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- Brief Statement of the Problem: .

An -interactive programming environment called the Progrimnier's Ap’pkntice is
described. Intended for use by the expert programmer in the process of program design
and- maintenance, th_e apprentice will be capable of understanding, explaining and
reasoning about the behavior of real-world LISP programs with side effects on complex
dota-'strljctures. We view programs as engineered devices whose analysis must be carried -

“out at many level of abstraction. This leads to a set of logical depe’ndenc'ies betyveen
modules which explains how and why modules interact to achieve an overall intention.
Such a network of dependencies is a teleological structyre which we call a p_h_n_. the process
of elucndatmg such a plan stucture and showing that jt is coherent and that it achltves its
overall intended behavior we call plan verification. ' '

This approach to program verification is sharply contrasted with the traditional
Floyd-Hoare systems which overly restrict themselves to surface features of the
programmmg Ianguage More similar in philosophy is the evolving methodology of
|anguages like CLU or ALPHARD which stress conceptual layering.
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'Abstr'al_'ct.

In this proposal we. descnbe an interactive programming. environment to be used as a

+ tool by the expert programmer in the process of program design and mamtenance This

E enviroriment (called the-Programmer’s Apprentice) will be capable of understandmg
‘explaining and neasomng about the behavior. of real-world programs, with pa rticular.
emphasis on LISP programs involving. side effects- on. complex data-structures. In
achieving. such a system, our pivotal theoretical committment will be to a. view .of programs
- as en'gihe'ered devices whose analysis can be carried -out at many level of abstraction . 'The--
analysis of a program will fead to a set of logical dependencies between modules which
, .expiams how and why modules interact to achieve an overall intention. Stich a network of.
| 'dependencnes is a teleological structure which we call a p_l_a_n, the process: of ehmdatmg such
- a plan stucture and showing that it is colierent and that it achieves. its overall mrended'_.
behavior we call plan verification. - '

. Our fesearch will be concerried with the design of a plan verification program called -

REASON. Given a ‘descr iption of the data flow between modules (_specmed at _a.n_y level of .
abstract_ion). REASON will determine whether or not these modules cooperate to. ‘zich_ir}ve :
~ their intended net behavior. In so doing, REASON elucidates. the -p.'l'an.:.s‘t,ructure- which, in
turh, is used as the inOtal data structure in the pertubation analys-isr riecessary for program .
evolution, explanation and debugging. '

This -approach to program verification will be sharply contrasted with the traditional
Floyd-Hoare sy-sterﬁs. which overly restrict.t-hemse!ves_ to surfa'c_e-f'eatu'-r.e_s_ of the
- prog';ramm-in'g language. More simifar in philosophy is the evolving mét_h_'odoiogy of

languages like CLU or ALPHARD which stress conceptual layering in program structure
and therefore have a verifi |cat|on methodology more like our own. | |

Finally, a methodology of .program design will be explored in whlch man and machme-
interact in the formation of -a verified plan at an appropriate level of abstraction. It .is
- hoped that examinatipn of this process will shed light on the theory of automatlc -design,
thereby aiding in the future development of rich automatic programming systems.
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The Problem of Program maintenance - Notes of A Béléageréd _Syste‘ms’_'l?.rogr-am mer __

It s now a commonplace that software, in partlcular software mamtenance. is the 1 ma jor
expense of computation. As machines have grown ‘larger and. faster. the programs which
"rumn on those machines have grown more ambitious and complex. Unfortunately, the tools -
for maintaining software, have not kept pace with this growth.

This leaves the programmer or designer. of large systems: in a bind. Specifications for
__'larg_e. systems_ are frequently incomplete; simply put, the user doesn’t know exactly .wh_at_ he
wants. Given fuzzy criteria the designer does the best he can, guessing he-re',__.-making .
temporary choices there. In addition the art'o'f pro'gramming is at best just an _ar_t,'a well
developed engineering discipline does not yet exist. ' | |

~ Once a program reaches the stage of initial impi’ementation‘ however, new desiderata are
almost always discovered. "This. report should have these 3 extra fields, that one provides
extraneous jnformation." New hardware becomes. available resultmg in changes in the -
"'.requrrements and new opportunities for improvements. In addition, the currently avaﬂable
features suggest new ones whrch could be’implemented if only certain modif |cattons were
~ made. ' ' ' '

So while the first implementation ‘is running, work is started on adding features and-
re_wor-kmg the Jast implementation. Running experience reveals the existence of -some new
bugs which force additi'onal' red-esign- In this process the programmer again and again
finds himself trying to remember whether it is safe to simash the record before it is stored, .
_ __whether any module is using the'second bit of the dlspatch queue entry, etc.. ln general he
s forced to consider all possrble places which mlght be effected by any proposed change
, Of course one does what one can and version two eventuaily appears. - ' _
At this point, the user and the programmer notice that there are f ive new. f eatures, a’

L brand new ter mmal which would allow real time interacuon, and of course the inevitable

bugs So while version two is bemg run, version three is being laid out' on. the. drawmg s

board. ‘And so on...

. Good programmers use several devices to try to keep such problems under control First, )
~ as ‘much as possible they try to demonstrate to themselves. that- the programs. they have
=-wr:tten do work as desired. Even when the specifications: are incomplete, the. programmer
_w1l| attempt to do this to the degree allowed by the specifications he does. have.

A second technique used by expert programmers is careful documentatlon and
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commenting of program code. By writing out explicitly all design decisions and
ih\plementation strategies and by noting in the code itself how various statements depend
on these basic parameters, the programmer hopes to gain some control over the complexity
of the process. .

