
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORITORY

AI Working Paper 136 December 1976

CRYPTOLOGY AND DATA COMMUNICATIONS

by

Richard C. Waters

This paper is divided into two parts. The first part deals with cryptosystems and cryptanalysis.
It surveys the basic information about cryptosystems and then addresses two specific questions. Are
cryptosystems such as LUCIFER which are .based on the ideas of Feistel and Shannon secure for all
practical purposes? Is the proposed NBS standard cryptosystem secure for all practical purposes?
This paper argues that the answer to the first question is "they might well be" and that the answer to
the second is "no."

The second part of this paper considers how a cryptosystem can be used.to provide security of
data transmission in a computer environment. It discusses the two basic aspects of security: secrecy
and authentication. It then describes and discusses a specific proposal by Kent of a set of protocols
designed to provide security through encryption. Finally, an alternate proposal is given in order to
explore some of the other design choices which could have been made.

Research reported herein was conducted at the Artificial Intelligence Laboratory, a Massachusetts
Institute of Technology research program supported in part by the Advanced Research Projects
Agency of the Department of Defense and monitored by the office of Naval Research under contract
N00014-75-C-0643.

Working Papers are informal papers intended for internal use.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 1

I. CRYPTOSYSTEMS

The basic cryptographic situation and its associated terminology are as follows. Two people
wish to communicate secretly. However, they realize that a third party (an enemy) will probably be
able to overhear their communications. In order to prevent an enemy from understanding what he
hears, they use a cryptosystem (cryptographic system).

When one person wishes to send a message to the other, he first uses the cryptosystem to
encrypt the message. He then transmits the resulting cryptogram to the other person. This person
uses the cryptosystem to decrypt the cryptogram to recreate the message. An enemy who intercepts
a cryptogram is forced to attempt to cryptanalyze it. For a cryptosystem to be effective,
cryptanalysis must be sufficiently difficult.

It is clear that an enemy must not have complete knowledge of the cryptosystem used.
However, in general the legitimate sender and receiver must have complete knowledge of it. As a
result, they must find some secure method of communicating the system to each other. Unfortunately,
that method cannot be the system itself. To help alleviate this problem, cryptosystems are usually
designed so that a small but vital part of the description of the encryption is segregated in a key.
The intent is that an enemy who knows everything but the key will still not be able to cryptanalyze a
cryptogram. It is a fundamental notion of cryptology that some information (the key) is transmitted
by a physically secure method, and then used to secure the physically insecure transmission of other
information at a later time.

It should be noted that the terms plaintext, encode codetext, decode and plaintext encipher,
ciphertext, decipher are often used interchangeably with the terms message, encrypt, cryptogram,
decrypt. However, they properly apply to two basic types of cryptosystems only: codes and ciphers.
A code is a cryptosystem which deals with semantic units of a message. For example "bring more
men" is replaced by "Q". A cipher is a cryptosystem which deals with arbitrary subunits. For
example "B" is replaced by "Q". It is a point of confusion that ASCII and EBCDIC, which are
prototypical ciphers, are referred to as codes.

An orthoginal destinction between two basic types of cryptosystems is the one between
substitutions and transpositions. In a substitution the basic units are substituted for, but their order
remains the same. In a transposition the basic units are reordered but not changed.

I.1 A PRECISE DEFINITION OF A CRYPTOSYSTEM

A cryptosystem S is composed of seven parts:
S -= M,C,K,KE,F,E,D>

M is the set of possible messages m. C is the set of possible cryptograms c. K is the set of possible
decryption keys k. KE is the set of possible encryption keys ke.

The relation F:K-KE maps decryption keys into corresponding encryption keys. In most
cryptosystems, K-KE and F-I so that the encryption and decryption keys are the same.

The relation E:KE-+(M-C) maps encrypting keys ke into encrypting relations eke:M-+C. Each eke
must be total and invertable, but need not be a deterministic function or onto. D:K-*(C-+M) maps
decrypting keys k into decrypting functions dk:C-+M. Each dk must be a deterministic function and
onto but need not be total. E and D are related in that

ke - F(k) : D(k)=dk.eke'l-E(ke)-1
m D [k] (E [F(k) (M)))

Often, the eke are i to 1 and onto in which case

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 2

S' = <M'=C, C'=M, K'=KE, KE'=K, F'=F -1, E'=D, O'=E>
is also a cryptosystem.

In order to use a cryptosystem for communication, the reciever must know D and a decrypting
key k. The sender must know E and the encoding key ke=F(k). The sender selects a message m(M and
computs c=Eke(m). He transmits c to the receiver who can determine the message m by computing
dk(c). Below, this process will be referred to as an encrypted communication event (ECE) which will
be specified by a 4 tuple <S,m,c,k>. The use of a cryptosystem results in a stream of ECEs.

1.2 THE UNICITY DISTANCE

The unicity distance theorem [Shannon 49; Hellman 74; Hellman 75] is a basic cryptological
result. Let M=C be a set of all strings over a finite alphabet. Let Rg be the absolute rate of M in bits
per character. Let R be the average true rate of M in bits per character.

Rg = LOG(number of characters in the alphabet)
R = average over N of LOG((number of meaningful strings of length N)/N)

(All logarithms are taken to the base 2 unless otherwise specified.) Let Rd=R-R0 be the average
redundancy of M in bits per character. For example in English R8=4.7, R=1.6 and therefore Rd=3.1.
Let Z be the set of every total 1 to 1 length preserving function from M to M. Here, a function is
length preserving if it maps every string to a string of the same length.

Now consider the set of all cryptosystems S which can be constructed in the following way.
Pick an M=C and Z as described above. Pick any subset Z' of Z. Pick sets K and Ke, a relation F:K-KE
and a relation E:K-*Z' which associates each element in Z' with a key in K. Consider that H(K)=LOG(IZ'I)
is the average information content of a key. Finally, pick a D:K4Z' - 1 which maps keys into the
appropriate inverses of elements of Z'.

Now consider the strings of length N. The functions ek are total 1 to 1 and length preserving.

Therefore, since M=C, they are onto. As a result each of the 2 R0 N strings is mapped to from 2 H(K)
strings by the 2H(K) different encryption functions. In other words, each cryptogram. has 2 H(K)
decryptions, but how many of these are meaningful? Averaged over all the possible subsets of Z,.let

#md(N) be the expected number of meaningful decryptions of strings of length N.
#md (N) = 2H (K)2RoN/2RN

#md(N) = 2H(K)-NRd (1)

Let Ng, the unicity distance, be the N for which #nd(N)=1.
Ng = H(K)/Rd

Equation (1) can be interpreted as follows. Given a cryptogram of length N, if N<<N8 then it
will have multiple meaningful decriptions with very high probability. As a result it will be impossible
to cryptanalyze the cryptogram without knowledge of the key. There is no way to decide which of
the meaningful decryptions is the correct one.

If N>>No, then the cryptogram has no meaningful decryptions with a very high probability. If it

is an intercepted communication then it can be expected to have one meaningful decryption. But, with
very high probability there will be no other meaningful decryptions and hence no problem identifying
the correct one. The exponential character of (1) causes an almost discontinuous change of behavior
at N8. This makes Ng a good measure.

