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Abstract. Computer vision has traditionally focused on extractingicttre,
such as depth, from images acquired using thin-lens or f@nbyatics. The de-
velopment of computational imaging is broadening this sc@pvariety of un-
conventional cameras do not directly capture a traditiomalge anymore, but
instead require the joint reconstruction of structure andge information. For
example, recent coded aperture designs have been optitnifzilitate the joint
reconstruction of depth and intensity. The breadth of imggiesigns requires
new tools to understand the tradeoffs implied by differératsgies.

This paper introduces a unified framework for analyzing cotational imag-
ing approaches. Each sensor element is modeled as an irotkrcprover the
4D light field. The imaging task is then posed as Bayesiarrénige: given the
observed noisy light field projections and a new prior ontlifigld signals, es-
timate the original light field. Under common imaging corwtis, we compare
the performance of various camera designs using 2D liglat iehulations. This
framework allows us to better understand the tradeoffs ol eamera type and
analyze their limitations.

1 Introduction

The flexibility of computational imaging has led to a range ahcon-
ventional designs that facilitate structure inference amwbst-processing.
Cameras with coded aperturesl,4,3], plenoptic cameras 4[5,6], phase
plates [/,8], stereo P], multi-view systems [0,11,17], depth from defocus sys-
tems [L3,14,1516,17,18,19,20,21,22,23,24,25], radial catadioptric imaging 2[],
lensless imagingZ/], mirror arrays 829, or even random camerag 30 all
record different combinations of the light rays. Recordtian algorithms based on a
combination of signal processing and machine vision thewex the data to viewable
images, potentially with richer information such as depthaofull 4D light field.
Each of these cameras involves tradeoffs along variousrdiimes —spatial and depth
resolution, depth of focus and noise sensitivity. This pagescribes a theoretical
framework that will help us to compare computational cantgrsigns and understand
their tradeoff in terms of image and structure inference.

Computation is changing imaging in three fundamental waliyst, the information
recorded at the sensor may not be the final image, and the megdécoding algorithm
must be taken into account to assess camera quality. Seberaijtput and intermediate
data are not limited to flat 2D images anymore and new desiggisle the extraction of



4D light fields and depth information. Finally, ngwiors or statistical models can cap-
ture regularities of natural scenes to complement the semsasurements and amplify
the power of decoding algorithms. The traditional evahratools based on image PSF
and frequency responsesl[37] are not able to fully model these effects. Our goal in
this paper is to develop tools for a comparison across éiffiemaging designs, taking
into account those three aspects. We want to evaluate tliy &brecover a 2D image
as well as depth or other information. We want to model thalfeea decoding step
and the use of natural-scene priors.

Given the variety of designs and types of information, weuarthat a powerful
common denominator is the notion of light fieltl] because it directly encodes light
rays- the atomic entities interacting with the camera sersght fields naturally en-
capsulate some of the more common photography goals suclylasjatial image
resolution, and are tightly coupled with the targets of hedel computer vision: sur-
face depth, texture, and illumination information. Thisans that we need to cast the
reconstruction performed in computational imaging as lat ligeld inference problem.
In order to benefit from recent advances in computer visiomalgo need to extend
prior models, traditionally studied for 2D images, to 40hlidields.

In a nutshell, the operation of camera sensors can be modsléuke integration
of a set of light rays, with the optics specifying the mappibeiween rays and sen-
sor elements. Thus, in an abstract way, a camera providegar Iprojection of the
4D light field where each coordinate corresponds to the nreasent of one pixel.
The goal of a decoding process is to infer from such projestas much information
as possible about the 4D light field. Since the number of geslsmnents is signifi-
cantly smaller than the dimensionality of the light fieldredy prior knowledge on light
fields is essential. We analyze the limitations of tradiilosignal processing assump-
tions [33,34,35,36,37] and suggest a new prior on light field signals which exgiicit
accounts for their locally elongated structure. We thenngedi new metric of camera
performance as follows: Given a light field prior, from the¢aleneasured by the cam-
era, how well can the light field be reconstructed? The nurabsensor elements is of
course a critical variable, and the evaluations in this papenormalized by imposing
a fixed budget ofV sensor elements to all cameras. This is not a strict reqeinéof
our approach, but it provides a meaningful common basis.

Camera evaluation is naturally an application dependeestipn. To account for
varying conditions, the parameters of the light field measam adapt to user require-
ments. For example, by varying the weight of different liilbtd entries it can model
the desired trade off between spatial and directional utigol. It can also adapt scene
specific characteristics such as bounded depth range ardtedmoise level.

Our evaluation focuses on the information captured by aegtimgn, omitting the
confounding effect of camera-specific inference algorghkive also do not address
decoding complexity. For clarity of exposition and compiataal efficiency we focus
on the 2D version of the problem (1D image/2D light field). Ve simplified optical
models and do not model lens aberrations or diffractionsétedfects would still follow
a linear projection model and can be accounted for with maatifins to the light field
projection function.



Using light fields generated by ray tracing, we simulate sshexisting projections
(cameras) under equal conditions, and demonstrate thé@ygoiteconstruction they
can provide.

Our framework captures the three major elements of the ctatipoal imaging
pipeline — optical setup, decoding algorithm, and priored @enables a comparison on
a common baseline. This framework allows us to systematicaimpare computational
camera designs at one of the most basic computer visiongaskiating the light field
from sensor responses.

