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Plan Recognition

Seotion I. Theoretical Background

The purpose of this section is to define the meaning of the underlined words in the brief
statement of the problem, leading to a discussion of the proposed research area in the most
general and abstract terms possible. To emphasize that the approach being taken here has very
wide applicability, I will in this section give examples from three different areas of engineering:
electrical, mechanical, and computer programming. Section II will outline my specific and more
limited proposal to study the teleological structure of non-numerical LISP programs and for the
implementation of a demonstration system for plan recognition.

Engineered Device

By "engineered device" (Sussman [I] uses the term "intentional artifact") I mean a compound
object created out of simpler objects to serve a particular purpose. An electronic circuit, a
padlock, and a computer program are three examples of engineered devices.

Teleological Structure

A device or a part of a device can be described in two fundamentally different ways. Some
properties of a device are independent of its context of use, i.e. independent of its purpose.
These properties constitute what I call the intrinsic (or "physical") structure of the device. For
example, the current-voltage plot of an electronic component is an intrinsic description; so is
identifying a part of a complex mechanical mechanism as a "rod"; or saying that the function
of the LISP expression (CAR X) is to take the left half of the dotted pair which is the value of
X.

Particular fields of engineering have evolved specialized language for describing the
intrinsic structure of devices in that domain. For example, in electronics a circuit may be
described by a schematic diagram; in mechanical engineering the physical structure of a device
may be described in terms of the orientations, connections, and degrees of freedom of movement
of its sub-parts in 3-space; a computer program may be described in terms of control flow and
data flow.

However, intrinsic descriptions are often not the most useful for say, explaining to someone
how a device works, or trying to figure out what's wrong with it when it malfunctions. More
important in these situations are the attributes of a device that derive from the way it is being
used, in other words, its teleology.
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Devices with the same intrinsic structure may be used for many different purposes. For

example, resistors appear many places in a typical electronic circuit used as to bias transistors, as
part of voltage dividers, and so on - yet each resistor is described intrinsically by the same

equation V-IR. Similarly, a rod is intrinsically always a rod, regardless of what role (e.g.
connecting rod, supporting rod) it plays in a larger mechanical device. In a typical LISP

program the CAR function may used in many different places for very different purposes -- In

one part of a program (CAR X) may be extracting the "key" field of record X, while in another

place (CAR S) is an access the "top" of stack S.

The main thesis of my research is that deep understanding of an engineered device requires

not only a representation of its intrinsic structure but also of the purposes (or roles) of each

sub-part in the overall design. The interrelated purposes of the parts of a device form a kind

of structure which is fundamentally different from, although obviously related to, the intrinsic

structure of the device. I call this deeper kind of structure teleological structure, and use the

term plan for a description of teleological structure.

Plans

The idea of a plan can be explained most easily in the context of engineering design. By

design I mean a particular class of problem solving wherein the goal is to create a device with a

specified function. I will rely on an informal understanding by the reader of what kinds of

problem solving fit naturally into the design paradigm. For example, we should agree that

solving a cryptarithmetic puzzle is not profitably viewed as a design problem.

I distinguish two major phases in the design process, as shown below. The only

justification I can currently give for this factorization is that behavior in the early phase of

design appears sufficiently different from that in the later phase for it to be useful to make the
distinction. At a later point in the research I hope to provide stronger arguments on this point.

SPECIFICATIONS (goal)

i problem solving

PLAN

| implementation
v

DEVICE (solution)
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In this simplified view of design, a plan is the major intermediate representation between
the neutral problem statement (i.e. the specifications of a desired function), in which there is no
indication of how a solution may be obtained, and the complete detailed solution device.

A plan typically describes a decomposition of the original specifications into smaller, related
specifications which constitute a possible solution. Finding a plan is the bulk of what is
normally called "problem solving" in the AI literature. It may involve trying several different
decompositions to solve the problem, and perhaps debugging them as in Sussman's concept of
"problem solving by debugging almost right plans" [2]. Candidate plans in this phase of design
may be generated either by applying general methods such as means-end analysis (OPS [3]) or
linear decomposition (HACKER [4]), or by retrieval from a library of stored plans (PLANNER

Given a correct plan, the process of transforming it into an actual device is significantly
different in character from finding the plan in the first place. I call this second phase of
design implementation. Notice that in this simple theory I have not explicitly provided for the
not-uncommon occurrence of having to abandon what was thought to be a correct plan because
of insurmountable implementation difficulties. However, the existence of feedback between the
two phases does not invalidate the initial distinction between them.

To elaborate, let me give some informal examples of plans. In electronics, a simple design
problem might be to design an amplifier with an input resistance of 30K ohms and a voltage
gain of 5. One plan (there are others) to achieve such a specification is a cascade of a
common-collector and a common-emitter circuit. Similarly, in mechanical engineering there
many different basic different plans for achieving the function of a lock -- e.g. combination
lock, padlock. Finally, in programming there are many different plans for achieving the basic
specifications of an associative retrieval data base -- for example using a hash table or a
discrimination net.