The above (which can be generalized to apply to essentially any kind of cryptosystem) points
out two situations where cryptosystems are absolutely secure. First if H(K) is greater than the total
content (RON) of all messages sent with the cryptosystem, then no enemy can ever collect enough
data to reach the unicity distance. As a result he can never cryptanalyze the cryptograms. This

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 3

system is used in practice even though the long keys (referred to as one time pads) are cumbersome
to deal with.

Second, if Rd-= then it is also impossible for an enemy to get enough cryptograms. However, it
should be noted that an enemy can raise Rd to Rg if he can obtain the cleartext message of a
cryptogram. Due to the difficulty of perfect source coding and the dangers of a cleartext attack this
approach is not used in practice.

1.3 PRACTICAL SECURITY

The greatest single lack in the field of cryptography is the derth of proofs of security. The
above section says that a cryptogram is theoretically secure against a cryptanalytic attack utilizing
ifinite computing power if the redundent information content of the cryptogram is less than the
information content of the key used to encrypt it. This is a nice result. However, it is essentially the
only theoretical result in the open literature which shows that a cryptosystem is secure in any sense.
The literature is full of proposed systems and demonstrations of insecurity.

The unicity distance theorem clearly implies that only systems which utilize a one time pad are
totally secure. However, all that is actually needed is practical security. Suppose a cryptosystem can
be broken, but only by performing a computation consisting of a very large number of operations (say
1838). If such a lower bound can be proved, then it is clear that the cryptosystem is secure for all
practical purposes. One way to prove a bound of this type would be to prove that breaking the
cryptosystem was equivalent to performing some computation which is known to be very difficult.

Shannon [Shannon 49] recognized the need for results of this type. Hellman [Hellman 74]
discusses how such results might be precisely phrased. However, to this author's knowledge, no one
has developed such a lower bound for any cryptosystem.

1.4 DESEDERATA FOR A CRYPTOSYSTEM

Throughout history, five basic features have emerged as fundamental requirements for a
satisfactory cryptosystem.

1) The system should be practically secure.
2) H(K) should be small (ideally short enough to memorize).
3) The relations eke and dk should be simple to compute (ideally only pencil and paper should be

needed).
4) Error propogation should be small so that small errors in encryption, transmision, and decryption

will not result in extreme garbling of the message.
5) The cryptogram should not be much longer than the message, in order to facilitate transmision.

A consensus has arizen that these five goals are incompatable. Unfortunately, in general, the
situations where 'cryptography has been used have required features 2-5. As a consequence, in
general, cryptographic systems have not been very secure.

If a cryptosystem is going to be used by a computer, then the situation is radically altered.
This is particularly true of features 3 and 4. A computer based cryptosystem may be able to achieve
practical security through the use of complex functions ek which set up strong interdependencies
over large areas of the cryptogram (see the discussion of LUCIFER section 1.6).

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 4

1.5 CRYPTANALYTIC ATTACK AND DEFENSE

Suppose that an enemy has recorded a number of encrypted communication events (ECEs).
That is to say he has the cryptograms. He wishes to discover the messages. How does he proceed?
He first sorts the cryptograms into groups utilizing the same cryptosystem and key. He then tries to
discover the system, if he does not already know it. Finally, he attempts to find the key. Once he
knows the system and key, he can immediately decrypt all the cryptograms using that system and key.

This points out the fact that one of the most important defenses against cryptanalytic attack is
compartmentalization. The fewer cryptograms created using the same system and key, the less
information an enemy can gain from discovering the system-key pair and the less data he has on
which to base an attack on the system-key pair. To provide compartmentalization, cryptosystems, and
particularly keys, are changed as frequently as possible.

1.5.1 LEVELS OF DEFENSE

A hierarchy of defensive measures can be applied within a single compartment. These
measures differ based on the amount of information the users of a cryptosystem can keep secret.

1) Steganography (eg. invisible ink, hiding micro dots in hollow nickels) is the attempt to prevent
an enemy from even obtaining cryptograms.

2) A very important step is to try and prevent an enemy from obtaining any of the cleartext
message corresponding to a cryptogram. If an enemy has no cleartext, he must pursue a ciphertext
only attack. If he has cleartext he can use a cleartext attack. If he is able to obtain cryptograms
corresponding to cleartext of his choice, he can use a chosen cleartext attack. These attacks are
progressively more powerful (see the examples in section 1.5.4). Most classical cryptosystems fall
rapidly in the face of a cleartext attack. It should be noted that external circumstances often allow an
enemy to deduce to some degree what the cleartext of a cryptogram must be.

3) Another important step is to keep the system S secret. Many classical cryptosystems can be
broken by specialized cryptanalytic attacks once their nature is known.

4) The last line of defense in classical cryptosystems is the key. It must be kept secret.
As implied above, the last line of defense is ineffective in most classical cryptosystems. They

can be rapidly broken with known system cleartext attacks. Computer based cryptosystems, such as
LUCIFER (see section 1.6), seriously attempt to be secure in the face of such attacks. However, many
other computer based methods, such as binary shift register schemes and other pseudo-random
number series generators, are very weak in the face of these attacks [Meyer & Tuchman 721

1.5.2 IMPROVED SECURITY OF KEYS

Consider a cryptosystem strong enough that only the key need be kept secret. This reduces
the problem of securely communicating the cryptosystem between users to the problem of securely
communicating the key between users. Recently, two suggestions have been made which are designed
to eliminate the need for security in the key communication process. These are public key
distribution systems and public key systems.

These notions are based on the ideas of oneway functions and trapdoor functions. A oneway
function F is a function whose inverse F- 1 is significantly more difficult to compute than F (for
example by the square). A trapdoor function is a function which is very difficult to compute unless a
vital piece of information (a trapdoor) is available.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 5

An effective cryptosystem has aspects of both a oneway function and a trapdoor function.
Consider a known cleartext attack. Given the message and the key it is easy to compute the
cryptogram. However, given the cryptogram and the message it should be very hard to compute the
key. Consider a ciphertext only attack. It should be very difficult to cryptanalyze a cryptogram.
However, if the key is known it is easy to decrypt it.

Pohlig and Hellman [Pohlig & Hellman 76] have suggested a possible oneway function
F(x) = cx MOD P where P is a prime of the form 2Q+1 (Q a prime). F(x) can be computed in O(LOG(P))
multiplications MOD P using space O(LOG(P)) bits. However, the best known algorithm for computing
F(y)-1 = LOGy MOD P requires 0(Q1/ 2) operations and bits. For example if P is near 2488 then F
requires time and space 0(288) while F-1 requires time and space 0(2200) or about 0(1860). The
only problem is that the lower bound on the complexity of F- 1 has not been proven correct. In fact,
no function has been proven to be a oneway function.

A public key distribution system is a method by which two people can give each other enough
information so that they can both compute the same key, while not giving an enemy enough
information to compute the key. Diffie and Hellman [Diffie & Hellman 76a; Diffie & Hellman 76c]
suggest a public key distribution system based on acx MOD P as follows. Let two people X and Y
generate random numbers x and y. Person X computes oex and tells this to person Y. Person Y
computes ocY and tells it to person X. They both compute Oxy which they use as a key. An enemy
can easily obtain oex and oty, but how is he to compute aoxY without computing a LOGa MOD P, which
is not practical to compute? Unfortunately, there is no proof that an enemy cannot avoid taking a
LOG. Both of the legitimate people have a trapdoor in the function H(oX,ocY) = ocxy. For example
person X knows x. As a result, he can compute oexY easily as (oYy)x .

