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Abstract :

We have implemented an interpreter for a rule-based system, AMORD, based on'

a non-chronological control structure and a system of automatically
- ‘'maintained data-dependencies. The purpose of this paper is tutorial. We
-wish to illustrate: '
{1} The discipline of explicit control and dependencies,

{2} How to use AMORD, and
{3} One way to implement the mechanisms provided by AMORD.

: This paper is organized into sections. The first section is a short
"reference manual® describing the major features of AMORD. Next, we
_present some examples which illustrate the style of expression encouraged
by AMORD. This style makes control information explicit in a rule-
manipulable form, and depends on an understanding of the use of non-

chronological justifications for program beliefs as a means for determining-

. the current set of beliefs. The third section is a brief description of
the Truth Haintenance System employed by AMORD for maintaining these
_ Justifications and program beliefs. The fourth section presents a

- completely annotated interpreter for AMORD, written in SCHEME.
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Section 1I: The AMORD Referenca Manual

AMORDAMORD ¢ 4 problem solving system. AMORD encourages a style of _
expression in which the logical relationships of the knowledge and control
structure of the problem solver are made explicit A minimal set of
mechanisms. is supplied by AMORD so that most of the knowledge that must be
formalized and the decisions that must be made in constructing a problem
solving program must, to a large degree, be made explicit in AMORD. This
makes AMORD is a vehicle for expressing the structure of - problem solvers,
such that once the problem solving structure has been formalized, the task
of transferral to programs in programming languages is straightforward.

As a set of mechanisms, AMORD 1is a system for the pattern-directed
invocation of a set of rules operating on an indexed data base of
- assertions. AMORD features a simple syntax for rule invocation patterns,
an unconstrained format for assertions, unification semantics for the
pattern-matcher, a non-chronological control structure for rule
. invocations, and the use of a truth maintenance systelFMs for determining
. the current set of believed assertions AMORD is implemented in

SCHEMESCHEME jmplemented in MacLIsp.Me |

The main components of AMORD are the data bases of assertions and
rules, the TMS, the matcher, and the queue. The data bases used in storing
assertions and rules are discrimination networks. The TMS is a system for
maintaining the logical grounds: for belief in assertions. The ‘matcher is a -
~ syntactic unifier which has no distinguished positions or keywords. The
. queue is a system whereby rules are run on the appropriate assertions The
main loop of the AMORD interpreter is to simply run the body of all rules
on all assertions whose patterns match the rules' patterns. This is done -
1ndependent of the chronological order in which the assertions and. rules
are entered into the data bases. When all rules have been run on all
matching facts. AMORD halts, awaiting further user input.

There are several special constructs in AMORD for axpressing rdies.
and assertions. We will enumerate them here, accompanied by their syntax
and description. -

ASSERT == (ASSERT <pattern> <jush”ca||on>)

This is the method for adding a new assertion to the data base. -Any
variables in the arguments inherit their values from the lexically
surrounding text. Variables are denoted by atoms with a colon prefix, as
in ":f". Each fact in the data base has an atomic factname. Assertions
which are variants of each other designate the same fact in ‘the data base,
.that is, are mapped to the same factname. The justification is a list,
whose type is determined by the first element of the list. If the first
element is atomic and has a “proof-type" function associated with it, that
function is applied to the justification and assertion to construct the
- desired TMS justification. Otherwise, belief in the assertion is
Justified by belief in all of the facts in the rest of the justification
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Assertions are run on all matching rules.

RULE == (RULE (<factnams-variable> <patterns) <body>)

This is the method for specifying a procedure to be invoked by all
assertions matching <patterns. When a fact whose pattern unifies with the
rule pattern is inserted into the data base, the set of AMORD and SCHEME
forms specified in the body of the rule are evaluated in the environment

"specified by adding {1} the variable bindings derived from the unification
of the fact pattern and rule pattern to {2} the binding of the fact's
factname and the factname variable of the rule Pattern and {3} the bindings
derived from the lexically surrounding text. Godel  Thg primary use of the
factname variable is for use in specifying justifications in assertions
made in the rule body. Rules are run on all matching facts. The order in
which they are run is not specified, although the interpreter of Section 4
operates in a quasi-depth-first fashion.

ASSUME -- (RSSUME <pattern> <justification>)

" This is used to specify speculative hypotheses, that is, to assume a
truth "for the sake of argument”. Here the justification provides support
for the need for assuming the assertion specified by pattern. Assumptions
are made by justifying belief in the assumed assertion on the basis of a
lack of belief in the assumed assertion's negation. Thus, assumptions may
be discarded by justifying belief in the negation of the assumed assertion,
which will invalidate the validity of the previous justification for this
assumed fact. In particular, the dependency-directed backtracking
mechanism of the TMS uses the information gained through analysis of the
reasons for contradictions to retract conflicting assumptions in this
manner.

The following macros can be used to interface expressions manipulated
by the AMORD and SCHEME interpreters.

PDSVAL =~ (PDSVAL <form>)
This macro allows SCHEME code to access the AMORD value of <form>.

PDSLET ~-- (POSLET ((<varl> <vall>) ... (<varn> <vain3)) <bodys>)

This macro enables the binding of a number of AMORD variables to
values expressed by SCHEME expressions. Note that the AMORD variables must
be prefixed by a colon.

PDSCLOSE -- (PDSCLOSE <body>)

This macro allows the evaluation of AMORD forms from within SCHEME.
when the SCHEME expression being evaluated is not lexically surrounded by
an AMORD expression. The forms in the body are evaluated in an empty AMORD
environment, that is, an environment in which no AMORD variables are bound.

CONSTANT -~ (CONSTANT <object>)
This SCHEME predicate determines whether an object contains any
raeferences to AMORD variables.
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The following are used to initialize and invoke the AMORD interpreter.

INIT == (INID
. This function initializes the data bases and various system
variables.

RUN -- (RuN) :

- This function initiates the AMORD read-evaluate loop. Forms read in
this: loop are closed in the empty environment and then evaluated. Unlike
the SCHEME read-evaluate-print loop, the results of the evaluation of forms
in this loop are not printed.

The following functions display the reasoning behind believed
assertions.

WHY =~ Y <tactnames)
This prints the current justification for belief in the specified
fact.

EXPLAIN -~ (EXPLAIN <mmmo>)
'l'his prints the complete proof of belief in the specified fact.

~ There are also a number of functions internal to the interpreter
which are useful in writing specialized functions. The TMS functions and
their use are described in Section 3. The most important are the
following.

ASSERTION == (RSSERTION <patterns) _
This returns the factname of the fact with the designhated pattern.

FACT-STATEMENT ~=~ (FACT-STRTEMENT <factname>)
This returns the pattern associated with the designated fact.

RETRACT == (RETRACT <factname>) _ _
~ This removes all PREMISE type justifications possessed by the
supplied fact.

There are several standard forms of justifications.

PREMISE -- (PREMISE) | o
~ This justification supports belief independent of any other beliefs.

GIVEN -- (GIVEND)
A synonym for PREMISE.

‘CONDITIONAL~PROOF ~= (CONDITIONAL-PRODF <consequent> <hypotheses>) o
This justification provides support if the recorded justifications
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provide for belief in the consequent when all the hypoﬁheses are believed.
Actually, this justification type has a somewhat more ¢emplex capability
and syntax which consistently extend the syntax and fuiction just
described. The concepts involved in this extension are described in

- Section 3, and the syntax is described in the annotated implementation in
- Section 4.

. CP == (CP <consequent> <hypotheses>)
A synonym for CONDITIONAL-PROOF.

-CONTRADICTION == (CONTRADICTION <support>) '

This justification supports belief if all the facts in the mentioned
support are believed, and further declares the fact justified by this -
justification to be a contradiction. This declaration will cause
backtracking to be invoked whenever the Justified fact is believed. All
contradictions must be explicitly declared. That is, asserting facts which
are syntactically negations of each other does not automatically produce a
contradiction.

ASSUMPTION == (RSSUMPTION <reason> <negation>) .

"~ This justification supports an assumed belief if the reason for
making the assumption is believed and if there is no reason for believing
the negation of the assumed fact. The negation used in this justification
does not have to be a fact with a certain pattern, but merely any fact
which will be taken as meaning (or at least implying) the negation of the
assumed belief.

In addition to the above justification types, the justification types_
INSTANCE and RULE are used internally by the interpreter in making
justifications based on subsumption of one fact by another and in
justifying rules. These justification types should therefore be avoided by

_the user.

To use AMORD, simply incant at DDT (on MIT-AI):
~AHORD AMORD
which will load up the current version of AMORD .and enter the SCHEME read-
 evaluate-print. loop. To enter the AMORD read-evaluate loop, evaluate the
form (RUN), which will begin interpretation. To escape to LISP, type “G..
To restart SCHEME, type either ““ or (SCHEME), from whence (RUN) can again
be invoked to resume AMORD.

This concludes the AMORD reference manuali
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Section 2: Some AMORD Examples

The control structure of AMORD encourages a certain style of rule-
writing. In order to compute anrthin? the control of the computational
process must be made explicit, Bt Conlrol 1ho yge of explicit control
requires careful thought about making assertions with the correct
justifications for belief. This section presents a simple system for
-deduction to illustrate these points.

‘The forward version of conjunction introduction is implemented in
AMORD as the following rule:

(Rule (:f :8)
(Rule (:g :b)
(Rssert (AND :a :b) (&+ :f :q))))

To paraphrase this rule, the addition of a fact F with pattern s into the
data-base results in the addition of a rule which checks every fact ¢ in
- the data-base and asserts the conjunction of A and the pattern B of &.
Thus if a is asserted, so will be (AND R ), (AND A (AND'A R)), {AND (AND A R) m,
etc Note that the atom aND is not a distinguished symbol.

