
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-036 June 16, 2008

Flexible MIPS Soft Processor Architecture

Roberto Carli

1

Flexible MIPS Soft Processor Architecture

by

Roberto Carli

B.S. Electrical Engineering and Computer Science, B.S. Management Sciences.
Massachusetts Institute of Technology, 2007

Submitted to the department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

May 2008

©2008 Massachusetts Institute of Technology.
All rights reserved.

Signature of Author: __

Department of Electrical Engineering and Computer Science
May 9, 2008

Certified by: __

Christopher J Terman
Senior Lecturer

Thesis Supervisor

Accepted by:__

Arthur C. Smith
Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

2

Flexible MIPS Soft Processor Architecture
by

Roberto Carli

Submitted to the department of Electrical Engineering and Computer Science

May 9, 2008

In partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The flexible MIPS soft processor architecture borrows selected technologies from high-

performance computing to deliver a modular, highly customizable CPU targeted towards FPGA

implementations for embedded systems; the objective is to provide a more flexible architectural

alternative to coprocessor-based solutions. The processor performs out-of-order execution on

parallel functional units, it delivers in-order instruction commit and it is compatible with the MIPS-1

Instruction Set Architecture. Amongst many available options, the user can introduce custom

instructions and matching functional units; modify existing units; change the pipelining depth

within functional units to any fixed or variable value; customize instruction definitions in terms of

operands, control signals and register file interaction; insert multiple redundant functional units for

improved performance. The flexibility provided by the architecture allows the user to expand the

processor functionality to implement instructions of coprocessor-level complexity through

additional functional units. The processor design was implemented and simulated on two FPGA

platforms, tested on multiple applications, and compared to three commercially available soft

processor solutions in terms of features, area, clock frequency and benchmark performance.

3

CONTENTS

Contents .. 3

Tables .. 4

1- Introduction ... 5

2- Rationale and Feasibility Analysis ... 6

Register Status ... 7

Reservation Stations .. 7

Basic Operation Algorithm ... 8

Branching .. 10

Feasibility Analysis for Speculative Execution and Branch Penalty 11

Feasibility of Superscalar Issuing .. 12

Exception Handling .. 12

Arbiter module .. 13

Arbiter specifications .. 14

Summary ... 15

3- Functional Specifications .. 15

Register Status Table .. 16

Register File and Memory .. 16

Issuer .. 16

Common Data Bus ... 17

Reservation Stations .. 17

Functional Units ... 18

Full Utilization of Functional Units .. 19

Arbiter ... 20

Load/Store... 20

Branch/Jump ... 20

Delay Slot Implementation ... 21

High-Level Structure ... 22

4- Customization .. 23

Customizable Components ... 23

Custom Functional Unit .. 25

Custom Instruction Specification .. 27

4

Additional customizable features ... 28

5- Testing and Results .. 30

Performance and Area ... 30

Comparison with existing products ... 33

Incremental performance and cost for redundant functional units 37

Limitations and compiler constraints .. 39

Adaptability in a realistic situation ... 40

Libmad and Mp3 decoding ... 40
Divide and multiply: special instructions introduced as new functional units 41

6- Summary: contributions and future work .. 43

7-Appendix... 46

Preliminary experiment ... 46

8- References ... 48

FIGURES

Figure 1: Overview of Tomasulo’s algorithm for out-of-order execution ____________________________ 9

Figure 2: Snapshot of a possible processor state, illustrating the handling of RAW data hazards _______ 10

Figure 3: High-Level view of the processor implementation _____________________________________ 22

Figure 4: High-level overview of processor customization ______________________________________ 24

Figure 5: Description of a single-pipeline, synchronous functional unit ____________________________ 26

Figure 6: Specification of a custom instruction ___ 28

Figure 7: Relative cost and benefit of inserting a redundant unit ________________________________ 39

Figure 8: Insertion of custom functional unit implementing special instructions ____________________ 42

Figure 9: High-level schematics for a preliminary Bluespec MIPS architecture ______________________ 47

TABLES

Table 1: Processor test results for different benchmark programs and functional unit configurations ___ 32

Table 2: Feature comparison of the version 2 processor (with added divide / multiply unit) and three

commercial synthesizable processors. __ 33

Table 3: Area, Frequency and Dhrystone benchmark performance comparison of the version 1 and version

2 processors with three commercial synthesizable processors. __________________________________ 36

Table 4: Area cost and performance benefit for insertion of a redundant funcitonal unit _____________ 38

5

1- INTRODUCTION

With the widespread success of smart phones and mp3 players, portable electronic devices are

becoming increasingly complex, and currently represent the leading edge of digital hardware

technology. To accommodate portability, research in hardware architecture is gradually shifting

from very high performance general-purpose systems to dedicated low-power solutions, efficient

and customized towards a specific task.

While dedicated hardware solutions deliver good results in terms of production cost, performance

and power efficiency, developing such specialized systems makes engineering cost a principal

factor in evaluating project feasibility. My research objective is to allow development of optimal

dedicated hardware solutions without incurring in high case-by-case engineering costs.

My work contributes to the advancement of the REDSOCS project, currently under development

at CSAIL. The aim of the project is to create interfaces for wireless, self-describing devices, which

make their capabilities available to other machines over the network. These devices need to

perform a wide variety of tasks, such as wireless communication and multimedia processing,

locally and in hardware, by use of integrated system-on-a-chip (SOC) solutions. The integrated

hardware solutions need to use a combination of input/output modules, high-speed and low-

speed buses, and one or more central processing cores. The aim of such SOC solutions is to

provide devices with the computational power required to perform the required tasks, while at the

same time saving in production cost and power consumption by eliminating the flexibility and

excess capabilities of a general-purpose solution. However, since different devices require

different computational capabilities, a variety of specialized cores would have to be designed,

thus making engineering cost a major limiting factor for development.

With the purpose of eliminating the contrast between hardware specialization and engineering

costs, I designed and implemented a highly customizable out-of-order MIPS soft processor. While

compatible with the standard MIPS ISA, the processor is based on a series of parallel, user-

customizable functional units. By controlling these functional units through a set of parameters, a

hardware designer (the user) can modify the hardware implementation of each instruction,

including the internal degree of pipelining, as well as insert new functional units associated to

custom instructions that are added to the processor ISA. Through customization, the user can

generate a specific processor instance specially tuned for the needs of the particular system,

without having to design the new core, and guaranteeing the required performance while

minimizing area and power consumption. With several dimensions of customization, the hardware

6

designer is able to test, using an FPGA, which processor configuration works best for the

required task in terms of performance/area/power tradeoffs, taking custom-design engineering

costs out of the equation. Since the architecture complies with standard MIPS specifications,

these core solutions may be used within a variety of implementations. Finally, the architecture

may be used to develop a set of individually customized cores that share a common API: an

interesting possibility for differentiated multi-core solutions.

2- RATIONALE AND FEASIBILITY ANALYSIS

Giving higher flexibility to microprocessor solution is a problem that has been researched in the

past. Dating back to the Intel 8087 for IBM PC (Palmer, 1980), the first mainstream solution to

computational flexibility has been the insertion of a coprocessor unit. The specialized

coprocessors are coupled with a specific Application Programming Interface (API) that specifies

the interaction protocol between processor and coprocessor (Anderson, Svendsen, & Sohn,

1996), and allows users to write code which will take advantage of such extensions. The advent

of reprogrammable logic and FPGAs introduced the notion of flexible coprocessors, whose

internal functionality can be modified, while holding a fixed main processor and API (Hauser &

Wawrzynek, 1997). With my thesis, I experiment a new approach to computational flexibility by

proposing a new API, allowing the user to insert new functional units within the processor

architecture.

In this section, I identify the main obstacles to a custom-made functional units architecture and

study the feasibility of various methods to overcome them. In particular, I borrow and dissect

various technologies from the high-performance computing domain ad examine their costs and

benefit towards the realization of this new architecture. In evaluating technologies, I hold flexibility

as my main architectural objective, while ensuring that an FPGA processor implementation keeps

a good balance of performance, area and power consumption as typically required of integrated

computing solutions.

The fundamental degree of freedom for this processor is the possibility to easily insert a variety of

functional units that can be designed externally, either implementing a standard MIPS instruction

or inserting a new, dedicated ISA instruction. However, if a custom functional unit (FU) is created

to implement a complex, long-latency or multi-stage function, the effect on the final performance

of the processor can be disastrous. This calls for a system that allows complex pipelined

7

functional units to coexist with regular single-cycle units without compromising performance. The

easiest solution is a simple FU busy signal that can stall the processor pipeline until the FU has

completed its job. However, this system does not allow for any parallelism in the operation of the

various FU.

The solution I use is a modified implementation of Tomasulo’s algorithm (Tomasulo, 1967), which

allows functional unit parallelism and Out-of-Order execution while retaining in-order issue and

commit of the instructions. This system also allows continued operation for Write-After-Write

(WAW) and Write-After-Read (WAR) data hazards. The algorithm is modified for improved

handling of memory instruction and for retaining in-order issuing and committing while executing

out-of-order.

The basic principle behind this solution is register renaming: the source and destination registers

become pointers to either the register value, if available, or to the functional unit that is going to

produce it. This added degree of register flexibility requires a space to hold the extra information,

which is provided by the modules called reservation stations, each associated with a different

functional unit, and by a register status table that keeps track of available and pending data.

REGISTER STATUS

The register status table, effectively a bookkeeping table for register renaming, holds information

about all the architectural registers. For each register, it holds either a zero (when the value is

available in the register), or it points to the reservation station which is assigned going to produce

the value.

RESERVATION STATIONS

Each functional unit needs to be associated to one or more reservation stations, holding

information about its current operation. These stations represent a decentralized way of having

each FU hold information about its operation, so that instruction issue can happen sequentially,

and each FU can independently handle data dependency issues. From an algorithmic

perspective, a pipelined FU that can concurrently process multiple instructions at different stages

is equivalent to multiple single-instruction FUs, each of which needs its own reservation station.

Thus the registers and instructions need to always refer to reservation stations as opposed to

FUs.

A reservation station is a data structure that holds relevant information about the operation that

the associated functional unit has to complete (Hennessy & Patterson, 2006). These are the

fields that characterize the state of a reservation station:

8

� Busy: A signal indicating the status of the FU. When busy, the functional unit cannot

receive a new instruction.

� Op: When a single FU can perform more than one operation (e.g. ADD/SUB), Op holds

information about which operation needs to be performed.

� Qj, Qk: Fields used for pointing to unavailable operands. They point to the reservation

station which is assigned to produce the operand value. If instead the operand is

available, they hold a value of zero.