A public key system [Diffie & Hellman 76a] goes a step beyond a public key distribution system.
Suppose a cryptosystem can be constructed so that the relation F:K-4KE is a oneway function. For
example if ke = ock MOD P. In that case a potential reciever could make ke=F(k) public knowledge.
Anyone could encrypt a message and.send it to him, but no one could decrypt a cryptogram sent to
him. If the receiver does not divulge his key then he can maintain secrecy. He does not have to trust
the sender to keep anything secret. Unfortunately, no such cryptosystem has been developed as yet.

If either of the above ideas can be realized, then it will be possible to cryptographically secure
information, transmission without having to transmit any information by a physically secure method.
This would be a fundamental change in cryptography. However, it should be stressed that oneway
functions have not even been proved to exist. As a result, the above is only speculation. It is
interesting to note that if it could be proven that oneway funcitons do not exist, then that would

imply that practically secure cryptosystems also do not exist since a practically secure cryptosystem
could be used as a oneway function.

1.5.3 METHODS OF ATTACK

Given a set of cryptograms produced by the same cryptosystem, how can a cryptanalist
proceed? First he can use a brute force attack. If he knows the system he can simply try every key
until he finds the correct one. This will work if he has ciphertext longer than the unicity distance. If
he doesn't know the system, he can try all common systems one after the other. The way to make a
cryptosystem practically secure against a brute force attack is to ensure that there are a very large
number of keys, such as 1838 or 1868. It should be stressed that the fact that a cryptosystem
employs a large number of possible keys, and is therefore immune to brute force attack, in no way
implies that the cryptosystem can withstand non brute force attack.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 6

Assuming a brute force attack is not possible, a cryptanalist can use a variety of specific
techniques to attempt to identify the system. In addition, he will bend every effort to obtain some
cleartext. Cleartext can often be inferred from the context of the sending of the cryptogram. For
example, cryptograms often mention major current events. Also, they often have stereotyped forms:
headings, signatures, addresses, dates, and the like.

Having obtained as much information as he can, the cryptanalist then proceeds with specific
methods which differ from system to system. The next section gives some examples of such methods.
These methods fall into two basic catagories. First, many classic cryptosystems turn out not to be
oneway at all, particularly in the face of a cleartext attack. Often, a straightforward procedure can be
developed for breaking the system.

Second, procedures are used which yield partial information about the system or key based on
information extracted from a cryptogram. This provides a beachhead for an attack. Information about
the redundancy in a message is converted into information about the key. Another aspect of partial
information is that with most cryptosystems there is a straightforward way to tell when one incorrect
key is more correct than another incorrect key. If a key is mostly correct then the decrypted
cryptogram will be mostly correct.

This idea of gaining partial information is the central notion of cryptanalysis. Cryptanalysts try
to develop tests which will yield information about the key. For a given amount of computational
effort, the best test is one which will elliminate half of the keys currently under consideration. The
worst test is the brute force test, trying one key, which usually only elliminates that one key.

Before considering some examples of cryptanalytic attack, one radically different type of attack
should be mentioned. This attack is traffic analysis. An enemy tries to gain vital information without
cryptanalyzing cryptograms. Rather he uses knowledge of the time they were sent, where they
originated and where they were sent to. In a military setting, this can allow an enemy to determine
the location of units, and the chain of command. Further, he may be able to detect a coming offensive
simply by the increase of message traffic, and the location of the offensive from the geographic
distribution of the cryptograms.

1.5.4 EXAMPLES

This section discusses several specific cryptosystems in order to give the reader a feeling for

how cryptanalysis actually proceeds, particularly through partial information attack. In general only
the encryption process will be described in each section since the decryption process can easily be

derived. All of the examples are described in terms of English text containing only A-Z. A
corresponds to 8 and Z corresponds to 25. The first character of a string is taken to be character

number 8. It should be noted that this section only mentions a small number of the cryptosystems
which have been developed.

1.5.4.1 THE CAESAR CIPHER

In the Caesar cipher each character ci of the cryptogram is derived from the corresponding
character of the message as follows:

c i = (mi + k) M00 26 k c 18-25)
IBM HAL k = 1

There are only 26 keys. Therefore, the unicity distance is only LOG(26)/3.1 = 1.5 characters. A
brute force attack is easy. Further, if any cleartext character is known, then k = ci-mi. This system

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 7

obviously provides no security unless there is no cleartext and the enemy has no idea of the nature
of the system.

1.5.4.2 THE SIMPLE SUBSTITUTION CIPHER

In a simple substitution each letter in the alphabet of the message is replaced by a different
letter of the alphabet to form the cryptogram as follows.

ci - km k (permutations (ABCD ... YZ)1

BED -, UVH k - QUFHVYTAJ ... SD

There are 26! = 4*1826 keys. As a result the brute force appproach i4 not practical. The unicity
distance is LOG(26!)/3.1 = 28.5 characters. Short messsages can actually be unbreakable. It should
be noted that from the last example to this one, the number of keys went from 26 to 1026 but the
unicity distance increased from only 1.5 to 28.5. In order to totally hide a reasonably lengthy
message, the number of potential keys must be, not just large, but enormous.

Any segment of cleartext which contains each letter at least once will yield the entire key.
More importantly, note that 1 cleartext letter will yield 1 letter of the key. As an even better
example of a partial information attack consider the following.

English does not use each letter with equal frequency. In fact 78% of average running text is
composed of the 9 letters E T A 0 N I S R and H, while only 7.5% of average running text is composed
of the 9 letters W GBL J KY Q and Z.

If a frequency distribution is taken of the letters in a simple substitution cryptogram, the
distribution will have exactly the same shape as the frequency distribution of the message, though the
identities of the letters will be different. If in the cryptogram V is most common, appearing 13% of
the time, it cannot be concluded that V stands for E. However, it can be concluded with overwhelming
probability that V stands for one of E TA or 0, giving powerful partial information about the key.
This can continue with analysis of the frequency of pairs of letters and beyond until only a few
possible keys remain. At that time a brute force attack will yield the solution.

1.5.4.3 THE VIGNERE CIPHER

Here a key of length n is extended to the length of a message by concatination, and then added
character for character to the message as in the Caesar cipher.

ci = (mi + k(i MOD n)) M00D 26 k ({(A-Z)n)
AREAEXAM -+ TVWTXBSF k - TEST n = 4

There are 26n = 181.41n keys. If n is as great as 28, brute force attack is not practical. Note,
however, that if the key is chosen to be an English phrase, as in the example, then there are only
2 RN - 2 1.6n = 18.48n possible keys. The unicity distance is LOG(18 1.4 1)/3.1 = 1.5n characters in the
strong case and only LOG(18.4 8 n)/3.1 = .51n characters in the weak case. This shows how improper
use of a cryptosystem can considerably weaken it. Here, a cryptanalist will get around 3 times as
much mileage out of his data if the user uses only meaningful keys.

If cleartext is available, the Vignere cipher falls quickly. Differencing the cryptogram and text
produces the key. Each letter of cleartext produces a letter of the key. If no cleartext is available,
statistical tests can reveal n, the length of the key. Once n is known, the Vignere cipher can be
broken by observing that the letters (ci I i-j mod n) for any j are encrypted with a Caesar cipher.

