
MASSACHUSETTS INSTITUTE -OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 151. August 1977

AMORD
A DEDUCTIVE PROCEDURE SYSTEM

by

Johan de Kleer, Jon Doyle',
Charles Rich, Guy L. Steele Jr. , and Gerald Jay Sussman

Abstract:

We have implemented an interpreter for a rule-based system, AMORD, based on
a non-chronological control structure and a system of automatically
maintained data-dependencies. The purpose of this paper is tutorial. We
wish to illustrate:
(1) The discipline of explicit control and dependencies,
(2) How to use AHORD, and
(3) One way to implement the mechanisms provided by AMORD.

This paper is organized into sections. The first section is a short
"reference manual" describing the major features of AMORD. Next, we
present some examples which illustrate the style of expression encouraged
by AMORD, This style makes control information explicit in a rule-
manipulable form, and depends on an understanding of the use of non-
chronological justifications for program beliefs as a means for determinin.g
the current set of beliefs. The third section is a brief description of
the Truth Maintenance System employed by ANORD for maintaining these
justifications and program beliefs. The fourth section presents a
completely annotated interpreter for AMORD, written in SCHEME.

Fannie and John Hertz Foundation Fellow
k* NSF Fellow

This research was conducted at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the Laboratory's
artificial intelligence research is provided in part by the Advanced
Research Projects.Agency of the Department of Defense under Office of Naval
Research contract number N00014-75-C-0643.

Working papers are informal papers intended for internal use,

de Klear, Doyle, Rich, Steele & Sussman

Acknowledgements:

We thank Drew McDermott and Richard Stallman for suggestions, ideas
and comments used, in this paper. Jon Doyle is supported by a Fannie and
John Hertz Foundation graduate fellowship. Guy Steele is supported by a
National Science Foundation graduate fellowship. This research was
conducted at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory's artificial
intelligence research is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract
number N00014-75-C-0643.

Contents:

The AMORD Reference Manual 3
Some AMORD Examples . 7
The Use of the THS in ANORD 10
An Annotated Interpreter in SCHEME 14
Notes 40
References 41

RHORO

de Kieer, Doyle, Rich, 'Steele i Sussman

Section 1: The AMORD Reference Manual

AHORDMORD is a problem solving system. AHORD encourages a style of
expression in which the logical relationships of the knowledge and control
structure of the problem solver are made explicit. A minimal, set of
mechanisms is supplied by ANORD so that most of the knowledge that must be
formalized and the decisions that must be made in constructing a problem
solving program must, to a large degree, be made explicit in AMORD. This
makes ANORD is a vehicle for expressing the structure of problem solvers',
such that once the problem solving structure has been formalized, the task
of transferral to programs in programming languages is straightforward.

As a set of mechanisms, ANORD is a system for the pattern-directed
invocation of a set of rules operating. on an indexed data base of
assertions. ANORD features a simple syntax for rule invocation patterns,
an unconstrained format for assertions, unification semantics for the
pattern-matcher, a non-chronological control structure for rule
invocations, and the use of a truth maintenance systemTM for determining
the current set of believed assertions. ANORD is implemented in
SCHENESCHEME implemented in MacLISP.

M o:LsP

The main components of ANORD are the data bases of assertions and
rules, the THS, the matcher, and the queue. The data bases used in storing
assertions and rules are discrimination networks. The THS is a system for
maiaintaining the logical grounds for belief in assertions. The matcher is a
syntactic unifier which has no distinguished positions or keywords. The
queue is a system whereby rules are run on the appropriate assertions. The
main loop of the AIORD interpreter is to simply run the body of all rules
on all assertions whose patterns match the rules' patterns. This is done
independent of the chronological order in which the assertions and rules
are entered into the data bases. 'When all rules have been run on all
matching facts, ANORD halts, awaiting further user input.

There are several special constructs in ANORD for expressing rules
and assertions. We will enumerate them here, accompanied by their syntax
and description.

ASSERT -- (ASSERT <pattern> <justification>)
This is the method for adding a new assertion to the data base, Any

variables in the arguments inherit their values from the lexically
surrounding text. Variables are denoted by atoms with a colon prefix, as
in ":f". Each fact in the data base has an atomic factname. Assertions
which are variants of each other designate the same fact in the data base,
that is, are mapped to the same factname. The Justification is a list,
whose type is determined by the first element of the list. If the first
element is atomic and has a "proof-type" function associated with it, that
function is applied to the justification and assertion to construct the
desired THS justification. Otherwise, belief in the assertion is
Justified by belief in all of the facts in the rest of the: justification.

The FRIORD. Re ferene I'laiua I

de Kleer, Doyle, Rich, Steele & Sussman

Assertions are run on all matching rules.

RULE -- (RULE (<factname-variable> <pattern>) <body>)

This is the method for specifying a procedure to be invoked by all
assertions matching <pattern>. When a fact whose pattern unifies with the
rule pattern is inserted into the data base, the set of AMORD and SCHEME
forms specified in the body of the rule are evaluated in the environment
specified by adding (1) the variable bindings derived from the unification
of the fact pattern and rule pattern to (2) the binding of the fact's
factname and the factname variable of the rule pattern and (3) the bindings
derived from the lexically surrounding text.Godel The primary use of the
factname variable is for use in specifying justifications in assertions
made in the rule body. Rules are run on all matching facts. The order in
which they are run is not specified, although the interpreter of Section 4
operates in a quasi-depth-first fashion.

ASSUME -- (RSSUiE <pattern> <justification>)
This is used to specify speculative hypotheses, that is, to assume a

truth "for the sake of argument". Here the justification provides support
for the need for assuming the assertion specified by pattern. Assumptions
are made by justifying belief in the assumed assertion on the basis of a
lack of belief in the assumed assertion's negation. Thus, assumptions may
be discarded by justifying belief in the negation of the assumed assertion,
which will invalidate the validity of the previous justification for this
assumed fact. In particular, the dependency-directed backtracking
mechanism of the TMS uses the information gained through analysis of the
reasons for contradictions to retract conflicting assumptions in this
manner.

The following macros can be used to interface expressions manipulated
by the AMORD and SCHEME interpreters.

PDSVAL -- (PDSVAL <form>)
This macro allows SCHEME code to access the AMORD value of <form>.

PDSLET -- (POSLET ((<varl> <vail>) ... (<varn> <vain>)) <body>)

This macro enables the binding of a number of AMORD variables to
values expressed by SCHEME expressions. Note that the AMORD variables must
be prefixed by a colon.

PDSCLOSE -- (PDSCLOSE <body>)
This macro allows the evaluation of AMORD forms from within SCHEME

when the SCHEME expression being evaluated is not lexically surrounded by
an AMORD expression. The forms in the body are evaluated in an empty AMORD
environment, that is, an environment in which no AMORD variables are bound.

CONSTANT -- (CONSTANT <object>)
This SCHEME predicate determines whether an object contains any

references to AMORD variables.

The AMORD Reference Manual

de KIMor, Doyle, Rich, Steelse Sussman

The following are used to initialize and invoke the AHORD interpreter.

INIT -- (INIT)
This function initializes the data bases and various system

variables.

RUN- - (RUN)
This function initiates the ANORD read-evaluate loop. Forms read in

this loop are closed in the empty environment and then evaluated. Unlike
the SCHEME read-evaluate-print loop, the results of the evaluation of forms
in this loop are not printed.

The following functions display the reasoning behind believed
assertions.

WHY -- WlHY <factname>)
This prints the current justification for belief in the specified

fact.

EXPLAIN -- (EXPLRIN <factnams>)
This prints the complete proof of belief in the specified fact.

There are also a number of functions internal to the interpreter
which are useful in writing specialized functions. The THS functions and
their use are described in Section 3. The most important are the
following.

ASSERTION -- (ASSERTION <pattern>)
This returns the factname of the fact with the designated pattern.

FACT-STATEMENT. -- (FACT-STRTEIIENT <factnam>)
This returns the pattern associated with the designated fact.

RETRACT -- (RETRACT <dfatname>)
This removes all PREMISE type justifications possessed by the

supplied fact.

There are several standard forms of justifications.

PREMISE -- (PREMISE)
This justification supports belief independent of any other beliefs.

GIVEN -- (GIVEN)
A synonym for PREMISE.

CONDITIONAL-PROOF -- (CONDITIONRL-PROOF <consequent> <hUpotheses>)
This justification provides support if the recorded justifications

The RAORD Reference aansual

de Kleer, Doyle, Rich, Steele & Sussman

provide for belief in the consequent when all the hypotheses are believed.
Actually, this justification type has a somewhat more tomplex capability
and, syntax which consistently extend the syntax and furction just
described. The concepts involved in this extension are described in
Section 3, and the syntax is described in the annotated implementation in
Section 4.

CP -- (CP <consequent> <hypotheses>)
A synonym for CONDITIONAL-PROOF.

CONTRADICTION -- (CONTRADICTION <support>)
This justification supports belief if all the facts in the mentioned

support are believed, and further declares the fact justified by this
justification to be a contradiction. This declaration will cause
backtracking to be invoked whenever the justified fact is believed. All
contradictions must be explicitly declared. That is, asserting facts which
are syntactically negations of each other does not automatically produce a
contradiction.

ASSUMPTION -- (ASSUnPTION <reason> <negation>)
This justification supports an assumed belief if the reason for

making the assumption is believed and if there is no reason for believing
the negation of the assumed fact. The negation used in this justification
does not have to be a fact with a certain pattern, but merely any fact
which will be taken as meaning (or at least implying) the negation of the
assumed belief.

In addition to the above justification types, the justification types
INSTANCE and RULE are used internally by the interpreter in making
justifications based on subsumption of one fact by another and in
justifying rules. These justification types should therefore be avoided by
the user.

To use AnORD, simply incant at DDT (on MIT-AI):

:ANORD;AMORD

which will load up the current version of AMORD and enter the SCHEME read-
evaluate-print loop. To enter the ANORD read-evaluate loop, evaluate the
form (RUN), which will begin interpretation. To escape to LISP, type ^G..
To restart SCHEME, type either ^^ or (SCHEME), from whence (RUN) can again
be invoked to resume AMORD.

This concludes the AMORD reference manual.

