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Abstract. We describe a method to use structured representations of the environ-
ment’s dynamics to constrain and speed up the planning process. Given a problem
domain described in a probabilistic logical description language, we develop an
anytime technique that incrementally improves on an initial, partial policy. This
partial solution is found by first reducing the number of predicates needed to
represent a relaxed version of the problem to a minimum, and then dynamically
partitioning the action space into a set of equivalence classes with respect to this
minimal representation. Our approach uses the envelope MDP framework, which
creates a Markov decision process out of a subset of the full state space as de-
termined by the initial partial solution. This strategy permits an agent to begin
acting within a restricted part of the full state space and to expand its envelope
judiciously as resources permit.

1 Introduction

For an intelligent agent to operate efficiently in a highly complex domain, it must iden-
tify and gain leverage from structure in its domain. Household robots, office assistants,
and logistics support systems, for example, cannot count on problems that are carefully
formulated by humans to contain only domain aspects actually relevant to achieving the
goal. Generally speaking, planning in a formal model of the agents entire unadulterated
environment will be intractable; instead, the agent will have to find ways to reformu-
late a problem into a more tractable version at run time. Not only will such domains
require an adaptive representation, but adaptive aspirations as well: if the agent is under
time pressure to act, then, we must be willing to accept some trade-off in the quality of
behavior. However, as time goes on, we would expect the agent’s behavior to become
more robust and to improve in quality. Algorithms with this characteristic are called
anytime algorithms [?]. Anytime algorithms can operate either off-line (working until a
specified time limit) or by interleaving refinement with execution.

Consider the problem of going to the airport. There are many features that might
exist in your world view (the current time, what kind of shoes you are wearing, etc),
but you might start the planning process by considering only road connections. Then,
with a basic route in place, you might then make modifications to the plan by consid-
ering traffic levels, the amount of gas currently in the tank, how late you are, and so
forth. The point is that by starting with a reduced representation to solve a principled



approximation of the problem, we can begin to act sooner and expect that our solution
will improve upon more reflection.

The basic idea we are interested in, then, is simple: first, find a plan; then, elaborate
the plan. One early technique in this vein was proposed by Dean et al. [1], who intro-
duced the idea of Envelope MDPs, used in an algorithm called Plexus. Given a planning
problem represented as an atomic-state MDP [2], Plexus finds an initial subset of states
by executing a depth-first search to the goal, forming a restricted MDP out of this subset.
The state space for the restricted MDP is called the envelope: it consists of a subset of the
whole system state space, and it is augmented by a special state called OUT represent-
ing any state outside of the envelope. The algorithm then works by alternating phases
of policy generation, which computes a policy for the given envelope, and envelope
alteration, which adds states to or removes states from the envelope. This deliberation
can produce increasingly robust and sophisticated plans.

The difficulty of planning effectively in complex problems, however, lies in main-
taining an efficient, compact model of the world in spite of potentially large ground
state and action spaces. This requires moving beyond atomic-state MDPs. Therefore,
we will represent problems in the richer language of relational MDPs and present an
extension of the envelope MDP idea into this setting. One additional advantage of rela-
tional representation is that it exposes the structure of the domain in a way that permits
modifying, or adapting, the representation with respect to the goal. For example, if our
goal of getting to the airport is not merely to arrive there, but to avoid security trouble,
we might take our shoes into consideration from the outset.

Our technique will start with the basic idea mentioned above, but with additional
steps for efficiently handling relational domains. These steps are: 1) reformulating the
given problem in terms of the most parsimonious representation, β for the given task;
2) finding an initial plan in the space expressed by β; 3) constructing an abstract MDP
from the initial subset of states; and, 4) expanding the abstract MDP by both adding
new states and/or refining the representation, β. Whereas the original Plexus algorithm
refined its plan by adding new states to an existing envelope, the Relational Envelope-
based Planning approach (REBP), provides a framework for also adding new dimensions
to the plan.

2 Compactly modeling large problems

A well-specified planning problem contains two basic elements: a domain description
and a problem instance. The domain description specifies the dynamics of the world,
the types of objects that can exist in the world, and the set of logical predicates which
comprise the set of relationships and properties that can hold for the objects in this
domain. To specify a given problem instance, we need an initial world state, which is
the set of ground predicates that are initially true for a given set of objects. We also need
a goal condition, which is a first-order sentence that defines the task to be achieved. The
dynamics of the domain must be expressed in a particular rule language. In our case, the
language used is the Probabilistic Planning and Domain Definition Language (PPDDL)
[3], which extends the classical STRIPS language [?,?] to probabilistic domains. We will



use the term “rule” or “operator” when we mean an unground rule such as it appears in
the domain description, and we will use “action” to denote a ground instance of a rule.