� Vj, Vk: Fields holding the value of the operands. They can only be read if the

corresponding Qj, Qk are zero, indicating that the operands are available. When both Vj

and Vk are present the reservation station issues an operation to the FU.

� A: Immediate value. Never points to a reservation station since immediate values are

provided directly by the instruction. Sixteen-bit immediate values are used for address

computation in branching and memory instructions, and as constant arithmetic operands.

BASIC OPERATION ALGORITHM

With reservation stations holding the renaming information, instruction issuing becomes a matter

of searching for and loading available reservation stations that can execute the instruction, as

well as interacting with the instruction memory and managing the pc logic. Figure 1 outlines the

action and bookkeeping steps of the algorithm. Figure 2 illustrates a possible processor state

under this method.

9

Figure 1: Overview of Tomasulo’s algorithm for out

include the arbiter mechanisms described further down, designed to resolve Common Data Bus

conflicts and ensure in-order instruction commit.

Issue

•Search for available reservation stations that are capable of processing the instruction, by checking
both the capability to execute the specific instruction and the busy status of all reservation stations. If a
reservation station is both capable and available continue, else stall and wait.

•Check the register status table for both operands. For every field, if the register status points to a
reservation station, write its address in Q, or else write zero in Q and the register value in V.

•Set the reservation station to busy status.

•Set the status of destination register to point to the chosen reservation station.

Execution

•For all busy reservation stations:

•Check if any Q operand is associated to the reservation station that is currently broadcasting.

•If it is, set the Q operand to zero, and the write the broadcast result in the V operand

•If both Q operands are zero, begin:

•Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common
data bus, and make the reservation station available.

Writeback

•Whenever there is a result broadcast on the common data bus begin. For every register in the register
status table:

•Check if its value is pending from the reservation station that is currently broadcasting.

•If it is, write the new value to the register file and set the register status as available.

: Overview of Tomasulo’s algorithm for out-of-order execution. The description does not

include the arbiter mechanisms described further down, designed to resolve Common Data Bus

order instruction commit.

Search for available reservation stations that are capable of processing the instruction, by checking
both the capability to execute the specific instruction and the busy status of all reservation stations. If a
reservation station is both capable and available continue, else stall and wait.

Check the register status table for both operands. For every field, if the register status points to a
reservation station, write its address in Q, or else write zero in Q and the register value in V.

Set the reservation station to busy status.

Set the status of destination register to point to the chosen reservation station.

For all busy reservation stations:

Check if any Q operand is associated to the reservation station that is currently broadcasting.

If it is, set the Q operand to zero, and the write the broadcast result in the V operand

If both Q operands are zero, begin:

Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common
data bus, and make the reservation station available.

Whenever there is a result broadcast on the common data bus begin. For every register in the register
status table:

Check if its value is pending from the reservation station that is currently broadcasting.

If it is, write the new value to the register file and set the register status as available.

. The description does not

include the arbiter mechanisms described further down, designed to resolve Common Data Bus

Search for available reservation stations that are capable of processing the instruction, by checking
both the capability to execute the specific instruction and the busy status of all reservation stations. If a

Check the register status table for both operands. For every field, if the register status points to a
reservation station, write its address in Q, or else write zero in Q and the register value in V.

Check if any Q operand is associated to the reservation station that is currently broadcasting.

If it is, set the Q operand to zero, and the write the broadcast result in the V operand

Perform the operation on Vj, Vk. Broadcast the result to all reservation stations through a common

Whenever there is a result broadcast on the common data bus begin. For every register in the register

Check if its value is pending from the reservation station that is currently broadcasting.

If it is, write the new value to the register file and set the register status as available.

10

ADD R3, R5, R7

DIV R2, R8, R3

SUB R6, R2, R3

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

0 0 Div0 Add0 0 0 Add1 0 0 0

Adder (Add0) Adder (Add1)

Pipelined

Shifter (Shl0)

(Shl1)

Pipelined

Divider (Div0)

Register Status

Functional Units

Reservation Stations

Name Busy Op Vj Vk Qj Qk A Capability

Add0 Yes ADD Reg5 Reg7 0 0 ADD, SUB

Add1 Yes SUB Div0 Add0 ADD, SUB

Div0 Yes Reg8 0 Add0 DIV

Shl0 No SLT, SLTI

Shl1 No SLTU, SLTIU

Instructions Issued

Figure 2: Snapshot of a possible processor state, illustrating the handling of RAW data hazards. The

processor has two adders (Add0, Add1), a pipelined two-stage shifter that can operate on two

instructions at a time (Shl0, Shl1), a circularly pipelined divider that can operate on one instruction

at a time (Div0). In this case, while the ADD instruction (Add0) is completing, the DIV instruction has

been issued (Div0) and is waiting for Add0. The SUB instruction (Add1) has also been issued, and is

waiting for both Add0 and Div0. At this point, if the next instruction finds no data dependencies and

a free functional unit (i.e. SHL R4, R5, R8), it can be issued and executed immediately.

BRANCHING

Out-of-order execution implies the issuing of new instructions when the result of previous ones is

still unknown. In the case of branching, the result determines which instruction needs to be issued

next. For out-of-order processors, this situation implies a fundamental choice on whether to

continue speculative execution after a branch is issued and before its result is known.

The general approach to supporting speculative execution is the introduction of a “commit” stage,

where the instruction result is written into registers only if the result of the branch preceding the

11

instruction has been computed. Supporting instruction commit implies the introduction of

additional bookkeeping registers, usually implemented with a Re-Order Buffer (ROB) algorithm.

A more straightforward solution to branching in out-of-order processor consists of simply stalling

instruction issue at a branch until the branching instruction is resolved, which can be associated

to the busy bit of the branch FU reservation station.

FEASIBILITY ANALYSIS FOR SPECULATIVE EXECUTION AND BRANCH PENALTY

Support for speculative execution has become the standard practice for modern high-

performance processors. However, while a ROB implementation does not increase processor

latency, it implies a very high cost in new hardware. In particular, the introduction of a whole new

set of registers is very expensive on FPGA implementations, not to mention that speculative

execution requires the introduction of branch prediction hardware, further complicating the overall

architecture.

The cost of implementing Tomasulo’s algorithm is justified by the possibility of inserting custom

pipelined functional units for high architectural flexibility and improved performance. On the other

hand, for the overall performance of the processor, the benefits of speculative execution depend

on average branch penalty and branch frequency.

A measurement of branch penalty is given by the average number of cycles “lost” in a piece of

code with a branch instruction as opposed to the same code without any branching. In this

processor, the penalty depends on several factors. First, the branch penalty increases with a

higher degree of parallelism, thus it would increase in a processor with a very large number of

custom FUs. However, the introduction of custom FUs is aimed towards flexibility rather than high

performance through parallelism, so it is reasonable to assume that the typical user-generated

processor would not feature a very high number of custom FUs. Second, branch penalty

increases with superscalar issuing, thus reducing the marginal benefit of a superscalar

implementation. Third, when dealing with out-of-order execution, it is fundamental that the branch

instruction is not waiting on pending data, so that it can be resolved quickly. In typical programs,

most branches are the result of loop unrolling (i.e. for loops), most likely depending on a simple

counter value rather than on the result of more complex operations. In this case, most branch

instructions would find their operand quickly available. This general speculation, however,

depends on the typical benchmark code that the processor will have to execute.

Another factor determining the feasibility of speculative execution is branch frequency, which is

highly variable depending on the type of code executed, yet typically ranging between 15-30% of

total instructions (McFarling & Hennessey, 1986). Branch frequency can be a major factor in

12

reducing instruction-level parallelism (ILP) in code execution, and benchmarking code can give a

good indication of such penalties.

Summarizing, branch prediction is a common and useful technique, yet a mechanism for

misprediction recovery would add an excessive complexity penalty to the architecture. A high

branch frequency can severely limit the maximum ILP obtainable by an out-of-order architecture,

yet this cost is bearable since the architecture aims at maximizing flexibility over performance.

FEASIBILITY OF SUPERSCALAR ISSUING

With data dependencies handled by reservation stations, and instruction issuing independent of

WAW and WAR hazards, it seems natural to try issuing multiple instruction per cycle. However,

while logically easy, superscalar issuing implies many hardware complications.

The processor writeback implementation is based on a Common Data Bus, feeding results to all

reservation stations, so that newly obtained register values are broadcasted for immediate

update, thus one element to be considered is the impact of a larger, more complex Common Data

Bus. Superscalar issuing implies the use of a larger CDB for two reasons. First, for a superscalar

approach to become advantageous the processor must have a high number of FUs to increase

the chance of being able to perform multiple issuing. The introduction of more FUs will increase

the complexity of the CDB, since every FU can both write to and read from it. Second, by simple

queuing reasoning, a processor cannot issue an average of more than one instruction per cycle

unless it is also able to commit multiple instruction per cycle, or else the number of in-flight

instructions would grow indefinitely. This capability would require the instantiation of multiple

CDBs, again increasing hardware complexity. Finally, FPGA interconnections are generally

efficient for high-throughput networks, yet much weaker for high-interconnectivity setups (Kapre,

et al., 2006). A more complex CDB interconnecting all functional units and reservation stations

would therefore pose an even higher hardware cost when part of an FPGA implementation

Additionally, when operating without speculative execution, superscalar issue is stalled by the

presence of branching instructions. Therefore, frequent branching limits the usefulness of

superscalar issuing.

EXCEPTION HANDLING

While the issuing of instructions is sequential, out-of-order execution does not guarantee

sequential completion of instructions. Therefore, if an interrupt happens at a random point in the

code, finding an appropriate state in which to stop execution is a nontrivial task. The typical

solution in modern architectures consists of using the ROB to keep track of committed

13

instructions, and rolling back to the latest commit point in case of an interrupt, just like would

happen for a mispredicted branch. However, only speculative processors feature a ROB that can

be used for the purpose.

For non-speculative out-of-order processors, there are two ways of handling interrupts. The first

solution implies the implementation of a book-keeping register set holding and forwarding

instruction results, while committing them in-order to the register file. At an interrupt, the book-

keeping table can be cleaned and execution blocked at the latest committed instruction. This

approach is logically slightly easier than the implementation of a full ROB, however it still implies

the expensive introduction of a new register set. To achieve full parallelism, the register set needs

to hold one entry per reservation station, nearly doubling the hardware cost of out-of-order

execution when implemented on FPGAs. Practically, this solution is unfeasible unless coupled

with a full ROB and speculative execution.

