
Working Paper 164

May 1978

Using Message.Passing
Instead of the GOTO Construct

Carl Hewitt

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Working Papers are informal papers intended for internal use.

This report describes research conducted at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Tech-
nology. Support for this research was provided in part by the
Office of Naval Research of the Department of Defense under
Contract N00014-75-C-0522.

DRAFT April 1978

Using Message Passing
Instead of the GOTO Construct

Carl Hewitt

M.I.T.

Room 813
545 Technology Square

Cambridge, Mass. 02139
(617) 253-5873

SECTION I --- ABSTRACT

This paper advocates a programming methodology using message passing. Efficient programs are
derived for fast exponentiation, merging ordered sequences, and path existence determination in a
directed graph. The problems have been proposed by John Reynolds as interesting ones to investigate
because they. illustrate significant issues in programming. The methodology advocated here is directed
toward the production of programs that are intended to execute efficiently in a computing environment
with many processors. The absence of the COTO construct does not seem to be constricting in any
respect in the development of efficient programs using the programming methodology advocated here.

SECTION II --- INTRODUCTION

The programming problems arising from use of the GOTO construct have become well known
over the last decade. However, removal of the construct from traditional programming languages has
been found by many to be constricting and to result in inefficient programs. A number of proposals
have been advanced to allow the construct in a restricted way e.g. Knuth: 1974 and Reynolds: 19771.

For the past several years I have been investigating the message passing metaphor of computation
and have found that it can be used to conveniently and efficiently implement iterative programs.
PLASMA [Hewitt and Smith: 1975] seems to have been the first concurrent programming language with
no special primitive control constructs for iteration. Iteration emerges as one of the patterns of passing
messages that is inherent in the basic structure of PLASMA. The underlying message passing semantics
of the language [Greif and Hewitt: 1975, Hewitt 1977, Hewitt and Baker: 1977, Hewitt and Attardl: 1978]
led directly to the development of this paradigm for iteration. Before the development of PLASMA the
general view [Allen and Cocke: 1972; Paterson and Hewitt: 1970; Strong: 1971] was that certain recursive
procedures (sometimes called "tail-recursive"] could be recognized by the compiler and "translated" Into
iterative loops using the GOTO construct. On a message passing machine in a language like PLASMA,
no such "recognition" and "translation" is necessary.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

TUR1sS1 3fus WC~im~ -

DRAFT April 1978

DRAFT April 1978

In this paper three problems for which Reynolds 0977] has developed implementations using the
COTO construct are examined. Using the programming methodology advocated here, I did not find the
absence of the GOTO construct to be a limitation in the development of efficient implementations for
any of the problems. However, this does not say that Reynolds [1977] and Knuth [1974] are incorrect in
their claim that the absence of the GOTO construct can be constricting in a more traditional
programming methodology. In my view the fundamental limitation of the GOTO construct is that it
provides for the transfer of control to the target site of the COTO without allowing for the possibility of
sending along a message with the transfer of control. Thus the only way to provide information to the
target site of a GOTO is to use a side effect on some resource shared with the target site.

SECTION III --- FAST EXPONENTIATION

The first problem that will be investigated is to efficiently compute x". I.e. the goal is to develop
an program called exponentiate satisfying the following specification:

if (n 1 0) then (exponentiale.x n) a xn

To synthesize this program notice the following facts:

(exponentiate x 0) = 1

if (n > 0) shen (exponentiute x n) = (x * (exponentlate x (n - 1)))

In the implementation, use will be made of a riles expression of the following form:

(rules expression

(pattern, -+. body)

else

body +1)

such that if the value of expression matches any of the patter then the corresponding body. is executed
else bodyn+1 is executed. If the value of expression matches more than one of the patterni then an
arbitrary one of the corresponding body i is selected to be executed. The rales expression is related to the
guarded commands of Dijkstra [1975] but is derived from an independent source: the PLANNER-like
pattern directed programming languages [PLANNER, QA-4, POPLER, CONNIVER, PLASMA, etc.].

