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2 VISUAL INFORMATION PROCESSING

Introduction
Modern neurophysiology has learned much about the operation of the

individual neuron, but deceivingly little about the meaning of the circuits they compose.
The reason for this can be attributed, at least in part, to a failure to recognise what it means
to understand a complex information-processing system.

Complex systems cannot be understood as a simple extrapolation of the
properties of their elementary components.. One does not formulate a description of
thermodynamic al effects using a large set of wave equations, one for each of the particles
involved. One describes such effects at their own level, and tries to show that in principle,
the microscopic and. macroscopic descriptions are consistent with one another.

The core of the problem is that a system as complex as a nervous system
or a developing embryo must be analyzed and understood at several different levels. For a
system that solves an information processing problem, we may distinguish four important
levels of description. At the lowest, there is basic component and circuit analysis -- how do
transistors, neurons, diodes and synapses work? The second level is the study of particular
mechanisms; adders, multipliers, and memories accessed by address or by content. The
third level is that of the algorithm, and the top level contains the theory of the overall.
computation. For example, take the case of Fourier analysis. The computational theory of
the Fourier transform is well understood, and is expressed independently of the particular
way in which it is computed. One level down, there are several algorithms for
implementing a Fourier transform -- the Fast Fourier transform (Cooley & Tukey 1965)
which is a serial algorithm; and the parallel "spatial" algorithm that is based on the
mechanisms of laser optics. All these algorithms carry out the same computation, and the
choice of which one to use depends upon the particular mechanisms that are available. If
one has fast digital memory, adders and multipliers, one will use the FFT, and if one has a
laser and photographic plates, one will use an "optical" algorithm. In general, mechanisms
are strongly determined by hardware, the nature of the computation Is determined by the
problem, and the algorithms are determined by the computation and the available
mechanisms.

Each of these four levels of description has its place in the eventual
understanding of perceptual information processing, and it is important to keep them
separate. Of course, there are are logical and causal relationships among them, but the
important point is that these levels of description are only loosely related. Too often in
attempts to relate psychophysical problems to physiology there is confusion about the level at
which a problem arises - is it related mainly to biophysics (like after-images) or primarily to
information processing (like the ambiguity of the Necker cube)? More disturbingly,
although the top level is the most neglected, it is also the most important. This is because
the structure of the computations that underly perception depend more upon the
computational problems that have to be solved than on the particular hardware in which
their solutions are implemented. There Is an analog of this in physics, where a
thermodynamical approach represented, at least historically, the first stage in the study of
matter. A description in terms of mechanisms or elementary components usually appears
afterwards.
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3 VISUAL INFORMATION PROCESSING

The main point then is that the topmost of our four levels, that at which
the necessary structure of a computation is defined, is a crucial but neglected one. Its study
is separate from the study of particular algorithms, mechanisms or hardware, and the
techniques needed to pursue it are new. In the rest of the article, we summarize some
examples of vision theories at the different levels we described, and illustrate the types of
prediction that can emerge from each.

General remarks about conventional approaches
The problems of visual perception have attracted the curiosity of

scientists for many centuries. Important early contributions were made by Newton, who laid
the foundations for modern work on color vision, and Helmholtz, whose treatise on
physiological optics maintains its interest even today. Early in this century, Wertheimer
(1912) noticed that during apparent motion, the correspondence between wholes or "fields" in
successive frames seemed to amount to more than correspondence between their constituents.
This observation started the Gestalt school of psychology, which was concerned with
describing qualities of wholes (thing-quality, solidarity, distinctness), and trying to formulate
the laws that governed their creation. The attempt failed for various reasons, and the
Gestalt school dissolved into the fog of subjectivism. With the death of the school, many of
its early and genuine insights were unfortunately lost to the mainstream of experimental
psychology.

The next developments of importance were recent and technical. The
advent of electrophysiology in the 1940's and '50's made single cell recording possible, and
with Kuffler's (1953) study of retinal ganglion cells a new approach to the problem was born.
Its most renowned practitioners are D. H. Hubel and T. N. Wiesel, who since 1959 have
conducted an influential series of investigations on single cell responses at various points
along the visual pathway in the cat and the monkey.

Hubel & Wiesel (1962) used the notion of a cell's "receptive field" to
classify the cell types of primary and secondary visual cortex into simple, complex, and
hypercomplex cells. Simple cells are orientation-sensitive and roughly linear: -That is, their
receptive fields are divided into parallel elongated excitatory and inhibitory parts which
summate, and .a simple cell's response to a stimulating pattern is roughly predictable from its
receptive field geometry. Complex cells are not linear, but apparently respond to edges and
bars over a wider range than a simple cell. Hypercomplex cells seem to respond best at
points where an edge or bar terminates. How the different types of cell are connected and
why they behave as they do is controversial.

