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~, ABSTRACT

The present work 1s a theoretical discussion of
communication through noisy channels in cascade. The point
of view adopted for that discussion 18 that of information
theory. After a general discussion of channels in cascade,
the dependence of the cascade performance on two factors 1s
studled in detall by considering sultable examples. These
factors are, respectively, the delay allowed at the inter-

", medlate station and the intermediate station trancfer char-
acteristic. In the course of these discussions, a technlque
for constructing a double and a triple error correcting code
is indicated. This technique 18 generalized and forms the
basie of a constructive proof of Shannon's theorem in the
case of the binary channel.
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Chapter I
INTRODUCTION

1.1 Historical Remarks

e

The purpose of this sectlon is to draw the attentlon
of the reader to some major contributions, fhe results of
which are repeatedly used in this thesis. [for a detalled
hiestory of information theory, the reader 1is referred to the
literature.(l’z)

During the last two decades, a large number of new
modulation methocds were developed. We may mention frequency
modulation, phase modulation and the family of pulse modula-
tion methods such as P.,A.M., P.D.M.,, P.P,M, and P.C.M. This
sudden wealth of design possibilities led to a reexamination
of the fundamental aspects of the communication problem, and,
a8 1t 1s usual in science, the answer was found in a more
abatrasct approach. A major step was achieved when Norbert
Wiener pointed out that the communication problem is essentlially
statistlical in nature. He also defined, for a particular situa-
tion, a measure of the rate of transmission of informatiocn, In
faoct, Hartley, in a much earlier paper pointed out that the
measure of informetion should involve the logarithmic function.
Another fundamental contribution was that of C. E. Shannon
whose 1948 paper presented a complete theory and the derivation
of a number of basic theorems among which the "fundamental
theoren" 18 the most important and by far the most interesting.

For ease of reference let us state it here:



"Let a channel have the capacity C and a source
the entropy per second H, If H < C, there exists a coding
system such that the output of the source can be transmitted
over the channel with an arbitrarily small frequency of error.,
Ir H> C, 1t 1s possible to encode the source so that the
equivocation 18 less than H - C t¢€ where e 18 arbitrarily
small. There 18 no method of encoding which gives an equivo-
cation less than H - C."(6’7)

It should be stressed that the proof of this theorem
1s non-constructive.

In the last few years the interest in the theory
grew larger and now many papers have been and are being pub-
lished. Many concepts have been made clear and some problems
have been solved. No paper, however, has yet dealt with the
problem of channels in cascade from the information theory point
of view which 13 the purpose of the present work.

1.2 Terminology

In information theory, the terminology is still somewhat
fluid. It is theretfore 1mporfant to start by defining carefully
gsome of the terms which willl occur repeatedly.

For simplicity, we assume that the purpose of a ocom-
munication system is to reproduce as closely as possible a
message generated at some othzr point. The message 13 defined
as a sequence of symbols. We assume furthermore that the mes-
sages consist of a sequence of statistically independent sym-

bols.
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In order to transmit a symhol or a group of symbols,
the transmitter controls the evolution in time of a sultable
physical phenomenon. The evolution in time corresponding to
a particular symbol (or group of aymbole) 1s completely
desoribed by a function of time, which 1s called a gignal. For
bandlimited channels, a signal may be completely desoribed by
2TW equildistant samplee?,where T 18 the duration of the signal
and W the bandwidth. There is a one-to-one correapondence
between the symbols and the signals at the transmitter. In
general, the transmlitted signal 1s modified by some kind of random
disturbance which 1is referred to as noise. If the transmitted
symbols form a finite set and if the channel's output symbols
(by the channel's output we mean the output of the receilver;
in other words, the channel includes the receiver) form also
a finite set, the channel 1s sald to be discrete. It should
be pointed out that, in many discrete channels, the received
signals (that is the slignals, distorted by nolise, as they enter
the receiver) form an infinite set pbut the recelver operates
on them in such a way that the channel's output is dlucrete,
that is consists of symbols belonging to a finite set. This
is the case of a teletypewriter system for example. If the
channel's output symbols form an infinite set, that 1s the
output alphabet 1s infinite, the channel is sald to be con-
tinuous,