Putting these facts together, the following implementation is derived:

(exponentiate =x =n) a ;xn is computed as follows
(rules n ;the rules for n are

(0 - 1) ;if it is 0 then the value is I
else

(x * (exponentiate x (n - 1)))) ;else the value is x times the value of xn'"

PRIVILEGED COMMUNICATION submitted fpr publication: Please do not circulatel

DRAFT April 1978

DRAFT April 1978 2 DRAFT April 1978

Note the following two additional facts that can help us to optimize the implementation:

(exponentiate x 1) = x

if n is even, tihen (exponentiate x n) = (exponentiate (x * x) (n / 2))

Refining the implementation using the above facts produces:

(exponentiate =x =n) E ;xn is computed as follows
(rules n ;the rules for n are

(0 1* 1) ;if n is 0 then the value is 1
(1 -- x) ;if n is 1 then the value is x
((A (-, 0) (even)) --+ ;if n is nonzero and even

(exponentiate (x * x) (n / 2))) ;then the value is (xax)(/ 2)

else
(x * (exponentiate x (n - 1)))) ;else the value is x * x"' l

In the evaluation of the else clause of exponentiate, it is known that n is greater that I and that it is
not even which implies that (n - 1) is non-zero and even. Therefore the expression

(exponentiate x (n - 1))

will result in redundant testing on the next invocation of exponentiate. However, the above expression
can be expanded to

(exponentiate (x s x) ((n - 1) / 2))

producing the following implementation which does not do any redundant testing:

(exponentiate =x =n) = ;xn is computed as fbllows
(rules n - ;the rules for n are

(0 -4 1) ;if n is 0 then the value is 1
(1 -+ x) ;if n is 1 then the value is x
((A (- 0) (even)) - ;if n is nonzero and even

(exponentiate (x x x) (n / 2))) ;then the value is (xCx)(n/2)

else
(x * (exponentiate (x * x) ((n - 1) / 2)))) ;else the value is x*(xax)(n-1)/2

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

The above implementation is inefficient because it uses extra storage in the recursive invocations of
itself. Applying a standard transformation [Standish et. al.: 1976, Burstall and Darlington: 1977, Strong:
19711 for translating recursive procedures into iterative procedures, produces the following
implementation:

(exponentiate =x =n) E ;to compute x"
(rules n ;the rules for n are

(0 - 1) ;if n is 0 then the value is 1
else ;else the value is given by

(exponentiateJoop x n 1)) ;(exponentiateJoop x n 1) which is defined below

where

(exponentiateJoop =base =index =accumulation) E
;the iterative procedure exponentiateJoop is implemented as follows

(rules index
(1 -+ (accumulation * base))
((even) -+ (exponentiateJoop (base * base) (index / 2) accumulation))

else
(exponentiateJoop (base a base) ((indx - 1) / 2) (base accumulation)))

The procedure exponentiateJoop satisfies the following specification:

if index>0 then (exponentiate.Joop base index accumulation) = accumulation a base index

The above implementation was derived in consultation with Bill Ackerman. It has no "redundant
testing". The message passing aspects of this example are discussed in "Viewing Control Structures as
Patterns of Passing Messages".

SECTION IV --- MERGING TWO SORTED SEQUENCES

The essential aspect of the second problem is to merge two sorted sequences x and y to produce a
third sorted sequence which has all the elements of x and y. The implementation of merge makes use of
the unpack operator [which is a unary prefix operator denoted by "I"] on sequences. For example If x is
the sequence [3 4] and y is1he sequence [9 8] then the following equivalences hold:

[x ly = [[3.4] 1(9 8]] [3 4] 98]
[!xy] = [!3 4] 1[9 8)3 3 4 9 8]

[1x 5 x] = [I[34] 5 [3 4] = [3 4 534]