Students of the psychology of perception were also affected by a
technological advance, the advent of the digital computer. Most notably, it allowed B. Julesz
(1971) to construct random dot stereograms, which are image pairs constructed of dot patterns
that appear random when viewed monocularly, but which fuse when viewed one through
each eye to give a percept of shapes and surfaces with a clear three-dimensional structure.
Such percepts are caused solely by the stereo disparity between matching elements in the
images presented to each eye.

Very recently, considerable interest has been attracted by a rather

Marr



A B

Figure 1. Examples of pairs of perspective line drawings presented to the subjects of Shepard
& Metzler's (1971) experiments on mental rotation. (A) A "same" pair, which differs by an 80
degree rotation in the picture plane; (8) a "same" pair which differs by an 80 degree rotation
in depth; (C) a "different" pair, which cannot be brought into congruence by any rotation.
The time taken to decide whether a pair is the "same" varies linearly with the (3-D) angle by
which one'must be rotated to be brought into correspondence with the other. (reconstructed
from figure 1 of Shepard & Metzler; 1971).
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different approach. In .1971, R. N. Shepard and J. Metzler (1971) made line drawings of
simple objects, which differed from one another either by a 3-D rotation relative to the
viewer, or by a rotation plus a reflection (see figure 1). They asked how long it took to

.decide whether two depicted objects differed by a rotation and reflection, or merely a
rotation. They found that the time taken depended on the 3-D angle of rotation necessary
to bring the two objects into correspondence, not the 2-D angle between their images; and
that it varied linearly with this angle. Similar findings have been reported in many
subsequent investigations, and have led to the resurgence of ideas about mental imagery,
and to analogies between visual recognition and computer graphics systems (Shepard 1975).

Interesting and important though these findings are, one must sometimes
be allowed the luxury of pausing to reflect upon the overall trends that they represent, in
order to take stock of the kind of knowledge that is accessible to these techniques. This
proposal is itself an attempt at examining the link between various current approaches,
including those of neurophysiology and psychophysics. We would also like to know what
are the limitations of these approaches, and how can one compensate for their deficiencies?

Perhaps the most striking feature of these disciplines at present is their
phenomenological character. They describe the behavior of cells or of subjects, but do not
explain it. What is area 17 actually doing? What are the problems in doing it that need
explaining, and at what level of description should such explanations be sought?.

In trying to come to grips with these problems, D. Marr and his students
at the M. I. T. Artificial Intelligence Laboratory have adopted a point of view that regards
visual perception as a problem primarily in information processing. The problem
commences with a large, gray-level intensity array, and it culminates in a description that
depends on that array, and on the purpose that the viewer brings to it. Viewed in this light,
a theory of visual information processing will exhibit the four levels of description that, as
we saw in the introduction, are attached to any device that solves an information processing
problem; and the first task of a theory of vision is.to examine the top level. What exactly
is the underlying nature of the computations being performed during visual perception?

A computational- approach to vision
The empirical findings of the last 20 years, together with related

anatomical (Allman 1972, 1973, 1974a, b & c, Zeki 1971) and clinical (e.g. Luria 1970, Critchley
1953, Vinken & Bruyn 1969) experience, have strengthened a view for which widespread
indirect evidence previously existed, namely that the cerebral cortex is divided into many
different areas that are distinguished structurally, functionally and by their anatomical
connections. This suggests that, to a first approximation visual information processing can
be thought of as having a modular structure, a view which is strongly supported by
evolutionary arguments. If this is true, the task of a top-level theory of vision is clear; what
are the modules, what does each do, and how?

