
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Working Paper 158 January 1978

PLAN VERIFICATION IN
A PROGRAMMER'S APPRENTICE

(Ph.D. Thesis Proposal).,

by

Howard Elliot Shrobe

Brief Statement of the Problem:

An interactive programming environment called the Programmer's Apprentice is
described. Intended for use by the expert programmer in the process of program design

and maintenance, the apprentice will be capable of understanding, explaining and

reasoning about the behavior of real-world LISP programs with side effects on complex

data-structures. We view programs as engineered devices whose analysis must be carried

out at many level of abstraction. This leads to a set of logical dependencies between

modules which explains how and why modules interact to achieve an overall intention..

Such a network .of dependencies is a teleological structure which we call a plan; the process

of elucidating such a plan stucture and showing that it is. coherent. and that it acfihves its

overall: intended behavior we call plan verification.

This approach to program verification is sharply contrasted with the traditional
Floyd-Hoare systems which overly restrict themselves to surface .features of the

programming language. More similar in philosophy is the evolving methodology of

languages like CLU or ALPHARD which stress conceptual layering.

This report describes research done at the Artificial Intelligence Laboratory of the
.Massachusetts Institute of Technology. Support for the Laboratory's artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department
of Defense under the Office of Naval Research contract N00014-75-C-0643.

Working Papers are informal papers intended for tnternal use.

SIA S M INSTIIE OF TECW0IdGC Y 197D



Plan Verification

Abstract

In this proposal we describe an interactive programming environment to be used as a

tool by the expert programmer in the process of program design and maintenance. This

environment (called the. Programmer's Apprentice) will be capable of u.nderstandin.,

explaining and reaso-ing about the behavior. of real-world :programs, with particular.

emphasis on LISP programs involving side effects on complex data-structures. In

achieving such a system, our pivotal theoretical committment will be to a. view of programs

as engineered devices whose analysis can be carried-out at many level of abstraction . The

analysis of a program will lead to a set of logical dependencies between modules which

explains how and why modules interact to achieve an overall intention. Such a network of

dependencies is a teleological structure which we call a plan; the process of elucidating such

a plan stucture and showing that it is coherent and" that. it achieves its overall intended.

behavior we call plan verification.

Our research will be concerned with the design of a plan. verification programn called

REASON. Given a descriiption of the data flow between modules (specified at any level of

abstraction), REASON will determine whether or not these modules cooperate to. achieve

their intended net behavior. In so doing, REASON elucidates the plan. structure which, in

turn, is used as the pivotal data structure in the pertubation analysis necessary for programr

evolution, explanation and debugging.

,This approach to program verification will be sharply contrasted with the traditional

Floyd.-Hoare systems. which overly restrict themselves to surface features. of the

programming language. More similar in philosophy is. the evolving methodology of

languages like CLU or ALPH'ARD which, stress conceptual layering in program structure

and therefore have a verification methodology more like our own.

Finally, a methodology of .program design will be explored in which man and machine

interact in the .formation of -a verified plan at an appropriate level of abstraction. It is

hoped that examination of this process will shed light on the theory of •automatic design,

thereby aiding in the future development of rich automatic programming systems.

The~sis Proposal



Plan Verification

The Problem of Program maintenance - Notes of A Beleagered Systems Programmer

It is now a commonplace that software, in particular software maintenance, is the major

expense of computation. As machines have grown 'larger and. faster. the programs which

run on those machines have grown more ambitious and complex. Unfortunately, the tools

for maintaining software,have not kept pace with this growth.

This leaves the prdgrammer or designer. of large systems in a bind. Specifications for

large systems.are frequently incomplete; simply put, the user doesn't k4now exactly what he

wants. Given fuzzy criteria the designer does the best he can, guessing here,, making

temporary. choices there. In addition the art of programming is at best just an art, a well

developed engineering discipline does not yet exist.

Once. a program reaches the stage' of initial implementation, however, new' desiderata are

almost always discovered. "Thisreport should have these 3 extra fields, that one provides

extraneous information." New -hardware becomes available resulting in changes in: the

requirements and new opportunities for improvements. In addition, the currently available

features suggest new ones which could be'implemented if only certain: modifications were

made.

So while the first implementation is running, work is started on adding, features 'and
reworking the last implementation. Running experience reveals the existence of some new

bugs which 'force additional' redesign In this: process the programmer again and againh

finds himself trying to remember whether it is. safe to smash the record before it is stored,

whether any module is using the'second bit of the dispatch queue entry, etc. In general he
-is forced to consider all possible places which imight be effected by any proposed change.

Of course, one does what one can and version two eventually appears.
At this point, the user and the programmer notice that there are five new. feattiues, a

brand new terminal which would allow real time interaction, and of course -the inevitable
bugs., So while version two is being run, version three is being laid out on, the drawing
board. And so on...

Good: programmers use several devices to try to keep such problems under control. First,
as much as possible they try to demonstrate to themselves, that the programs they have
written. do work as desired. Even when the specifications. are incomplete,, t'he programmer
will attempt to do this to the degree allowed by the specifications he does have,

A second technique used b.y expert programmers is careful documentation and

'Thesis Props~al



Plan Verification

commenting of program code. By writing out explicitly all. design decisions and

implementation strategies and by noting i.n the code itself how various statements depend

on these basic parameters, the programmer hopes to gain some control over the complexity

of the process.

There are, however, two limitations which seriously impair the usefulness of this process.

