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Abstract

Little is known about generating revenue in unrestricted combinatorial auctions.

(In particular, the VCG mechanism has no revenue guarantees.)

In this paper we determine how much revenue can be guaranteed in such auctions.

Our analysis holds both in the standard model, when all players are independent

and rational, as well as in a most adversarial model, where some players may bid

collusively or even totally irrationally.



1 Our Goals

In a combinatorial auction there are multiple goods for sale, and each player i has a private

true valuation for the goods —that is a function, denoted by TVi, mapping each possible

non-empty subset S of the goods to a non-negative number (representing i’s value for S).

Combinatorial auctions are notoriously hard to work with, and thus researchers have

considered several possible restrictions for them; in particular:

• Sub-modularity. Namely, TVi(S ∪T ) ≤ TVi(S) +TVi(T ) for any subsets S and T of the

goods;

• Additive-Valuation. Namely, TVi(S) = TVi(g1)+. . .+TVi(gk) whenever S = {g1, . . . , gk};

• Free-Disposal. Namely, TVi(S) ≤ TVi(T ) whenever S ⊂ T ;

• Single-mindedness. Namely, for each i there is a subset of goods S and a value v such

that TVi(T ) = v if T ⊃ S, and 0 otherwise.

• Unlimited supply. Informally, an unbounded number of copies of each good are available,

and each player values only sets of distinct goods.

In this paper, however, we assume no restrictions whatsoever for combinatorial auctions:

whenever S and T are distinct subsets of goods, nothing can be inferred about TVi(S) from

TVj(T ). To emphasize that the players’ true valuations can indeed be arbitrary, we may use

the term truly combinatorial.

The classical goals of auction mechanisms are maximizing either social welfare, that is

the sum of the values that each player has for the subset of goods he receives, or revenue,

that is the sum of the prices paid by the players. For truly combinatorial auctions, however,

essentially nothing is known about revenue. Accordingly, our goal is

Determining how much revenue is achievable in truly combinatorial auctions.

More generally, we want to determine how much revenue is achievable in truly combinatorial

auctions in a broader and harder context, which we call Adversarial Mechanism Design.

Essentially, this new and rapidly developing branch of game theory is concerned with the

design of mechanisms when no information about the players is available, and some players

act perfectly collusively or even irrationally. Accordingly, our expanded goal is

Putting forward notions and appropriate solution concepts for Adversarial Mechanism

Design, and then providing such solutions for the case of truly combinatorial auctions.

(As revenue lowerbounds efficiency, we automatically derive efficiency bounds too. These

are significant only if collusive and/or rational players are present, else the VCG mechanism

already is perfectly efficient. Our bounds hold whether or not the resale of goods is allowed.)
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2 Adversarial Mechanism Design

Adversaries are a fact of life, and several types of them have been considered in cryptog-

raphy (the original field of the authors) and in game theory (see our Section 3 on related

work). By “adversarial mechanism design” we do not mean the problem of designing some

specific mechanisms resilient to some specific kind of adversarial players. Rather we mean

to designate a broad and coherent approach to mechanism design comprising

(i) A very general, simple, and adversarial “setting,” describing the knowledge available to

the designer and the possible behavior of the players, together with

(ii) A matching notion of “mechanism performance.”

Given the focus of this paper, we shall explain this approach in terms of combinatorial

auctions and revenue. The approach, however, is easily generalizable, and we believe and

hope that it will be applied to many more areas.

The Adversarial Setting. We characterize the adversarial setting by two axioms:

1. The Designer Has No Knowledge About the Players.

Axiom 1 is consistent with mechanism design in its purest form, where all knowledge

about the players’ true valuations resides with the players themselves. Of course,

mechanism design could become easier by assuming that some special knowledge about

the profile TV is available to the designer. In particular, a lot of theoretical work has

been done in the Bayesian setting, where the designer is assumed to be aware of the

probability distribution that generated the actual TV . Notably, in auctions of a single

good, the celebrated result of Myerson provides optimal-revenue mechanisms in a very

general Bayesian setting [19].

Even Bayesian information, however, may be insufficiently helpful in many design

problems. (In particular, nothing is known about extending Myerson’s results to truly

combinatorial auctions.) Moreover —and perhaps more importantly— precise Bayesian

knowledge is rarely available. Both limitations of course apply to any other kind of

special knowledge. Accordingly, relying on the availability to the designer of some

special knowledge about TV cannot be the only battle plan in mechanism design. It is

crucial to develop design tools that are helpful even when the designer knows nothing

about the players. Because we can opt to ignore any knowledge we have (whether

useful or not), if we can find reasonable solutions when we know nothing, we a fortiori

find reasonable solutions no matter what knowledge is available to us.
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2. Players Can Unrestrictedly, Secretly, and Perfectly Collude.

Mechanism design traditionally guarantees a desired property “at equilibrium.” But

equilibria are very fragile: they are defined in terms of the deviation of a single player,

assuming that all players are independent and rational. All bets are off when two

or more players deviate from their equilibrium strategies, and such deviations should

indeed be expected if there are collusive players. Here the term collusive is generically

used to refer to “any multiplicity of players who coordinate their strategies.” There

are of course many models of collusion. For concreteness sake, Axiom 2 addresses

one of them. (We only sketch this model informally because all our theorems are

actually proven relative to the subsequent Axiom 2′, which substantially generalizes

and subsumes Axiom 2, and any other collusive model we can think of.)

Axiom 2 states that the members of a collusive set C have a “joint utility,” an un-

restricted function of their own true valuations, of the prices they pay, and of which

subset of the goods each one of them receives. The mechanism designer may know

what the utility function may be for the collusive sets, if any. But Axiom 2 states

that collusion remains secret: namely, the designer does not know who the collusive

players are, nor how many there are, if any. Finally, Axiom 2 states that members of

a collusive set C enjoy perfect coordination. That is, they actually play the strategies

maximizing C’s utility, based on the information available to all of them —which may

include information about the other players. (In particular, C’s members cannot be

tempted to act independently. Specifically, they might make side payments to each

other, and enter binding agreements with each other on how to —in our case— bid.)

Collusion —even in milder forms!— is a real problem in mechanism design. For in-

stance, consider the famous VCG mechanism [5, 13, 21]. This mechanism is dominant-

strategy truthful and, in truly combinatorial auctions, achieves perfect economic effi-

ciency (but makes no claims about revenue —even when all players are independent).

Yet, the VCG mechanism is totally vulnerable to collusion [1]. Indeed, its economic

efficiency —let alone its revenue— may totally vanish when just two sufficiently knowl-

edgeable players collude.1

1Let there be two goods for sale, a and b, and three players. Player 1 values only good a for x, Player
2 values only good b for y, and Player 3 values only the pair of goods {a, b} for z, where z is much greater
than both x and y. Assume that Players 1 and 2 known that Player 3 values only the pair {a, b} for at most
w. Then, under the VCG mechanism, Players 1 and 2 may collude so that each of them gets for free the
goods he values. To make this happen, Player 1 bids w for a, and Player 2 bids w for b. Such collusive bids
thus destroy both revenue and efficiency.
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Much effort has been devoted to mitigating the problem of collusion. On the practical

side, colluding has been made an offence punishable by law, and monitoring systems

in auction rooms have made it harder for collusive players to coordinate themselves.

Yet, some players have always succeeded in secretly colluding, and will likely continue

to do so [7, 10, 12]. On the theoretical side, several “collusion-resilient” mechanisms

have been developed (see Section 3), but only for auctions and/or collusion models of

a restricted type.

It is thus crucial to provide solutions to the problem of collusion for truly combinatorial

auctions and when the players are capable of unrestrictedly, secretly, and perfectly

colluding. Of course, little or nothing can be guaranteed when all players are collusive.

Accordingly,

We interpret Axiom 2 as a call to develop mechanisms that are capable of with-

standing perfectly collusive players, so long as “independent” ones are also present.

