
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 159 November 1977

HIERARCHY IN KNOWLEDGE REPRESENTATIONS

by

Jon Doyle*

.Abstract:

This paper discusses a number of problems faced in communicating
expertise and common sense to a computer, and the approaches taken by
several current knowledge representation languages towards solving
these problems. The main topic discussed is hierarchy. The importance
of hierarchy is almost universally recognized. Hierarchy forms the
backbone of many existing representation languages. We discuss several
technical problems raised in constructing hierarchical and almost
hierarchical systems as criteria and open problems.

* Fannie and John Hertz Foundation Fellow

This research was conducted at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology.. Support for the
Laboratory's artificial intelligence research is provided in part by
the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract number N00014-75-C-0643.

Working papers are informal papers tntended for internal use.

INTRODUCTION

This paper discusses a number of problems faced in
communicating expertise and common sense to a computer, and the
approaches taken by several current knowledge representation languages
towards solving these problems. The main topic discussed is hierarchy.
The importance of hierarchy is almost universally recognized.
Hierarchy forms the backbone of many existing representation languages.
We discuss several technical problems raised in constructing
hierarchical and almost hierarchical systems as criteria and open
problems.

The issues raised in the study of hierarchy are used in
examining the. abilities and inabilities of several current languages
for knowledge representation. The systems discussed include FRL
[Goldstein and Roberts 1977, Roberts and Goldstein 1977a, 1977b], OWL
[Szolovits, Hawkinson and Martin 1977], KRL [Bobrow and Winograd 1977a,
1977b], and NETL [Fahlman 1977]. Each of these systems has been
designed with differing goals, styles and ambitions in mind. The goals
of FRL are modest. FRL not a programming language or a set of strong
commitments, but rather a set of conventions for using a data structure
generalizing the traditionally useful concept of property lists. OWL
is strongly directed by a desire to remain close to English in
expression, and is evolving as an expert problem solving and language
understanding system. KRL is an ambitious project with few concrete
commitments.and a desire for extreme flexibility. NETL attempts to be
relatively complete in its ability to express several forms of
knowledge, and is structured to allow a radically parallel
implementation.

HIERARCHY

Hierarchy is an important concept. It allows economy of
description, economy of storage and manipulation of descriptions,
economy of recognition, efficient planning strategies, and modularity
in design. It has had an important place in many theories of
engineering, problem solving, and computer science. It has also been
important in the design of many knowledge representation languages.
There are, however, numerous problems associated with the
representation and meaning of. hierarchy, particularly in its
interaction with problems of equality.. In this section we discuss the

problem of the individual/prototype distinction, two types of multiple
descriptions, and almost hierarchical descriptions. In Appendix 1 we
discuss and efficient representation of these forms of descriptions.

Ipdividuals

The distinction between individual and prototype is a slippery
problem. This section will not present any solutions or definite
conclusions, but is intended to indicate that problems do exist and
should be considered carefully by representation theorists and language
designers.

In many representational systems, individuals are considered to
be instances of prototypes, but cannot themselves be prototypes. There
are cases, however, when this rigid separation causes problems. What
is an individual and what is a prototype may change depending on what
world the object is viewed from. An example is that within a design of
a radio, resistor R-23 is an individual, distinct from all other
resistors in the circuit. In the real world, R-23 is a prototype for a
resistor - each individual radio built will have its own instance of R-
23, and each of these instances will be distinct from other resistors.

For another example, consider a description of a person named
Fted to be a description of an individual in reference to other people.
We may also wish to regard that description as a prototype when
considering Fred in different hypothetical situations, or on different

days, in which the more detailed descriptions of Fred are considered to

be individuals in the set of descriptions of possible Freds. One might

also use an individual as a prototype in other ways. Consider a

description like "He's a real Fred." or "Half my students are
Napoleons.".

As an extreme example, one can imagine that"there exist

infinite chains of individual/prototypes derived from an infinite

process of further specification. [Moore and Newell 1973] Consider the

pedigree expert, to whom a change in ancestry means a change in nature.

Since each person has parents, and they in turn are persons and so

have parents, the: person with no ancestry serves as a prototype for the

person with known parents, who serves as a prototype for the person

with known parents and grandparents, and so on. At each level, there

is a prototype describing the person with a known set of ancestors,

which serves as a template for describing the individuals that would

result from differing possibilities for the next layer of ancestors. In

more abstract terms, one can always turn an individual into a prototype

by adjoining a set of properties, and splitting the individual into the

set of individuals such that each of these is distinguished by one of

the set of properties.

The reason for distinguishing individuals is so that questions

of equality can be reasoned about. Presumably only individuals can be

decided to be equal or unequal. This means that questions of

individuality might be tied to what questions of equality are being

asked. For example, one common type-of entity used in reasoning is

that of the anonymous or unidentified individual. Such an entity is

known to be an individual, but may be determined to be the same

individual as some other individual. Suppose we wish to reason about

some unidentified bird. Our prototype for a bird might be a duck. In

this case, our anonymous bird would be thought of as a duck until

proven otherwise.. This adds an additional complication to the

distinction between prototypes and individuals. In general, if the

individuality of a description depends on some factor, there must be

some way of describing the determiner and the dependence. Some studies

aimed at elucidating these distinctions and problems would be very

valuable.