To ground the discussion, let us consider an example using one of our test domains,
the “slippery” blocksworld. This domain is an extension of the standard blocks world in
which some blocks (the green ones) are “slipperier” than the other blocks. The pick-up
and put-down actions are augmented with a conditional effect that produces a different
distribution on successful pick-up and put-down when the block in-hand is green. While
color may be ignored for the purposes of sketching out a solution quickly, higher quality
policies result from detecting that the color green is informative. [4]

The domain description contains the types of objects available in the world (in this
case, blocks and tables), and a list of the relationships that can hold between objects of
particular type (e.g., on(A,B), where A is a Block and B is a block or a table). Finally,
the rules in the slippery blocks domain consist of two operators, each containing a
conditional effect that can produce a different outcome distribution:

pickup(A,B) :

on(A,B) ∧ ∀C.¬holding(C) ∧ ∀D.¬on(D,A))

−→


.9 holding(A) ∧ ¬on(A,B)
.1 on(A, table) ∧ ∀E.¬on(A,E)

when(isgreen(A)) −→
{
.6 holding(A) ∧ ¬on(A,B)
.4 on(A, table) ∧ ∀E.¬on(A,E)

put(A,B) :

holding(A) ∧A 6= B ∧ ∀C.¬on(C,B))

−→


.9 ¬holding(A) ∧ on(A,B)
.1 ¬holding(A) ∧ on(A, table)

when(isgreen(A)) −→
{
.6 ¬holding(A) ∧ on(A,B)
.4 ¬holding(A) ∧ on(A, table)

A particular problem instance consists of a ground initial state, such as, e.g.:

on(block0,block2), on(block2,table), on(block4,table),

isblue(block0), isred(block2), isblue(block4)

and a goal, such as:

∀B.type(B, block) ∧ on(B, table), or

∃B1.type(B1, block)∧∃B2.type(B2, block)∧B1 6= B2∧on(B1, B2)∧on(B2, table).

Unless the context is ambiguous, we will leave future type specifications implicit in
the text.

A domain description together with a particular problem instance induce a rela-
tional MDP for the problem instance. An classical MDP is defined as a tuple, 〈Q,A, T ,R〉
where: Q is a set of states; A is a set of actions; T is a transition function; and R is a
reward function.



Similarly, we define a relational MDP (RMDP) as a tuple 〈P,Z,O, T ,R〉, thereby
defining an analogous set of states, actions, transitions, and rewards:

States: The set of states Q in an RMDP is defined by a finite set P of relational pred-
icates, representing the relations that can hold among the finite set of domain ob-
jects, O. Each RMDP state is an interpretation of the domain predicates over the
domain objects.

Actions: The set of ground actions, likewise, is induced, by the set of rules Z and the
objects in the world.

Transition Dynamics: For the transition dynamics, we use a compact set of rules Z as
given in the domain description. A rule applies in a state if its precondition is true
in the interpretation associated with the state.
For each action, the distribution over next states is given compactly by the distri-
bution over outcomes encoded in the rule schema. The rule outcomes themselves
usually only specify a subset of the domain predicates, effectively describing a set
of possible resulting ground states. To fill in the rest, we assume a static frame: state
predicates not directly changed by the rule are assumed to remain the same.

Rewards: A state is mapped to a scalar reward according to function R(s).

Given these foundations, we can now begin to put together our approach.

3 Equivalence-based planning

The first requirement for an envelope MDP approach in the relational case is a method
for finding the initial envelope of states. Equivalence-based planning [5] was originally
developed as a way of speeding up planning by identifying equivalence classes of ac-
tions in relational MDPs. The algorithm uses a graph isomorphism-based definition of
equivalence among states. It works by representing each class of states and actions by
a single canonical exemplar and planning only within the space of exemplars, rather
than in the original, ground state and action spaces. This technique produces a prov-
ably complete planning algorithm and can keep the number of effective actions from
increasing combinatorially in large domains.