We saw above that .a simple substitution alters the message but does not alter the frequency
distribution. The Vignere substitution, changing as it does from character to character, does change

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 8

the distribution. If the key contains enough randomly distributed letters, then the resulting
cryptogram will have a flat frequency distribution.

However, consider the difference sequence d { di = ci-ci+j for some j}. If j=n then d is
independent of the key. This can be detected using the index of coincidence. If two random strings
are differenced, the probability of a zero in any given position is 1/26=0.0385. If two sections of
running English text are differenced, the probability of a zero in any given possition is 0.8667 due to
the high proportion of some letters. If d is computed for a series of values of j, it will contain about
3.8% zeros except when j=8 MOD n, in which case it will contain about 6.6% zeros.

The index of coincidence is a very important tool of cryptanalysis because it applies in many
more situations than the above. No matter what encrypting relations are selected by the characters
of the key (as long as each relation is a function and the same relation is associated with each
occurence of a character in the key) the index of coincidence can be used to detect when two
segments of cryptogram were encoded using identical segments of key. Another interesting
ramification comes from considering the probability of a sequence of several zeros in a difference
string. This is unlikely to occur, but when it does, it corresponds with high probability to the same
series of message characters encrypted with the same series of key characters.

Girsdansky [Girsdansky 72] describes an interesting attack on the Vignere cipher using
suspected cleartext. Suppose that n has been established, and though no exact cleartext is known, an
enemy expects that a particular phrase P occures somewhere in the message. If P is longer than n, it
can be differenced, which produces a signature which must appear in d wherever P appears in m.

1.5.4.4 POLYALPHABETIC SUBSTITUTION

Suppose that each character of a Vignere like key is used to indicate a different simple
substitution rather than a different Caesar cipher.

ci = (i MOD n)kmi jk ((permutaions of (A .. Z)1 8<j<n

AAA -UCU ik = UQ .. H 2
k = CT ... L n=2

There are 26! n = 10 26.6n keys. For any value of n brute force attack is not practical. The unicity
distance is LOG(10 2 6 .6 n)/3.1 = 28.5n characters. This cipher, like the Vignere, obliterates the
frequency distribution. However, the index of coincidence will still reveal n. The sets of characters
{ci I i=j MOD n} for each j can be attacked as simple substitutions to reveal the jks. Cleartext will
make this task much easier. This cipher is quantitatively more difficult then the Vignere. Much more
text is required for a solution.

1.5.4.5 PSEUDO-RANDOM KEYS

A long key is desired for security, but a short key is desired for practical use. Perhaps some
of the advantages of a long key can be gotton from a short key k by using a function X to expand a
short key into a long pseudo-key k'.

k' = X(k)
It should be noted that from the point of view of a brute force attack, and the unicity distance, such
an expansion has no effect whatever. However, from the point of view of non brute force attacks, it
can be helpfull by making partial information attacks more difficult.

The Vignere cipher uses one particular X, multiple concatination. It is clear that this is not a
good X. It is not good because once an H(k) bit piece of k' is discovered, k can be computed and
therefore the rest of k'. Most other Xs which have been proposed suffer from exactly the same

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 9

problem [Meyer & Tuchman 72; Mellen 731
For example consider pseudo-random number generators such as binary shift register schemes.

They are often capable of generating a sequence of 0(2 H(k)) pseudo-random numbers which can be
combined into a k'. However if just 1 or 2 of these pseudo-random numbers is discovered, usually all
the other numbers before and after them in the sequence can easily be calculated. Only an X which is
designed to make this very difficult can provide a real increment to security.

The techniques described in the previous sections can be used to find segments of k'. If
cleartext is available it is easy. The one real advantage of most pseudo-random keys comes when an
enemy is forced to use a ciphertext only attack. Most ciphertext only methods require several
segments of cryptogram encoded with the same segment of k. The length of k' makes it difficult to
obtain them.

1.5.4.6 SUBSTITUTIONS ON LARGE BLOCKS

Suppose that instead of substituting one character for another as the basic operation, blocks of
n characters are substituted for each other. This is the same as simple substitution on a new
alphabet that has 26 n characters. This implies that there are 26n! > 18 (2 6 n) keys and the unicity
distance is LOG(26n!)/3.1 > 2 6 n = 101.41n characters. For values of n>8 this system offers
theoretical security. However, with that many bits of key, much simpler systems also do. For values
of n>3 it is not practical to handle the key or perform the encryption computation. This system has
never been used for values of n over 2 or perhaps 3 in which case a cleartext attack is still powerful.

This cipher is mentioned here because of the effect it has on statistical analysis. No statistical
analysis is possible except in blocks of characters which are a multiple of n. This makes this system
somewhat powerful in the face of a ciphertext only attack even when n is only 2. The ciphers below
retain a large block size in an attempt to foil statistical analysis while only working with a manageable
subset of the possible substitutions.

1.5.4.7 TRANSPOSITON

A transposition on blocks of size n is one specific type of substitution on blocks of size n. The
characters in the block are permuted but not changed.

Cjn+i = mjn+k i k c (permutations of (8 ... (n-1))) i<n

AREAEXAMIS -, EARXAESAMI k = 312 n=3
There are n! keys (note n! > 18n if n > 25). The unicity distance is LOG(n!)/3.1 characters (which is
> n characters if n > 25). If n>25 transposition is safe against brute force attack. Transformation
leaves the single character frequency distribution unchanged but breaks up the distributions on other
block sizes not =0 MOD n. However it is not strong against cleartext attack. Given the cleartext a
cryptanalyst can see how the letters are rearranged except for problems with repeated characters.
A chosen cleartext attack can be particularly useful in ellucidating particular details of a transposition.
A particular character can be positioned in the messsage and tracked in the corresponding
cryptogram.

Transpositions with a fairly long n are rather difficult to cryptanalyze with a ciphertext only
attack. However, transposition keys are also hard to encrypt with, and as a result, usually only simple
keys such as "write a block of 16 characters into a square by rows and then copy it out by columns"
are used. This makes cryptanalysis easier. The main tool of ciphertext only transposition
cryptanalysis is multiple anagramming. The analyst works on 2 or more cryptograms encrypted with

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 10

the same transposition key. He guesses a part of the transposition in one cryptogram and then tests
it in the others. This works because he can verify how a few of the characters move without having
to know how the rest move (a partial information attack).

1.5.4.8 PRODUCT CIPHERS

What is desired is a complex cipher operating on large blocks. A transposition is a substitution
on a large block size, but it is too simple. General substitutions on block sizes greater than 2 are
impractical. Further, transpositions and substitutions are each closed under composition. The block
size of the result is the least common multiple of the block sizes of the composands. The composition
of two transformations is still too simple. The composition of two practical substitutions still operates
on too small a block size. What about the composition of a transposition of block size m and a
substitution of block size n?

In general, this will produce a substitution of block size LCM(m,n) which is not simply a
transposition. Many ciphers have been designed where n=l and the transposition acts on the same
basic 1 character unit. In this case, it should be noted that the transpositions and substitutions
commute. As a result, composing additional substitutions or transformations has no fundamental
effect.

Consider an m character transformation following a 1 character substitution. There are
26!m! > 10MAX(26,m) keys. The unicity distance is LOG(26!m!)/3.1 > MAX(26,m) characters. Brute
force attack is impractical. Unfortunately, the resulting cipher is not complex enough. The two
ciphers it is built up from can be attacked separately.

