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ABSTRACT:

A plan for a device assigns purposes to each of the more primitive components and

explains how these components interact to achieve the desired behavior of the composite device.

Such an information structure is critically important in analyzing, designing or troubleshooting

devices. The first goal of this research is to develop a theory of plans for electronic circuits which
can be used for these purposes. The second goal is the construction of a system which can
automatically recognize a plan for a circuit from a geometrical representation of the circuit's

schematic diagram.

Recognition is a process which recaptures the plan the designer originally had in mind.

A theory of schemata will be introduced in which recognition is viewed as the identification of an
instance of a schema in the library with the particular circuit being recognized. This process is

guided by topological and geometric evidence extracted from the circuit schematic. Causal

reasoning, using the technique of propagation of constraints, provides further evidence. One
important use of causal reasoning is the confirmation of tentative instantiations based on
topological and geometric evidence alone.
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Plans for Circuits

INTRODUCTION
Goals

A plan for a device assigns purposes to each of the more primitive components and
explains how these components interact to achieve the desired behavior of the composite device.

Such an information structure is critically important in analyzing, designing or troubleshooting

devices. The first goal of this research is to develop a theory of plans for electronic circuits which

can be used for these purposes. The second goal is the construction of a system which can

automatically recognize a plan for a circuit from a geometrical representation of the circuit's

schematic diagram, using only minimal annotation.

Recognition relies on two fundamentally different sources of information: it relies on

the plan library to determine whether the circuit (or any of its fragments) has been seen before,

and it relies on causal reasoning to analyze circuit fragments for which no plan is found. Since

any new circuit presented to the system will only be partially described by the plans in the library,

causal reasoning plays a crucial role in the recognition process. In order to interface these two

kinds of knowledge a common description language must be developed so that the information

provided by the static plan structures can be combined with the information obtained by the more

dynamic causal reasoning. This is the fundamental theoretical problem which must be addressed If

the goals of the previous paragraph are.to be met.

After a plan for the circuit has been recognized the system should be able to answer

questions about the circuit. This plan can also be passed to a troubleshooting program such as

WATSON [Brown 76) to repair the circuit. When combined with the technique of propagation of

constraints [Sussman & Stallman 75] [Staliman & Sussman 76] [de Kleer 76], this research is a

fundamental step towards building a general circuits expert. One design constraint imposed on this

expert is that it should be articulate, able to explain both its deductions and the methods it used to

deduce them. Hence, this research will necessarily involve some exploration into the problems

involved in answering questions and generating explanations. Such an expert should also be able

to supply expertise in a tutoring system [Brown et.al. 74] [Brown et.al. 76] [Goldstein 77].

The Importance of Plans

Every physical or informational object has a structure, not necessarily directly reflected

in the more primitive elements which compose it, which abstracts the important aspects and

interactions of these primitive objects. The power of the plan is that it is simpler than the object it

is describing, yet few of the features of the described object relevant to the intended function are

lost, and so is more convenient to work with. The plan is also useful since other information about

the device can be attached to it. For example, hints about how to recognize the device and typical

bugs it might have can be attached to the plan so that such information can be conveniently
retrieved when needed.

There are many direct benefits from developing a theory of plans for circuits. The
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technology of electronics is expanding at such a rapid rate that the complexity of devices is
increasing by orders of magnitude every few years. This increase in complexity is making it more
and more difficult to describe, understand and maintain these complex devices. One of the goals
of this research is to formalize a language for plans which can be used by designers to describe
complex devices. Such a precise and uniform method for describing devices would be useful for
understanding and maintaining them.

The notion of plan can have pedagogical impact. Plans have always been used to
describe complex devices. Unfortunately, the use of plans is not made explicit and the plan idea is
never formalized. The student has to learn these ideas largely through osmosis. For example, one
of the experiences with SOPHIE [Brown etal. 74] has been that the major source of students'
difficulties is an inability to assimilate a plan for a circuit rather than a lack of specific
troubleshooting strategies. In developing a clear theory of plans we lay a foundation for conveying
information about complex devices, and this is extremely useful in education.

Related Work
The proposed investigation builds on three major areas of previous research: research

on plans for circuits for design and troubleshooting, the technique of propagation of constraints
for circuit analysis, and the more sophisticated notions of plans developed in the programming
domain.

DESI [McDermott 76] uses plans to design simple circuits. Aside from being important
as another example of the use of plans, the fact that circuits are purposefully designed provides a
great deal of insight into their plan structure. In the design process the relation between the
primitive elements and the composite device becomes clear, since, in design, purpose typically
precedes the choice of particular primitive elements. Hence design motivates the powerful idea that
primitive elements have purposes which can be related to the purpose of the entire circuit.

Brown [Brown 76] demonstrates the importance of plans -to troubleshooting.
Unfortunately, Brown's and McDermott's perspectives on plans aren't entirely compatible, and
neither notion of plan incorporates any structure to accommodate recognition. They also do not
admit partial plans for the circuit. We will attempt to develop a more general notion of plan which
can be useful in recognition, and yet also be suitable for troubleshooting and design.

