
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Working Paper 142 March 16, 1977

A Note on the Optimal Allocation of Spaces in MACLISP

by

Henry C. Baker, Jr.

This note describes a method for allocating storage among the various spaces in the MACLISP
Implementation of LISP. The optimal strategy which minimizes garbage collector effort allocates free
storage among the various spaces in snch a way that they all run out at the same time. In an equilibrium
situation, this corresponds to allocating free storage to the spaces in proportion to their usage.

Methods are investigated by which the rates of usage can be inferred, and a ge-daemon interrupt
handler is developed which implements an approximately optimal strategy in MACLISP. Finally, the
sensitivity of this method to rapidly varying differential rates of cell usage is discussed.

Key Words and Phrases: garbage collection, list processing, virtual memory, storage management,
storage allocation, LISP.

CR Categories: 3.50, 3.60, 3.73, 3.80, 4.13, 422, 4.32, 4.33, 4.35, 4.49

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by
the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0522.

Working Papers are informal papers intended for internal use.



A Note on the Optimal Allocation of Spaces in MACLISP

MACLISP [11 unlike some other implementations of. LISP, allocates storage for different types of

objects in non-contiguous areas called spaces. These spaces partition the active storage into disjoint areas,

each of which holds a different type of object. For example, list cells are stored in one space, full-iwr

integers reside in another space, full-word floating point numbers in another, and so on.

Allocating space in this manner has several advantages. An object's type can easily be computed from

a pointer to it, without any memory references to the object itself. Thus, the LISP primitive ATOM(r) can

easily compute its result without even paging in s. Another advantage is that the type of an object does

not require any storage within the object, so that arithmetic with hardware data types such as full-word

integers can use hardware instructions directly.

There are problems associated with this method of storage and type management, however. When all

data types (apecies) are allocated from the same heap, there is no problem with varying demand for the

different species; all species require storage from the same pool, so that only the total amount of storage is

important. Once different species must be allocated from differept spaces, however, the relative sizes of the

spaces becomes important.

We would like to find optimal policies for deciding in what ratios the spaces should be allocated so

that garbage collection is minimised. Suppose, for example, that a program is in an equilibrium situation,

where the rate of storage allocation for each species is equal to the rate of garbage generation for that

species. Suppose further that the rate rl for species 1 is twice the rate r2 of species 2, and that the

number of free words in both spaces is the same. Then the program will continually run out of species I

before species 2 Suppose now that we halve the free words in space 2. The user program will now run out

of both kinds equally often. Furthermore, the timing and amount of garbage collection will be the same as

before because the additional free words in space 2 were never used.

This analysis gives the key to optimal allocation for an equilibrium situation: balance the free storage

for each species against the rate of use of that species. In other words, make. all spaces run out of free

words at the same time.

Working Paper 142

March 16, 1977 Henry C. Baker, Jr.

NOAS



A Note on the Optimal Allocation of Spaces in MACLISP

The calculation of optimal space size is now simple algebra. Let:
ri be the rate of word usage for species i;
Fi be the free words available for species i;
F be the free words available to all species.

Then for optimal allocation,

Fi - (r/ilrj)F

The question now is: "How can the rate of free storage usage for each species be measured?" A

"cons-counter" could be implemented for each species, which would count the cells allocated for that species,

but in MACLISP this measurement is better made by the garbage collector. The ec-daemon interrupt,

which is triggered by each garbage collection, invokes the ge-doemon with an argument which associates

with each space four quantities: the number of words free and the size of that space, both before and after

the garbage collection. This information, together with the information from the ge-doemon argument at

the previous garbage collection, allows us to calculate the average rates of free storage usage for each space

since the last garbage collection. This information allows us to use the ALLOC function to re-allocate free

storage to each space in proportion to its usage.

PDP-10 MACLISP presents another problem when re-allocating. Since it does not use a compacting

garbage collector, the spaces can be expanded, but never contracted. Therefore, the gc-daemon must be

conservative in its reallocation strategy, because it can not back down on an allocation.

Suppose that we wish to achieve an overall garbage collection efficiency of m words allocated to each

word traced. This means that if the total storage used by accessible structures consists of T words, then

we wish to have (l+m)T words allocated to the various spaces, in total In other words, F-mT words are

free and should be divided among the spaces for their free areas. Now we have determined that the free

storage for each space should be proportional to the rate of storage allocation in that space. Therefore,

Fi - (ri/-rj)mT

Now since spaces can be expanded but not contracted, we need only make sure that space i has as leUas

Fi free words. This is achieved through the gesite, gcmar, and gcmin parameters of ALLOC.

In MACLISP, one can communicate one's intentions with regard to the management of a space to the

system by calling a function ALLOC with the space name and 3 parameters. The gesize parameter specifies

Workinr Paoer 1421

Henry C. Baker, Jr. March 16, 1977·

NOAS



A Note on the Optimal Allocation of Spaces in MACLISP

how large the space is allowed to grow before the garbage collector is called. Gcmax specifies the

maximum size the space may grow to before triggering the gc-overflow interrupt. Finally, gemin specifies

how much of the space should be free after performing a garbage collection; if the free storage is less than

gemin, the garbage collector immediately allocates more storage to the space. (Gemin may be specified as

either an absolute number of words or a percentage).