State equivalence is determined by representing a state s as a state relation graph,
Gs, where each node in the graph represents an object in the domain and each edge be-
tween nodes represents a relation between the corresponding objects. Nodes are labeled
by their type and with any unary relations (properties) that apply to them. Two actions
applicable in a given state s are defined to belong to be equivalent if they transition to
equivalent successor states.

In this paper, we extend this idea by allowing the representation of the state rela-
tion graph itself to be adaptive. The motivation is that the fewer predicates we have in
our representation, the fewer edges or labels there will be in the state relation graph,
resulting in more states being considered equivalent.

Specifically, we begin the planning process by first making a deterministic approx-
imation of the original planning problem. Operators are assumed to deterministically
produce their most likely outcome. Next, we identify the minimal set of predicates, or
basis, necessary to solve a relaxed version of the problem. We mean “relaxed” in the
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Fig. 1. In the original set of predicates representing the problem, βfull, states s1 and s2 are
distinct. But in the reduced basis βmin, without colors, an isomorphism Φ can be found between
the state relation graphs Gs1 and Gs2.

sense of the well-known Fast-Forward heuristic (FF) [?], which is the heuristic in use
by the forward-search algorithm to guide the search. Computing the heuristic value of
the initial state gives a lower bound on the number of steps required to achieve the goal.
It also gives an estimate of the smallest set (though not the order) of actions necessary
to achieve the goal from the initial state. The minimal basis is found taking this set of
actions and including only those predicates that appear in the goal statement and in the
preconditions of those actions. The planning problem is then reformulated with respect
to this minimal basis set, β. See Figure 1 for an example of formulating a ground state
with different bases.

The forward-search algorithm for REBP with a minimal basis set is given in Algo-
rithm 1. By extending the machinery of the envelope-deliberation framework, which we
will see shortly, β can be later refined and augmented to improve policy robustness.

4 Computing an abstract envelope

Now we will use the output of the deterministic planning process to bootstrap an MDP
and directly address uncertainty in the domain. The output of the planning phase is a
sequence of canonical actions, which corresponds to a sequence of canonical states. The
canonical states are represented in a basis set of predicates that may be smaller than or
equal to the set of predicates originally given in our domain description.



Input: Initial state s0, goal condition g, set of rules Z
Output: Sequence of actions from s0 to a goal state
1. Find a minimal representational basis, β
2. Find canonical initial state, s̃0
2. Initialize agenda with s̃0
while agenda is not empty do

Select and remove a state s from the agenda
if s satisfies goal condition g then

return path from root of search tree to s
else

Find representative set A′ of actions applicable in s
foreach a ∈ A′ do

Add the successor of s under a to the agenda

Algorithm 1: REBP forward-search algorithm. A′ denotes the set of canonical actions, each
of which represents an equivalence class of actions.

We will use this abstract state sequence to initialize an abstract, envelope MDP,
which we will manipulate this envelope MDP in two ways: first, as in the original Plexus
algorithm, we will sample from our policy and incorporate states off the initial path; sec-
ond, new to this work, we will incorporate additional dimensions to the representation
to increase the accuracy in our value estimate.

Because each state in our MDP is an abstract state, we must allow for the possibility
that the dynamics driving the transition between abstract states may differ depending
on which underlying ground states are participating in the transition. Instead of a scalar
probability, then, we represent each transition probability as an interval. Interval MDPs,
and the corresponding Interval Value Iteration algorithm, were first shown by Givan et
al. [6, 7].

Let us formally define an abstract-state, interval envelope MDP (called an AMDP for
short) as an extension of the basic relational MDP.

An AMDP M is a tuple 〈Q, β,Z,O, T ,R〉, where:

States: The full abstract state space,Q∗, is defined by a basis set β of relational predi-
cates, representing the relations that hold among the equivalence classes of domain
objects, O. The set of states Q, is the union of the set Q′ ⊆ Q∗ and a special state
qout. That is, Q = Q′ ∪ {qout}. The set Q′, also called the envelope, is a subset of
the entire abstract state space, and qout is an additional special state that captures
transitions from any q ∈ Q′ to a state outside the envelope. Through the process of
envelope expansion, the set of states Q will change over time.

Actions: The set of actions, A, consists of the ground instances of the set of rules Z
applicable in Q′.