1.3 Channels in Cascade

Cascaded shannels are very often used in practice.
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Thelr use is made necessary because, as in microwave links,

the electromagnetic waves do not follow the curvature of the
earth or, as 4n coaxilal cables, because the attenuation suffered
by the signal becomes prohibitive when the distance becomes
large. The designer ie then forced to break up the channel AB
into a cascade of channels AP,, P,P,, ..« P _,B. We shall call
1%1 wyntermediate station® the assemblage of the 1% shannel
receiver and the (i + l)th channel transmitter.,

The large number of microwave links recently built
enhances the desirability of a discussion of channels in cascade
from the point of view of information theory. Designers know
that in cascaded channels it is important to use modulation
gystems exhibiting nolse reducing properties such es F.M. and
P,C.M,

From the information theory point of view, there 1s a
very important difference between the problem of transmitting
information through a single channel and that of transmitting
information through a cascade of channels., In the first case,
the transmitter has all the information to be transmitted;
whereas, in the second ocase, (except for the first transmitter)
the information which 1s avallable to each transmitter (to be
precise information about what was transmitted by the first
transmitter) is no more in the form of a symbol but rather in
the form of a set of a-posteriori probabilities. We should
therefore expect to find that the manner in which the inter-

mediate station operates will be very important for the per-
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formance of the cascade.

1.4 The Present Work

(a) Purpose

As stated earlier, the purpose of the work presented
in the following chapters is a theoretical discussion of the
problem of communication through nolsy channels in ocasocade,
and the point of view adopted for that discussion is that of
information theory.

(b) Results

The investigation was divided in three parts ocor-
responding respectively to Chapters II, III and IV, In Chap-
ter II, the problem of cascaded noisy channels is discussed
in general terms. It i1s shown that the channel capacity of
the cascade 18 smaller than the channel capaclity of any of the
cascaded channels. As an illustration of the theory, & cas-
cade of P,C.M, channels 1s compared to a cascade of continuous
channels. The results are best summarized by Fig. II.1 and
Fig. II.”.

In Chapter III, we try to find out how much the sys-
tem performance can be improved by increasing the delay allowed
at each intermediate station. In all cases under discussion
the intermediate station elther retransmits the signal having
the largest a-posteriori probability or retransmits the re-
celved signal as it 1s. The discussion 1is carried out in two
cases: ocontinuous channels affected by gausslan adaitive noise

and binary channels. In both cases, the galn in performance



is very important. Perhaps the most interesting result of
Chapter III is the constructive proot of Shannon's fundamental
theorem for the binary channel.

In Chapter IV we optimize the intermediate station
transfer characteristic, the allowed delay and the average re-
transmitted power being kept constant. The formal treatment
leads to equations that are not soluble in general. However
in the case of gausslan addltive noise and for sample by sample
retransmission at the intermediate station, it 1is shown that the
optimum input probability density is gaussian and that the re-
ceived sample should be retransmitted as 1t 1s by the inter-
medlate station. The simple, but very important, case of a
binsry channel in which the noise is gausslan and additive is
considered next (still assuming that a sample by sample retrans-
mission 18 required at the intermediate station). For simplicity,
the probablility of error of the equivalent channel is minimized
in thlis case. The difference between a maximum a-posteriori
probability detector and as "optimum" detector (that is a
detector which would extract all the information contailned in
the received signal) 1s computed numerlcally for a simple case.
1.5 General Assumptions

For emphasis it 1s convenient to state at this stage
the genergsl assumptions made throughout the thesis.

The message to be transmitted consiasts of a sequence
of statistically independent symbols. Everything happens as if
the symbols were independent random selections from a specified

engemble,
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Each channel under consideration 1s noisy and the
noise statistics are known in each particular case.,

The noise in a particular channel 1s 1ndependent of
all the noise disturbances in the other channels.

The noise is independent of the signal and affects
each sample of the signal inc endently of the way it affected
the previous samples,

The majority of the channels considered in the follow-
ing chapters will be bullt according to a model to be deseribed
presently.(IZ)

The transmitter 1lncludes a storage device, a selector
and a transmitter. The storage device memorizes the M signalg-—-
an alphabet of M gymbols ies assumed--which are functions of
time of durastion T. The selector 1s the element which, accord-
ing to the symbol that has to be transmitted, selects the
assoclated signal and feeds it to the transmitter, |