The second solution is a more straightforward approach. Similarly to the branching solution, the

issuing can stall and the interrupt can wait until all reservation stations are empty. The feasibility

of this solution increases when there are fewer multi-stage functional units (differently from

branching, the number of FUs is irrelevant, the limiting factor is the slowest FU), and when

interrupts are relatively infrequent. Again, benchmark applications can provide estimates of

interrupt frequency.

ARBITER MODULE

The adopted solution is a memory-based module functioning as a writeback arbiter. This module

is designed to address three problems.

1. FU Errors and in-order commit

Processor interrupts are not only generated externally, but can also come as a result of an error

signal given by a functional units, a divide-by-zero error being the typical example. In this case,

the instruction execution has to interrupt precisely at the error-generating instruction, even though

subsequent instructions may already be in-process within their functional units. As discussed

earlier, however, in a system without a reorder buffer rollbacks are not possible. In this case the

only solution is to sacrifice some performance to implement in-order instruction commits. There

must be a system that controls CDB writeback so that FUs complete in the original instruction

order.

2. Destination register, avoiding content-addressable memory

The original definition of Tomasulo’s algorithm describes the Common Data Bus as carrying the

14

result value, together with a tag identifying the FU that produced it. This tag is matched against all

outstanding “Q” fields in the reservation stations and in the register status table, so that every

field waiting for the result of that FU can be updated.

From a hardware prospective, this design implies that the register status table be implemented as

a content-addressable memory, where the register that needs to be written has to be found by

matching the FU tag with each entry value. This functionality is incredibly expensive and should

be avoided unless strictly necessary. Another reason to avoid this solution is that the inverse

lookup latency is added to the writeback critical path, as a destination register is needed before

the register file can be updated.

The way to avoid content-addressable memory is to memorize the destination register of every

functional unit currently operating, so that the register value needs not be retrieved from the

register status table

3. CDB management

Finally, while in-order issue guarantees that at most one instruction per cycle is issued, the

variable latency of FUs implies that more than one result may be ready for writeback at every

clock cycle. Since there is only one CDB available, the arbiter manages and prioritizes writeback

order from all FUs.

Arbiter specifications

The introduction of an arbiter module solves the three issues described by implementing the

following algorithm. Also, it provides functional units with a free-to-write authorization signal to

use the CDB.

Issue

If a new instruction is issued, store the instruction’s destination register and reservation station

tag as a new FIFO entry

Writeback

Every clock cycle, the arbiter reads the first FIFO output (earliest in-flight instruction).

If the reservation station described by the tag is ready, give it a free-to-write signal, and use the

destination register as a write address for the register status table. Delete this entry (FIFO read

enable).

If the chosen reservation station is not ready, wait and do not let any FUs use the CDB.

15

With this functionality, it is possible to see how in-order commits are ensured, at most one FU per

cycle can use the CDB, and the destination register is provided at writeback, making a content-

addressable register status table unnecessary.

Reservation stations are still updated by inverse lookup. However, this does not imply additional

hardware: all reservation stations fields need to be fully updated in a single clock cycle at

instruction issue, thus cannot be implemented as single or dual-port memories, but rather as

collections of independent registers. In this case, adding two comparators for the Q fields

listening to CDB values does not add significant hardware cost.

SUMMARY

From the analysis of superscalar issuing, exception handling and speculative execution, it is

evident that the methods to improve performance of an out-of-order processor tend to be effective

only when used together. Summarizing the feasibility analysis, it can be seen that superscalar

issuing implies higher branch penalty, which needs to be fixed by speculative execution, which in

turn requires branch prediction hardware. On the other hand, there is the possibility of using

simple solutions for branch and exception handling, which slightly decrease the effectiveness of

out-of-order execution but come very cheap in terms of hardware resources.

The introduction of additional hardware for speculative execution does not fit the scope of this

project. While expensive, out-of-order execution dramatically increases flexibility by allowing

simple operations to coexist with complex custom functional units. On the other hand, book-

keeping techniques for precise exception handling and speculative execution only influence

performance under frequent branching/exception conditions, while nearly doubling the additional

hardware cost on FPGA implementations.

3- FUNCTIONAL SPECIFICATIONS

In order to increase customization freedom, each functional unit and reservation station is

implemented as a separate module, rather than being organized in table form. Another priority

was to simplify the interface requirements for the functional units, as these are the components

that can be modified externally, without requiring knowledge of the processor architecture.

16

REGISTER STATUS TABLE

The register status table is implemented as a 4-port memory of size [number of registers x

log2(number of reservation stations)]. Every cycle it can perform 2 reads and 2 writes:

2 reads from the Issuer, to read the status of the rs and rt fields of the instruction

1 write from the Issuer to specify that the value of the target register is no longer known, as it will

be produced by the chosen reservation station (Register Status [rd_issuer] <- reservation station

tag)

1 write from the common data bus to communicate that the register value is now known (Register

Status [rd_arbiter] <- 0)

The write from the common data bus writeback can be performed only under two conditions:

It does not conflict with current write from the Issuer. If it conflicts (same target register), discard

the write.

Before writing, check that the Register Status entry is still looking for the reservation station trying

to write (current status of register = common data bus tag). If not, it means that another

instruction with the same target register has been issued while the reservation station was at

work, thus the register value is still pending, thus the write should be discarded.

REGISTER FILE AND MEMORY

The register file can be implemented regularly, with 2 read ports and 1 write port. The memory is

implemented as a single module with 2 read-ports and 1 write-port, incorporating both instruction

and data memory.

ISSUER

The Issuer is be implemented as an separate module. The hardware requirements are:

Read the instruction from instruction memory

Produce a stall signal to stop pc from incrementing if (a) there is no available reservation station

for processing the instruction or (b) the instruction is a branch or (c) the instruction is an interrupt.

To preserve consistency, in case of interrupts and branches, the processor stalls until all previous

instructions have been committed.

Read the register file and the register status table in parallel for rs and rt. If the register status

17

produced a value, use it, or else use the register file value.

Broadcast values for all fields (busy,op,Vj etc.) to all reservation stations, but only assert a write

enable for the appropriate station.

Feed the tag of the chosen reservation station and the destination register to the arbiter.3

(to_arbiter_dest, to_arbiter_tag).

COMMON DATA BUS

The CDB is composed of registers holding writeback information. The registers act as a writeback

pipeline, and their content is broadcasted to the register file and register status tables, for register

update, as well as to all the reservation stations, that monitor the CDB data for results coming

from their Qj, Qk fields.

The CDB delays and broadcasts the following fields:

Destination (from_cdb_dest): The target register for the writeback result. Originally produced by

the arbiter (from_arbiter_dest).

Tag (from_cdb_tag): Identifier for the reservation station that produced the result. Originally

produced by the arbiter (from_arbiter_tag).

Data (from_cdb_data) : The new register value. Originally produced by one of the FUs. The

appropriate FU output (fu_chosen_output) is selected in the previous stage by the arbiter tag,

indicating which reservation station had to commit.

Write-enable (from_cdb_we) : It indicates whether the CDB data is valid. While tha data is always

taken from the FU whose turn it is to commit, the write enable must be high only when the FU has

completed operation. This signal originally comes from the chosen reservation station, which

asserts the write enable when the FU has produced the correct result.

RESERVATION STATIONS

Except for the special cases of memory and branch instructions, all reservation stations are

equal, and operate in the same way regardless of the functional specifications of their attached

FUs. In particular, the RS can be in one of three states:

IDLE/WAITING FOR INSTRUCTION

When the issuer loads an instruction (write enable is high), look at all the operands:

18

If both operands are ready (Qj, Qk = 0), load all fields from the issuer and begin operation by

starting the FU (raise fu_start)

If one or more operands are missing, check the CDB broadcast before loading the fields. If one of

the missing fields (tag = Qj or Qk) is being broadcasted (cdb_we = 1), update the broadcast

instead of the issuer value. If, thanks to the CDB, both fields are ready, begin operation.

Assert the busy signal.

WAITING FOR OPERANDS

Check the CDB broadcast. If one or both the missing fields (tag = Qj or Qk) are being

broadcasted (cdb_we = 1), update the value.

If, with the current CDB broadcast, both operands are now ready, begin operation immediately.

WAITING FOR WRITEBACK

If the result is ready (fu_ready), monitor the arbiter authorization (arbiter_free_to_write). This

signal will be asserted by the arbiter when the RS is the next due to commit (from_arbiter_tag =

RS number). If the FU is ready and the authorization has been received:

Write the Fu result to the cdb (assert to_cdb_we)

Set the busy signal to zero.

FUNCTIONAL UNITS

Functional Units are the key components of the processor, since it is through the insertion and

customization of functional units that the processor achieves its feature characteristic of flexibility.

Ideally, functional units need to be:

Standardized in I/O: so that reservation stations can obey a single communication protocol with

all FUs

Internally Customizable: each FU should be able to operate freely, without any constraint on

internal components, timing requirements, or limitations on pipeline stages.

Architecture-Independent: of all the processor’s components, the custom FUs are to be coded

by the user/designer, who shall not be forced to learn about the FU requirements within the

processor architecture. Ideally, the user should only specify the operational functioning, together

with some characteristics of the new FU (such as the degree of internal pipelining). A FU

19

template should take care of analyzing these characteristics and generate the appropriate internal

communication logic.

Fully Utilized: if a FU has many pipeline stages, yet can intake a new operation at each cycle

(i.e. it is not “circularly pipelined”), it should have the possibility of processing, if needed, several

in-flight instructions at one point in time

The architecture satisfies these requirements through the following mechanisms:

Standardized I/O: each FU is limited to a 3-input (op1,op2,a) 1-output (result) operation, whose

details are covered in a later section (Figure 5, Figure 6). If capable of performing multiple

operations (i.e. ADD/SUB) the Functional Unit can choose the appropriate one through a 4-bit op-

code signal.

Internally Customizable: The FU template has a space where the user/designer can instantiate

any internal logic, combinational or registered, as long as it wired to the 3-input 1-output

framework of the FU.

Architecture-Independent: To interface with other components, the FU uses two communication

signals (fu_start, fu_ready). Such signals, however, are managed by a standardized internal logic,

which only uses as an input parameter the number of internal pipeline stages, and ensures

correct communication. This way, the user/designer is not concerned with the architectural and

timing requirements for the functional unit.

Full Utilization of Functional Units

If a FU internal logic can process several in-flight instructions, a special FU shell with attached

controller is instantiated. This FU connects to as many reservation stations as the number of

possible in-flight instructions, thus being seen by the processor as a group of independent one-

operation-at-a-time FUs. With this method, it is possible to have a single FU shared by as many

reservation stations as the maximum number of in-flight operations the FU can process. To

accomplish this, the controller has to deal with the following tasks:

Operation intake: accept the fu_start signals from all the RS connected to the FU. When a RS

issues a new fu_start, save the operands, the opcode, and an internal tag pointing to the specific

RS. Solve conflicts with a priority table, and delay the fu_start of the RS which does not have

precedence.