Transition Dynamics: In an interval MDP, T gives the interval of probabilities that a
state and action pair will transition to another state: T : Q×A×Q → [R,R]. We
will see how to compute this transition function in the sections below.

Rewards: As before, state is mapped to a scalar reward according to function R(s).



4.1 Initializing the abstract-state envelope

In this section, we look at how to compute the initial set of states Q by bootstrapping
from the output of the planning phase.

Each state qi ∈ Q′ of our AMDP M is a composite structure consisting of:

1. s̃i: a canonical state, in which we represent only the canonical members of each
object equivalence class and the relations between them.

2. Si: a set of underlying ground states consistent with the above canonical state.

The first state, q0, is computed from the initial state of the planning problem straight-
forwardly: the set S0 is initialized with the ground initial state of the planning problem,
and the canonical state s̃0 is the canonical representative, with respect to basis β.

We compute the second state, q1, by taking the first action, a0, in our plan. The next
canonical state s̃1 is computed by propagating s̃0 through a0. The ground state of q0
can be efficiently propagated as well, and, we add the result to S1. This procedure is
repeated until we’ve processed the last action. More formally, the procedure to compute
the envelope, with respect to basis β, from a plan p is in Algorithm 2.

Input: Canonical initial state s̃0, Plan p, Basis β
Output: Set of envelope MDP states Q′

Initialize q0 with s̃0 and with S0 = {s0}
Initialize Q′ = {q0}
foreach action ai in p, i = 0 . . . n do

Propagate s̃i to obtain s̃i+1

Propagate each si in Si to obtain si+1

Initialize qi+1 with s̃i+1 and with Si+1 = {si+1}
Q′ = Q′ ∪ {qi+1}

Algorithm 2: Computation of envelope given a plan.

At this point, we have a set of MDP states Q′ = ∪n+1
i=0 {qi}. To complete the set of

states, Q, we add the special state qout.
This procedure lets us keep a record of the true ground state sequence, the si’s,

as we construct our model. Why do this, when we’ve gone through so much trouble
to compute the canonical states? The problem is not that any individual ground state
is too large or difficult to represent, but that the combined search space over all the
ground states is combinatorially much larger. Without ground information around in
some form, it will be impossible to determine how to modify the basis set later.

While each MDP state keeps around its underlying ground state for this purpose,
it is only the canonical state that is used for determining behavior. Since a canonical
state represents a collection of underlying ground states, the policy we compute using
this approach effectively encompasses more of the state space than we physically visit
during the planning process.



4.2 Computing transition probabilities

Now that we have a set of states Q, we need to determine the possible transitions be-
tween the states inQ. First, we compute the nominal interval probabilities of transition-
ing between the canonical states. The nominal probabilities represent the best estimate
of the intervals given the abstract model and the current ground information stored in
the model. Second, we sample from our underlying state space to flesh out the interval
of probabilities describing each transition. That is, we start from the ground state, and
sample a sequence of ground transitions. If any of these sampled transitions corresponds
to an action outcome with a probability outside of the current interval estimate, we add
that informative ground state to the collection of ground states associated with the corre-
sponding abstract state, and update the interval accordingly. We will speak of updating
a probability interval P = [a, b] with the probability p, which means: if p < a, then P
becomes [p, b]; if p > b, then P becomes [a, p]. We adopt a sampling approach, rather
than an analytic approach based on rule syntax, to avoid having to use, e.g, theorem
proving, to decide whether two logical outcomes in fact refer to equivalent successor
states. These two steps, the nominal interval computation and the sampling estimation,
are executed as part of a loop that includes the envelope expansion phase: each time a
new state is added, it will be necessary to re-estimate the transition probabilities.

We compute the nominal interval probabilities by:

1. For each state qi, find the set of actions Ai applicable in s̃i.
2. For each action ak ∈ Ai and state qj ∈ Q′ compute the transition probability

between qi and qj :
(a) Initialize the ground transition probability. That is, take the first ground state in

Si and propagate it through action ak. If the resulting ground state is equivalent
to qj with respect to the basis β, and p is the probability of the outcome of ak

corresponding to that transition, then set the probability of transitioning from
qi to qj via action k as the interval Pijk = [p, p].