Unfortunately, this rule is useless, as it generates piles of useless
assertions. To control these deductions, the above rule can be replaced by
the following rule which effects consequent reasoning about conjunctive '
goals.

(Rule (:g (SHOM (AND :p :q)))
‘(Rule (z¢l :p)
(Rule (12 :q) _
(Rssert (AND :p :q) (&+ icl 1¢2)))
(Rgsert (SHOW :q) ((BC &+) :g :el)))
(Rszert (SHOW :p) ((BC &+ :q9)))

In this rule the control statements (sious) depend on belief in the relevant
~ controlled facts so that the existence of a subgoal for the second conjunct
of a conjunctive goal depends on the solution for the first conjunct. At
the same time, no controlled facts depend on control facts, since the
justification for a conjunction is entirely in terms of the conjuncts, -and
not on the need for deriving the conjunction. This means that the control
over the derivation of facts cannot affect the truth of the derived facts. .
Horeover, the hierarchy of nested, lexically scoped rules allows the
specification of sequencing and restriction information For instance;'the
above rule could have been written as
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(Rute (:g (SHOM (AND :p :q)))
(Rule (:cl :p)
(Rute (:c2 :q)
(Rssert (AND :p :q) (&+ :cl :e¢2))))
(Rssert (SHOW :p) ((BC &+) :q))
(Rssert (SHOM :q) ((BC &+) :9)))

This form of the rule would also only derive correct statements, but would
not be as tightly controlled as the previous rule. In this case, both
subgoals are asserted immediately, although there is no reason to work on
the second conjunct unless the first conjunct has been solved. This form
of the rule allows more work to be done in that the possible mutual
constraints of the conjuncts on each other due to shared variables is not
accounted for. That is, in the first form of the rule, solutions to the
first conjunct were used to specialize the subgoals for the second
conjunct, so that the constraints of the solutions to the first are
accounted for in the second subgoal. In the second form of the rule much
work might be done on solving each subgoal independently, with the
derivation of the conjunction performed by an explicit matching of these
derived results. This allows solutions to the second subgoal to be derived
which cannot match any solution to the first subgoal.

Other consequent rules for Modus Ponens, Negated Conjunction
Introduction, and Double Negation Introductlon are similar in spirit to the
rule for Conjunction Introduction:

(Rule (:g (SHOW :q))
(Rule (:i (~> :p :q))
(Rule (:§ :p)
(Rssert tq (NP :i :§)))
(Assert (SHOH :p) ((BC MP) :q :i))))}

(Rule (:g (SHOR (NOT (AND :p :q))))
(Ruie (:t (NOT :p))
(Rssert (NOT (AND :p :q)) (-8+ :1)))
(Rule (st (NOT :q))
(Rssert (NOT (AND :p :q)) (-8+ :1)))
(Assert (SHOW (NOT :p)) ((BC -8+) :g))
(Rssert (SHOW (NOT :q)) ((BC -8&+) :g)))

(Rule (:1g (SHON (NOT (NOT :p))))
(Rute (:¢ :p)
(Rssert (NOT (NOT :p)) (—+ :§)))
(Assert (SHOR :p) ((BC --+) :g)))
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The following two rules implement a consequent oracle for testing the~'
equality of constants. Note the use of PDSVAL in allowing SCHEME access to
the value of AMORD variables

(Rulo (:q (SHOW (= :a :b)))
(let ((a (pdsval :a))
(b (pdsval :b)))
(it (constant a)
(if (constant b)
(it (equal a b)
(Rssert (= :8 :b) (Equality)N))) .

(Rule (:q (SHOW (NOT (= :a :B))))
(et ((a (pdsval 1a))
b (pdsval b))
(it (constant a)
(it (coristant b)
(it (equal a b)
nil
(Assert (NOT (= 312 :b)) (Equality)))))))

A final example is the use of assumptions to implement a default
series of alternative choices. The following expresses the knowledge that
traffic signals are either red, yellow or green.

* (Rule (st (TYPE :1 TRAFFIC-SIGNAL))
(Assume (COLOR :1 GREEN) (Optimism :t))
(Rule (sng (NOT (COLOR :i GREEN)))
(Rssume (COLOR :t YELLOW) (Hope-Yat :t :ng))
(Rute C(iny (NOT (COLOR 3! YELLOW)))
" (Rssert (COLOR :1 RED) (Rats :t :ng :ny)))))

By using this rule, anything declared to be a traffic signal will be:
assumed to be green in color. If it is discovered (perhaps ‘due to a
contradiction) that the color is not green, the color will be assumed to be
yellow. If it is further discovered that the color is also not yellow, the
color is determined to be red.
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Section 3: The Use of the TMS in AMORD

The Truth Maintenance System is an independent program for recording
information about program deductions. The TMS uses a method for
representing knowledge about beliefs, called a non-monotonic dependency
system, to effect any updating of beliefs necessary upon the addition of
new information.

The basic operation of the TMS is to attach a justification to a TMS-
node. A TMS-node can be linked with any component of program knowledge
which is to be connected with other components of program information. In
AMORD, each fact and rule has an associated TMS-node. The TMS then '
decides, on the basis of the justifications attached to nodes, which
beliefs in the truth of nodes are supported by the recorded justifications.
A node is said to be in if there is an associated justification which
supports belief in the node. Otherwise, the node is said to be out. The
~ TMS informs AMORD whenever the belief status of a node changes, either from
in to out, or out to in.

There are several types of justifications supported by the TMS. The
basic form of a justification is one in which a node is justified if each
node in a set of other nodes is in. This type of justification represents
the typical form of a deduction, or in the special case in which the set of
other nodes is empty, a premise. A node may also be justified on the basis
of the conditional proof of one node relative to a set of other nodes. In
this, belief in the justified node is supported if the consequent node of
the conditional proof is in when each of the nodes in the set of hypotheses
is in. The remaining form of justification supports belief in a node if"
each node in a given set of other nodes is out. This non-monotonic
justification allows the consistent representation and maintenance of
hypothetical assumptions. Using this latter form of justification, a fact
can be assumed to be true by justifying it on the basis of its negation
being out.

Each node which is in has a distinguished element of its set of
justifications. This distinguished justification is selected to support
belief in the node in terms of other nodes having well- founded support,
that is, non-circular proofs from ground hypotheses. A number of
dependency relations are determined from these justifications, such as the
set of nodes depending on a given node, or the nodes upon which a
particular node depends.

Truth maintenance processing is required when new justifications
cause changes in previously existing beliefs. In such cases, the status of
all nodes depending on the nodes with changed beliefs must be redetermined,
The critical aspect of this processing is ensuring that all nodes Judged to
be in are associated with well-founded support. Truth maintenance is not
unlike a generalized, but incremental, form of garbage collection. The
first step is to mark and collect all facts whose current belief state
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depends, via the previously recorded consequence dependencies, on the

~ changed beliefs. The second step is a combination sweep and depth first
search over these facts with the purpose of determining belief states based
on other facts with well-founded support. By distinguishing facts with
well- founded support from those without, all new beliefs determined in this
. pass are guaranteed to be well-founded. The third step is necessary if the
second step does not determine belief states for all the involved facts.
‘This step consists of a relaxation process of assuming some belief states
and proceeding, taking care that the assumed beliefs are consistent. This
step, at its conclusion, can guarantee that all beliefs have well- founded
support. The fourth step is a pass over all changed facts to check for
believed facts which are known to represent contradictions. Backtrackiug
is invoked on any such contradictions (which may so invoke further truth
mairitenance). The final step of truth maintenance is the notification of
the external systems of all changes in beliefs determined. by the truth:
maintenance system.

.. The TMS provides automatic dependency-directed backtracking whenever
nodes marked as contradictions are brought in. Dependency-directed _
backtracking employs the recorded dependencies to locate precisely those
hypotheses relevant to the failure and uses the conditional proof mechanism
to summarize the cause of the contradiction in terms of these hypotheses.
Because the reasons for the failure are summarized in a form which is
- independent of the hypotheses causing the. failure, future occurrences. of
similar failures are avoided. :

The TMS functions used in AMORD are as follows:

TMS-MAKE-DEPENDENCY-NODE -~ (THS-MAKE-DEPENDENCY-NODE <external-name>) _—
' This function creates a new TMS-node with a given name. In AMORD,
the external names are Just the atomic factnames used to represent facts
and rules. TMS-nodes are currently implemented using uninterned atomic

symbols.

'I'HS JUSTIFY == (THS-JUSTIFY <node> <Insubporters> <outsupporters> <arguments) '

This function gives a TMS node a new justification, which is valid 1f_ _

each of the nodes of theinsupporters 1list is in, and each of the nodes of
the outsupporters 1list is out. The argument is an uninterpreted slot used
to record the external form of the justification, and is retrievable via
the THS-ANTECEDENT-ARGUMENT function described below.

‘TMS-CP-JUSTIFY
== (TNS-CP~JUSTIFY <node> <consequent>. <inhypotheses> <outhypotheses> <argument>)
This gives a TMS node a new justification which is valid if, when thef
. lnhypotheses are in and the out hypotheses are out, the consequent node is
believed. As in TMS-JUSTIFY, the argument is an uninterpreted record of
the external form of the Justification
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TMS-PROCESS-CONTRADICTION
== (THS-PROCESS-CONTRADICTION <name> <node> <type> <contradiction-function>)

This declares a TMS node to represent a contradiction. The namé and
type are uninterpreted mnemonics provided by the external system to be
printed out during backtracking. The contradiction-function, if supplied,
should be a LISP function to be called with the contradiction node as its
argument when the backtracker can find no backtrackable choicepoints.