1.1 Related Work

Approaches to lens characterization such as Fourier OatiddMTF [31,37] analyze
an optical element in terms of signal bandwidth and the stesp of the PSF over
the depth of field, but do not address depth information. Tiesving interest in 4D
light field rendering has led to research on reconstructiterdi and anti-aliasing in
4D [33,34,35,36,37], yet this research relies mostly on classical signal gsicg as-
sumptions of band limited signals, and do not utilize thé statistical correlations of
light fields. Research on generalized camera famiti€s3p,4 0] mostly concentrates on
geometric properties and 3D configurations, but with anraggion that approximately
one light ray is mapped to each sensor element and thus aecisdiot taken into ac-
count. In 1] aperture effects were modeled but decoding and informatiere not yet
analyzed.

Reconstructing data from linear projections is a fundamdezdmponent in tools
such as CT and tomography4. Fusing multiple image measurements is also used
for super-resolution, and!f] studies inherent uncertainties in this process4lj,[the
concept of compressed sensing is used to study the abiligctnstruct a signal from
arbitrary random projections, when the signal is suffidiesparse in some representa-
tion. Weiss et al45] attempt to optimize such projections. While sparsity israrsger
statistical assumption than band limited signals, it diks not capture many structural
aspects of light fields.

2 Light fields and camera configurations

Light fields encode the row data reaching the camera. Thejafanctions represent-
ing the radiance for each light ray leaving a scene. Lighti$iglre usually expressed
using a two-plane parameterization, where each ray is extioglits intersections with
two parallel planes. Figuré(a,b) shows a 2D slice through a diffuse scene and the
corresponding 2D slice out of the 4D light field. The color asition (ag, by) of the
light field in fig. 1(b) is that of the reflected ray in fig(a) which intersects tha and

b lines at pointsag, by respectively. Each row in this light field corresponds to a 1D
view when the viewpoint shifts alorg One of the most distinctive properties of light
fields is the strong elongated lines. For example the gregtoib fig. 1 is diffuse and
the reflected color does not vary along thdimension. Specular objects exhibit some
variation along thea dimension, but typically much less than along thdimension.
The slope of those lines encodes the object’s depth, or rligpas,34].



(a) 2D slice through a scene (b) Light field (c) Pinhole
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(g) Plenoptic camera (h) Coded aperture lens (i) Wavefroding

Fig. 1. (a) Flat-world scene with 3 objects. (b) The light field, aoji({) cameras and
the light rays integrated by each sensor element (distégai by color)

Each sensor element records the amount of light collectad fnultiple rays and
can be thought of as a linear sum over some set of light rayseXample, in a con-
ventional lens, the value at a pixel is an integral of rays dle lens aperture and the
sensor photosite. We review several existing camera caafigus and express the rule
by which they project light rays to sensor elements. We asghiat the camera aperture
is positioned on tha line parameterizing the light field.

Ideal Pinhole camerasEach sensor element collects light from a single ray, and the
camera projection just slices a row in the light field (f{@)). Since only a tiny fraction
of lightis let in, noise is an issue.

LensesLenses can gather more light by focusing all light rays emngrfrom a
point at a given distanc® to a single sensor point. In the light fielt/ D is the slope
of the integration (projection) stripe (fit{d,e)). An object is in focus when its slope
matches this slope (e.g. the green object inL{id)) [33,34,35,36]. Objects in front or
behind the focus distance will be blurred. Larger apertgegher more light but cause
more defocus.

Stereo Stereo pairs{] facilitate depth inference, by recording two views of the
scene (fidl(g), to maintain a constant sensor element budget, theutgmobf each im-
age is halved). When the centers of the two cameras are plated different points
on thealine, 2 different slices in the light field are captured. Thktfive translation be-
tween the object positions in each image is a function of libygesof the corresponding
light field line and thus can reveal depth information.

Plenoptic camerasTo capture multiple viewpoints, plenoptic cameras use a mi-
crolens array between the lens and the sens6}. [These microlenses separate the rays
according to their direction, thereby recording many saspif the full 4D light field



impinging the main lens. If each microlens covérsensor elements, one achieves
different views of the scene, but the spatial resolutioedced by a factor df (k = 3
is shown in figl(g)).

Coded apertureRecent work P,3] places a code at the lens aperture, blocking light
rays (fig1(h)). As with conventional lenses, objects deviating fréva tocus depth are
blurred, but according to a scalled version of the apertodecThe code is designed
to be highly sensitive to scale variations. Since the blatests a function of depth, by
searching for the code scale which best explains the locaéwindow, depth can be
inferred. Given depth, the blur can also be inverted, irgirgpthe depth of field.

Wavefront coding introduces an optical element with an unconventional shape
(phase plate) so that rays from any world point do not corevéoga single sensor
element []*. Given a general refractive element, the mapping betweén tays and
sensor elements can be derived using Snell’s law. In appéndie show that up to a
first order approximation, this can be thought of as intéggatver a curve in light field
space (see fig(i)), instead of the straight strip integration of lensekelexact curve
displacement is equal to the refractive element normal.éivamt coding chooses a
refractive element which makes the defocus of differenttieplmost identical, which
enables deconvolution without depth information, thereltending depth of field.
To achieve this [] reports using a cubic lens, and the light field integratianve is
parabolic®.

Integration curves and Point Spread Functions: When the scene depth (or
light field slope) is locally constant, it is common to exgréise integrated image as
a convolution with an ideal noise free pinhole image- whigkeduivalent to a single
light field row. As explained by46], to get from an integration curve to a convolution
PSF one essentially projects the curve along the local siopatation. For example,
in the lens case, the integration curve is straight. Thubgifocal slope aligns with the
curve orientation, we are at the focus depth and the prajde®¥ is an impulse. For a
different slope the projected PSF is a box filter, the widtlthig box being a function
of the curve-object slope deviation. In the wavefront cgdiase the integration curve
is parabolic, and4€f] shows that a parabolic curve has an equal projection in all
directions. Thus the resulting PSF is invariant to objegtldeThis argument provides
an alternative geometric optics proof to the wave opticssdéon of [7].