We study combinatorial auctions also in a much harder setting. We refer to it as the Worst

Setting, and characterize it by our Axiom 1 and the following modification of Axiom 2:

2′. Players Can Be Irrational.

The traditional game theoretic assumption that all players are perfectly rational strikes

us (and we are far from alone) as quite unrealistic —at least when the game at hand

involves more than a handful of players and actions. It is thus crucial to develop

combinatorial auctions whose performance is guaranteed even when some of the players

are irrational, and thus may bid in a truly arbitrary manner, without any predictability

and without any relation to their utilities.

Again, nothing can be guaranteed when all players are irrational. Accordingly,

We interpret Axiom 2 ′ as a call to develop mechanisms that are capable of with-

standing irrational players, so long as rational ones are present too.

From now on “irrational” is a technical term, and subsumes “collusive”. Indeed, by saying

that the bids of irrational players are arbitrary, we mean that they are universally quantified.

Therefore, whatever bid sub-profile the players of a collusive set C might choose, the same

players, by virtue of being irrational, could equally well choose.

Accordingly: in the Worst Setting, we dispense with collusive players altogether and

partition the set of all players into: the set of independent and rational players, I, and the

set of irrational players, denoted by −I. (From now on, “independent” implies “rational”.)
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A Matching Notion of Mechanism Performance. A general notion of performance,

appropriate to the adversarial (and the worst) setting, naturally follows from our two axioms.

The Influence of Axiom 1

When a distribution over the players’ true valuations is known, the performance of a mech-

anism M can be defined as its expected performance under this distribution. But when

Axiom 1 rules out this distributional knowledge, and any other knowledge about the players’

true valuations, the meaningful (and in fact the only) object left to consider is the actual

true-valuation profile TV . Accordingly:

What revenue would you be satisfied with if the players started with TV ?

Answering this natural question for all possible TV s, one obtains a benchmark: a function

B from true-valuation profiles to non-negative numbers. It is thus natural to define M ’s

performance as “the fraction of B” that M returns as revenue. Let us be a bit more precise.

Since Axioms 2 or 2′ have not yet come into play, we have the momentary luxury of

assuming that all players are independent and rational. Accordingly, any rational play of

M will result in an equilibrium. Denoting by ΣTV the set of possible equilibria (under

mechanism M) when the players’ true-valuation profile is TV , and disregarding for now the

problem of equilibrium selection, a reasonable definition for M ’s revenue performance might

be as follows:

We say that M ’s revenue achieves a fraction c of benchmark B if ∀TV and ∀σ ∈ ΣTV ,

the revenue of M(σ) is at least

c · B(TV ).2

We note that the use of benchmarks is not only common in computer science, but also

in game theory, although implicitly. For instance, saying “The VCG mechanism achieves

economic efficiency”, is equivalent to saying “The VCG mechanism returns a fraction 1 of

the maximum social welfare benchmark.” That is, we interpret the maximum social welfare

as a benchmark, MSW , indeed mapping a valuation profile TV to the maximum over all

possible allocations A of the social welfare of the allocation A, namely
∑

i TVi(Ai). It is just

frosting on the cake that the VCG mechanism returns 100% of its benchmark in dominant

strategies. Had it returned half of it, it would still be an impressive mechanism —and it

would have obliged one to state its performance explicitly in terms of a benchmark.

2When M and the strategies of σ are probabilistic, the revenue of M(σ) is taken to be the expected
revenue computed over all possible coin tosses of M and the probabilistic strategies σi.
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The Influence of Axioms 2 and 2’

Let us now explain how the presence of collusive and/or irrational players influences the

above notion of mechanism performance. We derive our final notion from two conceptual

points —the first more subjective than the second.

• We do not count on collusive or irrational players for generating revenue.

That is, subjectively but perhaps realistically, we take the position that the seller should

consider himself very lucky if —by a miracle— all collusive and irrational players kindly

walk away (i.e., bid the null valuation), leaving only the independent players to bid.

Accordingly: under Axioms 2 or 2′, the performance of an auction mechanism M relative

to a benchmark B is measured by comparing M ’s revenue not to B(TV ) but to B(TVI),

where I denotes the set of the independent players. That is, the chosen benchmark is

applied to just the true valuations of the independent players.

• The Worst Setting calls for dominant-strategy truthful (DST) mechanisms.

Indeed, since irrational players bid arbitrarily, it is natural to demand equilibria σ such

that, whenever i is an independent player, σi is i’s best response to all possible bids of

the other players. Which is exactly the definition of a dominant-strategy equilibrium.

The above points naturally yield the following definition of mechanism performance in the

Worst Setting.

Definition 1. We say that the revenue of a mechanism M achieves a fraction c of a bench-

mark B, in the Worst Setting and in truly combinatorial auctions, if M is DST and

∀ true-valuation profiles TV , ∀ subset I of independent players, and ∀ bid sub-profile BID−I :

The (expected) revenue of M(TVI tBID−I) is at least c · B(TVI).

The Significance of Our Notion. Definition 1 puts forward an incredibly strong notion.

Putting it in general terms, the notion demands that a mechanism achieves its characteristic

property not only in dominant strategies, but by means of a dominant-strategy equilibrium

such that the desired property continues to be guaranteed even when —say— half of the

players deviate from their equilibrium strategies. And the fact that the desired property is

expressed in terms of the true valuations of the independent and rational players is both

natural and necessary. Indeed, irrational players could act so as to hurt themselves and

others. The question therefore is not whether our notion is meaningful, but whether such a

meaningful notion can be achieved for a non-trivial benchmark. (Indeed, the identically-0

benchmark can always be achieved!)

We shall soon prove that a very significant benchmark can in fact be significantly achieved.
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3 Related Work

As collusion is a real problem, several notions of “collusion-resiliency” appear in the lit-

erature. One such notion is that of a group strategyproof mechanism. Essentially, such a

mechanism discourages collusion in that any gain for a collusive player is accompanied by a

loss for another collusive player. Notable examples of group startegyproof mechanisms are

those of [15, 18, 9]. Such a notion of collusion resiliency, however, is only meaningful when

collusive players cannot make side payments to one another. No such restrictions occur in

our model.

A stronger notion of collusion resiliency is that of a c-truthful mechanism [11]. Essen-

tially, such a mechanism guarantees that fewer than c collusive players cannot “collectively

gain more than they could by bidding individually.” This notion, however, has very limited

applicability. The authors prove that the only mechanisms satisfying it must work in a spe-

cific manner: for each subset S of the goods and for each player i these mechanisms must fix

a price pS,i and offer S to i for that price. Thus, without any special knowledge about the

players, such mechanisms cannot be designed to offer any revenue guarantee. The authors

also put forward a weaker variant of their notion —c-truthful with high probability— for

which they can approximate maximum revenue, but only for a very special type of auction:

unlimited supply of a single good. Such auctions are much simpler that truly combinatorial

ones (and their notion does not apply even to traditional single-good auctions).

Another class of revenue mechanisms have been developed for various restricted combina-

torial auctions, sharing a similar algorithmic approach [3, 14, 17]. Let illustrate this approach

following the specific incarnation of [3] for auctions of multiple goods in the unlimited supply

model:

The designer is assumed to have the following special knowledge: two integers L (for

“lowerbound”) and U (for “upperbound”) such that, for any subset S of distinct goods

and any player i, either TVi(S) = 0 or L ≤ TVi(S) ≤ U . Accordingly, the mechanism

(1) randomly select a power of 2 between L and U , without loss of generality 2k, and

then (2) offer any subset of the goods for fixed price 2k to any player who wants it.