A large part of circuit recognition involves analyzing circuit fragments to determine
what they do and checking the hypotheses against the actual circuit schematic. This requires an
knowledge of the components and how they interact. The technique of propagation of constraints
In EL [Sussman & Stallman 75] and INTER (de Kleer 76] provides this expertise. However, to deal
with partial information and to have a flexible interface with other phases of recognition, requires
a more sophisticated, qualitative, propagation of constraints.

One of the outgrowths from EL has been AMORD, [Doyle 76] [Doyle, Steele &
Sussman 77] a dependency-based problem-solving language. AMORD is a generalization of the
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system EL was based on, and thus is ideally suited for a more flexible kind of propagation of
constraints. AMORD will also be useful in recognition. It provides methods for maintaining
beliefs and dependency-directed backtracking, both of which are extremely important in the
matching process required for recognition.

The study of plans as applied to the programming domain has a longer history

[Goldstein 74] [Sussman 73]. Recently, far more sophisticated and precise theories of plans have
been developed in the programming domain [Waters 76) [Rich & Shrobe 761. Many of these

notions can also be applied to circuits once two differences in these domains have been understood.

First, values passed in variables in programs are different than signals transmitted through wires

in circuits. Second, programs execute in a strict time order, while circuits operate continuously and

simultaneously. The second difference is perhaps the more crucial since it requires a fundamental

rethinking of the notions of input and output. It also explains why the reasoning mechanism

appropriate for circuits is propagation of constraints; while for programs it is symbolic evaluation.

It is important to distinguish the current work on plans from Artificial Intelligence

research on planning [Hewitt 71] [Sacerdoti 75) [Rulifson 72) [Fikes, Hart & Nilsson 72]. Effecting

changes on the environment is expensive and often undoable, and therefore a possible path to the

goal should be found before attempting any actions. Usually, this path is described to a limited

level of detail. The process of finding such a path is called planning. Planning is concerned with

chronology and the interactions between an environment and actions upon it. The current research

focusses on describing the device which is produced as the result of a design process, and is not

particularily interested in the process by which that design was arrived at. Consider the

construction of a house. The blueprints of that house are a part of a plan for that house (the,

complete plan would mention, for example, why the bathroom was there). The builder must do

some planning to determine that the foundation should be laid before putting on the roof. The

result of this planning is not a blueprint for the house, but a course of action which will plausibly

lead him to successfully construct the house.

MODULES, PLANS AND PLAN FRAGMENTS
A Simple Theory of Modules and Plans

The simplicity of a description comes from two sources: first, a description has a

particular point of view which excludes details irrelevant to that point of view; second, the

description refers to intermediate objects. The level of detail of a particular description can be

expanded by examining the descriptions of the intermediate objects it refers to. A device can be

described at many different levels. We can describe the radio in terms of stages and the transistor

in terms of the Ebers-Moll model. We can describe the physical layout of the components on the

pc-board and the color bands on the resistor. At any level of description we speak in terms of

objects which may not have any direct physical referent in the device. For example, the dependent

sources of the Ebers-Moll model have no physical reality. Similarly, the components of a receiver
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stage may be found physically close together, but there is no distinguished physical characteristic
which identifies members of the stage. The most Important observation about any description,
however, is that it ignores many irrelevant details. To get more detail a lower-level description
must be used. For example, the description of a radio will not mention resistors, but the description
of the AVC for that radio will. Every description has a particular point of view which excludes
many details as irrelevant. A radio, from the point of view of a receiver, is described in terms of
stages. A radio, as a piece of art, is described by the styling of its cabinet. The same radio can also
be described as a weight, scaffold, weapon, heirloom, etc.

A rather simple-minded theory of description can be constructed from these
observations. It requires some modifications, but contains the basic ideas. The idea of a module,
taken from programming and electronics, crystalizes the notion of intermediate object. A module
has well-defined boundaries, inputs, and outputs. Beyond these inputs and outputs the module is
treated as a black-box. The description, or plan, of a module has three main parts: a
decomposition, a behavioral description and a functional describtion. The decomposition describes
how the module is hierarchically decomposed into submodules. The behavioral description
describes the input-output behavior of the module without going into the details of its internal
behavior. The functional description indicates how the submodules cooperatively function to
achieve the behavioral description of the module. Since the purposes of any module are described
by the functional description of its parent, the functional descriptions provide a teleological
description of the entire device. A complete plan for a device determines a particular point of
view; this plan is constructed by using the point of view to establish a top-level module and then
including all its descendant submodules. These submodules refer to features of the physical device,
and thus explain the device in terms of these physical features and from the particular point of
view.

The existence of an intermediate structure between the primitive level and the
composite device makes it much easier to understand the device since the purposes of the primitives
need only be related to their most immediate parent module, rather than requiring the consideration
of arbitrary interactions. Behavioral descriptions allow the designer to use black-boxes in his
design without having to understand the device inside the black-box. Similarly, the behavioral
description aids the troubleshooter since he need only look inside the modules which violate their
behavioral descriptions.

Some Inadequacies of the Simple Theory
Although the simple theory presented in the previous section is a large step towards our

goal of a theory of plans, it is inadequate. The strict module-submodule hierarchy does not admit
shared submodules and primitives, and does not allow a module to be related to anything but its
most immediate parents and submodules. The theory also lacks a notion of similarity. For
example, the similarity between two different emitter-coupled pairs cannot be expressed.