The approach of the M. I. T. Artificial Intelligence Laboratory to the
vision problem rests on these assumptions. We believe that the principal problems at
present are (a) to formulate the likely modularization, and (b) to understand the
computational problems each module presents. Unlike simpler systems like the fly

Marr



6 VISUAL INFORMATION PROCESSING

(Reichardt & Poggio 1976, Poggio & Reichardt 1976), the first step is the most difficult, just
as formulating a problem in physics is often more difficult than solving it for a skilled
mathematician. Nevertheless a variety of clues is available, from psychophysics and
neurophysiology to the wide and interesting range of deficits reported in the literature of
clinical neurology. Those cases in which a patient lacks a particular, highly circumscribed
faculty are particularly interesting (e.g. Warrington & Taylor 1973, Efron 1968); but more
general impairments can also be informative, particularly the agnosias in which higher level
analysis and interpretation are damaged while leaving other functions, like texture
discrimination and figure-ground separation, relatively unimpaired. Such evidence must be
treated with due caution, but it encourages us to examine ways of squeezing the last ounce
of information from an image before taking recourse to the descending influence of high-
level interpretation on early processing. Computational evidence can also be useful in
suggesting that a certain module may exist. For example, Ullman (1976a) showed that
fluorescence may often be detected in an image using only local cues, and the method is so
simple that one would expect something like it to be incorporated as a computational module
in the visual system, even though we are not aware of any supporting evidence, either
clinical, physiological, or psychological. The same may be true of other visual qualities like
glister and wetness, just as it is generally believed to be true for color, motion and stereopsis.

In order to introduce the reader to our approach, the next few sections
present brief summaries of a particular modularization, and the associated theories, that we
have been studying over the last two years and which is illustrated by figure 2. We are
perfectly aware that the particular decomposition chosen here may not be exactly correct,
and even if it is, the separation of modules is certainly not complete. All of the modules
described here have been implemented in computer programs which demonstrate that this
particular scheme works for a number of natural images. Alternative decompositions that
have been tried, in particular those that rely on much more interaction between low-level
processing and high-level interpretation of an image, (e.g. Freuder (1975), Shirai (1973)) have
not hitherto led to such satisfactory and promising results.

1: The Primal Sketch (Marr 1976a)
It is a commonplace that a scene and a drawing of the scene appear very

similar, despite the completely different grey-level images to which they give rise. This
suggests that the artist's local symbols correspond in some way to natural symbols that are
computed out of the image during the normal course of its interpretation. The first part of
our visual information theory therefore asserts that the first operation on an image is to
transform it into its raw primal sketch, which is a primitive but rich description of the
intensity changes that are present. Figure 3 shows an example. In order to obtain this
description, approximations to the first and second directional derivatives of intensity are
measured at several orientations and. on several scales everywhere in. the image, and these
measurements are combined to form local descriptive assertions. The process of computing
the primal sketch involves five important steps, the first of which can be compared with the
measurements that are apparently made by simple cells in the visual cortex. One prediction
made by this part of the theory is that a given intensity change itself determines which
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REPRESENTATION OF 3-D STRUCTURE
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STEREO LIGHTNESS AGGREGATION TEXTURE MOTION
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Figure 2. This diagram summarises our overall view of the visual recognition problem, and it
embodies several points that our approach takes as assumptions. The fir.:ý is that the
recognition process decomposes to a set of modules that are to a first approximation
independent. The simplified subdivision shown here consists of four main stages, each of
which may contain several modules. (1) The translation of the image into a primitive
description called the primal sketch (Marr 1976b); (2) The division of the primal sketch into
regions or forms, through the action of various grouping processes ranging in scope from the
very local to global predicates like a rough type of connectedness; (3) The assignment of an
axis-based description to each form (see figure 4); and (4) The construction of a 3-D model
for the viewed shape, based initially on the axes delivered by (3). The relation between the
3-0 model representation of a shape and the image of that shape is found and maintained with
the help of the image-space processor. Finally, the representation of the geometry of a
shape is separate from the representation of the shape's use or purpose (Warrington &
Taylor 1973).
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Figure 3. 3a shows the image of a toy bear, printed in a font with 16 grey levels. In 3b, the
intensity at each point is represented along the z-axis. 3c illustrates the spatial component of
the raw primal sketch as obtained from this image. Associated with each line segment are
measures of contrast, type and extent of the intensity change, position and orientation. This
image is so simple that purely local grouping processes suffice to extract the major forms
from the primal sketch. These forms are exhibited in 3d, e & f.
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9 VISUAL INFORMATION PROCESSING

simple-cell measurements are used to describe it. This is in direct contrast to theories which
assert that each simple cell acts as a "feature-detector", whose output is freely available to
subsequent processes. If this is true, it requires that a well-defined interaction take place
between simple-cell like measurements made at the same orientation and position in the
visual field but with different receptive field sizes (see Marr 1976a).

