
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 113 March 29, 1973

ON SOLVING THE FINDSPACE PROBLEM, or

How to Find Out Where Things Aren't

Gregory F. Pfister

This report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory's artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval
Research contract NOOO14-70-A-0362-0006.

The FINDSPACE problem is that of finding a volume, in a bounded space

containing impenetrable objects of fixed position and orientation, where

another object of specified dimensions will fit. In two dimensions it

corresponds to deciding where to put something down on a cluttered table.

The genesis of the problem name is a function in the block manipulation

programs of Winograd's natural language understanding system [1]. The

applicability of this problem to robotics is clear.

Sussman noted [2] that the FINDSPACE problem appears to involve two major

subproblems: a proposer, to suggest a position for an object; and a

verifier, to check if the suggested position is feasible. The task of

the verifier is more straightforward. It tests whether an object with

a given position and orientation intersects with any of a set of fixed

objects. The proposer, o.i the other hand, appears difficult due to the

presumed difficulty of finding "the places where objects are't" -- in two

dimensions, those areas on a bounded plane not occupied by other objects.

In fact, finding "where objects aren't" -- the FINDEMPTYSPACE (or FES)

problem -- can be done very efficiently in two dimensions. This working

paper presents an efficient solution which generalizes well to three di-

mensions. The solution presented is a simple modification of the well-

known Warnock algorithm [3] for removing hidden lines from three-dimen-

sional pictures consisting of planar polygons. The critical inner loop

test of the FES algorithm presented is basically Sproull and Sutherland's

algorithm [4] for "clipping" line segments where they cross a rectangular

area. The exact inner loop test needed has a hardware implementation in

the Evans and Sutherland LDS-! display system [5]. The test also may be

implemented efficiently in software.

DATA:

This solution uses data in the following form:

(1) the left, bottom, right, and top coordinates of the area

to be considered.

(2) a list of polygons. Each polygon is represented as an

ordered list of (X,Y) vertex coordinates, obtained by a

walk around the polygon.

The area under consideration is assumed to be rectangular, and its sides

are assumed to be parallel to the coordinate axes.

The polygons may be interpreted as the outer boundaries of the figures

obtained when objects "resting on the plane" are projected isometrically

onto the plane.

Which vertex starts each polygon list is irrelevant.

The polygons may be arbitrarily complex: they may be concave, they may

intersect, and they need not be realizable physically (lines connecting

vertices may cross).

TOP-LEVEL ALGORITHM

The solution proceeds first by examining each polygon and putting it into

one of the following classes:

I. The polygon totally surrounds the area

II. The polygon lies totally outside the area

III. The polygon intersects or lies inside of the area.

(Clearly, every polygon falls into one of those classes. The classifica-

tion algorithm is crucial, and is described below).

If any polygon is in class I, FES gives up, since clearly there is no

free space available.

If all of the polygons are in class II, FES tells the verifier that the

entire area is free, and terminates. (The verifier should be a co-routine

of FES).

Otherwise, FES recurses: It divides the "total area" in half, using, in

alternate recursions, a vertical or horizontal line. It passes each

"half area", and all the polygons in class III, to each of two separate

recursions. This recursion terminates ultimately when an initially chosen

resolution limit is reached.

The top-level algorithm is a log search for free areas; it has the good

quality that it tends to find large free areas first. Warnock's original

algorithm was, of course, interested in areas of class I; these were passed

to a display file. The originial algorithm also recursed fourfold at each

step, dividing the total area into four quadrants. This is, in fact,

probably a good recursion/iteration tradeoff if the polygons are uniformly

distributed rather than bunched. Since the algorithm converges to areas

immediately surrounding polygons very quickly, thereby "bunching" polygons,

fourfold recursion may always be better for this algorithm; it was not

specified because it makes the verifier work harder; by unnecessarily

splitting free areas.

CLASSIFYING POLYGONS

First, consider intersection. If no line of the polygon intersects the

total area, the polygon does not intersect the total area. Each line,

defined by successive pairings of vertices, can be tested as follows:

(1) if either endpoint lies inside the area, the line intersects

the area or lies totally within it.

(2) if both endpoints simultaneously lie above, below, to the

left, or to the right of the area, the line does not inter-

sect the area.

(3) if the line satisfies neither of the above conditions, find

its midpoint and recurse on each half.

The "recursion" in step (3) can be done by an iteration, since one-half

of the line is always trivally in or out according to step (1) or (2).

Also, note that if the endpoints are translated to coordinate systems

based on the edges of the area, the tests in (1) and (2) are sign tests.

-5-

The ultimate termination is again done by a resolution limit (possibly

different from that of the top-level algorithm).

This is another log search. Sproull and Sutherland's original algorithm

continued until it found the point of intersection between the line and

an edge of the area.

If no line of a polygon intersects the area, the polygon could either

surround the areaor lie outside it. This can be tested by counting

how many times any ray from within the area crosses lines of the polygon.

If the direction of the crossing is counted -- +1 for counterclockwise,

-1 for clockwise -- a result of 0 means the polygon lies outside. A

directed intersection check is conveniently done as part of the inter-

section test if the ray chosen is colinear with a side of the area.