First, a complete listing of all such dependencies would be orders of magnitude larger than

the code, a prospect not pleasant to consider. Secondly, even with all such commentary the

problem would be in finding the right comments at the right times. The printed program

listing is not appropriately indexed for the kinds of tasks we are describing. Nor for that

matter does human memory seem to be well suited to this task (as anyone who forgot that

last change of cadr to caddr can well attest).

The programmer's apprentice'approach to this problem is an attempt to create an

interaction between programmer and programming environment in which the above

problems become more tractable. In essence, our view is that if the programmer could

communicate to this environment the information normally given as documentation and

commentary, then it would be possible for the programming apprentice to fill in the rest of

the details, indexing this information so as to be useful in explanation and evolution. In

addition, it seems that it should, be possible to build a library of standard (or even

idiosyncratic) programming concepts such that the interactions could be brief enough to be

usable in a real-world situation.

Thus a typical interaction between programmer and apprentice might be something as
follows (Note: as usual the use of English is a convenrient fiction):

Programmer: The symbol table for this section will be done using a LISP style hash table,

indexed by symbol. The cadr will hold the relevant block-ids for this symbol.

Aprentice: OK.

Programmer: To mark a symbol present in a block, I'll do the following. If the symbol is

already defined then I'll fetch it from the table and add the appropriate block ID by side

effect, otherwise I'll build the new record and insert it:

Apprentice: What does it m.ean for a symbol to be defined?

Thesis Proposal



Platn Verification

Programmer: Present in the hash table.

Apprentice: OK

Programmer: Here's the code for marking a symbol present in a block.

(defun mark-present .(symbol. block-id. commentary)

(prog (entry)

(cond

((setq entry (lookup symbol))

(rlilaca (cdr entry)(sorted-insert block-id (cadr entry))))

(t (setq entry

(insert (list symbol (list block-id)) commentary))))

(return (ca'dr entry))))

Apprentice: What is commentary?

Programmeri It's the third field of a symbol table record and it's idiosyncratic.

3 Months later

Programmer: I'm going to cha'nge.hash-table entries so :that there is no commentary f ield

and so that the car is the symbol and the cdr is the list of block-ids.

Apprentice: OK, you'll obviously. have to change the entry-building code in hash-table

insert biut also you'll have to make a change in mark-present where you add a new block-id

by side-effecting in a new list of block-ids. -in the old version this worked since t~he

biock-id list was the car of the cdr. Now It's the cdr itself and doing the rplata will ma;ke.

the new block-id list be a member of the old block-id list rather than accomplishing the

correct replacement.

Programmer: Right, change it to:

(rplacd entry (sorted-insert block-id (cdr entry)))

ThTes ij Pro-ppsal



Thesis Proposal

Apprentice: OK. Also the compiler routine ,Present-In-Block needs fixing.

etc.

Plan Verification



Plan Verification

Programs As Engineered Devices

In writing programs, as in building bridges or constructing electronic circuits, the

engineer will divide his problem into subunits and attempt to solve each as independently
as possible. A radio for example will be divided into r-f and a-f stages each of which- has

its own internal -structure. The communication between these two sections is expected to be

kept to a minimum.
Similarly. a programmer creating an air-line reservation system will divide his problem

into terminal handling, data-base maintenance, etc. Each of these problems' is itself quite

complex and has internal structure in its solution. The unifying element between these

separate sections of the program is in the communication discipline between them, in the

sassumptions about overall structure, and in the common use of sub-modules to solve

different internal, problems.

To be .more specific, consider the program referred to. above. The overall problem Iis
apparently a compiler for a block-structured language. A hash table is used in

implementing the symbol table of the compiler. To achieve a simple action such as

marking a symbol with a. block-id several other operations such as hash-table-lookupi,

sorted-insert, rplaca, etc. are called upon. These sub-actions interact: in a purposef.ul

mahner to achieve the desired goal, namely that the symbol table indicate that the specif ied
symbol is defined in the indicated block.

We might diagram this as follows;

9

.Thesis. Proposat



Plan iVerification

mark-pres.ent

Thus, the mark-present operation is accomplished by a pattern of interactions among

other operations. In the process of program development such -accumulation of behavior is

done both bottom .up and top down, i.e. sometimes one. imagines the existence of a module

which -will do a needed job even when that module does not yet exist;. at other times

already existing modules.will spggest new behavior which seems useful. While we :are not

proposing a methodology of program construction, we are noting that to be comprehensible

at all a program must have some sort of modular structure.

Notice that many of the modules used to build mark-present have internal structure of
their own. Ordered-insert, for'example, will probably consist'of a search-loop, a cons, and a

rplacd. The hash-table routines will involve steps such a hash,. bucket-fetch, etc. Thus, the

structure given above is a layered one. There will be boxes within boxes until one finally

reaches programming language primitives.

Thtesis Proposal



TAesis Proposal 9 Plani.1Verification

in any engineered device there will be communication between the modules. In

mechanical devices this is done by physical contact, in electronics by wiring. In programs,

communication between modules is accomplished by the control and data-flow. primitives of

the programming language. But in any engineered device there are limiting requirem·ents

on the communication between modules. Components of a circuit will have voltage or

current limits which they expect to be respected by the componentat the other -end of the

wire; similarly mechanical devices expect forces to be within specified ranges.

Programs expect their communicating partners to respect certain.. limits as! well, although

the types of pre-conditions are quite general. A segment (our name. for a, program module)

may require: that its input objects be well formed objects of a specific type, or it might

require something more elaborate of them like being sorted by primary and secondary krys.

Such pre-conditions are termed expectations.