Single character statistics reach right through the transposition to give information about the
substitution. The transposition can be directly attacked by using multiple anagramming with the
appearance of normally shaped 2 and 3 letter frequency distributions as a test for success. This
requires many cryptograms and/or a guess at m. Any cleartext provides simultaneous equations for
elements of the two parts of the key greatly speeding the attack.

There is no question that this product cipher is considerably more complex than the ciphers
above given the same size key. However it is also clear that it is not complex enough to provide
practical security. In order to be able to improve the cipher by further compositions the
transpositions must reach inside the substitution characters, ripping them apart. In the past, attempts
to use such ciphers were not very succesful due to the complexity of applying them in practical
situations.

1.6 LUCIFER

LUCIFER was designed by J. L. Smith [Smith 71; Smith, Notz & Ossek 71] closely following the
ideas of H. Feistel [Feistel 70; Feistel 73; Feistel, Notz & Smith 75]. Feistel's basic idea, which follows
the lines set down originally by Shannon [Shannon 49], is to create a cryptosystem CS by composing
a large number of alternating substitutions Si and transpositions Ti.

CS = S1T1S2T2 ... SjTj

Suppose the substitutions operate on blocks of n (for example 8) bits and the transpositions operate
on blocks of m (for example 128) bits. CS is clearly one of the possible simple substitutions on m bit
blocks and is not expressible as a substitution on smaller blocks for almost all choices of the Tis.
Suppose that a key k of H(K) bits is used to select particular Sis and Tis. This creates a cryptosystem
corresponding not to all of the possible substitutions on blocks of m bits, but to a subset of them.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 11

From the point of view of a brute force attack this system is no better than any other system
with 2 H(K) keys. However, it is hoped that the system will look effectively like simple substitution on
m bit blocks to other types of cryptanalytic attack.

LUCIFER is a specific proposal of a cryptosystem of the above type. It operates on 128 bit
blocks using a 128 bit key. It is a composition of 16 stages of substitution and permutation. All of
the permutations are the same, and selected bits of the key act as a polyalphabetic cipher selecting
one of two possible substitutions for bytes of the message at each stage.

The LUCIFER algorithm acts on only one half of the message at each stage. This is done so that
decryption can be accomplished without having to invert the substitutions. After each stage, the two
halves of the message are swapped so that the one which was not touched will get worked on next.

A basic algorithm R is iterated 16 times. It acts on three arguments ml (the first half of the
message) m2 (the second half) and key (the 128 bit key). At each stage R performs a substitution,
XORs part of the key with the result, and then permutes that result. The key is permuted by a
function KP at each stage so that new bits of it come into play. Each bit of the key is used once for
substitution selection and is XORed into the message on 8 occasions. After the 16 rounds, the key is
returned to its original form.

LUCIFER = R(SR) 15

S swaps the two halves ml and m2
R leaves ml unchanged,

sets m2 = m2 xor MP(SEL2(key) xor SUB(P(ml,SELI(key))))
sets key = KP(key) Kp16 =I

MP is a 64 bit permutation
SEL2 selects 64 bits of the key
SELl selects 8 bits of the key

P swaps the halves of each of 8 bytes iff the corresponding key bit is 1
SUB performs SUB8 on even half bytes and SUBI on odd half bytes

SUB8 and SUBI are arbitrary nonlinear substitutions
(P and SUB interact to produce one of two possible substitutions on each byte)

The system is designed so that decryption is accomplished by a minor change in KP. The
specific functions SUBS, SUBI, SEL1, SEL2, P, MP, and KP were chosen to try and achieve three
important properties.

1) Every bit of the cryptogram is a function of every bit of the message and the key. This has
been proven to be true.

2) Given a particular valid message-key-cryptogram triple, holding one item fixed and changing 1
bit of either of the other two will cause each bit of the third to change with a probability of 1/2. This
has been shown to be approximately true by simulation.

3) Given a message cryptogram pair there is no practical way to invert the function to get the key.
No one has found a way, but no one has proven that there isn't a way.

There are 2128 = 3*1838 possible keys. This makes a brute force attack impractical. If
English text was stored one character per byte the redundancy would be 8-1.6=6.4 bits per byte and
the unicity distance would be 128/6.4 = 28 bytes.

Property (3) above prevents direct solution with a cleartext attack. The large block size makes
frequency analysis impractical. Property (2) implies that an enemy will no longer be able to tell when
a key he proposes is nearly correct. Suppose he has two key guesses, k1 and k2, corresponding to
the actual key k. Let c be the cryptogram and m1 , m2, and m be the decryptions of c under the three
keys. Finally, suppose that kj differs from k by only 1 bit while k2 differs from k by 64 bits.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 12

Property (2) above predicts that mi and m2 will both differ from m by 64 bits. There is no obvious

way to tell which key is closer to the correct key. Note that property (2) also implies that 1 bit of

error in transmission will cause the decryption to be totally garbled.

The fact that LUCIFER is immune to brute force attack is a neccessary but not sufficient
condition for LUCIFER to be practically secure. It is believed that LUCIFER may well be practically
secure because property (2) seems to indicate that there may not be any practical partial information
attack on LUCIFER. However it must be stressed that, at least in the open literature, no one has

proved property (2), or proved that it implies that no practical partial information attack is possible.

The best that can be said so far is that no one has developed such an attack.
If LUCIFER is secure, it will revolutionize cryptography. Put on a chip, it could be put in a

calculator like package and used anywhere. It would obsolete other methods of cryptography. It

would also frustrate organizations such as the National Security Agency (NSA) which spends a great

deal of effort cryptanalyzing intercepted communications. For centuries cryptanalysis as been one of

the most effective and productive tools of espionage.

1.7 THE NBS STANDARD

The National Bureau of Standards (NBS) has proposed a standard cryptosystem of the type

discussed above [NBS 75]. It differs from LUCIFER in that it uses a 56 bit key (64 bits with the

parity bits ignored) and works on a 64 bit block. It also differs in a variety of small details though it

still operates in basically the same manner consisting of 16 rounds of substitution, permutation, and

swapping of halves. No study in the open literature comments on whether the small changes make the
NBS system weaker or stronger than a 64 bit LUCIFER.

In any case, there is a glaring weakness in the NBS algorithm [Diffie & Hellman 76b]. There are

only 256 = 1017 keys! This is not large enough to resist a brute force attack. A special purpose

machine which could try 186 keys in parallel in one microsecond could try every key in

185 seconds = 1 day. With current technology a chip which could try 1 key in 1 microsecond would

only cost $10 in quantity. Allowing a factor of 2 in cost for control circuitry, the special purpose

machine above would only cost $20,000,800 or $10,000 a day depreciated over 5 years. At this rate
the average solution (1/2 a day) would only cost $5,000. Worse than that, if the cost of hardware

continues to drop an order of magnitude every 5 years, such a solution would only cost 850 in 1986.