3 Bayesian estimation of light field

3.1 Problem statement

We model an imaging process as an integration of light raysamera sensors, or in
an abstract way, as a linear projection of the light field

y=Tx+n 1)

1 While wavefront coding is usually derived in terms of waveics, the resulting system is
usually illustrated with ray diagrams.
2 This was independently derived by M. Levoy and Z. Zhu, peasoommunication



wherez is the light field,y is the captured image; is an iid Gaussian noise ~
N(0,7%I) andT is the projection matrix, describing how light rays are megpo
sensor elements. Referring to figurel” includes one row for each sensor element, and
this row has non-zero elements for the light field entrieskaaiby the corresponding
color (e.g. a pinhol&” matrix has a single non-zero element per row).

The set of realizabl&" matrices is limited by physical constraints. In particutae
entries of the projection matriX' are all non-negative. To ensure equal conditions for
noise issues, we assume that a maximal integration timéised, and normalize it so
that the maximal value for each entryBfis 1. (otherwise, it would always possible to
scale-ugl’ to reduce the noise portion). The total amount of light réaglkeach sensor
element is the sum of the entries in the correspondirmgw. It is usually desired to
collect more light to increase the signal to noise ratio.d&@mple, a pinhole is noisier
because it has a single non-zero entry per row, while a leasrhatiple onesAlso,
while it is possible to use a beam splitter to split light ray® more than one sensor
element, the total photon courit{ along each light ray can not be increased.Thus, the
sum of the entries in each column’Bfwill be bounded byi.

Most of the derivation below will address a 2D slice in the 4dht field. The 4D
case is conceptually similar, though the computationalperity of some steps signif-
icantly increases when transferring to 4D. While the ligalkdiis naturally continuous,
for simplicity we use a discrete representation.

Our goal is to understand how well we can recover the lighd fiefrom the noisy
projectiony, and whichT' matrices, among the list of camera projections described in
the previous section, permit better reconstructions. Taf one is allowed to take
N measurements/{ can haveN rows), which set of projections leads to better light
field reconstruction? To evaluate this, we ask how much afs&tmeasurements nails
down the set of light field interpretations, and which meament sets lead to a smaller
reconstruction uncertainty.

Camera evaluation is an application dependent questioahwdtiould account for
user goals and scene properties. For example - a user mayongghcify the noise level
(which depends on the integration time and the amount of)ligiie range of depths in
which the system should be in focus (will effect the angle a$gible slope in the light
field) and the desired tradeoff between spatial and direaticesolution. For example
- is the goal to capture a good 2D image from a single viewpointo reconstruct a
full light field? To account for this, our evaluation metrisas a weight fieldv which
specifies how much we care about reconstructing differerts jod the light field. For
example, if the goal is an all-focused, high quality imagmfra single view point (as
in wavefront coding), we can assign zero weight to all butlagte field row.

The number of measurements taken by most optical systengsificantly smaller
than the light field data, or in other words, the projectioninrad’ contains many fewer
rows than columns. This makes the recovery of the light fiklddsed and motivates
the use of prior knowledge on the generic structure of lightl§. We therefore start by
asking how to model a light field prior.



3.2 Classical priors

State of the art light field sampling and reconstruction apphes $3,34,35,36,37]
apply signal processing techniques, which are mostly basdshnd-limited signal as-
sumptions. The principle is that the number of non-zerodezgies in the signal has to
be equal to the number of samples. Thus, before sampleskare ane has to apply a
low-pass filter to meet the Nyquist limit. Light field reconsttion is then reduced to a
convolution with a proper low-pass filter. When the depttgeaim the scene is bounded,
these strategies can further bound the set of active frexggewithin a sheared rectan-
gle instead of a standard square of low frequencies and haénertentation of the low
pass filter. They also provide principled rules for tradipgtsal and directional samples.
However, they focus on pure sampling/reconstruction aggtes and do not address in-
ference for a general projection such as the coded aperture.

One way to express the underlying band limited assumptiomsprior terminol-
ogy is to think of a zero-mean isotropic Gaussian p(my isotropic we mean that no
direction in the light field is favored)n the frequency domain, the covariance of such
a Gaussian is diagonal (with one variance per Fourier cosftic allowing zero (or
very narrow) variance at high frequencies above the Nydjuist, and a wider one at
the lower frequencied.he inverse covariance thus acts as a high pass filter- pamali
active light field frequency above the Nyquist limit, and payzero penalties for fre-
guencies below the Nyquist limit. Thus, the prior can be egped in the spatial domain
by penalizing the convolution with a high pass filter, or acfdtigh pass filters:

1 1 _
Pla) o< eap(—5 =3 |fia" ') = eap(~ 52" ¥ ') ()
ki

wheref;, ; denotes théth high pass filter centered at thi light field entry. In se®,
we will show that band limited assumptions and Gaussianrpimeed lead to equiva-
lent sampling conclusions.

An additional option is to think of a more sophisticated hjgass penalty and re-
place the Gaussian prior of @yith a heavy-tailed prior4d].

However, as will be illustrated in sectidh4, such generic priors ignore the very
strong elongated structure of light fields, or the fact thattariance along the disparity
slope is significantly smaller than the spatial variance.