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

3 DRAFT April 1978

D.RAFT April 1978

The unpack operator is also used in pattern matching where it is restricted in use to matching the
remainder of a sequence:

if the pattern [=x !=y] is matched against [1 2 3] then
x is bound to I and
y is bound to [2 3]

if the pattern [4 =x I_=yj is matched against [4 5] then
x is bound to 5 and
y is bound to []

if the pattern [=x [4 !=y] !=z] is matched against [9 [4 3] 7 8 9] then
x is bound to 9
y is bound to [3] and
z is bound to [7 8 9]

(merge =x =y) - ;to merge two sorted sequences x and y
(rules [x y] ;the rules for x ind y are

([x []] - x) ;if y is an empty sequence, the value is x
([[] yA] y) ;if x is an empty sequence, the value Is y
([[=firstx !=rest.x] [=first.y !=rest.y]] -.
;otherwise let first.x be the first element of x
;rest..x be the rest of the elements of x
;first..y be the first element of y
;resty be the rest of the elements of y

(if (first..x first-y) ;if firstjx first.y
then ;then the value is

[first.x !(merge rest.x y)] ;the sequence of firsts. followed. by the merge of rest.x and y
else ;else the value is

[first..y !(merge x rest.y)])))
;the sequence of first.y followed by the merge of x and rest.y

It is easy to prove that the above implementation meets the following specifications:

if (sorted x) A (sorted y) then (sorted (merge x y))

(elements (merge x y)) = ((elements x) U (elements y))

where (elements z) is the multi-set of all the elements of the sequence z with duplicates preserved and the
U operation likewise preserves duplicates. Using the obvious recursive definition of sorted for sequences
and elements and = for multi-sets, the proof that the above implementation meets the specifications can
probably be automated [Boyer and Moore: 1977; Luckham: 1977; Good, London, and Bledsoe: 1975;
Waldinger and Levitt: 1974; Deutsch: 1973; and Rtich, Shrobe, Waters, Sussman, and Hewitt: 1978].

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

DRAFT April 1978

The above implemeptation of merge is analogous to the first implementation of exponentiate in
that it does redundant testing. The recursive call (merge rest.. y) redundantly tests whether or not y is
empty and the recursive call (merge x rest.y) redundantly tests whether or not x is empty.

Therefore define a new procedure (special.merge first.sl rest-l s2) which merges first.s, a
sequence rests1, and a sequence s2 as follows:

(special.merge =firsts1 =restl --s2) B
(rules s2

([] -+ [first..sl !rest.s1])
([=first.s2 !=rest-1 2]-o

(if (first.s I first.s2)
ihen [first-i i!(specialjnerge firstj2 rest-s2 rest.l1)]

else [first.s2 !(specialinerge first-..1 rest-i rest .2)])))

where specialmerge satisfies the following specification.

if (sorted s2) A (sorted [first.s1 !rest.s1]) then
(specialenerge firstJl rest-sl s2) = (merge [firstsl Irest-.1] s2)

Using special.merge the implementation of the original merge function can be refined to be the
following:

(merge =x =y) =
(rules [x y]

([x []] -4 x)
([[1 y] -+ y)
([[=first.x !=rest.t] [=first.y !=rest.y] -4

(if (first.x I first-y)
then [first..x (specialnmerge first.y rest.y restx)]
else [first.y .|(specialinerge first.x rest.x rest.y])))

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulate!