A module can be thought of as promising that certain conditions will hold after its

execution as long as its expectations are satisfied. Thus, an amplifier wil.l promise.to

deliver, a stronger signal and a sort routine a sorted list as long. as the inputs meet the

appropriate requirements. We call such guarantees on output conditions assertions. Thus,

a module may be abstractly described by its input-output behavior; i.e. by pairs of

expectations and output assertions.

For an engineered device to function at all, it is necessary that the pattern of interactions

between sub-modules be .such that every module's expectations be satisfied at the. time of its

invocation. Further, the pattern- of interactions must be such that the desired overall result

is .a logical consequence of the accompJishments of all the. sub-modules. Suchk logical links

between sub-segment behavior .we term purpose links; those links, which explain how a

sub-module's expectations are met are called pre-requisite links, those which explain how

the overall intentions are met are called achieve links. The pattern of purpose links is what

we term a plan and the process of deriving such logical links from the connective pattern

alone is. called plan verification (in the case of programs this connective pattern is given by

the data and control flow).

As stated above, the logical connections between modules involve not.only the abstract

description of modules but also the overall commitment to design :strategy.. For example,

consider the .symbol table-routine above. To conclude that the symbol. is' properly marked

with the block-id one must .know that a design choice has been made to do this using

hash-tables as opposed to property lists or some other scheme. Thus, purpose links can be
seen to be logical patterns involving abstract descriptions of both the sub-modules and of



Plan Verification

the operant design choices.

Design choices are schemes for building, abstract behavior and objects using other less

abstract objects as the building blocks. This may be seen by considering a scheme for

implementing a stack using an array and a cell.

Conceptually, a stack is an object with a TOP-ELEMENT and a HISTORY. It has

PUSH and POP operations. One implementation scheme uses an array and a cell. The

top element of the stack is the array item indexed by the contents of the cell. The history

part of the stack is the sub-array from 0 up to the item indexed by the contents of the cell.

Push is accomplished by adding one to the contents of the cell, storing this number in the

cell; and the new top item in the array item indexed by this number. This may be

diagramnmed as follows:

push

We would want to show that the new top is new-item and that the new history consists of

all the old items plus the old' top (in.appropriate order). This will clearly require making

reference to the implementation pattern described above, that is, showing that the new top

is new-item will depend on the description of plus-I, contents, and the fact that (within this

design scheme) the stack-top is the item indexed by the contents of the cell.

Thesis Proposal



Plan Verification

Similar conceptions occur in electronic devices where one may chose to regard a signal as

either a current or a voltage. The internal structure and logic of the amplifier for such

signals varies according to this choice, although the conceptual behavior of armplifying a

signal temains true in either case. It is one of the key problems of design that any such

implementation strategy imposes restrictions which were. not implicit in the conceptual object

being .implemented. Using arrays imposes finite size on the stack; different amplifier

designs impose different restrictions on power and signal range.

In summary, the plan of an engineered device is a set of logical corinections between the

conceptual descriptions. of sub-modules, the descriptions of implementation strategy, -and the

overall intentions. for the device being engineered. These logical steps explain how ea-ch

'module of the overall device contributes to the higher level conceptualization as well as why

each sub-module is capable of functioning. The lack of such a logical connection in a

proposed device would indicate a conceptual fa.ilure or design bug.::

Given that modules of a. device may themselves be. conceptual -constructs with internal

structure,, plans provide an abstracting mechanism.describing the structure of the.device at

a level appropriate to the task at hand. Plans also allow one to describe and reason about

the behavior of incompletely designed devices, since a module's .net behavioral

specifications may be used within a larger plan even if there is as yet no internal plan to

accomplish the behavior of the sub-module.

Although we believe the research we will conduct will have bearing.on any engineered

device, it is necessary to focus attention in order to make progress. Forthe remainder of

this document :we will consider plan verification only within the context of programming;

others are conducting similar research in other disciplines <Stallman &8 Sussman 1976>; :a

rich cross fertilization of ideas and techniques has: and doubtlessly will'continue between

these. areas of exploration.

Thesis'P~Proposal



Thesis Proposal 12 Plan Verification

The Use of Pliais in Program maintenance and Explanation

Plans, as outlined above, give a teleological description of program behavi.or, abstracted

to a level of description which is convenient to the programmer. It is, thus, a rather trivial
mnatter to generate explanations of a program from a plan.. Since plans contain rmore

information, than does the program itself, such explanations will be richer than a mere
recitation of the code. This has been explained in Rich & Shrobe <Rich: &. Shrobe 19.76>.

Of more interest to future research efforts is the notion of using plans as a means of

program modification or evolution, i.e. in helping the beleagured systems programmer
referred to above.. As. we have noted, plans capture the relationship between program
degign' choices, abstract modularization, and overall intentions. In doing this, . they localize
the effects of changes in design strategy, and specify the teleological requirements which

must be satisfied. in arry modification of the design.

As a simple case consider a hash-table insert routine which has been implemented using.

!ordered linked-list buckets with a count field. The code for such a program might be:

(defun.insert (item)

(in.sert-in-bucket (table (hash (key-part item))). item))

(defun insert-il-bucket (bucket item)

(do ((prev~ious-list bucket (cdr previous-list))-

(.current-l.ist (cdr bucket) (cdr current-list)))

((null current-list)(rplacd previous-lis t (l.ist it~em)))

(.and (greater-than (car: current-list) item)

(rplacd previous-list (cons item current-list).));)

(rplaca bucket (1+ (car bucket))))

Suppose that for space efficiency, it was desired. to change to a rehashing scheme. Since

this change is strictly a'design issue dealing with buckets, the plan would tell us that the

structure of the insert module itself is correct, but that the insert-in-bucket module as well as

the communication between the two modules might require change. It could further tell us

that the last' line (i.e. the rplaca which bumps the count) is no longer relevant. A.simple

system. might stop at this point.