Even the more costly current prices are well within the means of a large organization such as the

NSA.
If the key were increased to 128 bits, then a brute force attack would become

thermodynamically and quantummechanically impractical. Since this increase in key length would not

cost very much money, there is no need to use a weak standard.
There is a deeper problem. Like LUCIFER, no one has publicly shown that the NBS algorithm

can withstand non brute force attack. It is believed [Diffie & Hellman 76b p. 8] that IBM, NSA and
NBS have convinced themselves that it can but none of their studies has been declassified. It seems

foolhardy to accept a national standard that may have a trapdoor in it. In any case the NBS system

simply does not have enough keys to resist brute force cleartext attack.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 13

II. SECURITY OF DATA COMMUNICATION VIA CRYPTOGRAPHY

There are two aspects of security in a data communication link, secrecy and authentication.
Secrecy deals with preventing an enemy from discovering what data is being transmitted.
Authentication enables the receiver to detect any alteration of the data stream by an enemy.

11.1 SECRECY

A cryptosystem can be used to encrypt data transmissions. If the cryptosystem can resist
cryptanalytic attack, and is properly used, then it will provide secrecy. (The issue of the strength of
cryptosystems was discussed above.)

There are three general levels of secrecy recognized [Schmid 76) The first, total secrecy,
requires that an enemy not be able to detect that a particular user has ever been in communication
with a given host computer. A spy requires-total secrecy in his communications. Total secrecy
involves phyisical precautions and will not be discussed here.

The second type of secrecy, traffic flow secrecy, allows an enemy to identify the users who
communicate with a particular host computer. However, it requires that he not be able to tell at any
given moment whether or riot a cryptogram is being transmitted between a given user and the host.
This type of secrecy is particularly important in military situations.

The third type of secrecy, message secrecy, requires that, though an enemy can identify the
cryptograms being sent, he not be able to cryptanalyze them.

11.2 AUTHENTICATION

In order to authenticate a stream of cryptograms, a receiver must be able to show that each
cryptogram was prepared by the expected sender (identity authentication). In addition, he must be
able to show that each cryptogram he receives is in sequence (sequence authentication). A given
cryptogram is in sequence if it arrives at the reciever immediatly after the cryptogram it was created
immediatly after.

In order to authenticate a given cryptogram, there must be redundancy in the cryptogram. This
stands in sharp contrast to the fact that redundancy in a message is a cryptanalytic weakness. The
weakest attack an enemy can mount is to put a randomly generated cryptogram in the channel. In
order to make the probability that this spurious cryptogram will be accepted by the reciever less
than some P, it must be the case that only 1 out of P-1 cryptograms are acceptable. In other words,
there must be -LOG(P) bits of redundancy in each legitimate cryptogram.

It is clear that P cannot be equal to zero while any communication is going on. As a result,
"authentication" below will mean authentication at some level P where P is very small (18-1 8 or
18-38).

It should be noted that even though secrecy has classically been considered the prime function
of cryptography, authentication has always been important. The natural redundancy of the language
of the message has been used for authentication. This redundancy is high enough that it is almost
impossible for an enemy to generate a cryptogram which will not decrypt into gibberish unless he has
broken the cryptosystem.

Unfortunatly, natural redundancy is not very useful in a computer application for two reasons.
First, it is difficult for a computer to recognize this type of redundancy. Second, much of the data
transmitted does not have high natural redundancy. As a result, explicit redundancy bits must be

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 14

used.
In order to achieve authentication at level P with only -LOG(P) bits of redundacy, an enemy

must not have any practical method available to him for generating acceptable cryptograms better
than random generation. It is clear that the bits used for authentication must be so interrelated with
the bits representing the message that it is impossible to change one without having to change the
other. Further, this relationship must be sufficiently random looking so that an enemy has no practical
method of deciding how to change one when he changes the other.

Two basic methods of authentication are used [Widmer 76]. The first method can be used
whether or not the basic transmission to be authenticated is a cryptogram. In this method, an
authenticater tag is attached to the transmission. This tag is composed of -LOG(P) bits of an
encrypted form of the transmission.

The other basic method is applicable only when the transmission to be authenticated is a
cryptogram. In this method a stereotyped tag is added to the basic message before it is encrypted.
This method is only secure when each bit of the resulting cryptogram is a function of every bit of the
message and tag.

As stated, both of the above methods only provide identity authentication. Sequence
authentication can be provided by introducing some time varying aspect to the authentication scheme.
This can be most easily done by making the encryption key or tag field a function of the time or of
prior messages sent.

11.3 KENT'S PROTOCOLS

In order to provide security in a physically unsecure data channel, it is not sufficient merely to
encrypt the data stream which would have been transmitted over a physically secure channel. In
addition, protocols must be developed for initiating a session of encrypted data flow, authenticating
the flow, and recovering from error situations. Many people have addressed aspects of this problem
[Branstad 75; Feistel 73; Feistel, Notz, & Smith 75].

Kent [Kent 76] has proposed a complete set of protocols which are summarized below. He
deals primarily with a situation where encryption is used to secure communication between a user at
a remote terminal and a host computer. At each end of the physically unsecure link, he places a
protection module (PM).

In his proposal, each PM is capable of block encryption (such as the NBS algorithm) and has
three internal registers. One holds the current key, and the other two (R and T) hold counters which
record the number of cryptograms recieved (R) and transmitted (T) since the time of the last key
change. Each message a PM encrypts and sends has a field which identifies the message type and a
tag field which, in general, contains the value of the PMs T counter and a bit identifying the PM. The
level of authentication is determined by the number of bits in the tag field.

For ordinary data transmission, a PM waits untill it has a block full of data characters. It then
packages them together with the value of the T counter, encrypts the result, and sends the
cryptogram to the other PM while incrementing the T counter. Upon decrypting a data message, a PM
compares the tag field with the value of its R counter. It then increments the R counter and accepts
the message if and only if the tag field matched. A message will fail to match if it is garbled in
transmission, illegitimate, or out of sequence.

Whenever a PM fails to authenticate a message it tries to resynchronize the counters in the
PMs. A resynchronization protocol is also initiated from time to time in order to test for interruption
of the data link. To attempt resynchronization one PM (PM1) will send a message to the other with R1

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 15

as its data field. If the other PM (PM2) can authenticate this message it sends a reply message
specifying T2. An accompaning algorithm resets RI and T2 to resynchronized values. This protocol
will break down if TI and R2 are not synchronized, or if the data channel is not open, because PM2
will not recieve an authenticateable message from PM1.

If PM1 does not recieve a reply from PM2 within a reasonable time, it initiates a key change
protocol. In order to change the key, one PM generates a new key at random and sends it to the
other encrypted under the current key with tag field zero. (If the new key is too long to fit in one
cryptogram, then several cryptograms will have to be used.) Both PMs then switch to the new key
and reset their counters to zero. The second PM then sends a message to the first acknowledging the
key change. The tag field of zero allows the protocol to work even if all the counters are
unsynchronized.

A secure data transmission session is initiated by a login protocol as follows. First, a user
signals his desire to login at a terminal. Then the host identifies itself, and the user types in an
identifier. These first three messages are in cleartext.

At this point, the user gives his personal encryption key to the PM at the terminal. The host
looks up the users encryption key and gives it to the PM at the host. Both PMs then go into
encryption mode, and the host PM initiates a key change protocol. The reply of the user's PM to the
key change protocol shows the host PM, through knowledge of the randomly generated key, that it is
not talking to a recording. The host then sends a message containing the data and time in order to
authenticate itself to the user. Knowledge of the user's private key serves as the users password,
and as identity authentication for both PMs.