3.3 Mixture of Gaussians (MOG) Light field prior

To account for the strong elongated structure of light fields propose modeling a
light field prior using a mixture of oriented Gaussians, vehesich Gaussian component
corresponds to a depth interpretation of the scene. If taresdepth (and hence light
field slope) is known we can define an anisotropic Gaussiam firat accounts for the
oriented structure. For this, we define a slope fig¢lthat represent the slope (one over
the depth of the visible point) at every light field entry (figfb) illustrates a sparse
sample from a slope field). For a given slope field, our prisuases that the light field
is Gaussian, but has a variance in the disparity directian ithsignificantly smaller
than the spatial variance. The covariatgecorresponding to a slope fiellis then:

_ 1 1
2Tl = Z ;|Q§(i),ﬂ|2 + U—0|90T,i$\2 3)
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wherey; ; is a derivative filter in orientationcentered at théh light field entry (specif-
ically go ; is the derivative in the horizontal/spatial direction)dan << o, especially
for non-specular objects (in practice the simulations ia ffaper assume fully diffuse
scenes and use, = 0) Conditioning on depth we hav(z|S) ~ N(0,¥g).

We also need a prioP(S) on the quality of a slope field. Given that depth is
usually piecewise smooth, our prior encourages piecewrsmth slope fields (like
the depth regularization of conventional stereo algor&hrlote however that S and
this prior are expressed in light-field space, not image gecitspace. The resulting
unconditional light field prior is an infinite mixture of Gasians (MOG) that sums over
slope fields

P(z) = / P(S)P(x]5) 4)

We note that while each mixture component is a Gaussian wd@ohbe evaluated in
closed form, marginalizing over the infinite set of sloped#eb is intractable, and
approximation strategies are described below.

Now that we have modeled the probability of a light fieldo be “natural”’, we
turn to the imaging problem: Given a camédraand a noisy projectiop we want to
find a Bayesian estimate for the light fieldFor this, we need to define(x|y; T'), the
probability thatz is the explanation of the measuremgnUsing Bayes' rule:

Plaly:T) = /5 Pz, S|y:T) = /S P(S|y; T)P(xly, S;T) (5)

To express the individual terms in the above equation, we tiity should be equal
to Tx up to measurement noise, that B(y|z;T) exp(—#\Tx —y?) . As a
result, for a given slope field, P(z|y, S;T) < P(z|S)P(y|z;T) is also Gaussian
with covariance and mean:

_ 1 1
Il =wit 4 n—QTTT ps = n—QEsTTy (6)

Similarly, P(y|.S; T) is also a Gaussian distribution measuring how well we cate@xp
y with the slope componert, or, the volume of light fields: which can explain the
measuremeny, if the slope field wasS. This can be computed by marginalizing over
light fieldsz: P(y|S;T) = [, P(x|S)P(y|=;T). Finally, P(S|y; T) is obtained with
Bayes' rule:P(S|y; T) = P(S)(y]5;T)/ [ P(S)(y]S:T)

To recap, Since we model our light field prior as a mixture of Gauss@orglitioned
on a slope field, the probabiliti’(x|y; T') that a light fieldz explains a measurement
y is also a mixture of Gaussians (MOG). To evaluate it, we meakaw wellz can
explainy, conditioning on a particular slope fiek, and weight it by the probability
P(S|y) thatS is actually the slope field of the scene. This is integratest eyl slope
fieldsS.

Inference Given a camerd’ and an observationour goal is to recover the light field
z. In this section we consider the MAP estimation, while in &gttt we approximate
the variance as well in an attempt to compare cameras. EvelhRaddtimation for: is
not trivial, as the integral in €gis intractable.Our strategy is to approximate the MAP
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Fig. 2. Light field reconstruction.

estimate for the slope fielfl, and conditioning on this estimate, solve for the MAP light
field.

The slope field inference stage is essentially inferringuthknown scene depth.
Our inference generalizes MRF stereo algoritha}of the depth regularization of the
coded aperture approact][ The exact details about slope inference are provided in
appendix B, but as a brief summary, we model slope in locatlaivs as constant or
having one single discontinuity, and we then regularizesgtamate using an MRF.

Given the estimated slope fieldl, our light field prior is Gaussian, and thus the
MAP estimate for the light field is the mean of the conditio@aussian.s in eq 6.
This mean will attempt to minimize the projection error uptase, and regularize the
estimate by attempting to minimize the oriented variatige Note that in traditional
stereo formulations the multiple views are used only fortdestimate. In contrast, the
formulation of our light field estimate seeks a light field tthll satisfy the projec-
tion in all views. Thus, if the individual views include adiag, we can achieve “super
resolution”.

3.4 Empirical illustration of light field inference

To illustrate the light field inference, figuia,b) presents an image and a light field
slice, involving depth discontinuities. Fig(c) presents the numerical SSD estimation
errors. Figure8,4 presents visually the estimated light fields and (spars@&asfrom)
the corresponding slope fields. Note that slope errors aftenmpany ringing in the re-
construction. We compare the results of the MOG light fieldqwith simpler Gaussian
priors (extending the conventional band limited signabiagstions [3,34,35,36,37])
and with modern sparse (but isotropic) derivative pridis44]. For the plenoptic cam-
era case we also explicitly compare with the signal proogs®construction (last bar
in fig 2(c))- as explained in the se&c2this approach do not apply directly to any of the
other cameras.

The choice of prior is critical, and resolution is signifitlgrreduced in the ab-
sence of an explicit slope model. For example, if the pleicaamera samples include
aliasing, the last row of figuré demonstrates that with a proper slope model we can
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Fig. 3. Reconstructing a light field from projections. Note sloparnges at depth dis-
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Fig. 4. Reconstructing a light field from projections, (continueddte slope changes at
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super-resolve the plenoptic camera measurements, andttia mformation encoded
by the recorded plenoptic data is higher than that of theetimeasurements.

The relative ranking of cameras also changes as a functigiof- while the
plenoptic camera produced best results for the isotrojicgra stereo camera achieves
a higher resolution under the MOG prior. Our goal in the nextisn is to analytically
evaluate the reconstruction accuracy of different camerad to understand how it is
affected by the choice of prior.