2: Stereopsis (Marr 1974, Marr & Poggio 1976)
Suppose that images of a scene are available, taken from two nearby

points at the same horizontal level. In order to compute stereoscopic disparity, the following
steps must be carried out: (1) a particular location on a surface in the scene must be chosen
from one image; (2) that location must be identified in the other image; (3) the relative
positions of the two images of that location must be measured. Notice that methods based
on grey-level correlation between images fail to satisfy these conditions because a grey-level
measurement does not define a point on a physical surface independently of the optics of
the imaging device. The matching must be based on objective markings that lie on a
physical surface, and so. one has to use predicates that correspond to changes in reflectance.
One way of doing this is to obtain a primitive description of the intensity changes that exist
in each image, and then to match these descriptions. Line and edge segments, blobs, and
edge termination points correspond quite closely to boundaries and reflectance changes on
physical surfaces.

The stereo problem may thus be reduced to that of matching two
primitive descriptions, one from each eye. One can think of elements of these descriptions
as having only position information, like the black points in a random-dot stereogram,
although in practise there exist some rules about which matches between descriptive
elements are possible, and which are not. There are physical constraints that translate into
two rules for how the left and right descriptions are combined:
(I) Uniqueness. Each item from each image may be assigned at most one disparity value.
This condition rests on the premise that the items to be matched have a physical existence,
and can be in only one place at a time.
(2) Continuity. Disparity varies smoothly almost everywhere. This condition is a
consequence of the cohesiveness of matter, and it states that only a relatively small fraction
of the area of an image is composed of boundaries.
These conditions on the computation are represented geometrically in figure 4a. Later in
the article, we exhibit a network that implements these conditions, and we illustrate how it
solves random-dot stereograms.

In this case the computational problem is rather well-defined, essentially
because of Julesz's (1971) demonstration that random-dot stereograms, containing no
monocular information, yield stereopsis. It is not yet completely clear however what
mechanisms are actually available for implementing this computation (for instance do eye
movements play a critical role?). As a consequence, it is an open question whether the
cooperative algorithm introduced later is used, or whether simpler "serial" scanning
algorithms may actually be implementing the stereopsis computation (see Marr & Poggio
1976).

Marr



10 VISUAL INFORMATION PROCESSING

Figure 4. The geometry of constraints on the computation of binocular disparity. 4a
illustrates the constraints for the case of a one-dimensional image. Lx and Ly represent the
positions of descriptive elements from the left and right views, and the horizontal and
vertical lines indicate the range of disparity values that can be assigned to left-eye and
right-eye elements. The uniqueness condition states that only one disparity value may be
assigned to each descriptive element. That is, only one disparity value may be "on" along
each horizontal or vertical line. The continuity condition states that we seek solutions in
which disparity values vary smoothly almost.everywhere. That is, solutions tend to spread
along the dotted diagonals, which are lines of constant disparity, and between adjacent
diagonals. 4b shows how this geometry appeats at each intersection point. The constraints
may be implemented by a network with positive and negative interactions that obey this
geometry, because the stable states of such a network are precisely the states that satisfy the
constraints on the computation. 4c shows the constraint geometry for a 2-dimensional image.
The negative interactions remain essentially unchanged, but the positive ones now extend
over a small 2-dimensional neighbourhood. A network with this geometry was used to
perform the computation exhibited in figure 8.

Marr
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3: Structure from apparent motion
It has long. been known that as an object moves relative to the viewer,

the way its appearance changes provides information about its shape, and we are able to use
that information to infer shape. This problem decomposes into two parts: (a) matching the
elements that occur in consecutive frames; and (b) deriving shape information from
measurements of the changes in position between successive frames. It presently looks as
though (a) will yield to a combination of the local preference measures that Ullman (1976b)
has measured psychophysically, and a method similar to that of Marr & Poggio (described
above) for the stereo matching problem; and Ullman (1976b) has solved problem (b).- The
idea is this. In general, nothing can be. inferred about the shape of an object given only a
set of views of it. Some extra assumptions have to be made. Ullman made the assumption
that the viewed objects are rigid, and derived a method for computing shape from
successive views based on this. The method gives results that are quantitatively superior to
the ability of humans to determine shape from motion, and which fall in qualitatively
similar circumstances. He has also devised a set of simple parallel algorithms by which the
method may be implemented.

4: Grouping and texture vision (Marr 1976a)
The primal sketch of an Image is in general a large and unwieldy

collection of data. This is an unavoidable consequence of' the irregularity and complexity of
natural images. The next important computational problem is how to decode the primal
sketch. For most images, it appears unnecessary to invoke specific hypotheses about what is
there until considerably later in the processing. The'theory next. applies a number of quite
general selection and grouping processes to elements in the primal sketch. The purpose of
these processes is to organise the local descriptive elements into forms and regions, which are
closed contour groups that are obtained in various ways. Regions may be defined by their
boundaries,.which have been formed by grouping together some set of edge, line, or place-
tokens; or they may be defined by a first-order predicate operating on the primal sketch
elements within it. This second method corresponds to the definition of a region by a
texture, and it leads to a theory of the processes on which texture discrimination Is based.

