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Understanding camera trade-offs
through a Bayesian analysis of light field projections

Anat Levin William T. Freeman Frédo Durand

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

Abstract. Computer vision has traditionally focused on extracting structure,
such as depth, from images acquired using thin-lens or pinhole optics. The de-
velopment of computational imaging is broadening this scope; a variety of un-
conventional cameras do not directly capture a traditionalimage anymore, but
instead require the joint reconstruction of structure and image information. For
example, recent coded aperture designs have been optimizedto facilitate the joint
reconstruction of depth and intensity. The breadth of imaging designs requires
new tools to understand the tradeoffs implied by different strategies.
This paper introduces a unified framework for analyzing computational imag-
ing approaches. Each sensor element is modeled as an inner product over the
4D light field. The imaging task is then posed as Bayesian inference: given the
observed noisy light field projections and a new prior on light field signals, es-
timate the original light field. Under common imaging conditions, we compare
the performance of various camera designs using 2D light field simulations. This
framework allows us to better understand the tradeoffs of each camera type and
analyze their limitations.

1 Introduction

The flexibility of computational imaging has led to a range ofuncon-
ventional designs that facilitate structure inference andpost-processing.
Cameras with coded apertures [1,2,3], plenoptic cameras [4,5,6], phase
plates [7,8], stereo [9], multi-view systems [10,11,12], depth from defocus sys-
tems [13,14,15,16,17,18,19,20,21,22,23,24,25], radial catadioptric imaging [26],
lensless imaging [27], mirror arrays [28,29], or even random cameras [29,30] all
record different combinations of the light rays. Reconstruction algorithms based on a
combination of signal processing and machine vision then convert the data to viewable
images, potentially with richer information such as depth or a full 4D light field.
Each of these cameras involves tradeoffs along various dimensions –spatial and depth
resolution, depth of focus and noise sensitivity. This paper describes a theoretical
framework that will help us to compare computational cameradesigns and understand
their tradeoff in terms of image and structure inference.

Computation is changing imaging in three fundamental ways.First, the information
recorded at the sensor may not be the final image, and the need for a decoding algorithm
must be taken into account to assess camera quality. Second,the output and intermediate
data are not limited to flat 2D images anymore and new designs enable the extraction of



4D light fields and depth information. Finally, newpriors or statistical models can cap-
ture regularities of natural scenes to complement the sensor measurements and amplify
the power of decoding algorithms. The traditional evaluation tools based on image PSF
and frequency responses [31,32] are not able to fully model these effects. Our goal in
this paper is to develop tools for a comparison across different imaging designs, taking
into account those three aspects. We want to evaluate the ability to recover a 2D image
as well as depth or other information. We want to model the need for a decoding step
and the use of natural-scene priors.

Given the variety of designs and types of information, we argue that a powerful
common denominator is the notion of light field [10] because it directly encodes light
rays- the atomic entities interacting with the camera sensor. Light fields naturally en-
capsulate some of the more common photography goals such as high spatial image
resolution, and are tightly coupled with the targets of mid-level computer vision: sur-
face depth, texture, and illumination information. This means that we need to cast the
reconstruction performed in computational imaging as a light field inference problem.
In order to benefit from recent advances in computer vision, we also need to extend
prior models, traditionally studied for 2D images, to 4D light fields.

In a nutshell, the operation of camera sensors can be modeledas the integration
of a set of light rays, with the optics specifying the mappingbetween rays and sen-
sor elements. Thus, in an abstract way, a camera provides a linear projection of the
4D light field where each coordinate corresponds to the measurement of one pixel.
The goal of a decoding process is to infer from such projections as much information
as possible about the 4D light field. Since the number of sensor elements is signifi-
cantly smaller than the dimensionality of the light field signal, prior knowledge on light
fields is essential. We analyze the limitations of traditional signal processing assump-
tions [33,34,35,36,37] and suggest a new prior on light field signals which explicitly
accounts for their locally elongated structure. We then define a new metric of camera
performance as follows: Given a light field prior, from the data measured by the cam-
era, how well can the light field be reconstructed? The numberof sensor elements is of
course a critical variable, and the evaluations in this paper are normalized by imposing
a fixed budget ofN sensor elements to all cameras. This is not a strict requirement of
our approach, but it provides a meaningful common basis.

Camera evaluation is naturally an application dependent question. To account for
varying conditions, the parameters of the light field measure can adapt to user require-
ments. For example, by varying the weight of different lightfield entries it can model
the desired trade off between spatial and directional resolution. It can also adapt scene
specific characteristics such as bounded depth range and expected noise level.

Our evaluation focuses on the information captured by a projection, omitting the
confounding effect of camera-specific inference algorithms. We also do not address
decoding complexity. For clarity of exposition and computational efficiency we focus
on the 2D version of the problem (1D image/2D light field). We use simplified optical
models and do not model lens aberrations or diffraction. These effects would still follow
a linear projection model and can be accounted for with modifications to the light field
projection function.



Using light fields generated by ray tracing, we simulate several existing projections
(cameras) under equal conditions, and demonstrate the quality of reconstruction they
can provide.

Our framework captures the three major elements of the computational imaging
pipeline – optical setup, decoding algorithm, and priors – and enables a comparison on
a common baseline. This framework allows us to systematically compare computational
camera designs at one of the most basic computer vision task:estimating the light field
from sensor responses.

1.1 Related Work

Approaches to lens characterization such as Fourier Opticsand MTF [31,32] analyze
an optical element in terms of signal bandwidth and the sharpness of the PSF over
the depth of field, but do not address depth information. The growing interest in 4D
light field rendering has led to research on reconstruction filters and anti-aliasing in
4D [33,34,35,36,37], yet this research relies mostly on classical signal processing as-
sumptions of band limited signals, and do not utilize the rich statistical correlations of
light fields. Research on generalized camera families [38,39,40] mostly concentrates on
geometric properties and 3D configurations, but with an assumption that approximately
one light ray is mapped to each sensor element and thus decoding is not taken into ac-
count. In [41] aperture effects were modeled but decoding and information were not yet
analyzed.