4 Camera Evaluation Metric

Given a light field prior we want to assess how well a light fiefdcan be recovered
from a noisy projection = T2 + n, or how much the projection nails down the set
of possible light field interpretations. The uncertainty t@ measured by the expected
reconstruction error:

E(W(z — ") T) = / P(aly: )W (z — °) @)

whereW = diag(w) is a diagonal matrix specifying how much we care about differ
ent light field entries, as discussed in $et. This measure should prefer distributions
centered at the true solution, and whose variance arouadafution is small as well
(and thus, less likely to be shifted by noise).

Uncertainty computation

The expected reconstruction error in émeasures the uncertainty around a solu-
tion. For that, we need to integrate over many mixture corepts) not only find the
MAP one as in se8.3. To overcome this challenge we evaluate the uncertaintygusi
synthetic projectiong, whose ground truth light field and slope field are known.

To simplify eq7, recall that the average distance betwe@mnd the elements of a
Gaussian is the distance from the center, plus the variance:

E(W (z —2°)*[S;:T) = [W (us — 2°)* + Y _ diag(W*Ls) (8)

In a mixture model, we need to weigh the contribution of eamhpgonent by its overall
volume:

BE(W (x — )% T) = / P(Sly) B(IW (z — 2°)[2|S; T) ©)

Since the integral in e§ can not be computed explicitly, we evaluate an approximate
uncertainty in the vicinity of the true solution. For thate wse a discrete set of slope
field sampleg(S?, ..., S¥} obtained as small perturbations around the known ground
truth slope field. We approximate &qising a discrete average:

BW (@ — ") T) = = 3PSy B(W (2 — )8 ) (10)
k

This is based on the assumption that for slope fiéldghich are very far from the true
one,P(y|S) is small and does not contribute much to the overall integral



Finally, we use a set of typical light fields (generated using ray tracing, as de-
scribed in se&.3) and evaluate the quality of a caméras the expected squared error
over these examples

E(T) =3 B(W(z—a?)[T) (11)

Note that this solely measures information captured by phie®and the prior, omitting
the confounding effect of specific inference algorithmisg(lin sec3.4).

5 Tradeoffs in projection design

We can now study the reconstruction error of different designd how it is affected by
the light field prior.

Gaussian prior. We start by considering the generic isotropic Gaussiarr grieq 2.

If the distribution of light fieldsr is Gaussian, we can integrate owein eq 11 analyt-
ically to obtain:E(T) = 23 diag(1/n*TTT + ¥, *)~! Thus, we reach the classical
principal components conclusion: to minimize the residuaalance I’ should measure
the directions of maximal variance if. Since the prior is shift invarian#, ' is a
convolution matrix, diagonal in the frequency domain, anel principal components
are the lowest frequencies. Thus, an isotropic Gaussiam pgrees with the classi-
cal signal processing conclusiofiy34,35,36,37] - to sample the light field one should
convolve with a low pass filter to meet the Nyquist limit anchgde both the directional
and spatial axis, as with a plenoptic camera configuratibthd€ depth in the scene is
bounded, fewer directional samples can be usé}).[This is also consistent with our
empirical prediction, as for the Gaussian prior, the pleitopamera indeed achieved
the lowest error in fig2(c). However, this sampling conclusion is conservativehas t
directional axis is more redundant than the spatial one sbhece of the problemis the
fact that second order statistics captured by a Gaussi&ibdigon do not capture the
high order dependencies of light fields.

Mixture of Gaussian light field prior. We now turn to the more realistic MOG prior
introduced in se8.3. While the optimal projection under this prior cannot bedicted

in closed-form, it can help us understand the major compisnefiuencing the perfor-

mance of existing camera configurations. The score ifi xyeals two aspects which
affect the quality of a camera- first, minimizing the variatds of each of the mixture

components (i.e., the ability to reliably recover the li§iald given the true slope field),
and second, the need to identify depth and miake&|y) peaked at the true slope field.
Below, we elaborate on these two components.

5.1 Conditional light field estimation — known depth

Fig 5 shows light fields estimated by several cameras, assumegue depth (and
therefore slope field), was successfully estimated. We dilgglay the variance of the
estimated light field - the diagonal &fs (eq6).

In the right part of the light field, the lens reconstructisrsharp, since it averages
rays emerging from a single object point. On the left, theslmtonstruction involves
a higher uncertainty, since the lens averages light rays frultiple object points and
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blurs high frequencies. In contrast, integrating over abpalic curve (wavefront cod-
ing) achieves low uncertainties for both slopes, since alpala “covers” all slopes A
pinhole also behaves identically at all depths, but it @#l@nly a small amount of light
and the uncertainty is high due to the small signal to noise.rginally, the uncertainty
increases in stereo and plenoptic cameras due to the smaiftéyer of spatial samples.

The central region of the light field demonstrates the ytditmultiple viewpointin
the presence of occlusion boundaries. Occluded parts velneehot measured properly
lead to higher variance. The variance in the occluded pantrigmized by the plenoptic
camera, the only one that spends measurements in this reffioa light field.

Since we deal only with spatial resolution, our conclusioagespond to known
imaging common sense, which is a good sanity check for ouretnétbwever, note
that they cannot be derived from a naive Gaussian model hadrigphasizes the need
for a prior such as as our new mixture model.