The classification algorithm presented here is implemented as the

"minimum effort mode" of the Evans and Sutherland LDS-1 display.

GUIDING THE SEARCH:

The search for free areas can be made somewhat faster -- by making the

areas found larger -- if "interesting" positions for splitting the area

are used instead of a simple half-and-half split. Such "interesting"

positions are:

(1) the locations of vertices within, or on the edge of, the area

(2) the intersections of lines with the edge of the area.

In fact, use of vertex locations above produces good results for little

effort, since it produces areas where diagonals are lines (the optimum)

and can be computed as a side effect of classifying polygons. Intersec-

tions are probably not worth the effort.

Which of a group of vertices is "most interesting" is a harder question

to answer, and the speed with which the top-level algorithm converges im-

plies that not much time should be spent answering it. One reasonable

ordering is by "Manhattan distance" (AX + AY) from the area center.

On the other hand, the verifier could possibly help by indicating where

it would like to find more free area, since using and passing such in-

formation down in recursion would not require much work. The most impor-

tant help this could give would be an indication of which side to re-

curse down first.

The latter considerations lead to thoughts of a program to do a guided

breadth-first search. The recursion depth could be controlled by

manipulating the top-level (not classifier) resolution limit, and the

branch followed next could be determined by the verifier. Excessive

complexity should be guarded against, however, since situations where

such complexity is "needed" will probably find the verifier being the

real weak link: how do you translate and rotate an object to fit in

the free space you already have? (This "verifier" itself contains a

proposer and a verifier; the inner verifier is clearly a full hidden-

surface test.)

THREE DtMENSIONS

The top-level algorithm obviously generalizes to three dimensions,

using a rectangular volume and planar polyhedra. The classifier,

however, must now worry about intersections of three-dimensional

planar polygons with a rectangular volume. This is a special case of

the hidden surface problem. If arbitrary polygons are allowed, even

this special case is difficult to solve. However, if all polygons

are triangularized, the following extension of the two-dimensional

classifier works:

(1) if any of the three vertices are inside the volume, the

triangle intersects the volume.

(2) if all three vertices are simultaneously above, below, left of,

right of, in front of, or in back of the volume, the triangle

does not intersect the volume.

(3) otherwise, recurse using the centrold of the triangle (vector

sum of vertices divided by 3) to define three triangles within

the given one.

This has the unfortunate characteristic that only one of the three

triangles in the recursion will necessarily terminate trivially on the

next step.

I suspect that there is a non-recursive and/or faster way to do this.

Line intersections with the volume can be computed by a trivial extension

of the two-dimensional classifier, and this will lead to faster "trivial"

detection of intersection In many cases, However, it is unclear whether

the extra computational overhead is worth it; experiments are In order.

If line intersection information can easily be combined wtth above/below

etc. vertex information to also increase the number of non-intersections

"trivially" found, I believe that the line intersection computations

would stand a very good chance of being justified.

It should be noted that the type of algorithm presented here is not

complete in a practical sense. Simply finding an appropriate free

volume is not enough, since one also needs to know the path an object

must take to reach the volume. This significantly harder problem does

not appear in the two-dimensional problem, since for practical cases

the latter is always embedded in three-dimensions (a cluttered table).

CONCLUSION

This memo has presented a method for finding the unoccupied space in

a bounded plane containing arbitrary polygons, and has indicated how

the method can be extended to the three-dimensional case.

The full FINDSPACE problem, however, has not been solved. In particular,

little has been said about either (1) consolidating the separate rectangular

free areas produced into larger, irregular areas; or (2) deciding whether

a given object actually fits into such an irregular free area. This has

been assumed to be the domain of the verifier.

However, the solution described has the good property that if it is done

breadth-first, the largest free areas are found first. This means that

in an uncluttered plane, i.e., one with large free areas, an extremely

"stupid" verifier can be successfully used. Moreover, if the polygons

are restricted to being rectangles oriented along the coordinate axes,

as in the original problem context of Winograd's blocks manipulator, an

optimal verifier is not very complex. In addition, the algorithm presented

will be extremely efficient in this context.

For the case where the bounded plane is very cluttered with general

polygons, it was noted that the verifier can guide the algorithm presented

so as to aid the verification process. An optimal verifier for this case

will be very complex, since it must incorporate a general pattern matcher

(and possibly a jigsaw puzzle solver). Of course, people don't do too

well in the bad cases either.

BIBLIOGRAPHY

Winograd, T., A Computer Program for Understanding Natural Language,
M.I.T. Ph.D. dissertation, February, 1971.

Sussman, G., The FINDSPACE Problem, M.I.T. A.I. Laboratory Memo No. 286,
March, 1973.

Warnock, J., A Hidden Surface Algorithm for Computer Generated Halftone
Pictures, University of Utah Ph.D. dissertation.

Sproull, R., and Sutherland, I., A Clipping Divider, Proc. AFIPS
1968 FJCC, Vol. 33, Pt. 1, AFIPS Press, Montvale, N.J., pp. 765-775.

------- , Line Drawing System Model 1, System Reference Manual, Evans and
Sutherland Computer Corporation, 3 Research Road, Salt Lake City,
Utah, November, 1970.

.I

