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ABSTRACT   

 

The flexible MIPS soft processor architecture borrows selected technologies from high-

performance computing to deliver a modular, highly customizable CPU targeted towards FPGA 

implementations for embedded systems; the objective is to provide a more flexible architectural 

alternative to coprocessor-based solutions. The processor performs out-of-order execution on 

parallel functional units, it delivers in-order instruction commit and it is compatible with the MIPS-1 

Instruction Set Architecture. Amongst many available options, the user can introduce custom 

instructions and matching functional units; modify existing units; change the pipelining depth 

within functional units to any fixed or variable value; customize instruction definitions in terms of 

operands, control signals and register file interaction; insert multiple redundant functional units for 

improved performance. The flexibility provided by the architecture allows the user to expand the 

processor functionality to implement instructions of coprocessor-level complexity through 

additional functional units. The processor design was implemented and simulated on two FPGA 

platforms, tested on multiple applications, and compared to three commercially available soft 

processor solutions in terms of features, area, clock frequency and benchmark performance. 
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1- INTRODUCTION 

 

With the widespread success of smart phones and mp3 players, portable electronic devices are 

becoming increasingly complex, and currently represent the leading edge of digital hardware 

technology. To accommodate portability, research in hardware architecture is gradually shifting 

from very high performance general-purpose systems to dedicated low-power solutions, efficient 

and customized towards a specific task. 

While dedicated hardware solutions deliver good results in terms of production cost, performance 

and power efficiency, developing such specialized systems makes engineering cost a principal 

factor in evaluating project feasibility. My research objective is to allow development of optimal 

dedicated hardware solutions without incurring in high case-by-case engineering costs. 

My work contributes to the advancement of the REDSOCS project, currently under development 

at CSAIL. The aim of the project is to create interfaces for wireless, self-describing devices, which 

make their capabilities available to other machines over the network. These devices need to 

perform a wide variety of tasks, such as wireless communication and multimedia processing, 

locally and in hardware, by use of integrated system-on-a-chip (SOC) solutions. The integrated 

hardware solutions need to use a combination of input/output modules, high-speed and low-

speed buses, and one or more central processing cores. The aim of such SOC solutions is to 

provide devices with the computational power required to perform the required tasks, while at the 

same time saving in production cost and power consumption by eliminating the flexibility and 

excess capabilities of a general-purpose solution. However, since different devices require 

different computational capabilities, a variety of specialized cores would have to be designed, 

thus making engineering cost a major limiting factor for development. 

With the purpose of eliminating the contrast between hardware specialization and engineering 

costs, I designed and implemented a highly customizable out-of-order MIPS soft processor. While 

compatible with the standard MIPS ISA, the processor is based on a series of parallel, user-

customizable functional units. By controlling these functional units through a set of parameters, a 

hardware designer (the user) can modify the hardware implementation of each instruction, 

including the internal degree of pipelining, as well as insert new functional units associated to 

custom instructions that are added to the processor ISA. Through customization, the user can 

generate a specific processor instance specially tuned for the needs of the particular system, 

without having to design the new core, and guaranteeing the required performance while 

minimizing area and power consumption. With several dimensions of customization, the hardware 
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designer is able to test, using an FPGA, which processor configuration works best for the 

required task in terms of performance/area/power tradeoffs, taking custom-design engineering 

costs out of the equation. Since the architecture complies with standard MIPS specifications, 

these core solutions may be used within a variety of implementations. Finally, the architecture 

may be used to develop a set of individually customized cores that share a common API: an 

interesting possibility for differentiated multi-core solutions. 

 

2- RATIONALE AND FEASIBILITY ANALYSIS 

 

Giving higher flexibility to microprocessor solution is a problem that has been researched in the 

past. Dating back to the Intel 8087 for IBM PC (Palmer, 1980), the first mainstream solution to 

computational flexibility has been the insertion of a coprocessor unit. The specialized 

coprocessors are coupled with a specific Application Programming Interface (API) that specifies 

the interaction protocol between processor and coprocessor (Anderson, Svendsen, & Sohn, 

1996), and allows users to write code which will take advantage of such extensions. The advent 

of reprogrammable logic and FPGAs introduced the notion of flexible coprocessors, whose 

internal functionality can be modified, while holding a fixed main processor and API (Hauser & 

Wawrzynek, 1997). With my thesis, I experiment a new approach to computational flexibility by 

proposing a new API, allowing the user to insert new functional units within the processor 

architecture. 

In this section, I identify the main obstacles to a custom-made functional units architecture and 

study the feasibility of various methods to overcome them. In particular, I borrow and dissect 

various technologies from the high-performance computing domain ad examine their costs and 

benefit towards the realization of this new architecture. In evaluating technologies, I hold flexibility 

as my main architectural objective, while ensuring that an FPGA processor implementation keeps 

a good balance of performance, area and power consumption as typically required of integrated 

computing solutions.  

The fundamental degree of freedom for this processor is the possibility to easily insert a variety of 

functional units that can be designed externally, either implementing a standard MIPS instruction 

or inserting a new, dedicated ISA instruction. However, if a custom functional unit (FU) is created 

to implement a complex, long-latency or multi-stage function, the effect on the final performance 

of the processor can be disastrous. This calls for a system that allows complex pipelined 



7 

 

functional units to coexist with regular single-cycle units without compromising performance. The 

easiest solution is a simple FU busy signal that can stall the processor pipeline until the FU has 

completed its job. However, this system does not allow for any parallelism in the operation of the 

various FU.  

The solution I use is a modified implementation of Tomasulo’s algorithm (Tomasulo, 1967), which 

allows functional unit parallelism and Out-of-Order execution while retaining in-order issue and 

commit of the instructions. This system also allows continued operation for Write-After-Write 

(WAW) and Write-After-Read (WAR) data hazards. The algorithm is modified for improved 

handling of memory instruction and for retaining in-order issuing and committing while executing 

out-of-order. 

The basic principle behind this solution is register renaming: the source and destination registers 

become pointers to either the register value, if available, or to the functional unit that is going to 

produce it. This added degree of register flexibility requires a space to hold the extra information, 

which is provided by the modules called reservation stations, each associated with a different 

functional unit, and by a register status table that keeps track of available and pending data. 

REGISTER STATUS 

The register status table, effectively a bookkeeping table for register renaming, holds information 

about all the architectural registers. For each register, it holds either a zero (when the value is 

available in the register), or it points to the reservation station which is assigned going to produce 

the value. 

RESERVATION STATIONS 

Each functional unit needs to be associated to one or more reservation stations, holding 

information about its current operation. These stations represent a decentralized way of having 

each FU hold information about its operation, so that instruction issue can happen sequentially, 

and each FU can independently handle data dependency issues. From an algorithmic 

perspective, a pipelined FU that can concurrently process multiple instructions at different stages 

is equivalent to multiple single-instruction FUs, each of which needs its own reservation station. 

Thus the registers and instructions need to always refer to reservation stations as opposed to 

FUs. 

A reservation station is a data structure that holds relevant information about the operation that 

the associated functional unit has to complete (Hennessy & Patterson, 2006). These are the 

fields that characterize the state of a reservation station: 
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� Busy: A signal indicating the status of the FU. When busy, the functional unit cannot 

receive a new instruction. 

� Op: When a single FU can perform more than one operation (e.g. ADD/SUB), Op holds 

information about which operation needs to be performed. 

� Qj, Qk: Fields used for pointing to unavailable operands. They point to the reservation 

station which is assigned to produce the operand value. If instead the operand is 

available, they hold a value of zero. 

� Vj, Vk: Fields holding the value of the operands. They can only be read if the 

corresponding Qj, Qk are zero, indicating that the operands are available. When both Vj 

and Vk are present the reservation station issues an operation to the FU. 

� A: Immediate value. Never points to a reservation station since immediate values are 

provided directly by the instruction. Sixteen-bit immediate values are used for address 

computation in branching and memory instructions, and as constant arithmetic operands. 

 

BASIC OPERATION ALGORITHM 

With reservation stations holding the renaming information, instruction issuing becomes a matter 

of searching for and loading available reservation stations that can execute the instruction, as 

well as interacting with the instruction memory and managing the pc logic. Figure 1 outlines the 

action and bookkeeping steps of the algorithm. Figure 2 illustrates a possible processor state 

under this method. 
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Figure 1: Overview of Tomasulo’s algorithm for out

include the arbiter mechanisms described further down, designed to resolve Common Data Bus 

conflicts and ensure in-order instruction commit.

 

 

Issue

•Search for available reservation stations that are capable of processing the instruction, by checking 
both the capability to execute the specific instruction and the busy status of all reservation stations. If a 
reservation station is both capable and available continue, else stall and wait.

•Check the register status table for both operands. For every field, if the register status points to a 
reservation station, write its address in Q, or else write zero in Q and the register value in V.

•Set the reservation station to busy status.

•Set the status of destination register to point to the chosen reservation station.

Execution

•For all busy reservation stations:

•Check if any Q operand is associated to the reservation station that is currently broadcasting.

•If it is, set the Q operand to zero, and the write the broadcast result in the V operand

•If both Q operands are zero, begin:

•Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common 
data bus, and make the reservation station available.

Writeback

•Whenever there is a result broadcast on the common data bus begin. For every register in the register 
status table:

•Check if its value is pending from the reservation station that is currently broadcasting. 

•If it is, write the new value to the register file and set the register status as available.

: Overview of Tomasulo’s algorithm for out-of-order execution. The description does not 

include the arbiter mechanisms described further down, designed to resolve Common Data Bus 

order instruction commit. 

Search for available reservation stations that are capable of processing the instruction, by checking 
both the capability to execute the specific instruction and the busy status of all reservation stations. If a 
reservation station is both capable and available continue, else stall and wait.