Multiple Descriptions

The use of multiple descriptions of an object has been a

popular idea. There have been two forms of multiple descriptions

studied. The first is that used in the representation languages, where

multiple descriptions are used as a method for factoring descriptions

into several smaller, more generally useful sets of features. This

allows more sharing of descriptions in the data base, and allows

investigation of properties based on relevance criteria. For instance,

if the topic involves the hair color of a person, a procedural system

might choose to investigate only descriptions of physical appearances,

rather than also searching through descriptions of the person as a

professor or as a pianist.

A quite different sort of multiple description occurs when is

described as a shared part of other objects, rather than as a common

instance. In this form, the description is specified in terms of other

descriptions, but the other descriptions share structure. In the

simpler form of multiple descriptions, each inherited property of a

description is usually derived from just one of its descriptions (or

from a common ancestor of two of its descriptions if the property can

be-i !nherited from either one.) For example, Bobrow and Winograd

(1977a] present a use of KRL in describing a particular event as both a

"Visit" and a "Travel". In contrast, the other form of multiple

description uses coincidences between structure inherited from distinct

descriptions to derive new information and constraints. An example of

this might be a node in a circuit which. is both the input of one stage

of the circuit and the output of another stage of the circuit. This

imposes some important demands on the representation system, but allows

an important problem solving advantage.

Multiple descriptions which share structure can be used to

reduce the complexity of the tools needed to solve problems. In

contrast to the simpler form of multiple descriptions, which by

factoring descriptions may lead to reduction in the amount of simple

inheritance computations needed (a change in quantity but not quality

of the computation), multiple descriptions sharing structure can

transform problems frop ones requiring arbittrary search, perhaps even

problem solving in an uncomputable domain, into problems with
straightforward or algorithmic solution. This is exemplified by the
SLICES form of multiple description developed by Sussman .[1977]. In
his example, the use of multiple descriptions for a circuit allows the
avoidance of the tool of full-fledged algebraic manipulation in a
domain of multivariate rational functions. The multiple descriptions
allow the problem to be solved instead with simple linear and numerical
algebra,. a domain in which straightforward algorithms exist. A crucial
aspect of this effect is that the multiple descriptions interact.
Information in one description produces constraints on other
descriptions. This then derives new information by resolving the new
constraint with the previously existing constraints. [Stallman and
Sussman 1977] If all the descriptions are simple in structure
themselves, this frequently allows solution of problems by simple
tools.

The most important problem caused by this form of multiple
description is that it leads to almost hierarchical descriptions, as
described in the next section.

Almost Hierarchical Descriptions

In many cases, a strictly hierarchical decomposition of the
structure of an object cannot be.made. Particularly when components of
a decomposition must be connected in some sense, modules must share
subcomponents, thus destroying the pure hierarchy. This means that
what appears hierarchical at one level may not be at the next level
down. Consider Sussman's favorite example, the following circuit
diagram:

Here the hierarchical description of the circuit may mention one stage
(containing the capacitor and left inductor) connected to another stage
(containing the right inductor), but at the same time, the description
may refer to the fact that the left and right inductors are actually
two windings of a transformer. This does not exhaust the description,
as there are many more views of these components in terms of DC bias
paths, AC signal paths, and other parts of the circuit.

While such forms of descriptions can be precisely indicated (as
in [Sussman 1977]), they cause problems in implementing hierarchical
memory systems. For instance, one can try to use a purely hierarchical
system to describe the almost hierarchical system by using EQUAL
statements to denote equality, as in the following diagram:

The arrows denote the parents of each described object, that is, the
reason for each object's existence. In this diagram, both the two sub-
boxes and the EQUAL statement have the outer box as their parent, while
the identified objects have their enclosing sub-box as their parents.
This means of identification necessitates some form of pattern

Y_

I m

matching, for answering a question about an object requires that all
known descriptions (of the form "the X of the Y of the ... ") of the
object be computed and compared against the set of relevant EQUAL
statements. This process is extremely painful. This process is, as we
shall see, essentially the ohly one possible in several representation
systems.

The pattern matching can be avoided by the following method,
but at the expense of losing the ability to assign meaningful reasons
for the existence of objects. This approach involves creating the
shared object at the level of the equivalence, and then passing this
object down the hierarchy to the descriptions sharing the object. This
approach .is used in one of a series of hierarchical descriptive systems
investigated by Sussman and Steele.

The use of this technique has several implications. First, the shared
object has more than one parent in the hierarchy (the two sub-boxes),
but these parents are not the reason for the object's existence - the

reason is the EQUAL statement - and so the objects which share the
object cannot be considered in isolation. Second, all connections

between objects must be known at the outset, for one cannot identify
two components of already existing structure. This makes the use of

multiple descriptions extremely difficult, as one cannot then add newly

discovered descriptions to existing ones.

Another method, used in Fahlman's NETL system and in another of

the Sussman-Steele systems, is that of equivalence links. In this

method, distinct objects are used, as in the first scheme above. These

then are directly connected by a bi-directional EQUAL link.

This scheme allows each hierarchical module to be considered as an
entity in itself, since each sub-box has its own representation of the
equivalenced object. This also allows reasonable explanations to be
constructed, since the justifications for information transmitted
across the EQUAL link can add the link to the justification. This
makes sense since the parent of the EQUAL link is the module at which
the statement of equality is being made, as above.