Reconstructing data from linear projections is a fundamental component in tools
such as CT and tomography [42]. Fusing multiple image measurements is also used
for super-resolution, and [43] studies inherent uncertainties in this process. In [44], the
concept of compressed sensing is used to study the ability toreconstruct a signal from
arbitrary random projections, when the signal is sufficiently sparse in some representa-
tion. Weiss et al [45] attempt to optimize such projections. While sparsity is a stronger
statistical assumption than band limited signals, it stilldoes not capture many structural
aspects of light fields.

2 Light fields and camera configurations

Light fields encode the row data reaching the camera. They are4D functions represent-
ing the radiance for each light ray leaving a scene. Light fields are usually expressed
using a two-plane parameterization, where each ray is encoded by its intersections with
two parallel planes. Figure1(a,b) shows a 2D slice through a diffuse scene and the
corresponding 2D slice out of the 4D light field. The color at position (a0, b0) of the
light field in fig. 1(b) is that of the reflected ray in fig.1(a) which intersects thea and
b lines at pointsa0, b0 respectively. Each row in this light field corresponds to a 1D
view when the viewpoint shifts alonga. One of the most distinctive properties of light
fields is the strong elongated lines. For example the green object in fig.1 is diffuse and
the reflected color does not vary along thea dimension. Specular objects exhibit some
variation along thea dimension, but typically much less than along theb dimension.
The slope of those lines encodes the object’s depth, or disparity [33,34].
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Fig. 1. (a) Flat-world scene with 3 objects. (b) The light field, and (c)-(i) cameras and
the light rays integrated by each sensor element (distinguished by color)

Each sensor element records the amount of light collected from multiple rays and
can be thought of as a linear sum over some set of light rays. For example, in a con-
ventional lens, the value at a pixel is an integral of rays over the lens aperture and the
sensor photosite. We review several existing camera configurations and express the rule
by which they project light rays to sensor elements. We assume that the camera aperture
is positioned on thea line parameterizing the light field.

Ideal Pinhole camerasEach sensor element collects light from a single ray, and the
camera projection just slices a row in the light field (fig1(c)). Since only a tiny fraction
of light is let in, noise is an issue.

LensesLenses can gather more light by focusing all light rays emerging from a
point at a given distanceD to a single sensor point. In the light field,1/D is the slope
of the integration (projection) stripe (fig1(d,e)). An object is in focus when its slope
matches this slope (e.g. the green object in fig1(d)) [33,34,35,36]. Objects in front or
behind the focus distance will be blurred. Larger aperturesgather more light but cause
more defocus.

StereoStereo pairs [9] facilitate depth inference, by recording two views of the
scene (fig1(g), to maintain a constant sensor element budget, the resolution of each im-
age is halved). When the centers of the two cameras are placedin two different points
on thea line, 2 different slices in the light field are captured. The relative translation be-
tween the object positions in each image is a function of the slope of the corresponding
light field line and thus can reveal depth information.

Plenoptic camerasTo capture multiple viewpoints, plenoptic cameras use a mi-
crolens array between the lens and the sensor [4,5]. These microlenses separate the rays
according to their direction, thereby recording many samples of the full 4D light field



impinging the main lens. If each microlens coversk sensor elements, one achievesk
different views of the scene, but the spatial resolution is reduced by a factor ofk (k = 3
is shown in fig1(g)).

Coded apertureRecent work [2,3] places a code at the lens aperture, blocking light
rays (fig1(h)). As with conventional lenses, objects deviating from the focus depth are
blurred, but according to a scalled version of the aperture code. The code is designed
to be highly sensitive to scale variations. Since the blur scale is a function of depth, by
searching for the code scale which best explains the local image window, depth can be
inferred. Given depth, the blur can also be inverted, increasing the depth of field.

Wavefront coding introduces an optical element with an unconventional shape
(phase plate) so that rays from any world point do not converge to a single sensor
element [7]1. Given a general refractive element, the mapping between light rays and
sensor elements can be derived using Snell’s law. In appendix A we show that up to a
first order approximation, this can be thought of as integrating over a curve in light field
space (see fig1(i)), instead of the straight strip integration of lenses. The exact curve
displacement is equal to the refractive element normal. Wavefront coding chooses a
refractive element which makes the defocus of different depths almost identical, which
enables deconvolution without depth information, therebyextending depth of field.
To achieve this [7] reports using a cubic lens, and the light field integration curve is
parabolic2.

Integration curves and Point Spread Functions: When the scene depth (or
light field slope) is locally constant, it is common to express the integrated image as
a convolution with an ideal noise free pinhole image- which is equivalent to a single
light field row. As explained by [46], to get from an integration curve to a convolution
PSF one essentially projects the curve along the local slopeorientation. For example,
in the lens case, the integration curve is straight. Thus, ifthe local slope aligns with the
curve orientation, we are at the focus depth and the projected PSF is an impulse. For a
different slope the projected PSF is a box filter, the width ofthis box being a function
of the curve-object slope deviation. In the wavefront coding case the integration curve
is parabolic, and [46] shows that a parabolic curve has an equal projection in all
directions. Thus the resulting PSF is invariant to object depth. This argument provides
an alternative geometric optics proof to the wave optics derivation of [7].

3 Bayesian estimation of light field

3.1 Problem statement

We model an imaging process as an integration of light rays bycamera sensors, or in
an abstract way, as a linear projection of the light field

y = Tx + n (1)

1 While wavefront coding is usually derived in terms of wave otpics, the resulting system is
usually illustrated with ray diagrams.