Johan de Kleer



Plans for Circuits

In the strictly hierarchical theory the purposes of a module can only be related to its

most immediate parent. However, brother-brother relations are also important. For example, the

desired gain of a two-stage amplifier does not necessarily constrain the gain of each stage, but only

imposes a composite constraint on the product of the two gains. The only purpose expressible in

the hierarchical theory is that each stage must be an amplifier. Another example is a power supply,

where we have the choice of including a more robust transformer or building a more sophisticated

regulator section.

Another problem with the simple theory is illustrated by one power supply which is

shared among many modules. Another example is that a single stage amplifier may have a

decoupling capacitor on its input and output, but in a two-stage amplifier the output capacitor of

the first stage can be combined with the input capacitor of the second. In a direct-coupled

amplifier the DC-component of the previous stage can be used to provide the bias for the next

stage. These examples demonstrate that submodules can be shared, which necessitates a revision of

the simple plan theory in which a module can have only one parent. This problem also raises

difficulties with recognition, since any component already included in one module must still be

available for inclusion in other modules.

Our plan theory does not have any mechanism to express the similarity between

circuits. For example, an emitter-coupled pair can be constructed in many different ways: the

emitters can be tied directly to ground, they can be'tied to ground through resistors, they can be

tied to a current source, etc.
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(d) .

This requires a different plan be specified for every new emitter-coupled pair. Diagrammatically,
the distinguishing feature of an emitter-coupled pair is that its transistors are normally drawn
back-to-back. Only after one has noticed this feature are the other components connected to the
transistors examined. In short, recognition demands that the the general type be identified before
the specific instance, but the simple theory has no structures to accommodate this.

Plans, Plan Fragments and Plan Fragment Schemata
The previous section motivates two modifications to the simple theory, the first of

which is that plans should be allowed to be non-hierarchical. Since the usual definition of module
implies a strict hierarchy, we introduce the term plan fragment to refer to the generalized non-
hierarchical modules. The term module is still a useful one since it refers to a plan fragment whose
immediate structure is purely hierarchical.

Plan fragments are much like modules in that they have a decomposition, behavioral
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description and functional description. This decomposition is in terms of other plan fragments.

Their behavioral descriptions and functional descriptions are much more complex due to the

possibility of shared subfragments. However, the introduction of plan fragment schemata will

alleviate many of these complexities.

There are a large number of possible superheterodyne receivers which are all different.

On the other hand all these receivers are of the superheterodyne type and this fact is critical in

designing and understanding all such receivers. Understanding how one superheterodyne receiver

works makes it much easier to understand other superheterodyne receivers. Similarly, in the design

process, it is convenient to speak of a superheterodyne receiver without actually having built one.

The above theories of plans and modules do not recognize the similarities between two different

superheterodyne receivers.

However, to some extent the plan fragment can be used to describe the similarities. For

example, a plan fragment for a superheterodyne might describe it has having an rf-stage,

converter, i-f-stage, detector and audio-stage. Two superheterodyne receivers which differ in i-f or

audio-stage output power may have identical plan fragments at this level. However, a

superheterodyne receiver can have more or less rf-stages, it can have multiple i-f-stages and i-f's.

For this reason we introduce the second modification of the simple theory, the notion of

a plan fragment schema. The superheterodyne plan fragment schema describes those characteristics

of a circuit essential to it being a superheterodyne receiver. There is only one superheterodyne plan

fragment schema and the plan fragments of all superheterodyne plan fragments are instantiations

of it. The schema for a superheterodyne requires that there is some piece of circuitry that

functions as a converter producing a fixed intermediate frequency.

As with plan fragments, schemata have decompositions, behavioral descriptions and

functional descriptions. There are, however, some fundamental differences. The decomposition of

a schema is into plan fragment patterns which describe other schemata by function rather than by

name. The behavioral description describes how instantiated plan fragments of the schema

behave. Notice that this is an intrinsic description, while the plan fragment patterns of a schema

are extrinsic descriptions. The functional description of any plan fragment refers primarily to the

functional description of its schema. In short, the three main parts of a plan fragment are derived

from instantiating the corresponding parts of its schema.

The entire network of plan fragments derived from starting with the top-level plan

and expanding all of its terminals until the components are reached is called the plan for the

circuit. Thus a plan fragment can be considered a node in the plan. Note that plan fragment

refers to the description of a particular circuit, while plan fragment schema refers to a description of

a type of plan fragment. Plan schemata are found only in the library which is used in design and

recognition, and plan fragments are present only when a particular circuit is being considered.

The schemata in the library contain information which describes the circuit after it has

been parsed by that schema, but it is important to note that it can also have attached to it other

Johan de Kleer



Plans for Circuits

kinds of information. In particular it can contain information about how to recognize that schema

in a larger circuit and typical bugs the circuit can have. In general, the plan provides a very

convenient structure for attaching annotation about the circuit.

In the design process, plan fragment schemata are selected and partially instantiated.