Thesis Proposal 13 Plan Verification

'However, a fuJI blown system would be'expected to realize that there is still common
.structure between the old and the new design. For example, buckets in both approaches are
LINEAR-OBJECTS searchable by a LINEAR-SEARCH-LOOP. The difference is in the

natuLte of the BUMP, EXHAUSTION, and TERMINATION steps. In the rehash scheme,
BUMP is of course the rehash operator' and termination of the search is. indicated by a
special, marker (such as nil) indicating that a slot is free. Exhaustion of the search might

be indicated by the rehash routine returning a negative number. Also. making an item a

member of a bucket in the rehash scheme is simply a matter of inserting in the array.

Thus, an advanced system might guide the piogrammer to the following new design.

(defun insert (item)

(insert-in'bucket (hash (key-part item)) item))

(.defun insert-in-buc'ket (initial-slo-t item)

('do ((s.lot initial.-slot (rehash slot)))

((minusp slot)(error 'no-slots-left)).

(and

(nu-ll (table slot))(store (table slot) item))))

Notice that this sort of full-blown. petubation analysis included not only the plan itself but
also the structure of knowledge about program design. The fact that-both the. old and the
new. style. buckets were linear-objects indicated the similarities between the two search
routines. Such structure is captured in a knowledge base which uses plansas part of its
representation. However, the.plans in the knowledge base are typically quite abstract (such
as the 'plan for search loop) and so they serve as prototypes for program structure.-



Plan Verification

-Our Proposed Plan Verification System

This section will describe a plan verification system called REASON which adequately

addresses the problems presented by the programmer's apprentice system. Some of the work

.on this system was started in earlier work by Rich and Shrobe which is attached as an
appendix.

The essential feature of the system to be presented here is its relationship to a knowledge

base with well defined semantic primitives. The deductive system is essentially a symbolic

evaluator of abstract programs which are defined in terms of primitive actions

corresponding to basic possible actions on data structures.

Since the basic actions of such a system correspond to higher level semantic notions, a

trace of such actions meaning'f.ully summarizes the dependencies between sub-modules of a

program. These primitive traces also include reliance on -assumptions in the knowledge

base which, in turn, are marked for dependence on design decisions. Thus, the basic

structures needed for program evolution are produced as a natural by. product of the plan

verification system's operation.

The Epistemology of REASON

REASON is primarily concerned with issues presented by side effects on complex data

structures. Its most basic notiona therefore, is that of part and generic part which name or

index (respectively) the sub'structures of a data structure. Parts may be required to meet

certain conditions, the simplest of which is that they must belong to a particular class of

objects. For example, an alist-might be described as having two parts: first and rest with

the first being required to be of type dotted pair and the rest required to be either an alist

or nil.

Another useful notion is that of property such as the length of a list, etc. Properties of

an .object are defined in ternms of its sub-structure. For example, the length of a list is

defined to be I plus the length. of the rest of the list; the length of nil is tautologically zero.

This implies that changes to -the sub-structure of an object will result in changes of its

properties.

Thesis Proposal



Plan Verification

Given the notion of property it is possible to state stronger restrictions on the

well-formedness of a data structure. For exampJe, buckets in . CONNIVER type data base

usually havie two parts, a count and a membership list. The count is required to be -equal to

the length of the. membership list; such a requirement is called a constraint.

Finally, REASON has a notion of relations :between, objects. A common example of a

relation is membership. Relations like properties are defined in terms of the su.b-structire

of the objects being related. For example, membership in a list is defined recursively as

follows-: either the object is" the first Qbject of the list, or a member of the rest of the lilt;

nothing is a member of the empty-list (nil). Membership in a hash-table is defined as

follows: an entry is a member of a hash table if it is a member of the bucket hashed. to by

the key part of that entry.

Notions. relating levels of description

The above notions are adequate for presenting a: conceptual description 'of ah object.

They do not, however, deal with questions of implementation, i.e. of building objects of one

conceptual type by a pattern of interactions between objects of simpler types. As we

discussed earlier this is a crucial task in any engineering project. For -example, let us return

to our earlier example of' implementing a stack using an array and a cell. •

SThe:first thing we would have to state is the'set of objects being used in. the

irimplementation. scheme; thus, the airray and the cell are implementation-parts of the stack.

A. second type of information is an implementation-mapping of conceptual objects onto

implemenrtation-parts. For example, the statement that.the top of the starck. is thef array-itein

pointed to by the contents of the'cell is! exactly such a mapping. Such mappings bear many

similarities to -relation definitions in that they are both equivalences. Furthermore, the

mapping specifies how side-effects to implementation-parts will result in side-effects to

conceptual objects in a manner quite similar to that in which relation definitions describe

how changes to part structure result in changes to relationships between objects.

The. above propagation of effect from implementation to conceptual object has ani

important additional implication.. The input output specification of segment behavior is an

intrinsic description; it specifies what the module does independent of how that behavior.
interacts with that of other segments. But, the introduction of implementation mappings

allows already. existing program segments to take on extrinsic meanings. For example,

Thievis Pr~oposal



Plan Verification

suppose. that a CONNIVER bucket is implemented as a dotted pair whose left half is the
count and whose right half is the list of members. In this situation, CAR has an extrinsic
meaning of extracting the count from a bucket (in contrast to its intrinsic description of
extracting the left half of a cons)..