The RW0O Re ference fanual

do Kiser, Ooyle, Rich, Steel, a suessman

Section 2: Some AMORD Examples

The control structure of APORD encourages a certain style of rule-
writing. In order to compute anything, the control of the computational
process must be made explicit.Explh t c hCOIO The use of explicit control
requires careful thought about making assertions with the correct
justifications for belief. This section presents a simple system for
.deduction to illustrate these points.

The forward version of conjunction introduction is implemented in
ANORD as the following rule:

(Rule (if :a)
(Rule (:g ab)

(Assert (AND s:a b) (aW If 1g))))

To paraphrase this rule, the addition of a fact F with pattern R into the
data-base results in the addition of a rule which checks every fact G in
the data-base and asserts the conjunction of A and the pattern B of c.
Thus if A is asserted, so will be (AND A A), (AND A (AND A A)), (AND (AND A A) A),
etc. Note that the atom AND is not a distinguished symbol.

Unfortunately, this rule is useless, as it generates piles of useless
assertions. To control these deductions, the above rule can be replaced by
the following rule which effects consequent reasoning about conjunctive
goals.

(Rule (:g (SHOI (AND :p :q)))
(Rule (:a1 :p)

(Rule (rc2 :q)
(Assert (AND :p Iq) (A+ il1 :c2)))

(Assert (SHOI :q) ((BC 8+) ig :ci)))
(Assert (SHOM sp) ((BC W+) ag)))

In this rule the control statements (sHous) depend on belief in the relevant
controlled facts so that the existence of a subgoal for the second conjunct
of a conjunctive goal depends on the solution for the first conjunct. At
the same time, no controlled facts depend on control facts, since the
justification for a conjunction is entirely in terms of the conjuncts, :and
not. on the need for deriving the conjunction. This means that the control
over the derivation of facts cannot affect the truth of the derived facts.
Moreover, the hierarchy of nested, lexically scoped rules allows the
specification of sequencing and restriction information. For instance, the
above rule could have been written as

Some VIORD Examples

de Klear, Doyle, Rich, Steele 8 Sussman

(Rule (:g (SHOU (AND :p :q)))

(Rule (:cl :p)

(Rule (:c2 :q)

(Assert (ARN :p :q) (+ :cl :c2))))

(Assert (SHOW :p) ((BC 8+) :g))

(Assert (SHOW :q) ((BC 8+) :g)))

This form of the rule would also only derive correct statements, but would
not be as tightly controlled as the previous rule. In this case, both
subgoals are asserted immediately, although there is no reason to work on
the second conjunct unless the first conjunct has been solved. This form
of the rule allows more work to be done in that the possible mutual
constraints of the conjuncts on each other due to shared variables is not
accounted for. That is, in the first form of the rule, solutions to the
first conjunct were used to specialize the subgoals for the second
conjunct, so that the constraints of the solutions to the first are
accounted for in the second subgoal. In the second form of the rule much
work might be done on solving each subgoal independently, with the
derivation of the conjunction performed by an explicit matching of these
derived results. This allows solutions to the second subgoal to be derived
which cannot match any solution to the first subgoal.

Other consequent rules for Modus Ponens, Negated Conjunction
Introduction, and Double Negation Introduction are similar in spirit to the
rule for Conjunction Introduction:

(Rule (:g (SHOW :q))
(Rule (:I (-> :p :q))

(Rule (=f :p)

(Assert sq (iP :1 :1)))

(Assert (SHOW :p) ((BC iP) :g :i))))

(Rule (:g (SHOW (NOT (AND :p :q))))
(Rule (:t (NOT :p))

(Assert (NOT (AND :p :q)) (-4+ :t)))

(Rule (:t (NOT :q))

(Assert (NOT (AND :p :q)) (-8+ :t)))

(Assert (SHOW (NOT :p)) ((BC -8+) :g))

(Assert (SHOW (NOT :q)) ((BC -8+) :g)))

(Rule (qg (SHOW (NOT (NOT sp))))
(Rule (:f :p)

(Assert (NOT (NOT :p)) (-+ :f)))
(Assert (SHOW :p) ((BC --+) :g)))

Some AMORD Examples

de Klemr, Boyle, Rich, Steel & Sussman

The following two rules implement a consequent oracle for testing the
equality of constants. Note the use of PDSVAL in allowing SCHEME access to
the value of ANORD variables.

(Rule (sq (SHOU (a sa sb)))
(let ((a (pdsval sa))

(b (pdsval :b)))

(if (constant a)

(If (constant b)

(if (equal a bi

(Assert (a :a b) (Equalityg)))))

(Rule (sq (SHOU (NOT :(sa ab))))

(lot ((a (pdsval sa))
(b (ipdval ab)))

(if (constant a)

(if (constant b)
(If (equal a b)

nil
(Assert (NOT (a to ab)) (Equality)))))))

A final example is the use of assumptions to implement a default
series of alternative choices. The following expresses the knowledge that
traffic signals are either red, yellow or green.

(Rule (st (TYPE :1 TRAFFIC-SIGNAL))
(Assume (COLOR :I GREEN) (Optimisn at))
(Rule (:ng (NOT (COLOR ii GREEN)))

(Assume (COLOR t1 YELLOW) (Hope-Yet it Ing))
(Rule (any (NOT (COLOR Is YELLOW)))

(Assert (COLOR si RED) (Rats at :ng :ny)))))

By using this rule, anything declared to be a traffic signal will be.
assumed to be green in color. If it is discovered (perhaps due to a
contradiction) that the color is not green, the color will be assumed to be
yellow. If it is further discovered that the color is also not yellow, the
color is determined to be red.

Some RIORD Examples

de Kleer, Doyle, Rich, Steele Sussman

Section 8: The Use of the TMS in AMORD

The Truth Maintenance System is an independent program for recording
information about program deductions. The THS uses a method for
representing knowledge about beliefs, called a non-monotonic dependency
system, to effect any updating of beliefs necessary upon the addition of
new information.

The basic operation of.the TMS is to attach a justification to a THS-
node. A TMS-node can be linked with any component of program knowledge
which is to be connected with other components of program information. In
AHORD, each fact and rule has an associated THS-node. The TMS then
decides, on the basis of the justifications attached to nodes, which
beliefs in the truth of nodes are supported by the recorded justifications.
A node is said to be in if there is an associated justification which
supports belief in the node. Otherwise, the node is said to be out. The
TMS informs AHORD whenever the belief status of a node changes, ei-ther from
in to out, or out to in.

There are several types of justifications supported by the TMS. The
basic form of a justification is one in which a node is justified if each
node in a set of other nodes is in. This type of justification represents
the typical form of a deduction, or in the special case in which the set of
other nodes is empty, a premise. A node may also be justified on the basis
of'the conditional proof of one node relative to a set of other nodes. In
this, belief in the justified node is supported if the consequent 'node of
the conditional proof is in when each of the nodes in the set of hypotheses
is in. The remaining form of justification supports belief in a node if:
each node in a given set of other nodes is out. This non-monotonic
justification allows the consistent representation and maintenance of
hypothetical assumptions. Using this latter form of justification, a fact
can be assumed to be true by justifying it on the basis of its negation
being out.

Each node which is in has a distinguished element of its set of
justifications. This distinguished justification is selected to support
belief in the node in terms of other nodes having well-founded support,
that is, non-circular proofs from ground hypotheses. A number of
dependency relations are determined from these justifications, such as the
set of nodes depending on a given node, or the nodes upon which a
particular node depends.

Truth maintenance processing is required when new justifications
cause changes in previously existing beliefs. In such cases, the status of
all nodes depending on the nodes with changed beliefs must be redetermined.
The critical aspect of this processing is ensuring that all nodes judged to
be in are associated with well-founded support. Truth maintenance is not
unlike a generalized, but incremental, form of garbage collection. The
first step is to mark and collect all facts whose current belief state

The Use of the TIS in R1flOD

de Kiser, Doyle, Rich, Steels & Susuane

depends, via the previously recorded consequence dependenciesi on the
changed beliefs. The second step is a combination sweep and depth first
search over these facts with the purpose-of determining belief states based
on other facts with well-founded support. By distinguishing facts with
well-founded support from those without, all new beliefs determined in this
pass are guaranteed to be well-founded. The third step is necessary if the
second step does not determine belief states for all the involved factsi.
This step consists of a relaxation process of assuming some belief states
and proceeding, taking care that the assumed beliefs are consistent. .This
step, at its conclusion, can guarantee that all beliefs have well-founded
support. The fourth step is a pass over all changed facts to check for
believed facts which are known to represent contradictions. Backtracking
is invoked on any such contradictions (which may so invoke further truth
maintenance). The final step of truth maintenance is the notification of
the external systems of all changes in beliefs determined by the truth
maintenance system.

The TMS provides automatic dependency-directed backtracking whenever
nodes marked as contradictions are brought in. Dependency-directed
backtracking employs the recorded dependencies to locate precisely those
hypotheses relevant to the failure and uses the conditional proof mechanism
to summarize the cause of the contradiction in terms of these hypotheses.
Because the reasons for the failure are summarized in a form which is
independent of the hypotheses causing the failure, future occurrences: of
similar failures are avoided.

The TMS functions used in AMORD are as follows:

TNS-MAKE-DEPENDENCY-NODE -- (THS-I1RKE-DEPENDENCY-NODE <external-name>)
This function creates a new TMS-node with a given name. In AMORD,

the external names are just the atomic factnames used to represent facts
and rules. TMS-nodes are currently implemented using uninterned atomic
symbols.

TNS-JUSTIFY -- (TIIS-JUSTIFY <node> <Insupporters> <outsupporters> <argument>)
This function gives a THS node a new justification, which is valid if

each of the nodes of the insupporters list is in, and each of the nodes of
the outsupporters list is out. The argument is an uninterpreted slot used
to record the external form of the justification, and is retrievable via
the THS-ANTECEDENT-ARGUMENT function described below.

TNS-CP-JUSTIFY
M- (TIS-CP-JUSTIFY <node> <consequent> <inhypotheses> <outhypotheses> <argunent>)

This gives a TNS node a new justification which is valid if, when the
inhypotheses are in and the out hypotheses are out, the consequent node is
believed. As in THS-JUSTIFY, the argument is an uninterpreted record of
the external form of the justification.