In the majority of cases the receiver of any channel
consists of a computing element and a comparator. The computer
determines for each received signal the a-posteriori probabili-
tles that 1t was caused by the varlous possible transmitted
signals. The computer must therefore have in store all the
signal-functions and the relevant statistical characteristics
of the noise, In many cases the comparator selects the symbol
which has the largest a-posteriori probability. To describe
this type of receiver operatior. we use the expression "maximum

a-posteriori probability operation." In some cases, the inter-
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mediate station retransmits the signal as it is received, so
that 1ts role 1s simply that of raising the power level of the
signal. In such ocases, the intermediate statlion will be re-
ferred to as a "repeater.® Finally there will be cases where
a "transfer characteristic” determines the gignal to be re-

transmitted in terms of the particular receilved signal.
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Chapter 11

CHANNELS IN CASCADE

In this chapter, the formalism needed for dealing
with channels in cascade 1s developed. In particular it 1is
shown that, provided the transition probability matrices of
the cascaded channels are non-singular, the channel capaclty
of the cascade may be equal to that of one of the channels
only Af all others are noiseless., Finally a cascade of P.C.M,
channels 1s compared to a cascade of continuous channels con-
nected by repeaters.

2.1 Equivalent Channel

It is often convenient to consider the cascade of
channels as a unit, that 1s, to think of the cascade only in
terms of ite input and output. This unit will be ocalled the
equivalent channel. More precisely, the equivalent channel 1is
the channel which has statistical properties ldentical to those
of the cascade, at least as far as its input-output relations are
concerned.,

At this point i1t should be stressed that the statis-
tical properties of the equivalent channel depends very much
on the assumed operation of the intermedlate stations. Many
examples will be presented later showing that a change in the
operation of the intermedlate station produces very drastic
changes in the performance of the equivalent channel. From the
polint of view adopted here, as long as the operations of the

intermediate stations are not specified, the cascade of channels
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is not yet completely defined.

2.2 Discrete Channels in Caacade

Consider a csscade of n discorete channels. B8ince
each of these channels must transmit the same message, we assgume
that they have a common alphabet of M gymbols. In each channel,
appropriate signals are associated to each symbol. We assume
that in a particular channel, all signals have the same duration,
say Ty in the 1N ghannel. We assume that each intermediate
station operates as a *maximum a-posteriori probability detector.*®
Under these conditions, in addition to the propagation time, a
delay at least equal to Ti will occur in the 1th channel because
the receiver must have received the complete signal before being
able to compute the a-posteriocri probabilitiles.

For each channel, on the basis of the noise statistics
and the decoding procedure, it is possible, in principle at least,
to obtain the transmition probabilities, that is, the probability
that a particular symbol, say o7 , being transmitted, some
other symbol, say o , will be received. Let this probability,

P
for the kth channel, be represented by

B (1)

As there are u2 such probabilities, let them be arranged in a
square matrix P.. More precisely, let p(k)( 7 |01 ) belong
to the 11 row ana the J*P column. Thue all the elements of a
particular row represent the probabilities that the various

symbols be received when a particular aymbol is transmitted.
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We define the operation of the intcrmediate statlons
as follows: as soon as a symbol, say g, , is received at
the output of the kth ohannel, 1t is immediately retransmitted
by the (k + 1)*P channel; thils statement holds for k = 1, 2,
ese, n -1,

The equivalent channel has all its properties defined
by its transition probability matrix which 1s obtalnable, by
the following:

Theorem: the transition probability matrix of the
equivalent channel is equal to the product of the
transition probability matrices of each channel of
the cascade; the order of the factor matrices 1is
ldentical to the order of the channels in the cas-
cade,
The transition probability matrix P of the equivalent channel
will be known once all 1ts elements are known. In order to

th

determine the element p( gy | o7 ) of the 1" row and the yth

column we consider the compound event d.fined as the joint oc-
currence of the following events: knowing that op is sent
by the 18% ghannel transmitter,
CE‘ is received and retransmitted by the 1Bt
intermediate station

a; is received and retransmitted by the 2“d
2

intermedlate station
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g; 18 received and retransmitted by the (n - 1)8°
n-y

intermediate station and finally o s re-

4

celved by the laut reoceiver,

Because of the assumed independence of the noise in
eéach channel, the probability of the jJoint event 1s equal to
the product of the probabilities of all individual transitions,

hence 1t is equal to
{ 1 A) n)
w(“f.lal) Pziazz I(T‘_‘) """ " (T ‘uz) # (O"‘ "n‘

Consgider all sequences of numbers ( L,L,,CL,..” ,QH,J)
vhere 1 and ] are fixed and the i, '4 (&:gzlﬂﬁmq) renging over
all integers from one to M. To each one of these sequences cor-
responds a compound event and in each case the symbol a; is
transmitted and the symbol ag is received. As these compound
events are mutually exclusive and form an exhaustive set, the
probability that 0; is received when g is transmitted 1is
gilven by the sum of the probabilities of each one of these

events(IB’Ih), thus

[ AL AE %; P“'(o;.la;) ﬂ"(a;-zlai,) e P(w(m-.lai-m_z) [’(m(‘ﬁ‘ I%,.,)