Plan Recognition

I can now be more specific about what I mean by recognition in the context of plans and

devices. Recognition is very close to what is loosely called "understanding" a device; the term

recognition puts extra emphasis on the existence of some prior knowledge. Understanding of a

device is usually demonstrated by an ability to explain the relationship between the intrinsic

structure of the device and how it performs its function. In my terminology, this means having

the plan of the device.
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It is important not to confuse plan recognition with analysis of the intrinsic structure of a
device. For example, real understanding of an electronic circuit is not demonstrated by simply
tracing the schematic as in: "RI is connected to the base of transistor Qi, whose emitter current

flows into the collector of Q2 ... "; nor is understanding of a computer program demonstrated

by reading it aloud: "first you set R to 2, then set S to R times R, then if (R - X) is less than

EPS I LON ...".

In contrast, descriptions such as: "this circuit is a two-stage amplifier; Q1 is the input

transistor, RI is a biasing resistor for Ql, Cl is a coupling capacitor, ..." or "this program

calculates square root by successive approximation; R is the current approximation, EPS I LON is

the allowable error, ..." do demonstrate recognition of both the intrinsic and teleological

structure of the respective devices.

One major feature of plan recognition is that is provides an appropriate segmentation of

the device, i.e. groupings of subparts into units that can be identified with descriptive concepts

in the particular domain of engineering. For example, observing that the components of. an

amplifier circuit may be conceptually partitioned into two stages is a major step forward in

understanding how the circuit works. Similarly given a page-long LISP function, segmenting it

into conceptual units, such the set-up, a main step, an interface, and another main step

(terminology from Goldstein's thesis [6]) is an important first step towards understanding it in

more detail.

A second prominent feature of the teleological descriptions above, as compared to the

intrinsic descriptions, is the use of a rich domain vocabulary, such as "biasing resistor",

"coupling capacitor", "approximation", and "allowable error" to identify various parts. Thus

plan recognition has distinguished between different uses of the same kind of device.

Library of Plans

It has become clear in AI research that intelligent problem solving includes in large part an

ability to match problem statements against known solution structures. This poses two major
questions:

(I) How is a large body of solutions stored and accessed ?
(2) What does a solution structure look like ?
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For example, in the theory of PLANNER, storage and retrieval of solutions is achieved by
attaching a pattern (in the literal syntactic sense) to each solution; the knowledge base of

solutions is then conceptually just a list of solutions, each having a descriptive pattern.

Retrieval occurs by matching the problem statement against each pattern and returning a list of

those solutions whose pattern matches succeed. The matching and retrieval process can be

speeded up by data base techniques such as hashing, but this is not a conceptually important

feature. Thus a solution library in the PLANNER theory has no internal structure such as

abstraction or generalization hierarchies. Furthermore, in PLANNER the solution itself is a

procedure to be executed by the interpreter, i.e. a "black box" with no accessible internal

structure (although some structure can be recovered from the solution by the use of a special

Interpreter such as in HACKER).

My theory of a plan library will differ from PLANNER on both major points. First of all

I propose that the structures stored in a solution library should not be totally implemented (or

perhaps trivially variable-ized) versions of previous solutions, but rather the plans of previous

solutions. Storing plans allows the essential structure of previous solutions to be transferred to

current problems, while allowing flexibility in re-implementing the plan to fit a new problem. A
further advantage of storing solutions in this more declarative way is that it should allow more

diversity of use. In a large and and multiple function system like a programmer's apprentice,

the plan library will be shared by many sub-systems, such as design, analysis, and explanation.

As a second major difference, I propose to organize a plan library around abstraction

hierarchies. One argument for this organization is purely on the afsthetic grounds that a good

theory of knowledge representation should capture the generalizations as well as the specifics of

a domain. Furthermore, imposing a hierarchical structure on the plan library allows a retrieval

strategy that is suggestive of what is called "recognition" in the context of vision research. For

example, in the current theory of Marr and Nishihara [7], the library of possible 3-d models to

be recognized in an image is organized in a hierarchy in which the topmost nodes are no

particular real objects, but rather very abstract models.

Retrieval from this sort of library has a very different character from the pattern-directed

invocation of PLANNER. In a hierarchical library the features of the problem that are

expected to be most stable (i.e. least likely to be revised in the light of more detailed analysis) are

expressed at the top level nodes. In the Marr and Nishihara theory, for example, the very

abstract models describe only the most basic 3-d features of an image, such as number and

relative orientation of the main axes. Initial recognition of certain gross features of the

problem (e.g. the major axes of a figure) immediately causes retrieval of an appropriate general

plan from the library. As the description of a problem becomes more refined, so does the plan
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for its solution.

Of course, it is possible go down "garden paths" in this approach. Looking at the details

may sometimes force one to go back up to the top level and switch to a different major plan

type, but this does not invalidate the basic theory any more than the existence of optical

illusions necessarily invalidates a given theory of normal visual recognition. In fact, if the

observed instances of garden path can be predicted by the theory, they then become strong

confirmatory evidence.