The Use of the TMS In AMORa

de Kleer, Doyle, Rich, Steele & Sussman

TMS-PROCESS-CONTRADICTION
-- (TMS-PROCESS-CONTRRDICTION <name> <node> <type> <contradiction-function>)

This declares a TMS node to represent a contradiction. The name and
type are uninterpreted mnemonics provided by the external system to be
printed out during backtracking. The contradiction-function, if supplied,
should be a LISP function to be called with the contradiction node as its
argument when the backtracker can find no backtrackable choicepoints.

TMS-SUPPORT-STATUS -- (T1S-SUPPORT-STATUS <node>)
This function returns the support-status, either 'IN or 'OUT, of a

node.

TMS-ANTECEDENT-SET -- (TMS-RNTECEDENT-SET <node>)
This function returns the list of justifications of the node. In the

TMS, each justification is called an antecedent of the node.

TMS-SUPPORTING -ANTECEDENT -- (TnS-SUPPORTING-RNTECEDENT <node>)
This function returns the current justification of the node.

TMS-ANTECEDENT-ARGUMENT -- (ThS-RNTECEDENT-RRGUMENT <antecedent>)
This function returns the external argument associated with the given

antecedent.

TMS-ANTECEDENTS -- (TMS-RNTECEDENTS <node>)
This function returns the list of nodes determining well-founded

support for the given node. This list is extracted from the supporting-
antecedent if the node is in, and is empty if the node is out.

TMS-CONSEQUENCES -- (TMS-CONSEQUENCES <node>)

This function returns the list of nodes whose list of antecedent
nodes mentions the given node.

TMS-EXTERNAL-NAME -- (TMS-EXTERNRL-NAMRE <node>)
This function returns the user-supplied name of a node.

TMS-IS-IN -- (TS-IS-IN <node>)
This predicate is true iff the node is in.

TMS-IS-OUT -- (TIS-IS-OUT <node>)

This predicate is true iff the node is out.

TMS-RETRACT -- (TMS-RETRRACT <node>)

This function will remove all premise-type justifications from the
set of justifications of the node.

TMS-PREMISES -- (TMS-PREMISES <node>)
This function returns a list of the premises among the well-founded

support of the node.

The Use of the TMS in AMORD

do Kiser, Doyle, Rich, Steele & Sussman

THS-ASSUMPTIONS -- (ThS-RSSUnPTIONS mode>)
This function returns a list of the assumptions among the well-

founded support of the node.

T1S-CLOBBER-S3IGNAL-FORGETTING-FUNCTION
-- (TmS-CLOBBER-SIGNAL-FORGETTING-FUNCTION cnode> <fun>)

This function sets the LISP function that the THS will use to signal
the changing of the status of the node from in to out. When such a change
occurs, the supplied function will be called with the external name of the
node as its argument.

TPS-CLOBBER-SIGNAL-RECALLiNG-FUNCTION
-- (ThS-CLOBBER-SIGNAL-RECALLING-FUNCTION <node> <fun>)

This function sets the LISP function that the THS will call with the
node's external name as its argument when changing the status of the node
from out to in.

The TMS also generates new "facts" internally during backtracking.
These will therefore occur in explanations and antecedents of the nodes
requested and Justified by the external systems. The internal facts
.generated by the THS are atoms with certain properties. The following
functions are provided to manipulate these internal facts.

TMS-FACTP -- (TIS-FACTP <thing)
This predicate is true iff the thing is an internal TMS fact.

TMS-FACT-NODE -- (TiS-FRCTr-NoE dfact>)
This function returns the THS node associated with an internal fact.

THS-FACT-STATEMENT -- (TiS-FRCT-STATENENT <fact>)
This function returns the symbolic statement of the meaning of an

internal fact. This statement refers to the external names of the other
facts, such as contradictions and assumptions, which were involved in the
making of the fact.

The following two functions are supplied for debugging purposes.

THS-INIT -- (TnS-INIT)
This function clears the state of the THS by resetting all internal

variables and clearing all properties and internings of THS nodes.

TMS-INTERN -- (TnS-INTERN)
This function interns all TMS nodes currently in existence, and

causes the interning of all nodes generated in the future. Initially, the
atomic symbols representing THS nodes are not interned.

Examples of the use of the THS facilities can be found in the
following section, in which the functions implementing the various AMORD
proof-types are defined.

The Use of the TflS in RAORD

de Kleer, Doyle, Rich, Steele 8 Sussman

Section 4: An Annotated Interpreter

Here we present a real live AMORD interpreter. The interpreter
divides into the following sections, which will be presented in this order.

AMORD form definitions
ASSERT and associated functions
RULE and associated functions

Proof-type definitions
The RUN interpreter (the main loop)
The TMS interface
The Unification Matcher
The Discrimination-Net Data Base

Before presenting the interpreter itself, we describe some aspects of the
implementation.

The main loop of the interpreter is in the function RUN, which
examines the various queues (described below). RUN makes sure that all
rules are run on all facts whose patterns match the rule patterns. As an
efficiency step, a rule is run on a fact only if both the rule and fact are
believed (in). After the possibilities for running rules on facts are
exhausted, RUN checks for programs (called runlast functions) which have
been specified for running at queue's end and runs each of these programs.
If these programs make new assertions or rules, the above loop is resumed.
Finally, after finishing all of the above steps, RUN waits for new input
from the user.

Each rule and fact is represented by an atomic symbol with several
properties. Both rules and facts have their TMS-nodes kept on their
property-list under the 'TMS-NODE property. Rules and facts also have a
'STIMULATE-LIST property, which is used to store matching facts and rules
(respectively) until they are queued up to be run.

In addition to their common properties, rules and facts have other
attached items. Facts have their pattern kept in their value cell. Rules
have their full trigger pattern (the list of the factname variable and the
trigger pattern proper) kept in their value cell. Rules are distinguished
from facts by their possession of a 'RULE-BODY property, which stores the
uninstantiated rule body. Rules also have a 'SPECIALIZATION property which
stores the environment derived from the lexically surrounding text, and a
'T-LIST property, which stores the lexically surrounding triggering facts
(the list of facts triggering lexically surrounding rules to create the
particular rule).

The control of running rules on facts is mediated by an amorphous
mechanism called the queue. This mechanism has several components:

(1) The trigger queue, *TQ*. This is a queue of rule-fact pairs
representing possible triggerings. This queue is maintained, in the global

An Annotated Interpreter

de Kiser, Doyle, Rich, Stelele & Susman

variable *TQ*, as a CONS cell, the CAR of which points to the front of the
list of trigger pairs, and the CDR of which points to the last cell of this
list. This is done so that new pairs may be quickly added to the end of
the list of trigger pairs. The rule-fact pairs from this queue are turned
into SCHEME closures and then run. The actual unification checking (over
the matching done by the data base fetch routines) to see that the
triggering is valid is done at closure creation time.

(2) The stimulate lists. Each rule and fact has a list, of facts and
rules respectively, on its 'STINULATE-LIST property. These facts and rules
in these lists are initially the items retrieved from the data base as
possibly matching the newly created rule or fact. The function STIMULATE,
called by the TMS when rules and facts come in, takes the STIMULATE-LIST of
the newly inned item, tprns it into a list of pairs and adds these pairs to
the trigger queue.

The queue mechanism operates as follows. When pairs come to. the top
of the trigger queue, both the rule and the fact of the pair are checked to
see if they are in. If both are in, their unification is attempted. If
they do not unify, the pair is discarded from the queueing system: if they
do, a SCHEME closure of the appropriate form is created and evaluated.
This closure evaluates each form in the rule body using the inherited AMORD
lexical environment augmented by the bindings derived from the triggering
fact. Alternatively, if a pair is encountered on the trigger queue with the
rule (or fact) out, the fact (or rule) is placed on the STIMULATE-LIST of
the out rule (or fact). In this way no pairs are actually run unless
relevant, for subsequent innings of the rules or facts involved will keep
adding the pair to the trigger queue until the pair makes it to the top
with both items in.

In addition to the above trigger queue mechanism, two other
structures are part of the main RUN loop.

(1) The closure queue, *Q*. This is queue of SCHEME closures,
functions of no arguments to be evaluated. The global variable *Q*
contains this queue, in the form of a CONS whose CAR is the first cell of
the list forming the queue, and whose CDR is the last cell of this list.
As in the trigger queue, this is done so that new queue items can be added
directly at the end of the queue, rather than requiring a traversal through
the entire queue for each new addition. This queue is provided so that the
user may post programs to be executed. This is sometimes (although rarely)
necessary, as the TMS makes the restriction that the TMS cannot be invoked
while a previous invocation is still signalling changes in the statuses of
facts.

(2) The runlast list, *RUNLAST*. This is a user maintained list,
initially empty, of SCHEME functions of no arguments to be run each time
both *TQ* and *Q* run out. At such time, each function in this list is
evaluated. These functions can either add new justifications to facts, add
other programs to *Q* to be run, or, by means of PDSCLOSE, evaluate further
AMORD forms to cause resumption of the main loop of trigger queue
interpretation.

An Annotated Interprete r

de Kiser, Doyle, Rich, Steele & Sussman

The structure of justifications is as follows. Justifications must be
lists. If the first element of the list is either non-atomic, or lacks a
'PROOF-TYPE property if atomic, the justification is interpreted as a
simple deductive justification in which the justified item will be in if
all the facts mentioned in the rest of the justification are in. If the
first element of the justification is an atom with a 'PROOF-TYPE property,
the the value of that property must be a SCHEME function. This function is
called with the justification and justified item as arguments. This
function then has the responsibility for making the necessary TMS
justifications, and may perform other operations if desired. Proof-type
functions which must evaluate AMORD forms should use the PDSCLOSE macro
described in Section 1.

The interpreter uses several global variables as follows:

Q - The queue containing SCHEME closures to run.
TQ - The trigger queue containing rule-fact pairs to close and run.
ENTRY - Contains the last closure evaluated by RUN.
RUNLAST - A list of SCHEME closures of no arguments to be successively

evaluated each time the queue runs out. This list is initially NIL.
STOPFLAG - If non-NIL, causes the RUN loop to halt after running the

current entry.
ASSERTIONS - Contains the discrimination net for facts.
RULES - Contains the discrimination net for rules.
WALLP - If non-NIL, causes new justifications of facts to be

displayed. The default is T.
GENSYM-COUNTER - The counter used in generating rule and fact names,

numbers for standardizing expressions apart, and line numbers.