Pipeline bookkeeping: At every cycle, while the new operands go down the FU pipeline, keep a

separate delay-pipeline for op-codes to ensure that, if different operations are performed at

different stages, each stage reads the correct op-code. Also, delay the issuing RS tag by as many

20

delay slots

ARBITER

Based on a simplified FIFO structure, the arbiter keeps track of the instruction issuing order, and

ensures in-order commit of instructions. Whenever the issuer processes a new instruction, it

communicates to the arbiter the reservation station in charge and the destination register, which

may be unspecified for instructions not writing to the register file. The destination register field

avoids the necessity of implementing content-addressable memory: in absence of this field, on

instruction commit the register status table would have to check which register is waiting for the

given reservation station before writing the new value. The issuer ensures correct signaling of

new instructions to the arbiter even in branching situations, when the processor is stalling.

On the output side, the arbiter broadcasts information on the next reservation station that has to

commit, and the destination register. It also gives an authorization signal to the correct

reservation station which, if the functional unit is ready with the result, will trigger an instruction

commit and a write to the CDB.

LOAD/STORE

Load and Store instructions are processed by a special reservation station and connected

functional unit. Since store instructions do not write to the register file, the load/store reservation

station allows store instructions to commit to the arbiter without having to broadcast a result over

the CDB.

The load/store functional unit features additional I/Os for interacting with the data memory. For

algorithmic consistency, all address computations happen within the FU, as opposed to

instruction issue, and the functional unit only receives register and immediate values. This

happens since, given the architecture, the target address may depend on registers whose value

is not available at issue time. When the start signal is asserted, the FU performs address

computation and issues a read or write to a synchronous data memory.

BRANCH/JUMP

Another special reservation station and functional unit pair is used for all branching and jump

instructions. As for the Load/Store, the reservation station differs by separating instruction commit

from register file write back, since most branching instructions (except for JAL/JALR) do not affect

the register file.

As for the Load/Store case, and for the same reasons, both target and branch condition

21

computations are performed within the FU as opposed to issue stage. To perform target

computation, the FU is provided with the PC value as an additional input. The issuer ensures that

the FU is not provided with the current pc, which might have changed, but rather with the correct

pc value associated with the instruction.

In addition to writing to the CDB (for JAL/JALR instructions), the branching FU provides its result

to the issuer. The branch result takes the form of a target address for the new pc, a branch_taken

value providing the result of the branch condition, and a branch_committed that allows the issuer

to recover from stalling by moving to either the new pc or pc+4.

Delay Slot Implementation

For increased performance, some MIPS architectures require that the instruction after a branch,

called the delay slow, be executed before the branch is taken. While the delay-slot method is

outdated, I decided to implement it as an optional, parameter-regulated feature, to ensure higher

compatibility with different MIPS implementations. To implement delay slots, the issuer delays the

stall after a branch, so that the next instruction is issued before stalling and waiting for the branch

result.

When delay slots are enabled the issuer also ensures a defined behavior in the complex case of

adjacent branches. While most MIPS architecture have undefined behaviors for adjacent

branches, the issuer ignores the result of the first branch while prioritizing the branch positioned

in the delay slot.

22

HIGH-LEVEL STRUCTURE

Figure 3 illustrates a high-level perspective of the processor implementation.

High-Level Structure

Instruction

Memory

Arbiter

Functional Units

Common Data Bus

Branching FU
Load/Store FU

Data

Memory

Reservation Stations

Branching

Reservation Station

Load/Store

Reservation Station

Register File Register Status

Instruction Fetch

Instruction Issue/
Wait for Operands

Execution

Writeback

In-Order

Commit

Issuer

Control

Signals

(ISA)

RS

Functions

+ Opcodes

Figure 3: High-Level view of the processor implementation, representing all modules and the main

interactions. Conveying the idea of flexibility, standard reservation stations and functional units are

represented as a list, extensible and customizable by the user. Also, the user can modify or extend

the set of control signals representing the ISA, thereby defining a new instruction type. As explained

in the bottom-right portion, the color-coding pictures the pipelining structure, which consists of a

baseline 4-stage operation with a flexible execution stage, where different functional units can be

defined with different degrees of pipelining. Transcending from the pipelining structure, the arbiter

regulates Common Data Bus access and ensures in-order instruction commits. Finally, the Common

Data Bus broadcasts instruction results, which are monitored by the register file, register status

table and all reservation stations.

23

4- CUSTOMIZATION

This section illustrates the details of the processor’s user interface, and describes the user-

exposed parameters that regulate customization.

CUSTOMIZABLE COMPONENTS

The flexibility of the processor architecture resides in the possibility to extend and modify the

instruction set as well as the functional units. Figure 4 is an overview of the internal parameters

that allow a user to define new functional units as well as new instructions.

For each new functional unit, the user needs to specify a set of parameters that the architecture

will use. First, the instruction capability is a list of instructions that the functional unit is capable of

executing. For each of these instructions, the user must specify an opcode that will be fed to the

functional unit to recognize which instruction is being requested. For correct pipelining

configuration, the user must specify the number of clock cycles that the functional unit will take to

execute the instruction, as well as the Verilog code describing the execution logic.

When inserting a new instruction, the user must specify three parameters. A unique instruction

name, which will be used by the architecture, a 32-bit instruction signature, which will allow the

issuer to recognize the instruction, and a set of control signals to specify the correct operands

and destination for the functional unit.

24

Instruction and Functional Unit Customization

Functional
Units

• Instruction capability
[can_do signal]

• Opcode assignment [opcode
signal]

• # of pipeline stages
[STAGE_NUM parameter]

• Verilog Code

Custom
Instructions

• Name:
FOO

• Signature:
32’b00100_?????_01100…

• Control Signals:
Op1, Op2, A, Dest

Figure 4: High-level overview of processor customization. The user describes new functional units

and custom instructions, which are automatically implemented in the architecture of the generated

core. In particular, the user must specify a set of architectural parameters for the additional

components, as well as Verilog code describing the execution logic of new Functional Units.

25

CUSTOM FUNCTIONAL UNIT

Figure 5 offers a detailed example of the description required to specify a new, user-generated

functional unit. In particular, the user needs to specify the following parameters

Instruction Capabilities: A list of all instructions the FU is capable of executing. Instructions

should be referred by standard names in the MIPS ISA, or by the new names of custom

instructions added to the ISA.

Opcodes: For all instructions in the capability list, the user must specify a 4-bit opcode that will

be given to the Functional Unit for recognizing the required instruction.

of Pipeline Stages: Each FU must declare its internal degree of pipelining. Purely

combinational FUs must use zero for this parameters. While there is no limit on the number of

pipeline stages allowed, such number of stages must hold for all instructions the FU is capable of

processing. For a number of pipeline stages N, the architecture requires that the Functional Unit

produce a valid result N cycles after valid operands have been provided. The operands will

remain constant for the entire duration of the execution and, after N cycles, the result must stay

valid as long as the operands remain valid. The user need not have knowledge of when the

operands become valid, as these details are handled by the internal architecture.

Verilog Code [with constraints]: The user must specify Verilog code describing the execution

logic, while observing a few constraints. The operands will come as signals op1 [32-bit], op2 [32-

bit] and A [16-bit], as well as the opcode [4-bit] describing the kind of instruction requested.

According to the relevant instruction, the FU might not utilize all input signals. The result must be

produced over the Verilog wire result [32-bit] and assigned through combinational logic (assign

statement). The keywords clock, reset, start, ready are reserved and may not be declared, yet

clock and reset may be monitored as inputs. The signals start and ready should not be observed,

since their timing specifications vary with the architectural role of the functional unit, thus

referencing them may cause incorrect behavior at times. Constraints aside, the user is allowed to

declare any signals or registers required for specifying internal logic.

26

Example Functional Unit: Synchronous Add/Sub

• ADD, ADDU, SUB, SUBU

Instruction Capabilities [can_do]

• ADD -> 4’d0

• ADDI -> 4’d0

• SUB -> 4’d1

• SUBI -> 4’d1

Opcode

Pipeline Stages = 1

• Inputs: op1[31:0], op2[31:0], a[15:0], opcode[3:0]

• Output: result[31:0]

• Reserved Keywords: clock, reset, start, ready

Standard Constraints

Code

reg[31:0] my_result;

always @(posedge clock) begin

if (reset) begin

my_result <= 32’b0; end

else case (opcode)

0: my_result <= $signed(op1) + $signed(op2);

1: my_result <= $signed(op1) - $signed(op2);

default: my_result <= 32’bx;

endcase

end

assign result = my_result;

Figure 5: Description of a single-pipeline, synchronous functional unit, capable of performing signed

Add and Subtract. First of all, the FU specifies a capability list of the instructions it can execute.

Second, it specifies an opcode for each instruction.

In this case, notice that ADD/ADDI and SUB/SUBI have the same opcode. This is due to the

processor’s control signals choices, and will be further explained in the next figure. Within the ISA,

the sign extension of the immediate can be performed before issuing. In this case, it can be deduced

that the FU is always expecting the appropriate second operand in op2, whether it be Reg[Rt] (for

ADD/SUB) or a 32-bit, sign-extended immediate (for ADDI/SUBI). Alternatively, the architecture

allows the user to change the control signals for ADDI/SUBI in order to receive a 16-bit immediate in

the a field, and performing the sign-extension within the functional unit.

Next, the user specifies the number of pipeline stages required by the functional unit, with zero

corresponding to combinational execution. In this case, synchronous execution implies a pipeline

value of one, as the result is ready one clock cycle after the operands become valid.

The next field simply reminds the user of the constraints on the Verilog code specifications. In

particular, the input/output signals and the reserved keywords.

27

Finally, the user provides a Verilog description of the execution logic. In this example, the execution

is synchronous, yet the result must be assigned to a combinational result wire, therefore the user

declares an internal my_result register which will hold the synchronous result. The user-supplied

code reads the clock and reset signals to setup the synchronous logic, and references to opcode

within a case statement in order to perform the required operation on op1 and op2. In this case, the

input a is never needed. Finally, the result wire is assigned to the synchronous result.

From an overview of the Verilog code, it can be seen that (1) A correct result is produced 1 cycle

after receiving valid inputs; (2) The result stays valid as long as the inputs stay valid; (3) No reserved

keywords/signals are redeclared; (4) The user does not reference to the start or ready signals. The

code therefore complies with the architectural specifications.