A crucial requirement for implementing this method is that the

representation of parts of objects be first class entities themselves.
That is, such equivalences refer to the intensional objects of
descriptions, and not to the denotations of these objects. If parts of
descriptions are not themselves objects of description, then
equivalences cannot even be stated. For example, one might wish to say
that the SON of the SON of a PERSON is the same as the GRANDSON of a
PERSON, with the effect that information can be stored and retrieved
under either description. This is not possible in FRL, KRL and other
systems. In these, one can only reference the denotation of a slot in a
frame or unit, but one cannot refer to the slot itself. The only
possibilities are either to use canonical representations (a method
with well-known difficulties) or to use interface functions which keep
pairs of equivalenced descriptions and handle the search for requests
and insertions. This is the pattern matching solution described above.

Even when all substructures of entities are themselves entities
for discussion, as in NETL and OWL, other problems must be considered.
For instance, an object might be described in several distinct ways,
but not all these descriptions can be held at one time. The Necker

cube is a drawing that has two distinct views. Contradictions arise if
both descriptions are held simultaneously. Fahlman calls this problem
the copy-confusion problem.

The copy-confusion problem takes several subtle forms. One
form is the conflicting view example of the Necker cube. Another form
is the recursive description problem, in which an object (like an
amplifier) is described in terms of other objects of the same type.
The problem here is that in separating the properties of one copy of a
description from another (for instance, distinguishing between the gain
of the amplifier and the gains of its stages). Fahlman [1977] presents
algorithms for accessing multiple descriptions which take care to avoid
these problems.

Other Considerations

Once a system represents substructures as first-class entities
in their own right, as is necessary for representing the almost
hierarchical descriptions above, it becomes possible to be very
economical in allocating storage for descriptions. That is, it becomes
possible to represent knowledge in a way which uses no more storage
than is logically necessary. Appendix 1 discusses such methods, in the
context of the algorithms and techniques of NETL.

LANGUAGES FOR KNOWLEDGE REPRESENTATION

One of the primary requirements for a knowledge representation

system is that the language have a clean semantics. [Hayes 1974, 1977]

Without a well-defined semantics for the language primitives, it

becomes difficult to decide how to encode knowledge, and to decide what

a given representation means. Thus one major concern of designers of

knowledge representation languages should be to provide a well-defined

semantics..

One endeavor I feel worth a good bit of effort is the study of

representation semantics. Brian Smith [1977] has begun work in this

area, and I would urge that this field receive more attention. The

benefits of such a theory are numerous. Smith makes a particularly

nice statement of the practical use of such a theory:

"To put this point in a more practical light, suppose that there

are 8 representation systems, named A through H. In order to

evaluate them, it is necessary to-know what they are saying. It is

not the role of a theory of semantics to say that one of them, say

system G, is empirically correct. Nor should it say that three of

them are better than the other five. Instead, it should identify

whether each of them is coherent and internally consistent, and it

should set forth just what the empirically-testable claims are that

each of them makes. Given this semantic basis, one is then in a

position to evaluate their theoretical content and their empirical

validity." [Smith 1977, p. 193

In the rest of this section, I will discuss aspects of each of

the foll owing representation languages: FRL [Goldstein and Roberts

19771, OWL [Szolovits, Hawkinson and Martin 1977], and KRL [Bobrow and

Winograd 1977b]. The NETL system [Fahlman 1977] will be discussed in

Appendix 2. One of the major difficulties in understanding these
systems is the lack of published description. FRL and NETL are

outstanding in the precise, detailed nature of the specification of

their operation, and, in FRL's case, an easy to use public version of

the system with which to experiment. KRL and OWL have, unfortunately,

12

few published details with which to understand their systems. There is
no publicly usable version of NETL or (as far as I know) KRL-O. The
only existing implementation of OWL is based on a representation with
far less descriptive power than that described here.

FRL

FRL is a language for manipulating data structures called
"frames". FRL frames are a generalization of property lists. A frame
is a structured entity that can have an arbitrary collection of
properties called "slots". Each slot has several "facets" describing

various types of information. Each facet contains several "datums"n ,

and each datum can be annotated with a list of "comments".

FRL has three primary mechanisms with a system imposed meaning,

and several other features whose meanings are up to the user. The most

important mechanism is that of inheritance. Any frame can have a

special slot, the "AKO" slot, which contains a list of other frames

from which the frame inherits slot information. If a request for some

slot information is made of a frame, all of the AKO pointers will be

followed recursively, and all information in these ancestor frames

which matches the request will be returned. That is, if the WEIGHT

slot interrogated but does not exist in the CLYDE frame, the AKO

pointers will be traced upwards through ELEPHANT, MAMMAL, ANIMAL, and

PHYSOB (or some such hierarchy) until the desired information is found.

Inheritance operates by keyword matching. Additional procedural or

indirection information must be used if a slot at one level means the

same as a differently named slot at another level. For instance, the

frame definitions must specify special information if requests of the

TRUNK of CLYDE are to inherit from the NOSE of MAMMAL.

Thus FRL inheritance could act as a virtual copy mechanism (see

Appendix 1) for the frame data type. Unfortunately, the FRL authors do
not explain its use as such. Instead, they offer it as a uniform
mechanism for all types of inheritance. For example, [Goldstein and

Roberts 1977] presents an AKO hierarchy in which GROUP AKO PEOPLE

(which is fine, as both GROUP and PEOPLE denote sets of persons), and

PERSON AKO PEOPLE, which is clearly wrong. And, although they

acknowledge that problems exist, the FRL Primer [Roberts and Goldstein
1977a] suggests using AKO relationships to represent part/whole and
other types of relationships.