Here begins the code of the interpreter proper. Several macros are
used in this code, including the substituting-quote ", which returns the
next form, quoted but with the values of subforms preceded by , substituted
as elements of list structure, and with the values of subforms preceded by
@ spliced in as list segments. The macros IF and LET have the obvious
meanings.

The first items are declarations for the SCHEMERABBIT and MacLISP
compilers, respectively.

; RABBIT COMPILER DECLARATIONS
(PROCLAIM (sEXPR GENS ENQUEUE FACT-STATEMENT RULE-PATTERN SUPPORT-STATUS IS-IN

TMS-CLOBBER-SIGNRL-RECRLLING-FUNCTION
TMS-MAKE-DEPENDENCY-NODE TMS-NODE TMS-NODES

TMS-JUSTIFY TMS-CP-JUSTIFY TMS-PROCESS-CONTRADICTION))

(DECLARE (FASLORD (GJS) SCHMAC)) ;LORDS IN IF, ETC. MRCROS FOR USE IN LISP

An Annotated Interpreter

de Kicer, Doyle, Rich, Steele A Sussman 17 An Annotated Interpreterý

AMORD FORK DEFINITIONS

All true AMORD forms like ASSERT and RULE must be evaluated in a
SCHEME environment in which the variables *SUBSTITUTION* and *T-LIST* are
bound. To achieve this, while making these universal (not global)
variables invisible to the user, macros are used which append the
appropriate variable references to the calls to the AM ORD primitives.

Here is ASSERT, which takes an expression and a justification,
instantiates them with the current environment bindings, inserts the
expression into the data base, and then installs the justification as one
of the expression's justifications. The call to SUBSUME-CHECK serves to
add new justifications to the new fact or to other facts based on
subsumptions in their patterns.

(SCHRAC ASSERT (EXPRESSION JUSTIFICATION)
"(RSSERT-2 ',EXPRESSION ',JUSTIFICATION *SUBSTITUTION*))

(DEFINE ASSERT-2

(LARBOR (EXPRESSION JUSTIFICATION ALIST)

(LET ((EXPRESSION (INSTANCE EXPRESSION ALIST))

(JUSTIFICATION (INSTANCE JUSTIFICRTION ALIST)))

(LET ((A (ASSERTION EXPRESSION)))
(BLOCK (INSTRLL-JUST JUSTIFICATION IA)

(SUBSUME-CHECK A))))))

The operation of ASSUME is somewhat more complicated than that of
ASSERT, as two facts are created in addition to the specified fact, as well
as one additional justification.

;(SCHMIAC ASSUME (EXPRESSION JUSTIFICRTION)

*(ASSUME-2 ',EXPRESSION ',JUSTIFICATION *SUBSTITUTIONW))

(DEFINE ASSUME-2
(LRABDR (EXPRESSION JUSTIFICATION RLIST)

(LET .((EXPRESSION (INSTANCE EXPRESSION ALIST))

(JUSTIFICATION (INSTANCE JUSTIFICATION ALIST)))

(LET ((R (ASSERTION EXPRESSION))

(RF (ASSERTION "(ASSUNED ,EXPRESSION)))

(N (ASSERTION

(IF (EQ (CAR EXPRESSION) 'NOT)

(CAOR EXPRESSION)

"(NOT ,EXPRESSION)))))

(BLOCK (INSTRLL-JUST JUSTIFICRTION AF)
(INSTALL-JUST (RASSUMPTION ,AF ,N) R)
(SUBSUNE-CHECK A)

(SUBSUME-CHECK RF)

(SUBSUME-CHECK N))))))

ASSERTION is the function for creating new assertions. .The data base

de Kleer, Doyle, Rich, Steele & Sussman

is checked to see if it contains a fact with a variant of the supplied
pattern. If so, that fact is returned, and otherwise a new fact is
generated and inserted into the data base in the appropriate bucket.

(DEFINE ASSERTION

(LAMBDA (EXPRESSION)

(LET ((B (BUCKET EXPRESSION NIL *ASSERTIONS*)))
(VARIANT-CHECK EXPRESSION B
(LAMBOA (VARIANT) VARIANT) ;IF THERE IS A VARIANT
(LAMBDA 0 ;NO VARIANT

(LET ((NAME (GENS 'F)))
(BLOCK (SET NAME EXPRESSION)

(PUTPROP NAME (TMS-MRKE-DEPENDENCY-NODE NAME) 'TMS-NODE)
(TMS-CLOBBER-SIGNAL-RECRLLING-FUNCTION

(TMS-NODE NAME) 'STIMULATE)

(PUTPROP NAME

(00 ((L (FETCH EXPRESSION NIL *RULES*) ((CAOR L)))
(ANS NIL (CONS (CAR L) ANS)))

((NULL L) ANS))
'STIMULATE-LIST)

(INSERT-IN-BUCKET NAME B)

NAME)))))))

VARIANT-CHECK is a function used only by ASSERTION above. It checks a
data base bucket to see if the bucket contains a fact whose pattern is a
variant of the supplied pattern. IF-FOUND should be a function of one
argument to receive the variant if one is found. IF-NOT should be a
function of no arguments to be called if no variant is found.

(DEFINE VARIANT-CHECK
(LAMBDA (EXP BUCKET IF-FOUND IF-NOT)

(LABELS ((LOOP
(LAMBDA (L)

(IF L

(LET ((C (COMPARE EXP (FACT-STATEMENT (CAR L)))))
(IF C

(IF (EQ (CAR C) 'VARIANT)
(IF-FOUND (CAR L))
(LOOP (COR L)))

(LOOP (CDR L))))
(IF-NOT)))))

(LOOP (STUFF BUCKET)))))

SUBSUME-CHECK performs the function of checking the data base for
facts whose patterns either subsume or are subsumed by the pattern of the
supplied fact. If any subsumptions are detected, new justifications are
added to support belief in the subsumed fact if the subsuming fact is
believed.

An Annotated Interpreter

de Ksler, Dogle, Rich, Steele 8 Sussman 19 An Annotated Interpreter

(DEFIHE SUBSUlE-CHECK
(LAMBDO (NAME)

(LET ((EXP (FRCT-STATENENT NAME)))
(DO ((CANDIDATES (FETCH EXP NIL *ASSERTIONS*) ((CROR CANDIDATES))))

((NULL CANDIDATES))

(IF (EQ (CRAR CANDIDATES) NAME)

NIL

(LET ((C (COMPARE EXP (FRCT-STATEIENT (CAR CANDIDATES)))))
(IF C

(COND ((EQ (CAR C) 'SUBSUMES)
(INSTALL-JUST (LIST 'INSTANCE NAME) (CAR CANDIDATES)))

((EQ (CAR C) 'SUBSUNED)

(INSTALL-JUST (LIST 'INSTANCE (CAR CANDIDATES)) NAME))
(T (BREAK ISUBSUME-CHECKJ))))))))))

The. next function is not used in the interpreter, but provides a
useful service in writing AMORD rules and proof types. PRESENT takes two
arguments -- a full rule pattern of the form (<factnaime <pattern>) and IF-
FOUND, a continuation of two arguments. If a fact is found which is
subsumed by the pattern, IF-FOUND is called with the resulting substitution
and a continuation of no arguments which can be called to continue the
scan. To use the derived substitution in the evaluation of AMORD forms,
the continuation IF-FOUND should use O*SUBSTITUTION*" as the name of its
first argument.

(DEFINE PRESENT

(LAMBDI (PATTERN IF-FOUND)
(LABELS ((LOOP

(LAnBDA (CANDIDATES)
(IF CANDIDATES

(LET ((C (COMPARE (CADR PATTERN) (FRACT-STATEMENT (CAR CANDIDATES)))))
(IF C

(IF (EQ (CAR C) 'SUBSUMES)
(IF-FOUND (CONS (CONS (CAR PATTERN) (CAR CANDIDATES))

-(CADR C))
(LRABDA () (LOOP' ((CROR CANDIDATES)))))

(LOOP ((CROR CANDIDATES))))
(LOOP ((CADR CANDIDATES)))))

NIL))))
(LOOP (FETCH (CADOR PATTERN) NIL *RSSERTIONS0)))))

Rules have justifications just like facts, but unlike facts, rules
are used in no justifications. Rules are really operational entities,
which should be allowed to function only if the facts leading to their
creation (via other rules forming its lexical environment) are believed.
For this purpose, each rule has a 'T-LIST property storing the list of
facts which triggered rules forming its lexical environment. This list,
augmented with the rule itself, is passed along to nested rules by means of
the variable *T-LIST*, a universal variable like *SUBSTITUTION*.

de Kleer, Doyle, Rich, Steele & Sussman

(SCHMAC RULE (PATTERN . BODY)
"(RULE-2 ',PATTERN ',BODY *SUBSTITUTION* *T-LISTW))

(DEFINE RULE-2

(LAMBDA (PATTERN BODY ALIST T-LIST)
(IF (NULL BODY) (ERROR 'IVACUOUS RULEI PATTERN 'URNG-TYPE-ARG)

(LET ((B (BUCKET (CADR PATTERN) ALIST *RULESW))

(RNAME (GENS 'R)))

(BLOCK (PUTPROP RNAME ALIST 'SPECIALIZATION)

(SET RNRME PATTERN)

(PUTPROP RNAME
(IF (CDR BODY) (CONS 'BLOCK BODY) (CAR BODY))
'RULE-BODY)

(PUTPROP RNAME T-LIST 'T-LIST)
(PUTPROP RNAME

(DO0 ((L (FETCH (CRODR PATTERN) ALIST *ASSERTIONS*) ((CADOR L)))

(ANS NIL (CONS (CAR L) ANS)))

((NULL L) ANS))

'STIMULRTE-LIST)
(INSERT-IN-BUCKET RNAME B)
(PUTPROP RNAME (TMS-MAKE-DEPENDENCY-NODE RNAME) 'TMS-NODE)
(TMS-CLOBBER-SIGNRL-RECALLING-FUNCTION (TMS-NODE RNRAME) 'STIMULATE)
(INSTALL-JUST "(RULE @T-LIST) RNAME))))))

TRY-RULE takes a possible triggering pair, consisting of a rule and a
fact. The pattern of the fact is compared with the pattern of the rule.
If these two patterns unify, then a SCHEME function of no arguments is
returned which, if evaluated, will evaluate the body of the rule in the
environment produced by adding the bindings derived from the unification to
the environment in which the rule exists.