2 This was independently derived by M. Levoy and Z. Zhu, personal communication



wherex is the light field,y is the captured image,n is an iid Gaussian noisen ∼
N(0, η2I) and T is the projection matrix, describing how light rays are mapped to
sensor elements. Referring to figure1, T includes one row for each sensor element, and
this row has non-zero elements for the light field entries marked by the corresponding
color (e.g. a pinholeT matrix has a single non-zero element per row).

The set of realizableT matrices is limited by physical constraints. In particular, the
entries of the projection matrixT are all non-negative. To ensure equal conditions for
noise issues, we assume that a maximal integration time is allowed, and normalize it so
that the maximal value for each entry ofT is 1. (otherwise, it would always possible to
scale-upT to reduce the noise portion). The total amount of light reaching each sensor
element is the sum of the entries in the correspondingT row. It is usually desired to
collect more light to increase the signal to noise ratio. Forexample, a pinhole is noisier
because it has a single non-zero entry per row, while a lens has multiple ones.Also,
while it is possible to use a beam splitter to split light raysinto more than one sensor
element, the total photon count [47] along each light ray can not be increased.Thus, the
sum of the entries in each column ofT will be bounded by1.

Most of the derivation below will address a 2D slice in the 4D light field. The 4D
case is conceptually similar, though the computational complexity of some steps signif-
icantly increases when transferring to 4D. While the light field is naturally continuous,
for simplicity we use a discrete representation.

Our goal is to understand how well we can recover the light field x from the noisy
projectiony, and whichT matrices, among the list of camera projections described in
the previous section, permit better reconstructions. Thatis, if one is allowed to take
N measurements (T can haveN rows), which set of projections leads to better light
field reconstruction? To evaluate this, we ask how much a set of N measurements nails
down the set of light field interpretations, and which measurement sets lead to a smaller
reconstruction uncertainty.

Camera evaluation is an application dependent question which should account for
user goals and scene properties. For example - a user may wishto specify the noise level
(which depends on the integration time and the amount of light), the range of depths in
which the system should be in focus (will effect the angle of possible slope in the light
field) and the desired tradeoff between spatial and directional resolution. For example
- is the goal to capture a good 2D image from a single viewpoint, or to reconstruct a
full light field? To account for this, our evaluation metric uses a weight fieldw which
specifies how much we care about reconstructing different parts of the light field. For
example, if the goal is an all-focused, high quality image from a single view point (as
in wavefront coding), we can assign zero weight to all but onelight field row.

The number of measurements taken by most optical systems is significantly smaller
than the light field data, or in other words, the projection matrix T contains many fewer
rows than columns. This makes the recovery of the light field ill-posed and motivates
the use of prior knowledge on the generic structure of light fields. We therefore start by
asking how to model a light field prior.



3.2 Classical priors

State of the art light field sampling and reconstruction approaches [33,34,35,36,37]
apply signal processing techniques, which are mostly basedon band-limited signal as-
sumptions. The principle is that the number of non-zero frequencies in the signal has to
be equal to the number of samples. Thus, before samples are taken, one has to apply a
low-pass filter to meet the Nyquist limit. Light field reconstruction is then reduced to a
convolution with a proper low-pass filter. When the depth range in the scene is bounded,
these strategies can further bound the set of active frequencies within a sheared rectan-
gle instead of a standard square of low frequencies and tune the orientation of the low
pass filter. They also provide principled rules for trading spatial and directional samples.
However, they focus on pure sampling/reconstruction approaches and do not address in-
ference for a general projection such as the coded aperture.

One way to express the underlying band limited assumptions in a prior terminol-
ogy is to think of a zero-mean isotropic Gaussian prior(by isotropic we mean that no
direction in the light field is favored).In the frequency domain, the covariance of such
a Gaussian is diagonal (with one variance per Fourier coefficient), allowing zero (or
very narrow) variance at high frequencies above the Nyquistlimit, and a wider one at
the lower frequencies.The inverse covariance thus acts as a high pass filter- penalizing
active light field frequency above the Nyquist limit, and paying zero penalties for fre-
quencies below the Nyquist limit. Thus, the prior can be expressed in the spatial domain
by penalizing the convolution with a high pass filter, or a setof high pass filters:

P (x) ∝ exp(−
1

2σ0

X

k,i

|fk,ix
T |2) = exp(−

1

2
xT Ψ−1

0 x) (2)

wherefk,i denotes thekth high pass filter centered at theith light field entry. In sec5,
we will show that band limited assumptions and Gaussian priors indeed lead to equiva-
lent sampling conclusions.

An additional option is to think of a more sophisticated highpass penalty and re-
place the Gaussian prior of eq2 with a heavy-tailed prior [48].

However, as will be illustrated in section3.4, such generic priors ignore the very
strong elongated structure of light fields, or the fact that the variance along the disparity
slope is significantly smaller than the spatial variance.

3.3 Mixture of Gaussians (MOG) Light field prior

To account for the strong elongated structure of light fields, we propose modeling a
light field prior using a mixture of oriented Gaussians, where each Gaussian component
corresponds to a depth interpretation of the scene. If the scene depth (and hence light
field slope) is known we can define an anisotropic Gaussian prior that accounts for the
oriented structure. For this, we define a slope fieldS that represent the slope (one over
the depth of the visible point) at every light field entry (fig.2(b) illustrates a sparse
sample from a slope field). For a given slope field, our prior assumes that the light field
is Gaussian, but has a variance in the disparity direction that is significantly smaller
than the spatial variance. The covarianceΨS corresponding to a slope fieldS is then:

xT Ψ−1
S x =

X

i

1

σs

|gT
S(i),ix|

2 +
1

σ0
|gT

0,ix|
2 (3)



wheregs,i is a derivative filter in orientations centered at theith light field entry (specif-
ically g0,i is the derivative in the horizontal/spatial direction), and σs << σ0, especially
for non-specular objects (in practice the simulations in this paper assume fully diffuse
scenes and useσs = 0) Conditioning on depth we haveP (x|S) ∼ N(0, ΨS).