5.2 Depth estimation

Light field reconstruction involves slope (depth) estiroatiindeed, the error in €9
also depends on the uncertainty about the slopefieitle need to mak&(S|y) peaked

3 When depth is locally constant and the surface diffuse, wensap a light field integration
curve into a classical Point Spread Function (PSF), by ptiojg it along the slope direction
s. Projecting a parabolf(a, b)|b = o} at directions yields the PSks f(b) = |b—s/2|7°5.
That is, the PSF at different depths are equal up to spatiél simich does not affect visual
quality or noise sensitivity



at the true slope field. Since the observatjos 7'z 4+ n, we want the distributions of
projectionsT'z to be as distinguishable as possible for different slopeldisl One
way to achieve this is to make the projections corresponttirgjfferent slope fields
concentrated within different subspaces of the N-dimeradispace. For example, a
stereo camera yields a linear constraint on the projectiom?V/2 samples from the
first view should be a shifted version of the ott¥éf2. The coded aperture camera also
imposes linear constraints: certain frequencies of thealefed signals are zero, and
the location of these zeros shifts with depth [

To test this, we measure the probability of the true slopel fi€l(S|y), aver-
aged over a set of test light fields (created with ray tracifigje stereo score is
< P(Sly) >= 0.95 (where< P(S|y) >= 1 means perfect depth discrimination)
compared to< P(S|y) >= 0.84 for coded aperture. This suggests that the disparity
constraint of stereo better distributes the projectiorsesponding to different slope
fields than the zero frequency subspace in coded aperturéheéother hand, while
linear dependency among the elementg tifelps us identify slopes, it means we are
measuring less dimensionsafand the variance ii?(z|y, S) is higher. For example,
they resulting from a plenoptic camera measurement lies itV Ak dimensional space
(wherek is the number of views), comparing to afy2 dimensions of a stereo camera.
The accuracy of the depth estimation in the plenoptic camasiincreased t0.98.
This value is not significantly higher than stereo, while asndnstrated in figuré,
the planoptic camera increases the variance in estimatithige to the loss of spatial
resolution.

We can also use the averagBdS|y) score to quantitatively compare stereo with
depth from defocus (DFD) - two lenses with the same centerajéption, focused at
two different depths. As predicted byJ], when the same physical size is used (stereo
baseline shift doesn’t exceed aperture width) both degign®rm similarly, with DFD
achieving< P(S|y) >= 0.92.

Our probabilistic treatment of depth estimation goes beylorear subspace con-
straints. For example, the average slope estimation sé@éens was< P(S|y) >=
0.74, indicating that, while weaker than stereo, a single mofezémnage captured with
a standard lens contains some depth-from-defocus infawmas well. This result can-
not be derived using a disjoint-subspace argument, bugifuh probability is consid-
ered, Occam’s razor principle applies and the simpler ewgilan is preferred. To see
why, suppose we are trying to distinguish between 2 constape explanatios soc..s
corresponding to the focus depth, afigh roc.s corresponding to one of the defocus
depths. The set of images at a defocus depth (which inclne®gds with low frequen-
cies only) is a subset of the set of images at the focus depttuding both low and
high frequency images). Thus, while a high frequency imagele explained only as
an object at the focus depth, a low frequency image can bdyeglained by both.
However, since a probability sums to one, and since the sfotus images occupies
a smaller volume in the N-dimensional space, the defocushassigns individual low
frequency instances a higher probability.

Finally, a pinhole camera-projection just slices a row dithe light field, and this
slice is invariant to the light field slope. The parabola fitté a wavefront coding lens
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Fig. 6. Light field patches data

is also designed to be invariant to depth. Indeed, for th@eecameras, the evaluated
distribution P(S]y) in our model is uniform over slopes.

Again, these results are not fully surprising but they argioled within a general
framework that can qualitatively and quantitatively comga variety of camera de-
signs. While comparisons such as DFD vs. stereo have beeluciad in the pasti[]],
our framework encompasses a much broader family of cameras.

5.3 Light field estimation

In the previous section we gained intuition about the variparts of the expected error
in eq 9. We now use the overall formula to evaluate existing camersiag a set of
diffuse light fields generated using ray tracing. Evaluateadera configurations include
pinhole camera, lens, stereo pair, depth-from-defocus (¢nwses focused at different
depths), plenoptic camera, coded aperture cameras andedrom@icoding lens.
Evaluation dataset: The approximate uncertainty in €4 uses a set of synthetic light
fields 29 whose construction is described below. Synthetic obsenay, were gen-
erated as well by adding Gaussian noisétq. To reduce computational complexity
(especially, to reduce the number of slope field samplednedjfor reasonable approx-
imation in eql0), we used small light field patches only (patch sizé&:x 36 pixels).
For small patches, boundary effects on the reconstructialide dominant. To reduce
boundaries influence, our light field patches were made cyetund the horizontal
(spatial) dimension. Some test light field patches are Viiedhin fig 6. These patches
were divided intd groups, by increasing level of depth complexity: 1) constiapth
patches, 2) patches withdepth layers, 3) patches wisdepth layers (we estimate that
3 depth layers withir36 pixels image is already a rather complex depth structuteg. T
patches were made fully diffuse (thus constant along thgesiiirection) and the spatial
image textures in each layer were sampled from natural imags.

Fig 7 visualizes some slope field perturbations. These were gttty small shifts
to the location of the depth boundary, and by small shifthefdepth value within each
layer.

Evaluation setup:

By changing the weight®” on light field entries in eqd, we evaluate cameras for
two different goals: (a) Capturing a full light field. (b) Agving an all-focused image
from a single view point (capturing a single row in the ligteidi.)

We consider both a Gaussian and our new mixture of Gausdié@&] prior. We
consider different levels of depth complexity as charaz¢er by the amount of dis-
continuities. We use slopes betweerd5° to 45° and noise with standard deviation
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Fig. 8. Evaluating expected reconstruction error as a functiorepttlcomplexity.

n = 0.01. Fig. 8(a-b) plot expected reconstruction error with our MOG prighile
figs 8(c-d) use a generic isotropic Gaussian prior (note the idiffeaxis scale). In fig-
ure9 we evaluate changes in the depth range (using light fieldswitdest amount of
depth discontinuities angl = 0.01), and in figurel0 changes in the noise level (using
light fields with modest amount of depth discontinuitiesd &fopes ranging between
—45° t0 45°).