(DEFINE TRY-RULE

(LAMBDA (RNAME ANAME)

(LET ((S (UNIFY (CROR (RULE-PATTERN RNARE))
(FACT-STATEMENT ANAME) (GET RNAME 'SPECIALIZATION))))

(IF S

(ENCLOSE

"(LAMBDA ()

(LET ((*SUBSTITUTIONs '((,(CAR (RULE-PATTERN RNAME)) . ,ANAME)

. ,(CAR S)))
(*T-LIST* ',(CONS ANAME (GET RNAME 'T-LIST))))

,(GET RNAME 'RULE-BODY)))
RNAME)))))

PROOF-TYPES AND JUSTIFICATIONS

INSTALL-JUST takes a justification and a fact (or rule). If the
justification has an associated proof-type, the proof-type function is
called with the Justification and fact as arguments. Otherwise, SUPPORT is

An Annotated Interpreter

de Kiser, Doyle, Rich, Steele & Sussman

called to add the justification to the set of justifications of the fact.
If the new justification causes the fact to be newly believed, the fact and
its justification may be displayed.

(DEFINE INSTALL-JUST

(LRAMBDR (JUSTIFICATION FACT)
(LET ((OLDSTATUS (SUPPORT-STATUS FACT)))

(IF (ATOM (CA R JUSTIFICATION))
(LET ((G (GET (CAR JUSTIFICATION) 'PROOF-TYPE)))

(IF G (G JUSTIFICATION FACT) (SUPPORT JUSTIFICATION FACT)))
(SUPPORT JUSTIFICATION FACT))

(IF (AND *UALLP*
(NULL (GET FACT 'RULE-B40Y)) IFACT OR RULE?
(EQ OLDSTATUS 'OUT)
(EQ (SUPPORT-STATUS FACT) 'IN))

(BLOCK (PRINT 'ASSERTING)
(PRINI FACT)

(PRINC '1 I)

(PRIN1 (FACT-STATEMENT FACT))
(PRINC 'I I)
(PRINI JUSTIFICATION))))))

(SET' *UALLP* T)

SUPPORT performs the standard task of justification, which interprets
all elements of the supplied justification (except the first, which is
mnemonic) to be factnames which collectively justify belief in the supplied
fact.

(DEFINE SUPPORT

(LRBDOR (JUSTIFICATION FACT)

(TMS-JUSTIFY (THS-NODE FACT)
(TMS-NODES (COR JUSTIFICATION))

NIL

JUSTIFICATION)))

PREMISE justifies the fact with a eternally valid justification.

(DEFINE PREMISE
(LAlBDA (JUSTIFICATION FACT)

(TMS-JUSTIFY (THS-NODE FACT) NIL NIL JUSTIFICATION)))

(PUTPROP 'PREMISE PREMISE 'PROOF-TYPE)

(PUTPROP 'GIVEN PREMISE 'PROOF-TYPE)

CONDITIONAL-PROOF interprets the second element of the justification
as the consequent of the conditional proof, the third element as the list
of in hypotheses of the conditional proof, and the fourth element as the
list of out hypotheses of the conditional proof.

An Annotated Interpreter

de Kleer, Doyle, Rich, Steele & Sussman

(DEFINE CONDITIONAL-PROOF

(LRABDA (JUSTIFICATION FACT)
(THS-CP-JUSTIFY (TMfS-NODE FACT)

(TMS-NODE (CROR JUSTIFICATION))
(TMS-NOOES (CADDR JUSTIFICATION))

(TMS-NODES (CAODDR JUSTIFICATION))

JUSTIFICATION)))

(PUTPROP 'CP CONDITIONRAL-PROOF 'PROOF-TYPE)
(PUTPROP 'CONDITIONAL-PROOF CONOITIONAL-PROOF 'PROOF-TYPE)

ASSUMPTION interprets the second element of the justification as a
factname designating the reason for making the assumption, and the third
element as a factname designating a negation of the belief to be assumed.
Thus the supplied fact will be believed whenever the reason fact is in, and
the negation fact is out.

(DEFINE ASSUMPTION

(LAMBDA (JUSTIFICATION FACT)
(TMS-JUSTIFY (TIS-NODE FACT)

(LIST (TMS-NODE (CADR JUSTIFICATION)))

(LIST (TMS-NODE (CADDR JUSTIFICATION)))

JUSTIFICATION)))

(PUTPROP 'ASSUMPTION ASSUMPTION 'PROOF-TYPE)

CONTRADICTION first supports belief in the supplied fact and then
declares to the TMS that the fact is a contradiction.

(DEFINE CONTRADICTION
(LRABDA (JUST FACT)

(BLOCK

(SUPPORT JUST FACT)

(TiS-PROCESS-CONTRADICTION FACT (TfS-NODE FACT) (FACT-STATEMENT FACT) NIL))))

(PUTPROP 'CONTRADICTION CONTRADICTION 'PROOF-TYPE)

THE RUN INTERPRETER

The following three macros hide references to the universal AMORD
variables *SUBSTITUTION* and *T-LIST*, allowing SCHEME and AMORD code to be
mixed.

An Annotated Interpreter

de Klear, Doyle, Rich, Steele & Sussman

(SCHitAC POSVRL (10) ' (INSTANCE ',10 *SUBSTITUTIONW))

(SCHitRC POSLEt (VRARS:. BODY)
*(LET ((*SliBSTITUTIONs

,(DO ((I '*SUBSTITUTIONs
"(CONS (CONS ',(CRAR VL) ,(CADAR VL))

(VL VRRS (CDR VL)))
((NULL VL) R))))

eBODY))

(SCHtHRC PDSCLOSE BODY "(LET ((fSUBSTITUTIONs NIL) '(T-LIST NIL)) eBODY))

RUN has four loops in one. First. the trigger queue is tried, then
the main queue, then the runlast functions, and finally the reader is
invoked. The loop is halted if *STOPFLAG* is non-NIL.

An Rnnotated Interpreter

de Kleer, Doyle, Rich, Steele & Sussman

(DEFINE RUN

(LAMBDA ()

(LABELS

((LOOP

(LAMBOR () (IF *STOPFLRG* 'STOPPED (TRY-aTQ*))))
(TRY-*TQO

(LAMBDA ()

(IF (CAR *TQe)
(LET ((R (CAARARR *TO)) (F (CORAR *TQO)))

(BLOCK

(RPLRCR *TQ* (COAR *TQW))
(IF (IS-IN F)

(IF (IS-IN R)

(BLOCK (SET' *ENTRY* (TRY-RULE R F)) (IF *ENTRY* (*ENTRY*)))
(PUTPROP R (CONS F (GET R 'STIMULATE-LIST)) 'STIIULATE-LIST))

(PUTPROP F (CONS R (GET F 'STIMULATE-LIST)) 'STIMULATE-LIST))
(LOOP)))

(TRY-0Q*))))
(TRY-*Q*
(LAMBDA ()

(IF (CAR *Q*)
(BLOCK (SET' *ENTRY* (CRAR *Q+))

(RPLACA *Q* (CORR *+*))
(*ENTRY*)

(LOOP))

(TRY-*RUNLAST*))))

(TRY-*RUNLRST*
(LAMBDA ()

(DO ((RL *RUNLAST* (CDR RL)))
((NULL RL)

(IF (OR (CAR *TQ*) (CAR I0*)) (LOOP) (TRY-READ)))
((CAR RL)))))

(TRY-READ

(LRMBDA ()
(BLOCK
(SET' *GENSYM-COUNTER* (+ *GENSYI-COUNTER* 1))
(PRINT *GENSYM-COUNTER*)

(PRINC 'I>> I)
(ENQUEUE (LIST (ENCLOSE "(LAnBDA () (PDSCLOSE ,(READ))) '?)))
(LOOP)))))

(BLOCK (SET' *STOPFLRG* NIL) (LOOP)))))

ENQUEUE adds a list of closures to the end of the current queue of
closures.

An Annotated Interpreter

de Kiser, Ooylr, Rich, Sttl A Sussman 25 An Annotated Interpreter

(DEFUN ENQUEUE (RCTIONS)
(IF ACTIONS

(LET ((L (LAST ACTIONS)))
(IF (CAR *0*)

(PROGN (RPLACD (COR *0s) ACTIONS) (RPLACD *•o L))
(PROGN (RPLRCA *Q0 ACTIONS) (RPLACD *Q. L))))))

STIMULATE is the (LISP) function called by the THS on any fact or
rule which changes status from out to in. (See ASSERTION and RULE-Z above
for the uses of T3S-CLOBBER-SIGNAL-RECALLING-FUNCTION to implement this.)
When such a status change takes place, the list of matching items found
when the item was inserted into the data base is used to add a new set of
trigger pairs to the trigger queue.

(DEFUN STInULATE (NAME)
(LET ((RCTIONS (IF (GET NAME 'RULE-BODY)

(IAPCAR '(LAMBDOR (F) (CONS NAME F)) (GET NAME 'STINULRTE-LIST))
(MRPCAR '(LAMBDA (RI (CONS R NAME)) (GET NAME 'STIMULRTE-LIST)))))

(PROGN
(REMPROP NAME 'STIMULATE-LIST)
(IF ACTIONS

(LET ((L (LAST ACTIONS)))
(IF (CAR *TQa)

(PROGN (RPLRCD (COR .TQT ACTIONS) (RPLRCO *TQ* L))
(PROGN (RPLACR *.TO ACTIONS) (RPLACO *TQ L))))))))

INIT does the obvious thing.

(OEFINE INIT

(LAMBDA 0

(BLOCK (DBINIT '1*SSERTIONS.)
(DBINIT '*RULES*)
(SET' .Q* (CONS NIL NIL)) ;CAR IS FIRST CELL OF QUEUE, CDR IS LAST CELL
(SET' *TQ. (CONS NIL NIL))
(SET' *RUNLAST. NIL)
(SET' *ENTRY* NIL)
(SET' *STOPFLRG, NIL)

(SET' sGENSYI1-COUNTER* B))))

Variables are represented by semi-lists of three elements, in the
form (/: cvar> . ,number>) The first element is the atom ":", the second is the
variable name, and the third is a number used to standardize the variable
name apart. The following functions should be used to create new variables
and to test or otherwise manipulate them.