Seotion II. Speoiflo Implementation Proposal

In order to study teleological structure, you have to study the teleological structure of

something (an adaptation of Seymour Papert's advice that "in order to think about thinking,

you have to think about thinking about something"). I have chosen to study the domain of

non-numerical LISP programs because a theory of plans of this type will make possible an

important practical application, namely the construction of a LISP programmer's apprentice (see

Appendix B).

Synthesis vs. Analysis

In a programmer's apprentice the plan library will be shared by many different active

sub-systems. These uses may be categorized into two major modes: synthesis and analysis.

Synthesis entails using the library of plans for automated design, i.e. given only a specification

of desired behavior, construct the plan of a device which satisfies it. McDermott [8] has worked

on this design problem in the domain of simple electronic circuits. The other major use is to
understand designs already constructed by human engineers. Understanding (i.e. plan
recognition) is demonstrated by the system's ability to give teleological explanations, and to

detect (though not necessarily be able to correct) certain kinds of errors.

Given the existing time constraints, I have chosen only one of these modes, namely analysis,
as the basic demonstration of adequacy of the proposed theory. This is the most sensible choice
for two reasons. First of all, I believe a priori (and of course, only investigation will reveal if I
am right) that progress towards my goal of developing an adequate plan library for a large class
of of non-numerical programs will be much greater pursuing the analysis route, as compared to
working on an automatic programmer for the domain. Moreover, the analysis route allows an
evolutionary approach to the project. Since I am interested in understanding the structure of
useful programs written by proficient programmers, rather than the beginning exercises of
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novice programmers, I expect there to be parts of such programs whose understanding will be

beyond the current capabilities of the system. Given this realistic expectation of only partial
adequacy of the theory in many situations, an important question is: which is more useful,

partial analysis of a program or a partial synthesis?

An analysis can be partial in several different dimensions. The simplest kind of

incompleteness is on a part-by-part basis, i.e. the system may not be able to recognize the

function of a particular part in the larger plan. More subtle kinds of deficient analysis occurs

when the system is ignorant of some of the domain facts and rules upon which the operation of

a program is based. Nonethless, many useful explanations and bug warnings may be generated

on the basis of the parts of the program that are understood. This potential for useful partial

performance is the main advantage of analysis over synthesis as a research strategy in this

work.

In contrast, consider what "partial design" would mean. One possible meaning is design

down to some level of detail which is still more abstract than an actual program. In such a

situation the human programmer would be responsible for implementing the details of the

design and actually coding the program while preserving the correctness of the original design.

The alternative notion of partial design, i.e. design of a device that only partially works, we can

surely agree is extremely unappealing.

A Demonstration System

As a demonstration of my theory of plans and plan recognition, I propose to implement a

rudimentary plan recognition system (hereafter referred to as "the system"). The block diagram

of the system is as follows:

----- > explanations

Commented ---- RECOGNITION

LISP program MODULE

----- > error uarnings
A

PLAN

LIBRARY
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In this diagram the two central blocks, "recognition module" and "plan library" are the
major objects of research. The rest of this section will define more precisely the exact form of
the inputs ("commented LISP program") and outputs ("explanations" and "error warnings").

It is important to note that this proposed system has two major intentions: first to be a
convincing demonstration of the adequacy and feasibility of the approach to program
understanding which I are putting forward, and second, to be the initial implementation of
parts of a more comprehensive programmer's apprentice system. The relationship between this
system and the .other major sub-system of the P.A. being worked on by H. Shrobe is discussed
in Section IV.

The Domain of Input Programs

The programming domain in which the system will have inherent expertise can be described
generally as non-numerical (i.e. symbolic) computations of moderate complexity. Appendix A is
a typical example. Notice that this program includes instances of many of the basic data
structures and algorithms in this domain of programming:

Basic Data Structures Basic Algorithms

arrays search
lists enumeration
ordered lists insertion
hash tables deletion
trees intersection

union
membership

This list suggests the minimum plan library that a useful programmer's apprentice should
have for non-numerical programming. The list is not yet complete; I expect that in the course
of actually constructing the plan library, its generalization hierarchy will naturally point out
missing plans.

Many different programs can be written using these basic building blocks. It could be said
that the domain of input programs is defined inductively as those programs whose plans are
found in the basic plan library, or whose plans are compositions (in an appropriate sense) of
plans in the basic plan library. The exact nature of the plan composition operators cannot be
specified .at this time, and is one of the interesting results I hope to obtain from the proposed
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research. However it is clear that overlapping and intermingling plans will be an allowable and
important form of composition.

Furthermore, because the system will be able to perform partial recognition as discussed
above, delimiting the exact domain of allowable input programs is less crucial than it would
otherwise be.

Programmer-Supplied Commentary

Programmer-supplied commentary wll play two major roles in the recognition system, which
I term definitional and annotative.