FRL has another mechanism for default values of slots. Any

slot can have a set of default values associated with it. Under the
normal inheritance procedure, if the value (a particular facet of a
slot called the "$VALUE" facet) is not to be found in the frame. or its
ancestors, a similar search is run on the frame and its ancestors for
default value specifications. If any defaults are found, they are used
as the answer.

FRL has a mechanism for procedural attachment. Any slot can
have "$SIF-ADDED", "$IF-REMOVED", and "$IF-NEEDED" facets which are run
whenever a value is added to, removed from, or requested of the $VALUE
facet.

There are several conventions in FRL which do not yet have a
system defined meaning. These include the "$REQUIRE" and"$PREFER"
facets and the standard "CLASSIFICATION" slot of frames. The $REQUIRE
and $PREFER facets are used to specify requirements on and preferences
about values for frame slots. However, these only have meaning to a
matching procedure. As yet, FRL has only a rudimentary matcher which

has not been documented. (A forthcoming paper by Rosenberg and Roberts

is promised.) Thus any value may be specified for a frame slot. It is
up to the user to call the predicates and functions in these facets and
to interpret the results. This means that there is really no way to

create-a defined concept (that is, a frame defined by certain

properties) and have the system treat the new concept as such.

The CLASSIFICATION slot is used to distinguish, somewhat

confusingly, between frames representing individuals and frames.

representing prototypes or sets. Presumably, this classification would

be of interest to the matcher also. Currently, however, nothing seems

to use this distinction: one can even create an instance of an

Individual (which by inheritance is itself an individual). In fact,

one can have a. generic frame as an instance of an individual. This may

be useful: the point is that the system does not care.

Just as FRL has no system defined meaning for individuals,

there is also no explicit way of splitting the subframes of a frame

into distinct classes. If one wishes to represent the fact that

mammals and reptiles are distinct types of animals, the best that can

be done is to give some slot of mammal (such as bloodedness) a
requirement that will be true for mammals and false for reptiles (such
as WARM-BLOODED?).

There is also no system convention for distinguishing between
the typical member of a class and the class itself. This is necessary
for reasoning that the size of the typical person is distinct from the
size of the set of persons. In fact, the confusion of the AKO
hierarchy presented in [Goldstein.and Roberts 1977] mentioned above
(PERSON inherits from PEOPLE) can probably be traced to this missing
convention and to the use of the GENERIC classification to distinguish
sets from individuals.

Possibly the major extension called for in FRL would be the
ability to describe the frame concepts by name rather than by having to
write programs to effect these descriptions. Several of the
limitations of FRL pointed out by its authors can be traced to this
lack. For example, one cannot attach procedures to arbitrary forms,
but only to values: similarly, one cannot attach comments to a subset
of the slots of a frame. A related situation is that FRL has no
context mechanism. This also require making explicit all entities
which might be context dependent. Most of the problems I have
mentioned are also due to the second-class nature of frame slots. For
example, one frequently useful statement to make about a slot is the
type of its filler. In FRL, this must be done by saying ($REQUIRE
(AKO? :value <type))). This is embedding a clearly declarative type of
information about the slot itself within a (possibly obscure) LISP
function.

Another possible extension would be to make FRL a programming
language. At present, it is strictly a collection of functions for
manipulating the frame data structures. Although one can attach three
standard forms of procedures to slots, there is no easy way to control
their application. All real control must be written in LISP, and
cannot be described and used in terms of frames themselves. I
understand that experiments in using frames as rules or productions
have been undertaken, but naturally such mechanisms require substantial
development of the frame matching system.

OWL

OWL is a formalism for representing knowledge which is intended
to be as close to English as is convenient. The basic entity in OWL is
called a "concept". Concepts are constructed by "specialization" of
other concepts. Thus each concept is of the form C = (genus
specializer), where "genus" is the parent, concept being specialized, an
the "specializer" is a symbol or a concept which distinguishes C from
other specializations of the genus. Specializations of a genus are
intended to be subtypes of the genus, so that a concept usually
inherits properties from its genus. There are several flavors of
specialization, each conveying a different sense and a different set of
rules for inheritance.

Information is also expressible as "attachments". The
attachment of concept A to concept B is notated as [A B]. Attachments
are something like universally accepted statements, with meaning.s
including "B is the value of A", "B is a characterization of A", and "B
is an attribute of A". Each concept has an associated "reference
list", which contains pointers to

[1] all specializations of the concept directly under the concept
in the hierarchy,

[2] some concepts whose specializer is the concept in question
(these are called the "indexed aspects" of the concept), and

[33 to all other concept to which the given concept is linked by
attachment.

As mentioned above, there are several discriminations in the
forms of specialization. These are indicated by one of seven meta-
attributes as (F*<meta-attribute> G). In such a concept the genus is
the entire combination F*<meta-attribute>, and not just F alone. The
forms of specialization are as follows:

[1] *R - Restriction. (F*R G) is an F required to have property G.
[2] *T - Stereotype. (F*T G) is a type of F, but does not

necessarily derive any properties from G.
[3] *S - Species. (F*S G) represents a subspecies of F which is

disjoint from the species represented by (F*S H) for any H distinct

from G.
[4] *I - Instance. (F*I G) is an instance of F, which is distinct

from all other instances of F.