TMS-SUPPORT-STATUS =~ (TNS-SUPPORT-STATUS <nodes)

- This function returns the support-status, either 'IN or 'OUT, of a
node.

TMS-ANTECEDENT-SET == (THS-ANTECEDENT-SET <node>)
This function returns the list of justifications of the node. In the
TMS, each justification is called an antecedent of the node.

TMS-SUPPORTING-ANTECEDENT == (TMS-SUPPORTING-RNTECEDENT <node>)
This function returns the current justification of the node.

TMS-ANTECEDENT-ARGUMENT ~-- (TMS-ANTECEDENT-ARGUMENT <antecedents) _
This function returns the external argument associated with the given
antecedent.

TMS-ANTECEDENTS ~- (THS-ANTECEDENTS <node>)

This function returns the list of nodes determining well-founded
support for the given node. This list is extracted from the supporting-
antecedent if the node is in, and is empty if the node is out.

TMS~-CONSEQUENCES -~ (TMS-CONSEQUENCES <node>)

This function returns the list of nodes whose list of antecedent
nodes mentions the given node.

- TMS-EXTERNAL-NAME -~ (THS-EXTERNAL-NAME <node>)
This function returns the user-supplied name of a node.

TMS-IS-IN =~ (THS-IS-IN <node>)
This predicate is true iff the node is in.

TMS~IS-0UT -- (TNS-15-0UT <node>)
This predicate is true iff the node is out.

TMS~-RETRACT -- (THS-RETRACT <node>)
This function will remove all premise-type justifications from the
set of justifications of the node.

TMS~PREMISES -~ (THS-PRENISES <node>)
" This function returns a list of the premises among the well-founded
support of the node.
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TMS-ASSUMPTIONS -- (ms-nssunmnus <odes) '
This function returns a list of the assulptions among the well-
founded support of the node.

TMS-CLOBBER~-SIGNAL-FORGETTING~-FUNCTION
== .(THS-CLOBBER-SIGNAL-FORGETTING-FUNCTION <node> <fun>)

‘This function sets the LISP function that the TMS will use to signal
the changing of the status of the node from in to out. When such a change
occurs, the supplied function will be called with the external name of the
node as its argument.

TMS-CLOBBER-SIGNAL-RECALL ING-FUNCTION
==~ (THS-CLOBBER-SIGNAL-RECALLING-FUNCTION <node> <fun>)
This function sets the LISP function that the TMS will call with the
node's external name as its argument when changing the status of the node -
from out to in.

The TMS also generates new “facts" internally during backtracking.
These will therefore occur in explanations and antecedents of the nodes
requested and justified by the external systems. The internal facts
generated by the TMS are atoms with certain properties. The following
functions are provided to manipulate these internal facts.

TMS-FACTP == (TMS-FACTP <thing>) _
- This predicate i§ true iff the thing is an internal TMS fact.

THS-FACT-NODE - (Tns.rncr-uonz «facts)
' This function returns the ™S node associated with an internal fact

TMS-FACT-STATEMENT == (THS-FACT-STRTEMENT. <fact>) _

This function returns the symbolic statement of the meaning of an
internal fact. This statement refers to the external names of the other
facts, such as contradictions and assumptions, which were involved in the
making of the fact.

The following two functions are supplied for debugging purposes.

TMS-INIT =- (ms-INID _ |
_ This function clears the state of the TMS by resetting all internal
variables and clearing all properties and internings of TMS nodes.

~ TMS-INTERN == (TMS-INTERN)

. This function interns all TMS nodes currently in existence, and
causes the interning of all nodes generated in the future. Initially, the
atomic symbols representing TMS nodes are not interned. ’

Examples of the use of the TMS facilities can be found in the
following section, in which the functions implementing the various AMORD
proof-types are defined.
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Section 4: An Annotated Interpreter

Here we present a real live AMORD interpreter. The interpreter
divides into the following sections, which will be presented in this order.

AMORD form definitions
ASSERT and associated functions
RULE and associated functions
Proof-type definitions
The RUN interpreter (the main loop)
The TMS interface
The Unification Matcher
The Discrimination-Net Data Base

Before presenting the interpreter itself; we describe some aspects of the
implementation.

The main loop of the interpreter is in the function RUN, which
examines the various queues (described below). RUN makes sure that all
rules are run on all facts whose patterns match the rule patterns. As an
efficiency step, a rule is run on a fact only if both the rule and fact are
believed (in). After the possibilities for running rules on facts are
exhausted, RUN checks for programs (called runlast functions) which have
been specified for running at queue's end and runs each of these programs.
If these programs make new assertions or rules, the above loop is resumed.
Finally, after finishing all of the above steps, RUN waits for new input
from the user.

Each rule and fact is represented by an atomic symbol with several
properties. Both rules and facts have their TMS-nodes kept on their
property-list under the 'TMS-NODE property. Rules and facts also have a
'STIMULATE-LIST property, which is used to store matching facts and rules
{respectively) until they are queued up to be run.

In addition to their common properties, rules and facts have other
attached items. Facts have their pattern kept in their value cell. Rules
have their full trigger pattern (the list of the factname variable and the
trigger pattern proper) kept in their value cell. Rules are distinguished
from facts by their possession of a 'RULE-BODY property, which stores the
uninstantiated rule body. Rules also have a 'SPECIALIZATION property which
stores the environment derived from the lexically surrounding text, and a
'T-LIST property, which stores the lexically surrounding triggering facts
(the 1ist of facts triggering lexically surrounding rules to create the
particular rule).

The control of running rules on facts is mediated by an amorphous
mechanism called the queue. This mechanism has several components:

{1} The trigger queue, *TQ*. This is a queue of rule-fact pairs
representing possible triggerings. This queue is maintained, in the global
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variable *TQ%, as a CONS cell, the CAR of which points to the front of the
1ist of trigger pairs, and the CDR of which points to the last cell of this
list. This is done so that new pairs may be quickly added to the end of
the list of trigger pairs. The rule-fact pairs from this queue are turned
‘into SCHEME closures and then run. The actual unification checking (over
the matching done by the data base fetch routines) to see that the
triggering is valid is done at closure creation time.

{2} The stimulate lists. Each rule and fact has a list, of facts and
rules respectively, on its 'STIMULATE-LIST property. These facts and rules
in these lists are initially the items retrieved from the data base as
possibly matching the newly created rule or fact. The function STIMULATE,
called by the TMS when rules and facts come in, takes the STIMULATE-LIST of
the newly inned item, turns it into a list of pairs and adds these pairs to
the trigger queue.

: The queue mechanism operates as follows. When pairs come to. the top
of the trigger queue, both the rule and the fact of the pair are checked ‘to
see if they are in. If both are in, their unification is attempted. If -

“they do not unify, the pair is discarded from the queueing system: if they
do, a SCHEME closure of the appropriate form is created and evaluated.

This closure evaluates each form in the rule body using the inherited AMORD
lexical environment augmented by the bindings derived from the triggering
fact. Alternatively, if a pair is encountered on the trigger queue with the.
rule (or fact) out, the fact (or rule) is placed on the STIMULATE-LIST of

. the out rule (or fact). In this way no pairs are actually run unless
relevant, for subsequent innings of the rules or facts involved will keep
adding the pair to the trigger queue until the pair makes it to the top
with both items in.

In addition to the above trigger queue mechanism; two other.
structures are part of the main RUN loop.

{1} The closure queue, *Q*. This is queue of SCHEME closures,
functions of no arguments to be evaluated. The global variable *Qx
‘ contains this queue, in the form of a CONS whose CAR is the first cell of
the list forming the queue, and whose CDR is the last cell of this 1ist.
As in the trigger queue, this is done so that new queue iteis can be added
directly at the end of the queue, rather than requiring a traversal. through
‘the entire queue for each new addition. This queue is provided so that the
user may post programs. to be executed. This is sometimes (although rarely)
necessary, as the TMS makes the restriction that the TMS cannot be invoked
while a previous invocation is stiil signalling changes in the statuses of
facts.

"~ {2} The runlast list, *RUNLAST*. This is a user maintained 1list,
initially empty, of SCHEME functions of no arguments to be run each time
both *TQ* and ®Q® run out. At such time, each function in this list is

- evaluated. These functions can either add new justifications to facts, add
other programs to *Q* to be run, or, by means of PDSCLOSE, evaluate further
AMORD. forms to cause resumption of the main loop of trigger queue
interpretation.
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The structure of justifications is as follows. Justifications must be
lists. If the first element of the list is either non-atomic, or lacks a
'PROOF-~-TYPE property if atomic, the justification is interpreted as a
" simple deductive justification in which the justified item will be in if
all the facts mentioned in the rest of the justification are in. If the
first element of the justification is an atom with a 'PROOF-TYPE property,
the the value of that property must be a SCHEME function. This function is
called with the justification and justified item as arguments. This
function then has the responsibility for making the necessary TMS
Justifications, and may perform other operations if desired. Proof-type
functions which must evaluate AMORD forms should use the PDSCLOSE macro
described in Section 1.

The interpreter uses several global variables as follows:

*Q*x - The queue containing SCHEME closures to run.

xTQx - The trigger queue containing rule-fact pairs to close and run.

*ENTRY* - Contains the last closure evaluated by RUN.

XRUNLAST* - A list of SCHEME closures of no arguments to be successively
evaluated each time the queue runs out. This list is initially NIL.

*STOPFLAG* - If non-NIL, causes the RUN loop to halt after running the
current entry.

*ASSERTIONS* - Contains the discrimination net for facts.

*RULES* - Contains the discrimination net for rules.

XWALLP* - If non-NIL, causes new justifications of facts to be
displayed. The default is T.

XGENSYM-COUNTER* - The counter used in generating rule and fact names,
numbers for standardizing expressions apart, and line numbers.