The need for definitional comments is due to the fact that a general-purpose programmer's

apprentice obviously cannot have inherent knowledge of all applications that could be

implemented using the data structures and algorithms in its basic library. Part of a

programmer's commentary will therefore be concerned with defining the vocabulary of objects,

relations, and operations in his application domain that are relevant to understanding the rest

of his program. The first twenty lines of the program listing in Appendix A are an example of

definitional commentary.

Sometimes these definitions constitute only the programmer's idiosyncratic terminology for

concepts which the apprentice already possesses. For example, line 887 on page one of

Appendix A defines the term "form" to mean an s-expression which is a member of the table.

The basic LISP apprentice will have inherent knowledge of s-expressions and the general

concept of membership relations. The importance of such a comment is to allow the system to

understand the programmer's use of the term "form" later, and to use this term itself in

explanations and error messages it generates for the programmer.

Some definitional comments introduce totally new concepts, as for example lines 811

through 814 which define a "bucket" in terms of CAR , CDR and lists. Thus another role of

definitional commentary is to record the programmer's decisions of how to implement his

domain objects in terms of the "primitives" (at whatever level) available. Notice I am assuming

in this example only a very basic apprentice that knows about arrays, lists, and the other

structures out of which hash tables are built, but for which the hash table data base itself is an

application program.
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In contrast with definitional comments, which tend to be grouped at the beginning of a

program or between function definitions, annotative comments are interspersed throughout the

body of code and usually pertain specifically to the s-expression(s) either immediately preceding

or immediately following. These comments will help the recognition system greatly in making

the detailed correspondence between the intrinsic structure of a program and its teleological

structure. For example line 855 informs the system that the purpose of the expression

(OR (TABLE (HASH KEY)) (RETURN NIL)) is to test for the empty bucket. Similarly, the

comment on line 866 will aid plan recognition by informing the system that the LISP variable

I NT is being used locally to hold the accumulated list of forms in the intersection of the buckets.

For the demonstration system I do not propose to deal with the problems of accepting

programmer-supplied commentary in unconstrained natural language. However, I am very
much interested in developing a theory of what the content of such commentary should be in

the context of plan recognition. To facilitate this investigation, I intend to develop a very

simple English-like formal language in which program commentary is to be written. Because
the design of this language will incorporate a theory of what needs to expressed in this

situation, I hope that programmers will find it quite convenient to use, despite its being highly

constrained syntactically.

Output from the System

Output from the demonstration system will be of two forms. First of all, in response to

specific queries from the user, the system will be able to generate teleological explanations of

how the given program works. Error warnings, the second form of output, occur on the

initiative of the system, drawing the programmer's attention to errors or potential errors in his
program that have been detected while trying to recognize the plan.

The only criterion for judging the output of the demonstration system is that it should
contain correct and adequate information for the situation. I will not deal with how to

abbreviate these messages appropriately (as would be required for a usable system) or how to
state them in fluent English. As a convenience, however, I do intend to implement a very
simple English-like formal language for requesting explanations and in which the text of
explanations and error messages can be generated by simple template-filling. Furthermore, it
might be particularly useful to employ the same language (or an extension) for both query and
output messages as is used for programmer-supplied commentary. This would allow several
interesting possibilities, such as the system being able to re-read the explanations it generated as
if they were programmer-supplied commentary.
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Explanations

Since the main purpose the proposed implementation is to demonstrate an ability to

recognize the correspondence between the intrinsic structure of a given LISP program and its

teleological structure, the only kind of explanations generated will be in answer to questions

about this relationship. In effect, I am assuming that the user understands the plan of the

program, and his need is in understanding how the plan is realized in details of the code.

Obviously there are many other kinds of explanation that would be useful, such as a discussion
of design decisions, explanation of program traces, and so on. These modes of explanation are

envisioned for the complete programmer's apprentice.

A typical question regarding the example program of Appendix A might be "what is the

purpose of line 859 on page one", to which the system should answer something like "to sort the

buckets by length". This is an example of a question where the user points out a component (ie.

s-expression) in the intrinsic structure of the device, and wants to know its role in the

teleological structure. Alternatively, a user could describe some action in the plan and enquire

where in the program it is achieved. To illustrate this form of question, simply invert the

example above and have the user ask "where are the buckets sorted by length", to which the

system should respond "in line 859 on page one".

The other basic form of question the system will be able to answer concerns data flow and

use of variables in the LISP program. For example, a user might enquire "what is L in the

s-expression (NULL L) on line 869 ?", to which the system should respond something like "the

list of buckets which have not yet been intersected". Notice that in this example no comment

has been provided by the programmer which explicitly answers this question. The system will

discover this fact as part of recognizing the plan of the LOOKUP function.

Error Detection

I distinguish three levels of programming errors: design errors, implementation errors, and

coding errors. The most serious kind of errors are those in the fundamental design of the

program, that is, incorrect plans. The recognition system will not be able to detect such errors.

It will assume that plans in the library have already been verified. New plans presented by the

programmer will have to be accepted at face value. In the eventual programmer's apprentice

however, a general purpose plan verification facility, such as Shrobe's system (see Section IV),

will be provided.

