
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 112 October 1975

ASSIGNING HIERARCHICAL DESCRIPTIONS TO VISUAL
ASSEMBLIES OF BLOCKS WITH OCCLUSION

Michael R. Dunlavey

Abstract

This memo describes a program for parsing simple two-dimensional piles of blocks into
plausible nested subassemblies. Each subassembly must be one of a few types known to the
program, such as stack, tower, or arch. Each subassembly has the overall shape of a single
block, allowing it to behave as part of another subassembly. Occlusion is represented by an
area of the image plane whose contents cannot be seen. Heuristic aspects of the program are
concerned with 1) ambiguity among competing subassemblies due to sloppiness of the
placement of the blocks, 2) ambiguity due to uncertain measurements of blocks which are
partially occluded, and 3) total ambiguity as to the contents of the occluded region.

Choice among competing subassemblies is accomplished by first making a topological
description of the network of conflicts among subassemblies, then considering only the
simplest competing subset. If this. does not clearly indicate a winner, the system can make an
in-depth comparison of the internal structures of the last two competing subassemblies.

Uncertainty as to measurements of blocks is handled by creation of a disjunction of
more certain blocks, each of which participates in the parsing process. If this disjunction
results in a pair of competing subassemblies, only one is used, the other being hidden as an
alternate to the first, so that the choice of which will be accepted can be deferred. This is a
deferrable choice because the alternate subassemblies are so closely similar that the parsing
process does not depend on choosing one of them.

Uncertainty due to occlusion is handled by allowing a potential subassembly to use the
occluded area as a "wild card", meaning that if the subassembly can be completed by creating
a block which intersects the occluded area, it is so completed. Such an imaginary block may
later be consolidated with a real one, or it may remain imaginary.

The reason for studying this problem is to become acquainted with the program and
data structure needed to assign a nested structural description to a complicated visual
assembly in which occlusion makes the data incomplete. The extension to 3-dimensional
descriptions should be straightforward.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the
laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office
of Naval Research contract N88814-75-C-8643.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4406521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PAGE 2

The problem is the following: Given a collection of blocks,
represented as rectangles in two dimensions, all aligned vertically or
horizontally, the task is to divide the collection into a hierarchy of
plausible subassemblies. An example is the following collection of blockes

which could be parsed as follows:

ARCH

ARCH

STACK



PAGE 3

Occlusion is simulated by means of an artificial blind spot, a rectangle of

CCLUDED
EGION

for which at least two parsings are plausible:

with B being more plausible due to symmetry of the scene.
The reason for studying this problem is that it addresses the same

issues of program and data structure as in the full three-dimensional
problem, while being considerably easier to program. The issues addressed
are 1) what is a good parsing strategy when all the input data is known,
but when the subassemblies are not always well-formed, and 2) how should
ambiguity and expectation interact when some of the input data is known to
be unavailable?

Data Structures

The system is a breadth-first bottom-up parser. It is a loop, taking
the BLOCKS list as real input, identifying potential objects, choosing a
winner, replacing it in the BLOCKS list, and starting over. The principal

unk



PAGE 4

data structures for the program are the following:
Parameters -- Parameters take the place of numbers in the descriptions of

blocks. A parameter is a list of the form:
(value certainty-flag)

where the value is usually numeric, and the certainty-flag is either
T - known,
NIL - uncertain,
> - uncertain but not lower, or
< - uncertain but not higher.

BLOCKS -- a list of all the blocks currently acting as known input to the
parser. Each block may be from the original scene or may be the
result of replacing some subassembly. A block is an atom, such as NB-
1, having a Lisp value and some properties. The Lisp value is a 4-
tuple of parameters:

(min-X max-X min-Y max-Y)
specifying position and size. The block may also have some optional
properties:
OB -- if the block stands for an assembly of other blocks, this

property contains a list describing that assembly, such as:
((81 B2) ARCHL 8.3 (NB-i 81 82 83)(B1 B2 83))

where (B 8B2) is the seed pair from which the arch was found,
ARCHL indicates the type of object - an arch discovered from the
left side, 8.3 is a crude measure of the well-formedness of the
arch, 0.8 being perfect, the sum of internal relationship
measures, (NB-i 81 82 B3) gives the name of the overall block
along with the names of the constituent blocks in a particular
order corresponding to thespecific parts of the arch, and (B1 82
83) is simply a list of all the constituents of the assembly.