(1)
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If we remember that p(k)( T IUZAﬂ ) 18 the element of the
th

i 1 rov and lzh column of the kth channel transition

probability matrix, we recognize that the sums (1) represent

1

the elements of a product of matrices, namely

P- Pw. =R (2)

It should be stressed that the proof of the theorem did not
requlre any assumptions on the noise characteristics of any
channel. The theorem would still be true if the actual signals
used to represent a particular symbol are different in each
channel, But it should be kept in mind that the assumed inter-

mediate atation operation is esgential for the validity of the

theorem.

(1)

In general the matrices P do not commute, thus we

state the following:
Theorem: in general the characteristics of the equiva-
lent channel depend on the order of the channels in the

cascade.

In this connection, it 1s useful to recall the follow-
ing matrix property: if two matrices are hermitian (that is, if
alj: 331 ) a necessary and sufficient condition that they shall
be reducible to the diagonal form by the game collineatory transg-
formation 1@ that they commute. Thus if the matrices P'E) are

symmetrical and commutable, they may be all diagonalized by the
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gsame transformation. The elements of the product matrix, in
diagonal form, are equal to the product of the characteristic
values of the factor matrices. As a result, the problem of
finding the product of the matrices P'E) 1g reduced to that
of finding their characteristic values. This method will

be found useful later on.

2.3 Channel Capacity of the Equivalent Channel

From an information theoretical point of view, the
most interesting characteristic of the equivalent channel 1is
1ts channel ocapacity. Simple relatlions between the equivalent
channel capacity and those of the individual channels ¢o not
seem to exist. But the equivalent shannel of the cascade
defined in section 2.2 has a capaclty limited by the follow-
ing

Theorem: The channel capacity of the equiva-

lent channel 1s always smaller or equal to the

smallest channel capacity of the cascaded

channels. When the transition-probability-
matrices of all channels are non-singular,

the equal sign holds only if all but one of

the channels are noilseless. An example will

show that 1f one of the matrices is singular

the equal sign may hold although all chan-

nels are noisy.

To prove this theorem we need only to investigate

the case of two channels in cascade, for an obvious recurrence
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rence reasoning will extend the result to n channels in cas-
cade,

Let C,, (C2 respectively) be the channel capacity
of channel 1 (2 respectively):; let Ce be the channel capacity
of the equivalent channel,

Congider firat the case of C , <:Cl. Let us prove
the absurdity of the hypothesls Ce> 02. IT it were 8o,
the rate at which information (about the input of channel 1)
could be received through channel 2 would be larger than 02°

Let R,, be the rate at which information (about the input of

12

channel 1) can be received through channel 2. Let R,, be the

rate at which information (about the input of channel 2) can

be received through channel 2., Then it 1s clear that

R.z < Rll
and if our assumption

C.>C,

were valid, then R12 could be made arbitrarily close to C..

Thus we would have

F}u.>’(zz
which would imply that

Rzz >C

which has been gshown to be impossible. Hence we must have

cegcé.
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If we had assumed Cy <L C,, the proof would be along
the same lines,

For the second part of the theorem, we make the
additional assumption that the transition probability
matrices of each channel ere non-singular. In particular it
wvill pbe 80 if all the dlagonal elements of the matrices are

(16)

larger than #, for a theorem of J. Hadamard states thas

if the elements of a matrix [pij] are such that, for all 1i's,

[P >’j§zlpﬁl

then the determinant of the matrix is positive.
First case 6, < C,.

The assumption C, = C5, requires that the optimum
input probability p( g7 ) of the equivalent channel must be
transformed, in going through channel 1, into the optimum
input probability of channel 2. For if it were not the case,

we would have
and sinee

Ru $ RZZ
this would imply

T‘u,<:<:z

which would contradict the assumption C, = C»,.