As design progresses, the nature of the desired goals and the plan fragments available to fill the

terminals of the schemata add constraints to cause further instantiation. Finally, the plan

fragments are completely instantiated and the circuit design is complete.

Recognition involves reconstructing this design. Thus recognition can be executed

much the same as design, except that the schematic is used to distinguish between possible

instantiations. The idea of instantiating schemata in the recognition process originates from

Minsky's frame theory [Minsky 74].

Plans for Emitter-Coupled Pairs

To illustrate these concepts some plans for the emitter-coupled circuits discussed earlier

will be presented. Note that these are just tentative sketches of what the plans could be like: the

plans are only partial, and not enough of them are included to handle all the examples.

The following is a schema for an emitter-coupled pair:

The objects in this diagram refer to the terminals of the schema, the lines indicate the connectivity

between them. When a component is indicated it must be included in any instantiation. The boxes
are labeled by extrinsic descriptions of other schemata that must be inserted there. For example,
the above schema requires something that acts as a current source between the emitters and ground.

A schema for a particular current source is:
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Using the resistor as a load, and sharing the various power sources, these two schemata can be

instantiated on circuit Ic. Note that the load terminal of the current source must be identified with

almost the entire emitter-coupled pair.

Johan de Kleer
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A resistor also serves as a simple current source, and a join can be accomplished by two
resistors: thus we have a plan for circuit lb. A very poor current source is just a power source, and
a power source can be a voltage source in series with a resistor: thus we have a plan for circuit Ia.
Since a load can be arbitrarily complicated, a partial emitter-coupled plan can be constructed for
circuit Id.

In the above discussion we often used knowledge about electronics to argue why some
fragment achieved some particular function. Although the introduction of more schemata would
have sufficed, it is unnecessary to have a schema for every small circuit fragment. Causal
reasoning relates the schemata to the particular circuit, and can be employed to analyze small circuit
fragments without the use of schemata.

CAUSAL REASONING
Propagation of Constraints

Knowledge of electronics is needed to relate a particular plan schema to a particular

circuit. Although the examples of the previous section would be understandable to anyone familiar

with electronics, they were stated in terms of primitive elements which were not explained by the

plan theory. Another theory is needed to bridge the gap between the circuit and the primitives of

the plan theory. This bridge is provided by causal reasoning. Since schemata rarely mention other

schemata explicitly, causal reasoning forms the glue which holds the fragments of the plan

together.

One role for causal reasoning is to determine the behavior of the particular circuit

fragment. Another is to determine whether this behavior is consistent with its desired function.

This involves, in large part, the accumulation of constraints on a particular circuit fragment and

deducing other constraints from these. This causal reasoning must be able to record its deductions

in precise and well-defined ways, for both the purpose of explaining the ultimate deductions, and

for the necessity of understanding the exact relation between imposed and deduced constraints.
The technique of propagation of constraints is one way to implement causal reasoning and meets
all these criteria. This technique has proven extremely useful for circuit analysis in EL and

INTER. Nevertheless a far more sophisticated propagator will have to be developed to deal with

the problems encountered in recognition.

Qualitative Propagation

The original propagation of constraints idea inEL will have to be developed further
in flexibility and ability to deal with partial knowledge. Since the recognition process involves a
constant switching back and forth between causal reasoning and instantiating schemata, the causal
reasoning must be able to limit its attentions to fragments of circuits and then change its analysis as
the instantiating process examines the different possibilities. Much of this flexibility should be
provided by a new implementation of EL in AMORD. Dealing with partial knowledge is far more
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difficult and requires much more study.

EL presumes that every circuit quantity has an eventual precise numerical value, and in

the course of its deductions it describes this value either explicitly as a number or as a variable.

Variables provide no direct information, but when a sufficient number of constraints on a variable

are discovered its value is determined. EL has very little ability to deal with partial information: a

quantity is either known or unknown, and constraints provide no new information about a variable

until enough are known to determine it. These constraints do not admit inequality relations.

INTER, on the other hand, does not presume that it ever will know every circuit quantity precisely

and thus describes each circuit quantity by a numerical range and propagates these ranges.

Unfortunately, this introduction of inequality relations makes the introduction of variables and

their required algebraic solution techniques very difficult to accommodate.

The problems of partial knowledge in the recognition process are far more difficult

than these. First, we have the problem (recognized in INTER) that circuit parameters have

inherent tolerances associated with them, for example, resistances can be known only to within 10%.

and measured values to within measurement accuracy. This is the simplest kind of partial

knowledge to deal with. Second, causal reasoning should still be possible without knowing any of

the circuit parameters directly. For example, in engineering textbooks one rarely finds precise

component parameters on schematics, yet the engineer can usually recognize how the circuit works.

Third, because causal reasoning is invoked within the recognition process, the topology of the

circuit fragment being analyzed may not be precisely known.

The first problem is the simplest to deal with, and INTER suggests mechanism for this.

The third problem requires that changes in topology be dealt with as easily as changes in the

operating region of a transistor. This can be accomplished via the capabilities of AMORD.

Before discussing the second problem in more detail it should be noted that we are not discussing

propagating only at the component level: the plan fragments may be sufficiently instantiated that

their behavior can be used in causal reasoning. Causal reasoning can deduce little from topology

alone. However, even if no circuit parameters are given, the expectancies of the already partially

instantiated schemata can provide sufficient constraints to allow causal reasoning to make useful

deductions.