TAests Proposal



Plan Recognition

Next in degree of seriousness are implementation errors. An implementation error has
occurred when there is an inconsistency between the intrinsic structure of a program and its
plan. Examples of this are when the prerequisite of an action does not precede it, or when the
actual data flow in a program does not correspond to the data flow required by the plan. I also
categorize as implementation errors inconsistencies between implementation decisions in
different parts of the program, as for example if a programmer in one place used CAR to
extract the "key" field of a given type of object, and in another place used CADR.
Implementation errors are the major kind of error the recognition system will be able to detect.

Coding errors are the most superficial kind of error. In this category I include misspellings,
syntactic errors such as unbalanced parentheses, and misuse of the language primitives such as
using RETURN inside of PROGN. The demonstration system will not concentrate on the detection
of this kind of error, since effective syntactic techniques for this have already been developed in
other systems, most notably INTERLISP [17.

Seotion III. Current State of the Theory

In this section I comment briefly on the current state of the theory in four main areas:

(1) Description of the intrinsic structure of LISP programs.
(2) Description of teleological structure.
(3) Organization of a plan library.
(4) Plan recognition.

In this section "we" refers to the joint authors of TR-354 (Appendix B), H. Shrobe, and the
present author, C. Rich. For more detailed discussion of these topics and many others related to
the construction of a LISP programmer's apprentice, please refer to Appendix B.

Our overall conceptual framework for understanding programs is the view of data objects
flowing between modules that operate upon them (including operations which have side effects).
This is obviously not the only possible way to think about programs (for a totally different view
see [18), but it is the one that most practicing LISP programmers find natural, and this was the
crucial criterion for our choice.
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The basic unit of description for both intrinsic structure and teleological structure is called a

segment. Data objects flow into a segment and new or side-effected data objects flow out.

Segments in a plan also have specifications. The specifications of a segment are a formal

statement of input expectations (conditions on or relationships between input objects that are

expected to hold prior to the execution of the segment), and output assertions (conditions that

will hold of the output objects immediately after execution).

A plan is represented as a hierarchical network of segments with various kinds of links

between them. The intrinsic structure of a program is expressed by data flow links, in which

the output object of one segment becomes the input object of another segment, and control flow

links, which specify order of execution. A program's teleological structure is expressed by
purpose links, which relate the specifications of segments to one another. The two most basic

types of purpose link are the prerequisite link, in which the input expectations of one segment

depend on the output assertions of another, and the achieve link, in which the output assertions

of a sub-segment are linked to the output assertions of the segment of which it is a part. Thus

the end result of recognition is a single unified description in which both the intrinsic and

teleological structure of the program is represented.

Plans are-intended to capture the procedural aspects of programming. We have also

developed a formalism for describing the structure of data, based on the natural concepts of a

part (e.g. a dotted pair has two parts, CAR and CDR),a generic part (e.g. an array has generic

parts called items), and relationships between parts (e.g. the count part of a bucket is equal to

the number of forms in the contents).

The detailed organization of a plan library is still to be developed. Thus far we have

identified two main techniques by which we can obtain generative power from our plan

representation and thereby eliminate needless redundancy in the library.

The first technique is specialization. The plan for searching linear data structures should

only be expressed once in the library as a single very abstract description. The system should

then be able to specialize this plan according to the descriptions of a variety of particular linear

data object types, such as arrays, lists, or user-defined object types.

Another kind of redundancy to be eliminated are the many minor variations of a plan due

to grouping the sub-segments slightly differently. I hope to capture this kind of variation in

the form of general transformations that can be applied to many plans.
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As for the gross hierarchical structure of the library, the topmost distinctions in the

hierarchy will be on the basis of the loop and recursion structure of the plans, e.g. iterative

loops, single recursions, double recursions, and so on. Loops, for example, can then be
sub-categorized into searching loops, counting loops, approximation loops, and so on.

On the topic of the recognition process itself, several main themes have emerged thus far:

(i) propagation of discovered information

(ii) bottom-up grouping of segments

(iii) goal-directed grouping and plan transformation

(iv) hypothesis generation and. testing

Also, some capability for reasoning about program behavior will be required for
recognition. In the eventual programmer's apprentice, recognition would have the full resources
of a system like Shrobe's available to it, but for the currently proposed system, some much more

limited reasoning module will have to be designed.

Seotion IV. Relation to Other Work

The reader is referred to Chapter Six of Appendix B (TR-354) for a more lengthy
discussion of the other work leading up to and concurrent with the LISP programmer's
apprentice project as a whole. In this section I will elaborate only upon the relationship of the
proposed plan recognition system and plan library to other work.