It is important to realize that the descriptive items that may be grouped
here can be very abstract - like tokens for the end of a line, a blob, or a constructed line that
joins two blobs. Tokens are created for each new group, and these tokens themselves
become subject to the operation of the same or similar grouping processes as operated on
elements of the raw primal sketch. The grouping processes are very conservative. They
satisfy a principle that seems to have general application to recognition problems, called the
principle of least commitment, which states that nothing should be done that may later have
to be undone. Only "obvious" groupings are made, and where there is doubt between two
possible groupings, both are constructed and held pending subsequent selection. Figure 3
illustrates some results of applying these grouping processes.

5: Representation and recognition of 3-dimensional shape
The last two components of the theory concern the representation of

MIarr



13 VISUAL INFORMATION PROCESSING

three-dimensional shapes. One component deals with the nature of the representation
system that .is used, and the other with how to obtain it from the types of description that
can be delivered from the primal. sketch. The key ingredients of the representation system
are:
(a) The deep structure of the three-dimensional representation of an object consists of a
stick figure, where in formal terms each stick represents one or more axes in the object's
generalized cone representation, as illustrated in figure 5. In fact, a hierarchy of stick
figures exists, that allows one to describe an object on various scales with varying degrees of
detail.
(b) Each stick figure is defined by a propositional database called a 3-D model. The
geometrical structure of a 3-D model is specified by storing the relative orientations of pairs
of connecting axes. This specification is local rather than global, and it contrasts with
schemes in which the position of each axis is specified in isolation, using some
circumscribing frame of reference. (See legend to figure 5).
(c) When a 3-D model is being used to interpret an image, the geometrical relationships in
the model are interpreted by a computationally simple mechanism called the image-space
processor, which may be thought of as a device for representing the positions of two vectors
in 3-space, and for computing their projections onto the image.
.(d). During recognition, a sophisticated interaction takes place between the image, the 3-D
model, and the image-space processor. This interaction gradually relaxes the stored 3-D
model onto the axes computed from the image. Some facets of this process resemble the
computation of a 3-D rotation, but a simple computer graphics metaphor is misleading. In
fact, the rotations take place on abstract vectors (the axes) that are not even present in the
original image; and at any moment, only two such vectors are explicitly represented.

The essence of this part of the theory is a method for representing the
spatial disposition of the parts of an object and their relation to the viewer.

6: 2 1/2 - dimensional analysis of an image (Marr 1976c, Marr & Vatan in preparation)
In simple images, the forms delivered from the primal sketch correspond

to the contours of physical objects. Finally therefore, we need to bridge the gap between
such forms and the beginning of the 3-D analysis described in the previous paragraph. We
call this 2 112 - dimensional analysis, and it consists largely of assigning to contours labels,
that reflect aspects of their 3-dimensional configuration, before that configuration has been
made explicit. The most powerful single idea here is the distinction between convex and
concave edges and contour segments. One can show that these distinctions are preserved by
orthogonal projections, and can be made the basis of a segmenting technique that
decomposes a figure into 2-D regions that correspond to the appropriate 3-D decomposition
for a wide range of viewing angles (see figure 6). Marr (1976c) has proved that the
assumptions, that are implicit in the use of the convex-concave, distinction to analyze a
contour, are equivalent to assuming that the viewed shapes are composed of generalized
cones. This adds additional support for using. the stick-figure scheme based on generalized