(DEFUN. V;ENS (VNRME)
(CONS '/ (CONS (CAR VNARE)

(SET' GENSYMI-COUNTERe (+ oGENSY•-COUNTER. 1)))))

(DEFUN VARIABLE (X) (EQ (CAR X) '/:))

de Klser, Doyle, Rich, Steele & Sussman

CONSTANT tests whether an S-expression contains any variables.

(DEFUN CONSTANT (X)

(IF (ATOM X)

(IF (EQ X '/:) NIL X)
(IF (CONSTANT (CAR X)) (CONSTRNT (COR X)) NIL)))

GENS generates a new atomic symbol with a supplied prefix and a
suffix of the form "-nnn".

(DEFUN GENS (E)
(RERDLIST (NCONC (EXPLODE E)

(LIST '-)

(EXPLODE (SET' ~GENSYM-COUNTER*

(+ *GENSYM-COUNTER* I))))))

The variable designator ":" is a read macro which generates the
standard variable-structure described above. Because items read in see a
constant value for *GENSYM-COUNTER*, variable references in an expression
(such as two occurrences of ":x") appear as similar structures (suclh as
"(/U x . 127)").

(DEFUN COLON-READ () (CONS '/: (CONS (REROD) *GENSYM-COUNTERW)))

(SETSYNTAX '/. 'MACRO 'COLON-RERD)

THE TMS INTERFACE

FACT-STATEMENT must check to see if the supplied fact is TMS-
generated or a normal fact. RULE-PATTERN need make no such check.

(DEFUN FACT-STATEMENT (F) (IF (THS-FRCTP F) (TMS-FACT-STATEMENT F) (SYMEVAL F)))

(DEFUN RULE-PATTERN (R) (SYMEVAL R))

WHY presents the immediate justification for the current belief in a
fact. Note that if the fact is not believed, the list of failing
justifications is printed. EXPLAIN collects up all facts among the support
of the supplied fact, sorts them by the suffix of their factname, and
prints them one per line along with their current justifications.

Rn Annotated Interpreter

de Ksler, Doyle, Rich, Steele 8 Sussman

(DEFUN MHY (NAME)
(PRINT NANE)

(PRIN1 (FACT-STRTEMENT NRIE))
(PRINC '1 1)
(IF (IS-IN NRAE)

(PRINI (ARGUMENT NRnE))
(PRINI (CONS 'OUT

(MAPCAR 'ARGUIENT

'QED)
(ANTECEDENT-SET NRlE)))))

(DEFUN EXPLAIN (FACT)
(TERPRI) (PRINC 'IPROOF OF I) (PRINI FACT) .(PRINC 'I = I) (PRINI

(PRINC 'I (I) (PRINI (SUPPORT-STRTUS FACT)) (PRINC '1) I) (PRIN1
(PFL (FOUNDATIONS FACT))

' QED)

(FRCT-STRTEfIENT FACT))

(RRGUnENT FACT))

The following functions do the dirty work for functions like EXPLAIN.

(DEFUN PFL (FL)

(IAPC '(LAt1BOR (F)
(PRINT F)

(PRINC 'I a I)
(PRINI (FACT-STATENENT F))

(PRINC '1 (I) (PRIN1 (SUPPORT-STRTUS F)) (PRINC '1) I)
(PRINI (ARGUNENT F)))

(SORT (APPEND FL NIL) 'FRCT-NARE-RLPHRGRERTERP)))

(OEFUN FACT-NARE-ALPHAGREATERP (F G)
(GREATERP (GENS-NUNBER-EXTRRCT F) (GENS-NUNBER-EXTRACT G)))

(DEFUN GENS-NUNBER-EXTRACT (X)
(00 ((E (COR (lENO '- (EXPLODE X))) (CDR (tENQ '- E))))

((NOT (FENQ '- E)) (READLIST E))))

THS-NODE returns the THS node associated with a rule or fact. The
error check is useful, in that a frequent mistake is to specify a
justification with a constant in the support by forgetting to prefix a
variable name with a colon.

(DEFUN THS-NODE (F)
(LET ((N (IF (THS-FRCTP F) (THS-FRCT40DE F) (GET F 'TNS-NODE))))

(IF N N (ERROR 'AIBRD ARGUNENT TO THS-N00EI F 'URNG-TYPE-ARG))))

(DEFUN TMS-NODES (L) (NRPCAR 'TIS-NODE L))

The following serve to interface the TMS to AJNORD.

(DEFUN SUPPORT-STATUS (FACT) (TnS-SUPPORT-STRTUS (TMS-NODE FACT)))

(DEFUN ARGUNENT (FACT) (TIIS-ANTECEDENT-RRGUNENT (THS-SUPPORTING-RNTECEDENT (TfS-NODE FRCT))))

An Alnnotated Intelrpreter

de Kleer, Doyle, Rich, Steele & Sussman

(DEFUN ANTECEDENT-SET (FACT) (THS-ANTECEDENT-SET (TMS-NODE FACT)))

(DEFUN SUPPORTING-ANTECEDENT (FACT) (TMS-SUPPORTING-ANTECEDENT (TrS-NODE FACT)))

(DEFUN ANTECEDENTS (FACT)
(IIAPCAR 'TNS-EXTERNAL-NAME (TIS-ANTECEDENTS (TMS-NOOE FACT))))

(DEFUN CONSEQUENCES (FACT)
(MAPCAR 'TMS-EXTERNAL-NAME (TIS-CONSEQUENCES (TmS-NODE FACT))))

(DEFUN IS-IN (FACT) (TMS-IS-IN (TMS-NODE FACT)))

(DEFUN IS-OUT (FACT) (TmS-IS-OUT (TmS-NOOE FACT)))

(DEFUN ARE-IN (FACTS) (TMS-ARE-IN (TIS-NODES FACTS)))

(DEFUN ARE-OUT (FACTS) (TIIS-ARE-OUT (TmS-NODES FACTS)))

(DEFUN FOUNDATIONS (FACT)

(MAPCAR 'TMS-EXTERNAL-NAME (TMS-ALL-RNTECEOENTS (TIS-NODE FACT))))

(DEFUN REPERCUSSIONS (FACT)

(IAPCAR 'TfS-EXTERNAL-NARE (TMS-ALL-CONSEQUENCES (TrS-NOOE FACT))))

(DEFUN PREMISES (NAME) (RAPCAR 'TMS-EXTERNAL-NAlE (TIS-PREMISES (TMS-NODE NAME))))

(DEFUN ASSUIIPTIONS (NAME) (IAPCAR 'THS-EXTERNAL-NAME (TmS-ASSUMPTIONS (TMS-NODE NAME))))

(DEFUN RETRACT (NAME) (TMS-RETRACT (TMS-NODE NAME)))

THE UNIFICATION MATCHER

(PROCLAIM (*EXPR RASSOC VARIABLE VGENS))

COMPARE takes two expressions, A and B, as input. If B is a variant
of A it returns (VARIANT <substitution>). If A subsumes B it returns (SUBSUMES
<substitution>). If B subsumes A it returns (SUBSUMED <substitution>). Otherwise it
returns NIL.

(DEFINE COMPARE
(LAMBDA (A B)

(LABELS ((MATCH

(LAMBDA (A B S TYPE C)
(CONO ((EQ A B) (C S TYPE))

((AND (NUMBERP A) (NUMBERP B)) (IF (= A B) (C S TYPE)))

An Annotated Interpreter

de Kler, Doyle, Rich, Steele A Sussuan

((EQ TYPE 'VARIANT)

(COND ((ATON A) (MATCH A B S 'SUBSUMED C))

((VARIABLE R)
(IF (AND (NOT (ATON B)) (VARIABLE B))

(LET ((VCELL (ASSOC A S)))

(IF VCELL
(IF (EQUAL (CDR VCELL) B

(C S 'VARIANT)

(MATCH A B S 'SUBSUMED C))

(IF (RASSOC B S)

(MATCH A 8 S 'SUBSUMES C)
(C (CONS (CONS A B) S)

'VARIRANT))))

(MATCH AB S 'SUBSUMES C)))

((ATOf B) NIL)
((VARIRBLE B)

(HATCH A B S 'SUBSUMED C))
(T (nATCH (CAR A) (CAR B) S TYPE

(LAMBDA (S TYPE)

(HATCH (CDR A) (CDR B) S TYPE C))))))
((EQ TYPE 'SUBSUMES)

(COND ((ATOM A) NIL)

((VARIABLE A)

(LET ((VCELL (ASSOC A S)))

(IF VCELL

(IF (EQUAL (CDR VCELL) B)
(C S TYPE)

(C (CONS (CONS A 8) S) TYPE))))

((ATOM 6) NIL)
(T (MARTCH (CAR A) (CAR B) S TYPE

(LAMBDA (S TYPE)
(MATCH (CDR A) (CDR 8) S TYPE C))))))

((EQ TYPE 'SUBSUMED)
(COND ((ATOM 6) NIL)

((VARIABLE B)
(LET ((VCELL (RASSOC 8 S)))

(IF VCELL

(IF (EQUAL (CAR VCELL) R)
(C S TYPE)

(MATCH A B NIL

(C (CONS (CONS A B) S) TYPE))))

((RTO RA) NIL)

(T (MATCH (CAR A) (CAR B) S TYPE

(LAnBDA (S TYPE)
(MATCH (COR R) (CDR B) S TYPE C))))))

(T (BREAK ICOMPARE ERRORI))))))
'VARIANT (LRBDAOR (S TYPE) (LIST TYPE S))))))

RASSOC is something of an inverse ASSOC, which searches an

An Roinotated Interpreter

)

de Kleer, Doyle, Rich, Steele & Sussman

association list for an association whose CDR matches the supplied key.

(DEFUN RASSOC (KEY ALIST)

(DO ((L RLIST (COR L))) ((NULL L) NIL)
(CONO ((EQURL KEY (CODRR L)) (RETURN (CRR L))))))

UNIFY takes two expressions and a substitution as input. It returns
either a list whose first element is a substitution which yields the mo
general common unifier of the expressions, relative to the given
substitution, if they can be unified, or NIL if they cannot be unified.