These authors do not discuss collusion, but their approach is collusion-resilient: there is little

for collusive players to do when every bundle of goods is offered at the same take-it-or-leave-

it price. By contrast, we do not assume any special knowledge about the players, nor any

restrictions on the type of auctions (in particular unlimited supply removes competition for

the goods). We adapt, however, exponentially-distributed prices to our own use.
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Another relevant mechanism is that of [8] for auctions of a single good, both in the limited

and unlimited supply model. (In essence there are a number of lithographs from the same

etching, and each player wants at most one lithograph.) Their mechanism achieves, within

a constant factor, the following benchmark: the maximum revenue that can be generated

by fixing a price p lower than the second highest player’s value for a copy of the good, and

then offering a copy to any player willing to pay p for it. The revenue guaranteed by their

mechanism is again robust against collusion, but their auctions are far from combinatorial.

4 Our Benchmark

What revenue benchmarks should we choose for truly combinatorial auctions?

An obvious temptation is to consider MSW . After all, MSW upperbounds the revenue

achievable by any DST auction mechanism. The problem is, however, that, even in the

absence of collusive and irrational players, no DST mechanism can achieve a positive fraction

of MSW .3 We thus need to choose a less demanding benchmark.

Our chosen benchmark, MSW−?, is defined to be the maximum social welfare after

disregarding the valuation of the “star” player, that is, the player whose value for some

subset of the goods is higher than the value attributed by any other player to any other

subset. Let us now be a bit more precise and establish some useful notation along the way.

Definition 2. Relative to a true-valuation profile V for a set of goods G, we say that player

i is the star player if there exists S ⊂ G such that, for any player j and any T ⊂ G:

TVi(S) ≥ TVj(T ).

We denote the star player by “?”.

Because the maximum social welfare function, MSW , can be evaluated also on single val-

uations, the following is an alternative definition of the star player: ? = arg maxiMSW (Vi).

(Recall that our combinatorial auctions are not restricted to free disposal. Accordingly,

MSW (Vi) need not coincide with Vi(G). Rather, MSW (Vi) = Vi(Si), where Si is i’s fa-

vorite subset of the goods: that is, Vi(Si) ≥ Vi(T ) for all T ⊂ G.)

3That is, For any DST mechanism M , any truly combinatorial auction with n players and m goods,
and positive constant gn,m, there exists a valuation profile V such that the revenue of M(V ) is less than
gm,n ·MSW (V ). This statement is actually trivial for m = 1 or deterministic DST mechanisms, and not
difficult to prove in any case.
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Definition 3. We define the benchmark MSW−? as follows: for any valuation profile V ,

MSW−?(V ) = MSW (V−?).

That is, MSW−? is computed by first removing the valuation of the star player, and

then computing the maximum social welfare of the remaining valuations. In other words: if

V = (V1, . . . , V?−1, V?, V?+1, . . . , Vn), then MSW−?(V ) = MSW (V1, . . . , V?−1, V?+1, . . . , Vn).

Accordingly, in auctions of just one good, MSW−? coincides with the second-highest

valuation. Indeed, when only a single good g is for sale, a player’s valuation coincides with

a single number: the value that the player has for g. Thus, the star player is the one who

values g the most. And, after the star player is removed, the maximum social welfare of the

remaining players is just the highest of the remaining valuations, and thus the second-highest

of the original valuations.

The Significance of Our Benchmark. Four reasons make the MSW−? benchmark quite

significant:

1. It is quite achievable.

Quite differently from MSW , a reasonable fraction of it can be achieved in dominant

strategies. Moreover, this is true not only when all players are independent, but also in

the Worst Setting.

2. It is quite large.

For a large variety of distributions D we expect MSW−? to be close to MSW when

the true-valuation profile TV is drawn from D. (For instance, distributions D in which

“no player is too special.”) This statement should not be confused with working in the

Bayesian setting. Indeed, in the Bayesian setting the designer knows the distribution

D, while in the Adversarial Setting and in the Worst Setting D may exist but is not

known by the designer.

(In other words, to choose MSW−? as the benchmark of his mechanism, a designer

need not have accurate knowledge of D. For instance, it suffices for him to know that,

whatever the underlying distribution may be, it is one in which no player is “too special.”

This is indeed a much weaker, and thus much more realistic, requirement.4)

4Consider a cattle rancher who has discovered half a dozen oil fields in his land and wishes to sell them
in a combinatorial auction to Chevron, Shell, Exxon, BP, Total, and Mobil. Then, he may very well know
nothing about the distribution of the values that these companies have for every subset of his oil fields, but
he might know —for instance— that the maximum social welfare of all 6 companies is in the same ballpark
as that of just 5 of the companies.
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3. It is quite natural.

As already observed, MSW−? generalizes the second-price benchmark in single-good

auctions, and its reasonableness in combinatorial auctions can be “argued” along similar

lines. Assume that the star player has an absolutely astronomical valuation for some

subset of the goods, way out of scale with anyone else’s valuation of any other goods.

Then, because a DST mechanism M cannot charge the star player based on his bid,

and because it “cannot charge anyone else more than their bids,” then it is hard for

M to produce revenue that is a good fraction of the star player’s social welfare. It is

thus somewhat natural to eliminate the star player from consideration when choosing

a benchmark for DST mechanisms. Which is exactly what MSW−? does. But, having

valid reasons for dismissing the star player, if we are interested in guaranteeing as much

revenue as possible we should not “lower the bar” and dismiss some other player too.

Nor should we lower our benchmark in any other way. Of course, by lowering our

benchmark in some clever way, we might be able to prove a “better-looking” theorem,

such as achieving 99.99% of this other benchmark. While valuable from a PR point of

view, this effort would not have much scientific significance.

In a sense, benchmark MSW−? is “always there.” No matter what other benchmark

B we may choose, MSW−?(TV ) implicitly exists and any revenue could (and perhaps

should) be compared to it. In sum, when choosing MSW−?, we made a honest effort to

select the “the highest possible reasonable benchmark” for revenue.

4. It is quite “robust.”

Although we have argued against dismissing players beyond the star one, it is natural to

wonder what happens to our theorems in these other cases. As it turns out, Theorems

1 and 2 are entirely unaltered by such a change of benchmark. That is, relative to

the “MSW minus k star players” benchmark, for any k, the mechanism we propose

continues to be asymptotically optimal. While we have already justified our specific

choice of MSW−? by means of its particular merits, here we note further that this

benchmark characterizes a large class of related ones; in some sense, it is “robust.”

(In principle, rather than considering benchmarks that remove star players, one might con-

sider benchmarks that remove “star items.” For instance, the Louvre might be happy bench-

marking the value of its collection as the value of all its artwork except the Mona Lisa.

Unfortunately no positive fraction of such benchmarks is achievable in DST mechanisms, for

much the same reason that no positive fraction of MSW itself is DST-achievable.)
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5 The Statements of Our Theorems

How much revenue can DST mechanisms return in a truly combinatorial auction?

Answering this question is precisely the goal of our theorems.

Our first theorem provides a very general lowerbound on the revenue achievable in truly

combinatorial auctions. Making this lowerbound as high as possible requires defining the

constants cn,m, which will be closely approximated by log min{n,m}.

Definition 4. For any positive integers n and m, we define cn,m to be the constant > 2

solving the equation ex−2 = x ·min{n,m}.

We prove that, even in the worst case, we can always achieve a fraction 1
cn,m

of MSW−?.

Theorem 1. There exists a DST mechanism M for truly combinatorial auctions such that,

∀ true-valuation profile TV , ∀ subset I of independent players, and ∀ bid sub-profiles BID−I :

The (expected) revenue of M(TVI tBID−I) is at least

cn,m ·MSW−?(TVI).

Setting aside small constants, we note that Theorem 1 states that, in any combinatorial

auction with n players and m goods, even in the Worst Setting, the expected revenue of

DST mechanism M exceeds a fraction 1
log min{n,m} of MSW−?.

Is this the best revenue one can guarantee? For sufficiently large n or m, YES!

Definition 5. Let opt(n,m) denote the smallest x ∈ R+ for which there exists a DST mech-

anism Mn,m such that, for all true-valuation profiles TV in a truly combinatorial auction

with n players and m goods: the (expected) revenue of Mn,m(TV ) is at least 1
x
·MSW−?(TV ).