We also need a priorP (S) on the quality of a slope fieldS. Given that depth is
usually piecewise smooth, our prior encourages piecewise smooth slope fields (like
the depth regularization of conventional stereo algorithms). Note however that S and
this prior are expressed in light-field space, not image or object space. The resulting
unconditional light field prior is an infinite mixture of Gaussians (MOG) that sums over
slope fields

P (x) =

Z

S

P (S)P (x|S) (4)

We note that while each mixture component is a Gaussian whichcan be evaluated in
closed form, marginalizing over the infinite set of slope fields S is intractable, and
approximation strategies are described below.

Now that we have modeled the probability of a light fieldx to be “natural”, we
turn to the imaging problem: Given a cameraT and a noisy projectiony we want to
find a Bayesian estimate for the light fieldx. For this, we need to defineP (x|y; T ), the
probability thatx is the explanation of the measurementy. Using Bayes’ rule:

P (x|y;T ) =

Z

S

P (x, S|y; T ) =

Z

S

P (S|y;T )P (x|y, S; T ) (5)

To express the individual terms in the above equation, we note thaty should be equal
to Tx up to measurement noise, that is,P (y|x; T ) ∝ exp(− 1

2η2 |Tx − y|2) . As a
result, for a given slope fieldS, P (x|y, S; T ) ∝ P (x|S)P (y|x; T ) is also Gaussian
with covariance and mean:

Σ−1
S = Ψ−1

S +
1

η2
T T T µS =

1

η2
ΣST T y (6)

Similarly,P (y|S; T ) is also a Gaussian distribution measuring how well we can explain
y with the slope componentS, or, the volume of light fieldsx which can explain the
measurementy, if the slope field wasS. This can be computed by marginalizing over
light fieldsx: P (y|S; T ) =

∫
x

P (x|S)P (y|x; T ). Finally, P (S|y; T ) is obtained with
Bayes’ rule:P (S|y; T ) = P (S)(y|S; T )/

∫
S

P (S)(y|S; T )
To recap, Since we model our light field prior as a mixture of Gaussiansconditioned

on a slope field, the probabilityP (x|y; T ) that a light fieldx explains a measurement
y is also a mixture of Gaussians (MOG). To evaluate it, we measure how wellx can
explainy, conditioning on a particular slope fieldS, and weight it by the probability
P (S|y) thatS is actually the slope field of the scene. This is integrated over all slope
fieldsS.

Inference Given a cameraT and an observationy our goal is to recover the light field
x. In this section we consider the MAP estimation, while in section 4 we approximate
the variance as well in an attempt to compare cameras. Even a MAP estimation forx is
not trivial, as the integral in eq5 is intractable.Our strategy is to approximate the MAP
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Fig. 2.Light field reconstruction.

estimate for the slope fieldS, and conditioning on this estimate, solve for the MAP light
field.

The slope field inference stage is essentially inferring theunknown scene depth.
Our inference generalizes MRF stereo algorithms [9] or the depth regularization of the
coded aperture approach [2]. The exact details about slope inference are provided in
appendix B, but as a brief summary, we model slope in local windows as constant or
having one single discontinuity, and we then regularize theestimate using an MRF.

Given the estimated slope fieldS, our light field prior is Gaussian, and thus the
MAP estimate for the light field is the mean of the conditionalGaussianµS in eq 6.
This mean will attempt to minimize the projection error up tonoise, and regularize the
estimate by attempting to minimize the oriented varianceΨS . Note that in traditional
stereo formulations the multiple views are used only for depth estimate. In contrast, the
formulation of our light field estimate seeks a light field that will satisfy the projec-
tion in all views. Thus, if the individual views include aliasing, we can achieve “super
resolution”.

3.4 Empirical illustration of light field inference

To illustrate the light field inference, figure2(a,b) presents an image and a light field
slice, involving depth discontinuities. Fig2(c) presents the numerical SSD estimation
errors. Figures3,4 presents visually the estimated light fields and (sparse samples from)
the corresponding slope fields. Note that slope errors oftenaccompany ringing in the re-
construction. We compare the results of the MOG light field prior with simpler Gaussian
priors (extending the conventional band limited signal assumptions [33,34,35,36,37])
and with modern sparse (but isotropic) derivative priors [48,44]. For the plenoptic cam-
era case we also explicitly compare with the signal processing reconstruction (last bar
in fig 2(c))- as explained in the sec3.2this approach do not apply directly to any of the
other cameras.

The choice of prior is critical, and resolution is significantly reduced in the ab-
sence of an explicit slope model. For example, if the plenoptic camera samples include
aliasing, the last row of figure4 demonstrates that with a proper slope model we can
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Fig. 3. Reconstructing a light field from projections. Note slope changes at depth dis-
continuities.
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Fig. 4.Reconstructing a light field from projections, (continued). Note slope changes at
depth discontinuities



super-resolve the plenoptic camera measurements, and the actual information encoded
by the recorded plenoptic data is higher than that of the direct measurements.

The relative ranking of cameras also changes as a function ofprior- while the
plenoptic camera produced best results for the isotropic priors, a stereo camera achieves
a higher resolution under the MOG prior. Our goal in the next section is to analytically
evaluate the reconstruction accuracy of different cameras, and to understand how it is
affected by the choice of prior.

4 Camera Evaluation Metric

Given a light field prior we want to assess how well a light fieldx0 can be recovered
from a noisy projectiony = Tx0 + n, or how much the projectiony nails down the set
of possible light field interpretations. The uncertainty can be measured by the expected
reconstruction error:

E(|W (x− x0)|2; T ) =

Z

x

P (x|y;T )|W (x− x0)|2 (7)

whereW = diag(w) is a diagonal matrix specifying how much we care about differ-
ent light field entries, as discussed in sec3.1. This measure should prefer distributions
centered at the true solution, and whose variance around this solution is small as well
(and thus, less likely to be shifted by noise).