Check the register status table for both operands. For every field, if the register status points to a 
reservation station, write its address in Q, or else write zero in Q and the register value in V.

Set the reservation station to busy status.

Set the status of destination register to point to the chosen reservation station.

For all busy reservation stations:

Check if any Q operand is associated to the reservation station that is currently broadcasting.

If it is, set the Q operand to zero, and the write the broadcast result in the V operand

If both Q operands are zero, begin:

Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common 
data bus, and make the reservation station available.

Whenever there is a result broadcast on the common data bus begin. For every register in the register 
status table:

Check if its value is pending from the reservation station that is currently broadcasting. 

If it is, write the new value to the register file and set the register status as available.

 

. The description does not 

include the arbiter mechanisms described further down, designed to resolve Common Data Bus 

Search for available reservation stations that are capable of processing the instruction, by checking 
both the capability to execute the specific instruction and the busy status of all reservation stations. If a 

Check the register status table for both operands. For every field, if the register status points to a 
reservation station, write its address in Q, or else write zero in Q and the register value in V.

Check if any Q operand is associated to the reservation station that is currently broadcasting.

If it is, set the Q operand to zero, and the write the broadcast result in the V operand

Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common 

Whenever there is a result broadcast on the common data bus begin. For every register in the register 

Check if its value is pending from the reservation station that is currently broadcasting. 

If it is, write the new value to the register file and set the register status as available.
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ADD R3, R5, R7

DIV R2, R8, R3

SUB R6, R2, R3

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

0 0 Div0 Add0 0 0 Add1 0 0 0

Adder (Add0) Adder (Add1)

Pipelined 

Shifter (Shl0)

(Shl1)

Pipelined 

Divider (Div0)

Register Status

Functional Units

Reservation Stations

Name Busy Op Vj Vk Qj Qk A Capability

Add0 Yes ADD Reg5 Reg7 0 0 ADD, SUB

Add1 Yes SUB Div0 Add0 ADD, SUB

Div0 Yes Reg8 0 Add0 DIV

Shl0 No SLT, SLTI

Shl1 No SLTU, SLTIU

Instructions Issued

 

Figure 2: Snapshot of a possible processor state, illustrating the handling of RAW data hazards. The 

processor has two adders (Add0, Add1), a pipelined two-stage shifter that can operate on two 

instructions at a time (Shl0, Shl1), a circularly pipelined divider that can operate on one instruction 

at a time (Div0). In this case, while the ADD instruction (Add0) is completing, the DIV instruction has 

been issued (Div0) and is waiting for Add0. The SUB instruction (Add1) has also been issued, and is 

waiting for both Add0 and Div0. At this point, if the next instruction finds no data dependencies and 

a free functional unit (i.e. SHL R4, R5, R8), it can be issued and executed immediately. 

 

BRANCHING 

Out-of-order execution implies the issuing of new instructions when the result of previous ones is 

still unknown. In the case of branching, the result determines which instruction needs to be issued 

next. For out-of-order processors, this situation implies a fundamental choice on whether to 

continue speculative execution after a branch is issued and before its result is known. 

The general approach to supporting speculative execution is the introduction of a “commit” stage, 

where the instruction result is written into registers only if the result of the branch preceding the 
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instruction has been computed. Supporting instruction commit implies the introduction of 

additional bookkeeping registers, usually implemented with a Re-Order Buffer (ROB) algorithm. 

A more straightforward solution to branching in out-of-order processor consists of simply stalling 

instruction issue at a branch until the branching instruction is resolved, which can be associated 

to the busy bit of the branch FU reservation station. 

FEASIBILITY ANALYSIS FOR SPECULATIVE EXECUTION AND BRANCH PENALTY 

Support for speculative execution has become the standard practice for modern high-

performance processors. However, while a ROB implementation does not increase processor 

latency, it implies a very high cost in new hardware. In particular, the introduction of a whole new 

set of registers is very expensive on FPGA implementations, not to mention that speculative 

execution requires the introduction of branch prediction hardware, further complicating the overall 

architecture.  

The cost of implementing Tomasulo’s algorithm is justified by the possibility of inserting custom 

pipelined functional units for high architectural flexibility and improved performance. On the other 

hand, for the overall performance of the processor, the benefits of speculative execution depend 

on average branch penalty and branch frequency.  

A measurement of branch penalty is given by the average number of cycles “lost” in a piece of 

code with a branch instruction as opposed to the same code without any branching. In this 

processor, the penalty depends on several factors. First, the branch penalty increases with a 

higher degree of parallelism, thus it would increase in a processor with a very large number of 

custom FUs. However, the introduction of custom FUs is aimed towards flexibility rather than high 

performance through parallelism, so it is reasonable to assume that the typical user-generated 

processor would not feature a very high number of custom FUs. Second, branch penalty 

increases with superscalar issuing, thus reducing the marginal benefit of a superscalar 

implementation. Third, when dealing with out-of-order execution, it is fundamental that the branch 

instruction is not waiting on pending data, so that it can be resolved quickly. In typical programs, 

most branches are the result of loop unrolling (i.e. for loops), most likely depending on a simple 

counter value rather than on the result of more complex operations. In this case, most branch 

instructions would find their operand quickly available. This general speculation, however, 

depends on the typical benchmark code that the processor will have to execute. 

Another factor determining the feasibility of speculative execution is branch frequency, which is 

highly variable depending on the type of code executed, yet typically ranging between 15-30% of 

total instructions (McFarling & Hennessey, 1986). Branch frequency can be a major factor in 
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reducing instruction-level parallelism (ILP) in code execution, and benchmarking code can give a 

good indication of such penalties. 

Summarizing, branch prediction is a common and useful technique, yet a mechanism for 

misprediction recovery would add an excessive complexity penalty to the architecture. A high 

branch frequency can severely limit the maximum ILP obtainable by an out-of-order architecture, 

yet this cost is bearable since the architecture aims at maximizing flexibility over performance. 

FEASIBILITY OF SUPERSCALAR ISSUING 

With data dependencies handled by reservation stations, and instruction issuing independent of 

WAW and WAR hazards, it seems natural to try issuing multiple instruction per cycle. However, 

while logically easy, superscalar issuing implies many hardware complications. 

The processor writeback implementation is based on a Common Data Bus, feeding results to all 

reservation stations, so that newly obtained register values are broadcasted for immediate 

update, thus one element to be considered is the impact of a larger, more complex Common Data 

Bus. Superscalar issuing implies the use of a larger CDB for two reasons. First, for a superscalar 

approach to become advantageous the processor must have a high number of FUs to increase 

the chance of being able to perform multiple issuing. The introduction of more FUs will increase 

the complexity of the CDB, since every FU can both write to and read from it. Second, by simple 

queuing reasoning, a processor cannot issue an average of more than one instruction per cycle 

unless it is also able to commit multiple instruction per cycle, or else the number of in-flight 

instructions would grow indefinitely. This capability would require the instantiation of multiple 

CDBs, again increasing hardware complexity. Finally, FPGA interconnections are generally 

efficient for high-throughput networks, yet much weaker for high-interconnectivity setups (Kapre, 

et al., 2006). A more complex CDB interconnecting all functional units and reservation stations 

would therefore pose an even higher hardware cost when part of an FPGA implementation 

Additionally, when operating without speculative execution, superscalar issue is stalled by the 

presence of branching instructions. Therefore, frequent branching limits the usefulness of 

superscalar issuing. 

EXCEPTION HANDLING 

While the issuing of instructions is sequential, out-of-order execution does not guarantee 

sequential completion of instructions. Therefore, if an interrupt happens at a random point in the 

code, finding an appropriate state in which to stop execution is a nontrivial task. The typical 

solution in modern architectures consists of using the ROB to keep track of committed 
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instructions, and rolling back to the latest commit point in case of an interrupt, just like would 

happen for a mispredicted branch. However, only speculative processors feature a ROB that can 

be used for the purpose. 

For non-speculative out-of-order processors, there are two ways of handling interrupts. The first 

solution implies the implementation of a book-keeping register set holding and forwarding 

instruction results, while committing them in-order to the register file. At an interrupt, the book-

keeping table can be cleaned and execution blocked at the latest committed instruction. This 

approach is logically slightly easier than the implementation of a full ROB, however it still implies 

the expensive introduction of a new register set. To achieve full parallelism, the register set needs 

to hold one entry per reservation station, nearly doubling the hardware cost of out-of-order 

execution when implemented on FPGAs. Practically, this solution is unfeasible unless coupled 

with a full ROB and speculative execution. 

The second solution is a more straightforward approach. Similarly to the branching solution, the 

issuing can stall and the interrupt can wait until all reservation stations are empty. The feasibility 

of this solution increases when there are fewer multi-stage functional units (differently from 

branching, the number of FUs is irrelevant, the limiting factor is the slowest FU), and when 

interrupts are relatively infrequent. Again, benchmark applications can provide estimates of 

interrupt frequency. 

ARBITER MODULE 

The adopted solution is a memory-based module functioning as a writeback arbiter. This module 

is designed to address three problems. 

1. FU Errors and in-order commit 

Processor interrupts are not only generated externally, but can also come as a result of an error 

signal given by a functional units, a divide-by-zero error being the typical example. In this case, 

the instruction execution has to interrupt precisely at the error-generating instruction, even though 

subsequent instructions may already be in-process within their functional units. As discussed 

earlier, however, in a system without a reorder buffer rollbacks are not possible. In this case the 

only solution is to sacrifice some performance to implement in-order instruction commits. There 

must be a system that controls CDB writeback so that FUs complete in the original instruction 

order. 

2. Destination register, avoiding content-addressable memory 

The original definition of Tomasulo’s algorithm describes the Common Data Bus as carrying the 
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result value, together with a tag identifying the FU that produced it. This tag is matched against all 

outstanding “Q” fields in the reservation stations and in the register status table, so that every 

field waiting for the result of that FU can be updated. 