Theorem 2.

lim
min{n,m}→∞

cn,m
opt(n,m)

= 1.

Note that, in the Worst Setting, finding good mechanisms for truly combinatorial auctions

becomes more and more difficult as the number of players and/or goods increases. Thus the

asymptotic optimality of our revenue bound is significant.

Now that we know the precise answer to our revenue question when n andm become large,

the only question remaining is what happens for auctions when both n and m are small.

Accordingly, we prove a very general upperbound for the revenue obtainable in dominant

strategies. Indeed, this bound applies to any truly combinatorial auction with more than

one player and more than one good. The bound is related to harmonic numbers.
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Definition 6. The ith harmonic number, Hi, is
∑i

j=1 1/j.

Recall that Hi is essentially log(i).

Theorem 3. (Harmonic Revenue Bound) For any n,m > 1, and any DST mechanism

M , there exists a valuation profile BID for a truly combinatorial auction with n players and

m goods such that the (expected) revenue of M(BID) is at most

MSW−?(BID)

Hmin{n,m} − 1
.

Finally, we prove that probabilism is essential to our endeavor. That is, while the mecha-

nism we construct to prove Theorem 1 is probabilistic, we prove than any deterministic DST

mechanism will perform exponentially worse than ours, in at least some auctions. Namely,

Theorem 4. For any n,m > 1, and for any deterministic DST auction mechanism M ,

there exists a valuation profile BID for truly combinatorial auctions with n players and m

goods such that the revenue of M(BID) is at most

MSW−?(BID)

min{n,m} − 1
.

We warn the reader not to confuse MSW with MSW−? in the above statement. Indeed,

relative to MSW and auctions of a single good, Theorem 4 would be trivial. And so it

would also be relative to MSW and truly combinatorial auctions. (This is so because one

could always consider valuation profiles BID in which all players only value the subset of

the goods consisting of just the first good.)

6 The Positive News of Our Theorems

People hate inconvenient truths, and we fear that economists are no exception. Constantly

seeking higher and higher revenue, one may easily hate the fact that no DST mechanism

can guarantee revenue higher than a logarithmic (in the number of goods/players) fraction

of MSW−?. And lumping the message with the messenger, one may easily hate this paper

too. Accordingly, we feel it necessary to argue that our theorems, beyond advancing our

knowledge about DST mechanisms and combinatorial auctions, actually have some positive

implications. Some of these are listed below.
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1. The Declining Intractability of Truly Combinatorial Auctions.

Let us recall that the only revenue guarantee known up to now for truly combinatorial

auctions was precisely 0 —even assuming the rationality and independence of all play-

ers, and a sufficiently general Bayesian setting. As testified by the myriads of famous

specialized subcases, truly combinatorial auctions were totally untamed.

By forcing a revenue transition from 0 to MSW−?(TVI)/cn,m, Theorem 1 finally brings

some “domestication” to truly combinatorial auctions.

2. The Rising Tractability of the Worst Setting.

It should not be lost to the reader that our theorems hold also in the Worst Setting. The

irrationality of multiple players is perhaps the most severe threat to the very notion

of an equilibrium, never mind to mechanism design. Thus, the ability to guarantee

MSW−?(TVI)/cn,m revenue in the presence of irrational players is actually excellent

news. (Indeed, guaranteeing any positive revenue might have been good news.)

3. The function c−1
n,m is slowly decreasing.

Consider a totalitarian and corrupt country that suddenly decides to reform itself and

wishes to place into private hands, through a giant combinatorial auction, several of its

national resources: timber, oil, gas, diamonds, coal, etc. In such a sale, it is realistic to

assume that the number of goods is < 299, and that the auction is rife with collusion

—even if its players include several and reputable foreign firms. With these premises,

guaranteeing (as per Theorem 1) revenue greater than 10% of the social welfare of the

independent players is not a bad option.

In any case, knowing that such expected revenue is available enables the new-and-

improved government to “raise the bar” for whichever designer it chooses for its auction.

Without knowing what can be actually guaranteed —and thus “what rights we have”—

we cannot but smile and be thankful for whatever “solution” is offered to us. (Like

that character of Molière who was ecstatic to learn that he always spoke prose.)

4. Design Guidance.

Consider the problem of designing a DST mechanism for auctions with n players and

m goods. If n and m are large, then a designer can simply use the mechanism M of

the proof of Theorem 1. But if n = 5 and m = 7 and he wants to generate revenue

greater than a fraction 1/c5,7 of MSW−?, then Theorem 3 warns him not to investigate
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an approach that, if successful, would generate a constant fraction of MSW−? for all

n and m, as this is impossible. (Indeed, when we strive to solve a specific problem,

consciously or not we often seek solutions that are applicable to the general case, and

we often succeed. It is thus useful to know when this approach is doomed to fail.)

5. Clear Alternatives.

Theorem 3 tells us that only two alternatives are open to us if we seek to generate

more revenue: either (1) capitalize on the presence of some special knowledge, or (2)

resign to work with a weaker notion of equilibrium.

6. New Techniques.

What suffices to prove that a given property can be guaranteed in dominant strategies is

quite clear: namely, specifying a mechanism and analyzing it. But proving that no DST

mechanism can guarantee a given property is much harder, since it involves “defeating

a universal quantifier.” In principle, one must analyze all mechanisms. Accordingly,

such proofs tend to be quite rare (unless we are dealing with trivial properties). It is

therefore crucial to develop the largest possible set of tools to establish the limitations

of a given class of mechanisms. And we believe and hope that the techniques developed

for proving Theorems 2 and 3 will be helpful in this regard. (We have indeed recently

used them to solve other problems in mechanism-design.)

7. A New Advantage of Probabilism.

It is clear that exogenous randomization is a very powerful tool, but it is much less

clear exactly how much it can help us in a given setting. It is thus always significant to

understand what additional power this crucial tool offers us as mechanism designers.

We believe (also) this truth to be self-evident.

7 Preliminaries

Let us establish our notation and recall some basic terminology, concepts, and facts assuming

that there are n players and m goods.

An allocation is a sequence A = A0, A1, . . . , An, where Ai is the subset of goods allocated

to player i, and A0 the set of unallocated goods. The set of winners in an allocation A,

denoted by WinA, is the subsets of all players i such that Ai is non-empty. An outcome is a

pair Ω = (A,P ), where A is an allocation, and P a profile of prices (non-negative numbers).
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The utility function ui of player i maps i’s true valuation and an outcome Ω = (A,P ) to i’s

utility as follows: ui(TVi,Ω) = TVi(Ai)− Pi.
A bid is a valuation of the goods, that is a function mapping each of the 2m subsets of

the goods to a non-negative number, such that the empty subset is mapped to 0. If VS and

VT are two valuation sub-profiles such that the subsets of the players S and T are disjoint,

then by VS t VT be denote the sub-profile mapping each player i ∈ S ∪ T to (VS)i if i ∈ S,

and to (VT )i otherwise.

A mechanism M is a (possibly probabilistic) function mapping a profile of bids BID to an

outcome (A,P ) satisfying the opt-out condition: Pi = 0 whenever BIDi is the null valuation.

We view each mechanism M as two separate functions: an allocation function Ma and a price

function Mp. That is, for all bid profiles BID: M(BID) = (Ma(BID),Mp(BID)). The

expected revenue of mechanism M on bid profile BID is E[
∑

i∈N Mp(BID)i]. We say that

M is DST if for all players i and bid sub-profile BID−i: E[ui(TVi,M(TVi t BID′−i))] ≥
E[ui(TVi,M(BID′))].

The social welfare, best-allocation, and maximum social welfare functions —SW , BA,

and MSW— are so defined. For each valuation sub-profile VC and allocation A:

• SW (VC , A) =
∑

i∈C Vi(Ai),

• BA(VC) = argmaxA∈A(G)SW (VC , A), where A(G) denotes the set of all possible alloca-

tions of G, and

• MSW (VC) = SW (VC , BestA(VC)).