DRAFT April 1978

DRAFT April 1978

Again using the standard transformation for translating a recursive procedure into an iterative
procedure, special_merge can be written iteratively as follows:

(special-merge =x =si =s2) E (specialmergeJoop x -s s2 [])

where

(specialmergeJoop =firsts1 =restsl =s2 =accumulation) S
(rules s2

([] -+ [!accumulation first_sl !rest.sl])
([=first s2 !=rest-s2] -+

(if (firsts1 .. first s2)
then (specialJmergeJoop first.s2 rest..s2 rest.s1 [!accumulation first_sl])
else (special-mergeJoop firsts1l rest.sl rest.s2 [!accumulation firsts2]))))

where specialmergejoop satisfies the following specification:

if (sorted s2) A (sorted [first.sl !restsl]) then
(specialmergeJoop firstis rests1 s2 accumulation) = [!accumulation !(merge [firstsi !rest-s1] s2)]

This produces an iterative implementation which does no redundant testing.

SECTION V --- Path Existence Determination

The final problem is to write a procedure which will determine whether or not a path (of length
zero or greater) exists in a directed graph from some member of a set [without duplicates] of nodes X to a
member of a set of nodes Y. The implementor is provided with two procedures such that
(immediate-successors Z) is a set of the immediate successors of a node set Z and
(immediate.predecessors Z) is a set of the immediate predecessors of Z. In this section we will use U to
denote the ordinary set theoretic union of sets without duplicates. These procedures satisfy the following
properties:

if (node n) A (node m) then
(m ((immediatepredecessors (n))) if and only if (n ((immediate_successors (m)))

if (node-set Z) then
(immediatesuccessors 2) = Un(Z (immediatesuccessors {n))

if (node-set Z) then
(immediate.predecessors Z) = Un(Z (immediatepredecessors (n))

Below an implementation is defined such that invoking an expression of the form
(pathexists_from X to Y) returns either true or false depending on whether or not there is a path from X
to Y of length zero or greater.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulate!

DRAFT April 1978

DRAFT April 1978

First implement a data structure called a growth that records how much of the graph has been
explored. An expression of the form (create.growth X Y) will create an actor which accepts messages of
the form (insert.ras...predecessorY (node: n)) to insert a node n as a predecessor of Y and messages of the
form (insert _as_successor.X (node: n)) to insert a node n as a successor of X. In both cases the growth
either performs the insertion or reports that the node is already known to be a successor of X or a
predecessor of Y. An expression of the form (oneat.alime r) creates an actor which only allows one
actor at a time access through it to the actor r. The properties of oneat.-t.tlne serializers are analyzed in
[Yonezawa: 1977] and [Atkinson and Hewitt: 19781

In the implementation below, use will be made of a cases expression of the following form:

(cases
(pattern, - bod))

which when evaluated creates an actor with the behavior that if it receives a message which matches any
of the pattern; then the corresponding bodyL is executed and its value is returned as the reply to the
message. If the created actor receives a message that matches more than one of the patterni then an
arbitrary one of the corresponding bodyi is selected to be executed. If a message received does not match
any of the patterns then an error is signaled.

The procedure create.growth defined below creates a growth data structure that records how much
of the graph has been examined. Evaluating an expression of the form (croate.growth X Y) will produce
an actor (cieated by one-et-a-time with one acquaintance which is an actor created by evaluating the cases
expression below) which has two acquaintances which are cells called PREDECESSORS.Y_ and
SUCCESSORS..X whose initial contents are Y and X respectively.

PRIVILEGED COMMUNICATION submitted for publication. Please do not circulatel

DRAFT April 1978

DRAFT April 1978

(create..growth =X =Y)
;to create a new growth for node sets X and Y

(let
((PREDECESSORSY initially Y)
;let PREDECESSORS..Y initially be Y

(SUCCESSORS..X initially X))
;and the SUCCESSORS.X initially be X

(oneat.a.time
;only one activity at a time is allowed in the actor created by the cases expression below

(cases

;the cases for messages received are as follows
((insertasn..redecessorVY (node: =n)) -4
;if the message received is a request to insert a node n as a predecessor of Y