A final notion which must be. added is that of virtual objects. Fi-equentl one will

imagine or conceptualize the existence of an object. which has no existence as; a unified
whole within the program. The fringe of a tree is such an. object. Another example is a

subarray. between two bounds of -another array. Such. virtual objects are side-effected by,

side effects to the concrete objects from which they are created. If, for example, a tree has
its left branch changed, this will,usually result in a change in the fringe: Corversely, if one

is told that. the fringe has been changed by certain actions, one can infer a range of

possible actions to the tree itself which might have caused the stated changes.

This would be stated by a virtual-object-description which maps the:part structure,

properties and relations of the virtual object onto those of the concrete object from which it

is derived. Such descripti.ons.are quite similar in form and use to relatibon-definitions a nd

implementation mappings.

Basic Actions In REASON.

'REASON is structured as a symbolic program evaluator, i.e. It acts as if it. were an

interpreter running a program on-symbolic (i.e. typical rather than actual) arguments. The

programs are specified not as code, but as data flow between program segmenrts which are

in: turn specified by input-output specifications. In the simplest case, REASON is given
such an input-output specification for a main segment and for the sub-segments which will

be used to achieve the behavior specified by the main segment. In addition, the data flow

connections between these sub-segments will be given. REASON will symbolically evaluate

this program using a relational data-base oiganized into time snapshots called situations.

In the initial situation REASON asserts the input conditions of the main segment. Then

for each sub-segment it proves that the input conditions are satisfied. If this proof is

successful, a. new situation.is created and the output assertions of the: sub-segment are add.ed

to this new situation. The next sub-segment is then treated similarly. When all

sub-segments have.been evaluated, a proof of the output conditions of the main segment is

attempted. If this succeeds, the plan at this level is correct. If any of the proofs fail, the

plan has a. conceptual bug and debugging intervention is required,

Thesis PFroposal



.Plan Verification

The result of this. action is a tree of situations and a record of every deduction used in

the. proofs required for the plan verification. This network of connections between

assertions is a verified plan of the'main segment.

Output assertions of a' sub-segment fall into one of three. categories: a) New information

b) Referent resolution c) Side effect. In the first case processing. is relatively simple. The

information is added to the data base and antecedent inferencing is. performed. In

particular, all relevant type information, constraints, relation, implementation, and virtual

object definitions are used to Irifer new information. For :ekample, on learning that
ENTRY-i is a member of LIST-2. demons are fired which check if LIST-2 is a sub-list: of

Sany other lists.. If so, the inference is drawn that ENTRY-I is also a member of those lists.

Frequently in making an assertion it is necessary to refer to an object by its relationship

to other. objects, for example "the car of list-•". Referent resolution involves searching the
data-base for information which.would. identify such an object. If no such object is
already known, theh a. new anrionymous object is created which is asserted to meet the

requirements of the reference.

The main difficulty, however,: is in processing assertions specifying side effects. To

illust'rate this, suppose that it is known that ENTRY-I is a member of a hash-table TABLE-1,
but it. is not known what the key-part of ENTRY-1 is. Suppose BUCKET-5 is: a bucket of the

TABLE-1 and that it is changed .so that no entries With KEY.-10 are members of it any
longer. It is then possible that ENTRY-I was deleted from the TABLE-I (i.e. since its key

mighti have been KEY-10), but it also possible that it wasn't. The data-base must be update

in the output situation such that nothing which might be false is asserted, to be true, and
demons must be created to wait for and to propagate the necessary unknown information..
Such. processing can be done by using the chains of potential dependence given by relation
definitions. Rid.h & Shrobe describes this process in detail.

A similar. difficulty is brought about in the propagation of side effects to implemented
and virtual objects which depend on the effected object. For example, if a queue is
iniplemented. using an array and two cells, then the efect of changing the vatue of one of
the cells has to.be propagated across the conceptual boundary so :as to specify the changed
state of the queue which is being implemented .by the cells and the array.

Conversely, were a side effect specified only In higher level terms, the data base- would
need to. be updated to propagate the knowledge to more primitive levels of description. For

rhesis, Protiosal



Plan Verification

example, using'the above scheme of an array and two cells for a queue, if we were told that
a POP had been performed we should make the appropriate changes to the cell pointing at

the top. Sometimes the relationship between levels is less direct and results not in the

propagation of new facts, but rather in a range of uncertainty.

The Specification Language

REASON provides a specification language for segment behavior whose semantics is

given by the above primitive actions. This language is presented in detail in Rich c

Shrobe. A program's specification is given by four clauses: inputs, outputs expect, arind

assert. The first two of these mrerely provide internal names for the objects which are the

inputs and outpus of the segment. The expect clause gives a list of conditions which the

segment requires to be true of its input objects at the time the segment is applied. The

output clause lists those conditions which the segment guarantees to be true on exit.

This last clause, however, has some added feature. In particular, it allows

pseudo-statements of the following form: a) (NEW OBJECT-1) which specifies that

OBJECT-1 is newly created during the execution of this segment; b) (ID OBJECT-i

OBJECT-2) which specifies that OBJECT-1 and OBJECT-2 name the same object and that

this object has undergone a side-effect during the execution of this segment. One of these

names is an output name, the other an input name. By using the output name one can

make the clause be applied in the output situation, and similarly for the input name. Thus,
in the following:

(specs-for reverse-by-side-effect

(inputs: list-i)

(expect: (list list-1))

(outputs: list-2)

(assert: (i'd list-2 list-1)

(list list-2)

(reverse list-1 list-2)))

we concisely specify that the cell named by list-2 on exit from reverse-by-side-effect contains

a list which is the reverse of the list which was contained in that same cell at the time of

entrance to this segirrent (N.B. this is not quite the nreverse of MacLisp).