[5] *A - Aspect. (F*A G), in other terminology, is a slot of type

F. in the description of concept G.

[6] *X - Inflection. (F*X G) is used to specify grammatical or
interpretive modifications of F, where properties are derived from

both F and G.

[7] *P - Partitive. (F*P G) denotes semantic inflection. Its

properties derive from either F or G depending on the context of

interpretation.

Two other forms of expressing information in OWL are
predication, in which a concept represents the assertion of a property

of another concept, and naming, in which one concept is declared to be

the name of other concepts.

It is my feeling that there is an interpretation of all of

these mechanisms which is semantically clear and useful, or nearly so.

Unfortunately, the existing discussions of OWL do not discuss any of

the details necessary to understanding the meaning of most of these

mechanisms. For example, concepts normally inherit properties from

their genus. The precise cases for this need to .be spelled out. But

even before that is done, what does property inheritance mean in OWL?

Are the values, characterizations, and attributes kept on reference

lists inherited? Are their reference lists inherited as-well? Are

names and predications inherited? How is naming implemented? What are

the allowable combinations of specializations? Can an instance itself

be instanced? I am told that there are fairly clear ideas about

several of these questions in the minds of the designers, but also that

they are still evolving.

For example, it would seem that one can describe almost

hierarchical structures in OWL, since aspects of concepts are

themselves concepts. However, to implement the links stating an

equality between two concepts requires some definite mechanism whereby

any property discovered for one will be inherited by the other.

Perhaps mutual naming or characterization can be used to implement

this, but since the exact nature of these mechanisms has not been
defined, I cannot say how this would be done.

One mechanism which has been described, at least in terms of
the above mechanisms, is that of the inheritance of slots of concepts.
This is done by a mechanism called "derivative subclassification" in
which specializations of concepts are organized to reflect the
hierarchy organizing the specializers. By this means, if both PIG and
DOG have the genus ANIMAL, then (TAIL PIG) and (TAIL DOG) are arranged
under (TAIL ANIMAL). Thus if (TAIL ANIMAL) exists and has some
property, then both PIG and DOG will inherit this aspect, and (TAIL
PIG) and (TAIL DOG) will have the property by inheritance as well. This
mechanism is also important in the function calling method used in the
OWL-I interpreter.

Another aspect of OWL (which presumably would occur in other
systems as well) is that two distinct hierarchies are needed, one for
semantic concepts and one for grammatical concepts. This is because
OWL, as a language understanding system, needs one classification in
terms of grammatical characteristics of text symbols (which would
contain the word "dogs"), and another classification in terms of the
ideas they denote (which would contain "a set of dogs" but. not "dogs").
There are also many interwoven hierarchies in the world. Perhaps these
can be represented using the reference list mechanisms, but as I stated
above, I cannot tell. This distinction would seem useful in aiding the
implementation of a Weyhrauch-like meta-circular description of OWL.

One of the most exciting aspects of OWL is that it can
interpret its own representations as programs. Unfortunately, the
existing interpreter is based on a far less expressive theory than that
mentioned above. Once the existing theory is .defined precisely, I feel
it would be valuable to have a working interpreter. I would suggest,
as a source of problems to solve in working out the semantics of the
language, that an attempt be made to write an OWL interpreter in OWL
itself. In many cases, this dramatically highlights any deficiencies
existing in the expressiveness of the representation or in the
definitions of the semantics of the representation.

KRL

KRL-O (hereafter KRL) is similar in a number of ways to FRL,
but semantically much less clear and practically more complex to
program. A useful way of understanding KRL is as FRL in a baroque
setting of features. KRL "units" are essentially the same as FRL
frames. KRL provides further specification and defaults corresponding
to FRL AKO relationships and defaults, although Bobrow and Winograd
[1977b] state that the basic KRL .inheritance mechanism does not effect
inheritance of slots. (I am unable to tell what it does do.) As in
FRL, slots are second-class objects, so that multiple descriptions
cannot have identified substructures. KRL also lacks a context
mechanism. KRL units come in several flavors. Since KRL has lots of
matchers, these distinctions generally mean something, although what
they mean is up to the particular matchers being used. The categories
of units are:

[1] Basic, which describe distinct prototypes,
[2] Specializations, which are non-exclusive refinements of Basics,
(3] Abstract, which are untyped prototypes, as opposed to Basics,
[4] Individuals, which are distinct from each other,
[5] Manifestations, which are "Ghosts" or instances of Individuals,
[16 Relations, which are prototype statements of relationships, and
[7] Propositions, which are instances of Relations.

KRL includes an elaborate matching framework, and several
unspecified standard matchers. One of the assumptions of the KRL
authors is that the matching process is the basis for most of the
processing in a KRL-based system. This is reflected in.the fact that
most of the complexity of the matching framework is to allow arbitrary
forms of control to be written into the matcher. This allows matches
ranging from simple syntactic comparisons to full-fledged
multiprocessing backtracking recognition procedures. However, no
language is provided for controlling the matching process. To
implement the match control structure, one uses either the underlying
INTERLISP or the KRL agenda. This lack of coercion by KRL on the
structure of the matching process means that KRL really has nothing to
say about the matching process - all meaning and actual content is up

to the procedures written by the user.