(rules n
;then the rules for n are

((4 PREDECESSORSY) -'
;if n is already an element of PREDECESSORS.Y

"already..present-as.predecessor.Y")
;then this is reported

((4 SUCCESSORS.X) -,
;if n is already an element of SUCCESSORS.X

"already-present-as.successor.X")
;then this is reported

else
(PREDE(PREDECES Y - (PREDECESSORS.Y U (n)))
;else the node n is added to PREDECESSORS.Y
"not.present"))

;and the fact that it is not already present in the growth is reported
((insert_as successorX (node: =n)) -

(rules n
((SUCCESSORS.X) .-

"alreadypresent.as.successor.X")
((4 PREDECESSORS.Y) -,

"already-present.as.predecessor.Y")
else

(SUCCESSORS.X 4- (SUCCESSORS.X U (nj)))
"not-present")))))

Note that it is trivial to establish the following invariants for the above module:

X c SUCCESSORS..X
Y c PREDECESSORS.Y

if (X f Y)=() then (PREDECESSORS.Y f SUCCESSORS.X)=()

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

DRAFT April 1978

The program below uses the either construct [called "amb" in McCarthy: 1963, see also Ward: 1974]
so that the value of an expression of the form (either El E2) is computed by evaluating E1 and E2 in
parallel and selecting the value of whichever one finishes first. When one of these two computations
produces a reply, work on the other one is terminated. We only use the either construct in contexts where
El and E2 produce the same value when both produce values.

The implementation also makes use of the paralleLeor construct [Manna and McCarthy 1970,
Paterson and Hewitt 1971] so that evaluation of an expression of the form (parallealor El E2) begins
computing the values of El and E2 in parallel. If either evaluation produces the value true then the
other computation is terminated and the value of the whole expression is true. If both evaluations
produce false then the value of the whole expression is false. Otherwise the computation continues.

In the implementation below use will be made of expressions of the form (send m to t) to send a
message actor m to a target actor t.

Finally the implementation makes use of the unpack operator for sets. For example if the pattern
(=x !=y) is matched against the set (3). then x is bound to 3 and y is bound to (). Furthermore the match
is nondeterministic in the sense that if the pattern (=u --v) is matched against the set (5 6) then either u
is bound to 5 and v is bound to (6) or u is bound to 6 and v is bound to (5).

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

DRAFT April 1978

(palhexistajrom =X to =Y) a ;to determine if a path exists from a node set X to a node set Y
(if ((X n1 Y) # 0}) ;if X intersect Y is nonempty

then true ;then the value is true
else ;else

(let ((g = (create-growth X Y))) ;create a new growth g for X and Y
(either ;compute the following two expressions in parallel and return the value of either

(successors (immediatesuccessors X) reachY)
;determine whether or not the immediate successors of X reach Y
(predecessors (immediate..predecessors Y) reach.-X))
;determine whether or not the immediate predecessors of Y reach X

where
(successors =S reachY)
;to determine whether or not the successors of a node set S reach Y

(rules S ;the rules for node set S are
() -* false) ;if it is the empty set then the value is false
((=an elementS !=REST.S} -4
;select an element of S and call it an.element.S
;let REST.S be (S - (an.element.S))

(parallelor ;take -the parallel_or of the following two expressions
(successors REST.S reach_Y)
;determine whether or not the successors of REST.S reach Y

(rules (send (insert_assuccessor..X (node: an.element.S)) to g)
;the rules for the result of asking g to insert anelement.S as a successor of X are

("already.present.assuccessor..X" -, false)
;if anelementlS is already present as a successor of X then the value is false
("already.present..as.predecessor.Y" -* true)
;if anelement.S is already present as a predecessor of Y then the value is true
("not.present" -4
;if an.element.S is not present in the growth g

(successors (successors (an.element.S)) reacEhY))))))
;then the value It is determined by whether or not its successors reach Y

and
(predecessors =S reach..X)

(rules S.
(11 - false)
((=an.elementS !=REST.S) -+

(parallel_or

(predecessors REST.S reachX)
(rules (send (insert as-predecessorY (node: anelement.S)) to g)

("already.presentas.predecessor.Y" -+ false).
("already.presentas_successor.X" -# true)
("not.present" -#

(predecessors (predecessors (an..element.S)) reach.,X))))))))

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulate!