We attempt to analyze each camera family under its best bh&or each test
setup (i.e. for each combination of light field entries wejglepth complexity and noise
level) we search for the optimal parameters of each camendyfauch as baseline
length and aperture size of the individual lens in a sterag pamber of directional
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aperture samples in a plenoptic camera, and various chaficesles for coded aperture

cameras. The reported bars in fiy4 O represent these optimized choices.

We note that the exact parameters choice is only optimaltfertést light fields
on which it was fitted. While it is unreasonable to expect glsiparameters choice
to be optimal for all scenes and imaging conditions, oug@obvide a principled way
to trade off constraints and adjust camera parameters@iogaio any scene and us-
age requirements. Yet, the optimized parameters shownabkogenerality and some

specific choices are reported below.

Observations:

Full light field reconstruction Fig. 8(a) shows full light field reconstruction with our
MOG prior. In the presence of depth discontinues, lowestt Ifggld reconstruction is

achieved with a stereo camera.




The stereo baseline favored by the algorithm was widg; of the average distance
to the scene. For the plenoptic camera the optimal numbgrestare samples picked
by the algorithm wasg, which is the minimum number we allowed. This agrees well
with the fact that stere®(samples) outperformed plenoptihat is, while a plenoptic
camera improves depth information our comparison sugdestgy not pay for the
large spatial resolution loss. Yet, as discussed in5séa plenoptic camera offers an
advantage in the presence of complex occlusion boundaries.

For planar scenes (in which estimating depth is easy) thedcagerture surpasses
stereo, since spatial resolution is doubled and the ireeggampling of light rays can
avoid high frequencies loss due to defocus blur. Also, fanpl scenes some depth from
defocus information was captured by a single code-free mualaolens (the lens bars
are not completely high in the planar scene cashg single lens aperture parameter
favored by the algorithm was the widest possible (f/1.3pbably to yield stronger
depth from defocus cues.

While the performance of all cameras decreases when thé& dephplexity in-
creases, a lens and coded aperture are much more senstivetkiers.

While the depth discrimination of DFD is similar to that oésto (as discussed in
secb.2), its overall reconstruction error is slightly higher nthe wide apertures blur
high frequencies.

The relative ranking in fig8(a,c) agrees with the empirical prediction in figuage).
Note, however, that while fig&(a,c) measure inherent optics information A{g) folds-
in inference errors as well.

Single-image reconstructionWhen addressing the single row reconstruction goal
(fig 8(b)) one still has to account for issues like defocus, depfieta, signal to noise
ratio and spatial resolution. Thus, a pinhole camera (dingrthis single row alone)

is not ideal, and there is an advantage for wide aperturegumafiions collecting more
light (recording multiple light field rows) despite not bgimvariant to depth.

The parabola filter (wavefront coding) does not captureldggormation and thus
performs very poorly for the light field estimation goal. Hever, the evaluation in
fig 8(b) suggests that for the goal of recovering a single lighd fiew, this filter outper-
forms all other cameras. The reason is that since the filiev@giant to slope, a single
central light field row can be recovered without knowledgelepth. For this central
row, it actually achieves high signal to noise ratios forddpths, as demonstrated in
figure5. To validate this observation, we have searched over a fgef lens curva-
tures, or light field integration curves, parameterizedmisss fitted to 6 key points.
This family includes both slope sensitive curves (in theispf [8] or a coded aper-
ture), which identify slope and use it in the estimation, alogbe invariant curves (like
the parabola{]), which estimate the central row regardless of slope. @sults show
that, for the goal of recovering a single light field row, thewsfront-coding parabola
outperforms all other configurations. This extends the inis in previous wavefront
coding publications which were derived using optics reaspiand focus on depth-
invariant approachef.also agrees with the motion domain analysis4if|[ predicting
that a parabolic integration curve provides optimal sigaaloise ratio.



5.4 Plenoptic sampling: signal processing and Bayesian @sation

As another way to compare the conclusions derived by clalssignal processing ap-
proaches with the ones derived from our new MOG light filedpnive follow [33]
and ask: suppose we use a camera with a fixquixels resolution, how many different
views (V pixels each) do we actually need for a good ‘virtual reafity’
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Fig. 11.Reconstruction error as a function number of views.

Figure 11 plots the expected reconstruction error as a function ofntimaber of
views for both MOG and naive Gaussian priors. While a Gaagsi@r requires dense
sampling, the MOG error is quite low after 2-3 views (suchaosions depend on
depth complexity and the range of views we wish to captura) cbmparison, we also
mark on the graph the significantly larger views number ingdolsy a Nyquist limit
analysis, like B3]. Note that to simulate a realistic camera, our directi@xi samples
are aliased. This is slightly different fromiJ] which blur the directional axis in order
to eliminate frequencies above the Nyquist limit.

6 Discussion

The growing variety of computational camera designs caltsafunified way to ana-
lyze their tradeoffs. We show that all cameras can be awcaljtimodeled by a linear
mapping of light rays to sensor elements. Thus, interpget@msor measurements is the
Bayesian inference problem of inverting the ray mapping.siMaw that a proper light
fields prior is critical for the successes of camera decadiMganalyze the limitations
of traditional band-pass assumptions and suggest thabeavghich explicitly accounts
for the elongated light field structure can significantlyueel sampling requirements.
Our Bayesian framework estimates both depth and imagen#ton, accounting
for noise and decoding uncertainty. This provides a toobtojgare computational cam-
eras on a common baseline and provides a foundation for catigual imaging. We
conclude that for diffuse scenes, the wavefront codingcigis (and the parabola light



field curve) is the optimal way to capture a scene from a sivigle point. For capturing
a full light field, a stereo camera outperformed other knoamfigurations.