KRL also includes a control structure based on closures and
queues. Like FRL, KRL has IF-ADDED and IF-NEEDED (but not IF-REMOVED)
procedural attachments. The basic control primitive available is the
insertion of a process into the priority queue. A global scheduler is
responsible for actually running the processes on the queue. The
processes are specified by the procedure names in addition to a named
environment. The mechanisms for handling these funargs are called
"procedure directories" and "signal tables". For any really complex
control, the KRL must resort to INTERLISP, since the language for
controlling the agenda consists simply of the process priorities.

Conclusion

There are several difficult problems to be faced in
constructing hierarchical systems for representing knowledge. The
distinction between individuals and prototypes is not sharp. The
quality of being an individual often makes reference to some particular
set of questions about the equality of the individual with other
individuals. This is frequently a question that depends upon the goals
of the descriptive and reasoning processes. To represent almost
hierarchical systems in which multiple descriptions share structure
requires that parts of structures be full-fledged objects of discussion
themselves. This is necessary in order to state equivalences and other
relationships between pieces of hierarchical structures.

Frame theories provide more descriptive power than many logic-
based systems because they provide explicit handles on descriptions.
This permits one to manipulate the descriptions, rather than just
interrogating descriptions as occurs in logic-based systems. Explicit
handles allow one to state how to use a description. This advantage
does not only apply to the main objects of descriptive structure, the
frames, but also to their parts, the slots. To forego handles on the
internals of descriptive objects is to revert to a logic-like
limitation on the use of these descriptions.

Acknowledgements

I wish to thank Candy Bullwinkle, Johan de Kleer, Scott
Fahlman, Lowell Hawkinson, Beth Levin, Bill Long, Marilyn Matz, Bruce
Roberts, Steve Rosenberg, Brian Smith, Guy Steele, Gerry Sussman, and
Peter Szolovits for many helpful discussions. I have been supported
during this research by a fellowship of the Fannie and John Hertz
Foundation.

References

[Bobrow and Winograd 1977a]
Daniel G. Bobrow and Terry Winograd, "An Overview of KRL, a Knowledge

Representation Language," Cognitive Science, Vol. 1, No. 1,
1977.

[Bobrow and Winograd 1977b]
Daniel G. Bobrow and Terry Winograd, "Experience With KRL-0, One Cycle

of a Knowledge Representation Language," IJCAI-5, pp. 213-
222, August 1977.

[Fahlman 1977]
Scott E. Fahlman, "A System for Representing and Using Real World

Knowledge," MIT Ph.D. Thesis, September 1977.

[Goldstein and Roberts 1977]
Ira P. Goldstein and R. Bruce Roberts, "NUDGE, A Knowledge-Based

•Scheduling. Program," MIT AI Lab Al Memo 405, February 1977.

[Hayes 1974]
Patrick J. Hayes, "Some Problems and Non-Problems in Representation

Theory," Proceedings of the AISB Summer Conference, 1974, pp.
63-79.

[Hayes 1977]
Patrick J. Hayes, "In Defense of Logic," IJCAI-5, August 1977, pp. 559-

565.

[Moore and. Newell 1973]
J. Moore and.A. Newell, "How Can MERLIN Understand?," Department of

Computer Science, Carnegie-Mellon University, November 1973.

[Roberts and Goldstein 1977a]
R. Bruce Roberts and Ira P. Goldstein, "The FRL Primer," MIT AI Lab AI

Memo 408, July 1977.

[Roberts and Goldstein 1977b]
R. Bruce Roberts and Ira P. Goldstein, "The FRL Manual," MIT AI Lab Al

Memo 409, September 1977.

[Smith 1977]
Brian C. Smith, "Levels, Layers, and Planes: The Framework of a Theory

of Knowledge Representation Semantics," forthcoming MIT
Masters Thesis, 1977.

[Stallman and Sussman 1977]
Richard M. Stallman and Gerald Jay Sussman, "Forward Reasoning and

Dependency-Directed Backtracking in a System for Computer-
Aided Circuit Analysis," Artificial Intelligence, Vol. 9, No.
2, (October 1977), pp. 135-196.

[Sussman 1977]
Gerald Jay Sussman, "SLICES: At the Boundary Between Analysis and

Synthesis," MIT Al Lab, Memo 433, July 1977.

[Szolovits, Hawkinson and Martin 1977]
Peter Szolovits, Lowell B. Hawkinson, and William A. Martin, "An

Overview of OWL, a Language for Knowledge Representation,"
MIT LCS, TM-86, June 1977.

[Woods 1975]
William A. *Woods, "Whats in a Link: Foundations for Semantic Networks,"

in Bobrow and Collins, editors, Representation and
Understanding, pp. 35-82.

Appendix 1: Storage Efficiency

One important benefit possible in systems with first-class
entities for entity substructures is an efficient representation of

storage. The basic idea is that if one can indicate and use the

equivalence of descriptions, then one can always store new information

in the form that requires the least amount of new structure to be

added.

Scott Fahlman [1977] has developed a system which uses such a

space economizing representation. He describes a method for

representing hierarchical data structures which uses no more storage

than is logically necessary, and a set of algorithms for manipulating

this storage representation. In addition, the representation can be

extended to cover several other types of knowledge representation of

interest to artificial intelligence research. These extensions will be

discussed later. As an extra bonus, most of these algorithms can be

implemented in a radically parallel fashion which makes many previously

expensive computational steps cheap and widely usable.

