT2 will return control to PW1

At LINE there should be a call- of .LINE, as follows:

LINE: .LINE #PTR

or just: .LINE

If called with the argument, PTR will be taken to be a pointer to a user

buffer containing an entire line of points. In this case, the user label

POINT will never receive control (it still must be defined, though.)

PAGE 91

If called without the argument, it is assumed that the user program will
generate the points one at a time, an PW1 will call the user program at
FVINT to get the points. The last statement in POINT should be .a .POINT,

as:

POINT: .POINT INTEN

where INTEN contains the single byte intensity for the next point. There

may be code after the label POINT and before the .POINT which calculates
the intensity... in any case, the .POINT will return control to PW1.

Note that when debugging with RUG40, the teletype becomes the system
console.

6.4 The Scheinman Arm

The Scheinman arm is normally run from the ITS program ARM, which is

described in PART 2 of this USER's GUIDE (W.P. 166). The 11/45 user who

wishes to write assembly language programs to move the arm using this

controller may do so. The file A implements a number of macros and
subroutines which make the same functions available to the ITS LISP user
and to the 11/45 user as well.

To use this program, the user should assemble his program as a .CSECT, then

link with ARM.OBJ[3,3]. The following system macro definitions should

appear in the user program:

.MCA-LL .ARM, GO, .GOTO, .STATS, .WHERE, .GTASV, .STOP, .MSTOP

.ARM

Note that the call of the macro .ARM defines the necessary globals for
LINK.

ASV denotes an actual state vector; DSV denotes a desired state vector.
The subroutines available (in parentheses), and their.macro calls, are:Ia l w a e

,.GO #DSVPTR (GO) - moves the arm to the state specified by

PAGE 92

DSVPTR. Return is immediate. If no

other motion is currently happening,

GO will start up this request; otherwise,

it will queue the request, and take it

in turn.

.GOTO #GOPTR (GOTO) - moves the arm to the XYZ position and

hand orientation specified in the table

at GOPTR. The format for this table is

given below. .GOTO does a .GO, so

return and queuing are the same as for .GO

.STATS #STPTR (STATUS) - gets the arm status. This will be the

address of the DSV currently being serviced,

if the arm is in motion; it will be a 0

if all movements are done. If the movement

which is underway is part of a .GOTO, the

the DSVPTR will be an internal one, but

STATUS will still return 0 when done.

The value is returned in STPTR.

.WHERE #WHPTR (GETXYZ) - gets the arm position in the coordinate

system of the table. The format of the table

pointed to by WHPTR is given below.

.GTASV #ASVPTR (GETASV) - returns the ASV in the 15 word buffer

pointed to by ASVPTR. .GTASV is the analogue

of .WHEREZ in the frame of reference of the

arm's joint angles.

.STOP (STOP) - stops the DSV currently in progress. It will

servo to the current position vector,

with all velocities 0, then set brakes.

It does not return until brakes are set.

.MSTOP (EMSTOP) - emergency stop. Zeroes all currents and sets

all brakes, and returns.

The format for a desired state vector (DSV):

PAGE 93

DSV: DPO ; desired position of joint 0. If = -10000,

; then this joint is not to be servoed.

DVO ; desired velocitr of joint 0. If -10000,

; the user wishes the system to go to position

; DPO with final velocity 0, and does not

; care how the system gets there. The

; system will choose a maximum velocity for

; this joint which is reasonable for the

; rest of the movement.

EPO ; maximum error in position 0 which the user

; will accept. This number is used to

; determine when to set brakes; see note below.

EVO ; maximum error in velocity which the user

; will tolerate. See note below for implications

; with regard to setting brakes.

; if EVO = -10000, EVO will be assumed to

; be infinity, and when the joint is within

; distance EPO of the goal, the DSV will

; be finished.

DPI

DVI

EP1

EVI

; same as above, but for joints 1-6

DP6

DV6

EP6

EV6

LINK ; if LINK=O, there are no more DSV's
; in this chain. Otherwise, LINK points

; to the next DSV to be done.

PAGE 94

Note on setting brakes: brakes will be set on a particular joint only if
all the following conditions are true simultaneously:

1) The DSV is done, e.g. all positions and velocities are within specified
tolerance limits

2) There are no more DSV's, either in the chain of link pointers, or in the

queue

3) DVn is 0 for the joint in question, and

4) DPn is not -10000 for the joint in question (code DP=-10000 causes the
joint to be skipped over.

Thus, if a joint prematurely finishes and is within its specified error

tolerance, it is carried along until all joints are finished before its

brake is set. Conversely, a joint which is still in motion when the DSV is

finished will not have its brake set.