(b) For each remaining ground state si
n ∈ Si, compute the probability p′ of transi-

tioning to qj via action ak.1 Update interval Pijk with p′.
3. Compute the probability of transitioning to qout from qi and ak. This involves keep-

ing track, as we execute the above steps, of the overall out-of-envelope probability
for each ground application of the action ak. More precisely: for each s ∈ Si,
when we apply ak and detect a transition of probability p to a state within the enve-
lope, we update ak’s out-of-envelope probability with 1 − p. This ensures that the
out-of-envelope probabilities are consistent for each representative action, ak.

Figure 2 shows an example of an abstract MDP M after the initial round of nominal
interval computation. In this example, the initial world state is s00. The goal is to put
three blocks in a stack, regardless of color. The deterministic planning process returns a
sequence of actions: pickup(3, table), put(3, 1). The abstract envelope MDP has been

1 Strictly speaking, we will need to use the inverse of the mapping φ between s and s̃i to translate
the action ak into the analogous action applicable in s. This is because, while s may belong
to the equivalence class of states represented by s̃i, it may have objects of different actual
identities belonging to each object equivalence class.



computed from this plan to produce the set of states in the figure, The various parts of
the AMDP are labeled, and the collection Si of each abstract state contains only a single
element at this point.

Next, in order to improve our interval estimates, we do a round of sampling from
our model. The idea is to try to uncover, via this sampling, any ground states that yield
transition probabilities outside of our current interval estimates. This is done as follows:

1. For each state qi ∈ Q′, action ak ∈ Ai, and state qj 6=i ∈ Q′: let the ground state s′

be the result of propagating a state si
n ∈ Si through ak.

(a) If there exists a state qk such that the probability of transitioning from s′ to qk
under an action is outside of the current interval for transition of qj to qk for
that action, add s′ to the set Sj of qj .
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Fig. 2. The abstract MDP after computing the nominal transition probabilities. For simplicity, we
only show a subset of the possible actions. For example, the action pickup([1], [2]), which is
applicable in state s̃0, would have a transition to OUT with probability [1.0, 1.0] since there is no
state in the current model that represents the outcome of taking this action.

5 Changing the representation

At this point, we have constructed our MDP with an abstract state space and with prob-
abilities represented as intervals. We may like, however, to add a predicate, or set of
predicates, into the basis β in order to tighten these intervals and lessen the uncertainty
in our value estimates. In addressing the issue of modifying the basis, we are confronted
very naturally with a type of structure search problem, which we describe next.
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Fig. 3. The abstract MDP after a round of sampling to update transition interval estimates. State
s′ = s11 was sampled from s00, and it yielded a transition probability to s̃2, outside of the current
estimate of P120 (assuming the action put([3], [1]) has index 0 for s̃1). Thus, we add ground state
s11 to the collection S1 and update our estimate for P120.

The point of augmenting the basis set is to be able to express transition probabilities,
and thus the expected value of a policy, more precisely. To construct a procedure for
modifying the basis, we begin by noting that the transition probabilities are encoded in
the rule schemas given as part of our domain description. Therefore, in our case, a β
that is missing some potentially useful predicates will lack the capacity to determine
the applicability of either an action containing such predicates or a conditional outcome
depending on such predicates. For example, consider our slippery blocks world: the
minimal basis may ignore color completely, depending on the goal. While this minimal
representation speeds up the planning by allowing blocks of different colors to be put
into the same equivalence class, it does not model the fact that blocks of color green will
experience a different transition probability via the conditional outcome of the pick-up
and put-down actions.

The basic mechanism is to add a procedure, proposeBasis(r, β), which takes as an
argument a rule r and the current basis β, and returns a list of candidate predicate sets
to be added to the basis. What does it mean for an operator to propose a predicate set?
Consider the pick − up operator, which has the condition isgreen(A) on an effect.
To produce a new representation β′ which can determine if the condition is applicable,
then the operator must propose the set (which may simply be a singleton) of required
predicates missing from the current β. In the case of our example, this is simply the
predicate isgreen(). If more than one additional predicate is required to express a con-
dition (e.g., isgreen(A) ∧ isblue(B)), then a classic structure search problem occurs:



no benefit will be observed by augmenting β with isgreen until isblue has also been
added. Thus, because we know we are dealing with rule schemas of this sort, we can
take the shortcut of proposing complete sets of missing predicates for a given condition.

The principal place in the algorithm in which to refine the representation is as a
part of the existing envelope-refinement loop. In this loop, we keep a sorted list of the
transitions in our MDP. Currently, we sort transitions in descending order by width of
the interval; i.e., the maximally uncertain transitions are at the top of the list.2 Then,
when we need to suggest a refinement, we start with the transition at the top of the list
and request the associated operator’s proposal.