Uncertainty computation
The expected reconstruction error in eq7 measures the uncertainty around a solu-

tion. For that, we need to integrate over many mixture components, not only find the
MAP one as in sec3.3. To overcome this challenge we evaluate the uncertainty using
synthetic projectionsy, whose ground truth light field and slope field are known.

To simplify eq7, recall that the average distance betweenx0 and the elements of a
Gaussian is the distance from the center, plus the variance:

E(|W (x− x0)|2|S; T ) = |W (µS − x0)|2 +
X

diag(W 2ΣS) (8)

In a mixture model, we need to weigh the contribution of each component by its overall
volume:

E(|W (x− x0)|2; T ) =

Z

S

P (S|y)E(|W (x− x0)|2|S; T ) (9)

Since the integral in eq9 can not be computed explicitly, we evaluate an approximate
uncertainty in the vicinity of the true solution. For that, we use a discrete set of slope
field samples{S1, ...,SK} obtained as small perturbations around the known ground
truth slope field. We approximate eq9 using a discrete average:

E(|W (x− x0)|2; T ) ≈
1

K

X

k

P (Sk|y)E(|W (x− x0)|2|Sk; T ) (10)

This is based on the assumption that for slope fieldsS which are very far from the true
one,P (y|S) is small and does not contribute much to the overall integral.



Finally, we use a set of typical light fieldsx0

t (generated using ray tracing, as de-
scribed in sec5.3) and evaluate the quality of a cameraT as the expected squared error
over these examples

E(T ) =
X

t

E(|W (x− x0
t )|

2; T ) (11)

Note that this solely measures information captured by the optics and the prior, omitting
the confounding effect of specific inference algorithms (like in sec3.4).

5 Tradeoffs in projection design

We can now study the reconstruction error of different designs and how it is affected by
the light field prior.
Gaussian prior. We start by considering the generic isotropic Gaussian prior in eq2.
If the distribution of light fieldsx is Gaussian, we can integrate overx in eq11analyt-
ically to obtain:E(T ) = 2

∑
diag(1/η2T T T + Ψ−1

0
)−1 Thus, we reach the classical

principal components conclusion: to minimize the residualvariance,T should measure
the directions of maximal variance inΨ0. Since the prior is shift invariant,Ψ−1

0
is a

convolution matrix, diagonal in the frequency domain, and the principal components
are the lowest frequencies. Thus, an isotropic Gaussian prior agrees with the classi-
cal signal processing conclusion [33,34,35,36,37] - to sample the light field one should
convolve with a low pass filter to meet the Nyquist limit and sample both the directional
and spatial axis, as with a plenoptic camera configuration. (if the depth in the scene is
bounded, fewer directional samples can be used [33]). This is also consistent with our
empirical prediction, as for the Gaussian prior, the plenoptic camera indeed achieved
the lowest error in fig2(c). However, this sampling conclusion is conservative as the
directional axis is more redundant than the spatial one. Thesource of the problem is the
fact that second order statistics captured by a Gaussian distribution do not capture the
high order dependencies of light fields.

Mixture of Gaussian light field prior. We now turn to the more realistic MOG prior
introduced in sec3.3. While the optimal projection under this prior cannot be predicted
in closed-form, it can help us understand the major components influencing the perfor-
mance of existing camera configurations. The score in eq9 reveals two aspects which
affect the quality of a camera- first, minimizing the varianceΣS of each of the mixture
components (i.e., the ability to reliably recover the lightfield given the true slope field),
and second, the need to identify depth and makeP (S|y) peaked at the true slope field.
Below, we elaborate on these two components.

5.1 Conditional light field estimation – known depth

Fig 5 shows light fields estimated by several cameras, assuming the true depth (and
therefore slope field), was successfully estimated. We alsodisplay the variance of the
estimated light field - the diagonal ofΣS (eq6).

In the right part of the light field, the lens reconstruction is sharp, since it averages
rays emerging from a single object point. On the left, the lens reconstruction involves
a higher uncertainty, since the lens averages light rays from multiple object points and
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Plenoptic

Fig. 5.Evaluating conditional uncertainty in light field estimate. Left: projection model.
Middle: estimated light field. Right: variance in estimate (equal intensity scale used for
all cameras). Note that while for visual clarity we plot perfect square samples, in our
implementation samples were convolved with low pass filtersto simulate realistic optics
blur.

blurs high frequencies. In contrast, integrating over a parabolic curve (wavefront cod-
ing) achieves low uncertainties for both slopes, since a parabola “covers” all slopes3. A
pinhole also behaves identically at all depths, but it collects only a small amount of light
and the uncertainty is high due to the small signal to noise ratio. Finally, the uncertainty
increases in stereo and plenoptic cameras due to the smallernumber of spatial samples.

The central region of the light field demonstrates the utility of multiple viewpoint in
the presence of occlusion boundaries. Occluded parts whichare not measured properly
lead to higher variance. The variance in the occluded part isminimized by the plenoptic
camera, the only one that spends measurements in this regionof the light field.

Since we deal only with spatial resolution, our conclusionscorrespond to known
imaging common sense, which is a good sanity check for our model. However, note
that they cannot be derived from a naive Gaussian model, which emphasizes the need
for a prior such as as our new mixture model.