DRAFT April 1978

DRAFT April 1978

I realize that the growth actor g created in the above implementation will probably be a serious
bottleneck in a multiprocessor system. The next version of this paper will contain a further refinement
of the growth abstraction that alleviates this bottleneck.

Mathematically the successors and predecessors of a node set W can be defined as follows:

(successors W) UitN (immedite..successors i W)

(predecessors W) -Ui(N (immediate..predecessors i W)

where N is the set of non-negative integers and for any function f the notation fi denotes the i-fold
composition of f with itself. I.e. for any function f, fO is the identity function and for any non-negative
integer i, (fi+1 x) is (f (Ii x)). The problem to be solved can be formally specified as follows:

(path_exlistsrom X to Y)=-true if and only if ((successors X) n (predecessors Y))#()

if (path_,existsj.rom X to Y)=false, then ((successors X) 1` (predecessors Y))=()

It is not difficult to demonstrate informally that the implementation meets the above specifications,
First note that the following mathematical equivalences hold:

((successors X) a (predecessors Y))j)} if and only if (X n (predecessors Y))#()
((successors X) n (predecessors Y))#() if and only if ((successors X) n Y)14()

Furthermore the following properties hold for (successors ... reachY) and (predecessors ... reach.X).

(successors X reachY)=true if and only if ((successors X) N Y)#()
(predecessors Y reach...X)=true if and only if (X n (predecessors Y))01)

if (successors X reach_Y)=-false, then ((successors X) n Y)=()
if (predecessors Y reachX)=false, then (X n (predecessors Y))={)

if (X n Y)={), then .(predecessors V !creachX)=(predecessors (immediate..predecessors Y) reach.X)
if (Xn VY)=}, then (successors X reaehY)=(successors (immediate.successors X) reachY)

It is trivial to prove that the implementation satisfies the specifications if (X n Y))fl. On the other hand
if (X n Y)=(), then the above properties together with the specifications of the either primitive are
sufficient to establish the result.

Work is underway to formalize the above proof using the methods of Hewitt and Attardi [19781.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

SECTION VI --- CONCLUSIONS

In "Viewing Control Structures as Patterns of Passing Messages" there is a sketch of a proof that
any concurrent program which uses the GOTO.construct (e.g to jump out of the middle of blocks] can be
effectively transformed without any significant loss of efficiency into one which uses only ordinary
message passing [see also McCarthy: 1960 and Steele: 1977]. Theoretically this settles the question of
whether or not the absence of the GOTO is constraining in some absolute sense. However, in practice, I
do not recommend that this transformation be used. Instead programs should be synthesized by
progressive refinement of their specifications and implementations as has been attempted in .this paper.

The result that programs can be written efficiently without use of the GOTO construct does not in
and of itself imply that programs can be written efficiently without use of assignment commands. Greif
and Hewitt [1975] have developed a procedure for effectively transforming any sequential program which
uses assignment commands into an equivalent program which does not have any assignments. However,
it is not known whether or not efficiency bounds which they derive are the best that can be obtained for
typical sequential algorithms. Assignment commands are a significant source of difficulty in concurrent
programs. They can limit the amount of concurrency that is possible. Furthermore they can easily be a
source of subtle bugs because of race conditions. It is interesting to note that the programs derived in
this paper for fast exponentiation and merging sorted sequences do not make use of assignment
commands yet are essentially as efficient as the corresponding programs derived by Reynolds using
GOTO and assignment commands. In fact the only use for assignment commands in the programs
considered in this paper is to implement communication between independent concurrent processes.
These assignment commands are only used inside resources protected by serializers [Hewitt and Atkinson:
1975] which carefully schedule access to the resources which they are protecting. It is currently an open
research question what the important uses of assignment commands are in a system with a large number
of processora connected by a high-bandwidth packet-switched network beyond implementing
communication between independent concurrent processes.