CUSTOM INSTRUCTION SPECIFICATION

Figure 6 is an example of the specifications for inserting a custom instruction in the processor’s

ISA. The following parameters are required for insertion:

Name: The new instruction needs a unique name, by which it will be identified within the

architecture. While the user has freedom of choice, a two to four-letter capitalized name would fit

organically with the MIPS architecture.

Instruction Signature: The user must specify a way for the architecture to uniquely recognize

the instruction. The user specifies the signature by a 32-bit sequence of values one, zero or ? (to

signify don’t-care). This description must not overlap with any other instruction in the ISA, and

must be compatible with the instruction format used. For example, for an I-type instruction using

the immediate, the signature should have the value “?” for bits 16:0, as it should be recognized

for all values of the immediate (bits 16:0 of the instruction).

Control Signals: Finally, the new instruction should specify its control signals for assigning the

correct operands and destination values. It is important to remember that, while the format is not

explicitly specified, the choice of control signals must comply with one instruction format type. For

example, an instruction should not use both Rd (R-Type format) and Immediate (I-Type format),

since these two values are not independent, they overlap on bits 16:12 of the instruction. There

are four values to assign:

Op1: The first 32-bit operand. Choices between zero, Reg[Rs], a zero-extended shift amount

value [bits 10:6 of the instruction], or x (unspecified / don’t-care).

Op2: The second 32-bit operand. Choices between Reg[Rt], zero-extended immediate, sign-

28

extended immediate, zero-extended target [bits 25:0 of the instruction], or x (unspecified / don’t-

care).

A: 16-bit operand. Choices between zero, immediate or x (unspecified / don’t-care).

Dest: 5-bit address specifying the destination register. Choices between R0, Rd, Rt, or R31.

Example: Custom I-Type Instruction FOO

Reg[Rt] <- (Reg[Rs] << 30) * (Reg[Rt] – Imm)

• FOO

Instruction Name

• 32’b010101_?????_?????_????????????????

Instruction Signature

• Op1 = [Zero, Rs, Sa, x]

• Op2 = [Rt, Zext_Imm, Sext_Imm, Target, x]

• A = [Zero, Imm, x]

• Dest = [Zero, Rd, Rt, R31]

Control Signals

Figure 6: Specification of a custom instruction
1
. First, the unique name FOO is specified for the

instruction. Second, a signature is given. This signature must not overlap with other instruction (in

this case, it should have a unique op field), and must not specify constraints on operands (in this

case, Rs, Rt, and immediate are all left as don’t-care question marks). Finally, control signals are

chosen from a list of possibilities. In this case, the functional unit will receive the required operands

Reg[Rs], Reg[Rt] and Imm respectively through Op1, Op2 and A. Rt is set as the destination register.

Finally, it is important to notice that Rd, sh_amt or target are not used, as they would overlap in the

instruction bits with Rs, Rt and Imm.

ADDITIONAL CUSTOMIZABLE FEATURES

In order to guarantee a modular interface for all instruction execution, the architecture implements

1
 Notice that, in order for the instruction’s functional specification to be correctly implemented, the user

must also specify a custom functional unit capable of executing FOO.

29

special instructions, such as branching and memory, by using special reservation stations and

functional unit pairs, modified to implement the requirements of such instructions. The

development of these functional units led to the introduction of additional customization features;

while not as easily accessible and modular as the standard functional unit and reservation station

parameters, these additional customizations can still be used to implement more complex and

efficient functional units.

First, reservation stations can be customized to handle separate commit signals for the arbiter

and the CDB. With this method, it is possible to create a functional unit that handles instructions

writing to the register file as well as instructions that do not modify register values.

Second, functional units can be optimized to require a variable number of cycles for completing

an operation. The standard functional unit setup requires the user to specify a fixed number of

cycles after which the operation result will be valid and stay valid, while hidden logic controls the

reservation station – functional unit communication. It is, however, possible for the user to

introduce an internal “ready” value to signal when the operation has been completed. The API for

the internal_ready signals is for it to be a single-cycle pulse, having a value of one in the cycle

whenever the result is ready. The result need only be valid in the cycle when internal_ready is

high, while internal logic saves the result and handles communication signals, effectively resulting

in variable pipeline depth. As shown in the next section, this variable-latency protocol may be

used to optimize performance of complex internal logic, such as dividers.

30

5- TESTING AND RESULTS

This section describes various tests performed on the processor architecture in order to assess

the feasibility for use by hardware developers. To evaluate the practical functionalities of this

architecture, I proceed to consider the various processor constraints typically required by an

integrated system solution, as well as by the processor user / hardware designer. First, I discuss

the issues and tradeoffs in assessing performance and area measurements for the architecture,

after which I present the results of restrictive yet unambiguous processor tests for performance

and area. Second, I compare the architecture to three commercially available soft processors, all

synthesized on the same FPGA, in terms of features, area and performance, and discuss the

validity and usefulness of these comparisons. Third, I analyze the costs and benefits of inserting

redundant functional units to improve performance. Finally, I analyze a realistic use situation,

wherein a hardware designer needs to use the processor for Mp3 decoding though the MADplay

library. In particular, the compiled code requires the introduction of a custom fixed-point

multiply/divide functional unit, with associated instruction-set extensions.

PERFORMANCE AND AREA

The fundamental, functional constraint for any processor to be useful is adequate performance for

the assigned system tasks. Given a certain application and instruction-set architecture (in this

case, MIPS-I), such performance requirements can be roughly defined and measured in terms of

instructions per second. When constructing an integrated system solution (as opposed to a

general-purpose machine), the hardware designer can make reasonable expectations as to which

kinds of processor-intensive applications the system will have to run, as well as on a minimum

performance requirement: for example, a wireless webcam solution may require JPEG

compression and transmission of 640*480 pictures at 10 pictures/second, while a wireless

monitor displaying a Blu-ray movie would need to perform H.264 decoding of 1080p images at 32

to 60 frames per second. When such “bottleneck” applications are compiled for a certain

instruction set architecture, the designer can obtain a rough estimate of the instructions-per-

second (IPS) constraint on the processor.

In order to obtain a general estimate of processor performance, I assembled a simulation tool-

chain for running various benchmarking programs on a reference processor implementation. The

tool chain performs various tasks to obtain an estimate of processor performance on a given

implementation platform. In particular, source code is cross-compiled for MIPS-1 ISA with no

coprocessors, then it is linked and assembled. The resulting file is used to generate a Verilog

31

description of a block-ram, whose initialization contents and locations match the appropriate

instruction and data values for the assembled program. The resulting memory is used as a

comprehensive instruction/data memory (Von Neumann architecture) and connected to the core.

Finally, a processor run with the new memory is simulated. An analysis of simulation logs reveals

the number of required cycles and the number of performed operations, thus giving an estimate

of Instructions per Cycle (IPC).

In order to obtain the measurement of instructions per second (IPS), the processor needs to be

synthesized to estimate the maximum clock frequency which, multiplied by the IPC measurement,

results in
���������	��

���
×

����

��	��
=

���������	��

��	��
. Clock frequency estimation, however, introduces

another benchmarking problem. When dealing with a soft-architecture, in fact, the maximum clock

frequency depends not only on the internal logic delays of the various processor pipeline stages,

but rather on the platform where the processor is implemented. As the target integrated systems

are represented by modern FPGAs, the architecture was synthesized for implementation on a

Xilinx Virtex-5 chip.

Similarly to clock frequency, the area of a soft processor is determined by the implementation

platform. In particular, when mapping soft designs to pre-existing logic, FPGAs typically require a

much larger implementation area than equivalent custom integrated circuits. Once again though,

since FPGAs are the primary target of the architecture, area constraints were measured for the

Xilinx Virtex-5 chip. In particular, three measurements were obtained, two specific to the

implementation (percentage of resources utilized, number of FPGA “slices” used), another more

general (total number of gates and registers).

Finally, an appropriate benchmark code must be chosen. Initially, the processor was tested on

long series of basic “test blocks” for testing the correctness in the execution of each instruction.

Subsequently, the processor was tested on Mp3-decoding code taken from the MADplay fixed-

point encoding/decoding libraries, a choice explained in more detail later in this section.

Overall, assembling a test platform for a soft architecture presents several challenges and

tradeoffs. In general, the choice of all test parameters, from benchmarking code to performance

indicator to implementation platform, can dramatically influence any measurement of processor

performance and area. However, such choices usually imply a tradeoff between restrictive and

ambiguous results. In this case, considering the intended use for application-specific integrated

systems, the test performed is very restrictive for a typical implementation and application, and

very conservative in terms of implementation assumptions, yet the results are unambiguous.

Table 1 presents the test specifications and results for two different processor implementations, a

baseline mips-1 compatible version as well as a version featuring an additional fixed-point

32

divide/multiply functional unit.

Table 1: Processor test results for different benchmark programs and functional unit configurations.

Out-of-order execution determines an average IPC (instructions per cycle) of 0.6 on test code, 0.5 on

mp3 decoding, and 0.4 on floating-point division code. This variability in performance depends on

the increased utilization of the deeply pipelined (32 cycles) MUL/DIV unit; the introduction of the

complex MUL/DIV unit also causes a 26% increase in area requirements
2
. The highly-pipelined

design allows for a rather high clock frequency of 125-138 MHz, where the unoptimized MUL/DIV unit

acts as a delay bottleneck. While the 51-83 MIPS performance measurement is more meaningful, the

figure of 614,000 software-implemented floating-point divisions per second is pehaps less

ambiguous as a platform-independent measurement.

Compiler mips-elf-gcc (GNU compiler collection’s MIPS-specific compiler), with

flags –mips1 (specifying the ISA) and –msoft-float (do not use floating-

point coprocessor)

Test Code Test 1: series of instruction-test routines

Test 2: series of fixed-point arithmetic subroutines
3
 used by

MADplay library to reproduce floating-point calculations for

Mp3 decoding

Target platform Xilinx Virtex-5 LX50 FPGA (28,800 slices flip-flops, 28,800 slices look-

up tables, 1,728 kb block RAM), approx. equivalent to 3 million gates +

RAM.