5.2 Depth estimation

Light field reconstruction involves slope (depth) estimation. Indeed, the error in eq9
also depends on the uncertainty about the slope fieldS. We need to makeP (S|y) peaked

3 When depth is locally constant and the surface diffuse, we can map a light field integration
curve into a classical Point Spread Function (PSF), by projecting it along the slope direction
s. Projecting a parabola{(a, b)|b = a2} at directions yields the PSFpsf(b) = |b− s/2|−0.5.
That is, the PSF at different depths are equal up to spatial shift, which does not affect visual
quality or noise sensitivity



at the true slope field. Since the observationy is Tx + n, we want the distributions of
projectionsTx to be as distinguishable as possible for different slope fields S. One
way to achieve this is to make the projections correspondingto different slope fields
concentrated within different subspaces of the N-dimensional space. For example, a
stereo camera yields a linear constraint on the projection-the N/2 samples from the
first view should be a shifted version of the otherN/2. The coded aperture camera also
imposes linear constraints: certain frequencies of the defocused signals are zero, and
the location of these zeros shifts with depth [2].

To test this, we measure the probability of the true slope field, P (S|y), aver-
aged over a set of test light fields (created with ray tracing). The stereo score is
< P (S|y) >= 0.95 (where< P (S|y) >= 1 means perfect depth discrimination)
compared to< P (S|y) >= 0.84 for coded aperture. This suggests that the disparity
constraint of stereo better distributes the projections corresponding to different slope
fields than the zero frequency subspace in coded aperture. Onthe other hand, while
linear dependency among the elements ofy helps us identify slopes, it means we are
measuring less dimensions ofx, and the variance inP (x|y, S) is higher. For example,
they resulting from a plenoptic camera measurement lies in anN/k dimensional space
(wherek is the number of views), comparing to anN/2 dimensions of a stereo camera.
The accuracy of the depth estimation in the plenoptic camerawas increased to0.98.
This value is not significantly higher than stereo, while as demonstrated in figure5,
the planoptic camera increases the variance in estimatingx due to the loss of spatial
resolution.

We can also use the averagedP (S|y) score to quantitatively compare stereo with
depth from defocus (DFD) - two lenses with the same center of projection, focused at
two different depths. As predicted by [13], when the same physical size is used (stereo
baseline shift doesn’t exceed aperture width) both designsperform similarly, with DFD
achieving< P (S|y) >= 0.92.

Our probabilistic treatment of depth estimation goes beyond linear subspace con-
straints. For example, the average slope estimation score of a lens was< P (S|y) >=
0.74, indicating that, while weaker than stereo, a single monocular image captured with
a standard lens contains some depth-from-defocus information as well. This result can-
not be derived using a disjoint-subspace argument, but if the full probability is consid-
ered, Occam’s razor principle applies and the simpler explanation is preferred. To see
why, suppose we are trying to distinguish between 2 constantslope explanationSfocus

corresponding to the focus depth, andSdefocus corresponding to one of the defocus
depths. The set of images at a defocus depth (which includes images with low frequen-
cies only) is a subset of the set of images at the focus depth (including both low and
high frequency images). Thus, while a high frequency image can be explained only as
an object at the focus depth, a low frequency image can be legally explained by both.
However, since a probability sums to one, and since the set ofdefocus images occupies
a smaller volume in the N-dimensional space, the defocus model assigns individual low
frequency instances a higher probability.

Finally, a pinhole camera-projection just slices a row out of the light field, and this
slice is invariant to the light field slope. The parabola filter of a wavefront coding lens



(a) single layer (b) two layers (c) three layers

Fig. 6.Light field patches data

is also designed to be invariant to depth. Indeed, for these two cameras, the evaluated
distributionP (S|y) in our model is uniform over slopes.

Again, these results are not fully surprising but they are obtained within a general
framework that can qualitatively and quantitatively compare a variety of camera de-
signs. While comparisons such as DFD vs. stereo have been conducted in the past [13],
our framework encompasses a much broader family of cameras.

5.3 Light field estimation

In the previous section we gained intuition about the various parts of the expected error
in eq 9. We now use the overall formula to evaluate existing cameras, using a set of
diffuse light fields generated using ray tracing. Evaluatedcamera configurations include
pinhole camera, lens, stereo pair, depth-from-defocus (two lenses focused at different
depths), plenoptic camera, coded aperture cameras and a wavefront coding lens.
Evaluation dataset:The approximate uncertainty in eq11uses a set of synthetic light
fields x0

t whose construction is described below. Synthetic observationsyt were gen-
erated as well by adding Gaussian noise toTx0

t . To reduce computational complexity
(especially, to reduce the number of slope field samples required for reasonable approx-
imation in eq10), we used small light field patches only (patch size:36 × 36 pixels).
For small patches, boundary effects on the reconstruction could be dominant. To reduce
boundaries influence, our light field patches were made cyclic around the horizontal
(spatial) dimension. Some test light field patches are visualized in fig 6. These patches
were divided into3 groups, by increasing level of depth complexity: 1) constant depth
patches, 2) patches with2 depth layers, 3) patches with3 depth layers (we estimate that
3 depth layers within36 pixels image is already a rather complex depth structure). The
patches were made fully diffuse (thus constant along the slope direction) and the spatial
image textures in each layer were sampled from natural imagerows.

Fig 7visualizes some slope field perturbations. These were generated by small shifts
to the location of the depth boundary, and by small shifts of the depth value within each
layer.
Evaluation setup:

By changing the weightsW on light field entries in eq7, we evaluate cameras for
two different goals: (a) Capturing a full light field. (b) Achieving an all-focused image
from a single view point (capturing a single row in the light field.)

We consider both a Gaussian and our new mixture of Gaussians (MOG) prior. We
consider different levels of depth complexity as characterized by the amount of dis-
continuities. We use slopes between−45o to 45o and noise with standard deviation



(a) light field (b) true slope (c) layers assignment in perturbed slope fields

Fig. 7.Perturbing slope fields
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Fig. 8.Evaluating expected reconstruction error as a function of depth complexity.

η = 0.01. Fig. 8(a-b) plot expected reconstruction error with our MOG prior, while
figs 8(c-d) use a generic isotropic Gaussian prior (note the different axis scale). In fig-
ure9 we evaluate changes in the depth range (using light fields with modest amount of
depth discontinuities andη = 0.01), and in figure10 changes in the noise level (using
light fields with modest amount of depth discontinuities, and slopes ranging between
−45o to 45o).