Finally, a bracket notation is used to indicate reference. Thus [FIRST LIST-1] is an

Thesis Proposal



Plan Verificktion

abbreviation for the object which is the first part of list-1. Combining this with the

multiple name convention abuove, allows a time-based notation. For example we can. easily

specify that. a cons has been reVersed by side-effect as follows:

(specs-for swap

(inputs: cons-l)

(expect: (cons cons-1))

(outputs: cons-2.)

(assert: (cons cons-2)

(id cons-2"cons-1)

(left cons-2 [right cons-l])

(right cons-2 [left cons-1]).)).

where in resolving the meaning of the brackets the use of input or output names guides the

choice of situatio in which to .resolve the reference.

Statements in this specification language can be translated to programs written in the

language of the primitive actions described above. Thus, REASON can act on such

specifications either by prior translation and direct execution or by interpretation.

Thies4 P ;rrposa I



T Plan. Verification

What We Propose To Do

The central issues which distinguish our work from other work in the area of program
verification is in the relationships we see between verification, plans, and the. tasks of
program maintenanCh and design. Specifically, we see the verification system as leaving
behind a plan which is a trace of its semantic actions. This plan can be used in analyzing
the effects of proposed pertubations of the program. Furthermore, such plans can be
recorded in a library; the more abstract the plan is, the more it will serve as a prototype
which a design- system could draw upon.

REASON as it now exists was a throw away implementation used to investigate the
necessary primitives needed.for reasoning about the behavior of programs with- side effects
on complex data structures. It has been a useful tool, but the time has come to clean up its
structure so as to allow flexibility in the uses outlined above. Thus, our first avenue of
investigation is a clean specification of the behavior now exhibited by REASON and a
clean implementation to go with it.

The second main avenue of exploration will be in using plans produced by REASON to
examine the implications of prbposed modifications and additions to a program. In

particular, we will Idok at examples such. as that given above of changing a programi to

reflect changes in a design choice.. Such investigations. will attempt to use.the knowledge
base. of the system to the greatest degree possible.

A similar process used in design will also be investigated, namely the ffurther

specialization of already existing library plans. This. will be used. as an .aid in interactive

design,. whe-re the user might say something like "search the list computing a running trotal

and exit when the item with key-5 is.found." Such processing would involve specializing a

search loop to also be an accumulation loop.

Finally various issues dealing with the cqntrol of proof processes will be investigated, in

particular: the use of :prototype plans to guide the proof of a specialization.of that plain,

the use. of knowledge about data-structures to guide case-splitting, and the. use of explicit

recording of dependency and sub-goaling information to guide search <DeKleer et. al.,

1977>.ý

Thiesis Proposal



Plan Verification

Our methodology will involve coding a small, but realistic data-base oriented system

which uses a variety of data strurtures such as hash-tables, CONNIVER-like tables, queues,

stacks; arrays, records, etc. We will attempt to be specific at each stage about our desigri

choices and modularization. Our intention is to pick an appropriate implementation stage,

attempt to get REASON to understand.it as fully as possible, and, then to add new fea tures,

using REASON in evolution mode. The program might be something like a program to

keep track of financial networks such as interlocking boards of directors :of large

corporations and banks, nations and markets.of control, etc.. It is felt that this progranm has

extrinsic, worth other than as a toy for REASON to play with and that therefore it will

provide realistic (but not frantically changing) material for investigation.

Relationship: to Other Work.

There are four closely related characteristics of our work which separate it. from other

work on program verification. First, we regard verification as being factored into two.

stages the development of a verified plan at some level of abstraction and then after coding

has been done,. the recogntion of the code as a valid implementation of the plan. Thus, we

see the verification process as being concerned with .abstraction and implementation

layering, rather than with the programming language itself.' Second, we have made the

issues raised by side effects a primary.'concern of our design. Third, We regard verification

as being a means as well as an end. The verification process is the means to the recording

of a plan -structure. which shows the: dependencies between modules and: design choices.

This structure is the key to program design and evolution. Finally, our work is very much
concerned with the structure, use and semantics of a programming knowledge base wh.ich

will be used to guide verification and to capture important generalizations.

The: Weakness Of Traditional Floyd-Hoare Logics

In our view, a program is a conceptual structure which at any point in its development
can be viewed as having a heirarchy of abstractions. Each level can be regarded as being
a program in the language comprised by the modules of the next lower level <Djiksitra,
1976.>.

Floyd-Hoare <Floyd, 1967> <Hoare, 1969,1971> logics tend to attribute primacy within this
heirarchy to the programming language Itself. Thus, the basic. Floyd-Hoare approach

rhesiis Propoial



Plqn Verification

defines the language by attaching axioms• to each primitive of the programmiig 'language.
Two general methods are used <Igarashi, LondQn & Luckham, 1973; King, 1969; Deutsch,
1973>, the difference being direction of action. In one the axiom specifies how to move a
logical condition forward over a program primitive; in the other method the axioms
specify backward motion.