Format for an actual state vector (ASV):

ASV: POS0
VELO

POS1

VEL1

POS6
VEL6
BRAKES

actual position of

actual velocity of

joint 0
joint 0

; contains a bit =1 for each brake that

; is set (bit 0 <==> joint 0, etc.)

Format for a GO table (argument to .GOTO):

XPOS ; X position of hand

YPOS ; Y position of hand

PAGE 95

ZPOS ; Z position of hand

ALPHA

BETA

GAMMA

CONFIG ; Euler angles for the orientation

; of the hand, and the configuration

; of the arm (see W.P. 69).

VEL ; velocity. Maximum velocity to be

; used by any of the joints in attaining

; this configuration. Range is 10 to 300.

Format for the table returned by .WHERE:

XPOS ; X position of hand

YPOS ; Y position of hand

ZPOS ; Z position of hand

ALPHA

BETA

GAMMA

CONFIG

6.5 The VIDICON

The VIDICON TV camera and picture digitizer is a mainstay of the set of

visual input devices. The usual facility for taking pictures from the

VIDICON is the program CAMERA on ITS (see PART 2 of this USER's GUIDE, W.P.

166). The user who wishes to write an assembly language program which

obtains visual data from the vidicon may call the system macro .VIDIN, as
follows:

.VIDIN BUFPTR,X,Y where BUFPTR points to a 10000
byte picture buffer, and X,Y are the vidicon

coordinates of the lower-left corner of the
image to be scanned. The vidicon coordinate system
ranges from (0,0) in the lower left corner, to
(511,472) in the upper right corner.

PAGE 96

7.0 System Maintainance Notes

This chapter is not intended for use by the general user of the mini-robot

system. It deals with items of interest to the system programmer or other

persons maintaining the system.

7.1 Installing New Users

The procedure for installing a new user on the mini-robot system is as

follows:

1) Enter his UIC on the system disk, by logging in as [1,1] and typing

:PIP [UIC]/EN

Do likewise the new user's disk, mounted on DK1:

:PIP DK1:[UIC]/EN

2) Enter the new user's name, UIC, ITS login name (if he has none, enter

MINI), and his mini-robot mail address (usually the same as his ITS login

name -- but NOT MINI), in the file UNAMES..TXT[3,3]. The format for an

entry is:

UIC.

Mini-robot mail address

ITS login name

Full name

3) Enter him in the messages/mail directory. Due to the nature of the

system interface for messages and mail, this cannot be accessed as a

regular file. It is the file MHNDLR.DTY[3,3]. This file must never be

edited or acted upon by PIP, SEND, or RECEIV. The disk location of this

'file must remain constant. To read in the directory file, start up a RUG

(no file arguments, just type an extra <CR>) and then type:

PAGE 97

177412/ oldval 14140^

177410/ oldval 50000 ^

177406/ oldval -4000^

177404/ oldval 5

This sequence reads the directory from disk.

Now,. the format of the directory in core is:

54776/ current message number

55000/ UIC of first user

55002/ last message number looked at by this user

55004/ undelivered mail item number

55006/

55010/ 0

55100/ UIC of second user

55102/ last message number looked at by this user

55104/ undelivered mail item number

55n00/ 0 ; end of table

To enter the new user, find the first block of 100 words which begins with

a 0 word (current end of table), put his UIC in the first word and make the

last -message number (second word) equal to or less than the contents of

54776 (this will determine whether he sees any old messages when he first

logs in, and if so, how many).

Note that a UIC [n,m] is stored as two bytes: a byte containing n and a

byte containing m.

When the table is updated, write it out to disk by typing

177412/ oldval 14140^

177410/ oldval 50000 ^

177406/ oldval -4000^

177404/ oldval 3

PAGE 98

(It might be useful to write a program to do this disk I/O and table
searching/update).

-Note that the files MAIL.TXT and MSGS.TXT on [3,3] contain the current
messages and undelivered mail items, but these files may not be edited, as

they also contain binary information which EDIT can't handle. MAIL and
MSGS should be the only programs to operate on those files.

7.2 Reading diagnostics

Note that there is a system utility for reading in diagnostics from paper

tape. Load the paper tape reader, and type

:ABSLDR

When the tape is read, the processor will halt.