Marr
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Figure 5. Examples of 3-D models, and their arrangement into the 3-D model representation
of a human shape. A 3-D model consists of a model axis (a) and component axes (b) that
consist of a principal axis (the torso) and several auxiliary axes (the head and limbs) whose
positions are described relative to the principal axis. The complete human 3-D model is
enclosed in a rectangle (c). The 3-D model representation is obtained by concatenating 3-D
models for different parts at different levels of detail. This is achieved by allowing a
component axis of one 3-D model to be the model axis of another. Here, for example, the
arm auxiliary axis in the human 3-D model acts as the model axis for the arm 3-D model,
which itself has two component axes, the upper and lower arms. The figure shows how this
scheme extends downwards as far as the fingers.
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Figure 6. Analysis of a contour from Vatan and Marr (1976). The outline (a) was obtained
by applying local grouping operations to-a primal sketch, as in figure 4. It is then smoothed,
and divided into convex and concave components (b). The outline is searched for deeply
concave points or components, which correspond to strong segmentation points. One such
point is marked with an open circle in (c). There are usually several possible matching
points for each strong segmentation point, and the candidates for the marked point. are
shown here by filled circles (c). The correct mates for each segmentation point can usually
be found by eliminating relatively poor candidates. The result of doing this here is the
segmentation shown in (d). Once these segments have been defined, their corresponding
axes (thick lines) are easy to obtain (e). They do not usually connect, but may be related to
one another by intermediate lines which are called embedding relations (thin lines in f).
According to the 3-D representation theory, the resulting stick figure (f) is the deep structure
on which interpretation of this image is based.

Marr



a.100-

100

(I I0I I II I I I

100

b.

100

01 III •II

100

100

d.-

100-

0

f.-

100-

SI I I 11 166 1111111100

100

I I I I I I F r I "

100

++ +

+

+ +
* \+ + +

+. +++

I I I I

c.-

100-

a
e.:

100-

C

I

00



Figure 7. (a) and (b) show two views of a water-pail. Warrington & Taylor's (1973) patients
are impaired on (b), but not on (a). This is consistent with the 3-D model representation, for
reasons that are clear from (c) and (d). The outlines of the original figures are shown as thin
lines, and the axis is shown as a thick one. This axis is directly recoverable from image (a),
but not from (b) where it is severely foreshortened. Since the 3-D model representation
relies on an explicit representation of this axis, the successful recognition of views like (b)
requires considerable extra computation.
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cones to represent 3-D shapes. The theory assigns many alternating figure effects like the
Necker cube to the existence of alternative self-consistent labellings computed at this stage.

It is perhaps worth mentioning one interesting point that has emerged
from this way of recognising and representing 3-D shapes. Warrington & Taylor (1973)
described patients with right parietal lesions who had difficulty in recognising objects seen
in "unconventional" views - like the view of a water pail seen from above (see figure 7).
They did not attempt to define what makes a view unconventional. According to our
theory, the most troublesome views of an object will be those in which its stick-figure axes
cannot easily be recovered from the image. The theory therefore predicts that
unconventional views in the Warrington & Taylor sense will correspond to those views in
which an important axis in the object's generalised cylinder representation is foreshortened.
Such views are by no means uncommon - if a 35mm camera is directed towards you, you are
seeing an unconventional view of it, since the axis of its lens is foreshortened.

Examples of algorithms and mechanisms
Between the top and bottom of our four levels lie descriptions of

algorithms and descriptions of mechanisms. The distinction between these two levels is
rather subtle, since they are often closely related. The form of a specific algorithm can
impose strong constraints on the mechanisms, and conversely. Let us consider three
examples.

1: "Simple" algorithms
An algorithm operates on some kind of input and yields a corresponding

output. In formal terms, an algorithm can be thought of as a mapping between the input
and the output space. Perhaps the simplest of all nonlinear operators on a linear space are
the so-called polynomial operators. They encompass a broad spectrum of applications
including all linear. problems, and they approximate all sufficiently smooth, nonlinear
operators. For this particular class of "simple" algorithms (i.e. representable through a
"smooth" operator) polynomial representations provide a canonical decomposition in a series
of simpler, multilinear operators. Figure 8 shows this decomposition in terms of interactions
or "graphs" of various orders: in this way an algorithm, or its network Implementation, may
be decomposed into an additive sequence of simple, canonical terms, just as in another
context, a function can be conveniently characterized by its various Fourier terms.
Moreover, functional and computational properties can be associated with interactions of a
given order and type.

Poggio & Reichardt (1976) used the polynomial representation of
functionals to classify the algorithms underlying movement, position and figure-ground
computation in the fly's visual system. The idea was to identify which terms, among the
diversity of the possible ones, are implied by the experimental data. Figure 8 shows the
graphs that play a significant role in the fly's. control of flight and, in this sense,
characterize the algorithms involved. The notion that seems to capture best the
"computational complexity" of these simple, smooth mappings is the notion of p-order
(perceptron-order, see Poggio and Reichardt, 1976). Movement computation in the fly is of
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Figure 8. Graphical representation (a) of the decomposition of a "simple" nonlinear, n-input
"algorithm"into a sum of interac ons of various order. The functional representation