Thus starting with the incoming predicates of a program, one can move statement by
statement through the program, generating .new logical sentences called verification
conditions until one arrives at the other end of the code. The conjunction of the final
verification condition and the output predicate of the program is. a predicate equivalent to
the statement that the.program is correct. (In the other method, the same thing is done in
the other direction.) This logical statement can then be handed to a theorem prover of any
sort. If the statement can be proven, then the program is correct.

Given this bias toward the primitives of the programming language, Floyd-Hoare based

systems tend to have inadequate concepts of implementation level or of interdependecy

between such. levels or of interdependency between modules-at a single level of abstraction..

A second central problem of Floyd-.Hoare systems is that they are oriented only towards
verification, that is towards demonstrating that a program meets its specification. Such

,systems tend not to be oriented towards the explanation of how such a system meets its

specifications or of isolating the bug responsible for its not meeting its specifications. In

our view this is due to two factors: first, semantics are given, solely by the axiomatic.

definitions of the primitives of the programming language (iwhich does not allow enough

abstacticin), second. these systems, rely on uniform logic systems such as resolutibn theorem

provers.

The practical consequence of these decisions is that Floyd-Hoare systems have no easy
way of recording the semantic dependencies in the program. Lacking such- a :recorded

network of semantic dependencies such systems cannot provide the support necessary to

index a completed design for use in future modification or to identify the source of a
prograri bug.

FloydýHoa-re systems have anoth'er major failing which arises from a similar sou-rce,

namely that complex data-stuctures with side effects appear to be beyond the scope of most

such systems. Since the design -decision of F-H systems is to specify everything in terms of

:axiomrs describing the behavior of the. programming language primitives, this requires the

T he sis· Proposal



Thesis Proposal 23 Plan Verification

axiom for RPLACA (for example) to specify all. the possible consequences of changing the
left half of a CONS cell. Given that the cons could be implementing any of an infinity of
conceptual stuctures at a higher level, this puts an-overly heavy burden on the description
of the behavior of such program primitives.

Within the context of Floyd-Hoare logic, only Suzuki <Suzuki,. 1976> has addressed the
question of: side-effects at all. In his system, a user has to provide reduction rules for the.
behavior of objects with side effects. These rules tend.toward the ad hoc and in any event
are difficult to write and are error pron.e. Further, his systemn still lacks the ability to make
meaningful recordings of its action or to reason at an abstract leveL

SIMULA-Like Systems

One of the main drawbacks of Floyd-Hoare systems is the failure to. address the issues
Sraised by implementation heirarchies. Simula like systems such as CLU <Liskov 1974;
Liskov &.Zilles, 1975> and ALPHARD <Wulf, 1974> have attempted to deal with these
questions by adding. to the language methods of accumulating modules which together
constitute the behavioral repertoire of a c6nceptual object. A verification methodology .is
then worked out which first verifies that these modules do implement the conceptual
behavior desired. *Then, outside the cluster (or form in ALPHARD) only the conceptual
behavior may be referenced.

This approach is clearly quite similar to our own structuring of the knowledge base
around data-types. However, the systems still use Floyd-Hoare like methodology withlin
each module and so in our view are overly restricted from dealing with abstractions,
side-effects and pertubation analysis.

ACTOR Oriented Systems

A further step away from Floyd-Hoare type systems is taken in the work of Hewitt and
Smith <Hewitt & Smith, 1975> and Yonezawa <Yonezawa 1975, 1976a, 1976b> who are
working within the ACTOR formalism of computation. There has been considerable cross
fertilization between this work and our own. Bqth projects have broken from Floyd-Hoare

logic using situational data-bases apd forward symbolic evaluation. Both projects have
been 'Concerned with side-effects from the outset.

Thetie have been differences in emphasis, however. Our work has been geared towards



Plan Verification

the design of the appropriate small set of descriptive primitives for the knowledge base and
the actual implementation of a working system. Their's has been geared towards the

development of the ACTOR formalism and towards a new language, PLASMA, designed

to reflect the ACTOR viewpoint. In addition, their work does not reflect our commitment

to a factorization of the process into.plan verification and.code recognition.

The Programmer's Apprentice Project

Our work was begun as.a joint venture with Charles Rich. The result of that work is

reportdd in our joint Master's'Thesis and a stibsequent Technical Report. Our joint work

is now continuing by each of tus deeply pursuing a single aspect of the project. Rich is

centering on plan recognition and the design and structure of the programmiig knowledge

base for the joint system <Rich, 1977>. In addition, Richard Waters <Waters, 1976> is

working on a similar project using numerically oriented Fortran programs as: his domain, of

reference.

These projects will cross fertilize one another in several ways.: Our plan verification

system will produce plans for Rich's system to. use in recognition; his work will clarify

structures of the knowledge base which will lead to useful guidance for our system,
particularly in pertubation and.designr. Ultimately, these separate avenues :of exploration

will be brought back together .in a full blown programming environment incorporating and

synthesizing all of the above work.

Other Work on Reasoning and A.nalysis of Engineered. Devices

Much of our work on reasoning bears a resemblance to work being done by the

Engineering Problem Solving group.at MIT <Sussman, 1977>. In particular our reasoning

system uses techniques quite similar to Analysis by Propagation of Constraints <Stallman! &

Sussman, 1976>. Indeed, our evolving notion of the structure of REASON.has been.

influenced. substantially by AMORD <DeKleer et. at, 1977>. However, our work has been

considerably more concerned with reasoning about the dynamic. behavior of systems

(side-effects) than has the above work. Similarly our work on reasoning shares many

commion features with Moore's system <Moore, 1975> although we have been specialized in

our concei-n for programs as a problem domain. As our work moves into the border-line

area of design we exp'ect to be guided somewhat by McDermott's <McDermott,, 1976>. work

on the design of electronic circuits.

thests PProposal



Thesis Proposal

The Psi System of Barstow,Kant and Green

Finally, many of ideas for -the codification of knowledge in a data base will be guided
somewhat by the work of Barstow and Green <Green & Barstow, 1975> who as part of their
PSI system have developed a production system for program design. Barstow's part of the
system proposes a tree of designs to meet a conceptual description .of the program
requirements which is pruned for efficiency reasons by Kant's <Kant, 1977> effiency expert.