7.3 Formatting a disk pack

The procedure for formatting a disk pack is as follows:

1) Read in the diagnostic called DISK DATA from paper tape

2) LOAD ADDRESS 200

3) Place the number 2003 in the switch register

4) Place the disk to be formatted in the upper drive only

-5) Start the processor

PAGE 99

APPENDIX A

11/40 START-UP (BOOTSTRAP) PROCEDURE

The procedure for bootstrapping the 11/40 is as follows:

1. Verify that no one else is using the 11/40. If there is someone sitting

at the 11/45 console (GT40) ask him, as 11/45 users sometimes use the 11/40

in -conjunction with their 11/45 programs. Also, check that the photowriter

and photoscanner are not already in use (both should be powered off, unless

you just turned the photoscan on yourself).. If the photowriter or

photoscanner drum is rotating and the lights are blinking, DON'T proceed to
step 2.

2. The 11/40 should have power (manifested by red L.E.D.'s showing on the
front panel). If it does not, you will have to power up the 11/45 (the two

machines are on one power switch) by rotating the three-position rotary

switch on the 11/45 front panel from the OFF to the POWER position. You
need do nothing else to the 11/45.

3. On the 11/40 front panel, press the ENABLE/HALT switch down (to HALT),

then lift it up (to ENABLE).

4. Place the number 173000 in the 11/40 switch register. (Chances are it
is already there: all switches down except 15, 14, 13, 12, 10 and 9.)

5. Press LOAD ADDRESS. (It will pop back up.)

6. Press START (it too will pop up), and you're ready to go.

PAGE 100

.APPENDIX B
11/45 START-UP (BOOTSTRAP) PROCEDURE

The procedure for bootstrapping the 11/45 system is as follows:

1. If necessary, turn the power on. The power switch is a three position
rotary switch on the front panel of the 11/45 CPU, with positions labelled
OFF, POWER, and LOCK. Turning this switch to the POWER position turns on
the computer.

2. Place the RUN/LOAD switch of the uppermost disk drive into the RUN
position. Wait for the top three lights to come on. The disk cartridge
labelled SYSTEM should be mounted in that drive.

3. Place the HALT/ENABLE switch on the 11/45 main panel in the HALT (down)

position. Place the number.177670 into the switch register (switches

15,14,13,12,11,10,9,8,7,5,4, and 3 all up). Press LOAD ADDRESS (it will

pop back up), raise the HALT/ENABLE switch (to ENABLE), and press START.

The GT40 screen should now contain the message WELCOME TO THE MINI-ROBOT

GROUP on the top of the screen, and a "S". Type a rubout at the GT40

keyboard, and'then try typing a character. It should echo on the screen,

along with a rectangular cursor. You are now ready to go.

IF THE SYSTEM DOES NOT RESPOND TO TYPED CHARACTERS:

4. Place the RUN/LOAD switch of the uppermost disk drive to the LOAD

position, wait about 5 seconds, place it in the RUN position, wait for the

three uppermost lights to come on, and go back to step 3.

IF THE SYSTEM STILL DOES NOT RESPOND AFTER EXECUTING STEP 5: Find someone

who knows what to do.

IF THE GT40 DOES NOT DISPLAY CHARACTERS, AND THERE IS NO RECTANGULAR

CURSOR: Try bootstrapping the GT40. See Appendix C.

PAGE 101

APPENDIX C

GT40 START-UP (BOOTSTRAP) PROCEDURE

If in the course of bootstrapping the 11/45 system (Appendix B), the GT40

should be found to not display characters, to not display a rectangular

cursor, or to not have its RUN light on, then it will be necessary to

boostrap the GT40.

1. On the GT40 (11/05) console, place the HALT/ENABLE switch in the HALT

(down) position, and press the START key (this does a RESET).

2. Place the number 166000 in the GT40 switch register. (Bits 15, 14, 13,

11, and 10 all up).

3. Press LOAD ADDRESS (it will pop back up).

4. Raise the HALT/ENABLE switch to the ENABLE (up) position.

5. Press START (it will pop back up).

6. Turn the brightness knob on the GT40 display all the way up. Characters

will now display dimly, and there will beino cursor.

7. If you have not already done so, finish bootstrapping the 11/45 system

(see Appendix B).

8. When the "$" prompt character appears, type ":DISP"<CR>. Turn the

brightness down to about 3/4 of maximum. The word "LOADING" should appear

on the screen, ahd after several seconds, a rectangular cursor should

appear.