Here begins the code of the interpreter proper. Several macros are
used in this code, including the substituting-quote ", which returns the
next form, quoted but with the values of subforms preceded by , substituted
as elements of list structure, and with the values of subforms preceded by
® spliced in as list segments. The macros IF and LET have the obvious
meanings.

The first items are declarations for the SCHEME®PB8" and MacLISP
compilers, respectively.

; RABBIT COMPILER DECLRRATIONS

(PROCLAIN (2EXPR GENS ENQUEUE FACT-STATEMENT RULE-PATTERN SUPPORT-STATUS IS-IN
THS-CLOBBER-SIGNAL-RECALLING-FUNCTION
THS-MAKE-DEPENDENCY-NODE TMS-NODE THS-NODES
THS=JUSTIFY THS-CP-JUSTIFY THS-PROCESS-CONTRRDICTION))

(DECLARE (FASLOAD (GJS) SCHMAC)) ;LOADS IN IF, ETC. MACROS FOR USE IN LISP
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AMORD - FORM DEFINITIONS

All true AMORD forms like ASSERT and RULE must be evaluated in a -
SCHEME environment in which the variables *SUBSTITUTION* and *T-LIST* are
botind. To achieve this, while making these universal (not global)
variables invisible to the user, macros are used which append the
‘appropriate variable references to the calls to the AMORD primitives.

_ Here is ASSERT, which takes an expression and a justification,
instantiates them with the current environment bindings, inserts the
expression into the data base, and then installs the justification as one
of the expression's justifications. The call to SUBSUME-CHECK serves to
add new justifications to the new fact or to other facts based on
subsumptions in their patterns.

_ (SCHHﬁC ASSERT (EXPRESSION JUSTIFICATION)
' " (RSSERT-2 *,EXPRESSION *,JUSTIFICATION sSUBSTITUTIONs))

(DEFINE ASSERT-2
(LAMBORA (EXPRESSION JUSTIFICATION ALIST)
(LET ((EXPRESSION (INSTANCE EXPRESSION  ALIST))
(JUSTIFICATION (INSTANCE JUSTIFICATION ALIST)))
(LET ((A (RSSERTION EXPRESSION)))
(BLOCK (INSTRLL-JUST JUSTIFICATION A)
(SUBSUME-CHECK R))))))

: The operation of ASSUME is somewhat more complicated than that of ‘
ASSERT, as two facts are created in addition to the specified fact, as well
as one additional justification.

:(SCHMAC ASSUME (EXPRESSION JUSTIFICATION)
*(RSSUNE-2 *,EXPRESSION *,JUSTIFICATION sSUBSTITUTION=))

(DEFINE ASSUME-2 _
(LAMBDA (EXPRESSION JUSTIFICATION ALIST)
(LET ((EXPRESSION (INSTANCE: EXPRESSION ALIST))
(JUSTIFICATION (INSTANCE JUSTIFICATION ALIST)))
(LET (C(R (RSSERTION EXPRESSION))
(AF (ASSERTION "(ASSUNED ,EXPRESSION)))
(N (RSSERTION
(IF (EQ (CAR EXPRESSION) ’NOT)
(CADR EXPRESSION)
"(NOT ,EXPRESSION)))))
(BLOCK (INSTRLL-JUST JUSTIFICRTION AF)
(INSTALL-JUST * (RSSUNPTION ,AF ,N) R)
(SUBSUNE-CHECK R)
(SUBSUME-CHECK AF)
(SUBSUME-CHECK N))))))

ASSERTION is the function fbr creating new assertions. The data base
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is checked to see if it contains a fact with a variant of the supplied
pattern. If so, that fact is returned, and otherwise a new fact is
generated and inserted into the data base in the appropriate bucket.

(DEFINE RSSERTION
(LAMBDA (EXPRESSION)
(LET ((B (BUCKET EXPRESSION NIL #ASSERTIONS#)))
(VARIANT-CHECK EXPRESSION B
(LANBDA (VARIANT) VARIANT) 3 IF THERE IS A VARIANT
(LAMBOA O sNO VARIANT
(LET ((NAME (GENS ’F)))
(BLOCK (SET NAME EXPRESSION)
(PUTPROP NRME (TMS-MAKE-DEPENDENCY-NODE NAME) *THS-NODE)
(THS-CLOBBER-SIGNAL-RECALL ING-FUNCTION
(THS-NODE NAME) °*STINULATE)
(PUTPROP NARME
(D0 ((L (FETCH EXPRESSION NIL #RULES2) ((CADR L)))
(ANS NIL (CONS (CAR L) ANS)))
((NULL L) ANS))
*STINULRTE-LIST)
(INSERT-IN-BUCKET NANME B)
NAME)))))))

VARIANT-CHECK is a function used only by ASSERTION above. It checks a
data base bucket to see if the bucket contains a fact whose pattern is a
variant of the supplied pattern. IF-FOUND should be a function of one
argument to receive the variant if ome is found. IF-NOT should be a
function of no arguments to be called if no variant is found.

(DEF INE VARIANT-CHECK
(LANBDA (EXP BUCKET IF-FOUND IF-NOT)
(LABELS ((LOOP
(LANBDA (L)
aF L
(LET ((C (COMPARE EXP (FRCT-STATEMENT (CAR L)))))
arc
(IF (EQ (CAR €) *VARIANT)
(IF-FOUND (CAR L))
(LOOP (COR L))
(LOOP (COR L))
(IF-NOTI)))
(LOOP (STUFF BUCKET)))))

SUBSUME-CHECK performs the function of checking the data base for
facts whose patterns either subsume or are subsumed by the pattern of the
supplied fact. If any subsumptions are detected, new justifications are
added to support belief in the subsumed fact if the subsuming fact is
believed.
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(DEFINE SUBSUME-CHECK
(LAMBDA (NRME)
C(LET ((EXP (FACT-STATEMENT NANED))
(DO ((CANDIDATES (FETCH EXP NIL sRSSERTIONSs) ((CROR CANDIDATES))))’
((NULL CRNDIDATES))
(IF (EQ (CAR CANDIDATES) NANE)
NIL -
(LET ((C (COMPARE EXP (Fncr-srnrsnfnt (CAR CHNBIDHTES)))))
Ur ¢
(COND ((EQ (CAR C) *SUBSUMES)
(INSTALL-JUST (LIST *INSTANCE NAME). (CAR CANDIDRTES)))
((EQ (CAR C) *SUBSUNED)
C(INSTALL-JUST (LIST *INSTANCE (CAR CANDIORTES)) NAME))
(T (BREAK |SUBSUME-CHECK|)}))))))))

The next function is not used in the interpreter, but provides a
useful service in writing AMORD rules and proof types. PRESENT takes two
arguments -- a full rule pattern of the form (<factnames <pattern>) and IF-
FOUND, a continuation of two arguments. If & fact is found which is
subsumed by the pattern, IF-FOUND is called with the resulting substitution
and a continuation of no arguments which can be called to continue the
.§can. To use the derived substitution in the evaluation of AMORD forms,
‘the continuation IF-FOUND should use "*SUBSTITUTION*" as the name of its
first argument.

(DEF INE PRESENT
(LANBDR (PATTERN IF-FOUND)
LABELS ((LOOP
(LAMBDA (CANDIDRTES)
(IF CANDIDATES
(LET ((C (COMPARE (CADR PATTERN) (FACT-STATEMENT (CAR CANDIDATES)))))
(Fc
(IF (EQ (CAR C) ’SUBSUMES)
(IF-FOUND (CONS (CONS (CAR PATTERN) (CAR CANDIDATES))
~ 4CADR C))
(LAMBDA () (LOOP ((CRDR CANDIDATES)))))
(LOOP ((CADR CANDIDATES))))
(LOOP ((CADR CANDIDATES)))))
NILDD)
(LOOP (FETCH (CADR PATTERN) NIL *nsssatxous¢)))))

" Rules have justifications just like facts, but unlike facts, rules
are used in no justifications. Rules are really operational entities,
which should be allowed to function only if the facts leading to their
creation (via other rules forming its lexical environment) dare believed.

. For this purpose, each rule has a 'T-LIST property storing the list of
facts which triggered rules forming its lexical environment. This list,
augmented with the rule itself, is passed along to nested rules by medns of
the variable *T-LIST*, a universal variable like *SUBSTITUTIONX.
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(SCHHRC RULE (PATTERN . BODY)
" (RULE-2 *,PRTTERN ’,BODY »SUBSTITUTION2 27-LIST#))

(DEFINE RULE-2
(LAMNBDA (PATTERN BODY ALIST T-LIST)
(IF (NULL BODY) (ERROR ’JVACUOUS RULE| PATTERN ’HRNG-TYPE-ARG)
(LET ((B (BUCKET (CRDR PATTERN) RLIST 2RULES2))
(RNANE (GENS ’'R)))
(BLOCK (PUTPROP RNAME ALIST ’SPECIALIZATION)
(SET RNAME PATTERN)
(PUTPROP RNANE
(IF (COR BODY) (CONS ’BLOCK BODY) (CAR BODY))
*RULE-BODY)
(PUTPROP RNANE T-LIST >T-LIST)
(PUTPROP RNAME
(D0 ((L (FETCH (CRDR PATTERN) ALIST =ASSERTIONSs) ((CAOR L)))
(ANS NIL (CONS (CRR L) ANS)))
((NULL L) RANS))
'STIMULRTE-LIST)
(INSERT-IN-BUCKET RNANE B)
(PUTPROP RNAME (THS-NRKE-DEPENDENCY-NODE RNAME) *TMS-NODE)
(TMS-CLOBBER-SIGNAL-RECALLING-FUNCTION (TMS-NODE RNAME) ’STINULATE)
(INSTALL-JUST "(RULE eT-LIST) RNAHE)})))))

TRY-RULE takes a possible triggering pair, consisting of a rule and a
fact. The pattern of the fact is compared with the pattern of the rule.
If these two patterns unify, then a SCHEME function of no arguments is
returned which, if evaluated, will evaluate the body of the rule in the
environment produced by adding the bindings derived from the unification to
the environment in which the rule exists.