From a hardware prospective, this design implies that the register status table be implemented as 

a content-addressable memory, where the register that needs to be written has to be found by 

matching the FU tag with each entry value. This functionality is incredibly expensive and should 

be avoided unless strictly necessary. Another reason to avoid this solution is that the inverse 

lookup latency is added to the writeback critical path, as a destination register is needed before 

the register file can be updated. 

The way to avoid content-addressable memory is to memorize the destination register of every 

functional unit currently operating, so that the register value needs not be retrieved from the 

register status table 

3. CDB management 

Finally, while in-order issue guarantees that at most one instruction per cycle is issued, the 

variable latency of FUs implies that more than one result may be ready for writeback at every 

clock cycle. Since there is only one CDB available, the arbiter manages and prioritizes writeback 

order from all FUs. 

Arbiter specifications 

The introduction of an arbiter module solves the three issues described by implementing the 

following algorithm. Also, it provides functional units with a free-to-write authorization signal to 

use the CDB. 

Issue 

If a new instruction is issued, store the instruction’s destination register and reservation station 

tag as a new FIFO entry 

Writeback 

Every clock cycle, the arbiter reads the first FIFO output (earliest in-flight instruction). 

If the reservation station described by the tag is ready, give it a free-to-write signal, and use the 

destination register as a write address for the register status table. Delete this entry (FIFO read 

enable). 

If the chosen reservation station is not ready, wait and do not let any FUs use the CDB. 
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With this functionality, it is possible to see how in-order commits are ensured, at most one FU per 

cycle can use the CDB, and the destination register is provided at writeback, making a content-

addressable register status table unnecessary. 

 

Reservation stations are still updated by inverse lookup. However, this does not imply additional 

hardware: all reservation stations fields need to be fully updated in a single clock cycle at 

instruction issue, thus cannot be implemented as single or dual-port memories, but rather as 

collections of independent registers. In this case, adding two comparators for the Q fields 

listening to CDB values does not add significant hardware cost. 

SUMMARY 

From the analysis of superscalar issuing, exception handling and speculative execution, it is 

evident that the methods to improve performance of an out-of-order processor tend to be effective 

only when used together. Summarizing the feasibility analysis, it can be seen that superscalar 

issuing implies higher branch penalty, which needs to be fixed by speculative execution, which in 

turn requires branch prediction hardware. On the other hand, there is the possibility of using 

simple solutions for branch and exception handling, which slightly decrease the effectiveness of 

out-of-order execution but come very cheap in terms of hardware resources. 

The introduction of additional hardware for speculative execution does not fit the scope of this 

project. While expensive, out-of-order execution dramatically increases flexibility by allowing 

simple operations to coexist with complex custom functional units. On the other hand, book-

keeping techniques for precise exception handling and speculative execution only influence 

performance under frequent branching/exception conditions, while nearly doubling the additional 

hardware cost on FPGA implementations. 

 

3- FUNCTIONAL SPECIFICATIONS 

 

In order to increase customization freedom, each functional unit and reservation station is 

implemented as a separate module, rather than being organized in table form. Another priority 

was to simplify the interface requirements for the functional units, as these are the components 

that can be modified externally, without requiring knowledge of the processor architecture. 
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REGISTER STATUS TABLE  

The register status table is implemented as a 4-port memory of size [number of registers x 

log2(number of reservation stations)]. Every cycle it can perform 2 reads and 2 writes: 

2 reads from the Issuer, to read the status of the rs and rt fields of the instruction 

1 write from the Issuer to specify that the value of the target register is no longer known, as it will 

be produced by the chosen reservation station (Register Status [rd_issuer] <- reservation station 

tag) 

1 write from the common data bus to communicate that the register value is now known (Register 

Status [rd_arbiter] <- 0) 

The write from the common data bus writeback can be performed only under two conditions: 

It does not conflict with current write from the Issuer. If it conflicts (same target register), discard 

the write. 

Before writing, check that the Register Status entry is still looking for the reservation station trying 

to write (current status of register = common data bus tag). If not, it means that another 

instruction with the same target register has been issued while the reservation station was at 

work, thus the register value is still pending, thus the write should be discarded. 

REGISTER FILE AND MEMORY 

The register file can be implemented regularly, with 2 read ports and 1 write port. The memory is 

implemented as a single module with 2 read-ports and 1 write-port, incorporating both instruction 

and data memory. 

ISSUER 

The Issuer is be implemented as an separate module. The hardware requirements are: 

Read the instruction from instruction memory 

Produce a stall signal to stop pc from incrementing if (a) there is no available reservation station 

for processing the instruction or (b) the instruction is a branch or (c) the instruction is an interrupt. 

To preserve consistency, in case of interrupts and branches, the processor stalls until all previous 

instructions have been committed. 

Read the register file and the register status table in parallel for rs and rt. If the register status 
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produced a value, use it, or else use the register file value. 

Broadcast values for all fields (busy,op,Vj etc.) to all reservation stations, but only assert a write 

enable for the appropriate station. 

Feed the tag of the chosen reservation station and the destination register to the arbiter.3 

(to_arbiter_dest, to_arbiter_tag). 

COMMON DATA BUS 

The CDB is composed of registers holding writeback information. The registers act as a writeback 

pipeline, and their content is broadcasted to the register file and register status tables, for register 

update, as well as to all the reservation stations, that monitor the CDB data for results coming 

from their Qj, Qk fields. 

The CDB delays and broadcasts the following fields: 

Destination (from_cdb_dest): The target register for the writeback result. Originally produced by 

the arbiter (from_arbiter_dest). 

Tag (from_cdb_tag): Identifier for the reservation station that produced the result. Originally 

produced by the arbiter (from_arbiter_tag). 

Data (from_cdb_data) : The new register value. Originally produced by one of the FUs. The 

appropriate FU output (fu_chosen_output) is selected in the previous stage by the arbiter tag, 

indicating which reservation station had to commit. 

Write-enable (from_cdb_we) : It indicates whether the CDB data is valid. While tha data is always 

taken from the FU whose turn it is to commit, the write enable must be high only when the FU has 

completed operation. This signal originally comes from the chosen reservation station, which 

asserts the write enable when the FU has produced the correct result. 

RESERVATION STATIONS 

Except for the special cases of memory and branch instructions, all reservation stations are 

equal, and operate in the same way regardless of the functional specifications of their attached 

FUs. In particular, the RS can be in one of three states: 

IDLE/WAITING FOR INSTRUCTION 

When the issuer loads an instruction (write enable is high), look at all the operands: 
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If both operands are ready (Qj, Qk = 0), load all fields from the issuer and begin operation by 

starting the FU (raise fu_start) 

If one or more operands are missing, check the CDB broadcast before loading the fields. If one of 

the missing fields (tag = Qj or Qk) is being broadcasted (cdb_we = 1), update the broadcast 

instead of the issuer value. If, thanks to the CDB, both fields are ready, begin operation. 

Assert the busy signal. 

WAITING FOR OPERANDS  

Check the CDB broadcast. If one or both the missing fields (tag = Qj or Qk) are being 

broadcasted (cdb_we = 1), update the value. 

If, with the current CDB broadcast, both operands are now ready, begin operation immediately. 

WAITING FOR WRITEBACK 

If the result is ready (fu_ready), monitor the arbiter authorization (arbiter_free_to_write). This 

signal will be asserted by the arbiter when the RS is the next due to commit (from_arbiter_tag = 

RS number). If the FU is ready and the authorization has been received: 

Write the Fu result to the cdb (assert to_cdb_we) 

Set the busy signal to zero. 

FUNCTIONAL UNITS 

Functional Units are the key components of the processor, since it is through the insertion and 

customization of functional units that the processor achieves its feature characteristic of flexibility. 

Ideally, functional units need to be: 

Standardized in I/O: so that reservation stations can obey a single communication protocol with 

all FUs 

Internally Customizable: each FU should be able to operate freely, without any constraint on 

internal components, timing requirements, or limitations on pipeline stages. 

Architecture-Independent: of all the processor’s components, the custom FUs are to be coded 

by the user/designer, who shall not be forced to learn about the FU requirements within the 

processor architecture. Ideally, the user should only specify the operational functioning, together 

with some characteristics of the new FU (such as the degree of internal pipelining). A FU 
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template should take care of analyzing these characteristics and generate the appropriate internal 

communication logic. 

Fully Utilized: if a FU has many pipeline stages, yet can intake a new operation at each cycle 

(i.e. it is not “circularly pipelined”), it should have the possibility of processing, if needed, several 

in-flight instructions at one point in time 

The architecture satisfies these requirements through the following mechanisms: 

Standardized I/O: each FU is limited to a 3-input (op1,op2,a) 1-output (result) operation, whose 

details are covered in a later section (Figure 5, Figure 6). If capable of performing multiple 

operations (i.e. ADD/SUB) the Functional Unit can choose the appropriate one through a 4-bit op-

code signal. 

Internally Customizable: The FU template has a space where the user/designer can instantiate 

any internal logic, combinational or registered, as long as it wired to the 3-input 1-output 

framework of the FU. 

Architecture-Independent: To interface with other components, the FU uses two communication 

signals (fu_start, fu_ready). Such signals, however, are managed by a standardized internal logic, 

which only uses as an input parameter the number of internal pipeline stages, and ensures 

correct communication. This way, the user/designer is not concerned with the architectural and 

timing requirements for the functional unit. 