There aré,_ however, two limitations which seriously impair the usefulness of this process.
First, a complete listing of all such dependencies would be orders of magnitude larger than
the code, a prospect not pleasant to consider. Secondly, even with all such commentary the

problem would be in finding the right comments at the right times. The printed program
| listing is not appropriately indexed for the kinds of tasks we are describing. Nor for that
matter does human memory seem to be well suited to this task (as anyone who forgot that
last change of cadr to caddr can well attest). |

+ The programmer’s apprentice’ approach to this problem is an attempt to create an

interaction between"progr'ammer and programming environment in which the above

problems become more tractable. In essence, our view is that if the programmer could

communicate to this environment the information normally given as documnntatmn and .
commentary, then it would be possible for the programming apprentice to fill in the rest of

the details, indexing this information so as to be useful in explanation and evolution. In

addition, it seems that it should be possible to build a library of standard (or even

idiosyncratic) programming concepts such that the interactions could be brief én(‘mgh to be

usable in a real-world situation. |

Thus a typical interaction between programmer and apprentice might be something as
follows (Note: as usual the use of English is a convenient fiction):.

.Programmer: The symbol table for this section will be done using a LISP Style hash table,
indexed by symbol. The cadr will hold the relevant block-ids for this symbol.

Aprentice: OK
Programmer: To mark a symbol present in a block, T'll do the following. If the symbol is
already defined then T'll fetch it from the table and add the appropriate block 1D by side

effect, otherwise I'll build the new record and insert it

Apprentice: What does it mean for a symbol to be defined?

L.
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_Rrbgrammer: Present in the hash table, -
. Apprentice: OK
'Prqg_'ra"mm_e'r: Here's the code for marking a symbol preserit in a-block. - |

(defun mark-present (symbol block-id. commentary)
(prog (entry)

{cond

((setq entry (lookup symbol)) : .
(rplaca (cdr entry)(sorted insert block id (cadr entry))))

(t (setg entry

_ ~ (insert (11st symbol (1ist block=-id)) commentary))‘
(return (cadr entry))))

Appr_ent_ice:'" What is commentary?’
g P'regram_mer:' It's the third field of a symbol table record and it’s idigsyncratic.
3 Months later

Programmer I'm gomg to change hash-table entries. so that there is no. commentary f wld
and 5o that the car is the symbol and the cdr is the list-of block-ids.

-Apprentic’e OK, you'l obvi'ously have to change the "ent’r‘y—buiiding’ code in hash-table
insert but also you'll have to make a change in ‘mark-present where you add a new block-id
by side-effecting in a new list of block-ids. -In the old version this w_orked. since the
“block-id list was the car of the cdr. Now it's the cdr itself and doing the rplata will make.
..the new block-id list be a member of the old block-id Iist rather than accomphshmy the
correct replacement

; .Prog"_ramme'r: R"ight;.change it to:

(rplacd entry (so_rt._ed-.i'ns'ert block-id (cdr ehtr_y’-)))
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Apprentice: OK. Also the compiler routine Present-In-Block needs fixing.

L]

etc.
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Programs As Engineered Devices

In writing progranﬁ as in building br‘i'dges or constructing electronic. circuits, the
engineer will divide his problem into subunits and attempt to solve each as mdependently |
as possible A radio for example will ‘be divided into r-f and a-f stages each of which-has
its own mternal structure. The communication between these two. sectlons is expected to be

| kept to: a minjmum. ' . _

Similarly a p__rogla.mmel_' creating an air-line reservation '_systfem will .divi_d:e his problem-
into términal handling, data-base maintenance, etc. Each of these p'rob'lems' is itself quite
' complex and has interpal structure in its solution. The unifying etement ‘between these
separate sections of the program is in the communication’ discipline between them, in the
zassumptlons about overall structure, and in the common use of sub modules to solve
; dlfferent internal problems.

To be more specific, tonsider the program referred to above. The overall problem- Is.
épparen't'ly' a compiler for a block- structured language. A hash. table .is used in.
: lmplementmg the symbol table of the compiler. To achieve a snmple action such as
~marking a symbol with-a. block-id several other operations such as hash table- -lookup, .
'sorted -insert, rplaca, etc. are called upon. These sub-actions interact. in a purposeful'
mannel to achieve the desired goal, namely that the symbol table indicate-that the specif ied
: -symbol is defined in the indicated block. '
‘We might diagram this as follows:
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symbo1 block-id
_hash-table~1ookup ' markrpreseﬁt
-7 yes “no
entry
create-new#ehtry 

Yordered-insert | . entry

hashétab]efinsert"

: Ve _
marked-entry updated-table

) - Thus, the mafk-pre'sent operation is accomp_lish'ed"'by a pattern of interactions among-
other operations. In the process of program development such -acc_u'mlilati_o'n_ of behavior is
done both bottom up and top down, i.e. sometimes one imagines the existence of a ‘module

.'w'h'i'"e-h -will do a needed job even when that module does not yet exist;. at other times

already existing modules will suggest new behavior which. seems useful. While we are not
.proposmg a methodology of program construction, we are noting that to be comprehensnble :
at all a program must have some sort of modular structure,

Notice that m_a_ny’ of the m'oduies used to build mat‘k-—pres'ent. have iriternal -structure of
‘their own. Ordered-insert, fot ‘example, will probably. consist'of a 'éear_c_h-loop, a cons,and a
rplacd. The hash-table routines will involve §teps such a hash, bucket-fetch, etc. Thus, the
structure given above is a layered one. There will be boxes w1thm boxes until one finally
reaches programming language primitives.
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in any engineered device there will be communication between the: modules. In .~
mechanical devices this is done by physical contact, in electronics by wmng In programs,
commumcatmn between modules is accomphshed by the controf and data flow: primitives-of
~the programming Ianguage But in any engineered device there are Ilmtting requirements
o the communication between modules. Components of a cnrcurt will have voltage or-
curt ent’ limits which they expect to be respected by the component at the other .end of the