The basis of this theory is the concept of virtual copies of

data structures. The virtual copy concept captures the essence of what

is commonly called inheritance and makes the nature of this operation

clear. Several previous attempts at defining inheritance have been

semantically unclear, leading to inexpressible concepts or erroneous

operation. These problems are discussed at length by Woods [1975] and

by Fahlman. The following is Fahlman's own description of the virtual

copy concept:

"What we really want is to create virtual copies of entire

descriptions. These descriptions can be arbitrarily large and

complex pieces of semantic network. When we learn that Clyde is an

elephant, we want to create a single VC link from CLYDE to TYPICAL-

ELEPHANT and let it go at that, but we want the effect of this

action to be identical to the effect of actually copying the entire

elephant description, with the CLYDE node taking the place of

TYPICAL-ELEPHANT. It must be possible to augment or alter the

information in this imaginary description without harming the

original. It must be possible to climb around on the imaginary
copy-structure and to access any part of it in about the same
amount of time (speaking in orders of magnitude) that would be
required if the copy had actually been made. But we want all of
this for free. We just cannot afford the time or memory-space
necessary to actually copy such large structures whenever we want
to make an instance or a sub-type.of some type-node, especially
since the type-node's description may itself be a virtual copy of
some other description, and so on up many levels. A description
may also contain other descriptions -- the parts of an object, for
example -- that are themselves expressed as virtual copies. We
want all.of this structure to be virtually, but not physically,
present." [Fahlman 1977, pp. 32-331

The virtual copy concept is a data structure concept, and is
not a set-theory or predicate-calculus concept (at least in current
formulations of these theories).

(a] VC is not MEMBER. Here I am interpreting MEMBER in set-
membership terms; that is, if B is a set, known to be such that
each of its elements has certain properties, then the assertion A
MEMBER B.means that A shares all of these properties. That is,
exceptions cannot be made.

[b] VC is not PART-OF. Many early semantic net schemas are
incorrect due to transmission of properties across a. variety of
relationships. Although on some occasions properties of the whole
can be "inherited" in some sense by. the parts (for example, the
wings of a yellow canary are themselves yellow), this is not true
in general. 'In particular, it is usually not true that the parts
are the same sort of object as the whole. Systems which use the
prototype/instance inheritance mechanism to also transmit
properties from wholes to parts are simply looking for trouble and
courting confusing complexity. For example, one might find that
the weight of a tree is transferred to its arboreal inhabitants.
("What is yellow, weighs 4500 pounds, and goes "cheep, cheep"?")
Such a use of an inheritance mechanism must work by forcing the
explicit inhibition of most properties, rather than explicitly

indicating the few actually inherited properties.

[c] VC is not INSTANCE. Here I am interpreting INSTANCE in a
predicate-calculus sense; that is, if A INSTANCE B, then A can be
thought of as a term derived from B by substituting another term in
for some variable occurring free in B. Like the MEMBER
interpretation above, this does not allow exceptions to be made.

Instead, one can view the meaning of A VC B as saying that
during any query, a question about A can be asked by making an actual
copy of the structure described by B, using side effects to make any
modifications local to A, and then asking the question of this
clobbered instance. The extensibility comes from the ability to add
parts to B's structure, and allowing the instance to acquire any
modifications made to the parent.

Fahlman presents algorithms for searching through data
structures defined by VC links, modifiers, and substructure
representations. These algorithms allow a minimal amount of space to
be used to represent the.structures, but at the cost of introducing
some search into the algorithms. This element of search is invisible
in the parallel algorithms, but makes a difference in serial
simulations. I here describe the problem, and point out how the search
can be avoided by using more space than is logically necessary. I
couch my language in data structure terminology, although Fahlman data
structures are somewhat different from the.normal concepts.

Suppose there is a prototype record called PERSON. One can
view this prototype as a generalized CONS function which creates
individual PERSON records on request, each of which will act as though
it has .all the default fields for PERSON filled with their default
values. Actually, the instance will have no storage allocated for the
fields unless necessary to fill one with a non-default value. One of
the fields a PERSON record can have is a SON field, whose value is
another instance of PERSON. Since this other instance of PERSON has
itself a SON field, each PERSON record has implicit in it a field for
the SON of the SON. We can make this an explicit field, called
GRANDSON, of the PERSON record prototype. We then create a SON

substructure for the SON field of PERSON and equivalence this to the

GRANDSON field.

The algorithms developed by Fahlman allow the' following to be

done. Let FRED be an instance of the PERSON record. We may learn that

the SON of FRED's SON is a world-conquerer called ALEXANDER. Since we

have nothing to say about FRED's SON explicitly, we can skip a level

and get by with allocating a GRANDSON field for FRED and filling it

with ALEXANDER. This avoids having to create an Instance of PERSON for

FRED's SON. The algorithms presented by Fahlman would still allow the

access of information about FRED's SON, namely that the .SON of the SON

of FRED is ALEXANDER. If we later wish to say that FRED's SON is

PHILIP, who also has other properties ("from Macedonia"), we-can

allocate the SON field for FRED and fill it with PHILIP. Note that the

location of ALEXANDER is unchanged. We still access the SON of PHILIP

by accessing the GRANDSON of PHILIP's father. Thus, while the

algorithms allow us to skip unimportant levels in describing data

structures, and so conserve space, a certain amount of search enters

the system. To find out properties of the SON of PHILIP, we need to do

a search to find out exactly where this field is stored - as the SON of

PHILIP, or as the GRANDSON of FRED, or as some other field of some

other record containing an implicit field for ALEXANDER, such as the

GREAT-GRANDSON of his great grandfather.