Full Utilization of Functional Units 

If a FU internal logic can process several in-flight instructions, a special FU shell with attached 

controller is instantiated. This FU connects to as many reservation stations as the number of 

possible in-flight instructions, thus being seen by the processor as a group of independent one-

operation-at-a-time FUs. With this method, it is possible to have a single FU shared by as many 

reservation stations as the maximum number of in-flight operations the FU can process. To 

accomplish this, the controller has to deal with the following tasks: 

Operation intake: accept the fu_start signals from all the RS connected to the FU. When a RS 

issues a new fu_start, save the operands, the opcode, and an internal tag pointing to the specific 

RS. Solve conflicts with a priority table, and delay the fu_start of the RS which does not have 

precedence. 

Pipeline bookkeeping: At every cycle, while the new operands go down the FU pipeline, keep a 

separate delay-pipeline for op-codes to ensure that, if different operations are performed at 

different stages, each stage reads the correct op-code. Also, delay the issuing RS tag by as many 
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delay slots 

ARBITER 

Based on a simplified FIFO structure, the arbiter keeps track of the instruction issuing order, and 

ensures in-order commit of instructions. Whenever the issuer processes a new instruction, it 

communicates to the arbiter the reservation station in charge and the destination register, which 

may be unspecified for instructions not writing to the register file. The destination register field 

avoids the necessity of implementing content-addressable memory: in absence of this field, on 

instruction commit the register status table would have to check which register is waiting for the 

given reservation station before writing the new value. The issuer ensures correct signaling of 

new instructions to the arbiter even in branching situations, when the processor is stalling. 

On the output side, the arbiter broadcasts information on the next reservation station that has to 

commit, and the destination register. It also gives an authorization signal to the correct 

reservation station which, if the functional unit is ready with the result, will trigger an instruction 

commit and a write to the CDB. 

LOAD/STORE 

Load and Store instructions are processed by a special reservation station and connected 

functional unit. Since store instructions do not write to the register file, the load/store reservation 

station allows store instructions to commit to the arbiter without having to broadcast a result over 

the CDB. 

The load/store functional unit features additional I/Os for interacting with the data memory. For 

algorithmic consistency, all address computations happen within the FU, as opposed to 

instruction issue, and the functional unit only receives register and immediate values. This 

happens since, given the architecture, the target address may depend on registers whose value 

is not available at issue time. When the start signal is asserted, the FU performs address 

computation and issues a read or write to a synchronous data memory. 

BRANCH/JUMP 

Another special reservation station and functional unit pair is used for all branching and jump 

instructions. As for the Load/Store, the reservation station differs by separating instruction commit 

from register file write back, since most branching instructions (except for JAL/JALR) do not affect 

the register file. 

As for the Load/Store case, and for the same reasons, both target and branch condition 
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computations are performed within the FU as opposed to issue stage. To perform target 

computation, the FU is provided with the PC value as an additional input. The issuer ensures that 

the FU is not provided with the current pc, which might have changed, but rather with the correct 

pc value associated with the instruction. 

In addition to writing to the CDB (for JAL/JALR instructions), the branching FU provides its result 

to the issuer. The branch result takes the form of a target address for the new pc, a branch_taken 

value providing the result of the branch condition, and a branch_committed that allows the issuer 

to recover from stalling by moving to either the new pc or pc+4. 

Delay Slot Implementation 

For increased performance, some MIPS architectures require that the instruction after a branch, 

called the delay slow, be executed before the branch is taken. While the delay-slot method is 

outdated, I decided to implement it as an optional, parameter-regulated feature, to ensure higher 

compatibility with different MIPS implementations. To implement delay slots, the issuer delays the 

stall after a branch, so that the next instruction is issued before stalling and waiting for the branch 

result. 

When delay slots are enabled the issuer also ensures a defined behavior in the complex case of 

adjacent branches. While most MIPS architecture have undefined behaviors for adjacent 

branches, the issuer ignores the result of the first branch while prioritizing the branch positioned 

in the delay slot. 
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HIGH-LEVEL STRUCTURE 

Figure 3 illustrates a high-level perspective of the processor implementation. 
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Figure 3: High-Level view of the processor implementation, representing all modules and the main 

interactions. Conveying the idea of flexibility, standard reservation stations and functional units are 

represented as a list, extensible and customizable by the user. Also, the user can modify or extend 

the set of control signals representing the ISA, thereby defining a new instruction type. As explained 

in the bottom-right portion, the color-coding pictures the pipelining structure, which consists of a 

baseline 4-stage operation with a flexible execution stage, where different functional units can be 

defined with different degrees of pipelining. Transcending from the pipelining structure, the arbiter 

regulates Common Data Bus access and ensures in-order instruction commits. Finally, the Common 

Data Bus broadcasts instruction results, which are monitored by the register file, register status 

table and all reservation stations. 
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4- CUSTOMIZATION 

 

This section illustrates the details of the processor’s user interface, and describes the user-

exposed parameters that regulate customization. 

CUSTOMIZABLE COMPONENTS 

The flexibility of the processor architecture resides in the possibility to extend and modify the 

instruction set as well as the functional units. Figure 4 is an overview of the internal parameters 

that allow a user to define new functional units as well as new instructions. 

For each new functional unit, the user needs to specify a set of parameters that the architecture 

will use. First, the instruction capability is a list of instructions that the functional unit is capable of 

executing. For each of these instructions, the user must specify an opcode that will be fed to the 

functional unit to recognize which instruction is being requested. For correct pipelining 

configuration, the user must specify the number of clock cycles that the functional unit will take to 

execute the instruction, as well as the Verilog code describing the execution logic. 

When inserting a new instruction, the user must specify three parameters. A unique instruction 

name, which will be used by the architecture, a 32-bit instruction signature, which will allow the 

issuer to recognize the instruction, and a set of control signals to specify the correct operands 

and destination for the functional unit. 
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Instruction and Functional Unit Customization

Functional 
Units

• Instruction capability 
[can_do signal]

• Opcode assignment [opcode
signal]

• # of pipeline stages 
[STAGE_NUM parameter]

• Verilog Code

Custom 
Instructions

• Name:                                 
FOO

• Signature: 
32’b00100_?????_01100…

• Control Signals:                 
Op1, Op2, A, Dest

 

Figure 4: High-level overview of processor customization. The user describes new functional units 

and custom instructions, which are automatically implemented in the architecture of the generated 

core. In particular, the user must specify a set of architectural parameters for the additional 

components, as well as Verilog code describing the execution logic of new Functional Units. 
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CUSTOM FUNCTIONAL UNIT 

Figure 5 offers a detailed example of the description required to specify a new, user-generated 

functional unit. In particular, the user needs to specify the following parameters 

Instruction Capabilities: A list of all instructions the FU is capable of executing. Instructions 

should be referred by standard names in the MIPS ISA, or by the new names of custom 

instructions added to the ISA. 

Opcodes: For all instructions in the capability list, the user must specify a 4-bit opcode that will 

be given to the Functional Unit for recognizing the required instruction. 

# of Pipeline Stages: Each FU must declare its internal degree of pipelining. Purely 

combinational FUs must use zero for this parameters. While there is no limit on the number of 

pipeline stages allowed, such number of stages must hold for all instructions the FU is capable of 

processing. For a number of pipeline stages N, the architecture requires that the Functional Unit 

produce a valid result N cycles after valid operands have been provided. The operands will 

remain constant for the entire duration of the execution and, after N cycles, the result must stay 

valid as long as the operands remain valid. The user need not have knowledge of when the 

operands become valid, as these details are handled by the internal architecture. 

Verilog Code [with constraints]: The user must specify Verilog code describing the execution 

logic, while observing a few constraints. The operands will come as signals op1 [32-bit], op2 [32-

bit] and A [16-bit], as well as the opcode [4-bit] describing the kind of instruction requested. 

According to the relevant instruction, the FU might not utilize all input signals. The result must be 

produced over the Verilog wire result [32-bit] and assigned through combinational logic (assign 

statement). The keywords clock, reset, start, ready are reserved and may not be declared, yet 

clock and reset may be monitored as inputs. The signals start and ready should not be observed, 

since their timing specifications vary with the architectural role of the functional unit, thus 

referencing them may cause incorrect behavior at times. Constraints aside, the user is allowed to 

declare any signals or registers required for specifying internal logic. 
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Example Functional Unit: Synchronous Add/Sub

• ADD, ADDU, SUB, SUBU

Instruction Capabilities [can_do]

• ADD     -> 4’d0

• ADDI -> 4’d0

• SUB     -> 4’d1

• SUBI -> 4’d1

Opcode

# Pipeline Stages = 1

• Inputs: op1[31:0], op2[31:0], a[15:0], opcode[3:0]

• Output:  result[31:0]

• Reserved Keywords: clock, reset, start, ready

Standard Constraints

Code

reg[31:0] my_result;

always @(posedge clock) begin

if (reset) begin

my_result <= 32’b0; end

else case (opcode)

0: my_result <= $signed(op1) + $signed(op2);

1: my_result <= $signed(op1) - $signed(op2); 

default: my_result <= 32’bx;

endcase

end

assign result = my_result;

 

Figure 5: Description of a single-pipeline, synchronous functional unit, capable of performing signed 

Add and Subtract. First of all, the FU specifies a capability list of the instructions it can execute. 

Second, it specifies an opcode for each instruction.  

In this case, notice that ADD/ADDI and SUB/SUBI have the same opcode. This is due to the 

processor’s control signals choices, and will be further explained in the next figure. Within the ISA, 

the sign extension of the immediate can be performed before issuing. In this case, it can be deduced 

that the FU is always expecting the appropriate second operand in op2, whether it be Reg[Rt] (for 

ADD/SUB) or a 32-bit, sign-extended immediate (for ADDI/SUBI). Alternatively, the architecture 

allows the user to change the control signals for ADDI/SUBI in order to receive a 16-bit immediate in 

the a field, and performing the sign-extension within the functional unit. 