Causal reasoning is used in two different ways in the recognition process. The first is

to test whether a particular circuit fragment can achieve a desired function. The second is to

determine the behavior of a circuit fragment to see whether its behavior matches any known

behavior. Even if the circuit fragment could be completely analyzed in the EL sense, this second

use of causal reasoning requires a description language for circuit behavior. The first use of

causal reasoning suffers from no such impediment since there the expected behavior can be

explicitly specified. If the circuit fragment is not completely analyzable in the EL sense, a more

sophisticated kind of causal reasoning is required.

Analysis of a circuit fragment can fail for two reasons: external circuit quantities

Johan de Kleer



Plans for Circuits

imposed on the fragment may be unknown or propagation of constraints may fail, as it is not
complete. More often, the analysis will fail for the first reason. If further knowledge of the
fragment's behavior is desired, various external inputs can be hypothesized and fragment behavior
inferred from resulting propagations. Presented with an amplifier, this strategy would try various
inputs, and, noticing that every constraint on one terminal produces correspondingly larger valued
constraints on another terminal, it would infer that the circuit amplifies. This somewhat
haphazard strategy is prone to problems, however. In particular, it provides little information on
how the fragment achieved its behavior. For example, consider a simplified TTL NAND gate:

'I
rCC

Knowing that the circuit was some kind of TTL gate, causal reasoning need only do four

propagations. The output values prove that this is a NAND gate, but this analysis does not show
that the first transistor actually computes the NAND and that the second transistor only acts as an
amplifier. A more sophisticated kind of propagator would attempt to force propagation from some
inputs and whenever an indeterminacy was reached, split the propagation into the different
possibilities, thus producing a description of output behavior for various regions of input. For
example, whenever a transistor's state could not be determined, all possibilities are assumed and a
separate propagation carried out for each assumption.

We have been using inputs and outputs rather loosely in this discussion. However, a
few simple expectancies about a particular circuit can provide a large amount of information about
what are inputs and outputs. For example, knowing that a circuit is a TTL gate, inputs and
outputs can be immediately determined due to the characteristics of TTL.

RECOGNITION
Theory

Recognition relates the particular object under examination to what is known about
such objects in general. More specifically, recognition recaptures the plan the designer originally
had in mind. Recognition and design are both instantiation processes. Design instantiates plan
schemata in the library in an attempt to achieve some goal, while recognition instantiates the
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schemata and matches these to the circuit schematic in an attempt to find the schema which best

explains the circuit. The result of the recognition process is a fully instantiated plan schema or
plan fragment description - the plan of the circuit.

This process is analogous to parsing English sentences. In both, the goal is to analyze a

complex structure, the sentence or circuit, in order to better understand its meaning. There are also

many differences between these two processes. Linguistic parsing employs grammars to encode
structure, while plan recognition uses schemata. The words of a sentence have an explicit linear
ordering, while it is impossible to impose any order on the components of a circuit. However, there
are two important reasons why the parsing of circuit diagrams is much easier than parsing English
sentences. The ordering of English is the only relation between words and is relatively weak, while
the wires of a circuit diagram explicitly denote which components interact directly with each other.

The technique of propagation of constraints provides a nearly complete model to test the validity of

possible parses; there is no such model for English.

Before discussing a tentative structure for the recognizer, the various kinds of evidence
available from a circuit will be summarized. The schematic diagram provides three main kinds of
evidence: topological, functional and geometric.

Topological Evidence

The topology of the circuit consists of the actual components of the circuit and their

interconnections with no concern about how these components are arranged on the schematic or

how they behave. This topological evidence is easily represented by a graph. The recognizer could

have a graph matcher which tries to match the graph of a given circuit to stored plans and plan

fragments, but this would fail unless the circuits were identical. Further, the best match problem on

graphs is extremely difficult. Therefore if the recognizer employs any direct match at all, it should

be used only at the lowest level, recognizing only simple common combinations or phrases.

I

I

Although it would be hopeless to attempt to match the graph of a new circuit to every

circuit that has been seen before, the schemata are relatively few in number and can be employed
for matching. A schema contains a description of the essential topological features that any of its

instantiations must contain. Although the schemata cannot describe all their instantlations directly,
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a great many possibilities can be ruled out, and hypotheses generated by simple matching of the

schemata with the given circuit topology.

The most basic topological property is that of connectivity, and the terminals

(components and subschemata) of a schema are always connected. Most schemata have components

and thus the components of a particular circuit provides an index into the library for possible

matches. These two rather elementary topological features already provide a tremendous reduction

in the size of the search space. Combined with geometric evidence, topological instantiation should

be a relatively efficient process.

Functional Evidence

Although topological evidence can be used to determine possible schemata for the

circuit fragment, causal reasoning is needed to validate the tentative instantiations. This process

involves extracting functional evidence about the circuit. There are three different ways functional

evidence can be used in the recognition process. Instantiating the topology of a schema results in

instantiating its behavioral description; causal reasoning must be used to confirm that the behavior

of the fragment is consistent with this behavioral description. The topology of a schema is in

terms of other circuit fragments which must achieve some particular function; causal reasoning

checks candidate subfragments. Sometimes topological evidence alone does not suggest any

schemata; then causal reasoning must be used to determine the fragment's behavior and this

observed behavior matched against the behavior of known schemata.