(DEFINE TRY-RULE
" (LANBDA (RNAME ANARNE)
(LET ((S (UNIFY (CADR (RULE-PATTERN RNAME))

(FACT-STATEMENT ANANE) (GET RNAME ’SPECIALIZATION))))
(IF §

(ENCLOSE

" (LAMBOR ()

(LET ((+SUBSTITUTIONs * ((, (CAR (RULE-PATTERN RNAHE)) . ,RNANE)
., (CAR $)))
(+T-LIST# *, (CONS RANAME (GET RNRHME ’T-LIST))))
, (GET RNAME ’RULE-BODY)))
RNANE)))))

PROOF-TYPES AND JUSTIFICATIONS

INSTALL-JUST takes a justification and a fact (or rule). If the
justification has an associated proof-type, the proof-type function is
called with the justification and fact as arguments. Otherwise, SUPPORT is
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calléd to add the justification to the set of justifications of the fact. .
If the new justification causes the fact to be newly believed, the fact and
its justification may be displayed..

(DEFINE INSTALL-JUST
" (LAMBDA (JUSTIFICATION FACT)
(LET ((OLDSTATUS (SUPPORT-STATUS FACT)))
C(IF (ATONM (CAR JUSTIFICATION))
(LET ((G (GET (CAR JUSTIFICATION) *PROOF-TYPE)))
(IF G (G JUSTIFICATION FACT) (SUPPORT JUSTIFICATION FACT)))
(SUPPORT JUSTIFICATION FACT))
(IF (AND #HALLPx
(NULL (GET FACT ’RULE-BODY))  ;FACT OR RULE?
(EQ OLDSTATUS *0UT) ' '
(EQ (SUPPORT-STATUS FACT) *IN)
(BLOCK (PRINT *ASSERTING)
(PRIN1 FACT)

(PRINC | )
"(PRIN1 (FRCT-STATEMENT -FACT))
(PRINC *} )

(PRINL JUSTIFICATION))))))
(SET* 2HALLPx T)

SUPPORT performs the standard task of justification, which interprets
all elements of the supplied justification (except the first, which is
mnemonic) to be factnames which collectively Justify belief in the supplied .
fact.

(DEFINE SUPPORT
(LAMBDA (JUSTIFICATION FACT)
(THS-JUSTIFY (THS-NODE FACT)
(THS-NODES (CDR JUSTIFICATION))
NIL
. JUSTIFICRTION)))

PREHISE justifies the fact with a eternally valid justification.

(DEF INE' PRENISE
(LANBOR (JUSTIFICATION FACT)
(TNS-JUSTIFY (TMS-NODE FACT) NIL NIL JUSTIFICATION)))

(PUlPROP *PRENISE PREMISE ’PROOF-TYPE)
(PUTPROP *GIVEN PRENISE ’PROOF-TYPE)

CONDITIONAL PROOF interprets the second element of the justification
as the consequent of the conditional proof, the third element as the list
of in hypotheses of the conditional proof, and the fourth element as. the
1ist of out hypotheses of the conditional proof.



de Kieer, Doyle, Rich, Steelo & Sussman 22 An Annotated Interpreter

(DEF INE CONDITIONAL-PROOF
(LAMBDAR (JUSTIFICATION FACT)
(THS-CP-JUSTIFY (THS-NODE FACT)
(THS-NODE (CADR JUSTIFICATION))
(THS-NODES (CRDDR JUSTIFICATION))
(TMS-NODES (CRDDDR JUSTIFICATION))
JUSTIFICATION)))

(PUTPROP *CP CONDITIONAL~PROOF ’PROOF-TYPE}
(PUTPROP ’CONDITIONAL-PROOF CONDITIONAL-PROOF °PROOF-TYPE)

ASSUMPTION interprets the second element of the justification as a
factname designating the reason for making the assumption, and the third
element as a factname designating a negation of the belief to be assumed.
Thus the supplied fact will be believed whenever the reason fact is in, and
the negation fact is out.

(DEFINE ASSUNMPTION
(LANBDA (JUSTIFICATION FACT)
(THS-JUSTIFY (TNS-NODE FACT)
(LIST (TMS-NODE (CRDR JUSTIFICATION)))
(LIST (TMS-NODE (CADDR JUSTIFICATION)))
JUSTIFICATIONY )

(PUTPROP *ASSUNPTION ASSUMPTION °PROOF-TYPE)

CONTRADICTION first supports belief in the supplied fact and then
declares to the TMS that the fact is a contradiction.

(DEFINE CONTRADICTION
(LAMBDA (JUST FACT)
(BLOCK
(SUPPORT JUST FACT)
(TNS-PROCESS-CONTRADICTION FACT (THS-NODE FACT) (FACT-STRTEMENT FACT) NIL))))

" (PUTPROP ’*CONTRADICTION CONTRADICTION °*PROOF-TYPE)

THE RUN INTERPRETER

The following three macros hide references to the universal AMORD
variables *SUBSTITUTION* and *T-LIST*, allowing SCHEME and AMORD code to be
mixed.
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(SCHMAC PDSVAL -(_10)"_"(INSTRNC'E ', 10 2SUBSTITUTIONs))

(SCHMAC POSLET (VARS. .. -B0DY)
“(LET ((+SUBSTITUTJONs
, (B0 (R *SUBSTITUTIONS
“(CONS (CONS ’, (CRAR VL) , (CRDAR VL))
,A) '
(VL VARS (COR VL))).
© CINULL VLY D))
#B0DY))

(SCHNAC PDSCLOSE BODY *(LET ((xSUBSTITUTIONs NlL)'(:T-Llsr:fNIL)) eBODY))
RUN has four loops in ohe. First the trigger queue is tried, then

the main queue, then the runlast functions, and finally the reader is
invoked. The loop is halted if *STOPFLAG* is non-NIL.
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(DEFINE RUN

(LAMBDR ()
(LRBELS
({LoOP
(LAMBDA () (IF %STOPFLAGx 'STOPPED (TRY-xTQ2))))
(TRY-2xTQ2
(LAMBDA ()
(IF (CAR %TQx)
(LET ((R (CAARR 2TQ#)) (F (CDARR 2TQs#)))
(BLOCK
(RPLACA #TQx (CDAR =TQ%))
(IF (I1S-IN F)
(IF (IS-INR)
(BLOCK (SET’ 2ENTRY® (TRY-RULE R F)) (IF zENTRY% (#ENTRY%)))
(PUTPROP R (CONS F (GET R ’STIMULATE-LIST)) *STIMULRTE-LIST))
(PUTPROP F (CONS R (GET F *STIMULATE-LIST)) *STIMULATE-LIST)H)
(LoorP )
(TRY-202))))
(TRY-£Q%
(LAMBDA ()

(IF (CAR #0%)
(BLOCK (SET’ :ENTRYz (CARR #02))
(RPLACA Qs (COAR #0s))
(SENTRY#)
(LOOP))
(TRY-2RUNLRST#))))
(TRY-+RUNLAST#
(LAMBDA O :
(D0 ((RL sRUNLASTs (COR RL)))
C(NULL RL)
(IF (OR (CAR #TQ®) (CAR #Q#)) (LOOP) (TRY-READ)))
((CAR RL))I))
(TRY-READ
(LANBDA O
(BLOCK
(SET* $GENSYN-COUNTERs (+ +GENSYM-COUNTER# 1))
(PRINT 2GENSYM-COUNTER®)
(PRINC *[>> |)
(ENQUEUE (LIST (ENCLOSE "(LAMBOR () (PDSCLOSE , (RERD))) *?2)))
(LOOP)))))
(BLOCK (SET’ #STOPFLAG: NIL) (LOOP)))))

ENQUEUE adds a list of closures to the end of the current queue of
-closures.
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(DEFUN ENQUEUE (RCTIONS)
(IF ACTIONS
(LET ((L (LRST RCTIONS)))
(IF (CAR 2Q2)
(PROGN (RPLACD (COR #Q#) ACTIONS) (RPLACD =02 L))
(PROGN (RPLACR 2Qs RCTIONS). (RPLACD #Qs L))))))

STIMULATE is the (LISP) function called by the TMS on any fact or
rule which changes status from out to in. (See ASSERTION and RULE-2 above
for the uses of TMS-CLOBBER-SIGNAL-RECALLING-FUNCTION to implement this. )
When such a status change takes place, the list of matching items found
- when the item was inserted into the data base is used to add a new set of
trigger pairs to the trigger queue.

'(UEFUN STIMULATE (NANE) _ '
(LET ((ACTIONS (IF (GET NAME ’RULE-BODY)
{WAPCAR * (LANBDR (F) (CONS NAME F)). (GET NANE 'STIHULﬂTE-LIST))
(NRPCAR * (LAMBDR (R (CONS R NAME)) (GET NAME *STIMULATE-LIST)))))
(PROGN
(RENPROP NANE *STIMULATE-LIST)
(IF RCTIONS
(LET «(L CLAST ACTIONS)))
.(IF (CAR sTG%)
(PROGN (RPLACD (CDR #TQ3) ACTIONS) (RPLACD 2TQx L))
(PROGN (RPLRCA #TGs ACTIONS) (RPLACD 2TQx L))

: INlT does the obvious thing.