Next, the user specifies the number of pipeline stages required by the functional unit, with zero 

corresponding to combinational execution. In this case, synchronous execution implies a pipeline 

value of one, as the result is ready one clock cycle after the operands become valid. 

The next field simply reminds the user of the constraints on the Verilog code specifications. In 

particular, the input/output signals and the reserved keywords. 
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Finally, the user provides a Verilog description of the execution logic. In this example, the execution 

is synchronous, yet the result must be assigned to a combinational result wire, therefore the user 

declares an internal my_result register which will hold the synchronous result.  The user-supplied 

code reads the clock and reset signals to setup the synchronous logic, and references to opcode 

within a case statement in order to perform the required operation on op1 and op2. In this case, the 

input a is never needed. Finally, the result wire is assigned to the synchronous result. 

From an overview of the Verilog code, it can be seen that (1) A correct result is produced 1 cycle 

after receiving valid inputs; (2) The result stays valid as long as the inputs stay valid; (3) No reserved 

keywords/signals are redeclared; (4) The user does not reference to the start or ready signals. The 

code therefore complies with the architectural specifications. 

 

CUSTOM INSTRUCTION SPECIFICATION 

Figure 6 is an example of the specifications for inserting a custom instruction in the processor’s 

ISA. The following parameters are required for insertion: 

Name: The new instruction needs a unique name, by which it will be identified within the 

architecture. While the user has freedom of choice, a two to four-letter capitalized name would fit 

organically with the MIPS architecture. 

Instruction Signature: The user must specify a way for the architecture to uniquely recognize 

the instruction. The user specifies the signature by a 32-bit sequence of values one, zero or ? (to 

signify don’t-care). This description must not overlap with any other instruction in the ISA, and 

must be compatible with the instruction format used. For example, for an I-type instruction using 

the immediate, the signature should have the value “?” for bits 16:0, as it should be recognized 

for all values of the immediate (bits 16:0 of the instruction). 

Control Signals: Finally, the new instruction should specify its control signals for assigning the 

correct operands and destination values. It is important to remember that, while the format is not 

explicitly specified, the choice of control signals must comply with one instruction format type. For 

example, an instruction should not use both Rd (R-Type format) and Immediate (I-Type format), 

since these two values are not independent, they overlap on bits 16:12 of the instruction. There 

are four values to assign: 

Op1: The first 32-bit operand. Choices between zero, Reg[Rs], a zero-extended shift amount 

value [bits 10:6 of the instruction], or x (unspecified / don’t-care). 

Op2: The second 32-bit operand. Choices between Reg[Rt], zero-extended immediate, sign-



28 

 

extended immediate, zero-extended target [bits 25:0 of the instruction], or x (unspecified / don’t-

care). 

A: 16-bit operand. Choices between zero, immediate or x (unspecified / don’t-care). 

Dest: 5-bit address specifying the destination register. Choices between R0, Rd, Rt, or R31. 

Example: Custom I-Type Instruction FOO

Reg[Rt] <- (Reg[Rs] << 30) * (Reg[Rt] – Imm)

• FOO

Instruction Name

• 32’b010101_?????_?????_????????????????

Instruction Signature

• Op1 = [Zero, Rs, Sa, x]

• Op2 = [Rt, Zext_Imm, Sext_Imm, Target, x]

• A = [Zero, Imm, x]

• Dest = [Zero, Rd, Rt, R31]

Control Signals

 

Figure 6: Specification of a custom instruction
1
. First, the unique name FOO is specified for the 

instruction. Second, a signature is given. This signature must not overlap with other instruction (in 

this case, it should have a unique op field), and must not specify constraints on operands (in this 

case, Rs, Rt, and immediate are all left as don’t-care question marks). Finally, control signals are 

chosen from a list of possibilities. In this case, the functional unit will receive the required operands 

Reg[Rs], Reg[Rt] and Imm respectively through Op1, Op2 and A. Rt is set as the destination register. 

Finally, it is important to notice that Rd, sh_amt or target are not used, as they would overlap in the 

instruction bits with Rs, Rt and Imm. 

ADDITIONAL CUSTOMIZABLE FEATURES 

In order to guarantee a modular interface for all instruction execution, the architecture implements 

                                                      

1
 Notice that, in order for the instruction’s functional specification to be correctly implemented, the user 

must also specify a custom functional unit capable of executing FOO. 
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special instructions, such as branching and memory, by using special reservation stations and 

functional unit pairs, modified to implement the requirements of such instructions. The 

development of these functional units led to the introduction of additional customization features; 

while not as easily accessible and modular as the standard functional unit and reservation station 

parameters, these additional customizations can still be used to implement more complex and 

efficient functional units. 

First, reservation stations can be customized to handle separate commit signals for the arbiter 

and the CDB. With this method, it is possible to create a functional unit that handles instructions 

writing to the register file as well as instructions that do not modify register values. 

Second, functional units can be optimized to require a variable number of cycles for completing 

an operation. The standard functional unit setup requires the user to specify a fixed number of 

cycles after which the operation result will be valid and stay valid, while hidden logic controls the 

reservation station – functional unit communication. It is, however, possible for the user to 

introduce an internal “ready” value to signal when the operation has been completed. The API for 

the internal_ready signals is for it to be a single-cycle pulse, having a value of one in the cycle 

whenever the result is ready. The result need only be valid in the cycle when internal_ready is 

high, while internal logic saves the result and handles communication signals, effectively resulting 

in variable pipeline depth. As shown in the next section, this variable-latency protocol may be 

used to optimize performance of complex internal logic, such as dividers. 
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5- TESTING AND RESULTS 

 

This section describes various tests performed on the processor architecture in order to assess 

the feasibility for use by hardware developers. To evaluate the practical functionalities of this 

architecture, I proceed to consider the various processor constraints typically required by an 

integrated system solution, as well as by the processor user / hardware designer. First, I discuss 

the issues and tradeoffs in assessing performance and area measurements for the architecture, 

after which I present the results of restrictive yet unambiguous processor tests for performance 

and area. Second, I compare the architecture to three commercially available soft processors, all 

synthesized on the same FPGA, in terms of features, area and performance, and discuss the 

validity and usefulness of these comparisons. Third, I analyze the costs and benefits of inserting 

redundant functional units to improve performance. Finally, I analyze a realistic use situation, 

wherein a hardware designer needs to use the processor for Mp3 decoding though the MADplay 

library. In particular, the compiled code requires the introduction of a custom fixed-point 

multiply/divide functional unit, with associated instruction-set extensions. 

PERFORMANCE AND AREA 

The fundamental, functional constraint for any processor to be useful is adequate performance for 

the assigned system tasks. Given a certain application and instruction-set architecture (in this 

case, MIPS-I), such performance requirements can be roughly defined and measured in terms of 

instructions per second. When constructing an integrated system solution (as opposed to a 

general-purpose machine), the hardware designer can make reasonable expectations as to which 

kinds of processor-intensive applications the system will have to run, as well as on a minimum 

performance requirement: for example, a wireless webcam solution may require JPEG 

compression and transmission of 640*480 pictures at 10 pictures/second, while a wireless 

monitor displaying a Blu-ray movie would need to perform H.264 decoding of 1080p images at 32 

to 60 frames per second. When such “bottleneck” applications are compiled for a certain 

instruction set architecture, the designer can obtain a rough estimate of the instructions-per-

second (IPS) constraint on the processor.  

In order to obtain a general estimate of processor performance, I assembled a simulation tool-

chain for running various benchmarking programs on a reference processor implementation. The 

tool chain performs various tasks to obtain an estimate of processor performance on a given 

implementation platform. In particular, source code is cross-compiled for MIPS-1 ISA with no 

coprocessors, then it is linked and assembled. The resulting file is used to generate a Verilog 
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description of a block-ram, whose initialization contents and locations match the appropriate 

instruction and data values for the assembled program. The resulting memory is used as a 

comprehensive instruction/data memory (Von Neumann architecture) and connected to the core. 

Finally, a processor run with the new memory is simulated. An analysis of simulation logs reveals 

the number of required cycles and the number of performed operations, thus giving an estimate 

of Instructions per Cycle (IPC). 

In order to obtain the measurement of instructions per second (IPS), the processor needs to be 

synthesized to estimate the maximum clock frequency which, multiplied by the IPC measurement, 

results in 
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. Clock frequency estimation, however, introduces 

another benchmarking problem. When dealing with a soft-architecture, in fact, the maximum clock 

frequency depends not only on the internal logic delays of the various processor pipeline stages, 

but rather on the platform where the processor is implemented. As the target integrated systems 

are represented by modern FPGAs, the architecture was synthesized for implementation on a 

Xilinx Virtex-5 chip. 

Similarly to clock frequency, the area of a soft processor is determined by the implementation 

platform. In particular, when mapping soft designs to pre-existing logic, FPGAs typically require a 

much larger implementation area than equivalent custom integrated circuits. Once again though, 

since FPGAs are the primary target of the architecture, area constraints were measured for the 

Xilinx Virtex-5 chip. In particular, three measurements were obtained, two specific to the 

implementation (percentage of resources utilized, number of FPGA “slices” used), another more 

general (total number of gates and registers). 

Finally, an appropriate benchmark code must be chosen. Initially, the processor was tested on 

long series of basic “test blocks” for testing the correctness in the execution of each instruction. 

Subsequently, the processor was tested on Mp3-decoding code taken from the MADplay fixed-

point encoding/decoding libraries, a choice explained in more detail later in this section. 

Overall, assembling a test platform for a soft architecture presents several challenges and 

tradeoffs. In general, the choice of all test parameters, from benchmarking code to performance 

indicator to implementation platform, can dramatically influence any measurement of processor 

performance and area. However, such choices usually imply a tradeoff between restrictive and 

ambiguous results. In this case, considering the intended use for application-specific integrated 

systems, the test performed is very restrictive for a typical implementation and application, and 

very conservative in terms of implementation assumptions, yet the results are unambiguous. 