(DEFINE UNIFY

(LARBDA (A B ALIST)

(LABELS ((MATCH

(LAMBDA (A B S C)

(COND ((EQ A B) (C S))

((ATOM A)

(COND ((ATOM B)
(IF (AND (NUMBERP A) (NUOBERP B) (= A B)) (C S)))
((VARIABLE B)

(VARSET B A S C))

(T NIL)))

((VARIABLE A)

(VARSET A B S C))
((ATOM B) NIL)

((VARIRBLE B)

(VARSET B A S C))

(T (MATCH (CAR A) (CAR B) S

(LAMBDA (S)
(MRTCH (COR A) (COR

st

B) S C)))))))

(VARSET

(LRABDA (VAR NENVAL S C)

(IF (EQUAL VAR. NEUVAL) (C S)

(LET ((VCELL (RSSOC VAR S)))

(IF VCELL (MATCH (COR VCELL) NEUVAL S C)

(FREEFOR VAR NEUVAL S

(LAMBDA ()

(C (CONS (CONS VAR NEUVAL) S))))))))))

(MATCH A B ALIST LIST))))

An Annotated Interpreter

de Kleear, Dole, Rich, Staeee A Sussman

(DEFINE FREEFOR

(LAMBDR (VAR EXP SUB CONT)
(LRBELS ((FREELOOP

(LAMBDA (E C)
(COND ((RTOR E) (C))

((VARIABLE E)
(IF (EQUAL E VRR) NIL

(FREELOOP (COR (ASSOC E SUB)) C)))

(T (FREELOOP (CAR E)

(LAMBDA ()
(FREELOOP (CDR El C))))))))

(FREELOOP EXP CONT))))

INSTANCE takes an expression and a substitution as input and produces
a standardized instance of the expression with that substitution.

(DEFINE INSTANCE
(LAnBDA (EXP SUB)

(LABELS ((ILOOP
(LARBDR (E NEWSUB C)

(CONO ((RTOM E) (C E NEUSUB))
((VARIABLE E)
(LET ((VCELL (RSSOC E NEUSUB)))

(IF VCELL (C (COR VCELL) NEUSUB)
(LET ((VIELL (ASSOC E SUB)))

(IF VCELL

(ILOOP (COR VCELL) NEUSUB

(LARBDR (NEUEXP NEUSUB)

(C NEUEXP
(CONS (CONS E NEUEXP)

NEUSUB))))
(LET ((V (VGENS (COR El)))

(C V (CONS (CONS E V)
NEUSUB))))))))

(T (ILOOP (CAR E) NEUSUB
(LARIBDA (NEUCRR NEUSUB)

(ILOOP (CDR E) NEUSUB
(LRABDA (NEIiCDR NEUSUB)

(C (CONS NEUCRR NEUCDR)
NEIISUB))))))))))

(ILOOP EXP NIL (LAMBOR (NElEXP NEUSUB) NEUEXP)))))

THE DISCRIMINATION NETWORK

The following (absurdly hairy) functions implement a discrimination
net data base. Ignoring the use of the hash table for the moment, let us
first understand how a discrimination network is built. Consider the
problem of classifying the S-expression (A (Be C) o). Although internally,
this expression is a tree, its structure can be expressed as a string of

.Rn Alnnotateld Interpreter

de Kleer, Doyle, Rich, Steele & Sussman

tokens (as for PRINTing it). In this case, the stream of tokens used to
discriminate is:

DOWN A *DOWN* B *UP* C 0 *UP* NIL

A related expression, (A (e C) 0), translates into:

DOWN A *DOWUN B C *UP* NIL D *UP* NIL

Given these two expressions, BUCKET would construct a discrimination net
with the following structure:

UP _ _ _ _ _

Given any expression, BUCKET extends the discrimination network, if
necessary, and returns the bucket represented by the appropriate leaf of
the discrimination network.

A variable may appear in any position of an expression to be indexed.
Each node of the discrimination network contains a special pointer to the
subindex for token streams beginning with a variable.

An interesting complexity in this system is that many structures
share the same discrimination subnetworks. We assume the user will use
lists to represent logic-like terms. These denote the semantic objects
being dealt with. It thus makes sense that EQUAL or VARIANT terms be
uniquely represented in the network. This is accomplished by
discriminating every non-atomic term from the top of the network and then
using the resulting bucket as the token for that term in every stream
containing that term. This causes a painful problem: There is now a token
for every term, not just every atom. Furthermore, every such token must
appear in the top-level node of the network. This makes it unfeasible to
use a simple ASSOC of one of these tokens on a part of the node to do a
dispatch. Here we introduce a 2-key hash-table to do our associations.
Given a token and a discrimination-node, we hash-retrieve an a-list. An
element of this a-list beginning with our keys has the required subindex.
To introduce further possible bugs, we bubble the association forward in
the hash-entry.

Dona ld Duck

(PROCLAIM (*EXPR VARIABLE HASH-GET HASH-PUT))

The following are special tokens for discriminating through levels of
list structure and numbers.

An Annotated Interpreter

de Ksler, Doyle, Rich, Steele & Sussman

(SET' *DOUN* (LIST '*DONN*))
(SET' sUPs (LIST '*UP*))

(SET' *NUMBER* (LIST 'sNUNBERs))

DBINIT initializes a supplied variable to contain an empty data base.

(DEFINE OBINIT (LAMBDOR (DBO) (SET DB (LIST NIL NIL))))

STUFF retrieves the list of items from a data base bucket.

(DEFINE STUFF (LAMBDA (BUCKET) (CAR BUCKET)))

INSERT-IN-BUCKET does what it says.

(DEFINE INSERT-IN-BUCKET
(LAMBDA (ITEM BUCKET)

(RPLACA BUCKET (CONS ITEM (CAR BUCKET)))))

BUCKET returns the bucket of items from a data base corresponding to
the supplied expression and substitution.

An Annotated Interpreter

de Kleer, Doyle, Rich, Steele & Sussman

(DEFINE BUCKET

(LAMBDA (EXPRESSION ALIST INDEX)
(LABELS ((WALK-LIST

(LAMBDA (FRAGMENT SUBINDEX)

(COND ((RTOn FRAGMENT)
(GET-SUBINDEX (IF (NUMBERP FRAGMENT)

NUMBER

FRAGMENT)

(GET-SUBINDEX *UP* SUBINDEX)))

((VARIABLE FRAGMENT)
(LET ((VCELL (ASSOC FRAGMENT ALIST)))

(IF VCELL

(WALK-LIST (CDR VCELL) SUBINDEX)

(GET-VARIABLE-SUBINDEX

(GET-SUBINDEX *UP* SUBINDEX)))))

(T (UALK-LIST (CDR FRAGMENT)
(WALK-THING (CAR FRAGMENT) SUBINDEX))))))

(UALK-THING

(LAMBDA (FRAGMENT SUBINDEX)
(COND ((ATOM FRAGMENT)

(GET-SUBINDEX (IF (NUMBERP FRAGMENT) *NUMBER* FRAGMENT) SUBINDEX))

((VARIABLE FRAGMENT)

(LET ((VCELL (ASSOC FRAGMENT RLIST)))

(IF VCELL

(WALK-THING (CDR VCELL) SUBINDEX)
(GET-VARIABLE-SUBINDEX SUBINDEX))))

(T (GET-SUBINDEX
(UALK-LIST (CDR FRAGMENT)

(UALK-THING (CAR FRAGMENT) INDEX))

(GET-SUBINDEX *DOUN* SUBINDEX))))))

(GET-SUBINDEX

(LAMBDA (THING INDEX)

(LET ((R (HASH-GET INDEX THING)))
(IF A (CDR A)

(LET ((NEUINO (LIST THING NIL NIL)))

(BLOCK (HASH-PUT NEMIND INDEX)
(RPLACO (CDR INDEX)

(CONS NEWIND (COOR INDEX)))
(CDR NEUIND)))))))

(GET-VARIABLE-SUBINDEX

(LAMBDA (INDEX)
(IF (CADR INDEX) (CAOR INDEX)

(CAR (RPLACR (CDR INDEX) (LIST NIL NIL)))))))

(WALK-THING EXPRESSION INDEX))))

FETCH returns a stream of items from a data base which are candidates
for unification with the supplied pattern relative to the supplied
substitution. The stream is either NIL, or is a list whose first element
is a candidate and whose second element is the continuation (of no
arguments) to call to get the next candidate and continuation (or NIL if

An Annotated Interpreter

de Kleer, Doyle, Rich, Steele 8 Sussman

none).

FETCH is unpalatably hairy. We apologize. We will award an
autographed listing to anyone who has a good explanation of this mess. We
also challenge advocates of structured programming disciplines to produce a
clearer encoding of the same algorithm. The hair comes from the treatment
of variables. Because there may be variables in the fetch patterns and
stored expressions, there may be several candidates for a match. We have
chosen to generate these incrementally (though the rest of AMORD doesn't
require this). This introduces a backtracking system to confuse other
matters. More substantively, variables in the fetch pattern must match
only well-formed subexpressions. But expressions are recursively defined
sequences of tokens; hence the parenthesis grammar must be counted out.
Even worse, we allow terminal segments (for example (A.. :x)) in both
patterns and stored expressions. This leads to a case analysis because the
initial conditions of the counting argument have to be considered. UGH!!