By convention, (1) argmax’s ties are broken lexicographically, and (2) BestA(VC)i 6= X for

any subset of the goods X such that Vi(X) = 0.

A valuation v of a finite set of goods G is single-minded if there exists a single subset of

goods S and x ∈ R+ such that v(T ) = x whenever S ⊂ T and 0 otherwise. We compactly

represent such a single-minded valuation v by the pair (S, x).

Let us explicitly highlight two properties of DST mechanisms which we are going to

use extensively. (The first is an immediate consequence of the opt-out condition —that is,

that by submitting the null valuation a player can guarantee that he wins nothing and pays

nothing.)

DST-1: ∀ (probabilistic or not) DST mechanisms M , players i, and bid profile BID, we have:

0 ≤ E[Mp(BID)i] ≤ E[BIDi(Ma(BID)i)].

DST-2: ∀ deterministic DST mechanisms M , players i, and bid profiles BID and BID′ such that

BID−i = BID′−i, we have: Ma(BID)i = Ma(BID
′)a implies Mp(BID)i = Mp(BID

′)i.
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8 Proof of Theorem 1

We constructively prove Theorem 1 by explicitly putting forward a simple and probabilistic

mechanism M. In so doing, some of our choices are dictated by our desire for M to be DST;

others by our desire for M to generate revenue approximating MSW−?.

8.1 The Battle Plan

At the highest level, the idea is that of trading efficiency for revenue. We obtain M by starting

with an underlying, deterministic, DST, and high-efficiency mechanism M. We then modify

M so as convert some of its efficiency to revenue. The first approach to implement such a

plan consists of three stages. In the first stage, we run M on the profile of bids provided

by the players and obtain an allocation A′ and a profile of prices P ′. In the second stage,

we raise all prices in P ′ by a fixed amount ρ. In the third stage we decide decide the final

allocation and prices as follows. If player i wins a set of goods S in A′, and if P ′i + ρ is

less than i’s bid for S, then we finally allocate S to i for a price of P ′i + ρ. Else, S will go

unallocated, and i pays 0. This modification of M may cause a loss of revenue from some

players, but such loss may be compensated by additional revenue from other players. Thus:

How should prices be raised, and by how much, to get better revuenue?

As we shall argue later on, the revenue of any deterministic mechanism can only poorly

approximate our benchmark. Thus, we shall raise prices probabilistically. Further, in light of

our benchmark, one natural choice for ρ is a fraction α of MSW−?(BID), where the scaling

factor α is probabilistically chosen between 0 and 1. This approach, however, needs to be

refined. To begin with, to ensure that M is DST, we do not want player i’s price to depend

on his bid, and MSW−?(BID) may indeed depend on BIDi. This problem is traversed

by continuing to choose α probabilistically between 0 and 1, but then raising price P ′i by

αMSW (BID−i) instead. Our analysis will support that this small change does not alter

the ability to achieve the chosen benchmark. At the same time, such a modification of M is

guaranteed to be DST.

Two choices now remain to fully specify M: that of the underlying mechanism M and that

of scaling factor α. For M, as we plan to turn efficiency into revenue, it is natural to choose

the VCG mechanism, since it has optimal efficiency. (However, any M whose efficiency is

a “sufficiently high” fraction of MSW would work too, leaving room for computationally
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more tractable auction mechanisms and other desiderata.) To choose α, we are actually

guided by Theorem 3, which was indeed discovered before M. Recall that that theorem

essentially states that, in truly combinatorial auction with n players and m goods, no DST

mechanism can guarantee revenue greater than a logarithmic (in µ = min{n,m}) fraction

of MSW−?(BID). With this limitation in mind, we choose α by means of an exponential

distribution. However, unlike the discrete ones cited in Section 3, our distribution must

be continuous. Else, we would uselessly lose significant revenue. Our specific selection of

constants is solely justified by our desire to optimize our revenue guarantee.

8.2 Our Mechanism M.

On input BID, a profile of n bids for a set of m goods, compute an outcome (A,P ) as

follows:

1. Pick a scaling factor α ∈ [0, 1] as follows:

• Let µ = min{n,m} and cn,m be the constant > 2 that solves the equation ex−2 =

xµ.

• Flip a coin whose probability of Heads is 1
cn,m−1

. If Heads, choose α = 0. If Tails,

draw r uniformly from [−(cn,m − 2), 0] and choose α = er.

2. Compute the provisional allocationA′ and the profile of provisional prices P ′ = V CGp(BID)

— respectively the allocation and the prices of the VCG mechanism for the bid profile

BID— and then the set of provisional winners W ′ consisting of all players that obtain

a non-empty subset of goods in A′.

3. For each i ∈ W ′ compute i’s offer price P ′i + αMSW (BID−i). If i’s bid BIDi(A
′
i)

exceeds i’s offer price, set Ai = A′i and Pi = P ′i +αMSW (BID−i); otherwise set Ai = ∅
and Pi = 0.

Remarks

• We note that cn,m is uniquely defined: for µ ≥ 1 the function fn,m(x) = ex−2 − xµ is

negative at x = 2, goes to infinity with x, and has positive second derivative everywhere.

• Notice that although each price Pi is personalized, it is obtained via the same choice of

scaling factor α. Were we in a Bayesian setting, where different players have different

distributions for their valuations, then we would optimally choose a separate scaling

factor αi for each player i.
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8.3 M Satisfies the Requirements of Theorem 1

To prove Theorem 1, it suffices to prove two properties: namely,

P1. M is DST and

P2. ∀ TV , ∀ subset I of independent players, and ∀ bid sub-profile BID−I :

The expected revenue of M(TVI tBID−I) is at least cn,m ·MSW−?(TVI).

It should be appreciated that property P1 clearly holds, as M has been obtained from

the VCG mechanism via modifications that are well known to preserve dominant-strategy

truthfulness. Only the second property needs to be proven. Prior to doing so, note that our

benchmark is “player-monotone.” That is,

Lemma 1. If V is a sub-profile of V, then MSW−?(V) ≥MSW−?(V ).

Proof. Let N be the set of players relative to V and let C the set of players relative to V .

Then, C ⊂ N and V = VC . Note that the star player in V is either the star player in

V , or belongs to N \ C. In either case (abusing notation) we deduce that V−? is a sub-

profile of V−?. Thus, by the monotonicity of MSW and the definition of MSW−?, we have:

MSW−?(V) = MSW (V−?) ≥MSW (V−?) = MSW−?(V ). Q.E.D.

In virtue of the above trivial lemma, our property can be restated as follows:

P2′. ∀ TV , ∀ subset I of independent players, and ∀ bid sub-profile BID−I :

The expected revenue of M(TVI tBID−I) is at least cn,m ·MSW−?(TVI tBID−I).

Finally, because both TVI and BID−I are universally quantified, to prove Theorem 1 it

suffices to prove the following theorem.

Theorem 1′: ∀ n and m, and ∀ bid profiles BID in a truly combinatorial auction with n

players and m goods:

E

[∑
i∈N

Mp(BID)i

]
≥ MSW−?(BID)

cn,m
. (1)

Proof. For each player i, let Si be the (possibly empty) set player i provisionally wins, and

let P ′i be the provisional price V CGp(BID)i. We divide our proof into two cases: in the first

case the star player bids large enough that we derive the revenue bound solely based on the
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revenue M extracts from the star player. In the second case we must sum up the revenue

that M extracts from each set-winning player.

Case 1: BID?(S?) > P ′? + MSW−?(BID).

Note that the right-hand side of the inequality of this case is always≥ 0, thus BID?(S?) >

0 always. This implies that S? 6= ∅; namely that ? is a provisional winner. As such, when

mechanism M “makes ? the offer” P ′? + α ·MSW−?(BID) where α ≤ 1, the offer price will

always be at most player ?’s bid for S?, and hence player ? will always pay his offer price.