Table 1 presents the test specifications and results for two different processor implementations, a 

baseline mips-1 compatible version as well as a version featuring an additional fixed-point 
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divide/multiply functional unit. 

Table 1: Processor test results for different benchmark programs and functional unit configurations. 

Out-of-order execution determines an average IPC (instructions per cycle) of 0.6 on test code, 0.5 on 

mp3 decoding, and 0.4 on floating-point division code. This variability in performance depends on 

the increased utilization of the deeply pipelined (32 cycles) MUL/DIV unit; the introduction of the 

complex MUL/DIV unit also causes a 26% increase in area requirements
2
. The highly-pipelined 

design allows for a rather high clock frequency of 125-138 MHz, where the unoptimized MUL/DIV unit 

acts as a delay bottleneck. While the 51-83 MIPS performance measurement is more meaningful, the 

figure of 614,000 software-implemented floating-point divisions per second is pehaps less 

ambiguous as a platform-independent measurement. 

Compiler mips-elf-gcc (GNU compiler collection’s MIPS-specific compiler), with 

flags –mips1 (specifying the ISA) and –msoft-float (do not use floating-

point coprocessor) 

Test Code Test 1:  series of instruction-test routines 

Test 2:  series of fixed-point arithmetic subroutines
3
 used by 

MADplay library to reproduce floating-point calculations for 

Mp3 decoding 

Target platform Xilinx Virtex-5 LX50 FPGA (28,800 slices flip-flops, 28,800 slices look-

up tables, 1,728 kb block RAM), approx. equivalent to 3 million gates + 

RAM. 

Synthesis/Simulation Xilinx ISE / ISE simulator 

Processor versions Version 1 [baseline]: 6 RS/FU pairs, implementing the full MIPS-1 ISA 

Version 2: 7 RS/FU pairs, implementing the full MIPS-1 ISA plus fixed-

point multiplication/division, with additional instructions MULT, MULTU, 

DIV, DIVU, MFHI, MFLO 

Post-synthesis Area 

(FPGA resources) 

Version 1 1801 flip-flop (6% of total), 2848 LUT (9% of total) 

Version 2 2172 flip-flop (7% of total), 3407 LUT (11% of total) 

Post-synthesis Area 

(gates estimate) 

Version 1 225,000 gates 

Version 2 285,000 gates (~26% overhead for MUL/DIV unit) 

                                                      

2
 It is important to notice that the MUL/DIV unit is a straightforward, unoptimized implementation of the 

Hennessy-Patterson algorithm (Hennessy & Patterson, 2006): while the introduction of this unit was 

focused towards testing flexibility, a performance-oriented implementation would yield much better results 

in terms of area and latency. 

3
 All subroutines included in the fixed-point functions (fixed.c) set of libmad (MADplay’s encoding-

decoding library), including floating-point addition, subtraction, absolute value and division. 
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Clock Frequency Version 1 138.6 MHz (period 7.21 ns) 

Version 2 125.1 MHz (period 7.98 ns) 

Instructions per cycle 
Test 1 

Version 1: 0.61 IPC 

Version 2: 0.61 IPC 

Test 2 
Version 1: not suitable (test required divider unit) 

Version 2: 0.52 IPC (0.41 IPC for FP divisions only) 

Instructions per 

second 
Test 1 

Version 1: 83.1 MIPS 

Version 2: 75 MIPS 

Test 2 
Version 1: N/A (requires MUL/DIV unit) 

Version 2: 63.8 MIPS (51.3 MIPS for FP divisions only) 

Floating-point 

divisions / sec (with 

one MUL/DIV unit) 

Version 2 684k FPDIV/sec (51.3 MIPS @ 75 ops / FPDIV) 

 

COMPARISON WITH EXISTING PRODUCTS 

Benchmarking processors is fundamentally a way of comparing their characteristics, thus it would 

be useful to compare the tested processor versions to existing processors. As the architectural 

differences between processors widen, however, it becomes increasingly difficult to objectively 

compare them. While hard processors can be compared in terms of cost, power and performance 

on a given computer program, soft processors introduce many additional variables, as both area 

and performance are heavily influenced by the implementation platform and whether the design 

has been optimized for it. On the other hand, while performance can be ambiguous, commercially 

available soft processors can be meaningfully compared in terms of architectural features and 

logic complexity.  

Table 2 presents a feature comparison between the customizable processor and three 

mainstream, commercial synthesizable processors, one of which (Microblaze) is designed and 

optimized specifically for implementation on Xilinx FPGAs. 

Table 2: Feature comparison of the version 2 processor (with added divide / multiply unit) and three 

commercial synthesizable processors
4
. Even considering the generally high flexibility of all soft 

processors, a side-by-side comparison reveals the advantages of a customizable functional unit 

solution. In particular, advantages can be seen in the variable pipeline depth and MUL/DIV latency, in 

                                                      

4
 All data for LEON 2, MicroBlaze and OpenRISC 1200 processors in Table 2, Table 3 reproduced from 

(Mattsson & Christensson, 2004), authorization pending. 
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the switchable branch delay slot and in the possibility to adapt custom floating-point units to the 

architecture. All the additional customization features are allowed by the custom functional unit 

approach, as opposed to current coprocessor-based solutions. Notice that, out of the processors 

analyzed, only the OpenRISC 1200 is substantially customizable, supporting custom instructions 

and coprocessors. 

 
LEON 2 MicroBlaze OpenRISC 

1200 

MIPS Version2 (with 

divide / multiply unit) 

Distributed File 

Format 
VHDL EDIF Verilog Verilog 

General     

 Architecture 32-bit RISC 32-bit RISC 32-bit RISC 32-bit RISC 

 Byte ordering Big Endian Big Endian Big Endian Big Endian 

 Pipeline depth 5 3 5 Variable (4+) 

 Issue type Single Single Single Single 

 Branch prediction No BHB No No 

Register File     

 Organization Windowed Flat Flat Flat 

 # of global registers 8 32 32 32 

 # of windows 2-32 N/A N/A N/A 

 Total # of GPR 40-520 32 32 32 

ISA     

 Type SPARC V8 Microblaze ORBIS32 MIPS 

 MUL latency 

(cycles) 
1-35 3 3 customizable 

 DIV latency 35 34 64 customizable 

 Branch delay slots 1 1 1 variable: 0, 1, 2 

 Branch latency 0-1 1-3 Unknown 
variable: 1 - # of 

pipeline stages 

 Load delay 1-2 2 Unknown 1 

 Custom instruction No No Yes Yes 

 Custom 

coprocessor 
No No Yes No 

 Custom functional 

units 
No No No Yes 



35 

 

 
LEON 2 MicroBlaze OpenRISC 

1200 

MIPS Version2 (with 

divide / multiply unit) 

 Hardware floating-

point support 

GRFPU, Meiko 

FPU, LTH FPU 

Quixilica 

FPU 
No 

Customizable (within 

FU)
5
 

Memory Structure Harvard Harvard Harvard 
Harvard / 

vonNeumann 

Memory 

Management Unit 
Yes No Yes No 

 

While the objective of this architecture is better expressed in terms of processor feature 

comparisons, a quantitative side-by-side comparison in terms of area and performance can give 

an idea of whether this solution could be feasibly used in the future. Obviously, comparing a 

completely unoptimized prototype with successful commercial products must yield biased results, 

yet such a comparison can be useful at least to estimate the degree of improvement and 

optimization required to obtain a competitive architecture. In Table 3, the architecture was 

synthesized and simulated for implementation on a Xilinx Virtex-II FPGA (XC2V3000fg676-4), 

and its area requirements compared to those obtained by (Mattsson & Christensson, 2004) when 

implementing commercial soft processors on the same platform. Additionally, Mattsson and 

Christensson present performance results for the three processors running the Dhrystone 2.1 

benchmark (Weicker, 1984). Originally developed as a compact comprehensive benchmarking 

software for integer performance, the Dhrystone program consists of a main loop with a clock and 

a counter tracking the number of iterations, producing a measure of program iterations per 

second to rank processor performance. This integer based, platform-independent approach 

makes the Dhrystone a suitable benchmark for embedded systems. On the other hand, with the 

Dhrystone being a short, open-source and widely spread program, its results can be heavily 

distorted through compiler optimization, resulting in many processor architectures advertising 

unrealistically high results. For these reasons, Dhrystone is currently considered unreliable for 

modern architectures, yet its compactness and low utilization of operating system calls makes it 

the most feasible choice for comparisons. Additionally, data is available for other processors that 

were tested by independent researchers and without excessive compiler optimizations, thus 

diminishing result distortion. 

                                                      

5
 The possibility to insert a custom FPU as a functional unit with dedicated instructions is discussed in the 

customization test section. 
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Table 3: Area, Frequency and Dhrystone benchmark performance comparison of the version 1 and 

version 2 processors with three commercial synthesizable processors. The three commercial 

processors are analyzed in two different configurations, optimized respectively for high performance 

and for low area, while both MIPS versions are measured in a single, unoptimized implementation. 

Area measurements are given as total number of 4-input lookup table slices used on the FPGA for 

the comprehensive system (core plus cache
6
). Both versions of the MIPS present lower area and 

higher clock frequency than both the LEON 2 and OpenRISC 1200 regardless of configuration, while 

the MicroBlaze displays more compactness and lower latency than all other architectures. This 

specific comparison, however, is heavily biased towards the MicroBlaze, which has been specifically 

developed and optimized by Xilinx to run natively on Virtex-series FPGAs, while all other solutions 

are designed in a portable, more general Verilog/VHDL format. On the other hand, post-synthesis 

measurements for MIPS clock frequency, while generally conservative, are less reliable than post-

PAR figures given for the three commercial processors. On the Dhrystone benchmark side 

(estimate
7
), the MIPS is outperformed by most configurations. The benchmark deficiencies are due 

to two factors: low IPC efficiency, which can be improved by inserting redundant functional units, 

and low compiler efficiency due to a restrictive instruction set, which can also be expanded by 

inserting additional functional units and instructions, conforming to more advanced MIPS ISAs 

(MIPS-2, MIPS32 etc.), as well as by compiler optimization.  