Note that the search for the location of specific fields can be

avoided simply by always allocating records in linear order using

anonymous individuals if necessary to fill in the unspecified levels.

This means that implicit fields are never allocated, that fields are

never stored under collapsed specifications like GRANDSON. Thus in the

example above, we can avoid that specific type of search by allocating

a record for PHILIP when we want to say something about ALEXANDER.

This allocates a record which may never have any fields filled, but

means that we can always locate a field described as "the A of the B of

the C of the ... of Z" simply by a series of trivial lookups at records

beginning with record Z. This added burden of space may be too

expensive, particularly in domains like electronics in which
hierarchies for specific devices are many levels deep. With added

depth of the hierarchy, the amount of wasted space becomes enormous,

28

leading to practical difficulties in implementing programs.

Appendix 2: NETL

NETL [Fahlman 1977] is a system for representing several types

of knowledge, organized in such a way that a structure sharing scheme

with clear semantics is implemented (assuming parallel hardware) with

extraordinary efficiency. I have already presented a discussion of the

storage representation concepts in NETL in Appendix 1. I will not

discuss the parallel aspects of NETL.

NETL includes a mechanism for defining concepts in terms of

others, a mechanism for procedural attachment, and a matching system

based on the parallel architecture driving these functions. In

addition, all nodes and links are themselves objects of discourse, so

reasoning about the system's knowledge is possible. Fahlman also

presents mechanisms for describing several important concepts including

standard relationships within structured objects, space, time,

existence, and quantification.

There are no second-class entities in NETL. (Actually, one can

make some structures second-class for efficiency if it will never be

necessary to discuss them as objects.) The basic system consists of

several types of nodes and links. The most important node types are as

follows:

[1] *INDV - An individual node. These represent individual

entities (not prototypes) within some universe or roles

(subcomponents, slots) within some structure (frame, unit).

([2 *TYPE - A type node. These represent the description of the

typical member of some set, and serve as prototypes for creating

*INDV nodes.

[3] *MAP - A map node. These are used to selectively copy roles of
some prototype description into a specialization of that prototype.

(4] *IST - An individual statement node. This is. basically an

individual node which is an instance of some statement schema

description (which centers around a *TYPE node).

[5] *EVERY - A class definition node. This is a type node used to

represent an intensional definition of a class. The definition is
accomplished.by marking some of the properties of the node as

required properties. The node also serves as the prototype of the
typical member of the class.

These nodes are used in conjunction with several link types, the most
important of which are:

[1] *VC - A virtual copy link. Connects a copy to its prototype.
[2] *EQ - An equality link. Connects two compatible views of the

same entity.
[3] *CANCEL - A cancellation link. Used to modify virtually copied

descriptions.
[4] *SPLIT - A split link. Used to create a set of non-

intersecting classes for clash detection purposes.
[5] *EXFOR - An existence link. Used to link a role to the

description it modifies.
[6] *EXIN - An existence link. Used to link a role to the

description in which it exists.
[7] *SCOPE - A scope link. Used to indicate the context (the area

of validity) of a statement.

These links can be modified by several types of flags. These flags
control the particular behavior of virtual copying and activation in
different circumstances. I will not go into them here, as they are
described In detail in Fahlman's thesis.

The basic operations in NETL are creating, copying and
modifying descriptions. These use *EVERY nodes, *TYPE nodes,. *INDV,
*VC and *IST links in fairly straightforward fashions. The system
performs type checking by examining conflicting *SPLIT nodes, and
context maintenance by using the *EXIN and *SCOPE links. Context
creation is very easy in NETL, since new contexts can be pushed onto
old ones by means of a single *VC link. The system provides
unsurprising means for representing space and time relationships,
adapted to the parallel architecture. These are used by the context
system, among other things. These temporal and spatial representations
are yet to be fully developed and tested for expressiveness and
usefulness.

NETL makes a clear distinction between a set and the typical
member of the set, although it makes no commitment about what the
description of the typical member should be. It also makes a clear
distinction between prototypes and individuals. It allows several
levels of splitting among prototypes, as opposed to KRL, which
apparently requires that all type splits be specified at one level as
Basic units. But this means that one cannot make a virtual copy of an
individual in NETL. However, individuals can be mapped into sets of
hypothetical contexts, creating the effect of an individual acting as a
prototype.

It is possible to make procedural attachments in NETL by
defining the triggers of demons as statements and using the matching
procedures to find all of the demons with triggers matching a certain
statement. It is also possible to use *EVERY nodes as guides for IF-
NEEDED procedures, since when looked at properly, these represent
problem-reduction methods. However, NETL is not a procedural system.
Although Fahlman discusses representations for states, actions and
events, there are no NETL procedures as such. All programs must be
externally supplied, and can operate by using the standard insertion,
matching and retrieval mechanisms, or by using any serial technique
desired for examining the knowledge base.