There is another use of functional evidence, which is seen in people parsing circuits,

that this theory does not immediately account for. Our theory uses causal reasoning to examine

behavior and then compares this behavior against other facts. However, causal reasoning can also

be used to determine the mechanism by which the circuit achieves that behavior. This mechanism

provides an extremely powerful way of describing schemata. In fact, mechanism transcends the

distinctions between different domains. Consider, a mechanical engineer parsing a negative-

feedback amplifier. He has never seen a negative-feedback circuit before, so he causally reasons

about the circuit and notices output linearity is maintained by feeding a fraction of the output into

the input. He is familiar with this idea from mechanical engineering and instantly realizes what

other parts of the circuit to look at and what the limitations of the amplifier are. Even remaining

within the circuits domain it could be argued that mechanism is as important a description scheme

as behavior: is the essential structure of a superheterodyne that it is an instantiation of a particular

schema, or that it uses the heterodyning principle. It is clear that a complete theory of recognition

should employ both behavioral and mechanism descriptions. Unfortunately, it is unclear as to what

a mechanism description might look like. For this reason this research will refrain from

considering mechanism until the exact limitations of a recognizer based only on behavior are
determined.
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Geometric Evidence
A circuit diagram provides much more than just topological evidence about the circuit.

For example, it is well known how difficult it is to analyze a scrambled circuit diagram. The
engineer who draws up a circuit diagram employs many general conventions which make the
schematic easy to understand. Components which are connected together are usually drawn close
together. The engineer tries to make the topology as planar as possible. Signals tend to flow from
left to right in relatively horizontal fashion. General busses such as ground and power-supply are
usually drawn as horizontal lines. The ground is usually at the bottom and power at the top. Of
particular interest is the fact that schemata are usually drawn in similar ways. For example, the
emitter-coupled pair is almost always drawn as two back-to-back transistors; rarely is it drawn as:

This evidence is extremely useful to a circuit recognizer. In particular, the recognizer will try to
incorporate knowledge about common ways to draw instantiations of particular schemata.

Since circuit schematic conventions are so universal, geometric evidence is potentially
the strongest kind of evidence the recognizer has available. Unfortunately, the extent to which

these conventionj are followed depends on the skill of the designer, and, furthermore, not all of the

conventions are necessarily satisfiable in any particular circuit. Therefore, although geometric

evidence should be utilized to a great extent in recognition, it can not be completely relied on, and
thus is only a good heuristic.

A plausible scheme is to use geometric evidence to order schemata suggested by
topological evidence. Consider the emitter-coupled pair. Rudimentary topological evidence

proposes a push-pull amplifier, a two-stage amplifier, a darlington pair, as well as an emitter-

coupled pair. If the schematic was drawn in a haphazard way, each of these possibilities would

have to be examined in more detail. However, if the schematic was drawn in the conventional way,
geometric evidence would suggest that the emitter-coupled pair be tried first. In this scheme, well

drawn schematics are recognized quickly, while those drawn poorly take much longer, but are still

eventually recognized.
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The Structure of the Recognizer
The flow of information within the recognizer can be summarized by a simple block

diagram:

The recognizer will use both top-down and bottom-up techniques. Top-down

techniques are more powerful, since parent structures impose many restrictions on possible
subschemata. The recognizer will therefore be biased towards top-down techniques. The four
main top-down entry points of the recognizer are: parse circuit fragment x as schema y, parse
circuit fragment x as having function 9, discover behavior of circuit fragment x, and discover
schema of circuit fragment x. The latter two entry points are included for completeness and for the
limited cases in which the recognizer calls itself recursively. We will not consider the very general

problem of recognizing the plan for an arbitrary circuit.
Bottom-up techniques involve discovering plan fragments before their parents have

been identified. This helps limit the possibilities for the parent schema. Sometimes top-down
techniques may fail completely and bottom-up techniques must be employed. More often the
recognizer will have to make an explicit choice of which techniques to employ. Bottom-up
techniques are necessary when attempting to recognize the plan for a circuit without having been
given its function. The bottom-up techniques are based on geometric evidence and causal
reasoning.

Recognition uses causal reasoning to confirm instantiations are consistent with their
behavioral descriptions, to confirm the desired behavior of circuit fragments for which no
schemata are known, and, in the case where no top-down information is given, to determine the
behavior of a circuit fragment in order to suggest which possible schemata might match. In the
first use of causal reasoning the schemata have been completely instantiated, and thus causal
reasoning is fairly inexpensive since it can work with the behavioral descriptions of the sub plan
fragments instead of the circuit components. However, in the second two cases the fragment under
consideration has no schema, and causal reasoning can become very expensive. In these cases,
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before applying causal reasoning, bottom-up techniques should be employed to recognize as many

sub fragments in that fragment. This gives causal reasoning the simplest possible topology to work

with.