- wire sxmllarly mechanical devices expect forces to be within specified ranges

_ Programs expect thelr communicating partners ta respect. certam limits as well, although-
*the types of pre- condltions are quite general. A segment (our name for a progxam moduley
iay require: that its mput ob jects be well formed. objects of a -s_pec1_£tc_ type, or it might
| require something more elaborate of them like being sorted By primary and secondary k'ojgs‘__;
' S_uc,lrpre_-conditions are termed expectations. | _
A module can be thought of as promising that certain conditions will ‘hold after its
execution as long as its-expectations are satisfied. Thus, an amplifier will promise to
~ deliver a stronger signal and a sort routine a sorted list as long as the inputs ‘meet the.
approprtate requirements. We call such guarantees on output conditions assertlons Thus, -
a module may be abstractly descrlbed by its input-output behavmr i.e. by pairs of -
" expectations and output assertions. _ '
~ For an engmeered device to function at al; it is necessary that the pattern. of interactions
between sub-modules be such that every module's expectations be satisfied at the time of its |
 invocation. Further, the pattern. of interactions muist be such that the desired overaH result
isa loglcal fconsequence of the accompjlshments of all the, sub-modules. Such- logical links
between sub-segment behavior we term purpose links; those links. which explain how a
ub modules expectatlons are met are called pre-requisite Ilnks those which explain how
the overall intentions are met are called achieve links. The pattern of purpose links is what
 we term a plan and the process of deriving such loglcal links from the.connective. pattern .

.~ alone is. called plan verification (in the case of programs this connective pattern s glven by
the data and control flow). '

As stated above, the logical connections between modules involve not only the abstract
descrtptlon of modules but also the overall commitment to design. strategy. For _example,
consider the symbol table routine above,- To conclude- that the. symbol is properly marked
with the block-id one must know that a design chmce has been made to do this using
, hash.tables as opposed to property lists or some other scheme. Thus, purpose links can be
 seen t6 be logical patterns involving abstract descriptions of both the sub-modules and of
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the operant design choices.

Design choices are schemes for building abstract behavior and ‘ob jects using other less
abstract objects as the building blocks. This may be seen by considering a scheme for
implementing a st.a.ck using an array and a cell. -
" Conceptualiy, a stack is an object with a TOP-ELEMENT and a HISTORY. It has
PUSH and POP operations. One implementation scheme uses an array and a cell. The
top element of the stack is the array item indexed by the contents of the cell. The history
part of the stack is the sub-array from 0 up to the item indexed by the contents of the cell. )
Push is accomplished by adding one to the contents of the cell, storing this number in the
cell; and the new top item in the array item indexed by this number. This may be
diagrammed as follows:

new-item

%push

old-index

e PR b A A T 7 L g

new-index

store-in-cell

\ \ %

We would want to show that the new top is new-item and that the new histery consists of
all the old items plus the old top (in appropriate order). This will clearly require making
reference to the implementaﬁon pattern described above, that is, showing that the new top
is new-item will depend on the description of plus-l, contents, and the fact that (within this
design scheme) the stack-top is the item indexed by the contents of the cell.
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Similar conceptions occur in electronic devices where one may chose to rég’a‘r’d a signatl as
| elther a current or a voltage. The internal structure and logic of the amphf ter for such
: s:gnals varies according to this choice; although the conceptual behayior of amphf ying a
signal remains true in either case. It is one of the key problem_s of desgg_n ‘that any such

implementation strategy imposes restrictions which were.not implicit in the conceptual object -

being - lmplemented Using arrays imposes finite size on the stack different ampllf ier
des:gns impose different restrictions on power and signal range. '

In summary, the plan of an engineered device is a set of -logical connections between the
conceptual descriptions. of sub-modules, the descriptions of implementation strategy, and the
"overall intentions. for the device being engineered. These loglcal steps- explam how each

‘moduile of the overall device contributes to the higher level conceptuahzatlon as well as why

each' sub- module is capable of functioning. The lack of such a logical connection in a
- proposed device would mdlcate a conceptual failure or design bug _ ' _
- Given that modules of ‘a- device may themselves be conceptual -constructs’ with inter nal
_ structu_re,. plans provide an abstracting mech,anism,descnbmg the structure of the .devnce at
" a level appropriate to the task at hand. Plans also allow one to describe and reason about
the behavior of incompletely designed. devices, since a module’s ‘net behavioral
specifications may be used within a larger plan even if there is as yet no internal plan to
accomplish the behavior of the sub-module.