Ruth's Analysis of Algorithm Implementations

The previous work most comparable with the recognition system is Greg Ruth's Ph.D. thesis
at MIT [91 Ruth constructed a system which succesfully analyzed correct and near-correct PL/I
programs from an introductory programming class, giving specific comments about the nature
of the errors detected in the incorrect programs. In Ruth's system, the class of expected
programs for a given exercise is represented as a formal grammar augmented with global
switches which control conditional expansions. This grammar is then used in a combination of
top-down, bottom-up, and heuristic-based parsing in order to recognize particular programs.
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Ruth's work has two fundamental shortcomings. First of all, his analysis of programs does

not include any form of specification -- i.e. there is no explicit statement of what a program is

attempting to achieve, or what any of the subparts do individually. Thus Ruth's analysis never
really captures the teleological structure of a program.

Furthermore, even given input-output specifications for non-terminal nodes, parse trees

derived from a formal grammar are inadequate for representing many important forms of

teleological structure. Ruth's explanation of the purpose of a given action in a program is

limited to an upward trace through the non-terminal nodes dominating the action in the

program's parse tree. Tree structure is adequate to represent goal-subgoal relationships (i.e.

ACHIEVE links), but does not make a crucial distinction between steps that just happen to

precede each other and actual prerequisite constraints. Furthermore, the restriction to

tree-structured analysis precludes one program action from having two different purposes; or

put another way, it precludes overlapping (or interleaving) the actions which implement distinct

modules at a higher level of description.

To summarize, Ruth's analysis of programs gives an adequate description of teleology only

for totally hierarchical programs. For programs in which their are many dependencies between

modules, Ruth's formal grammar representation is inappropriate. The system I am proposing

will be able to analyze and detect errors in at least all the programs that Ruth's does (given their

translations from PL/1 to LISP). Furthermore, since my system will represent more of the

teleological structure of these programs, I will be able to provide better explanations and error

messages.

Miller & Goldstein's Planning Grammars

Miller and Goldstein [10] at MIT are also working on a codification of programming
knowledge that can be used for analysis and correction of student programs. Like Ruth, they

represent programming knowledge as a formal grammar that will generate all members of the

class of programs they are prepared to recognize. Thus heuristic parsing techniques are also the

essence of their program recognition methodology.

Miller and Goldstein's grammar has several improvements over Ruth's which mitigate my

major objections. First of all, Miller and Goldstein have added specifications (called pre- and

post-models) to the nodes of their grammar. This allows them to install prerequisite links

between the post-models of program steps and the pre-models of other steps at the same level in

the tree that depend upon them. Furthermore, in Miller and Goldstein's augmented transition

network implementation of their grammar, they are prepared to allow a single program action to
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be parsed into more than one higher level node.

The main difference between Miller and Goldstein's grammar representation of
programming knowledge and my plan library is one of emphasis. Their grammar emphasizes
the intrinsic structure of programs, with the teleological relationships such as prerequisite links
added as annotation of the derivation tree. In my view the most fundamental program
representation is a network of purpose links between specification segments, with the intrinsic
structure, such as execution ordering, being a feature of a particular user's program discovered
as part of the recognition process.

Green & Barstow's Rules for the Automatic Synthesis of Programs

The largest existing machine-usable codification of programming knowledge for the
domain of non-numerical LISP programs has been compiled by Green and Barstow [D1] as part
of the PSI automatic programming project at Stanford University. Their codification consists
of rewrite rules that progressively and hierarchically refine the description of a desired program
in a very high level language into a correct implementation in LISP. Furthermore, since Green
and Barstow are concerned with automatic synthesis of efficient programs, the rules in their
generative grammar are annotated with pragmatic information which the PSI system uses [191 to
select efficient implementations from among all possible correct implementations.

As a representation of programming knowledge for use in a programmer's apprentice, the
PSI rules suffer from the same two shortcomings as were described above for Ruth. Having
been developed primarily for synthesis rather than analysis and explanation, the PSI rules do
not provide any representation of the teleological structure of the resulting program other than
a history of the rule applications. Furthermore, the existing rule library includes only rules for
hierarchical refinement. Program transformations which overlap module boundaries are not
included in Green and Barstow's current theory.

In comparison, my plan library will include knowledge all of the same basic data structure
and programming techniques as have been codified by Green and Barstow (with the exception
of specific expertise on sorting methods, which has been a major development focus for the PSI
system, but will not be for my system.) However, as described earlier, my library will be very
different in both its gross organization (i.e. hierarchical, rather than production system-like) and
in its detailed representation of programming algorithms (i.e. using plans with explicit
teleological dependencies expressed, rather than refinement rules).

Thesis Proposal
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Shrobe's Plan Verification System

Concurrent with my research into plan recognition, Howard Shrobe also at MIT, will be
further developing [12] the deductive system described in Chapter Three of Appendix B
(TR-354). His work and my own are unified by our common use of the plan representations
described in TR-354. The primary function of Shrobe's system will be to prove that a plan
satisfies its overall specifications, given only the input-output specifications of each sub-segment
and the data flow between them. As a by-product of this plan verification, Shrobe's system will
also have discovered and recorded in the plan (as purpose links), all the dependencies between
segments that are required to support its correctness.