We will make use in our gc-daemon of only the gesize allocation parameters of each space. Gcmin will

be set to 0 (or as small as possible), and gcmax will be set to infinity (or as large as possible). We ignore

gcmin because the garbage collector uses it to to allocate space before the gc-daemon has had a chance to

think things over. Setting gcmin instead of gesize would mean that any decision by the daemon would not

take effect until after the next garbage collection, which would greatly reduce the responsiveness of the

ge-daemon to the current situation.

The gc-daemon needs to be able to calculate two quantities for every space--the current number of

accessible words and the gross number of words allocated since the last garbage collection. The current

number of accessible words for a space can easily be calculated by subtracting the number of words free at

the end of the current garbage collection from the size of the space at that time. The gross number of

words allocated since the previous garbage collection can be calculated as the difference between the number

in use at the beginning of the current garbage collection (size before minus free before) and the number

accessible at the end of the previous garbage collection.

With these figures calculated for each space, it is easy to calculate the total number of accessible

words and the differential rates of allocation. Taking the total free storage to be a percentage of the total

accessible storage, we can divide up this free space among the spaces based on their differential rates of

allocation. MACLISP is informed of this decision by setting the gesize of each space to the sum of the

accessible cells in that space plus the new free storage allotment just calculated. (We also round gcsize up

to the next multiple of 512. because 512. words is the smallest unit of allocation in MACLISP).

The system could be improved by varying the allocate/mark ratio as the total number of accessible

words grew. The idea is to garbage collect more to keep the working-set size small. However, since the

paging depends so heavily on the current operating system load, one would need information from the

operating system to make that decision properly.

Working Paper 142

March 16, 1977 Henry G. Baker, Jr.

NOAS



A Note on the Optimal Allocation of Spaces in MACLISP

The ge-dsemon tries to divide up the free storage among the various spaces based on their relative

allocation histories. This strategy hopes that the future will be like the near past (since the previous

tarbage collection). However, in practice, programs go through phases, with. one phase requiritt a

drastically different mix of cell types than another. Therefore the gr-deemon can be wrong. Since the

costs of misallocation are larger with the larger spaces, and since storage can never be retracted from a

space once allocated, the gc-daemon may wish to hedge its bets by giving the larger spaces only partial

allocations.

A cg-daemnon having the characteristics described above is presented below in the CGOL input

notation for LISP [2] (the full text resides in the file [AI:LIBLSPGCDEMN BAKERI]) This daemon stores

all the information about a space on the property list of that space's name. For example, the normalized

rate of list consing can be accessed by (GET 'LIST 'ALLOC.RATE). Summary information is stored on the

property list of TOTAL.STORAGE. The only user-settable parameter is the variable

ALLOC_..MARK.RATIO. This value must be a positive floating point number less than 5.0. It is set

initially to 1.0. Making it smaller decreases working set size and increases garbage collection time.

define "GC-DAEMON" (spacelist);
let total-accessible - 8.08,

total-consed - 8.0;
% Go through spaces and accumulate co-sed and accessible information. %
for element in spacelist % Argument is "alist" of spaces. %

do (let space - car(element), % Give names to parameters. %
freebefore - cadr(element),
freeafter - caddr (element),
sizebefore a cadddr(elemeit),
sizeafter - car(cddddr(element));

% Compute consed since last g: and accessible now for this space. %
consed ofq space :- sizebefors-freebefore-accessible ofq space;
totalconsed :- total_consed + conmed ofq space;
accessible ofq space :- sizeafter-freeafter;
total _accessible :. total_accessible + accessible ofq space)t

% Store total consed, total accessible and compute total free. %
consed ofq "TOTAL-STORAGE" :- total_consedi
accessible ofq "TOTAL-STORAGE" :- totalaccessible;
let totalfree - al loc_mark.ratio * totalaccessible;
free ofq "TOTAL-STORAGE" :- totalfree;
% Go through spaces and re-allocate where necessary. %
for element in spacelist

do (let space - car element;
alloc.rate ofq space :- consed ofq space / totalconsed;
free ofq space :- fix(totalf-ee * alloc_rate ofq space);
let spcsize - accessible ofq space + free ofq space + 511.;

if spcsize>511. then alloc(lspace, tepceize,262143.,32.I1))
0

Working Paper 142

Henry G. Baker, Jr. March 16, 1977

NOAS



A Note on the Optimal Allocation of Spaces in MACLISP

Referenoes

(1] Moon, David A. MACLISP Reference Manual. Project MAC, MIT Cambridge, Mass., December 1975.

(2) Pratt, V. R. "CGOL - An Alternative External Representation for LISP Users". MIT AI Working Paper
121, March 1976.

Working Paper 142

March 16, 1977 Henry G. Baker, Jr.

NOAS