Propagation of constraints has particular difficulties in dealing were certain kinds of

schemata. For example, it cannot adequately analyze resistors in series, voltage dividers, and

emitter-coupled pairs. The original EL program had to be explicitly told where these schemata

occurred in the circuit if it was to successfully analyze the circuit. Therefore the recognizer should

always attempt find such schemata in the circuit before attempting any causal reasoning.

Having discussed the techniques the recognizer has available to it we can examine a

possible control structure. Consider the problem of parsing a particular circuit fragment x

performing function y. First, the schema library is examined to find those schemata which could

possibly achieve the desired function. Then geometric and topological evidence is used to prune

these possibilities, and suggest which schemata are most likely to match. The recognizer then tries

to parse the circuit fragment as each of the possible schemata. If the schema library does not

contain any schemata whose behavior matches the desired function, bottom-up techniques can be

used to suggest possible schemata that may match. If no possible schemata are discovered or every

schema suggested fails to match, causal reasoning must be employed to see if the given circuit

fragment at least achieves function y. Since the circuit fragment has no structure imposed on it, the

causal reasoning will be very difficult and thus should be left until as much as possible of the rest

of circuit is parsed. Then when causal reasoning is employed, particular attention should be paid

to those components which have not yet been assigned any purpose.
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This discussion demonstrates that the recognizer need not have a schema for every part
of the circuit. This is important in accommodating unexpected features in circuits. Unfortunately,
employing causal reasoning without a schema can be very expensive. In particular, for causal
reasoning to succeed it should be given a simple topology, and that requires bottom-up recognition
within the circuit fragment to identify composite behavior of collections of components.

The recognition process is largely an instantiation process; that of trying to instantiate
schemata which best match the given circuit. When the recognizer is asked to recognize a circuit
fragment as a particular schema, it tries to identify an instantiation of that schema with the circuit
fragment. To do this the topology of the schema is matched against the circuit fragment. If this
match fails, it cannot be of the given schema type. Next the terminals of the schema are expanded.
Each terminal is in terms of a desired function, and the recognizer invokes itself recursively to
attempt' to find a schema in the circuit fragment which achieves the given function. After the
schema has been completely instantiated, causal reasoning checks that the circuit fragment referred
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to by the plan fragment actually behaves as described. This is necessary because the very
generality of the schemata language admits plan fragments that may not achieve their stated
behavior. For example, an extra wire shorting the output of an amplifier would probably not be
detected until the final causal reasoning check.
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The previous discussion of the recognizer has superficially discussed many details

which will have to be thought out much further. One detail which deserves some attention here is
the choice of circuit fragment on which to invoke the recognizer recursively. Specifying a circuit

fragment is extremely difficult in general. Probably a large section of the circuit would be passed

along with an annotation mentioning which fragments already have been assigned purposes and

thus most likely do not have a second purpose. When the recognizer calls itself recursively to

instantiate a particular schema in a circuit fragment, it need not exhaust all the components in the

circuit fragment. Only if this were the top level question would that be necessary. However, that

topology of the schema that has already been identified with the circuit fragment provides

boundary conditions on the fragments that match for a particular function. In the example of the

emitter-coupled pair, the collector circuit needs something that functions as a load between the

collector and the power source. This load can be found anywhere in the circuit fragment, but the

recognizer will try to find the smallest possible fragment which matches and connects the collector

and the power source. Even though the circuit fragment within which the schema must be found

is not clear, these boundary conditions impose sufficient constraints to effectively limit the search

space.
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EXPLANATION
Explanation in General

The result of the recognition process is a plan for the circuit which can be used in
troubleshooting and design. The use of plans for these two purposes has been Investigated by
other researchers [Brown 76] [McDermott 761 Unfortunately, the use of plans in troubleshooting
has not yet been implemented. Therefore, the test of the recognizer is to what extent it can answer
questions about the circuit and explain its deductions. It is important to distinguish between two
kinds of questions: those that ask about the actual circuit just recognized and those about the

recognition process itself. We propose to investigate only the former.

Throughout this paper the choice of techniques has been governed by the necessity to

make explanations. Propagation of constraints has been shown to admit very detailed explanations.

Similarly, the plan expresses circuit teleology directly so that explanations can be easily generated

from it.

The proposed program is far from being a general purpose circuit expert which can be

used with students.- For instance, it lacks many human engineering interfaces. It can neither

understand or reply in English. Both of these are major research topics in their own right. A
more serious limitation is that a tutor has to have a model of the student indicating what the

student does and does not know so that appropriate explanations can be given. This is also a topic

of current research [Goldstein 77]. In short, our recognizer will produce explanations which are

primarily oriented to people familiar with electronics or to other programs, such as tutors. It is the

tutor's responsibility to further interact with the expert to produce an explanation appropriate for

the student. In the proposed recognizer the explanation facility will be included, but it will

converse in a rather ad-hoc fashion.

Answering Questions About a Circuit

This section describes some of the different kinds of questions that can be answered

once the plan has been discovered. For expository reasons the examples will be in English,

although this research does not propose to construct such a well-engineered human interface. After

the recognizer has been presented the schematic and has constructed the plan for the circuit, we are
in a position to ask questions about that plan.