We have focused on providing a common ground for all desifribie cost of sim-
plifying optical and decoding aspects. This differs fromditional optics optimization
tools such as Zemax¥] that provide fine-grain comparisons between subtly-défife
designs (e.g. what if this spherical lens element is repldgean aspherical one?). In
contrast, we are interested in the comparison betweenié&mnoif imaging designs (e.g.
stereo vs. plenoptic vs. coded aperture). We concentrateeasuring inherent informa-
tion captured by the optics, and do not evaluate camerafgpaecoding algorithms.

The conclusions from our analysis are well connected tdtye&lor example, it
can predict the expected tradeoffs (which can not be demsiny more naive light
field models) between aperture size, noise and spatialutesodiscussed in st 1. It
justifies the exact wavefront coding lens design derivedgisptics tools, and confirms
the prediction of [ J] relating stereo to depth from defocus.

Analytic camera evaluation tools may also permit the studynexplored camera
designs. One might develop new cameras by searching farlprejections that yield
optimal light field inference, subject to physical implertetion constraints. While the
camera score is a very non-convex function of its physicatatteristics, defining cam-
era evaluation functions opens up these research dirsction

7 Appendix A: Lenses and light field integration

We consider a camera whose sensor plane is placed paralled #0b lines, and as-
sume w.l.o.g that the lens aperture plane is positioned em tine, between points
(—A4A,a), (4,a) (here2A is the width of the aperture). We want to characterize, inhtlig
field space, the set of light rays which are mapped by the l#osa sensor element.
Referring to the notation in fij2, we consider the rau, v)- the ray intersecting this
line at point(u, b) and the aperture ling at point(v, a). This ray bent by the lens and
mapped into sensor poiat We want to express as a function ok andwv. Letds, ds
denote the distances between the aperture to the sensbrlared respectivelyR’ (v)
denotes the reflective element curvature at pojrandn,, ny the intersection of the
refractive element normal with the sensor anlihes. Finallyéd,, > denotes the angels
between the normal and the rays to the points respectively. Using this notation we
note that we can expreBs; —v| = dy R'(v) and|ng —v| = d2 R'(v). Assuming angles
are small, in a first order approximation

ng —z|  R(v)di +v—=z

sin 0, ~ a &
/
_ d _
sin02%|n2 u|:R(v) 2+ u—wv (12)
do do

Using Snell’'s rule:
sinfy = rsin 6, (13)
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wherer represents the index of refraction. Substitutinglédn eq 13, to a first order
approximation, we can expresas

uzv(l—&—r%) + R (v)da(r — 1) — 2r— (14)
1

As a result the set of rays mapped by the lens into sensor pama curve in light
field space which can be expressedas f(y) + az

F(v) = Bv+ R (v). (15)

and the amount of light recorded into this sensor elemetdsritegral of these light
rays

A

I(z) = / LF(f(v) 4+ az,v)dv (16)

—A
where the aperture width &4, andL F'(u, v) denotes the intensity of the light field ray
(u,v).

The simplest example is a conventional lens, the shape isanderder surface,

approximately a parabola. The curvatuRgv) is a linear function ofv. Thus for a
conventional lens, the light field integration curve is aln curve, whose slope is a



function of the distance between the lens and the sensoithisdlope is mapped to
the focus distance. In a Wavefront coding system, the lenshg, the derivative is a
parabola, and as a result the camera integrates light ovamad@la curve in light field
space.

8 Appendix B: Slope inference

This appendix extends sectiBrto provide details on the slope field (depth) inference
under our MOG light field prior.

Given a camerd’ and an observation our goal is to infer a MAP estimation af.
The probability of a light field explanation(z|y) is defined as:

(z|ly; T /P Sly; T)P(x|y, S;T) a7

however, the integral in efy7 is intractable. Our strategy was to compute an approx-
imated MAP estimate for the slope fiekl and conditioning on this estimated slope
field, solve for the MAP light field.

To compute an approximated MAP estimate for the slope fiekdbreak the light
field into small overlapping window§w} along the spatial axis, and pigk,, - them
most central entries af according to the slope orientation, as illustrated inlfig\We
can then ask locally whaP(ys,, |S.) is, or how well are the measurements, ex-
plained by theS,, slope field window interpretation. For example, if we useeresh
camera, the locajs,, measurements should satisfy the disparity shift conggain-
posed byS,,. We approximate the slope score as a product over local wiadhat is,
we look for a slope fields maximizing:

P(S]y) ~ HP Swlys.,) (18)

If we consider sufficiently small light field windows, we cagasonably cover the set
of slope field interpretations with a discrete {&!, ..., SK}. The list{S?, ..., S¥} we
use includes constant slope field windows and slope fieldslaws with one depth
discontinuity. We approximate thé(S!|yg:) integral with a discrete sum:

P(S)P(ysi|S)
& S0, P(Sk)P(ygi|Sk)

We optimize eql8 using Belief Propagation (enforcing the slope fields in hbiy-
ing windows to agree). The exact window size poses a tradswiéller windows will
increase the efficiency of the computation but also decrtreeseobustness of the ap-
proximation.

We note that this algorithm is a generalization of other cadecoding algorithms.
For example if the number of centrakentriesm is decreased to two pixels we achieve
the classical MRF stereo matching]. The coded aperture[3] used a similar frame-
work as well, except that only constant depth interpretetiovere considered in each
window, andP (S, |ys,, ) were approximated using maximum likelihood.

P(SYygi) ~ (19)
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