As a demonstration of the capabilities of his system, Shrobe has chosen an interactive
design scenario. In this application, a programmer first specifies his programming task to the
system at a fairly abstract level. He then puts forward his plan to achieve the given
specifications, using specified sub-segments linked together by appropriate data flow. Shrobe's
system attempts to verify the programmer's plan, and if it is found faulty provides him with a
description of where the proof breaks down in terms that are understandable and helpful
towards his adjusting the plan to make it correct. When the plan is correct, it is stored away in
the plan library, having been annotated with a record of the proof in the form of purpose
links. Shrobe's system will not deal with actual LISP code.

Shrobe's work and my own are coordinated in several ways that lead towards the future

realization of a more complete programmer's apprentice. For example, Shrobe's interactive

design system could be interfaced to my recognition system in a simple cascade arrangement,

whereby a programmer would first use Shrobe's system to develop a correct plan, and then

move on to actually coding the program in LISP, with the recognition system checking for

consistency with the verified plan.

The two systems will also share the same plan library. Although for the present the
organization of the plan library will be dictated by the needs of plan recognition rather than

verification, I strongly suspect that the same hierarchical organization is most appropriate for

both tasks. My research will lead to filling the plan library with the pre-compiled, pre-verified,

basic building block plans of non-numerical computation. Shrobe's system will be able to add to

this basic library additional, more specific plans designed by particular users.
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Other Concurrent Research

Other investigations into the teleological structure of engineered devices are currently being
conducted at MIT by Waters, DeKleer, and Freiling, and have recently been completed by
McDermott and Brown. Their related work is most clearly distinguished from this proposal by
the differing domains of study.

Waters [13] is working on a system for analyzing mathematical FORTRAN programs
similar to those in the IBM Scientific Subroutine Package. Although there is obviously some
overlap between the plans used in numerical and symbolic computations, I expect that in the
main Waters will be studying very different kinds of plans than myself.

McDermott, Brown and DeKleer have all three been working in the domain of discrete
analog electronic circuits. McDermott [8] has been most concerned with the issues of efficiency
and extensibility in compiling a large library of plans to be used in the design of electronic
circuits. Brown's thesis [14] describes a system for localizing failures in electronic circuits by
making use of teleological descriptions of the circuits. DeKleer D5] has proposed a system which
will be able to recognize circuit plans in annotated schematic diagrams, much the same as I
intend to recognize plans in annotated program listings.

Finally, Freiling [16] has been working on understanding the teleological structure of
mechanical systems.

Appendix A. An Example LISP Program

(see program listing attached)

Appendix B. Initial Report on a LISP Programmer's Apprentice

(see MIT AI Lab TR-354, December 1976, by C. Rich and H.E. Shrobe
attached)
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001 APPNDX A 05/13/77 Page 1
002 ;;; This is an implementation of a hash table data base similar
003 ;;; to the one used in the original implementation of CONNIVER.
004 ;;;
005 ;;; The hash "table" is an array, called TABLE, of size TABLE-SIZE.
006 ;;;
007 ;;; Members in the table are s-expressions called "forms".
008 ;;;
009 ;;; The table is made up of "buckets" which are the slots of the array.
010 ;;;
011 ;;; A bucket has two parts:
012 ;;; The CDR of a bucket is a list of forms called the 'contents'.
013 ;;; The CAR of a bucket is called the "count", and is
014 ;;; equal to the number of forms in the contents.
015 ;;;
016 ;;; Each form in the table is stored under several "keys'. These keys are
017 ;;; computed by INDEX. The HASH function computes an index in the
018 ;;; array (i.e. a bucket) for each key. Forms in the table are
019 ;;; members of each bucket hashed to by the keys for the form.
020
021
022 (DECLARE (SPECIAL TABLE TABLE-SIZE "KEYS))
023
024 (SETO TABLE-SIZE 10.)
025
026 (ARRAY TABLE T TABLE-SIZE) ;initialize table.
027
028
029 (DEFINE INSERT (FORM)
030 ;; insert form in data base.
031 ;; note: does not check if form already present.
032 (MAPC '(LAMBDA (KEY)
033 (BUCKET-INSERT FORM (HASH KEY)))
034 (INDEX FORM)))
035
036 (DEFINE DELETE (FORM)
037 ;; delete form from data base.
038 (MAPC '(LAMBDA (KEY)
039 (BUCKET-DELETE FORM (HASH KEY)))
040 (INDEX FORM)))
041
042
043 ;;; Forms are retrieved from the data base by a "pattern', which
044 ;;; is just like a form, except that the atom * is a special
045 ;;; symbol which matches any other atom.
046
047
048
049 (DEFINE LOOKUP (PATTERN)
050 ;; return list of forms in data base which match pattern.
051 (PROG (MATCHES ;to accumulate forms that match.
052 BKTS) ;list of buckets to be intersected.
053 (SETQ BKTS (MAPCAR '(LAMBDA (KEY)
054 (OR (TABLE (HASH KEY))
055 ;; special check for empty bucket.
056 (RETURN NIL)))
057 (INDEX PATTERN)))
058 ;; sort buckets by length to speed up intersection.
059 (SETO BKTS (SORTCAR BKTS '<))
060 (MAPC '(LAMBDA (FORM)
061 ;; select only forms that match pattern.
062 (AND (MATCH FORM PATTERN)
063 (SETO MATCHES (CONS FORM MATCHES))))
064 ;; intersect buckets to get candidates for match.
065 (00 ((L (CDR BKTS) (COR L))
066 (INT ;to accumulate intersection.
067 (CDAR BKTS) ;initialize to contents of first bucket.
068 (FAST-INTERSECT INT (CDAR L))))
069 ((OR (NULL L)(NULL INT))
070 ;; done, return intersection.
071 INT)))
072 (RETURN MATCHES)))
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(DEFINE INDEX (FORM)
;; returns list of keys for form
(PROS (*KEYS)