Thus the expected revenue from player ? is just the expected offer price, namely

E[Mp(BID)?] =
1

cn,m − 1
P ′? + (1− 1

cn,m − 1
)

∫ 0

−(cn,m−2)

1

cn,m − 2
(P ′? + erMSW−?(BID)) dr

=

(
1

cn,m − 1
+ (1− 1

cn,m − 1
)

)
P ′? + (1− 1

cn,m − 1
)

1

cn,m − 2
MSW−?(BID)

∫ 0

−(cn,m−2)

erdr

= P ′? +
1

cn,m − 1
MSW−?(BID)

∫ 0

−(cn,m−2)

erdr

= P ′? + MSW−?(BID)
1− e−(cn,m−2)

cn,m − 1

≥MSW−?(BID)
1− µe−(cn,m−2)

cn,m − 1
= MSW−?(BID)

1− 1
cn,m

cn,m − 1
=

MSW−?(BID)

cn,m
,

where the inequality follows because P ′? ≥ 0 and µ ≥ 1, and the second to last equality is by

the definition of cn,m, namely that cn,mµe
−(cn,m−2) = 1. Thus we have the desired result in

this case.

Case 2: BID?(S?) ≤ P ′? +MSW (BID−?).

Consider a provisional winner i, and consider his offer price P ′i + α ·MSW (BID−i). We

note that when α = 0 the offer price for player i is just P ′i , which is less than or equal

to BIDi(Si) since the V CG mechanism never charges players more than their bid; thus

when α = 0 player i will “accept the offer” and pay P ′i . Since player i will pay the offer

price whenever it is less than BIDi(Si), we have that i will pay whenever α <
BIDi(Si)−P ′i
MSW (BID−i)

.

Recall that, by the definition of M, when α 6= 0 we have α = er. Thus this condition becomes

r < loge
BIDi(Si)−P ′i
MSW (BID−i)

. We note that r is also bounded to be at most 0, but the other condition

takes precedence since loge
BIDi(Si)−P ′i
MSW (BID−i)

≤ 0, as we show by an analysis of two cases: when

i = ? the claim is equivalent to the condition of Case 2, BID?(S?) ≤ P ′? + MSW (BID−?);
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otherwise, when i 6= ? we have BIDi(Si) − P ′i ≤ BIDi(Si) ≤ MSW (BID?) ≤ (BID−i)

(where MSW (BID?) denotes the highest bid of the star player, which is higher than any

other bid, including BIDi(Si) by assumption) which implies the ≤ 0 bound we wanted to

prove. Thus the expected price paid by player i is exactly expressed as the following integral:

P ′i
cn,m − 1

+(1− 1

cn,m − 1
)

∫ max

{
−(cn,m−2),loge

BIDi(Si)−P
′
i

MSW (BID−i)

}
−(cn,m−2)

1

cn,m − 2
(P ′i + erMSW (BID−i)) dr.

We lower-bound this expression using the following two observations: first, since P ′i ≥ 0

we may remove this term from inside the integral; second, since the integrand is always

positive, if we decrease the upper limit of the integral to loge
BIDi(Si)−P ′i
MSW (BID−i)

the integral can

only decrease (where we use the standard convention that an integral with upper limit less

than its lower limit is evaluated with limits reversed and negated). Thus we have

E [Mp(BID)i] ≥
P ′i

cn,m − 1
+ (1− 1

cn,m − 1
)

∫ loge
BIDi(Si)−P

′
i

MSW (BID−i)

−(cn,m−2)

1

cn,m − 2
(erMSW (BID−i)) dr

=
P ′i

cn,m − 1
+MSW (BID−i)

1

cn,m − 1

(
e

loge
BIDi(Si)−P

′
i

MSW (BID−i) − e−(cn,m−2)

)
=

1

cn,m − 1

(
BIDi(Si)− e−(cn,m−2)MSW (BID−i)

)
Summing up this inequality over all provisional winners i, we get

E

[∑
i∈W ′

Mp(BID)i

]
≥ 1

cn,m − 1

(∑
i∈W ′

BIDi(Si)− e−(cn,m−2)
∑
i∈W ′

MSW (BID−i)

)
.

Now notice that
∑

i∈W ′ BIDi(Si) = MSW (BID). Further since |W ′| ≤ µ andMSW (BID−i) ≤
MSW (BID) we have

∑
i∈W ′MSW (BID−i) ≤ µ ·MSW (BID). Thus we have

E

[∑
i∈W ′

Mp(BID)i

]
≥MSW (BID)

1− µe−(cn,m−2)

cn,m − 1

= MSW (BID)
1− 1

cn,m

cn,m − 1
=
MSW (BID)

cn,m
≥ MSW−?(BID)

cn,m
,

where we invoke the definition of cn,m to derive the first equality. Thus we have the desired

conclusion. Q.E.D.
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Remarks.

• Notice that our mechanism M requires that its underlying DST mechanism be reason-

ably efficient. Indeed, in the analysis of Case 2, we rely on the fact that the VCG

algorithm is 100% efficient: namely, we rely
∑

i∈W ′ BIDi(Si) = MSW (BID). If an-

other DST mechanism is used, one should make sure that, for its provisional allocation

A,
∑

iBIDi(Ai) is a sufficient fraction of MSW (BID).

• Notice that, when lower-bounding the revenue generated by M, the profile of prices

returned by the underlying DST mechanism are essentially ignored. However, were we

to “simplify” the definition of M by replacing the provisional prices with zeros, the

resulting mechanism would not be DST.

9 Proof of Theorem 3

Although Theorem 2 is logically coupled with Theorem 1, we find it technically convenient

to derive its proof from that of Theorem 3, which we therefore prove first.

Before proceeding any further, let us establish a very simple lemma. It is obvious from

Property DST-1 that, for any bid profile BID, the revenue generated by any DST mechanism

—probabilistic or not— cannot exceed MSW (BID). Let us now minimally extend this

upper-bound. Namely, let us extend it to MSW−?.

Lemma 2. For any n > 1, any m, and any DST mechanism M , there exists a bid profile

BID for truly combinatorial auctions with n players and m goods such that

E

[∑
i∈N

Mp(BID)i

]
≤MSW−?(BID).

Proof. Let BID be such that all players bid single-mindedly for the first good, specifically

BIDi = ({1}, 1) for all i. Then, for any possible allocation A of the goods, SW (BID,A) ≤ 1.

Thus, no matter what the DST mechanismMmight be, in expectation SW (BID,Ma(BID)) ≤
1. By Property DST-1, this implies that the expected revenue generated by M also is ≤ 1.

Since obviously MSW−?(BID) = 1, profile BID satisfies our thesis. Q.E.D.

9.1 A Desperate Battle Plan

Proving Theorem 3 requires proving that, for each possible n, m, and DST auction mech-

anism M , there is a bid profile BIDn,m,M for truly combinatorial auctions with n players
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and m goods, that is “unprofitable” for M —that is, such that the expected revenue of

M(BIDn,m,M) is at most MSW−?(BID
n,m,M)/(Hµ − 1).

Since there are infinitely many DST mechanisms M , one cannot construct an ad hoc

unprofitable bid profile for each M . One way to prove the Harmonic Revenue Bound consists

of exhibiting a single and uniform algorithm that, on inputs n, m, and M , outputs the desired

BIDn,m,M , and argue —again in a uniform way— that all such outputs “do the job.” Having

tried this approach for a while, we do not recommend it. We thus try a different approach.

Our approach is non-constructive, that is we argue that each M has an unprofitable bid

profile without explicitly finding it. Such an approach is acceptable for the problem at hand.

When, like in case of Theorem 1, we need to prove that there exists a mechanism M enjoying

some useful properties, constructiveness is very desirable. (After all, one may indeed want to

run M to guarantee some revenue in a worst-setting combinatorial auction.) But for proving

that “no good mechanism exists” constructiveness is not necessary.