PAGE 102

APPENDIX D

PDP11/45 CORE MAP

-- 11/45 CORE MAP --

INTERRUPT VECTORS

4 - MEMORY PROTECT VIOLATION, ODD ADDRESSING FAULT, STACK OVERFLOW

10 - ILLEGAL INSTRUCTION CODE

.14 - TRACE TRAPS (OCCUR WHEN BIT 4 OF PSW IS ON)

20 - IOT TRAPS

24 - POWER FAIL TRAPS

30 - EMULATOR TRAPS (EMT'S)

34 - TRAP INSTRUCTIONS TRAP HERE

60 - TELETYPE INPUT DONE INTERRUPTS

64 - TELETYPE OUTPUT DONE INTERRUPTS

70 - PAPER TAPE READER INTERRUPTS

100 - KW11L LINE CLOCK INTERRUPTS

104 - KW11P PROGRAMMABLE CLOCK INTERRUPTS

124 - DR11B INTERRUPTS

130 - DC11 INTERRUPTS

200 - VIDICON DATA READY INTERRUPTS

PAGE 103

210 - PHOTOWRITER INTERRUPTS

220 - RK11 DISK INTERRUPTS

300 - DL11 INPUT INTERRUPTS (TERMINET INPUT READY)

304 - DL11 OUTPUT INTERRUPTS (TERMINET OUTPUT DONE)

3:10 - DR11C #1 (INTERFACE TO 1140)

320 - DR11C #2 (ANALOGIC CONVERTER)

330 - DR11C #3 (BRAKES FOR MECHANICAL ARM)

340 - DR11C #4 (TO PATCH PANEL LABELLED "DR11C INTERFACE")

350 - XY TABLE X MOTION COMPLETE INTERRUPT

354 - XY TABLE Y MOTION COMPLETE INTERRUPT

00500 - 15000 => DOS MONITOR (APPROX.)

15002 - 24000 => RUG SYMBOL TABLE, IF APPLICABLE.

ALSO, RESIDENT PORTION OF LISTER, IF APPLICABLE.

24000- 50000 => RUG, WHEN APPLICABLE.

50000 - 55000 => GTLOAD, WHEN APPLICABLE (WHEN CALLED BY .GTLD)

55000 - 157360 => USER PROGRAM AREA

157360 -157776 => DOS MONITOR USE

160000 - 174000 => SYSTEM USE ONLY (BATCH, IBATCH, BOS, LIST)

174010 - 174016 => X-Y TABLE

PAGE 104

174020 -

174060 -

174070 -

174100 -

174200 -

.175750 -

175760 -

175770 -

176000 -

176500 -

177400 -

177500 -

177546

177550 -

107560 '-

177570

177600 -

177776

174026 =>

174066 =>

174076 =>

174106 =>

174376 =>

175756 =>

175766 =>

175776 =>

176006 =>

176506 =>

177416 =>

177506 =>

=>

177556 =>

177566 =>

=>

177676.=>

=>

VIDICON

DR11B (UNUSED)

KW11P PROGRAMMABLE REAL TIME CLOCK (USER CLOCK)

DC11 (CONNECTED TO ITS VIA T40)

64 D/A CHANNELS (ONLY 32 IMPLEMENTED SO FAR)

DR11C #1 (INTERFACE TOI1140)

DRl1C #2 (CONNECTED TO ANALOGIC D-A AND A-D CONVERTER)

DR11C #3 (BRAKES FOR MECHANICAL ARM)

DR11C #4 (PATCH PANEL LABELLED "DR11C INTERFACE")

DL11 (INTERFACE TO TERMINET)

RK11 DISK CONTROLLER

PHOTOWRITER REGISTERS (DA, BA, CT, ST)

KW11L LINE CLOCK (SYSTEM CLOCK)

PC11 PAPER TAPE READER

SYSTEM TTY (GT40)

SWITCH REGISTER (INPUT), DISPLAY REGISTER (OUTPUT)

ROM BOOTSTRAP LOADER

PROGRAM STATUS WORD

PAGE 105

APPENDIX E

GT40 CONVENTIONS

This Appendix describes the conventions which the GT40 programmer writing

his own scope programs should follow in order for the system software

(specifically .GTLD and GTLOAD) to be able to load the GT40 when the user's

program is running. These conventions apply only to the programmer writing

his own GT40 programs from scratch; the P user need not concern himself

with this section, since P observes these conventions.

The user's GT40 program must have an interrupt handler for .11/45
interrupts. The interrupt handler must check for the character ^O (ASCII

17), and take certain actions when this occurs.

For example:

300/ DLINT

DLINT: MOV 175612,R0

BIC #177600,RO

CMP RO,#17

BEQ ROM

RON: RESET

CLR 15776

JMP 166000

GET THE CHARACTER IN RO

CLEAR OFF PARITY

CONTROL-O?

IF SO, START THE BOOTSTRAP ROM

THE USER MUST CLEAR THIS MAGIC LOCATION

OR THE ROM WON'T WORK CORRECTLY.