(DEFINE FETCH

(LAMBDA (PRTTERN RLIST INDEX)
(LABELS ((MALK-LIST

(LAIIBDR (FRAGfIENT SUBINDEX NEXT LOSE)

(COND ((RTOl FRRGMcENT)
(GET-SUBINDEX *UP*

SUBINDEX

(LAHBDA (SUBINDEX LOSE)

(GET-SUBINDEX (IF (NUMBERP FRAGMlENT)
NUMBER

FRAGHENT)
SUBINDEX
NEXT
(LAIIBDR ()

(NEXTV NEXT.SUBINDEX LOSE))))

LOSE))

((VRRIABLE FRRGHENT)

(LET ((VCELL (ASSOC FRAGHENT RLIST))):

(IF VCELL

(URLK-LIST (CDR VCELL) SUBINDEX NEXT LOSE)
(GET-VRRIABLE-LIST SUBINDEX NEXT LOSE))))

(T (MALK-THING (CRR FRRAGENT)
SUBINDEX

(LABODA (SUBINDEX LOSE)

(URLK-LIST (COR FRAGIENT) SUBINDEX NEXT LOSE))
(LAHBDA 0

(GET-SUBINDEX *UPs

SUBINDEX
(LAFBOR (SUBINDEX LOSE)

(NEXTV NEXT SUBINDEX LOSE))
LOSE)))))))

AIn Annotated Intororeterr

de Klier, Doyle, Rich, Steele A Sussman

(UALK-THING

(LRnBDR (FRRCAGMENT SUBINDEX NEXT LOSE)
(COND ((ATOn FRAGMENT)

(GET-SUBINDEX (IF (NUMBERP FRRGMENT) *NUMBER* FRAGMENT)
SUBINDEX
NEXT
(LARBOA o (NEXTV NEXT SUBINDEX LOSE))))

((VRRIABLE FRAGIENT)

(LET ((VCELL (ASSOC FRAGMENT RLIST)))
(IF VCELL

M(ALK-THING (COR VCELL) SUBINDEX NEXT LOSE)

(GET-VRRIABLE-THING SUBINDEX NEXT LOSE))))
(T (GET-SUBINDEX *DOIN*

SUBINDEX

(LARBOA (SUBINDEXI LOSE)
(NALK-THING (CAR FRAGMENT)

INDEX
(LRMBDA (SUBINDEX2 LOSE)

(NRLK-LIST (CDR FRAGMENT)
SUBINDEX2
(LRMBDA (SUBINDEX3 LOSE)

(GET-SUBINDEX SUBINDEX3
SUBINDEXI

NEXT

LOSE))

LOSE))

LOSE))
(LRMBDRA (NEXTV NEXT SUBINDEX LOSE)))))))

(GET-SUBINDEX
(LAMBOR (THING INDEX NEXT LOSE)

(LET ((A (HASH-GET INDEX THING)))
(IF A (NEXT (CDR A) LOSE) (LOSE)))))

An Annotate·d Interpreter

de ileer, Doyle, Rich, Steele 8 Sussman

(GET-VARIABLE-LIST
(LAMBDR (INDEX NEXT LOSE)

(DUfP INDEX
(LAMBDA (RSUB LOSE)

(COND ((EQ (CAR RSUB) *UP*)

(DUmP (COR ASUB)
(LAMBDA (ASUB LOSE)

(NEXT (COR ASUB) LOSE))
NEXT

LOSE))

((EQ (CAR ASUB) DO0WN*)
(DUMP (CODR ASUB)

(LAMBOA (RSUB LOSE)
(GET-VRRIABLE-LIST (COR RSUB)

NEXT

LOSE))

(LAMBDA (IND LOSE)

(GET-VARIABLE-LIST IND

NEXT

LOSE))
LOSE))

(T (GET-VARIRBLE-LIST (CDR ASUB)

NEXT
LOSE))))

(LRABDA (VRRSIND BARF) (LOSE))
LOSE)))

(GET-VARIABLE-THING
(LABDOR (INDEX NEXT LOSE)

(DUMP INOEX
(LAMBDA (ASUB LOSE)

(COND ((EQ (CAR ASUB) *UP*)
(LOSE))

((EQ (CAR ASUB) eDOUNe)
(DUMP (COR ASUB)

(LRfMBOA (ASUB LOSE)

(NEXT (CDR RSUB) LOSE))
NEXT

LOSE))

(T (NEXT (CDR ASUB) LOSE))))
NEXT
LOSE)))

An Annotated Interpreter

do Klser, Doyle, Rich, Steele & Sussman

(DUnP
(LAlBDA (INDEX ER EV LOSE)

(LRBELS ((ALOOP

(LAnBDA (BL)
(COND (BL (ER (CAR BL)

(LRBODR 0 (RLOOP (CDR BL)))))
((CADR INDEX)

(EV (CADR INDEX) LOSE))
(T (LOSE))))))

(ALOOP (CODR INDEX)))))

(NEXTV

(LANBOR (NEXT INDEX LOSE)
(IF (CRDR INDEX)

(NEXT (CRDR INDEX) LOSE)

(LOSE)))))

(UALK-THING PATTERN INDEX
(LANBDA (TERNINAL LOSE)

(LABELS ((NPOS
(LAMBDR (L)

(IF L (LIST (CRR L) (LANBDR 0 (NPOS (CDR L))))
(LOSE)))))

(NPOS (CAR TERIINAL))))
(LABDAR 0 NIL)))))

The following functions implement the hash table for associations
used in making the token dispatch step of the discrimination more
efficient.

(DECLARE (SPECIAL HASH-ARRAY-SIZE)
(FIXNUMi HRSH-ARRAY-SIZE (HASH-NUMIBER NOTYPE NOTYPE) NUN)
(ARRRAY (NOTYPE (HASH-ARRAY ?))))

HASH-GET retrieves a specified thing from the hash table of the
supplied data base.

(DEFUN HASH-GET (INDEX THING)

(CDR (2-BSSQ INDEX THING
(HASH-ARRAY (HASH-NUnBER INDEX THING)))))

HASH-PUT inserts a new thing into the hash table of the given data
base.

(DEFUN HASH-PUT (NEUINDEX INDEX)
((LAHBDA (NUN)

(STORE (HASH-RRRRY NUN)
(CONS (CONS INDEX NEUINDEX)

(HRSH-RRRRY NUN))))

(HASH-NUNBER INDEX (CAR NEMINDEX))))

2-BSSQ searches an association list for an association of the pairing

An Annotated Interpreter

de Kiler, Doyle, Rich, Steele s Sussman

of the supplied two keys, and for efficiency [Rivest 1976], bubbles the
association one step towards the front of the association list.

(DEFUN 2-BSSQ (K1 K2 L)
(PROG (LI L2)

(COND ((NULL L) (RETURN NIL))
((ARND (EQ K (CARR L)) (EQ K2 (CADRR L)))
(RETURN (CAR L))))

(SET' L2 L)
LP (SET' LI (CODR L2))

(COND ((NULL LI) (RETURN NIL))
((RND (EQ KI (CARR LW)) (EO K2 (CADAR LI)))

(RPLACR L2
(PROG2 NIL (CAR LI)

(RPLACR L1 (CAR L2))))
(RETURN (CAR L2))))

(SET' L2 (COR LI))
(COND ((NULL L2) (RETURN NIL))

((RND (EQ K1 (CARR L2)) (EQ K2 (CADAR L2)))
(RPLACR LI

(PROG2 NIL (CAR L2)
(RPLRCR L2 (CAR LI))))

(RETURN (CAR LI))))
(GO LP)))

This is the ubiquitous number computer.

(DEFUN HASH-NUnBER (KEY1 KEY2)

(\ (BOOLE 6 (IRKNUI KEY1) (NRKNUII KEY2)) ;XOR
HASH-ARRAY-SIZE))

(SET' HRSH-ARRARRY-SIZE 1821.)

(ARRAY HRSH-ARRRY T HASH-ARRRY-SIZE)

This concludes the listing of the interpreter.

An Alnnotaterd Interpreter

de Kiser, Doyle, Rich, Steeles Sussman

Notes

ANORD
A Miracle of Rare Device, a name taken from S. T. Coleridge's poem

Kubla Khan. A previous version of AMORD was implemented by Doyle and
Steele in the Fall of 1976. That version was based on a threaded, LEAP-
like [Feldman and Rovner 1969] data base of triples coupled with an
incredibly elaborate system of macros, and was abandoned after the
experiences of Steele in writing a rule-based SCHEME complier called
CHEAPA, [Steele 1977] and Sussman and Doyle in writing a new version of EL.
[Sussman and Stallman 1975] The first version of the interpreter presented
here was implemented (without making use of the TMS) by Sussman, de Kleer
and Rich for tutorial use in MIT's 6.036 course in the Spring of 1977.
This version was then extensively modified by Doyle by integrating the use
of the TMS and making various efficiency modifications, and by Sussman in
experimenting with successively more refined versions of the discrimination
net.

TM'
The Truth Maintenance System is a program developed by Doyle [1977].

Section 3 summarizes its function and use.

SCHEME
SCHEME [Sussman and Steele 1975] is a dialect of LISP with lexical

scoping and tail recursion. It proved to be instrumental in writing the
discrimination net for AMORD.

MacLISP
MacLISP [Moon 1974] is a powerful dialect of LISP developed by the

MIT Artificial Intelligence Laboratory.

Godel
Self-referential facts cannot be recognized, as the order in which

rule environments precludes rules with patterns like (:F (CRETIN :F)).

Explicit Control
A more detailed discussion of the technique of explicit control

encouraged by AMORD can be found in [de Kleer, Doyle, Steele and Sussman
1977].

RABBIT
RABBIT [Steele 1977] is a highly optimizing compiler for SCHEME.

RABBIT compiles into a small, machine-language-like subset of MacLISP,
which. can then be compiled using the MacLISP number compiler to produce
very efficient code.

Donald Duck
If you think the structure of our discrimination network is devious,

see Drew McDermott's Donald Duck discrimination network!

otles

de Klebr, Doyle, Rich, Steele & Sussman

References

[de Kleer, Doyle, Steele and Sussman 1977]
Johan de Kleer, Jon Doyle, Guy L. Steele Jr., and Gerald Jay Sussman,

"Explicit Control of Reasoning," MIT AI Lab, Memo 427, June 1977.

[Doyle 1977]
Jon Doyle, "Truth Maintenance Systems for Problem Solving," MIT Al Lab TR-

419, June 1977.

[Feldman and Rovner 1969]
Jerome A. Feldman and Paul D Rovner, "An Algol-Based Asssociative

Language," CACM 12, #8, (August 1969), pp. 439-449.

[Noon 1974]
David A. Moon, "MacLISP Reference Manual," MIT Project Mac, Revision 0,

April 1974.

[Rivest 1976]
Ronald Rivest; "On Self-Organizing Sequential Search Heuristics," CACM 19,

#2, (February 1976), pp. 63-67.

[Steele 1977]
Guy L. Steele Jr., "Compiler Optimization Based on Viewing LAMBDA as RENAME

plus GOTO," MIT SM Thesis, Electrical Engineering and Computer
Science, May 1977.

[Sussman and Stallman 1975]
Gerald Jay Sussman and Richard Matthew Stallman, "Heuristic Techniques in

Computer-Aided Circuit Analysis," IEEE Transactions on Circuits and
Systems, Vol. CAS-22, No. 11, November 1975, pp. 857-865.

[Sussman and Steele 1975]
Gerald Jay Sussman and Guy Lewis Steele Jr., "SCHEME: An Interpreter for

Extended Lambda Calculus," MIT Al Lab Memo 349, December 1975.

References