Synthesis/Simulation Xilinx ISE / ISE simulator

Processor versions Version 1 [baseline]: 6 RS/FU pairs, implementing the full MIPS-1 ISA

Version 2: 7 RS/FU pairs, implementing the full MIPS-1 ISA plus fixed-

point multiplication/division, with additional instructions MULT, MULTU,

DIV, DIVU, MFHI, MFLO

Post-synthesis Area

(FPGA resources)

Version 1 1801 flip-flop (6% of total), 2848 LUT (9% of total)

Version 2 2172 flip-flop (7% of total), 3407 LUT (11% of total)

Post-synthesis Area

(gates estimate)

Version 1 225,000 gates

Version 2 285,000 gates (~26% overhead for MUL/DIV unit)

2
 It is important to notice that the MUL/DIV unit is a straightforward, unoptimized implementation of the

Hennessy-Patterson algorithm (Hennessy & Patterson, 2006): while the introduction of this unit was

focused towards testing flexibility, a performance-oriented implementation would yield much better results

in terms of area and latency.

3
 All subroutines included in the fixed-point functions (fixed.c) set of libmad (MADplay’s encoding-

decoding library), including floating-point addition, subtraction, absolute value and division.

33

Clock Frequency Version 1 138.6 MHz (period 7.21 ns)

Version 2 125.1 MHz (period 7.98 ns)

Instructions per cycle
Test 1

Version 1: 0.61 IPC

Version 2: 0.61 IPC

Test 2
Version 1: not suitable (test required divider unit)

Version 2: 0.52 IPC (0.41 IPC for FP divisions only)

Instructions per

second
Test 1

Version 1: 83.1 MIPS

Version 2: 75 MIPS

Test 2
Version 1: N/A (requires MUL/DIV unit)

Version 2: 63.8 MIPS (51.3 MIPS for FP divisions only)

Floating-point

divisions / sec (with

one MUL/DIV unit)

Version 2 684k FPDIV/sec (51.3 MIPS @ 75 ops / FPDIV)

COMPARISON WITH EXISTING PRODUCTS

Benchmarking processors is fundamentally a way of comparing their characteristics, thus it would

be useful to compare the tested processor versions to existing processors. As the architectural

differences between processors widen, however, it becomes increasingly difficult to objectively

compare them. While hard processors can be compared in terms of cost, power and performance

on a given computer program, soft processors introduce many additional variables, as both area

and performance are heavily influenced by the implementation platform and whether the design

has been optimized for it. On the other hand, while performance can be ambiguous, commercially

available soft processors can be meaningfully compared in terms of architectural features and

logic complexity.

Table 2 presents a feature comparison between the customizable processor and three

mainstream, commercial synthesizable processors, one of which (Microblaze) is designed and

optimized specifically for implementation on Xilinx FPGAs.

Table 2: Feature comparison of the version 2 processor (with added divide / multiply unit) and three

commercial synthesizable processors
4
. Even considering the generally high flexibility of all soft

processors, a side-by-side comparison reveals the advantages of a customizable functional unit

solution. In particular, advantages can be seen in the variable pipeline depth and MUL/DIV latency, in

4
 All data for LEON 2, MicroBlaze and OpenRISC 1200 processors in Table 2, Table 3 reproduced from

(Mattsson & Christensson, 2004), authorization pending.

34

the switchable branch delay slot and in the possibility to adapt custom floating-point units to the

architecture. All the additional customization features are allowed by the custom functional unit

approach, as opposed to current coprocessor-based solutions. Notice that, out of the processors

analyzed, only the OpenRISC 1200 is substantially customizable, supporting custom instructions

and coprocessors.

LEON 2 MicroBlaze OpenRISC

1200

MIPS Version2 (with

divide / multiply unit)

Distributed File

Format
VHDL EDIF Verilog Verilog

General

 Architecture 32-bit RISC 32-bit RISC 32-bit RISC 32-bit RISC

 Byte ordering Big Endian Big Endian Big Endian Big Endian

 Pipeline depth 5 3 5 Variable (4+)

 Issue type Single Single Single Single

 Branch prediction No BHB No No

Register File

 Organization Windowed Flat Flat Flat

 # of global registers 8 32 32 32

 # of windows 2-32 N/A N/A N/A

 Total # of GPR 40-520 32 32 32

ISA

 Type SPARC V8 Microblaze ORBIS32 MIPS

 MUL latency

(cycles)
1-35 3 3 customizable

 DIV latency 35 34 64 customizable

 Branch delay slots 1 1 1 variable: 0, 1, 2

 Branch latency 0-1 1-3 Unknown
variable: 1 - # of

pipeline stages

 Load delay 1-2 2 Unknown 1

 Custom instruction No No Yes Yes

 Custom

coprocessor
No No Yes No

 Custom functional

units
No No No Yes

35

LEON 2 MicroBlaze OpenRISC

1200

MIPS Version2 (with

divide / multiply unit)

 Hardware floating-

point support

GRFPU, Meiko

FPU, LTH FPU

Quixilica

FPU
No

Customizable (within

FU)
5

Memory Structure Harvard Harvard Harvard
Harvard /

vonNeumann

Memory

Management Unit
Yes No Yes No

While the objective of this architecture is better expressed in terms of processor feature

comparisons, a quantitative side-by-side comparison in terms of area and performance can give

an idea of whether this solution could be feasibly used in the future. Obviously, comparing a

completely unoptimized prototype with successful commercial products must yield biased results,

yet such a comparison can be useful at least to estimate the degree of improvement and

optimization required to obtain a competitive architecture. In Table 3, the architecture was

synthesized and simulated for implementation on a Xilinx Virtex-II FPGA (XC2V3000fg676-4),

and its area requirements compared to those obtained by (Mattsson & Christensson, 2004) when

implementing commercial soft processors on the same platform. Additionally, Mattsson and

Christensson present performance results for the three processors running the Dhrystone 2.1

benchmark (Weicker, 1984). Originally developed as a compact comprehensive benchmarking

software for integer performance, the Dhrystone program consists of a main loop with a clock and

a counter tracking the number of iterations, producing a measure of program iterations per

second to rank processor performance. This integer based, platform-independent approach

makes the Dhrystone a suitable benchmark for embedded systems. On the other hand, with the

Dhrystone being a short, open-source and widely spread program, its results can be heavily

distorted through compiler optimization, resulting in many processor architectures advertising

unrealistically high results. For these reasons, Dhrystone is currently considered unreliable for

modern architectures, yet its compactness and low utilization of operating system calls makes it

the most feasible choice for comparisons. Additionally, data is available for other processors that

were tested by independent researchers and without excessive compiler optimizations, thus

diminishing result distortion.

5
 The possibility to insert a custom FPU as a functional unit with dedicated instructions is discussed in the

customization test section.

36

Table 3: Area, Frequency and Dhrystone benchmark performance comparison of the version 1 and

version 2 processors with three commercial synthesizable processors. The three commercial

processors are analyzed in two different configurations, optimized respectively for high performance

and for low area, while both MIPS versions are measured in a single, unoptimized implementation.

Area measurements are given as total number of 4-input lookup table slices used on the FPGA for

the comprehensive system (core plus cache
6
). Both versions of the MIPS present lower area and

higher clock frequency than both the LEON 2 and OpenRISC 1200 regardless of configuration, while

the MicroBlaze displays more compactness and lower latency than all other architectures. This

specific comparison, however, is heavily biased towards the MicroBlaze, which has been specifically

developed and optimized by Xilinx to run natively on Virtex-series FPGAs, while all other solutions

are designed in a portable, more general Verilog/VHDL format. On the other hand, post-synthesis

measurements for MIPS clock frequency, while generally conservative, are less reliable than post-

PAR figures given for the three commercial processors. On the Dhrystone benchmark side

(estimate
7
), the MIPS is outperformed by most configurations. The benchmark deficiencies are due

to two factors: low IPC efficiency, which can be improved by inserting redundant functional units,

and low compiler efficiency due to a restrictive instruction set, which can also be expanded by

inserting additional functional units and instructions, conforming to more advanced MIPS ISAs

(MIPS-2, MIPS32 etc.), as well as by compiler optimization.

LEON 2 MicroBlaze OpenRISC

1200

MIPS Version2 (with

divide / multiply

unit)

MIPS

Version1

Platform Xilinx Virtex-II XC2V3000fg676-4

 HW resources 28,000 slices flip-flops, 28,800 slices 4-input LUT

Area (LUT)

 Performance-

optimized
8794 2442 6443

4579 3037

 Area-optimized 5871 2325 5865

Clock Frequency

(MHz)

 Performance-

optimized
53.3 80 40

78 91

 Area-optimized 26.7 26.7 26.7

6
 Including the cache in the area measurements does not compromise the results, since RAM and cache

modules on the Virtex-II are entirely implemented using Block-RAM slices, which do not add to the LUT

count. While this measurement may bias performance/area measurements in favor of systems with a larger

cache, the compactness of Dhrystone code does not give an advantage to cache-heavy implementations.

37

LEON 2 MicroBlaze OpenRISC

1200

MIPS Version2 (with

divide / multiply

unit)

MIPS

Version1

Dhrystone 2.1

iterations/sec

 Performance-

optimized
78431.4 76189.6 26454.9 6380 – 23790

(estimated
7
)

N/A

 Area-optimized 30690.5 23188.3 10653.8

Performance/

Area ratio

 Performance-

optimized
8.91 31.20 4.10 1.39 – 5.19

(estimated)
N/A

 Area-optimized 5.22 9.97 1.81

INCREMENTAL PERFORMANCE AND COST FOR REDUNDANT FUNCTIONAL UNITS

As previously discussed, one limitation of the processor architecture is that functional units

require at least two cycles to perform an operation, since reservation stations cannot be loaded

while in write back state. While for a 32-cycle divider unit this limitation does not influence

performance much, combinational units for common instructions (add, sub etc.) are deeply

penalized by the extra cycle latency, effectively limiting processor performance to 0.5 IPC for all

series of instructions mapped to the same unit. This bottleneck suggests that adding redundant

functional units can improve performance, yet the feasibility of this method relies on the costs and

benefits of inserting an additional functional unit. It is intuitive that an additional combinational FU

can double performance on a long series of instructions mapped to a common FU, yet showing

7
 Running Dhrystone benchmark is still in-progress. The procedure for the estimate is as follows.

Considering that all other processors are single-issue, and conservatively assuming that they run at an ideal

one instruction per cycle, their IPS becomes equal to their clock frequency. Dividing clock frequency by

Dhrystone score (iterations/second) produces
���������	��

��	��
÷

������	��

��	��
=

���������	��

������	�
. This calculation yields

a conservative (max values) range of 679-2506 instructions per Dhrystone iteration. Considering its

restrictive instruction set and consequently lower compiler efficiency, a range estimate for the MIPS is

2000-5000 instructions per iteration. Multiplying by the known clock frequency and a 0.4-0.6 range of IPC

yields �78��

����

��	��
× �0.4 �� 0.6�

���������	��

���
÷ �2000 �� 5000�

������	��

��	��
= �6240 �� 23400�

���������	��

������	�

38

this would not be a meaningful example. As a more realistic test, Table 4 and Figure 7 present

cost/benefit results for the insertion of an additional ADD/SUB unit for a vector add/subtract code,

showing that inserting redundant functional units can be highly advantageous.