_Although we believe the research we wiil conduct will have bea‘rin'g'_.'on éhy engineered -
device, it is necessary to focus attention in order to make progress. For.the remainder of
_ this document ‘we will consider plan verification only within. the context of . programmmg,'
‘others are conductmg similar research i other disciplines: <Stallman’ & Sussman 19765; a

rich . cross fertilization of ideas and techniques has: and doubtlessly wnll contmue between

| these.areas of exploration.
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" The Use of Plans in Program maintenance and Explanation

Plans, as outlined above, give a teleological descrlptlon of program behanr ~abstracted
~toa Ievel of descnptlon which is convenient to the programmer.. lt is, thus, a rather trivial

matter to generate expl&natlons of ‘a program from a plan.. Since plans contain more

information than does the program itself, such explanations will be richer than a mere .
. recitation of the code. This has been explained in Rich & Shrobe <Rich &. Shrobe 19765>. -
Of more. interest to future research efforts is the notion of using plans as a means of
program modification or evolition, ie. in helping the beleagured systems programmer
referred to above. As we have noted, plans capture the relatlonshlp between program
- design’ choices, abstlact modularization, and overall intentions. In doing: this, they localize
the effects of changes in design strategy, and specify the teleological reqmrements which
must be satlsf jed.in arry modification of the deSIgn

As a simple case corjsi_der a hash-table insert routine which has been’ implemented using.
‘ordered linked-list buckets with a count field. The code for such a program might be:

(defun insert (item) :
(insert-jn-bucket (table (hash (key-part. item))) 'H;em))

_ 1@“ .

(defun 1nsert -in-bucket (bucket: 1tem) _
(do ((prev1ous list bucket (cdr previous- 11st))
(current-1ist (cdr bucket) (cdr current-1ist)))
((nuﬁ]'cUrrentilist)(rp]écd-brévious-fist'(Iist item)))
(and (greater than (car. current 1ist) item) '
{rplacd previous 11st (cons item current 11st))))
(rp]aca bucket (1+ (car bucket))))

, Suppose that for space efficiency, it was desnred to change to a rehashing scheme 8mce
-~ this change is strlctly a ‘design issue dealing with buckets, the plan would tell us that the
‘structure of the insert module itself is correct, but that the insert-in-bucket module as well as -

the communication between the two modules might require change. It could further tell us

that the last line (ie. the rplaca which bumps the count) is no longer relevant. ‘A simple
 system. might stop at this point. '
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How'eve_r; a full ..blown system would be ‘expected to realize: that rhere' is still common
- structure between the old and the new design:. For example, buckets in both approaches are
LINEAR-OBJECTS searchable by a LINEAR-SEARCH-LOOP: The difference is in the -
natufe of the BUMP, EXHAUSTION, and TERMINATION steps. In the rehash scheme,
BUMP is of course the rehosh operator and termination of the search is. indicated by a -
~ special. marker (such as nil) indicating that a slot is free. Exhau',stior__r of the search might
be indiéa'tgd by the vehash routine returning' a negative number. A-_Iso_ making an item a
;ﬁ_gm_ber‘ of a bucket in-the rehash scheme is simply a matter of i"nsé_r'ting.in' the afray. "
 Thus, an advanced system might guide the pfogrammer to the following new '_de_s_ign_'.,

(defun insert (1tem)
(1nsert 1n-rbucket (hash (key part item)) item))

(defun insert-in-bucket (1nit'1al-s‘l'o-t, item)
~(do ((slot initial-slot (rehash slot)))
({minusp slot)(error 'no-slots-1eft))
(and )
{null (table slot))(store (table slot) item))))

- 'N.o_t'i'c,é that this sort of full-blown petubation analysis ihch_jded. no’t only the pla'.n' itself but
. also the structure of knowledge about program design. The fact that both the old and the |
" new style-buckets were linear-ob jects indicated the similarities between the two search -
routines. -Such structure is captured in a knowledge base which uSes plans as part of its

B representation. - However, the.plans in the knowledge base are typically quite abstract (such

- as the plan for search loop)-and so they serve as. prototypes for program structure.
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‘Our Proposed Plan Verification System

' T.his‘section will describe a plan verification system called REASON which adequately
addresses the problems presented by the programmer’s apprentice systefn;- Some of the work
on this system was started in earlier work by Rich and Shrobe which is attached as an
appendix. ‘

The essential feature of the system to be presented here is its relationship to a knowledge
base with well defined semantic primitives. The deductive system is essentially a symbolic
evaluator of abstract programs which are defined in terms of primitive actions
corresponding to basic possible actions on data structures.

Since the basic actions of such a system correspond to higher level semantic notions, a
trace of such actions meaningfully summarizes the dependencies between sub-modules of a
program. These primitive traces also include reliance on -assumptions in-the knowledge
base which, in turn, are marked for dependence on design decisions. Thus, the basic
structures needed for program evolution are prdduced as a natural by product of the plan -
verification system’s operation.

¢

The Epistemology of REASON’

REASON is primarily concerned with issues presented by side effects on complex data
structures. Its most basic nation therefore, is that of part and generic part which name or

index (respectively) the substructures of a data structure. Parts may be required to meet
certain conditions, the simple'st'of which is that they must belong to a particular class of
objects. For example, an alist-might be described as having two parts: first and rest with
the first being required to be of type dotted pair and the rest required to be either an alist
or nil. ’ !

Another useful notion is that of property such as the length of a list, etc. Properties of
an .ob ject are defined in terms of its sub-structure. For example, the length of a list is
defined to be | plus the length of the rest of the list; the length of nil is tautologically zcro.
- This implies that changes to the sub-structure of an object will result in changes of its
properties.
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- Given the notion of p._rop'er'ty it is possible to state stronger testrictions on the
well-formedness of a data stricture. For example, 'bljckets in # CONNIVER type data base
. usually have two parts, a count and a membership list. ‘The counit is requlred to be equal to
the: length of the membership list; such a requirement is called a constraint.

Fi’naﬂly, REASON has a notion of relations between objects. A commén' example of a
relatlon is membership. Relations like properties are defined in terms of the sub-structure
of the objects being related. For example, membership in a list is defined recursively as
follows: either the object is the fi irst abject of the list, of a member of the rest of the Jist;

nothing is 'a member of the empty-list (nil). Membership in: a hash-table. ls def ined as
" follows: an entry ‘is a member of‘ a hash table if it is a member of - the bUCket hashed. to by
the key part of that entry.