 

LEON 2 MicroBlaze OpenRISC 

1200 

MIPS Version2 (with 

divide / multiply 

unit) 

MIPS 

Version1 

Platform Xilinx Virtex-II XC2V3000fg676-4 

 HW resources 28,000 slices flip-flops, 28,800 slices 4-input LUT 

Area (LUT)      

 Performance-

optimized 
8794 2442 6443 

4579 3037 

 Area-optimized 5871 2325 5865 

Clock Frequency 

(MHz) 
     

 Performance-

optimized 
53.3 80 40 

78 91 

 Area-optimized 26.7 26.7 26.7 

                                                      

6
 Including the cache in the area measurements does not compromise the results, since RAM and cache 

modules on the Virtex-II are entirely implemented using Block-RAM slices, which do not add to the LUT 

count. While this measurement may bias performance/area measurements in favor of systems with a larger 

cache, the compactness of Dhrystone code does not give an advantage to cache-heavy implementations. 



37 

 

 

LEON 2 MicroBlaze OpenRISC 

1200 

MIPS Version2 (with 

divide / multiply 

unit) 

MIPS 

Version1 

Dhrystone 2.1 

iterations/sec 
     

 Performance-

optimized 
78431.4 76189.6 26454.9 6380 – 23790 

(estimated
7
) 

N/A 

 Area-optimized 30690.5 23188.3 10653.8 

Performance/ 

Area ratio 
     

 Performance-

optimized 
8.91 31.20 4.10 1.39 – 5.19 

(estimated) 
N/A 

 Area-optimized 5.22 9.97 1.81 

      

 

 

INCREMENTAL PERFORMANCE AND COST FOR REDUNDANT FUNCTIONAL UNITS 

As previously discussed, one limitation of the processor architecture is that functional units 

require at least two cycles to perform an operation, since reservation stations cannot be loaded 

while in write back state. While for a 32-cycle divider unit this limitation does not influence 

performance much, combinational units for common instructions (add, sub etc.) are deeply 

penalized by the extra cycle latency, effectively limiting processor performance to 0.5 IPC for all 

series of instructions mapped to the same unit. This bottleneck suggests that adding redundant 

functional units can improve performance, yet the feasibility of this method relies on the costs and 

benefits of inserting an additional functional unit. It is intuitive that an additional combinational FU 

can double performance on a long series of instructions mapped to a common FU, yet showing 

                                                      

7
 Running Dhrystone benchmark is still in-progress. The procedure for the estimate is as follows. 

Considering that all other processors are single-issue, and conservatively assuming that they run at an ideal 

one instruction per cycle, their IPS becomes equal to their clock frequency. Dividing clock frequency by 

Dhrystone score (iterations/second) produces 
���������	��

��	��
÷

������	��

��	��
=
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������	�
. This calculation yields 

a conservative (max values) range of 679-2506 instructions per Dhrystone iteration. Considering its 

restrictive instruction set and consequently lower compiler efficiency, a range estimate for the MIPS is 

2000-5000 instructions per iteration. Multiplying by the known clock frequency and a 0.4-0.6 range of IPC 

yields �78��

����

��	��
× �0.4 �� 0.6�
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÷ �2000 �� 5000�
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this would not be a meaningful example. As a more realistic test, Table 4 and Figure 7 present 

cost/benefit results for the insertion of an additional ADD/SUB unit for a vector add/subtract code, 

showing that inserting redundant functional units can be highly advantageous. 

While Table 4 shows very low area and latency costs for additional functional units, such costs 

are very likely to increase with the total number of units. As previously discussed, this is due to 

the wiring complexity of the Common Data Bus system for result broadcasting, wherein 

essentially all reservation stations must be connected. It is thus evident that, while a seventh FU 

must connect to only six pre-existing elements, each additional FU will imply a incrementally 

higher complexity, which will influence both incremental area (number of wires) and performance 

(CDB latency). Finally, as the number of functional units exceeds powers of two, all FU indexing 

wires will expand by one bit, thus implying a one-time area and latency cost, which however 

should be minimal. While incremental cost issues could be explored further, it is reasonable to 

assume that, in its typical configuration, the processor will not feature a high number of additional 

functional units, thus avoiding such uncertainties. 

Table 4: Area cost and performance benefit for insertion of a redundant ADD/SUB unit in vector 

addition/subtraction code. Notice that the insertion of a simple functional unit implies a minimum 

incremental costs for both area (+4%) and frequency (-1.5%). The +25% area figure for the insertion 

of the DIV/MUL unit in Table 1 is thus due to the high complexity and latency of the unit, and is not 

representative of the costs of expansion. Considering the low complexity of an ADD/SUB unit, the 

cost figures presented are a good measurement to the area cost of reservation station / FU 

machinery, and the incremental delay cost of the higher wiring complexity of the Common Data Bus 

for additional units. 

 MIPS Version1 (6 FUs) MIPS with redundant ADD/SUB unit (7 FUs) 

Platform Xilinx Virtex-5 LX50 FPGA 

Area 1801 FF, 2743 LUT 1876 FF(+4.1%), 2875 LUT (+4.8%) 

Clock Frequency 125 MHz 123 MHz (-1.5%) 

Instr. per cycle 0.7 0.81 

Performance (MIPS) 87.5 99.6 (+13.8%) 
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Figure 7: Relative cost and benefit of inserting a redundant ADD/SUB unit

subtraction code. It is evident from the graph that performance benefits of inserting the redundant 

unit outweigh area costs for this p
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obtaining optimal performance. On the other hand, internal functional unit design, instruction 

mapping and insertion of redundant functional units can all be modified independently of source 

code, thus still opening the option to recursively reconfigure the processor for optimal 

performance. 

ADAPTABILITY IN A REALISTIC SITUATION 

The fundamental virtue of a custom functional unit architecture is the ability to adapt and optimize 

a processor for different environments by inserting or modifying instructions and functional units. 

However, simply modifying the internal logic of basic instructions, or inserting new but redundant 

instructions is not enough to justify the architectural overhead implied by functional units. In order 

to be considered a valid alternative to coprocessor-based solutions, the architecture must exhibit 

a degree of flexibility high enough to substantially increase processor capabilities, just like a 

coprocessor can, but without the need for a dedicated coprocessor interface. Furthermore, the 

flexibility must not be exhibited only within ad-hoc testing environments, but rather in real design 

situations. 

Libmad and Mp3 decoding 

In order to evaluate architectural flexibility in a realistic situation, the processor was tested in a 

typical task for current embedded systems: Mp3 decoding. Out of several available options, the 

MADplay encoding / decoding library (Underbit Technologies, 2005) was chosen, for several 

reasons. First, the MADplay library (libmad) uses only fixed-point computation, thus making it 

suitable for dedicated processors with simplified instruction sets. Also, the library is distributed as 

free software, highly modifiable and optimized for gcc-based compilers, thus making it an 

excellent choice for portable solutions. Finally, the library is a common choices for many popular 

software products, both portable and desktop-based (GSPlayer, MPlayer, OpenRISC), thus 

constituting a very likely choice for an embedded solution.  

Using the entire library and a complete mp3 as a test case, however, resulted infeasible, since 

the code being too long to be simulated as an instruction memory, and the front-end functions is 

excessively relying on hard to compile OS calls, which would be modified in an embedded system 

implementation. The most frequent and computationally intensive function calls within libmad are 

a series of integer arithmetic subroutines that are used to reproduce floating point operations: 

compactness, complexity and exemplarity made this series of floating point functions an 

adequate choice for a sample code to be used for testing. 
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Divide and multiply: special instructions introduced as new functional units 

The series of arithmetic subroutines used as a test case requires utilization of the full MIPS-I ISA, 

including fixed-point multiply and divide instructions, which were not originally implemented within 

the architecture. Differently from all other arithmetic functions, the MIPS implementation of divide 

and multiply requires architectural modifications to the processor, including the introduction of two 

special-purpose 32-bit registers, Hi and Lo, used respectively to store quotient and remainder for 

a division, or a 64-bit product for multiplication. Additionally, the divide and multiply instructions 

need not write to the register file but only modify the special-purpose registers. Finally, for 

communicating results, the instructions MFHI and MFLO (move from hi/lo) are used to write the 

content of a special register to the register file. 

Since the implementation of special-purpose registers and instructions would normally require 

architectural modifications, as a realistic flexibility test a divide/multiply unit with related 

instructions was implemented by solely accessing the customizable functional unit / instructions 

interface. In particular the additional customization features previously described, allowing 

variable pipelining depth and switchable access to the register file, were developed to increase 

functional unit flexibility in order to allow the introduction of special function units. Figure 8 

illustrates in detail the implementation of the multiply/divide unit, capable of processing the 

special instructions by instantiating special-purpose registers internally, and by using an FPGA 

built-in multiplier as well as an externally-defined Hennessy-Patterson divider. 