To establish non constructively the existence of all required unprofitable profiles, we use

a probabilistic method. Specifically, we provide a uniform procedure that, on inputs n and

m, specifies a distribution BIDn,m over the bid profiles for combinatorial auctions with n

players and m goods. Then we prove that, for all n, m and DST mechanism M (probabilistic

or deterministic), the ratio of the expected revenue of M(BIDn,m) and the expected value of

the MSW−?(BIDn,m) is at most 1
Hmin{n,m}−1

. Because this could not happen if M ’s revenue

were greater than MSW−?(BID)
Hmin{n,m}−1

for all bid profiles BID in the support of BIDn,m, the existence

of an unprofitable bid profile is established.

This battle plan for proving the Harmonic Revenue Bound was somewhat counterintu-

itive to us. In essence, it uses the Bayesian setting to upperbound revenue, while Bayesian

knowledge traditionally enables us to increase revenue. Accordingly, we adopted the plan

when everything else failed. Indeed, an act of “desperation.”

But, once refined, the plan got more risky. In fact, each chosen distribution BIDn,m has

finite support. That is, we constrain ourselves to find an unprofitable bid profile —for each

of the infinitely many DST mechanisms— from just a “handful” of possible candidates. In

military terms, we choose to stand against infinitely many enemies with finitely many troops.

But the advantage of this risky plan is its simplicity. Indeed, after guessing the right

distribution BIDn,m, arguing that the expected revenue of M(BIDn,m) is low for each DST

mechanism boils down to just one insight, Lemma 3, and a few calculations.
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9.2 Proof of the Harmonic Revenue Bound

We define the distribution BIDn,m in two steps. We start by defining a distribution, hkS,

over the single-minded bids of a single player.

Definition 7. (Bounded-Harmonic Distributions) For any subset of goods S and positive

integer k, we denote by hkS the distribution assigning, for each integer j ∈ [1, k], probability
1
k

to the single-minded valuation (S, 1
j
).

Definition 8. In a combinatorial auction with n players and m goods, denoting the set of

goods by {1, . . . ,m} and letting µ = min{n,m}, we define the distribution BIDn,m as follows.

For each player i: if i ∈ {1, . . . , µ}, then BIDn,mi = hµ{i}; else BIDn,mi is the null valuation.

That is, in BIDn,m we essentially have n = m = µ and µ separate auctions, each with

a single good and a single player. Indeed, each player i bids only for the subset {i}, and

the amount of his bid is the inverse of an integer uniformly and independently chosen in

{1, . . . , µ}.
We now prove a property of DST mechanisms that may be of independent interest.

Lemma 3. (Harmonic-Pricing) For all probabilistic DST mechanisms M , all players i,

all valuation sub-profiles BID−i, all positive integers k, and all subsets of goods S,

E
BIDi←hkS

[E[Mp(BID−i tBIDi)i] ≤
1

k
.

Proof. For each j ≤ k define αj as the expected price paid by player i relative to the bid

profile BID−i t (S, 1
j
) under mechanism M , and let βj be the probability that player i is

allocated some set containing S. For notational convenience, let αk+1 = βk+1 = 0. Expressed

in this notation, the lemma states that

1

k

k∑
j=1

αj ≤
1

k
or, equivalently,

k∑
j=1

αj ≤ 1.

We start by noting that, since M is DST, assuming that i’s true valuation is (S, 1
j
) and

that all other players bid according to the sub-profile BID−i, i’s utility is at least as large

when he bids (S, 1
j
) as when he bids (S, 1

j+1
). That is,

1

j
βj − αj ≥

1

j
βj+1 − αj+1. (2)
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Suppose for the sake of contradiction that
∑k

j=1 αj > 1. Thus 1 <
∑k

j=1 αj =
∑k

j=1 j(αj−
αj+1) and further since for each j, 0 ≤ βj ≤ 1, we have β1 =

∑k
j=1(βj−βj+1) ≤ 1. Comparing

these two sums term by term we note that there must exist a j such that the corresponding

term from the first sum exceeds the term from the second sum, namely j(αj − αj+1) >

(βj − βj+1). Dividing by j and rearranging terms yields 1
j
βj − αj <

1
j
βj+1 − αj+1, which

contradicts Equation 2. Thus
∑
αj ≤ 1, as desired. Q.E.D.

Finally, let us restate and prove the Harmonic Revenue Bound.

Theorem 3. For any n,m > 1, and any DST mechanism M , there exists a valuation

profile BID for a truly combinatorial auction with n players and m goods such that, letting

µ = min{n,m} we have

E

[∑
i

Mp(BID)i

]
≤ MSW−?(BID)

Hµ − 1
.

Proof. Let BIDn,m be the distribution of Definition 7 and fix arbitrarily a DST mechanism

M . Invoking µ times (i.e., for each player ≤ µ) Lemma 3 with k = µ we have

E

[∑
i

Mp(BIDn,m)i

]
≤ 1. (3)

That is, M ’s expected revenue (taken over BIDn,m and M ’s random choices, if any) is ≤ 1.

At the same time,

E [MSW−?(BIDn,m)] ≤ Hµ − 1. (4)

In fact,

(a) the expected value of MSW over BIDn,m is just
∑µ

j=1 1/j = Hµ;

(b) there are at least two players by hypothesis; and

(c) the star player —whoever he may be— values his item for at most 1.

Inequalities 3 and 4 thus imply that the ratio between M ’s expected revenue and the

expected MSW−? is at most 1
Hµ−1

. In turn, this implies the existence of a bid profile BID

as per our thesis. Q.E.D.
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10 Proof of Theorem 2

Theorem 2.

lim
min{n,m}→∞

cn,m
opt(n,m)

= 1.

Proof. Let µ = min{n,m}. Theorem 3 and Lemma 2 imply that opt(n,m) ≥ max{1, Hµ−1}.
Thus, because Hµ ≥ loge µ for all µ,

cn,m
opt(n,m)

≤ cn,m
max{1, Hmin{n,m} − 1}

≤ cn,m
max{1, loge µ− 1}

. (5)

Let us now upper-bound cn,m. Recall that cn,m is the unique solution > 2 to the equation

ex−2 = xµ.

Rewriting our equation as ex−2

x
= µ, we note that the left hand side is an increasing

function of x for x ≥ 2. Thus, if we find a value v for which ev−2

v
> µ then we will know that

v > cµ.

Consider now the value v = loge µ + loge loge µ + 4. We have ev−2 = e2µ loge µ, which is

easily seen to be greater than µv for µ ≥ 2. Thus we have upperbounded cn,m by loge µ +

loge loge µ+ 4, which yields

cn,m
opt(n,m)

≤ loge µ+ loge loge µ+ 4

max{1, loge µ− 1}
, (6)

which implies that limn,m→∞
cn,m

opt(n,m)
≤ 1, as desired.

Q.E.D.

11 Proof of Theorem 4

Let us restate and then prove Theorem 4. Namely,

Theorem 4: For any n,m > 1, and for any deterministic auction mechanism M , there

exists a valuation profile BID for truly combinatorial auctions with n players and m goods

such, letting µ = min{n,m}, the revenue of M(BID) is at most

MSW−?(BID)

µ− 1
.

Proof. We construct the desired bid profile within three steps.
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Step 1. Define the single-minded valuation profile BID0 as follows: BID0
i equals ({i}, 1) if

player i ≤ µ, and the null valuation otherwise. It is thus clear that MSW−?(BID
0) = µ− 1,

so that MSW−?(BID0)
µ−1

= 1. We distinguish two cases: namely, (1) Mp(BID
0)i > 0 for no i and

(2) Mp(BID
0)i > 0 for some i. In the first case, the revenue of M on bid profile BID0 is 0,

and thus BID0 is the profile required by the theorem. Otherwise, we proceed to Step 2.