Nations. relating levels of description

" The abOVe notions are adequate for presenting a conct.'ptual descnpnon 'of an ob ject.
They ¢ do not, however, deal with questions of |mplementat|on i.e. of building ob jects of one.
~conceptual type by a.pattern of interactions between ob jects. of snmpler types. Aswe
dlscussed earlier this is a crucial task in any engmeenng project. For example Iet us neturn
to our earher ‘example of implementing a stack using an array and a cell. -

‘The first thing we would havé to state is the'set of ob jects being used in the
implementation scheme, thus, the array and the ceIl are lmplementatlon parts of the stack

A second type of information is an lmplementation mappinp; of conceptual ob Jects onto
" lmplementation parts. For example, the statement that. the. top of the stack is. the array-item |
pointed to by the contents of the'cell is exactly such a-map_ping. Such _mappm_gs.bear many
-simila'é_it‘ies to. relation definitions -in t'hat' they are "both equiﬁal'éhteS'.- . Furthermorc; the.
mapping s'pecifies how ‘side-effects to implementation-parts will result in side-effects. ta
conceptual ob jects in a manner quite simifar to that in which relatlon defi initions. describe
" how changes to part structure result in changes to relationships between objects. - |
| The above propagation of effect from implementation to conceptual ob ject has an'
important additional implication. . The input output specifi ication of _segment_ behavior is an
) i’nfr-ihsic_*des_'c_ription; it specifies what the module does: independent. of _h'o'W, that behavior.
inte_x{a",ct,'s'with that of other segments. But, the introduction of implementation ‘_mapp‘ings
allows “already, existing program segments to take on ex'tri'nsic_meanin.g.s-. For .'exam_ple.'
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suppose that a CONNIVER bucket is implemented as a dotted pair whose lef t half is the
. count and whose right half is the list of mémbers. In this situation, CAR has an extrinsic
meamng of ‘extracting the count from a bucket (m contrast to -its intrinsic descnptlon of
" extr actmg the left half of a cons)

A final notion which must be added is that of virtual obje'éts- F"re'quént'ly one will

... imagine or conceptuahze the existence of an object which has no existence- as a unified

" whole within_the program. The fringe of a tree is such an object. Another exgmple is a
su_ba_xlnay. between two bounds of -another array. Such virtual pb_jects_ are side-eff ected "by.
" side effects tb.the'-'concrete ob jects from which they are created. If, for exa".mple,__a_ tree has

its left branch changed, this will.usually result in‘a change in the fringe: Con‘vers'e-lj,- if one
s told that. the fringe has been changed by certain actions, one can infer a range of
'.posmble actions to the tree ltself which might have caused the stated changes.

This would be stated by a vn'tual -ob ject-description which maps the part structure,’
'propertles and relations of the virtual ob ject onto those of the concrete ob ject from which it~
~ is der |v_ed: Such descriptions are quite similar in form and use to relation-definitions and
implemeritation mappings. ' i

Basic Actions In REASON.

- . 'REASON is structured as a symbolic program evaluator, i.e. it acts as if it were an
. "i_n_térpr_eter running a program on-symbolic (i.e typical rather than actual)-arguments. The
ﬁrogi‘a"ms are specified not as code, but as data flow between'program segments.which are
in: turn. specmed by input-output specifications. In the simplest ‘case, REASON is.given
‘ such an-input-output specification for a main segment and for the sub- -segments which will
be used to achieve the behavior specified by the main segment. In addition, the data f low
"-cgjnhétt'i-on’s between these sub-segments will be given. REASON will symbolically evaluate
this program using a relational data-base ofganized into time snapshots called situations. _'
Ini the initial situation REASON asserts the input conditions of the main se‘gmerttl Then
for each '5ub-§eg‘ment it proves that the input conditions are satisfied. 1f this proof ‘is B
su'c-c"'es's'f ul, 2 new .situatibn,is created and the output assertions of the sub-ségment are added |
to this new situation. The next sub-segment is then treated similarly. When all-
sub—segments have.been evaluated, a proof of the output conditions of the main segment is
attempted If this succeeds, the plan at this level is correct. If any of the proofs fail, the
- plan has a conceptuai bug and debugging intervention is requnred
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- The result of this action is a tree of situations and a record of every deduction used in
“the proofs required for the plan verification. This network of connectxons between
assertlons is a verified plan of the ‘main segment. - '

Output assertions of a’ §ub-segment fall into one of three categdr_ieS:._ a) New inf ormation
b) Referent. resolution c) Side effect. In the first case proceésing is refatively simple. The.
‘information .is added to the data base and. antecedent. mferencing is. performed. In
" particular, all relevant type information, constraints, telation, implementatlon and virtual .
-obje__ct. definitions are used to irifer new information. For example, on learning that
EN_'T:RY:.-.'I is a member of LIST-2. demon; a_x:e fired which check if LIST-2 is :a 'sub-list of
Lo gny. other lié,ts.. If so, the in_ference is drawn that ENTRY-l'is also a member of 't_hose- lists, -

-F'requen’tly in making an assertion it is necessary to- refer to-an ob ject b‘y'it’s relationship
-to ‘other ob jects, for example “the car of list-1". Referent. resolutlon involves searching the
data-base for information which .would. identify such an obJect If no_such ob ject is
already known, theh a new anonymous ob ject is created which is asserted to meet the
- requirements of the reference. ' '