We will discuss simple "how", "why" and "what" questions. Consider a possible parse
for the simple constant-current source.
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The user can ask questions how the circuit achieves its purpose. This can be answered by refering

to the particular plan fragment.

How does the circuit provide a constant current?

One possible constant-current source is a constant-voltage source

connected to a voltage controlled current source. RI and Z function as

a constant-voltage source and Q and R2 function as a voltage

controlled current source.

Now the user can step downwards through the plan:

How do RI and Z provide a constant voltage?

In general, the "how" question requests an explanation of how the internal behavior achieves the

desired function. This implies looking downward in the plan structure.
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Why is RI and Z a constant-voltage source?

To provide a constant voltage to the constant-current source schema
which also uses a voltage-controlled current source. Why is Z in the
circuit? Assuming a sufficient amount of current is flowing through Z
it has a constant voltage across it and thus with R it forms a constant-
voltage source.

The "why" question asks for the purpose of a fragment and thus looks up the plan to see what

function it serves in parent schemata.

What are Q and R2?

A voltage controlled current source.

"What" questions are fairly straight-forward and can be answered by looking at the appropriate

plan fragment node in the plan.

This discussion of question types is admittedly very superficial and ignores the deep

difficulties of understanding questions. It does, however, demonstrate some of the fundamental

ways in which a plan can be used to answer questions. There are two difficulties which are worth

further discussion here. One is that the recognizer may not necessarily have to have a schema for
every fragment of the circuit. In these cases, direct causal reasoning has to be used to construct the

plan, as seen in the second "why" question. The schemata themselves encode a large amount of

compiled causal reasoning, and if the user does not know some particular schema he may prefer

this causal explanation instead. This may require extra causal reasoning on the circuit. The
second difficulty concerns how the user is to refer to particular fragments. All the examples

mentioned the fragment explicitly, but the fragment can often be referred to indirectly:

What is connected to the emitter of Q?
Why is there a constant voltage at the base of Q?

These difficulties, among many others, will have to be resolved if the expert is to be successfully

used in a tutoring environment.

THE PROPOSED RESEARCH
Ultimate Goals

This research has two main goals. The first is to develop a theory of plans which can
be used for explaining, troubleshooting and designing circuits. The second is to construct a
recognizing system which can discover a plan of a circuit from its schematic. One test of whether
this recognition is successful will be how well the program can answer questions about the circuit.
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This research intends to apply the ideas to a wide range of DC circuits. In particular, the
recognizer will be expected to construct plans for power-supplies, amplifiers, and TTL gates.

Intermediate Milestones

In this final section we will present some intermediate milestones which will have to be

reached if the goals of the research are to be achieved. This research draws heavily on the work
of Brown, McDermott, Sussman and Doyle. In particular it will rely directly on a new deduction
system (AMORD) currently being developed by Doyle. This system is an outgrowth of some of the
ideas of EL and NASL and supports many techniques for reasoning about electronics, in particular

causal reasoning. With this as a starting point, we will work towards to goal of a circuit recognizer.

Theory of .chema Topology

Although this paper has outlined many of the features of plans, more research is

required. The plan theory will evolve as we try to use it. We will first develop a theory for

expressing just the topology of the schemata.,
A Small Library of Topological Schemata

We will eventually consider a large subset of DC circuits. The theory of schema

topology will be tested on a simple class of circuits - voltage and current supplies. Included in the

library will be the possible functions for each schemata so that causal reasoning will not be

required in the instantiation process.
A Pure Top-Down Topological Instantiator

Using the schemata in the library, a top-down parser will be constructed. Since the

function of the schemata will always be explicitly found in the library, causal reasoning is not

needed to produce tentative parsings. The parsings will, however, only be tentative since causal

reasoning is needed to confirm them.
Geometric Evidence

For the simple subset of circuits in the library, a theory of geometric information

evidence will be developed and included to aid the top-down parser.

Bottom-Up Techniques

Bottom-up techniques based on topological and geometric evidence will be developed.

Limited bottom up parsing is required for propagation of constraints to succeed.

Qualitative Propagator

We will develop a flexible qualitative propagator to perform causal reasoning.

Theory of Schema Behavior

To do causal reasoning about circuit fragments, their behavior must be describable. A

language must be developed for this. The instantiation process instantiates both the topology and

the behavior of a schema. With a theory of behavioral descriptions, behavioral instantiation can

be developed.
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Hypothesis Evaluation

Once the expected behaviors of fragments are describable, causal reasoning (qualitative
propagations) can be done to check hypothetical parsing based on topological and geometric

evidence. Causal reasoning can also use the behaviorial descriptions of subcircuit fragments.

Extrinsic and Intrinsic Behavioral Descriptions

Schemata describe their terminals by function, and the instantiation process has to find
other schemata that can fulfill these functions. The schema terminal describes the required
extrinsic behavior of the subschema, but the schemata themselves are described intrinsically. The

instantiation process must match required extrinsic descriptions against intrinsic descriptions. In

the beginning of this research, this problem will be finessed by storing appropriate extrinsic

descriptions in the library also. With a theory of behavioral description, the mechanism for

matching extrinsic descriptions against intrinsic descriptions can be explored.
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