ALTERNATE -- if present, points to another block which could be
substituted for this one. This is a result of an ambiguity where
the same assembly of blocks could be described two different
ways. This is a qualitatively less important kind of ambiguity
than that between conflicting subassemblies. It is a deferrable
choice.

OBS -- a list of potential objects, or subassemblies in the scene. This is
generated by running program FINOOBS against BLOCKS. It is a list of
hypothetical blocks, each having an OB property describing. its
constituents and type of assembly. FINDOBS is an optimistic program,
so the potential objects that are found usually conflict with one
another, by sharing constituents, so the next step is to try to find
the best one. This cannot be done on the basis of the well-formedness
measure because it is too crude, so first the system attempts to see
if there is any recognizable pattern among the conflicts between the
potential objects.

CFNETS -- the list of disjoint conflict nets, generated by function GOBBLE
applied to OBS. Each conflict net is of the form

(type bl b2 b3 ...)



PAGE 5

where bl b2 b3 ... is the list of potential objects contained in the
conflict net, and where the possible types, in order of increasing
complexity are:

NONE - signifying a singleton net (no conflicts),
PAIR - two conflicting potential objects,
CHAIN - signifying a chain of conflicting potential objects, from
bl to the last,
STAR - meaning the conflicts converge upon a central potential
object, b2, bl being one point.
MESS - none of the above.

The least complex conflict net is chosen and stored in variable CFNET.
This is then passed off to a specialist for finding the winning
potential object out of a conflict net, or possibly generating a new
potential object, as in the case of an NSTACK subassembly. The
winning potential object then takes the place of its constituents in
the BLOCKS list, completing one cycle of the parser, except for
possible consolidations.

Algorithms

Finding Potential Objects

Program FINOOBS takes a list of blocks considered to "really exist"
and returns a list of possible arches and stacks in that set of blocks. It
works by calling program SYS on every possible pair of blocks. SYS takes
the pair

(a b)
and sees if either they form a stack:

or there is a third block c such that they form an arch:

These perceptions are based on numerical-valued spatial relationships,



PAGE 6

where 0.0 is considered perfect, and 0.25 is typical of a marginal value.
A two-dimensional spatial relation between blocks is expressed as a
conjunction of one-dimensional relations, those between the projections of
the blocks onto the horizontal and vertical axes. For example, for two
blocks to be a stack, the vertical projections extend, but the horizontal
projections marry:

EXTENDPY(A B), MARRYPX (A B)

The other one-dimensional relationships are:

MARRY

HANGOVER

OVERLAP

AWAY

EXTEND

In terms of these relations, an arch has the ideal description:

EXTENOPY(A B),
EXTENDPY(C B),
MARRYPY(A C),

HANGOVERPX(A B),
HANCOVERPX-(C B),
AWAYPX(A C)

However, these relationships can be less than perfect, in which case their
values will be greater than zero, while still reporting the assembly as a
potential object. For example, the following are accepted:

F__



PAGE 7

Li
A simple threshold on the sum of
grouping as a potential object.
potential grouping:

D
the relationships is used to admit the
One (a b) pair may result in more than one

STACK

r ý I

ARCH

ARCH

SYS and FINDOBS simply report all of these. It is not appropriate to use
the numerical value to choose among them because it is too crude. . This Is
handled later by conflict specialists.

If there is no uncertainty in the scene, there is no more to say about
what FINDOBS does. If there is uncertainty, it takes two forms:

F-1 I I I

b II-- M Fý r "

r-

j4

-, J|

b IIrII F- if,-



PAGE 8

1) Uncertain dimensions of a block, such as

where the max-X value of a block is given, but it might be higher,
represented by the parameter:

(4.8 >)

2) an occluded area in the scene, represented by a rectangle, which might
be hiding anything.
The two kinds of uncertainty are qualitatively different. In the case

of an uncertain dimension, for example B2 above, whose max-X value is
uncertain, SYS simply generates two blocks, one the same size as 82, and
one somewhat longer, and uses these as distinct possibilities instead of
B2. These two new blocks, called B2-1 and B2-2 are stored on the SONS
property of B2. These are then treated as- two separate blocke in place of
B2, and SYS behaves for the moment as though these were two separate
blocks, possibly resulting in conflicting potential objects. Here is a
scene containing both kinds of ambiguity: UNCERTAIN

nturuc Tr nu

OCCLUDED
REGLON

If the ambiguity due to uncertain measurement results in two separate
potential objects:

then only one of them is returned, the other being stored under the
ALTERNATE property of the first. This is an example of a deferrable choice
because each grouping is just about as good as the other for parsing
purposes, having the same height and using up the same blocks from the
scene, so it is wise to attempt to hide this ambiguity from the subsequent

=> OR.