The _main dlf‘ﬁculty, however. is- in processing assertlons spec1f ying side effects... To
llustlate this, suppose that it is "known that ENTRY-1 is. a member of a'hash-table TABLE-,
* but it is not known what the key-part of ENTRY-1 is. Sup-pqse BUCKET-5 is.a bucket of the
_'TABL_E'—l_ and that it is changec_l 50 that no entries with KEY-10 ate members of it any
' longer. 1Tt is then possible that ENTRY-1 was deleted from the TABLE-I (i.. since its key
mlght have been. KEY-10), but it also possible that it wasn™t. The data-base. must be update .
_in_the output situation such that nothing which might be false is asserted. to be true, and

' }_'demons must be created to wait for and to. propagate:the necessary unknown mformat:on. e

- Such. processing can be done by usmg the chains of potential dependence gwen by relation -

del‘lmtlons Rith & Shrobe descrlbes this process in detail. - ' |
: A similar difficulty is brought about in the propagauon of ‘side effects to lmplemented
-', and virtual objects which depend on the effected ob]ect_ Fot example, if a queue is
lmplemented using an array and two cells, then the efect of changlng the value of one of
~ the cells has to be propagated across the conceptual boundary so as to specnf ¥ the changed
| state of .the queue which is being lmplemented by the cells and the array. |

Conversely, were a side effect specified only in higher level terms, the data base. would
-need to. be updated to propagate the knowledge to more pnmmve levels of descnptmn For
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example, using the above scheme of an array and two cells for a queue, if we were told that
a POP had been performed we should make the appropriate changes to the cell pointing at
the top. Sometimes the relationship between levels is less direct and results not in the
propagation of new facts, but rather in a range of uncertainty. ’

The Specification Language
REASON provides a specification language for segment behavior whose semantics is

given by the above primitive actions. This language is presented in detail in Rich &
Shrobe. A program’s specification is given by four clauses: inputs, outputs, expect, and

assert. The first two of these merely provide internal names for the ob jects which are the
inputs and outpus of the segment. The expect clause gives a list of conditions which the
segment requires to be true of its'inpu't ob jects.at the time the segment is applied. The
output clause lists those conditions which the segment guarantees to be true on exit.

Thi‘s last clause, however, has some added feature. In particular, it allows
pseud_o—stat.ements of the following form: a) (NEW OBJECT-1) which s’pecif’iés that
OBJECT-1 is newly created during the execution of this segment; b) (ID OBJECT-1
OBJECT-2) which specifies that OBJECT-1 and OBJECT-2 name the same object and that

- this ob ject has undergone a side-effect during the execution of this segment. One of these
names is an output name, the other an input name. iBy using the output name one can
make the clause be applied in the output situation, and similarly for the input name. Thus,
in the following:

(specs-for reverse-by-side-effect
(inputs: 1list-1)
(expect: (list 1ist-1))
(outputs: 1ist-2j
(assert: (id 1ist-2 list-1)
(list list-2)
(reverse list-1 1ist-2)))

we concisely specify that the cell named by list-2 on exit from reverse-by-side-effect contains

a list which is the reverse of the list which was contained -in that same cell at the time of

entrance to this segment (N.B. this is not quite the nreverse of MacLisp). _
Finally, a bracket notation is used to indicate reference. Thus [FIRST LIST-1] is an
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ébbrevihtibn for the object which is the first part of list-1. Combining fhis with the
multnple name convention above allows a time-based notation. For example we can easily
specify 1 that a cons has been reversed by side-effect as follows: '
" (specs-for swap

“{inputs: cons-1)

{expect: (cons cons-1))

" {outputs: -con‘s-'Z-') :

(assert: (cons cons-2)

- (id cons-2 cons-1)
- | (1eft cons-2 [right cons-1])
, S {right cons-2 [_1eft cons-l']).)')- |

‘where in resolving the meanmg of the brackets the use.of input or output names gundcs the

~ choice of situation in which to resolve the reference. o

Statements in this specification language can be transiated to programs wrltten in the

Ianguage of the prlmitlve actions described above. Thus, REASON can ‘act' on such
specifications either by prior translation and direct execution or by interpretation.
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IWha.t_ We_-Pc'_o‘p'ose. To Do

The. central issues which distinguish our work from other work in -the area of program
verification is in the relationships we see between verification, plans; dnd the tasks of |
,progra.m'_ maintenande and design. Specifically, we see the verification sy_st'ern as leaving’
behind a plan which is a trace of its semantic actions. ‘This .plan can be"used_ in analyzing
the effects of proposed pertubations of the program. Furthermore, such plans can be

N recorded in a library; the more abstract the plan is; the more it will serve as a prototype

which a de51gn system could draw upon.

REASON as it now exists was a throw away implemen_t_ati_on--u'sed' to investigate the '
necessary primitives needed for reasoning about the behavior of programs with side effects
“on cenmpl-ex -dnta stfuctures_.- It has been a useful tool, but the time h‘é.s'c_ome;to clean up its
| 'structure'so as to allow flexibility in the uses outlined above: Thus, our firsf avenue. of.
~ investigation is a clean specification of the behavior now exhibited by REASON and a

-clean implementation to go with it. '

The Sec‘on_d main avenue of ex'plorafion will be in using plans produced by REASON to
exa"rni-ne the implications of proposed modifications -and additions to a program. In
particular, we will ldok at examples such, as that given above of changing a program to
. reflect ‘changes in a design choice. Such investigations will attempt to use the knowlnrlge_
base of the system to the greatest degree possible.