S(.. x .(t..) - + 1 {x,(t))+ . ILC (xL(t),x (t) + ...
where L is an n-linear mapping, can be read from an akropriate sequence of such elementary
graphs. Fig. 8b shows the graphs that implement the fly's orientation behavior, studied by
Reichardt and Poggio. Several findings suggest that they may correspond to separate
physiological modules. Characteristic functional and computational properties can be
associated to each interaction type. (From Poggio and Reichardt, 1976).
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order 2, and figure-ground discrimination in the simple case of relative motion depends on
fourth-order graphs, but possibly with p-order 2. A closed or Type I (Marr 1976b) theory. of
this kind may be a useful way of characterizing preprocessing operations in nervous systems.
The approach has a rather limited validity however, since it does not apply to the large and
important class of "non-smooth" algorithms, where cooperative effects, decisions and symbols
play an essential role. While an arbitrary number of mechanisms and circuits may
implement these "smooth" algorithms, it is clear that "forward" interactions between neurons
are the most natural candidates.

Although the various levels of description are only loosely related,
knowledge of the computation and of the algorithm.may sometimes admit inferences at the
lowest level of anatomy and physiology. The description of the visual system of the fly at
the computational and functional level suggests, for instance, that different, separate neural
structures may correspond to the different computations. Recent data support this
conjecture. Movement computation seems to depend mainly on receptor system 1-6, while the
position computation seems dependent on receptor system 7-8 (Wehrhahn, 1976 and in
preparation). Mutants of Drosophila, normal with respect to the movement algorithm, are
apparently disturbed in the position algorithm (Heisenberg, in preparation).

2: "Cooperative" algorithms
A more general and not precisely definable class of algorithms includes

what one might call cooperative algorithms. Such algorithms may describe bifurcations and
phase transitions in dynamical systems. An essential feature of a cooperative algorithm is
that it operates on many "input" elements and reaches a global organization via local but
highly interactive constraints. An apparently cooperative algorithm plays a major role. in
binocular depth perception (Julesz 1971). The stereopsis computation defined by figure 4a
applies many local constraints to many local inputs to yield a final'state consistent with these
constraints. Various mechanisms could implement this type of algorithms. Parallel,
recurrent, nonlinear interactions, both excitatory and inhibitory, seem to represent a natural
implementation. In the stereopsis case such a mechanism is illustrated in the rest of figure 4.
This mechanism may be realized through many different components and circuitries. In the
nervous system, however, there are certain very obvious candidates, which allow some
definite predictions. For instance, one is led to conjecture the existence of disparity columns
(actually layers) of cells with reciprocal excitatory short-range interactions on each layer and
long-range inhibitory interactions between layers with the characteristic "orthogonal"
geometry of figure 4. Figure 9 shows that this algorithm succesfully extracts depth
information from random-dot stereograms. The algorithm exhibits typical cooperative
phenomena, like hysteresis and disorder-order transitions. It is important to stress that it is
the computational problem which determines the structure of the excitatory and inhibitory
Interactions, and not "hardware" considerations about neurons or synapses. The apparent
success of this cooperative algorithm in tackling the stereo problem suggests that other
perceptual computations may be easy to implement in similar ways. Likely candidates are
"filling-in" phenomena, subjective contours, figural reinforcement, some kinds of perceptual
grouping and associative retrieval. In fact the associative retrieval network described by
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Figure 9. A pair of random dot stereograms (left and right), the initial state of a network
that implements the algorithm illustrated in figure 4, and various iterations of the network
operating on this stereo pair. To understand how the figures represent states of the
network, imagine looking down on it from above. The different disparity layers in the
network are in parallel planes spread out horizontally, and the viewer is looking down
through them. In each plane, some nodes are on and some are off. Each layer in the
network has been assigned a different gray level, so that a node that is switched on in the
lowest layer contributes a light point to the image, and one that is switched on in the top
layer contributes a darker point. Initially (iteration 0) the the network is disorganised, but in
the final state order has been achieved (iteration 14). The central squares have a divergent
disparity relative to the background, and they therefore appears lighter. The density of the
original random dot stereogram was 50%, but the algorithm succeeds in extracting disparity
values at densities down to less than 5%. Let Cxyd denote the state of a cell (either 0 or I) in

the 3-D array of fig. 4b in position (x, y) and disparity d at the n-th iteration. Then the
algorithm used here reads

(n+ (C) (n) to)
xyd ' ue • ~ x'y'd' I- d + xyd }'(.y,•d) OCAy,d)

where u,(z) = 0 if z < q, and u (z) = 1 otherwise; S(xyd) is a neighborhood of cell (xyd) on
the same disparity layer; O(xyd) represents the neighborhood of cell (xyd) defined by the
"orthogonal" directions shown in Fig. 4b. Excitation between parallel disparity layers may
also be present.
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Marr (1971), in connection with a theory of the hippocampal cortex, implements a cooperative
algorithm.