Because of the development of extremely large scale integrated circuit chips and geographically
distributed computer networks, it appears that at some point in the not too distant future almost all
programs will execute in a multiprocessor environment. Thus we should design our programming
languages and algorithms to be appropriate for this new environment.

SECTION VII --- ACKNOWLEDGEMENTS

The comments and criticisms of Bill Ackerman, Russ Atkinson, Gerry Barber, Roger Duffey,
Henry Lieberman, Kenneth Kahn, and Guy Steele have materially improved the presentation and
content of this paper. The examples which are treated in this paper were proposed as Interesting ones to
investigate by [Reynolds 1977]. Conversations with John Reynolds, Robin Milner, and Rod Burstall at an
Edinburgh outing in July 1977 provided the impetus for the development of the ideas in this paper.

I was inspired to investigate the message passing paradigm for programming languages by a
lecture which Alan Kay delivered at the MIT Artificial Intelligence Laboratory in November 1972 on a

PRIVILEGED COMMUNICATION submitted for publication: Please-do not circulate!

DRAFT April 1978 DRAFT April 1978

DRAFT April 1978

preliminary version of the SMALLTALK-72 language [Shoch: 1977] which has subsequently evolved into
SMALLTALK-76 [Kay: 1977 and Ingalls: 1978]. The SMALLTALK work in turn builds on SIMULA
[Birtwistle et. al.: 19733. This paper and companion papers [Baker and Hewitt: 1977, Hewitt and Atkinson:
1977, Hewitt and Attardi: 1978] attempt to extend this programming language paradigm into the realm of
concurrent programming.

The attempt by Sussman and Steele to relate PLASMA and the actor message passing model of
computation to the lambda calculus influenced them to abandon dynamic [fluid] scoping in favor of
lexical scoping so that their language SCHEME [Steele and Sussman: 1978] could also use the paradigm
for iteration developed for PLASMA. Steele [Steele 1977] has further developed, the paradigm in the
form of a working compiler for SCHEME.

SECTION VIII --- BIBLIOGRAPHY

Atkinson R. and Hewitt, C. "Specification and Proof Techniques for Serializers" IEEE
Transactions on Software Engineering. 1978. To appear.

Boyer, R. S. and Moore, J. S. "A Lemma Driven Automatic Theorem Prover for Recursive
Function Theory". IJCAI-77. Cambridge. August 1977. pp 511-519.

Baker, H. J. Jr. and Hewitt, Carl "Incremental Garbage Collection of Processes" MIT A.I. Memo
454. Decembei, 1977.

Deutsch, L. P. "An Interactive Program Verifier" Xerox Palo Alto Research Center. Report No.
CSL-73-1. May, 1973.

Dijkstra, E. W. "Guarded Commands, Nondeterminancy, and Formal Derivation of Programs"
CACM. Vol. 18. No. 8. August 1975. pp 453-457.

Good,D. I.; London, R. L.; and Bledsoe, W. W. "An Interactive Verification System" IEEE
Transactions on Softwared Engineering. Vol. I. 1975. pp 59-67.

Greif, I. "Semantics of Communicating Parallel Processes" MAC Technical Report TR-154.
September 1975.

Greif, 1. and Hewitt, C. "Actor Semantics of PLANNER-73" Proceedings of ACM
SIGPLAN-SIGACT Conference. Palo Alto, California. January, 1975.

Hewitt, C. "Viewing Control Structures as Patterns of Passing Messages" A.I. Journal. Vol. 8. No.
3. June 1977. pp. 323-364.