We attempt to analyze each camera family under its best behavior. For each test
setup (i.e. for each combination of light field entries weight, depth complexity and noise
level) we search for the optimal parameters of each camera family such as baseline
length and aperture size of the individual lens in a stereo pair, number of directional
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Fig. 10.Evaluating expected reconstruction error as a function of noise.

aperture samples in a plenoptic camera, and various choicesof codes for coded aperture
cameras. The reported bars in figs8-10represent these optimized choices.

We note that the exact parameters choice is only optimal for the test light fields
on which it was fitted. While it is unreasonable to expect a single parameters choice
to be optimal for all scenes and imaging conditions, ourtools provide a principled way
to trade off constraints and adjust camera parameters according to any scene and us-
age requirements. Yet, the optimized parameters show reasonable generality and some
specific choices are reported below.

Observations:
Full light field reconstruction Fig. 8(a) shows full light field reconstruction with our

MOG prior. In the presence of depth discontinues, lowest light field reconstruction is
achieved with a stereo camera.



The stereo baseline favored by the algorithm was wide,22% of the average distance
to the scene. For the plenoptic camera the optimal number of aperture samples picked
by the algorithm was3, which is the minimum number we allowed. This agrees well
with the fact that stereo (2 samples) outperformed plenoptic.That is, while a plenoptic
camera improves depth information our comparison suggestsit may not pay for the
large spatial resolution loss. Yet, as discussed in sec5.1 a plenoptic camera offers an
advantage in the presence of complex occlusion boundaries.

For planar scenes (in which estimating depth is easy) the coded aperture surpasses
stereo, since spatial resolution is doubled and the irregular sampling of light rays can
avoid high frequencies loss due to defocus blur. Also, for planar scenes some depth from
defocus information was captured by a single code-free monocular lens (the lens bars
are not completely high in the planar scene case).The single lens aperture parameter
favored by the algorithm was the widest possible (f/1.3), probably to yield stronger
depth from defocus cues.

While the performance of all cameras decreases when the depth complexity in-
creases, a lens and coded aperture are much more sensitive than others.

While the depth discrimination of DFD is similar to that of stereo (as discussed in
sec5.2), its overall reconstruction error is slightly higher since the wide apertures blur
high frequencies.

The relative ranking in figs8(a,c) agrees with the empirical prediction in figure2(c).
Note, however, that while figs8(a,c) measure inherent optics information, fig2(c) folds-
in inference errors as well.

Single-image reconstructionWhen addressing the single row reconstruction goal
(fig 8(b)) one still has to account for issues like defocus, depth of field, signal to noise
ratio and spatial resolution. Thus, a pinhole camera (recording this single row alone)
is not ideal, and there is an advantage for wide aperture configurations collecting more
light (recording multiple light field rows) despite not being invariant to depth.

The parabola filter (wavefront coding) does not capture depth information and thus
performs very poorly for the light field estimation goal. However, the evaluation in
fig 8(b) suggests that for the goal of recovering a single light field row, this filter outper-
forms all other cameras. The reason is that since the filter isinvariant to slope, a single
central light field row can be recovered without knowledge ofdepth. For this central
row, it actually achieves high signal to noise ratios for alldepths, as demonstrated in
figure5. To validate this observation, we have searched over a largeset of lens curva-
tures, or light field integration curves, parameterized as splines fitted to 6 key points.
This family includes both slope sensitive curves (in the spirit of [8] or a coded aper-
ture), which identify slope and use it in the estimation, andslope invariant curves (like
the parabola [7]), which estimate the central row regardless of slope. Our results show
that, for the goal of recovering a single light field row, the wavefront-coding parabola
outperforms all other configurations. This extends the arguments in previous wavefront
coding publications which were derived using optics reasoning and focus on depth-
invariant approaches.It also agrees with the motion domain analysis of [46], predicting
that a parabolic integration curve provides optimal signalto noise ratio.



5.4 Plenoptic sampling: signal processing and Bayesian estimation

As another way to compare the conclusions derived by classical signal processing ap-
proaches with the ones derived from our new MOG light filed prior, we follow [33]
and ask: suppose we use a camera with a fixedN pixels resolution, how many different
views (N pixels each) do we actually need for a good ‘virtual reality’?
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Fig. 11.Reconstruction error as a function number of views.

Figure11 plots the expected reconstruction error as a function of thenumber of
views for both MOG and naive Gaussian priors. While a Gaussian prior requires dense
sampling, the MOG error is quite low after 2-3 views (such conclusions depend on
depth complexity and the range of views we wish to capture). For comparison, we also
mark on the graph the significantly larger views number imposed by a Nyquist limit
analysis, like [33]. Note that to simulate a realistic camera, our directionalaxis samples
are aliased. This is slightly different from [33] which blur the directional axis in order
to eliminate frequencies above the Nyquist limit.

6 Discussion

The growing variety of computational camera designs calls for a unified way to ana-
lyze their tradeoffs. We show that all cameras can be analytically modeled by a linear
mapping of light rays to sensor elements. Thus, interpreting sensor measurements is the
Bayesian inference problem of inverting the ray mapping. Weshow that a proper light
fields prior is critical for the successes of camera decoding. We analyze the limitations
of traditional band-pass assumptions and suggest that a prior which explicitly accounts
for the elongated light field structure can significantly reduce sampling requirements.

Our Bayesian framework estimates both depth and image information, accounting
for noise and decoding uncertainty. This provides a tool to compare computational cam-
eras on a common baseline and provides a foundation for computational imaging. We
conclude that for diffuse scenes, the wavefront coding cubic lens (and the parabola light



field curve) is the optimal way to capture a scene from a singleview point. For capturing
a full light field, a stereo camera outperformed other known configurations.