PAGE 9

conflict-resolution phase so as to simplify that task.
The second kind of uncertainty does not readily predict its

alternatives, so SYS waits for a potential object to suggest what
occluded area. For example, if SYS is trying to complete an arch,
find no right legi

H
it constructs a hypothetical
occluded areat

is in the
but can

right leg and sees if it intersects the

If so, it assumes the right leg exists (with suitably
measurements) and proceeds as though it had seen it.
right leg has the same internal structure (if any) as

uncertain
It also assumes the
.the left leg:

LMACINED OBJECT

Conflict Resolution

In this program, the strongest form of conflict between potential
objects is the sharing of a constituent. This is certainly not an eternal

F



PAGE 10

rule, but is most useful as a first approximation because it has great
power to disambiguate. The analysis of conflicting potential objects
proceeds in two steps. First the network of conflicts is partitioned into
connected subnets, each of which is classified by topological type, and all
but the simplest are discarded. For example, in the following scene:

three potential objects are reported by FINDOBS,
B4), forming a chain of conflicts. The types of

NONE a MESS

PAIR

(B1 82), (B2 B3), and (B3
conflict nets are:

ANYTHING ELSE

0-0

CHA N a--o--.--

STAR

If the simplest conflict net is of type MESS, an attempt is made to
reclassify it after first discarding all but the best potential objects on
the basis of numerical score. This is the only point at which numerical
score is used to discriminate among potential objects. This situation
arises if FINOOBS has for some reason been overly optimistic and has found
too many potential objects among a small set of blocks. Such a set of
potential objects is likely to be almost completely connected by conflicts.

The second phase of conflict analysis is to apply a specialist program
to the simplest conflict net found. The specialist returns the winning
potential object, or possibly a new potential object. For example, the
CHAIN-SPECIALIST normally selects one end or the other of the chain,
whichever is more certain (doesn't have an alternate). However, in the
case of a chain in which every potential object is a stack, this indicates
the presence of a single stack of more than two blocks, or an NSTACK, which
is returned as the winning potential object.

In the case of a simple PAIR of conflicting objects, the PAIR-
SPECIALIST goes to greater lengths to determine the winner, For example,
in the following scene, there are two potential arches:



PAGE 11

64
U-'

al - (B1 62 83) score

a2 * (81 B4 B5) score

8.3

8.4

which conflict by having B1 in common. First the conflict block is found,
namely 81, along with its name in each arch, that is, a, b, or c. Then, in
each arch, the relationships in which B1 participates are computed, and
these are compared one by one (where the program already knows the
correspondence between relationships).

81 in al
extendpy(a b) = 8.0
hangoverpx(a b) - 8.8
marrypy(a c) - 8.8

B1 in a2
extendpy(a b) - 8.2
hangoverpx(a b) - 08.8
marrypy(a c) = 8.2

Since there is a clear winner on a relationship-by-relationship comparison,
al is chosen. This kind of in-depth comparison is necessary rather than
using the simple overall scores because those scores are too easily
influenced by factors having nothing to do with the conflict, such as the
shape of 83.

Consolidating Predicted and Discovered Objects

Sometimes it is necessary to combine objects.
following scenes

In analyzing the

the final cycle of the system produces the fo!louing structures

II



PAGE 12

OBJECT WITH IMAGINED
RIGHT LEG ASSEMBLY

STACK ARCH

The shaded arch was created to complete the overall arch (due to
occlusion), before the structure on the right was parsed.

The hypothesized arch is compared with the stack in program UNIT-
MATCH. Since they overlap, and since their known measurements are the
same, they are considered as matching. Since the stack has an alternate
which is of the same type as the hypothetical arch, the alternate is chosen
instead. Since the match is successful, a small program is created which
will replace all pointers to the imagined arch by pointers to the "real"
arch, which program is subsequently executed.