The second opportunity comes when we reach a representational “failure” point. In
the process of sampling from actions that were not originally in our optimistic plan, and,
thus, made no contribution the original choice of basis, computing their effects might
have unexpected results. This becomes obvious when we produce an outcome state that
has no applicable actions. We call this a “failure” point, and we deal with it as follows.
First, we remove, as much as possible, the trajectory that leads to this state. We do this
by iterating backward from the failed state until we either reach the initial state, or, a
state that has more than one incoming transition. At this point, we re-route that single
outgoing transition to the OUT state. We set a flag that disallows any future sampling
from that action. Then, starting from the offending state, we work our way backwards
through the transitions until we find a transition with that has a non-empty predicate
set to propose. If we do find one, we add this proposal to the list of candidate predicate
sets. Then, the next time the MDP considers a new proposal, it selects from this list.

Once we have a proposal to try, we initialize a new MDP using the original plan and
the new basis. Then, the regular phases of policy improvement and envelope expansion
happen for both of them in parallel. We can add as many parallel MDPs as desired. In our
current implementation, we set the limit at n=5 interval MDPs in parallel. The reason for
keeping a number of MDPs in parallel is that the basis-refinement algorithm is greedy.
The first time a proposal is requested from the first abstract MDP the interval with the
widest range is chosen. But it might turn out to be that the second and third proposals
jointly produce the highest-performing representation. (An MDP traks its proposals and
does not make the same one twice.) We would never discover this better performing
representation if we only kept the first modification. Again, this is a common structure
search issue. Keeping a list of the top performing MDPs is a simple way of avoiding
local minima caused by greedy search, but certainly more sophisticated search control
should be considered.

At any given time, the policy of the system is that of the MDP with the highest policy
value. The general REBP algorithm is given in Algorithm 3.

6 Experiments

In this section we examine a set of experiments done in three different domains. The
objective in each domain is to compute a high-valued policy with as compact a model
as possible. We will look at the various ways of combining the techniques described in

2 We could imagine sorting this list by other metrics. For example, we could be risk-averse and
sort them by the lower value bound.



Input: Init. state s0, Goal condition g, Set of rules Z
Output: An abstract MDP, M
Compute minimal basis representation, β
Let plan P = REBPForwardSearch( s0, g, Z )
begin Initialize envelope MDP M with P and β :

Compute transitions and transition probabilities for M
Do interval value iteration in M until convergence

end
Initialize a list of MDPs m = {M}
while have time to deliberate do

foreach MDP Mi in m do
Do a round of envelope expansion in Mi

if failure to find applicable action in a state q′ then
Remove the q′ from Mi

Select the first non-empty proposal basis, β′, corresponding to the sequence
of actions between q′ and q0
if β′ not empty then append to the front of the list of proposals, li

else
Sort transitions of Mi in descending order
Compute a proposal basis β′ from the top transition
if β′ not empty then append β to end of list li

Do interval value iteration in Mi until convergence
if li not empty then

Select a basis β′ from the list
Construct a new MDP M ′ with plan P and basis β′.
Append M ′ to list m of MDPs.

Sort the list m by decreasing average policy value
Let M be the MDP at the top of the list m

Algorithm 3: Overall REPB algorithm.

this work, and we’ll try to identify the impact of each on the behavior we observe. The
different algorithms are:

Complete Basis + Initial Plan (full-init): This is the basic relational envelope-
based planning algorithm with no basis reduction. A plan is found in the original
representation basis, and this plan initializes a scalar-valued envelope MDP.

Minimal Basis + Initial Plan (min-init): This is an extension of REBP that first
computes a minimal basis set for the representation. No further basis modifica-
tion is done, so we use a scalar-valued MDP in this approach as well.
item[ Adaptive Basis + Initial Plan] (adap-init): This is the full technique: a min-
imal basis plus an interval MDP for basis and envelope expansion.

No initial plan (full-null, min-null, adap-null): To control for the impact of
the initial plan by combining each style of equivalence-class representation with a



trivial initial envelope consisting of just the initial planning state.

Propositional (prop-init, prop-null): Finally, to control for the impact of the
equivalence classes, we initialize a scalar-valued MDP in the full, propositional (no
equivalence classes) with an initial plan, and with the initial state, respectively.