Step 2. Let j be a player such that Mp(BID
0)j > 0, and define for each integer α ≥ 2

the valuation profile BIDα = BID0
−j t ({j}, µα). It is thus evident that, for all α ≥ 2,

MSW−?(BID
α) = µ− 1 and thus MSW−?(BIDα)

µ−1
= 1.

Let us now analyze the price side. Notice three facts: by construction, BID0
−j = BIDα

−j;

by Property DST-1, j is allocated the subset of goods {j} under bid profile BID0; and,

for all α ≥ 2, j’s bid value for {j} is higher in BIDα than in BID0. Thus, because M is

deterministic, Property DST-2 implies that, for all α ≥ 2, j continues to win the set {j} in

BIDα and to pay the same price he pays in BID0, which is at most 1 —because of Property

DST-1 and because BID0
j ({j}) = 1.

We now distinguish two cases: (a) there is some integer ᾱ ≥ 2 such that Mp(BID
ᾱ)i =

0 for all i 6= j, or (b) for each integer α ≥ 2 there is a player kα, kα 6= j, such that

Mp(BID
α)kα > 0. In the first case, the total revenue for M under bid profile BIDᾱ is at

most 1, and thus BIDᾱ is the profile required by the theorem. Otherwise, we proceed to

Step 3.

Step 3. By the opt-out condition, for each integer α > 2, we have kα ∈ {1, . . . , µ} \ {j}.
Thus, the pigeonhole principle implies the existence of β, γ ∈ {2, . . . , µ+1} such that kβ = kγ.

Without loss of generality, let β < γ. Define now

k = kβ(= kγ) and BID′ = BIDγ
−k t ({k}, µγ+1).

Since the star player in BID′ is k, we have MSW−?(BID
′) = µγ + µ − 2 ≥ µγ. Further,

because γ and β are integers, γ > β, and β ≥ 2, we have µγ > (µβ + µ)(µ− 1) and thus

µβ + µ <
MSW−?(BID

′)

µ− 1
. (7)

Let us now analyze the price situation. We consider the following two mutually exclusive

cases.

Case 1: Mp(BID
′)j ≤ µβ.
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The definition of BID′ and Property DST-1 clearly imply that
∑

i∈−{j,k}Mp(BID
′)i ≤

µ − 2. As for player k, we note that under bid profile BIDγ, he wins his set {k}, without

paying more than 1, his bid for {k}. Further, the bid profile BID′ is identical to BIDγ

except for k’s bid for {k}, which is higher in BID′ than in BIDγ. Thus, k will continue to

win {k} in BID′, without paying more than 1. Thus the revenue in this case is at most the

sum of µβ (from player j), 1 (from player k), and µ − 2 (from all other players), totalling

less than µβ + µ.

Thus Inequality 7 implies that the valuation profile BID′ satisfies our thesis.

Case 2: Mp(BID
′)j > µβ.

Define

BID′′ = BIDβ
−k t ({k}, µγ+1).

It is clear that MSW−?(BID
′′) = µβ + µ− 2 ≥ µβ and thus, since β ≥ 2, we have

µ <
MSW−?(BID

′′)

µ− 1
. (8)

Turning our attention to prices, as for BID′, it is clear that
∑

i∈−{j,k}Mp(BID
′′)i ≤ µ−2.

Let us now analyze the price paid by player j. Notice that BID′ and BID′′ differ only

in the bid of player j, and that j bids higher for {j} in BID′ than in BID′′. Thus, if j

won {j} in BID′′, then he would win it too in BID′ for the same price. However, by the

assumption of this case, j’s price is greater than µβ, namely, greater than his valuation for

{j} under BID′′, which implies that he cannot win it under bid profile BID′′.

Finally, let us analyze the price of player k. Notice that BID′′ is identical to BIDβ

except for k’s bid for {k}, which is higher in BIDβ than in BID′′. Since k wins his set {k}
under BIDβ paying at most 1, he continues to win {k} in BID′′, for at most 1.

Thus the revenue in this case is at most the sum of 0 (from player j), 1 (from player k),

and µ− 2 (from all other players), totalling less than µ.

Thus Inequality 8 implies that the valuation profile BID′′ satisfies our thesis.

And thus, in all cases, we have exhibited a valuation profile that satisfies the theorem.

Q.E.D.

Acknowledgements

We are grateful to Daron Acemoglu and Sergei Izmalkov for several suggestions.

27



References

[1] Ausubel, L.M. and Milgrom, P. The Lovely but Lonely Vickrey Auction. Combinatorial

Auctions, pp. 17-40, 2006.

[2] Babaioff, M., Lavi, R., and Pavlov, E. Single-Value Combinatorial Auctions and Imple-

mentation in Undominated Strategies. Symposium on Discrete Algorithms, pp. 1054-1063,

2006.

[3] Balcan, M.-F., Blum, A., and Mansour, Y. Single Price Mechanisms for Revenue Maxi-

mization in Unlimited Supply Combinatorial Auctions. CMU-CS-07-111, 2007.

[4] Chung, K.-S., and Ely, J.C. Ex-Post Incentive Compatible Mechanism Design. mimeo.

2003.

[5] Clarke, E.H. Multipart Pricing of Public Goods. Public Choice 11:17-33, 1971.

[6] Conitzer, V. and Sandholm, T. Failures of the VCG Mechanism in Combinatorial Auc-

tions and Exchanges. Proc. of the 5th International Joint Conference on Autonomous

Agents and Multi Agent Systems, pp. 521-528, 2006.

[7] Cramton, P. and Schwartz, J. Collusion in Auctions. Annales d’Economie et de Statis-

tique, 15/16:217-230, 1989.

[8] A. Fiat, A. Goldberg, J. Hartline, A. Karlin. Competitive Generalized Auctions. Sympo-

sium on Theory of Computing 2002.

[9] Feigenbaum, J., Papadimitriou, C., and Shenker, S. Sharing the Cost of Multicast Trans-

missions. Symposium on Theory of Computing, pp. 218-226, 2000.

[10] Friedman, M. Comment on ‘Collusion in the Auction Market for Treasury Bills’. J. of

Political Economy 9:757-785, 1996.

[11] Goldberg, A. and Hartline, J. Collusion-Resistant Mechanisms for Single-Parameter

Agents. Symposium on Discrete Algorithms, 2005.

[12] Goswami, G., Noe, T.H., and Rebello, M.J. Collusion in Uniform-Price Auctions: Ex-

perimental Evidence and Implications for Treasury Auctions. Review of Financial Studies,

72:513-514, 1964.

28



[13] Groves, T. Incentives in Teams. Econometrica, 41:617-631, 1973.

[14] Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., and McSherry,

F. On Profit-Maximizing Envy-free Pricing. Symposium on Discrete Algorithms, pp. 1164-

1173, 2005.

[15] Jain, K. and Vazirani, V. Applications of Approximation Algorithms to Cooperative

Games. Symposium on Theory of Computing 2001.

[16] Lehmann, D., O’Callaghan, L.I., and Shoham, Y. Truth Revelation in Approximately

Efficient Combinatorial Auctions. ACM Conf. on E-Commerce, pp. 96-102, 1999.

[17] Likhodedov, A. and Sandholm, T. Approximating Revenue-Maximizing Combinatorial

Auctions. The Twentieth National Conference on Artificial Intelligence, pp. 267-274, 2005.

[18] Moulin, H. and Shenker, S. Strategyproof Sharing of Submodular Costs: Budget Balance

Versus Efficiency. Economic Theory, 18:511-533, 2001.

[19] Myerson, R. Optimal Auction Design. Mathematics of Operations Research, 6: 58-73,

1981.

[20] Porter, R. Detecting Collusion. Review of Industrial Organization, 26:2:147-167, 2005.

[21] Vickrey, W. Counterspeculation, Auctions, and Competitive Sealed Tenders. J. of Fi-

nance, 16:8-37, 1961.

29