The highly customizable architecture allowed for a special-instruction functional extension of the 

processor, which made it correctly comply with an extended ISA to decode Mp3 files. This 

example of extending processor functionality by inserting new instructions and functional units 

indicates how the architecture can be externally adapted by the user to comply with different 

tasks and requirements. Extending the example, the insertion of a hardware floating-point unit or 

multimedia unit, both traditionally implemented through a coprocessor, could be performed by 

introducing new functional units with related instruction. Additionally, one would be able to design 

the internal functioning of such modules, or adapt an external pre-existing unit (as was the 

divider), without having to be constrained by compatible processor-coprocessor APIs. 
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Example Special Functional Unit: MUL/DIV

•DIV, DIVU, MULT, MULTU, MFHI, MFLO

Instruction Capabilities [can_do]

•DIV     -> 4’d0;  DIVU -> 4’d1;

•MULT -> 4’d2;  MULTU -> 4’d3;

•MFHI -> 4’d4;  MFLO -> 4’d5;

Opcode

# Pipeline Stages = VARIABLE (if DIV/DIVU = when divider is ready; else 1)

•Inputs: op1[31:0], op2[31:0], a[15:0], opcode[3:0]  Output:  result[31:0]

•Reserved Keywords: clock, reset, fu_start, fu_ready

Standard Constraints

Internal Logic (pseudo-code)

//Instantiate Hennessy-Patterson divider module

divider divider(.dividend(op1),.divider(op2), div_quotient, div_remainder, div_start, div_ready);

@fu_start if (op == DIV || DIVU) start_divider; //Start divider module @ new instruction

reg[31:0] hi, lo; //Instantiate special-purpose registers within FU

if (op == DIV || DIVU) ready = pipeline_counter_ready && divider_ready;

else ready = pipeline_counter_ready; // If DIV only ready when divider is ready

case (opcode)

DIV/DIVU: if (divider_ready) {hi,lo}<= {div_quotient,div_remainder};

MULT/MULTU: {hi,lo}<= op1*op2; //use FPGA built-in 32x32 multiplier

MFHI/MFLO: result <= hi/lo; 

if (fu_ready && (op == MFHI || MFLO)) write_result_to_cdb;  // Only write to regfile for MFHI/MFLO

else if (fu_ready) unlock_arbiter; // else move to next instruction

 

Figure 8: Custom functional unit implementing special instructions to perform fixed-point multiply 

and divide. By looking at the pseudo-code, it is evident that custom functional units feature the 

same internal logic flexibility that a coprocessor may enjoy. In this case, the special-purpose 

registers hi and lo required to implement the instructions are instantiated and accessed exclusively 

within the functional unit. Multiply and divide instructions only change the internal special registers, 

to the register file; a separate divider module is instantiated for handling integer divisions; for 

divisions, the pipelining latency of the functional unit is flexible, interfacing with the divider to 

determine when the operation has been completed; the result field always has a value, but the value 

is written to the register file only for MFHI/MFLO instructions. Such powerful flexibility options may 

be used to develop more complex functional units and related instructions, effectively allowing 

functional extensions of coprocessor-level complexity without modifying the architecture. 
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6- SUMMARY: CONTRIBUTIONS AND FUTURE WORK 

 

In this thesis, I set out to solve a problem: develop a highly flexible microprocessor architecture 

by borrowing selected technologies from the high-performance computing domain. The objective 

of my work is to achieve a superior architectural alternative to coprocessor-based solutions, by 

providing the user with the possibility to create or reconfigure a variety of processor features in a 

fully modular manner. In this final section, I set out to outline my contributions towards solving the 

problem, as well as a list of future works that I believe can improve on my results. 

My main contributions towards a solution are: 

� Evaluating and selecting a combination of high-performance technologies, borrowing and 

adapting these techniques to achieve a flexible yet balanced microprocessor architecture. 

In particular, I opted for out-of-order processing, modular and parallel functional units, as 

well as in-order instruction commit, while also developing new techniques for achieving a 

coherent system. 

� Designing and implementing a soft processor architecture that combines the selected 

technologies while conforming to the popular MIPS instruction set. I developed, simulated 

and tested the prototype as a Verilog design compatible with the MIPS-1 ISA. 

� Developing a modular customization interface by which the user can insert or modify 

instructions and functional units. The interface provides a large variety of customization 

parameters, ranging from variable internal pipeline depth to internal state within functional 

units, free choice of instruction operands, destination, register file behavior and other 

control signals, variable number of functional units and insertions of redundant units for 

performance improvement. 

� Testing the prototype on a variety of realistic situations for flexibility and feasibility of use, 

also comparing it to commercially available embedded processors. First, I obtained 

estimates of processor area, frequency and performance on various implementation 

platforms and for various configurations. Second, I presented a side-by-side comparison 

of the architecture with commercial alternatives, comparison that highlights many 

advantages in terms of flexibility and customization, comparable or superior results for 

area and latency, and some deficiencies within performance benchmarks. Third, I 

analyzed the costs and benefits of adding redundant functional units for improved 

performance. Finally, I stressed the limits of architectural flexibility by testing the 

prototype on algebraic subroutines from an Mp3-decoding library, extending the 

architecture by introducing fixed-point divide / multiply capabilities through the 
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customization interface. This test suggested that the customization interface provides 

sufficient flexibility for introducing coprocessor-equivalent functional units. 

These combined contributions demonstrate that a modular, functional unit based architecture 

can be successfully introduced as a valid alternative to coprocessor-based APIs. When 

considering the initial objective of providing a superior alternative to existing architectures, 

however, it becomes evident that a few more issues need to be addressed for the solution to 

be deemed complete. Each of these issues, however, has potential to be addressed by future 

works, for some of which the bases have been laid during the development of this project. 

� Achieving higher baseline performance while retaining flexibility is a very feasible 

objective. In particular, performance fallacies such as low IPC are due to a lack of 

optimization rather than to architectural deficiencies, and since the project’s focus 

was not to achieve high performance, lots of room is available for improvement. First, 

a mechanism can be developed that allows combinational functional units to achieve 

full utilization, which in terms of performance would be equivalent to a complete set of 

redundant functional units (with high performance benefits as shown by the tests). In 

the development of the processor, I laid the bases of such mechanism, which 

however has remained unimplemented. Second, the low area and delay of the 

prototype leave enough resources for implementing a larger baseline ISA (i.e. MIPS-

2 or higher), which in turn would increase compiler efficiency and performance. Third, 

experimenting various baseline processor configurations, in terms of area, instruction 

distribution, number of functional units and comparative delays would yield a more 

efficient implementation. Particularly, with the introduction of slow, complex units 

such as DIV/MUL, it may be convenient for the single-cycle instructions to be 

implemented in fewer, more complex functional units. 

� Introducing an XML-based customization interface would further simplify user 

interactions. Currently, customization is implemented within Verilog code, through a 

highly modular editable source code library. It would be useful to further simplify the 

user experience by specifying XML-based processor descriptions in turn used to 

generate Verilog. The bases for this improvement have been laid by the REDSOCS 

group, by means of a series of Python scripts that read XML-based processor 

descriptions, generating the resulting Verilog design by modifying the baseline 

version (currently under development). 

� Performing more extensive benchmarking would be useful to evaluate the real-world 

feasibility of the architecture. The complexity of cross-compiling for custom 

embedded processors and the difficulties of simulating execution limited the 
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benchmarking results for this thesis, yet benchmarking the processor on a complete, 

modern application would be highly useful. Again, a tool chain for compiling source 

code, developed and currently used by the REDSOCS group, provides a good 

starting point for the setup of a complete benchmarking environment. 

� Developing a dynamic compiling tool and a recursive optimizer would dramatically 

improve the utility of the architecture. While both very ambitious and not yet explored, 

these two solutions combined could in theory allow the exploration of unsupervised 

processor configuration for target applications, a different yet interesting perspective 

on performance optimization. 
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7-APPENDIX 

PRELIMINARY EXPERIMENT 

When initially considering the task of developing a flexible MIPS architecture, some preliminary 

experiments were performed, with the aim of assess whether a highly flexible architecture can be 

designed without carrying excessive hardware complexity. In the spring of 2007, in collaboration 

with Olivier Bichler and Alessandro Yamhure, I designed an experimental MIPS processor with 

variable-depth pipelining (Bichler, Carli, & Yamhure, 2007). Implemented in Bluespec, the 

processor works on the concept of guarded atomic actions, wherein different pipeline stages are 

implemented as independent logic blocks (referred to as rules), communicating through FIFO 

buffers rather than registers. A set of logic checks (guards) ensures that rules being executed in 

parallel do not have reciprocal data dependencies, thus guaranteeing absence of data hazards. 

The design is customizable by the user who, at design-time, can choose between three 

implementations with varying pipeline depths. 

Area and performance results for various processor implementations outlined important learning 

points. First, it was clear that the Bluespec language is not an ideal developing platform for a 

highly customizable processor. In particular, while enforcing correctness in parallel processing, 

the atomic actions structure does not conform well to architectures with highly interconnected 

components, being mostly useful for very linear processes. As a result, the flexible architecture 

resulted much larger and more complex than its equivalent MIPS baseline. On the 

cost/performance side, however, it was evident that the relative changes in performance, latency 

and area between various configurations can give origin to balanced tradeoffs. This result 

suggested that each implementation across a highly flexible architecture may be optimal for a 

particular task, with no configuration being dominated by another across the entire measurement 

spectrum. 
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Figure 9: High-level schematics for a Bluespec-based MIPS architecture with variable-depth pipeline. 

Dotted lines and arrows represent connections that are introduced or deleted according to the 

processor version. The baseline, 3-stage processor is implemented as three atomic rules, pc, 

execute and writeback. The rules communicate to each other and the memory through FIFO buffers, 

which ensure independent reads and writes. Each rule is further divided into a shell (ovals), 

customized components that take care of I/O assignments and data dependencies, and functions 

(rectangles), purely combinational circuitry handling the actual instruction execution. The 

specification of a pipeline depth parameter causes the merge or separation of atomic rules, and 

consequent introduction or elimination of FIFO buffers, thus allowing a choice of combinational, 2-

stage or 3-stage processor implementations. 
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