11.4 ANALYSIS OF PROBLIMATICAL ASPECTS OF KENT'S PROPOSAL

This section focuses on the use of Kent's protocols to secure a data link, and asks four
questions. How transparent is his system? How transparent is it possible for a system to be? How
well does his system recover from error situations? Are there gaps in the security provided by his
protocols?

11.4.1 TRANSPARENCY

There are two levels of transparency: logical and physical. A logically transparent data link
security method can be added to a link without making any other change to the overall system. A
physically transparent method can be added without there being any experiments which a user can
run which will let him know whether or not the method is in use.

An encryption based data link security method cannot be physically transparent unless it
includes a hardware modification which increases the baud rate of the link. This is because the
authentication bits cause two kinds of time effects. First, the fact that these bits must be transmitted
reduces the effective bandwidth of the link. Second, delay is introduced because authentication bits
for a piece of information must be calculated after the piece of information is ready for transmission,
and must be recieved before the piece of information can be authenticated and used.

There is a trade off between these two problems. Suppose that 18 bits of authentication are
desired for each bit of data. The delay can be minimized by sending 18 authenticastion bits with
every data bit. In this case, each bit is delayed 18 bits. However, 90% of the bandwidth of the
channel is waisted. Effective bandwidth can be maximized, at the expence of delay, by having each
authenticator bit apply to many data bits. For example suppose 98 bit blocks are created and sent

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 16

with 18 bits of authentication. Only 18% of the bandwidth is waisted, but some data bits are delayed
by 188 bits.

Logical transparency, on the other hand is achievable. Kent apparently did not have
transparency as a major goal because his protocols fail to be logically transparent in two major ways.
First, the way he handles blocking of characters for transmission requires some change in the external
system to ensure that characters get transmitted when they need to be, even if a block is not full.
For instance, when a user finishes typing a command his it must be transmited. This problem is
further complicated by any echoing. Kent suggests using a local echoing mudule at the terminal to
decide when to pad out blocks, and to do all ordinary echoing. This has the additional advantage of
counteracting some of the physical delay caused by authentication, and of reducing the amount of data
which must be transmitted from the host to the terminal. However a local echoer is a large change in
the external system, and might not work very well with a host program, such as a real time editor,
which does not do very much ordinary echoing.

Second, the user of Kent's protocols has to become directly involved with the encryption
process through his use of the encryption key. The encryption key is actually only used as the user's
password, and as part of a secure key distribution protocol (see below). If some other secure key
distribution protocol can be found, then it is a moot question whether the user needs to have a
password which is as cumbersome as an encryption key has to be. In any case, the introduction of
Kent's protocols into a system requires a change in the password procedure and is therefore not
logically transparent.

11.4.2 ERROR RECOVERY

Kent provides two protocols for achieving resynchronization of the authentication counters
after an error. However, his protocols do not attempt to correct errors. This is left to the external
system. The PMs should be able to use retransmission to correct natural errors and recover from
enemy influence without having to call on the external system.

In addition, it seems reasonable that error correcting codes should be used to deal with natural
errors if they are at all likely since resynchronization and retransmission are time consuming
processes. (This is apparently Kent's intention though it is not stressed in his paper.)

11.4.3 SECURITY

There are two situations where Kent's protocols do not provide automatic sequence
authentication. There is no automatic sequence authentication of the host in the login protocol, which
means that there is no automantic verification that the host cryptograms are not a recording. The
user is required to perform this authentication by reading the login message. The key c.hange
protocol also lacks sequence authentication since the tag field is predictably zero. As a result, there
is no automatic detection of messages lost immediately prior to a key change.

Even assuming, as Kent does, that the block cryptosystem used can resist any cryptanalytic
attack, compartmentalization is still advisable. Kent's key change protocol is a step in the direction of
compartmentalization. However, it provides no compartmentalization in the forward direction. If an
enemy has discovered the old key he can easily find out the new key since it is encrypted under the
old key. In Kent's system true compartmentalization is provided by the change of users. This causes
a switch to a new primary key. Which is used to securely distribute a new encryption key.

The PMs could achieve compartmentalization without reference to the primary key through the

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 17

use of a secure key communication protocol. For example, they could refer to a one time pad.
Alternately, they could use a public key distribution system (when and if one is developed).such as
the proposal based on the oneway function aoX MOD P discussed in section 1.5.2. Both methods
provide excellent authentication.

An additional advantage of having the PMs handle the keys themselves is that it enhances key
security. There need never be any knowledge of the keys outside the PMs. In Kent's proposol, the
existance of the user's private key in a list in the host computer is a security weakness.

The host still has to be able to authenticate the identity of a user. This can be done by having
the host remember a oneway function (when and if one is developed) of the user's password instead
of the password itself [Evans 74 & Purdy 74]. When the user presents his password the host
computes the oneway function of it for comparison, and does not have to remember anything which it
has to hide. This solution could be applied in Kent's proposal as it stands so that the host wouldn't
actually have to remember the value of the user's key between sessions. However, the login protocol
would have to be changed in order to provide authentication of the host (which is currently provided
through the host's knowledge of the key).

A completely separate issue is that of traffic flow security. If the data link is dedicated, then
nothing is lost by transmitting continuously at full rate. All the gaps in the normal transmission can be
filled with pseudo-random noise. If the resulting stream is random enough looking, then it will not be
possible for an enemy to pick the real cryptograms out of the noise. The elimination of identifiable
login protocols is also important. Kent chose not to restrict himself to dedicated data links, and
therefore chose not to try and provide for traffic flow security.

11.5 AN ALTERNATE PROPOSAL

This section proposes an alternate set of protocols in order to explore some of the other
design choices which could be made. The main goal of this alternate proposal is to produce a system
which is as logically transparent as possible to the user and host. The only logical difference seen by
them is that the data link is able to give an active indication if communication is blocked.

In this proposal, the two PMs communicate with each other via three protocols: normal data
transmission, refransmission, and key change. An algorithm is used to convert a block cipher into a
time varying stream cipher. (A somewhat similar method is described in [Branstad 75].) This stream
cipher is used to continuously transmit real and null data in order to provide traffic flow security and
detection of denial of service. The time varying nature of the cipher provides authentication. One
major weakness in this proposal is the lack of any proof of the security of the stream cipher. The
stream cipher is produced as specified in the following program:

SEED' - blockc ci pher (SEEO+CHAR, KEY)
TAG - selectl(SEED')

ENCRYPTEDCHAR = TAG II (CHAR xor select2(SEED))
SEED = SEED'

The. decryption process is similar. Select1 picks L bits from the seed for authentication.
Select2 picks R8 bits of the seed to use for encrypting the character. It can be seen that the
procedure generates a pseudo-random sequence of seeds (dependent upon the character stream, the
initial seed and the key) which is used to encrypt the character stream.

To demonstrate that this is a powerful method, one would have to demonstrate the following
properties. There should be no practical way to derive the key from a sequence of seed values.
Further, there should be no practical way to derive the selected bits of the sequence of. seeds

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 18

without knowing the key. These two properties would guarantee secrecy.
It should be the case that once two sequences diverge, due to a difference in the characters

encrypted, there should be no two streams of characters capable of resynchronization in a practical
length of time. Further, since the tag bits are clearly identifiable, they should be so interrelated with
the character that there is no practical method for changing either, or both, without invalidating the
encrypted character. These two properties would guarantee authentication.