(DEFINE INIT
(LANBDR ©
(BLOCK (DBINIT *#ASSERTIONS#)
(DBINIT *#RULES#) :
(SET* sQ2 (CONS NIL NIL)) ;CAR IS FIRST CELL OF QUEUE, COR IS LAST CELL
(SET* 2TQ= (CONS NIL NIL)) ' :
(SET’ #RUNLAST NIL)
(SET* *ENTRY# NIL)
(SET’ #STOPFLAGs NIL)
(SET* $GENSYN-COUNTER: 8))))

Variables are represented by semi-lists of three elements, in thé_
. form «/: <var> . <number>) The first element is the atom ":", the second is the

. variable name, and the third is a number used to standardize the variable

name apart. The following functions should be used to create new variables
and to test or otherwise manipulate them.

(DEFUN. VGENS (VNANE)
(CONS ?/: (CONS (CRR VNANE)
(SET* sGENSYN-COUNTERs (+ tGENSYH-COUNTER# nHN

(DEM VARIABLE (X) (EQ (CAR X) */:1))
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CONSTANT tests whether an S-expression contains any variables.

(DEFUN CONSTANT (X)
(IF (ATOM X)
(IF (EQ X */:) NIL X)
(IF (CONSTANT (CAR X)) (CONSTANT (COR X)) NIL)))

GENS generates a new atomic symbol with a supplied prefix and a
suffix of the form "-npn".

(DEFUN GENS (E)
(READLIST (NCONC (EXPLODE E)
(LIST =)
(EXPLODE (SET’ +GENSYM-COUNTER%
(+ 2GENSYN-COUNTERx 1)))))) ¢

The variable designator ":" is a read macro which generates the
standard variable-structure described above. Because items read in see a
constant value for *GENSYM-COUNTER®, variable references in an exprassion
(such as two occurrences of ":x") appear as similar structures (suck as
"¢/eox . 120 Y).

(DEFUN COLON-RERD () (CONS */: (CONS (READ) 2GENSYM-COUNTER2)))

(SETSYNTRX */: *MACRO ’COLON-READ)

THE TMS INTERFACE

FACT-STATEMENT must check to see if the supplied fact is TMS-
generated or a normal fact. RULE-PATTERN need make no such check.

(DEFUN FACT-STATEMENT (F) (IF (THS-FACTP F) (TNS-FACT-STATENMENT F) (SYMEVAL F)))
(DEFUN RULE-PRTTERN (R) (SYMEVAL R))

WHY presents the immediate justification for the current belief in a
fact. Note that if the fact is not believed, the list of failing
Justifications is printed. EXPLAIN collects up all facts among the support
of the supplied fact, sorts them by the suffix of their factname, and
prints them one per line along with their current justifications.
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(DEFUN UHY (NAME)

(PRINT NAHNE)
(PRIN1 (FACT-STRTEMENT NRNE))
(PRINC *| )
(IF (1S-IN NAME)

(PRINS (RRGUNENT NAME))

(PRINL (CONS *OUT

(NAPCAR *ARGUNENT (ANTECEDENT-SET NAME)))))

*QED)

(DEFUN EXPLAIN (FACT)
(TERPRI) (PRINC ’ [PROOF OF |) (PRIN1 FACT) (PRINC ’| = |} (PRINL (FRCT-STRTEMENT FACT))
(PRINC *] (]) (PRINL (SUPPORT-STRTUS 'FACTY) (PRINC-*]) |) (PRINL (RRGUNENT FACT))
(PFL (FOUNDATIONS FACT))
*QED)

The following functions do the dirty work for functions like EXPLAIN.

(DEFUN PFL (FL)

(MAPC * (LAMBDA (F)
(PRINT F)
(PRINC *| = )
(PRINL (FACT-STATEMENT F))
(PRINC.*| (|) (PRINL (SUPPORT-STATUS F)) (PRINC °|) |)
(PRIN1 (ARGUMENT F)))

(SORT (APPEND FL NIL) *FACT-NAME-ALPHAGREATERP)))

(DEFUN FRCT-NRIH_E-RLPHHGRERTERP (F 6) .
(GREATERP {GENS-NUMBER-EXTRACT F) (GENS-NUMBER-EXTRACT 6)))

(DEFUN GENS-NUMBER-EXTRRCT (X)
(D0 C(E (COR (MEMQ '~ (EXPLODE X))) (COR (MEMQ '~ EN)))
((NOT (MEMQ ’- E)) (RERDLIST E))))

TMS-NODE returns the TMS node associated with a rule or fact. The
error check is useful, in that a frequent mistake is to specify a

Justification with a constant in the support by forgetting to prefix a
variable name with a colon.

(DEFUN THS-NODE (F) _
(LET ((N (IF (THS-FRCTP F) (TNS-FACT-NODE F) (GET F *THS-NODE))))
(IF N N (ERROR *|BAD ARGUMENT TO THS-NODE| F ’*WRNG-TYPE-ARG))))
(DEFUN TMS-NODES (L). (WAPCAR *TMS-NODE L))
The following serve to interface the TMS to AMORD.

(DEFUN SUPPORT-STATUS (FACT) (TNS-SUPPORT-STATUS (TNS-NODE FACT)))

(DEFUN ﬂRG_UHENT (FACT) (TNS-ANTECEDENT-ARGUMENT (TNS-SUPPORTING-ANTECEDENT (THS-NODE FACT))))
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(DEFUN ANTECEDENT-SET (FACT) (THS-ANTECEDENT-SET (TMS-NODE FACT)))
(DEFUN SUPPORTING-ANTECEDENT (FACT) (TMS-SUPPORTING-ANTECEDENT (TMS-NODE FACT)))

(DEFUN ANTECEDENTS (FACT)
(MAPCAR * THS-EXTERNAL-NANE (THS-ANTECEDENTS (THS-NODE FACT))))

(DEFUN CONSEQUENCES (FACT)
(MAPCAR * THS-EXTERNAL-NANME (TNS-CONSEQUENCES (THS-NODE FACT))))

(DEFUN IS-IN (FRCT) (TMS-IS-IN (TMS-NODE FACT)))
(DEFUN IS-0UT (FACT) (THS-1S-QUT (TMS-NODE FACT)))
(DEFUN ARE-IN (FACTS) (THMS-ARE-IN (TMS-NDDES FACTS)))
(DEFUN ARE-OUT (FRCTS) (TMS-ARE-OUT (TMS-NODES FACTS)))

(DEFUN FOUNDARTIONS (FACT)
(MAPCAR * TMS-EXTERNAL-NAME (THS-ALL-ANTECEDENTS (THS-NODE FACT))))

(DEFUN REPERCUSSIONS (FACT)
(MAPCAR ’ THS-EXTERNAL-NANE (TNS-ALL-CONSEQUENCES (TMS-NODE FACT))))

(DEFUN PRENMISES (NAME) (MAPCAR °TMS-EXTERNAL-NRME (THS-PREMISES (TNS-NODE NAME))))
(DEFUN ASSUMPTIONS (NAME) (MAPCAR ’THS-EXTERNAL-NANE (TNS-ASSUMPTIONS (TMS-NODE NANE))))

(DEFUN RETRACT (NAME) (TMS-RETRACT (TMS-NODE NAME)))

THE _UNIFICATION MATCHER

(PROCLARIN (+<EXPR RASSOC VARIABLE VGENS))

COMPARE takes two expressions, A and B, as input. If B is a variant
of A 1t returns (VARIANT <substitutions). If A subsumes B it returns (sussumes
<substitution>) ., If B subsumes A it returns (SUBSUNMED <substitution>). Otherwise it
returns NIL.

(DEF INE COMPARE
(LANBDA (R B)
(LABELS ((MATCH
(LAMBOR (R B S TYPE C)
(COND ((EQ A B) (C 5 TYPE))
((AND (NUMBERP R) (NUMBERP B)) (IF (= A B) (C S TYPE)))
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((EQ TYPE ’'VARIANT)
(COND ((ATOM A) (MATCH A B S *SUBSUMED C))
((VARIABLE A)
(IF (AND (NOT (ATOM B)) (VARIABLE B))
LET ((VCELL (RSSOC fA-$)))
(1F VCELL
(IF (EQUAL (CDR VCELL) B)
{C S '"VARIANTY
(MATCH A B S *SUBSUMED C))’
(IF- (RRSSOC B S) _
(MATCH A B S ’SUBSUMES C)
(C (CONS (CONS R B) S)
*VRRIANTY)))
(HATCH A B § *SUBSUNES C)))
((ATON B) NiL)
C(VARIABLE B)
(MATCH A B S *SUBSUNED C))
(T (MATCH (CAR R (CAR B) S TYPE
(LANBORA (S TYPE) _
(MATCH (CDR A) (COR B) S TYPE C))))))
{(EQ TYPE ’SUBSUNES)
(COND ((ATOM A) NIL)
{(VARIABLE A)
(LET ((VCELL (RSSOC A $)))
(IF VCELL
(IF (EQUAL (COR VCELL) 8)
(C § TYPE)
NIL)
(C (CONS (CONS A B) S) TYPEN))
((ATOM B) NIL)
(T (MATCH (CAR A) (CAR B) S TYPE
(LAMBDA (S TYPE)
(MATCH (COR R)' (CDR B) $ TYPE C))))))
((EQ TYPE ’SUBSUNED)
(COND ((ATOM B) NIL)
((VARIABLE B)
(LET ((VCELL (RASSOC B $)))
(IF VCELL
" (IF (EQUAL (CAR VCELL) A)
(C $ TYPE)
NIL)
(C (CONS (CONS R B) S) TYPE))
((RTOM R) NIL)
(T (MATCH (CAR R) (CAR B) S TYPE
(LAMBDA (S TYPE)
(MATCH (COR R (COR B) $ TYPE CHINN)
(T (BRERK |COMPRRE ERROR|)))))) :
(NATCH A B NIL *VARIANT (LAMBDA (S TYPE) (LIST TYPE $))N))

RASSOC is something of an inverse ASSOC, which searches an
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association list for an association whose CDR matches the supplied key.