Hewitt, C. and Atkinson, R. "Synchronization in Actor Systems" Proceedings of Conference on
Principles of Programming Languages. January 1977. Los Angeles, Calif.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

DRAFT April 1978

DRAFT April 1978

Hewitt, C. and Attardi, G. "An Axiomatic Denotation Specification of a Concurrent Programming
Language" MIT Working Paper. May 1978.

Hewitt, C. and Smith, B. "Towards a Programming Apprentice" IEEE Transactions on Software
Engineering. SE-1, 1. March 1975. pp. 26-45.

Hewitt, C. and Baker, H. "Laws for Communicating Parallel Processes" IFIP-77. Toronto. pp
987-992.

Hewitt, C. and Baker, H. "Actors and Continuous Functionals" IFIP Working Conference on
Formal Description of Programming Concepts" August 1-5, 1977. St. Andrews, New
Brunswick, Canada. MIT A. I. Memo 436A. MIT/LCS Technical Report 194. December
1977.

Knuth, D. E. "Structured Programming with GO TO Statements" Computing Surveys.
December 1974.

Luckham, D. C. "Program Verification and Verification-Oriented Programming" Invited paper at
IFIP-77. Montreal. August 1977. pp 783-793.

Ingalls, D. H. H. "The Smalltalk-76 Programming System Design and Implementation" Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages.
January 23-25, 1978. Tucson, Arizona. pp. 9-16.

Manna, Z. and McCarthy, J. "Properties of Programs and Partial Function Logic" Machine
Intelligence 5. Edinburgh University Press. 1970.

McCarthy, J. "Recursive Functions of Symbolic Expressions and their Computation by Machine -
I" CACM. Vol 3. No. 4. April 1960. pp 184-195.

McCarthy, J. "A Basis for a Mathematical Theory of Computation" in Computer Programming in
Formal Systems P. Braffort and D. Hirschberg (eds.). North Holland. 1963. pp. 33-70.

Kay,A. "Microelectronics and the Personal Computer" Scientific American, September 1977.

Paterson, M. S. and Hewitt, C. E. "Comparative Schematology" ACM Conference Record of
Working Conference on Concurrent Systems and Parallel Computation. 1970. Available
from ACM.

Reynolds, J. C. "Programming with Transition Diagrams" Report DAI-37. Department of
Artificial Intelligence, University of Edinburgh. Also Report CSR-4-77. Department of
Computer Science, University of Edinburgh. July, 1977.

Rich,C.; Shrobe, H. E.; Waters, R. C.; Sussman, G. J.; and Hewitt, C. E. "Programming Viewed as
an Engineering Activity" MIT A.I. Memo 459. January 1978.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulate!

DRAFT April 1978

DRAFT April 1978 15 DRAFT April 1978

Shoch, J. F. "An Overview of the Programming Language Smalltalk-72". Convention
Informatique 1977. Paris, France.

Standish, T. A.; Harriman, D. C.; Kibler, D. F.; and Neighbors, J. M. "The Irvine Program
Transformation Catalogue". Department of Information and Computer Science. University
of California at Irvine. January 1976.

Steele, G. L. "Debunking the 'Expensive Procedure Call' Myth" MIT Artificial Intelligence Memo
443. October 1977.

Steele, G. L. and Sussman, G. J. "The Revised Report on SCHEME a Dialect of LISP" Artificial
Intelligence Memo 452. January 1978.

Strong, H. R. "Translating Recursion Equations into Flow Charts" Journal of Computer and
System Sciences. June 1971. pp 254- 285.

Waldinger, R. J. and Levitt, K. N. "Reasoning about Programs" Artificial Intelligence Journal.
Vol 5. 1974. pp 235-316.

Ward,S. A. "Functional Domains of Applicative Languages" Project MAC TR-136. September
1974.

Yonezawa, A. "Specification and Verification Techniques for Parallel Programs Based on
Message Passing Semantics" MIT/LCSITR-191. December, 1977.

PRIVILEGED COMMUNICATION submitted for publication: Please do not circulatel