While Table 4 shows very low area and latency costs for additional functional units, such costs

are very likely to increase with the total number of units. As previously discussed, this is due to

the wiring complexity of the Common Data Bus system for result broadcasting, wherein

essentially all reservation stations must be connected. It is thus evident that, while a seventh FU

must connect to only six pre-existing elements, each additional FU will imply a incrementally

higher complexity, which will influence both incremental area (number of wires) and performance

(CDB latency). Finally, as the number of functional units exceeds powers of two, all FU indexing

wires will expand by one bit, thus implying a one-time area and latency cost, which however

should be minimal. While incremental cost issues could be explored further, it is reasonable to

assume that, in its typical configuration, the processor will not feature a high number of additional

functional units, thus avoiding such uncertainties.

Table 4: Area cost and performance benefit for insertion of a redundant ADD/SUB unit in vector

addition/subtraction code. Notice that the insertion of a simple functional unit implies a minimum

incremental costs for both area (+4%) and frequency (-1.5%). The +25% area figure for the insertion

of the DIV/MUL unit in Table 1 is thus due to the high complexity and latency of the unit, and is not

representative of the costs of expansion. Considering the low complexity of an ADD/SUB unit, the

cost figures presented are a good measurement to the area cost of reservation station / FU

machinery, and the incremental delay cost of the higher wiring complexity of the Common Data Bus

for additional units.

 MIPS Version1 (6 FUs) MIPS with redundant ADD/SUB unit (7 FUs)

Platform Xilinx Virtex-5 LX50 FPGA

Area 1801 FF, 2743 LUT 1876 FF(+4.1%), 2875 LUT (+4.8%)

Clock Frequency 125 MHz 123 MHz (-1.5%)

Instr. per cycle 0.7 0.81

Performance (MIPS) 87.5 99.6 (+13.8%)

39

Figure 7: Relative cost and benefit of inserting a redundant ADD/SUB unit

subtraction code. It is evident from the graph that performance benefits of inserting the redundant

unit outweigh area costs for this p

LIMITATIONS AND COMPILER CONSTRAINTS

While a major advantage of this architecture is the possibility to define custom instructions, an

equivalent necessity is for compiled programs to utilize the additiona

compiler support is required to generate programs that take full advanta

features -- a drawback shared with coprocessor

flexible compiler (dynamically and optimally mapping code to a variable set of in

fascinating academic field, yet it is an excessive request to make for supporting processor

flexibility. However, in the context of dedicated embedded systems, it is expected that

compilation be optimized for the specific implement

assembly-level subroutines (such as MADplay’s floating

tailored for high performance on the target system. In this context, users can modify

level subroutines to take advantage of any additional custom instruction, thus producing efficient

(though sub-optimal) code that takes advantage of architectural flexibility without

compilers. Similarly, many common assembly

generate programs for custom architectures. While functional units and instructions within the

processor can be modified very rapidly, rewriting entire subroutine libraries is a

thus eliminating the possibility of recursively modi

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Area (flip-flops) Area (LUT)

Cost/benefit of redundant Functional Unit

: Relative cost and benefit of inserting a redundant ADD/SUB unit for vector addition /

subtraction code. It is evident from the graph that performance benefits of inserting the redundant

unit outweigh area costs for this particular test.

LER CONSTRAINTS

While a major advantage of this architecture is the possibility to define custom instructions, an

equivalent necessity is for compiled programs to utilize the additional features. In particular,

to generate programs that take full advantage of the processor’s

a drawback shared with coprocessor-based architectures. The development of a

flexible compiler (dynamically and optimally mapping code to a variable set of instructions) is a

fascinating academic field, yet it is an excessive request to make for supporting processor

flexibility. However, in the context of dedicated embedded systems, it is expected that

compilation be optimized for the specific implementation platform, and also that highly

(such as MADplay’s floating-point algebra library) be

tailored for high performance on the target system. In this context, users can modify

advantage of any additional custom instruction, thus producing efficient

optimal) code that takes advantage of architectural flexibility without requiring flexible

compilers. Similarly, many common assembly-level optimization techniques can be

generate programs for custom architectures. While functional units and instructions within the

processor can be modified very rapidly, rewriting entire subroutine libraries is a

the possibility of recursively modifying the processor’s instruction set for

Area (LUT) Performance

(MIPS)

Performance /

Area

Cost/benefit of redundant Functional Unit

MIPS baseline (6 FUs)

w/ redundant unit (7 FUs)

for vector addition /

subtraction code. It is evident from the graph that performance benefits of inserting the redundant

While a major advantage of this architecture is the possibility to define custom instructions, an

l features. In particular,

ge of the processor’s

. The development of a

structions) is a

fascinating academic field, yet it is an excessive request to make for supporting processor

flexibility. However, in the context of dedicated embedded systems, it is expected that program

ation platform, and also that highly-used

be specifically

tailored for high performance on the target system. In this context, users can modify assembly-

advantage of any additional custom instruction, thus producing efficient

requiring flexible

be adapted to

generate programs for custom architectures. While functional units and instructions within the

processor can be modified very rapidly, rewriting entire subroutine libraries is a complex task,

fying the processor’s instruction set for

Cost/benefit of redundant Functional Unit

MIPS baseline (6 FUs)

w/ redundant unit (7 FUs)

40

obtaining optimal performance. On the other hand, internal functional unit design, instruction

mapping and insertion of redundant functional units can all be modified independently of source

code, thus still opening the option to recursively reconfigure the processor for optimal

performance.

ADAPTABILITY IN A REALISTIC SITUATION

The fundamental virtue of a custom functional unit architecture is the ability to adapt and optimize

a processor for different environments by inserting or modifying instructions and functional units.

However, simply modifying the internal logic of basic instructions, or inserting new but redundant

instructions is not enough to justify the architectural overhead implied by functional units. In order

to be considered a valid alternative to coprocessor-based solutions, the architecture must exhibit

a degree of flexibility high enough to substantially increase processor capabilities, just like a

coprocessor can, but without the need for a dedicated coprocessor interface. Furthermore, the

flexibility must not be exhibited only within ad-hoc testing environments, but rather in real design

situations.

Libmad and Mp3 decoding

In order to evaluate architectural flexibility in a realistic situation, the processor was tested in a

typical task for current embedded systems: Mp3 decoding. Out of several available options, the

MADplay encoding / decoding library (Underbit Technologies, 2005) was chosen, for several

reasons. First, the MADplay library (libmad) uses only fixed-point computation, thus making it

suitable for dedicated processors with simplified instruction sets. Also, the library is distributed as

free software, highly modifiable and optimized for gcc-based compilers, thus making it an

excellent choice for portable solutions. Finally, the library is a common choices for many popular

software products, both portable and desktop-based (GSPlayer, MPlayer, OpenRISC), thus

constituting a very likely choice for an embedded solution.

Using the entire library and a complete mp3 as a test case, however, resulted infeasible, since

the code being too long to be simulated as an instruction memory, and the front-end functions is

excessively relying on hard to compile OS calls, which would be modified in an embedded system

implementation. The most frequent and computationally intensive function calls within libmad are

a series of integer arithmetic subroutines that are used to reproduce floating point operations:

compactness, complexity and exemplarity made this series of floating point functions an

adequate choice for a sample code to be used for testing.

41

Divide and multiply: special instructions introduced as new functional units

The series of arithmetic subroutines used as a test case requires utilization of the full MIPS-I ISA,

including fixed-point multiply and divide instructions, which were not originally implemented within

the architecture. Differently from all other arithmetic functions, the MIPS implementation of divide

and multiply requires architectural modifications to the processor, including the introduction of two

special-purpose 32-bit registers, Hi and Lo, used respectively to store quotient and remainder for

a division, or a 64-bit product for multiplication. Additionally, the divide and multiply instructions

need not write to the register file but only modify the special-purpose registers. Finally, for

communicating results, the instructions MFHI and MFLO (move from hi/lo) are used to write the

content of a special register to the register file.

Since the implementation of special-purpose registers and instructions would normally require

architectural modifications, as a realistic flexibility test a divide/multiply unit with related

instructions was implemented by solely accessing the customizable functional unit / instructions

interface. In particular the additional customization features previously described, allowing

variable pipelining depth and switchable access to the register file, were developed to increase

functional unit flexibility in order to allow the introduction of special function units. Figure 8

illustrates in detail the implementation of the multiply/divide unit, capable of processing the

special instructions by instantiating special-purpose registers internally, and by using an FPGA

built-in multiplier as well as an externally-defined Hennessy-Patterson divider.

The highly customizable architecture allowed for a special-instruction functional extension of the

processor, which made it correctly comply with an extended ISA to decode Mp3 files. This

example of extending processor functionality by inserting new instructions and functional units

indicates how the architecture can be externally adapted by the user to comply with different

tasks and requirements. Extending the example, the insertion of a hardware floating-point unit or

multimedia unit, both traditionally implemented through a coprocessor, could be performed by

introducing new functional units with related instruction. Additionally, one would be able to design

the internal functioning of such modules, or adapt an external pre-existing unit (as was the

divider), without having to be constrained by compatible processor-coprocessor APIs.