3: Procedural algorithms
Still another and larger class of algorithms is represented by the

specification of procedures, and the construction and manipulation of explicit symbolic
descriptions. For example, the 3-D representation theory described in part 5 of the previous
section explains how the stick figure representation of a viewed object may be obtained
from an image, and manipulated during recognition. The detailed specification of the
algorithms involved here is carried out by defining the datastructures that are created to
represent the situation, and by specifying procedures that operate on these datastructures in
accordance with the information currently being delivered from the image, and that
available from stored models.

This way of specifying an algorithm is very general and powerful,
although unlike the two other ways that we discussed, it is a far cry from the circuitry level
of description at which neurophysiological experiments are carried out. In a digital
computer, one does not try to bridge the gap between these two levels in one step. Instead, a
basic instruction set, an assembler, a high level language (LISP, ALGOL) and a compiler
are interposed to ease the burden of passing from the description of a computation down to
the specification of a particular pattern of current flow.

We may eventually expect a similar intermediate vocabulary to be
developed for describing the central nervous system. Hitherto, only one non-trivial
"machine-code" operation has been studied in the context of neural hardware, namely simple
storage and retrieval functions (Marr 1969 & 1971, and Brindley 1969).

Discussion
The prospects for this approach to the problems of visual information

processing look very bright. In one case, that of stereopsis, we have been able to carry out a
complete analysis of the problem, starting with the structure of the computation, and
following it right down to psychophysical and neurophysiological predictions. As far as we
are aware, this is the first time that this has been done. Although the cerebellar theory of
Marr (1969) provided a theory of a particular mechanism (of associative memory) and its
neurophysiological predictions, it did not show how this mechanism could be used to execute
motor skills. The stereopsis theory also contains what we believe is the first use of a
cooperative algorithm to solve an information processing problem. As a psychological model
the theory may of course be shown to be false, and part of its value is that it can be. Even
if it is, we feel that it exhibits the correctform for a theory in this subject, and is valuable if
only because of that. Another point of particular interest is the way that clues from clinical
neurology, and predictions about such findings, are often combined by a computational
theory with information about neurophysiology and psychology (e.g. the 3-D theory
described above). We feel that this aspect of the research, together with the extensive use of
psychophysical techniques, will become increasingly important as the theories' details are
worked out.
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The research that needs to be done falls'into two main ca~tegories,
research at level 3 on algorithms, and research at level 4 on the manry computational
problems that have not yet been examined. An example of the first type is to understand
the relation between various types of best-fit associative retrieval algorithm; the cooperative
algorithm of Marr (1971); Elia's algorithm and Rivest's extensions of it (see e.g. Rivest 1974);
and Poggio's algorithm based on the Moore-Penrose pseudo-inverse of a singular matrix
(Poggio 1975). An understanding of the power of these algorithms, and of the relation
between them, seems to be an essential prerequisite for studying neural networks for
retrieval. This in turn is probably an important problem, because most computations
demand that, at some stage, information is retrieved from a store and used.

Examples of the second category are abundant. The modules we have
already described need to be cleaned up; there are many problems in figure-ground
separation, texture vision, color vision and other early phenomena that need careful study,
and later areas of visual information processing are almost untouched. The importance to
this research of establishing good communication between the disciplines of computer
science and experimental psychology needs no emphasis, since that is how computational
theories can ultimately be put to the test. As far as we can tell, an interdisciplinary approach
to the vision problem based on a theoretical computational approach of the kind we have
described, stands poised to make a significant contribution to our knowledge of visual
perception.
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Figure 8. Graphical representation (a) of the decomposition of a "simple" nonlinear, n-input
"algorithm"into a sum of interactions of various order. The functional representation

St ..x(. = + C., (n(t)) + I 1  JxL(t fx(t) ( ...
where L is an n-linear mapping, can be read from an aropriate sequence of such elementary
graphs. Fig. 8b shows the graphs that implement the fly's orientation behavior, studied by
Reichardt and Poggio. Several findings suggest that they may correspond to separate
physiological modules. Characteristic functional and computational properties can be
associated to each interaction type. (From Poggio and Reichardt, 1976).
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