Barstow's production system in our view represents a very useful refinement heira rchy
for thinking about prograrpming concepts. However, his system does not seem to contain
any deep teleological notion other. than that given by the refinement path itself. Thus, in
our view his system will tie limited in its ability to conduct complicated design or
pertubation since these tasks involve interactions between synthesi.s and analysis, thu!s

requiring explicit teleological structure. However, we believe that a wedding of the concepts
in PSI to our own will.be highly productive.

Plan. Verification



Plan Verification

Bibliography

Boyer, R.S. & Moore 1975, J.S. Proving Theorms.About LISP Functions, JACM vol. 22 no.

I, January i975.

Deutsch, L:P. 1973, An Interactive Program Verifier, PhDi Thesis University of California

at Berkeley, June 1973.

Dijkstra, -E.W. 1976, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J.
1976

DeKleer, J., Doyle, J., Steele, G. & Sussman, G.J. AMORD: Explicit Control of Reasoning,

Proceedings of the Symposium on Artificial Intelligence and Programming
Languages, August 1977.

Floyd, R.H. 1967, Assigning Meaning to Programs, Mathematical Aspects of Computer

Science J.T. Schwartz (ed.) Vol. 19 Am. Math. Soc. Providence R.I. 1967.

Green, G.C. & Barstow, D.R. Some Rules for the Automatic Synthesis of Programs, IJC.AI-4

Tbilisi, USSR, September 1975.

Hewitt, C. & Smith, B.C. 1975, Towards A Programming Apprentice, IEEE Transactions on

Software Engineering, Vol. SE-I No. 1, March 1975.

Hoare, C.A.R ,1969, ..An Axiomatic Basis for Computer Programming, Comm. ACM, :vol.

12, number 10, October 1969, pp. 576-580,583.

*Hoare, C.A.R 1971, Proof of A Program: Find, Comm. ACM, vol. 14, number .1, January

1971, pp; 39-45.

Igarashi S., London R., and Luckham D. 1973, Automatic Program Verification 1: A Logical

Basis- and Its Implementation, Stanford AIM-200, May 1973.

Kant, E. The Selection of Efficient Implementations for .A High Level Language,

Proceedings of the Symposium on Artificial: Intelligence and Programming

Th~es.is Proposal



Thesis: Proposal 27 Plan Verification

Languages, August 1977.

King, J. 1969, A Program Verifier, Carnegie Mellon University, 1969.

Liskov, B. 1974, A N.te on CLU,'MIT/Computation Structures Group Memo 112, MIT/LCS,

November 1974.

Liskov, B. & Zilles, S.N. 1975,.Specification Techniques for Data Abstractions, IEE.E

Transactions on Software Engineering, Vol. SE-I No. ., March 1975.

McDermott, Drew Vincent 1976, Flexibility 'and Efficiency in a. Computer Program for

Designing Circuits, MIT PhD. Thesis, September 1976.

Moore, Robert Carter 1975, Reasoning From Incomplete Knowledge In A Procedural

Deduction .System, MIT/AI-TR-347 December 1975.

Pratt, V. 1976, Semantical Considerations on Floyd-Hoare. Logic, MITILCSITR-l68,

Septermber 1976.

Rich, C. 1977, Plan Recognition In A Programmer's Apprentice, MIT/Ai Working Paper

147, May 1977.

Rich C. and Shrobe H. 1976, An Initial Report On A LISP Programmer's Apprentice,

MIT/AI/TR-354, December 1976.

Spitzen, J. & Wegbreit, B. 1975, The Verification and Synthesis of Data Structures;, Acta

Informatica 4, 1975.

Sussman, G.J. 1977, The Engineering. Problem Solving Project,.Research Proposal

Submitted to the National Science Foundation, MIT/AT July, 1976.

Suzuki,. N 1976, Automatic Verification of Programs with Complex Data Structures,
Stanford, AIM-279, February 1976.

Waters, AR.C. 1976, A System for Urderstanding Mathematical FORTRAN Progiams,



Plan Verfication

MIT/AI Memo 368, August 1976.

Wegbreit, B. 1976, Constructive Methods In Program Verification, Xerox Palo Alto
-Research Center CSL-76-2, July 1976.

Wulf, WA. 1974, ALPHARD: Towards -a Language to Support Structured Programming,
Carengie Mellon University. Dept. of Comp. Sci., April 1974.

Yonezawa; A. 1975, Meta-Evaluation of Actors With Side Effects, MIT/AI Working Paper
101, June 1975.

Yonezawa, A. 1976a, Symbolic-Evaluation As An Aid To Program Synthesis, M IT/Al
Working Paper 124, April 1976.

Vonezawa, A. 1976b, Symbolic Evaluation Using Conceptual Representations For.Programs
With Side-Effects, MITIAI Memo 399, December 1976.

Zilles, S. 1975, Abstract Specification for Data Types, IBM Research Laboratory, San Jose
Californhia, 1975.

Thesis Pioposal