(DEFUN RASSOC (KEY ALIST)
(DD ((L ALIST (COR L))} C(NULL L) NIL)
(COND ((EQUAL KEY (COAR L)) (RETURN (CAR L))))))

UNIFY takes two expressions and a substitution as input. It returns
either a list whose first element is a substitution which yields the most
general common unifier of the expressions, relative to the given
substitution, if they can be unified, or NIL if they cannot be unified.

(DEFINE UNIFY
(LAMBDA (R B ALIST)
(LABELS ((MATCH
(LANBOA (A B S C)
(COND ((EQ A B) (€ S))
((RTOM A)
(COND ((RTON B)
(IF (AND (NUMBERP R) (NUMBERP B) (= A 8)) (L S)))
((VARIRBLE B)
(VARSET B A § C))
(T NILYD)
((VRRIABLE A)
(VARSET A-B 5 C))
((ATOM B) NIL)
((VARIABLE 8)
(VARSET B A 5 C))
(T (NATCH (CAR A) (CAR B) §
(LAMBDA (S)
(MATCH (COR A) (COR B) S TN
(VARSET
(LAMBDA (VAR NEWVAL S C)
(IF (EQUAL VAR NEWVAL) (C $)
(LET ((VCELL (RSSOC VAR 5)))
(IF VCELL (MATCH (COR VCELL) NEWVAL S C)
(FREEFOR VAR NEWVAL S
(LANBDA O
(C (CONS (CONS VAR NEUVAL) $))))) 1))
(MATCH A B ALIST LIST))))
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(DEFINE FREEFOR
(LAMBDR (VAR EXP SUB CONT)
(LABELS . ( (FREELOOP
' (LAMBDR (E C)
(COND ((ATOM E) (C))
((VARIABLE E)
(IF (EQUAL € VAR) NIL
(FREELOOP (COR (RSSOC E SUB)) C)))
(T (FREELOOP (CAR E)
(LANBDA' O

(FREELOOP (CDR E) €)))))1))
(FREELOOP EXP CONT))))

INSTANCE takes an expression and a substitution as input and produces
a standardized instance of the expression with that substitution.

(DEFINE INSTANCE
~ (LAMBDR (EXP SUB)
" (LRBELS ((ILOOP
(LAMBDA (E NEWSUB C)
(COND ((ATOM E) (C E NEWSUB))
((VARIABLE E)
(LET ((VCELL (ASSOC E NEWSUB)))
(IF VCELL (C (COR VCELL) NEWSUB)
(LET ((VGELL (RSSOC E SUB)))
(IF VCELL
(ILOOP (COR VCELL) NEHSUB
(LAMBDA (NEWEXP NEWSUB)
(C NEUEXP
(CONS (CONS E NEWEXP)
NEHSUB))))
(LET ((V (VGENS (COR E))))
(C V' (CONS' (CONS E V)
NEUSUB))))))))
(T (ILOOP (CAR E) NEWSUB
(LAMBOA (NEUCAR NEWSUB)
(ILOOP (CDR E) NEWSUB
(LAMBOA (NENCDR NEWSUB)
(C' (CONS NEMCAR NEWCDR)
o : © NENSUB))))))N))
CILOOP EXP NIL (LAMBOR (NEWEXP NEWSUB) NEHEXP)))))

THE_DISCRIMINATION. NETWORK

The following (absurdly hairy) functions implement a discrimination
net data base. Ignoring the use of the hash table for the moment, let us
first understand how a discrimination network is built. Consider the
problem of classifying the S-expression t @ .¢) D). Although internally,
this expression is a tree, its structure can be expressed as a string of
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tokens (as for PRINTing it). In this case, the stream of tokens used to
discriminate is:

#DOWN2 A 2DONN: B *UP2 C D sUP= NIL
A related expression, ( @ ¢) 0, translates into:
+DOWN= A #DOHN+ B C sUPx NIL D 2UP: NIL

Given these two expressions, BUCKET would construct a discrimination net
with the following structure:

C 5 D UupP  NtL

"
pow¥ ooV B

ve NEGe P VP o Vel

Given any expression, BUCKET extends the discrimination network, if
necessary, and returns the bucket represented by the appropriate leaf of
the discrimination network.

A variable may appear in any position of an expression to be indexed.
Each node of the discrimination network contains a special pointer to the
subindex for token streams beginning with a variable.

An interesting complexity in this system is that many structures
share the same discrimination subnetworks. We assume the user will use
lists to represent logic-like terms. These denote the semantic objects
being dealt with. It thus makes sense that EQUAL or VARIANT terms be
uniquely represented in the network. This is accomplished by
discriminating every non-atomic term from the top of the network and then
using the resulting bucket as the token for that term in every stream
containing that term. This causes a painful problem: There is now a token
for every term, not just every atom. Furthermore, every such token must
appear in the top-level node of the network. This makes it unfeasible to
use a simple ASSOC of one of these tokens on a part of the node to do a
dispatch. Here we introduce a 2-key hash-table to do our associations.
Given a token and a discrimination-node, we hash-retrieve an a-list. An
element of this a-list beginning with our keys has the required subindex.
To introduce further poss1b1e bugs, we bubble the association forward in
the hash-entry Doneld Duck

(PROCLARIN (+«EXPR VARIABLE HASH-GET HASH-PUT))

The following are special tokens for discriminating through 1evels of
list structure and numbers.
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(SET’ +DOMNz (LIST *2DONNs))
(SET” #UP2 (LIST *sUPs))
(SET® sNUMBERs (LIST ’eNUMBER2))

DBINIT initializes a supplied variable to contain an empty data base.
(DEFINE DBINIT (LAMBOR (DB) (SET DB (LIST NIL NILD))

STUFF retrieves the list of items from a data base bucket.
(DEFINE_STUFF (LANBOA (BUCKET) (CAR BUCKET)))

INSERT-IN-BUCKET does what it says.
(DEFINE INSERT-IN-BUCKET

(LAMBOR (ITEM BUCKET) :

(RPLACA BUCKET (CONS ITEM (CAR BUCKET)))))

BUCKET returns thie bucket of items from a data base corresponding to
the supplied expression and substitution.
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(DEFINE BUCKET
(LAMBDA (EXPRESSION ALIST INDEX)
(LRBELS ((HALK-LIST
(LANBDA (FRAGMENT SUBINDEX)
(COND ((RTOM FRAGHENT)

(GET-SUBINDEX (IF (NUMBERP FRRAGHENT)
sNUNBER
FRAGMENT)
(GET-SUBINDEX #UP# SUBINDEX)))
((VARIABLE FRAGMENT)
(LET ((VCELL (RSSOC FRAGMENT ALIST)))
(IF VCELL
(HALK-LIST (COR VCELL) SUBINDEX)
(GET-VARIABLE-SUBINDEX
(GET-SUBINDEX #UP% SUBINDEX)))))
(T (MALK-LIST (COR FRAGHENT)

(HALK-THING (CAR FRAGMENT) SUBINDEX))))))
(MRLK-THING

(LAMBDA (FRAGMENT SUBINDEX)
(COND ((ATOM FRAGMENT)

(GET-SUBINDEX (IF (NUMBERP FRAGMENT) =NUMBERx FRAGMENT) SUBINDEX))
((VARIRBLE FRAGMENT)

(LET ((VCELL (RSSOC FRAGMENT ALIST)))
(1F VCELL
{HALK-THING (CDR VCELL) SUBINDEX)
(GET-VARIABLE-SUBINDEX SUBINDEX))))
(T (GET-SUBINDEX
(NALK-LIST (COR FRAGHENT)

(HALK-THING (CAR FRAGMENT) INDEX))

(GET-SUBINDEX +DOWN= SUBINDEX))))))
(GET-SUBINDEX

(LANBDA (THING INDEX)
(LET ((R (HASH-GET INDEX THING)))
(IF A (COR R)
(LET ((NEWIND (LIST THING NIL NIL)))
(BLOCK (HASH-PUT NEWIND INDEX)
(RPLACD (CDR INDEX)
(CONS NEWIND (CODR INBEX)))

(COR NEHINDY))) 1))
(GET-VARIABLE-SUBINDEX

(LAMBDA (INDEX)
(IF (CADR INDEX) (CAOR INDEX)

(CRR (RPLACA (CDR INDEX) (LIST NIL NIL))D))
(MALK-THING EXPRESSION INDEX))))

FETCH returns a stream of items from a data base which are candidates
for unification with the supplied pattern relative to the supplied
substitution. The stream is either NIL, or is a list whose first element
is a candidate and whose second element is the continuation (of no
arguments) to call to get the next candidate and continuation (or NIL if
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none).

. FETCH is unpalatably hairy. We apologize. We will award an- _
autographed listing to anyone who has a good explanation of this mess. We -
also challenge advocates of structured programming disciplines to produce a

clearer encoding of the same algorithm. The hair comes from the treatment

of variables. Because there may be variables in the fetch patterns and
stored expressions, there may be several candidates for a match. We have
chosen to generate these incrementally (though the rest of AMORD doesn't
require this). This introduces a backtracking system to corfuse other
matters. More substantively, variables in the fetch pattern must match
only well-formed subexpressions. But expressions are recursively defined
sequences of tokens; hence the parenthesis grammar must be counted out.

. Even worse, we allow terminal segments (for example . :0) in both ,
- patterns and stored expressions. This leads to a case analysis because the
initial conditions of the counting argument have to be considered. UGH!!