We have focused on providing a common ground for all designs,at the cost of sim-
plifying optical and decoding aspects. This differs from traditional optics optimization
tools such as Zemax [32] that provide fine-grain comparisons between subtly-different
designs (e.g. what if this spherical lens element is replaced by an aspherical one?). In
contrast, we are interested in the comparison between families of imaging designs (e.g.
stereo vs. plenoptic vs. coded aperture). We concentrate onmeasuring inherent informa-
tion captured by the optics, and do not evaluate camera-specific decoding algorithms.

The conclusions from our analysis are well connected to reality. For example, it
can predict the expected tradeoffs (which can not be derivedusing more naive light
field models) between aperture size, noise and spatial resolution discussed in sec5.1. It
justifies the exact wavefront coding lens design derived using optics tools, and confirms
the prediction of [13] relating stereo to depth from defocus.

Analytic camera evaluation tools may also permit the study of unexplored camera
designs. One might develop new cameras by searching for linear projections that yield
optimal light field inference, subject to physical implementation constraints. While the
camera score is a very non-convex function of its physical characteristics, defining cam-
era evaluation functions opens up these research directions.

7 Appendix A: Lenses and light field integration

We consider a camera whose sensor plane is placed parallel tothea,b lines, and as-
sume w.l.o.g that the lens aperture plane is positioned on the a line, between points
(−A, a), (A, a) (here2A is the width of the aperture). We want to characterize, in light
field space, the set of light rays which are mapped by the lens into a sensor element.
Referring to the notation in fig12, we consider the ray(u, v)- the ray intersecting theb
line at point(u, b) and the aperture linea at point(v, a). This ray bent by the lens and
mapped into sensor pointz. We want to expressu as a function ofz andv. Let d1, d2

denote the distances between the aperture to the sensor andb lines respectively.R′(v)
denotes the reflective element curvature at pointv, andn1, n2 the intersection of the
refractive element normal with the sensor andb lines. Finallyθ1, θ2 denotes the angels
between the normal and the rays to the pointsz, u respectively. Using this notation we
note that we can express|n1−v| = d1R

′(v) and|n2−v| = d2R
′(v). Assuming angles

are small, in a first order approximation

sin θ1 ≈
|n1 − z|

d1

=
R′(v)d1 + v − z

d1

sin θ2 ≈
|n2 − u|

d2

=
R′(v)d2 + u− v

d2

(12)

Using Snell’s rule:

sin θ2 = r sin θ1 (13)



Fig. 12.Rays mapping derived from refractive element normals

wherer represents the index of refraction. Substituting eq12 in eq13, to a first order
approximation, we can expressu as

u = v(1 + r
d2

d1

) + R′(v)d2(r − 1)− zr
d2

d1

(14)

As a result the set of rays mapped by the lens into sensor pointz, is a curve in light
field space which can be expressed asx = f(y) + αz

f(v) = βv + γR′(v). (15)

and the amount of light recorded into this sensor element is the integral of these light
rays

I(z) =

∫ A

−A

LF (f(v) + αz, v)dv (16)

where the aperture width is2A, andLF (u, v) denotes the intensity of the light field ray
(u, v).

The simplest example is a conventional lens, the shape is a second order surface,
approximately a parabola. The curvatureR′(v) is a linear function ofv. Thus for a
conventional lens, the light field integration curve is a linear curve, whose slope is a



function of the distance between the lens and the sensor, andthis slope is mapped to
the focus distance. In a Wavefront coding system, the lens iscubic, the derivative is a
parabola, and as a result the camera integrates light over a parabola curve in light field
space.

8 Appendix B: Slope inference

This appendix extends section3.3to provide details on the slope field (depth) inference
under our MOG light field prior.

Given a cameraT and an observationy our goal is to infer a MAP estimation ofx.
The probability of a light field explanationp(x|y) is defined as:

P (x|y;T ) =

Z

S

P (S|y; T )P (x|y, S; T ) (17)

however, the integral in eq17 is intractable. Our strategy was to compute an approx-
imated MAP estimate for the slope fieldS, and conditioning on this estimated slope
field, solve for the MAP light field.

To compute an approximated MAP estimate for the slope field, we break the light
field into small overlapping windows{w} along the spatial axis, and pickySw

- them
most central entries ofy according to the slope orientation, as illustrated in fig13. We
can then ask locally whatP (ySw

|Sw) is, or how well are the measurementsySw
ex-

plained by theSw slope field window interpretation. For example, if we use a stereo
camera, the localySw

measurements should satisfy the disparity shift constraints im-
posed bySw. We approximate the slope score as a product over local windows, that is,
we look for a slope fieldS maximizing:

P (S|y) ≈
∏
w

P (Sw|ySw
) (18)

If we consider sufficiently small light field windows, we can reasonably cover the set
of slope field interpretations with a discrete list{S1, ...,SK}. The list{S1, ...,SK} we
use includes constant slope field windows and slope fields windows with one depth
discontinuity. We approximate theP (Si|ySi) integral with a discrete sum:

P (Si|ySi) ≈
P (Si)P (ySi |Si)

1

K

∑K
k=1

P (Sk)P (ySi |Sk)
(19)

We optimize eq18 using Belief Propagation (enforcing the slope fields in neighbor-
ing windows to agree). The exact window size poses a tradeoff- smaller windows will
increase the efficiency of the computation but also decreasethe robustness of the ap-
proximation.

We note that this algorithm is a generalization of other camera decoding algorithms.
For example if the number of centraly entriesm is decreased to two pixels we achieve
the classical MRF stereo matching [49]. The coded aperture [2,3] used a similar frame-
work as well, except that only constant depth interpretations were considered in each
window, andP (Sw|ySw

) were approximated using maximum likelihood.



Fig. 13.Small slope field windows and the centraly samples (highlighted in red), for a
stereo camera
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