The domains are:

Slippery blocksworld: This is the same domain described in section 2. For reference,
ground problem size in this domain ranges from 4, 000 states and 50 actions in the
5-block problem to 3× 1079 states and 5, 000 actions in the 50-block problem.

Zoom blocksworld: a different extension of blocks world in which the standard action
set is augmented by a one-step move action. This action achieves the same effect
as, but is less reliable than, a sequence of pick-up and put-down. However, in or-
der to switch to using the pick-up action, the “holding” predicate must be in the
representation. The state spaces are the same as the above problem, but the ground
action space ranges from 175 actions in the 5-block problem to 130, 000 actions in
the 50-block problem.

MadRTS world: this domain is an adaptation of a real-time military logistics plan-
ning problem. 3 The world consists of a map (of varying size; six territories in the b
problems and 11 in the c), some soldiers (ranging from two to six in each problem
series), some enemies (ranging from one to four), and some food resources (from
one to five). The goal is to move the soldiers between territories so as to outnum-
ber the enemies at their location (enemies don’t move). However, the success of
a move action depends on the health of the soldier. A soldier can transfer, collect,
and consume food resources in a territory in order to regain good health. Ground
problem size ranges from 12, 000 states and 30 actions in the smallest (b0) problem
to 1× 1020 states and 606 actions in the largest (c2).

Trials were carried out as follows: REBP forward search was executed to find an
intial plan, if required, and then an MDP was initialized (with or without an initial partial
solution); then, a specified number (about 100) rounds of deliberation were executed.
This number was selected somewhat arbitrarily, but it was enough to allow the adaptive-
basis and the fixed, minimal-basis algorithms to converge to a locally optimal policy.
To compute the accumulated reward during execution, about 900 steps of simulation
were run in each problem (corresponding to roughly 8 successful trials in the blocks
worlds), selecting actions according to the policy, and selecting an action randomly
%15 of the time. This was done to see how the policy behaves over a broader part of the
state space. In the interval MDPs, action selection is done by choosing the action with
the highest average value. A reward of 1.0 was given upon attainment to the goal, and

3 Our PPDDL version of this problem was adapted from a scenario originally described by the
Mad Doc Software company of Andover, MA in a proposal to address the Naval Research
Lab’s TIELT military challenge problem [8]. While no longer taking place in a real-time sys-
tem, we call this planning domain the MadRTS domain to signal this origin.



we report the average accumulated reward per step. All results are averaged over 10-12
trials, initialized with different random seeds, for each algorithm. Complete results are
available in [4].
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Fig. 4. Comparison of accumulated reward for the initial-plan-based algorithms.

Figure 4 shows the accumulated reward (averaged per step) obtained during exe-
cution in the simulated domains. Due to space limits, we do not show the correspond-
ing results for the null-envelope approaches, since they generally performed poorly
compared to the initial-plan-based approaches. In addition, for those algorithms that
achieved a non-zero policy, we indicate the approximate average size of the MDP at
convergence to this policy and the computation time. If a data point is missing from the
graph, the trials ran out of memory before finishing the specified number of deliberation
rounds.

In the Slippery blocks-world, the adaptive-basis approach performs slightly better
since it can incorporate the green predicate in order to distinguish the green blocks
and formulate a policy to avoid them. In the Zoom blocks-world, the difference is more
marked: the adaptive-basis approach can formulate a completely new policy out of the
more reliable pick-up and put-down actions, avoiding the less reliable, but faster, single-



Slippery
Domain Size prop-init full-init min-init adap-init

5 .089 .090 .092 .088
7 .093 .092 .091 .104
10 .105 .110 .105 .110
15 - .092 .106 .111
20 - - .105 .111
30 - - .110 .110
50 - - .110 .111

32 states 25 states
350 sec 400 sec

Zoom
Domain Size prop-init full-init min-init adap-init

5 .140 .150 .105 .151
7 .140 .151 .115 .152
10 .138 .140 .101 .153
15 - - .110 .155
20 - - .114 .143

54 states 34 states
280 sec 560 sec

MadRTS - World B
Domain Size prop-init full-init min-init adap-init

b0 .086 .099 .110 .106
b1 .066 .090 .108 .106
b2 .080 .091 .108 .107

25 states 19 states
20 sec 25 sec

MadRTS - World C
Domain Size prop-init full-init min-init adap-init

c0 .061 .067 .077 .078
c1 .031 - .062 .061
c2 - - - .054

41 states
500 sec

Fig. 5. Full numerical results corresponding to Figure 4.



step zoom action. The representation in the fixed-minimal-basis approach contains the
necessary predicates to enable the zoom action but not pick-up. In the MadRTS exper-
iments, being able to identify a minimal predicate set proved crucial to gain traction
in the domain. We also note that, in general, the adaptive-basis algorithms are able to
provide the highest expected value for a given model size.