(INDEXI FORM 1)
(RETURN *KEYS)))

(DEFINE INDEXI (FORM POSITION)
compute keys and return them by

;; cons'ing onto global variable *KEYS
(COND ((ATOM FORM)

;; note that atom * is not indexed
(OR (EQ FORM '")

(SETQ *KEYS (CONS (BUILD-KEY FORM POSITION)
*KEYS))))

;; tree
(INDEX1
(INDEXI

recursion
(CAR FORM) (LSH POSITION 1))
(COR FORM)(1+ (LSH POSITION 1))))))

(DEFINE BUILD-KEY (ATOM POSITION)
;; make unique key for atom and position
(+ (MAKNUM ATOM) (LSH POSITION 18.)))

(DEFINE HASH (KEY)
;; return index in table for key.
(ABS (REMAINDER KEY TABLE-SIZE)))

(DEFINE MATCH (FORM PATTERN)
predicate which returns T is match, NIL otherwise.

;; note: no variables are used, only * which matches anything.
(COND ((ATOM PATTERN)

(OR (EQ PATTERN '*)
(EQ PATTERN FORM)))

(T ;; tree recursion
(AND (MATCH (CAR FORM)(CAR PATTERN))

(MATCH (CDR FORM)(CDR PATTERN))))))
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002
003 ;;; The contents of a bucket is ordered by MAKNUM, which allows faster
004 ;;; computation of the intersection of two buckets.
005 ;;;
006 ;;; MAKNUM is a function which assigns distinct numbers to s-expressions
007 ;;; which are not EQ.
008
009
010 (DEFINE FAST-INTERSECT (LIST1 LIST2)
011 ;; return intersection of the two lists
012 ;; which are ordered by maknum
013 (PROG (LISTS) ;to accumulate intersection.
014 LP (COND ((AND LIST1 LIST2)
015 (COND ((EQ (CAR LIST1)(CAR LIST2))
016 ;;found element in intersection
017 (SETQ LIST3 (CONS (CAR LISTI) LISTS))
018 (SETQ LIST1 (CDR LISTI))
019 (SETQ LIST2 (COR LIST2)))
020 ((< (MAKNUM (CAR LIST1))(MAKNUM (CAR LIST2)))
021 (SETQ LIST1 (CDR LIST1)))
022 (T ;;note > holds by elimination
023 (SETQ LIST2 (COR LIST2))))
024 (60 LP))
025 (T
026 ;; one of lists has run out
027 (RETURN LIST3)))))
028
029
030 (DEFINE BUCKET-INSERT (FORM INDEX)
031 ;; splice form into indexed bucket in maknum order.
032 ;; note: does not check for duplicates.
033 (PROG (BKT MAKNUM)
034 ;; bucket fetch.
035 (SETQ BKT (TABLE INDEX))
036 (SETQ H (MAKNUM FORM))
037 (COND (BKT
038 ;; search for place in bucket
039 (DO ((B (CDR BKT) (CDR B)) ;B is ordered list.
040 (PREV BKT B)) ;PREV is pointer for RPLACD.
041 ((OR (NULL B)(> (MAKNUM (CAR B)) M))
042 ;; do insertion.
043 (RPLACD PREV (CONS FORM B))))
044 ;; update bucket count.
045 (RPLACA BKT (1+ (CAR BKT))))
046 (T
047 ;; previously unused bucket.
048 ;; build new bucket with one entry.
049 (STORE (TABLE (HASH INDEX))
050 (CONS 1 (LIST FORM)))))))
051
052
053 (DEFINE BUCKET-DELETE (FORM INDEX)
054 ;; excise given item from indexed bucket.
055 ;; note: does delete duplicates.
056 (PROG (BKT)
057 :; bucket fetch.
058 (SETQ BKT (TABLE INDEX))
059 ;; this is ordinary list deletion.
060 (00 ((L (CDR BKT) (CDR L)) ;L is a list.
061 (PREV BKT L)) ;PREV is pointer for RPLACD.
062 ((NULL L))
063 (COND ((EQUAL FORM (CAR L))
064 ;; splice out.
065 (RPLACD PREV (CDR L))
066 (SETQ L PREV)
067 ;; decrement bucket count.
068 (RPLACA BKT (1- (CAR BKT))))))))