A similar process used in design will also be 1nvest|gated namely the fmther N |
. specialization of already existing library plans. This. will be used as an.aid in m.tcracnve_ '

design, whete the user might say something like "search the list computing, a running total
and exit when the item with key-5 is. found.” Such processing would involve speclalmng
' search Ioop to also be an- accumulatlon loop: '

Fmally various issues dealing with the cantrol of proof processes will be mvesugatrd in
particular: the use of prototype plans to guide the proof of a specnahzatlon of that p!an,
the use.of knowledge about data-structures to guide case-splitting, and the. use of explicit

recordmg of dependency and sub- goahng informatioh to guide search <DeKleer et. al,.
1977> '
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‘' Our methodo1ogy will involve codmg a small, but reahstrc data- base oriented system_
- which uses a variety of data structures such as hash-tables, CONNIVER- hke tables, queues,
stacks, arrays, records, etc. We will attempt to be specific at each stage about, our design
: 'cho,rces and modularization. Our intention is to ple an appropriate implementation. stage,
attempt to-get. R’EASO'N to understand it as fully as possible, and then to add new features,
using REASON in evolution mode. The program might be somethmg like a program to
keep track of financial petworks such as interlocking boards of dlrectors of large -
corporatlons and banks, nations and markets. of control, etc.. It is felt that this program. ‘has
_extrinsic, worth other than as a toy for REASON to play with and that therefore it will

provrde realistic (but not f rantlcally changmg) material for investigation.
'_ Relatianhip: to Other Work:

There are four ctoseiy. related characteristics of our work which_eepa'_rete' it from ot:he'r
work on program verification. First, we regard verification as b_eihg_ factored _in‘to two-
stages the development of a verified plan at some level of abstraction and. then after coding -

. has been-done, the t recogntion of the code asa valid |mplementatron of the plan Thus, we -
- see- the. verification process as being concerned with abstraction and . .implerentation
"Iayerm.g, rather than with the programming language -itself.' Second, we have made the
issues Faised by side effects a primary'concern of our design. Third, we rega‘ird' v'erif ication
as bemg a means as well as an end. The verification process.is the mieans to the recording
of a plan structure. which shows the dependencies between modules and: desrgn ¢hoices.

o Thls structure is the key to ;program design and evolution. Finally, our work is very much S

- concerned with the structure, use and semantics of a programming knowledge base which
wrll be used to guide verif 1cation and to capture nmportant generahzatlons

".The'.- Wea]g.lrefss _Of Trad‘it_ionai Floyd-Hoare Logics

In our view, a program is a conceptual structure which at’ any pomt in its developmnnt
“can be viewed as having a heirarchy of abstractions. Each- level can be regarded as being

- a program in the language comprised by the modules of  the next Iower level <D Jrknna
1976>. '

- Floyd -Hoare <Floyd 1967> <Hoare, 1969,197I> logics tend to attribute prrmacy within this
f. helrarchy to: the programmmg fapguage itself. Thus, the basrc Floyd- -Hoare approach‘.
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_'d'_ef'i'ne_s_ the language by attaching axioms to each primitive of the p_rogrammiﬁfg Tanguage. -

Two g'en.e_rél methods are used <Igarashi, Londan & Luckham, 1973; King; 1969; Deutsch,
1973>, the difference being direction of action. In one the axiom sj;_e‘cif-i_es how to move a
_ logical c‘onditibn forward- over a program primitive; in the other method the axioms
specify backward motion. | |

Thus starting with the incoming predlcates of a program, one can move- statement by
statement through the program, generating new logical sentences called verification -

‘conditions until one arrives at the other end of the code. The conjunction of the final

verification condition and the output predicate of the program is a predicate equivalent to
the statement that the program is correct. (In the other method, the same thing is done in
the other direction.) This logical statement can then be handed to a theorem prover of any
sort. If the statement can be proven, then the program is. correct.

Given this bias toward the primitives of the programming Ianguage Floyd ~Hoare based

. systems - ‘tend to have inadequate ‘concepts of implementation level or of mterdepend_ecy

between such levels or of interdependency hetween modules at a single level of abstraction..

A second central problem of Floyd-Hoare systems is that they are oriented only towards -
verifi lcatlon that is towards demonstrating that a program meets its specrf ication. Such’

_ ,._syste_rns_tend not to be oriented towards the explanatlon of how such a system meets its

specifications or of isofating ‘the bug responsible for its not meeting its specif ications. In
our view this is due to two. factors first, semantics are given solely by the axromatrc .
def initions of the primitives.of the programmmg language (whlch does not aliow . enough
abstactlon) sécond. these systems rely on uniform logic systems such as. resolution theorem |
provers.

The practlcal consequence of these decrsrons is that Floyd- Hoare systems have no easy
way of recording the semantic dependencies in the program Lacking such- a recorcled
network of semantic dependencies such systems cannot p_rovid_e the support n_ecessary to -

' ind_e_x. a completed design for use in future modification or to identify the source of a B
program bug. o - '

Floyd-Hoare systems have another major failing which arises from a similar source, -
namely that complex data-stuctures with side effects appear to be beyond the:scope of most

such ‘systems. Since the design ‘decision of F-H systems is to specify everything in terms of
axioms describing the behavior of the programming language primitives, this requires the
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~axiom for R_P-L_ACA (for example) to specify all the possible -_"conSeQUence's-of 'c_hanlg'in'g the

left half of a CONS cell. Given that the cons could be'imple'menting'" any of an infinity of

| conceptual stuctures at a higher level, this puts an-overly heavy burden on the descnpuon
. of the behavior of such program prlmltlves '