42

Example Special Functional Unit: MUL/DIV

•DIV, DIVU, MULT, MULTU, MFHI, MFLO

Instruction Capabilities [can_do]

•DIV -> 4’d0; DIVU -> 4’d1;

•MULT -> 4’d2; MULTU -> 4’d3;

•MFHI -> 4’d4; MFLO -> 4’d5;

Opcode

Pipeline Stages = VARIABLE (if DIV/DIVU = when divider is ready; else 1)

•Inputs: op1[31:0], op2[31:0], a[15:0], opcode[3:0] Output: result[31:0]

•Reserved Keywords: clock, reset, fu_start, fu_ready

Standard Constraints

Internal Logic (pseudo-code)

//Instantiate Hennessy-Patterson divider module

divider divider(.dividend(op1),.divider(op2), div_quotient, div_remainder, div_start, div_ready);

@fu_start if (op == DIV || DIVU) start_divider; //Start divider module @ new instruction

reg[31:0] hi, lo; //Instantiate special-purpose registers within FU

if (op == DIV || DIVU) ready = pipeline_counter_ready && divider_ready;

else ready = pipeline_counter_ready; // If DIV only ready when divider is ready

case (opcode)

DIV/DIVU: if (divider_ready) {hi,lo}<= {div_quotient,div_remainder};

MULT/MULTU: {hi,lo}<= op1*op2; //use FPGA built-in 32x32 multiplier

MFHI/MFLO: result <= hi/lo;

if (fu_ready && (op == MFHI || MFLO)) write_result_to_cdb; // Only write to regfile for MFHI/MFLO

else if (fu_ready) unlock_arbiter; // else move to next instruction

Figure 8: Custom functional unit implementing special instructions to perform fixed-point multiply

and divide. By looking at the pseudo-code, it is evident that custom functional units feature the

same internal logic flexibility that a coprocessor may enjoy. In this case, the special-purpose

registers hi and lo required to implement the instructions are instantiated and accessed exclusively

within the functional unit. Multiply and divide instructions only change the internal special registers,

to the register file; a separate divider module is instantiated for handling integer divisions; for

divisions, the pipelining latency of the functional unit is flexible, interfacing with the divider to

determine when the operation has been completed; the result field always has a value, but the value

is written to the register file only for MFHI/MFLO instructions. Such powerful flexibility options may

be used to develop more complex functional units and related instructions, effectively allowing

functional extensions of coprocessor-level complexity without modifying the architecture.

43

6- SUMMARY: CONTRIBUTIONS AND FUTURE WORK

In this thesis, I set out to solve a problem: develop a highly flexible microprocessor architecture

by borrowing selected technologies from the high-performance computing domain. The objective

of my work is to achieve a superior architectural alternative to coprocessor-based solutions, by

providing the user with the possibility to create or reconfigure a variety of processor features in a

fully modular manner. In this final section, I set out to outline my contributions towards solving the

problem, as well as a list of future works that I believe can improve on my results.

My main contributions towards a solution are:

� Evaluating and selecting a combination of high-performance technologies, borrowing and

adapting these techniques to achieve a flexible yet balanced microprocessor architecture.

In particular, I opted for out-of-order processing, modular and parallel functional units, as

well as in-order instruction commit, while also developing new techniques for achieving a

coherent system.

� Designing and implementing a soft processor architecture that combines the selected

technologies while conforming to the popular MIPS instruction set. I developed, simulated

and tested the prototype as a Verilog design compatible with the MIPS-1 ISA.

� Developing a modular customization interface by which the user can insert or modify

instructions and functional units. The interface provides a large variety of customization

parameters, ranging from variable internal pipeline depth to internal state within functional

units, free choice of instruction operands, destination, register file behavior and other

control signals, variable number of functional units and insertions of redundant units for

performance improvement.

� Testing the prototype on a variety of realistic situations for flexibility and feasibility of use,

also comparing it to commercially available embedded processors. First, I obtained

estimates of processor area, frequency and performance on various implementation

platforms and for various configurations. Second, I presented a side-by-side comparison

of the architecture with commercial alternatives, comparison that highlights many

advantages in terms of flexibility and customization, comparable or superior results for

area and latency, and some deficiencies within performance benchmarks. Third, I

analyzed the costs and benefits of adding redundant functional units for improved

performance. Finally, I stressed the limits of architectural flexibility by testing the

prototype on algebraic subroutines from an Mp3-decoding library, extending the

architecture by introducing fixed-point divide / multiply capabilities through the

44

customization interface. This test suggested that the customization interface provides

sufficient flexibility for introducing coprocessor-equivalent functional units.

These combined contributions demonstrate that a modular, functional unit based architecture

can be successfully introduced as a valid alternative to coprocessor-based APIs. When

considering the initial objective of providing a superior alternative to existing architectures,

however, it becomes evident that a few more issues need to be addressed for the solution to

be deemed complete. Each of these issues, however, has potential to be addressed by future

works, for some of which the bases have been laid during the development of this project.

� Achieving higher baseline performance while retaining flexibility is a very feasible

objective. In particular, performance fallacies such as low IPC are due to a lack of

optimization rather than to architectural deficiencies, and since the project’s focus

was not to achieve high performance, lots of room is available for improvement. First,

a mechanism can be developed that allows combinational functional units to achieve

full utilization, which in terms of performance would be equivalent to a complete set of

redundant functional units (with high performance benefits as shown by the tests). In

the development of the processor, I laid the bases of such mechanism, which

however has remained unimplemented. Second, the low area and delay of the

prototype leave enough resources for implementing a larger baseline ISA (i.e. MIPS-

2 or higher), which in turn would increase compiler efficiency and performance. Third,

experimenting various baseline processor configurations, in terms of area, instruction

distribution, number of functional units and comparative delays would yield a more

efficient implementation. Particularly, with the introduction of slow, complex units

such as DIV/MUL, it may be convenient for the single-cycle instructions to be

implemented in fewer, more complex functional units.

� Introducing an XML-based customization interface would further simplify user

interactions. Currently, customization is implemented within Verilog code, through a

highly modular editable source code library. It would be useful to further simplify the

user experience by specifying XML-based processor descriptions in turn used to

generate Verilog. The bases for this improvement have been laid by the REDSOCS

group, by means of a series of Python scripts that read XML-based processor

descriptions, generating the resulting Verilog design by modifying the baseline

version (currently under development).

� Performing more extensive benchmarking would be useful to evaluate the real-world

feasibility of the architecture. The complexity of cross-compiling for custom

embedded processors and the difficulties of simulating execution limited the

45

benchmarking results for this thesis, yet benchmarking the processor on a complete,

modern application would be highly useful. Again, a tool chain for compiling source

code, developed and currently used by the REDSOCS group, provides a good

starting point for the setup of a complete benchmarking environment.

� Developing a dynamic compiling tool and a recursive optimizer would dramatically

improve the utility of the architecture. While both very ambitious and not yet explored,

these two solutions combined could in theory allow the exploration of unsupervised

processor configuration for target applications, a different yet interesting perspective

on performance optimization.

46

7-APPENDIX

PRELIMINARY EXPERIMENT

When initially considering the task of developing a flexible MIPS architecture, some preliminary

experiments were performed, with the aim of assess whether a highly flexible architecture can be

designed without carrying excessive hardware complexity. In the spring of 2007, in collaboration

with Olivier Bichler and Alessandro Yamhure, I designed an experimental MIPS processor with

variable-depth pipelining (Bichler, Carli, & Yamhure, 2007). Implemented in Bluespec, the

processor works on the concept of guarded atomic actions, wherein different pipeline stages are

implemented as independent logic blocks (referred to as rules), communicating through FIFO

buffers rather than registers. A set of logic checks (guards) ensures that rules being executed in

parallel do not have reciprocal data dependencies, thus guaranteeing absence of data hazards.

The design is customizable by the user who, at design-time, can choose between three

implementations with varying pipeline depths.

Area and performance results for various processor implementations outlined important learning

points. First, it was clear that the Bluespec language is not an ideal developing platform for a

highly customizable processor. In particular, while enforcing correctness in parallel processing,

the atomic actions structure does not conform well to architectures with highly interconnected

components, being mostly useful for very linear processes. As a result, the flexible architecture

resulted much larger and more complex than its equivalent MIPS baseline. On the

cost/performance side, however, it was evident that the relative changes in performance, latency

and area between various configurations can give origin to balanced tradeoffs. This result

suggested that each implementation across a highly flexible architecture may be optimal for a

particular task, with no configuration being dominated by another across the entire measurement

spectrum.

47

Figure 9: High-level schematics for a Bluespec-based MIPS architecture with variable-depth pipeline.

Dotted lines and arrows represent connections that are introduced or deleted according to the

processor version. The baseline, 3-stage processor is implemented as three atomic rules, pc,

execute and writeback. The rules communicate to each other and the memory through FIFO buffers,

which ensure independent reads and writes. Each rule is further divided into a shell (ovals),

customized components that take care of I/O assignments and data dependencies, and functions

(rectangles), purely combinational circuitry handling the actual instruction execution. The

specification of a pipeline depth parameter causes the merge or separation of atomic rules, and

consequent introduction or elimination of FIFO buffers, thus allowing a choice of combinational, 2-

stage or 3-stage processor implementations.

48

8- REFERENCES

Anderson, E. C., Svendsen, H. B., & Sohn, P. A. (1996). Patent No. 5577250. United States of

America.

Bichler, O., Carli, R., & Yamhure, A. (2007). A Parametrizable Processor. Cambridge MA: Dept.

of Electrical Engineering and Computer Science, M.I.T.

Fisher, J. A., & Freudenberger, S. M. (1992). Predicting conditional branch directions from

previous runs of a program. ACM SIGPLAN notices , 85-95.

(2002). System-Level Modelling for Performance Estimation of Reconfigurable Coprocessors. In

M. Glesner, P. Zipf, & M. Renovell, Field-programmable Logic and Applications: Reconfigurable

Computing is Going Mainstream (pp. 567-576). Montpellier: FPL.

Hauser, J., & Wawrzynek, J. (1997). Garp: a MIPS processor with a reconfigurable coprocessor.

5th IEEE Symposium on FPGA-Based Custom Computing Machines (FFCM '97), (p. 12).

Hennessy, J. L., & Patterson, D. A. (2006). Computer Architecture: A Quantitative Approach (4th

Edition ed.). Morgan Kaufmann.

Kapre, N., Mehta, N., deLorimier, M., Rubin, R., Barnor, H., Wilson, J., et al. (2006). Packet

Switched vs. Time Multiplexed FPGA Overlay Networks. 14th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FFCM'06), (pp. 205-216).

Mattsson, D., & Christensson, M. (2004). Evaluation of synthesizable CPU cores. Gothenburg,

Sweden: Chalmers University of Technology.

McFarling, S., & Hennessey, J. (1986). Reducing the cost of branches. International Symposium

on Computer Architecture (pp. 396-406). Tokyo, Japan: IEEE Computer Society Press.

Palmer, J. (1980). The Intel 8087 numeric data processor. International Symposium on Computer

Architecture (pp. 174-181). La Baule, United States: ACM.

Rudd, K. W. (1997). Efficient Exception Handling Techniques for High-Performance Processor

Architectures. Stanford CA: Computer System Laboratory, Stanford University.

Tomasulo, R. M. (1967). An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM

Journal of Research and Development .

49

Tyson, G. (1994). The effects of predicated execution on branch prediction. Microarchitecture ,

196-206.

Underbit Technologies. (2005). MAD: MPEG Audio Decoder. Retrieved April 29, 2008, from

www.underbit.com: http://www.underbit.com/products/mad/

Weicker, R. P. (1984). Dhrystone: a synthetic programming benchmark. Communications of the

ACM , 27 (10), 1013-1030.