The essential message from these experiments is:

1. Equivalence classes improve the efficiency of envelope expansion.
2. Adapting the basis can yield more accurate and better performing model for a given

MDP size.
3. Finding minimal basis representation, in conjunction with an initial plan, produces

the highest expected value per number of states in the MDP.

In general, better policies are found when gradually elaborating an initial solution than
are found by trying to solve a problem all at once. The equivalence classes further aid
this elaboration because they constrain the sampling done in the envelope MDP during
envelope expansion.

7 Related Work

The idea of selective abstraction has a rich history. Apart from the original work by
Dean et al. [1], our work is perhaps most closely related to that of Baum and Nichol-
son [9], who consider approximate solutions to MDP problems by selectively ignoring
dimensions of the state space in an atomic-state robot navigation domain. The work of
Lane and Kaelbling [10] also exploits the idea of not exploring all aspects of a problem
at once, decoupling local navigation from global routefinding with dedicated, approxi-
mate models for each.

Conceptually, the notion of abstraction by selectively removing predicates was ex-
plored early on in work by Sacerdoti [11] and Knoblock [12]. THese approaches pro-
duce a hierarchy of “weakenings” from the ground problem up. Following explicitly
in this vein is work by Armano et al. [13], who describe an extension of PDDL that
describes a hierarchy of problems, as well as a semi-automatic method for producing
these descriptions.

8 Conclusions

We have described a technique for bootstrapping the solution of planning problems in
uncertain domains by implementing envelope-based planning as an interval MDP. The
bootstrapping is done by taking advantage of a formalism for planning with equivalence
classes of objects which is dynamic, domain-indpendent, and works under arbitrarily
complex relational structure. We have also presented some experiments that show the
advantage of this anytime approach to refinement of policy. To our knowledge, this is a
novel approach to planning in relational domains, and the initial results presented show
promise for planners of this kind.



References

1. Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A.: Planning under time constraints in
stochastic domains. Artificial Intelligence 76 (1995)

2. Puterman, M.: Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons (1994)

3. Younes, H., Littman, M.: PPDDL1.0: An extension to PDDL for expressing planning
domains with probabilistic effects. Technical Report CMU-CS-04-167, Carnegie Mellon
(2004)

4. Gardiol, N.H.: Relational Envelope-based Planning. PhD thesis, MIT, Cambridge, MA
(2007) MIT-CSAIL-TR-2007-061.

5. Gardiol, N.H., Kaelbling, L.P.: Action-space partitioning for planning. In: National Confer-
ence on Artificial Intelligence (AAAI), Vancouver, Canada (2007)

6. Givan, R., Leach, S., Dean, T.: Bounded parameter Markov decision processes. In: Proceed-
ings of the European Conference on Planning (ECP-97). (1997)

7. Givan, R., Leach, S., Dean, T.: Bounded parameter Markov decision processes. Artificial
Intelligence (2000)

8. Molineaux, M., Aha, D.W.: TIELT: A testbed for gaming environments. In: National Con-
ference on Artificial Intelligence (AAAI). (2005)

9. Baum, J., Nicholson, A.: Dynamic non-uniform abstractions for approximate planing in large
structured stochastic domains. In: 5th Pacific Rim International Conference on Artificial
Intelligence. (1998)

10. Lane, T., Kaelbling, L.P.: Nearly deterministic abstractions of markov decision processes.
In: 18th National Conference on Artificial Intelligence (AAAI-2002). (2002)

11. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5 (1974)
115–135

12. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial Intelligence
68 (1994)

13. Armano, G., Cherchi, G., Vargiu, E.: Generating abstractions from static domain analysis.
In: WOA 2003 (Dagli Oggetti agli Agenti, Sistemi Intelligenti e Computazione Pervasiva).
(2003)