Consider an example of how the authentication process would work with this stream cipher.
Suppose that the LUCIFER algorithm was being used, in which case both the seed and key would be
128 bit numbers. Further, suppose that the tag was 2 bits (L-2) and the characters 8 bits (Rg=8).
Finally suppose that an illegitimate encrypted character is entered into the data channel.

This will cause the seed in the receiving PM to get out of synchronization with the seed in the
sending PM. The illegitimate character. itself will be accepted with a propability 2 -L=2 -2 . This is not
very effective, however, consider the situation after N more charaters have been recieved. The
sequence of seeds will be out of synchrony with these characters even if they are sent by the valid
sender. As a result, the probability of all these characters being accepted is only 2 -LN= 2-2 N. This is
limited by 2-128, which is the random probability that the seed will get back in synchrony.

Suppose authentication at a level of 18-18 or roughly 2-32 is desired. In a block cypher this
would require 32 bits in each block (1/4 of LUCIFER's block and 1/2 of NBS's block). In the example,
this level of authentication exists for all the characters 16 characters old or older (at a cost of 1/5 of
the bits sent). Combined with the fact that the stream cypher is continuously transmitting, this means
that one has only to wait a moment before using a character if authentication is required.

The normal data transmission protocol goes as follows. The cleartext stream is precoded in
order to allow two reserved null characters. The resulting characters are then encrypted and sent.
with the stream cipher system. Encrypted nulls are sent whenever there is no text character to send.
Error correcting codes are used on the encrypted characters in order to correct most natural errors.
The reciever can detect any alteration of the encrypted data stream Mwithin a reasonable time of its
occurence. In addition, it can readily detect any interruption of data transmission.

In order to provide authentication, the receiving PM has to buffer up the last N characters
before sending them on to the external system. This introduces the time delay which which is
required by authentication. Deadlock cannot develop because even if the user stops typing, the
sending PM continues to transmit nulls pushing the last data characters out of the authentication
buffer.

Another important observation is that much of the time the authentication does not have to
cause an N (in the example 16) character delay. This is because of the large number of nulls that the
PMs are sending. This highly predictable behavior can be used for additional authentication because
there is no practical method for an enemy to mimic a high density of nulls.

In the example, the probability of three nulls in row is only about 2- 3 8 which provides as much
authentication as 15 data characters. This greatly reduces the time delay when data transmission is
sparse.

Whenever a receiver detects a problem it initiates a retransmission protocol. In this protocol
the receiver requests that the sender retransmit the last N characters it sent. N is chosen to give the
required level of security. In the example N is 16.

The sender will retransmit the characters, proceeded by an acknowledgement message. The
receiver will compare them with the original characters it received, and correct its buffer as needed.
In order to make this work, the sender must also remember at least the last N characters it has dealt
with.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 19

The retransmission message (and the response message which proceeds the retransmitted
characters) are designed to work and resynchronize the seeds no matter how unsynchronized the
seeds may be. To this end, the messages are recognized by a cleartext heading (for. example 4 zero
bytes). During the normal transmission mode, the senders utilize the two different nulls to insure that
this header never appears. The cleartext heading allows an enemy to detect the messages. However,
they carry no particular information for him since they occur at random intervals or in response to his
actions.

The body of the retransmit message is block encoded under the current key, and contains the
value of the seed at the point where retransmission should start. This seed is determined by the
receiver by backing up its seed generator until a seed is reached which is authenticated at a high
level as being one used by the sender at some time in the past. In the example this requires backing
up over the last 16 characters received. The sender backs up over the characters it sent until it
reaches the same seed. Note that this works even if the sender and receiver disagree on what the
last several characters transmitted were.

A key change protocol is applied whenever retransmission fails to resynchronize the seeds. It
is also applied from time to time in order to provide compartmentalization by switching to a new key
and seeds. Any secure key distribution system can be used for this protocol. Login is completely
independent of the protocols proposed here. It goes on in encrypted form as part of the normal data
traffic.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 20

BIBLIOGRAPHY

Branstad, D.K. (1975) "Guidelines for Iplementing & Using the NBS Encryption Standard" draft of Nov.
1975, to be published by NBS.

Diffie, W. & Hellman, M.E. (1976a) "Multiuser Cryptographic Techniques" AFIPS conf. Proc. v45, 1976,
pp. 109-112.

Diffie, W. & Hellman, M.E. (1976b) "Cryptanalysis of the NBS Data Encryption Standard" submitted to
IEEE spectrum, May 1976.

Diffie, W. & Hellman, M.E. (1976c) "New Directions in Cryptography" to appear in Nov. 1976 IEEE
Transactions on Info. Theory.

Evans, A., Kantrowitz, W. & Weiss E. (1974) "A User Authentication Scheme not Requiring Secrecy in
the Computer" CACM v17 *8, Aug 1974.

Feistel, H. (1970) "Cryptographic Coding for Data-Bank Privacy" IBM research report RC-2827, March
1970.

Feistel, H. (1973) "Cryptography and Computer Privacy" Scientific American, May 1973.

Feistel, H., Notz, W.A., & Smith, J.L. (1975) "Some Cryptographic Techniques for Machine-to-Machine
Data Communications" Proc. IEEE v63 *11, Nov 1975.

Girsdansky, M.B. (1972) "Cryptology, the Computer, and Data Privacy" Computers and Automation,
April 1972.

Hellman, M.E. (1974) "The Information Theoretic Approach to Cryptography" Stanford Univ Information
Systems Lab publication, April 1974.

Hellman, ME. (1975) "The Shannon Theory Approach to Cryptography" Submitted to IEEE Trans on
Info. Theory, Octy 1975.

Kahn, D. (1967) The Code Breakers the Story of Secret Writing MacMillan co. N.Y., 1967.

Kent, S.T. (1976) "Encryption-Based Protection Protocols for Interactive User-Computer
Communication" MIT/LCS/TR-162, May 1976.

Mellen, G.E. (1973) "Cryptology Computers and Common Sense" AFIPS Proc. v42, 1973.

Meyer, C.H. & Tuchman W.L. (1972) "Pseudo-Random Codes can be Cracked" Electronic Design *23,
Nov. 9 1972, pp. 74-76.

NBS (1975) "Computer Data Protecting NBS Standard Proposed" Federal Register v40 #52, March 17,
1975, pp. 12067-12250.

CRYPTOLOGY AND DATA COMMUNICATIONS Richard C. Waters Dec. 1976 Page 21

Purdy, G.B. (1974) "A High Security Log-in Procedure" CACM v17 #8, Aug. 1974.

Pohlig, S.C. & Hellman, M.E. (1976) "An Improved Algorithm for Computing Logarithms Over GF(P) and
Its Cryptographic Significance" Submitted to IEEE Transactions on Info. Theory, June 1976.

Schmid, P.E. (1976) "Review of Ciphering Methods to Achieve Communications Security in Digital Data
Transmission" Proc. 1976 Int. Zurich Seminar on Digital Communications, March 1976.

Shannon, C.E. (1949) "Communication Theory of Secrecy Systems" BSTJ v28, Oct. 1949, pp. 656-715.

Smith, J.L (1971) "The Design of LUCIFER, a Cryptographic Device for Data Communications" IBM
Research Report RC-3326, April 1971.

Widmer, W.R. (1976) "Message Authentication, a Special Identification Requirment in Oneway Digital
Data Transmission" Proc. 1976 Int. Zurich seminar on Digital Communications, March 1976,