(DEFINE FETCH
(LANBOR (PATTERN ALIST INDEX)
(LABELS ¢ (HALK-LIST
(LAMBDA (FRAGMENT ‘SUBINDEX NEXT LOSE)
(COND ((ATOM FRAGMENT)
 (GET-SUBINDEX sUPs
SUBINDEX
(LAMBDA (SUBINDEX LOSE)
{GET-SUBINDEX (IF (NUMBERP FRAGMENT)
#NUMBER =
FRRGHENT)
SUBINDEX
NEXT
(LANBDR O
(NEXTV NEXT SUBINDEX LOSE)))) .
LOSE)) '
((VARIABLE FRAGMENT)
(LET ((VCELL (RSSOC FRAGMENT ALIST)))
(IF VCELL
(WALK-LIST (COR VCELL) SUBINDEX NEXT LOSE)
(GET-VARIABLE-LIST SUBINDEX NEXT LOSE))))
(T (UALK-THING (CAR FRAGMENTY),
SUB INDEX
(LAMBDA (SUBINDEX LOSE)
(HALK-LIST (COR FRAGMENT) SUBINDEX NEXT LOSE))
(LAMBOA ©)
(GET-SUBINDEX sUPs
SUBINDEX
(LAMBDA (SUBINDEX LOSE)
(NEXTV NEXT SUBINDEX LOSE))
LOSEINIMIN
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(HALK-THING
(LANBDA (FRAGMENT SUBINDEX NEXT LOSE)
(COND ((ATOM FRAGHENT)
(GET-SUBINDEX (IF. (NUMBERP FRAGHENT) sNUMBERs FRAGMENT)
SUB INDEX
NEXT
(LANBDA () (NEXTV NEXT SUBINDEX LOSE))))
((VRRIABLE FRAGMENT) :
(LET ((VCELL (ASSOC FRAGMENT ALIST)))
(IF VCELL
(HALK-THING (COR VCELL) SUBINDEX NEXT LOSE)
(GET-VARIABLE-THING SUBINDEX NEXT LOSE))))
(T (GET-SUBINDEX sDOMN:
SUBINDEX
(LAMBDA (SUBINDEXL LOSE)
(HALK-THING. (CAR FRAGMENT)
INDEX _
(LAMBOA (SUBINDEX2 LOSE)
(MALK-LIST (CDR FRAGMENT)
SUBINDEX2
(LRMBDA (SUBINDEX3 LOSE)
(GET-SUBINDEX SUBINDEX3
SUBINDEX1
NEXT
. LOSE))
LOSE))
LOSE))
(LAMBDA () (NEXTV NEXT SUBINDEX LOSE)))))))
(GET-SUBINDEX
(LAMBOA (THING INDEX NEXT LOSE)
(LET ((A (HASH-GET INDEX THING)))
(IF A (NEXT (COR A) LOSE) (LOSE)))))
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(GET-VARIABLE-LIST
(LAMBDOA (INDEX NEXT LOSE)
(DUNP INDEX
(LANBDA (ASUB LOSE)
(COND ({EQ (CAR ASUB) 2UP%)
(OUNP (COR ASUB)
~ (LAMBDA (ASUB LOSE)
(NEXT (COR ASUB) LOSE))
NEXT
LOSE))
((EQ (CAR ASUB) 2D0MNe)
(DUMP (COR ASUB)
(LANBOR (ASUB LOSE)
(GET-VARIABLE-LIST (COR ASUB)
NEXT
_ LOSE))
(LAMBDA (IND LOSE)
(GET-VARIABLE-LIST IND

NEXT

- LOSEY)
LOSEN
(T (GET-VARIRBLE-LIST (CDR RSUB)
: NEXT
LOSEN))
(LANBDA (VARSIND BARF) (LOSE))
LOSE) ))

(GET-VARIRBLE-THING
(LAMBDA (INDEX NEXT LOSE)
(OUMP INDEX
(LAMBDA (ASUB LOSE)
(COND ((EQ (CAR RSUB) 2UP%)
(LOSE))
((EQ (CAR ASUB) =DOMNs)
(DUP (CDR ASUB)
(LANBDA (ASUB LOSE)
(NEXT (COR RSUB) LOSE))
NEXT
LOSE))
(T (NEXT (CDR ASUB) LOSE))))
NEXT
LOSE)))

fin Annotated Interpreter
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(ounp
(LAMBDR (INDEX ER. EV LOSE)
(LRBELS (¢ (ALOOP
(LAMBOA (BL)
(COND (BL (ER (CAR BL)
(LANBDA ) (ALOOP (COR BL)))))
((CADR INDEX)
(EV (CADR INDEX) LOSE))
(T (LOSEN )
(RLOOP (CODR INDEX)))))
(NEXTV
(LAMBDA (NEXT INDEX LOSE)
(IF (CADR INDEX)
ANEXT (CADR INDEX) LOSE)
(wose) NN
(MRLK-THING PATTERN INDEX
(LAMBDA (TERMINAL LOSE)
(LABELS ((NPOS
(LAMBDA (L)
(IF L (LIST (CAR L) (LAMBDA () (NPOS (COR L))))
(LOSEN)))) '
{NPOS (CAR TERMINAL))))
(LANBDA O NIL))M)

~ The following funétions implement the hash table for associations
used in making the token dispatch step of the discrimination more
efficlent.

(DECLARE (SPECIAL HASH-ARRRY-SIZE) _
(FIXNUN HRSH-ARRAY-SIZE (HASH-NUMBER NOTYPE NOTYPE) NUM)
(ARRAY2 (NOTYPE (HASH-ARRAY 2))))

HASH-GET retrieves a specified thing from the hash table of the
supplied data base.

(DEFUN HRASH-GET (INDEX TH!NG)
(COR (2-BSSQ INDEX THING
(HASH-ARRAY (HASH-NUMBER INDEX THING)))))

- HASH-PUT inserts a new thing into the hash table of the given data
base. - _

(DEFUN HASH-PUT (NENINDEX INDEX)
{(LANBDA (NUM
(STORE (HASH-ARRAY NUN)
(CONS (CONS INDEX NEWINDEX)
: (HASH-RRRAY NUM))))
(HASH-NUMBER INDEX (CRR NERINDEX)}))

2-BSSQ searches an association list for an association of the pairing
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of the supplied two keys, and for efficiency [Rivest 1976], bubbles the
association one step towards the front of the association list.

(DEFUN 2-8SSQ (K1 K2 L)
(PROG (L1 L2) _
(COND ((NULL L) (RETURN NIL))
((AND (EQ K1 (CAAR L)) (EQ K2 (CADAR L)))
(RETURN (CAR L))))
(SET’ L2 L)
LP (SET’ L1 (COR L2))
(COND ((NULL L1) (RETURN NIL))
((AND (EQ K1 (CAAR L1)) (EQ K2 (CADAR L1)))
(RPLACA L2
(PROG2 NIL (CAR L1)
(RPLACA L1 (CAR L2))))
(RETURN (CAR L2))))
(SET* L2 (COR L1))
(COND ((NULL L2) (RETURN NIL))
((AND (EQ K1 (CAAR L2)) (EQ K2 (CRDAR L2)))
_ (RPLACA L1
(PROG2 NIL (CAR L2)
(RPLACA L2 (CAR L1N))
_ (RETURN (CAR L1))))
(60 LP)))

This is the ubiquitous number COmputér;
(DEFUN HASH-NUMBER (KEYL KEY2)
\ (BOOLE 6 (MAKNUN KEY1) (MAKNUM KEY2)) }XOR
HASH-ARRAY-S1ZE))
(SET’ HASH-ARRAY-SIZE 1021.)

(RRRAY HASH-ARRAY T HASH-ARRAY-SIZE)

Th1§ concludes the listing of the interpreter.
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| Notes -

AMORD ' '

A Miracle of Rare Device, a name taken from s. T. Coleridge's poem
Kubla Khan A previous version of AMORD was implemented by Doyle and
Steele ~in the Fall of 1976. That version was based on a threaded, LEAP-
like [Feldman and Rovner 1969] data base of triples coupled with an
incredibly elaborate system of macros, and was abandoned after the _
experiences of Steele in writing a rule-based SCHEME complier called _
CHEAPA, [Steele 1977] and Sussman and Doyle in writing a new version of EL.
[Sussman and Stallman 1975] The first version of the interpreter presented
here was implemented (without making use of the TMS) by Sussman, de Kleer
and Rich for tutorial use in MIT's 6.036 course in the Spring of 1977.

This version was then extensively modified by Doyle by integrating the use
of the TMS and making various efficiency modifications, and by Sussman in
experimenting with successively more refined versions of the discrimination
net.

™S
The Truth Maintenance System is a program developed by Doyle [1977]
Section 3 summarizes its function and use.

* SCHEME _ - '
SCHEME [Sussman and Steele 1975] is a dialect of LISP with lexical
scoping and tail recursion. It proved to be instrumental in writing the
‘discrimination net for AMORD. .

MacLISP
- MacLISP [Moon 1974] is a powerful dialect of LISP developed by the
MIT Artificial Intelligence Laboratory.

Godel :
Self-referential facts cannot be recognized, as the order in which. -
rule environments precludes rules with patterns like (:F (CRETIN :F)).

Explicit Control

A more detailed discussion of the technique of explicit control
encouraged by AMORD can be found in [de Kleer, Doyle, Steele and Sussman
1977].

RABBIT

_ RABBIT [Steele 1977] is a highly optimizing compiler for SCHEME.
RABBIT compiles into a small, machine-language-like subset of MacLlSP,
which. can then be compiled using the MacLISP number compiler to produce
very efficient code. :

Donald Duck . _
: If you think the structure of our discrimination network is devious,
5qe Drew McDermott's Donald Duck discrimination network!
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