_ Within the context of Floyd- Hoa’re fogic, only Suzuki- <Suzuki, 1976> has addressed the

o questlon of side-effects at all. In his system, a user has to provide reduction rules for ‘the

"behavior of b jects with side effects. These rules tend toward the ad hoc and in any event
are difficult to write and are error prone. Further, his system still lacks the ability to make
: meamngful recordings of its action or to reason at an abstract level. '

SIMULA-Like Systems
‘(':)'ne of the main drawbacks of Floyd-Hoare systems is the failure to address the issues ‘

_ ‘raised by implementation heirarchies. Simula like systems such as CLU <Liskov 1974;
. 'Liskov & Zilles, 1975> and ALPHARD <Wulf, 1974> have attempted to deal wrth these

. quesnons by adding to the Ianguage methods of accumulating modules which togotherj
~ constitute the behavioral repertoire of a conceptual object. A verifi ication ~methodology is.

~ then worked ‘out which first verifies that these modules do implement the conceptual -
-be'havror desired. Then, outside the cluster (or form in ALPHARD) only the conceptual
behavror may be ref erenced - :

This approach is clearly quite similar to our own structuring. of the knowledge base'
around data:types. However, the systems still use Floyd-Hoare like. methodology wrthm.
each module and so in our view are overly restricted from dealmg with- abstracuons.
- 'slde eff ects and pertubatlon analysis.

: ACTOR Oriented .Systems

A further step away from Floyd-Hoare type systems is taken in the work. of Hewitt and

'. ,-Smlth <Hewitt & Smith, 1975> and Yonezawa <Yonezawa 1975 19763 1976b> who are

_ workmg within the ACTOR formalism of computanon There has been considerable cross
f ertilization between this work and our own. Both projects have broken from Floyd-Hoare
logit using situational data-bases apd- forward symbolic evaluatmn Both projects have

- been concerned with side-effects from the outset. :

-~ There have been dif ferences in emphasis, however. Our work has. beei geared towmds
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. the design of the appropriate small set of descriptive primitives for the knowledge base and
the actual implementation of a working system. Their’s has been geared foward'_s the
development of the ACTOR forimalism and. towards a new I'anguage, PLASMA, designed
to ref Iect the ACTOR v1ewpomt In addition, théit work -does not reflect our commltment
_to af actorlzanon of the process into plan venflcanon and. code recogmtion

. TIu_e .P_rogranuner's Apprentice Project.
Our work was bé‘gu‘n as.a joint venture with Charles Rich. The result-of that work is
“reportéd in our joint Master's Thesis and a subsequent Technical Repott. 'Our joint work
is now continuing by each of us deeply pursuing a single aspect of the project. Rich is
centéring on plan recognition and the design and structure of the programming knowledge
base for the joint system <Rich, 1977>. In addition, Richard Waters <Watets, 1976> is
~working on a snmllar pro ject using numencally oriented Fortran programs as: his domain. of
reference. ' : -
These projects will cross fertilize one another in several ways. Our plan verification
sjistem will produce plans for Rich’s system to- use in recognition; his work will clarify
structures of the knowledge base which will lead to useful guidance for our system,
. partlcularly in pertubation and.design. Ultimately, these. separate avenues of exploration
| "wxll be brought back together in a full blown programming envnronment incor poratmg and
: synthesmng all of the above work. ‘

_: Ot.,hel'; Work on Rea_soning_ and Analysis of Engineered Dtﬁ_vi‘ges_

-~ Much of our work on reasoning bears a resemblance to work _bgi'n'g' 'd"c}he by the
Engineering Problem Solving group at MIT <Sussman, 1977>. In particular. our rcﬁa_sqt_ﬁn’g-
syster 'l_l's,e"s‘-tg_c-h'niques quite similar to Analysis by Propagation of Constraints <Stallman &
Sussman, 1976>. Indeed, our evolving notion of the structure .of REASON has been.
. influenced substantially by AMORD <DeKleer et. al, 1977>. However, our work has been
consid'er"ab‘ly’ nmore concerned with reasoning about the d’ynam‘i’c behaviar of systcm's
~ (side- effects) than has the above work. Similarly our work on reasoning shares ma. ny
comimon. features with Moore’s system <Moore, 1975> although we have been. spec;athd in.
our coricein for programs as a problem domain. As our work moves into the ‘border-line -
~ area of de51gn we expeet to be gmded somewhat by McDermotts <McDermott 19'76> work
“on the desngn ‘of electronic circuits, '
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The Psi 'S_y-s.'t'em' of Barstow,Kant and Green

o Finally, many of ideas for the codification of "knowledge in a data base will be guided
somewhat by the work of Barstow and Green <Green & Barstow, 1975> who a's..par.-t of their
- PSI system have developed a production system for program design. Barstow’s part of .the
system proposes a tree of designs to meet a conceptuat description of the program
‘réqu-ir:e"rne_nt,s_ which is pruned for. efficiency reasons by Kant’s <Kant, 19775 effiency expert.

._Ba‘.rstgjwa production system in our view represents'.a very useful refine'nignt. heirarchy
for thinking about programming concepts. Howev_er,_ his system. does not seem to contain
any deep te.iedlogiéal '_.noti'on other. than that giveh by the refinement path itself. Thus, in
our view his system will be limited in its ability to conduct compli_'cai_'ted design or.
per_-t'bba_;’t'ion"s’in_m these tasks involve interactions between synthesis and analysis, thus |
requiri'ng'- e‘xp'licii teleological structure. Ho‘Wevgr, we believe that a  wedding of the cpnée_ptS‘
in PSI to our own will be highly productive. -

2
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