Thus, for both the equivalent channel and channel 2,
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the output probability distribution will be identical and the
entropy of the output symbol, say 0, will be the same 1in
both cases.

Since

C = Hiz) - Hle1s)

e
and
Cza H(o-z)‘H(OZ'a;)
where o= 1s the output symbol of channel 1 and, therefore 1t

d

18 also the input symbol of channel ?, we conclude that
H(a;w;,)=H(<rzla;) (1)

By definition we have

)

He; 165) = Z plz) p'5197) ) plaig) bog plsimy)

and, using the previous theorem, we also have

Hizln)=- L pe) T L3 Plgin) o im)] by [% Flgia) Pe15) 5)
As the function

Flu)= -wbgw (5)

is a function of u whieh is convex upward, we have(17)

F(5 %) 2 2 g Flw) (6)

provided the non negative weighting factors g, gsatisfy the re-
lation

% ckz'l
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The equal sign in the inequality ococurs only if all the ui'a
are equal or if all but one of the gi's are zero. This theorem

sllows us to write, using the notation defined by (5),

Hisig)=3 pe {3 Flaia) Fn)

<2 pw) F [% Plois) plais)]

, L
or

Hxle)< H(zl%)

As, in the case under consideration, the equal sign holds,
(see Eq. (4)), either all the terms p(?)( q, \UB ) are agual
or, for each x, all but one of the set {p(l)( Ty | oy )} "
are equal to zero. The first possibility is to be dlecaraed
for it would imply that the input and the output of channel 2
are independent, Thus we conclude that [?(1)( % | 0% ﬂ
is a unit matrix (more precisely, 1t can be changed into a
unit matrix by a suitable reordering of 1ts rows and columns)

hence the channel is noiseless.

q0€od0

Second case 01_5:702.

We have to show that if C, = C,, channel 2 ie noise-
less.

From the results of the preliminsry discussion, it is
clear that the optimum input probability of the equivalent
channel 18 identical to that of channel 1. 48 a result, in

both cases, the entropy of the input symbol d

e is the same,
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Since

C, = Hig) - Hig] )
and

(h = dei) —'F'(Qiloa)
then

Hio: 1) = H(oz|qy) )

By the theorem on total probability, we have

uo-x.m:z,: (5l ) 1" (o | o)

where we use the letter r to distinguieh, from the transltion
probabilities, the oconditional probabilities of the input gilven

the output. Thus, using irequality (6), we obtain
H(a;ckog) =322 ploz) ri"(ogl%); AL
<3 pla) 5 #g15020515)
xZ

that is
Hiszlg)& Hisg)

We know from (7) that the equal sign holds. Therefore, in the
light of the previous discussion, the only possibility left 1is
that the matrix [r(Z)(Ug | 0% 9 1s a unit matrix, (again,
here, some reordering of the rows or cclumns might be necessary).

In addition Bayes' theorem states that

ploy) f‘l) (0; \oy)

%, py) Pz 1 o)

(AATAE
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Therefore the matrix [p(z)( S \0".’ ] 18 also a unit matrix.
Thus the second channel 1s nolselesas.
q.e.d.

The following example shows the necessity of the
assumption that the transition probability matrices are non-
singular.

Congider two channela, I and II, having the respective

transition probability matrices

[1 o 0 0] ) 3 0 0
# 3 0 0 % % 0 0
and

0 ] & 0 % %
L 0 0o 0 1] | 0 0 ¥ %]

The channel capacities are respectively G, = 1.32 bits/symbol
and C,= 1 bit/symbol.

It can be easlily verified that if the input symbols
of the cascade are equally probable, the rate of reception of
information through the cascade 1s equal to 1 bit/symbol, that
1s equal to the channel capacity of channel 2, although channel
1 18 nolsy.

The theorem just proved is, of course, 1n accordence

wlth our intuitive feeling which is that each time a signal goes
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through a noisy channel the equivocation must be increased.
It supporte also the empiriocal notion that in a communication
system congsisting of cascaded channels, for a specified
quality of transmission through the syastem, eash channel must
satisfy more rigorous requirements than the system itself.

A very obvious consequence of Bhannon's fundamental
theorem is that if, ir contrast with what was assumed in
geotion 2.2, the intermediate stations were allowed an infinite
delay before retransmitting any signal, the rate of reception
of information through the whole cascade could become arbitrarily
close to the smallest channel capacity of the cascaded channels.

2.4 Cascade of Repeaters

The type of intermediate gtation operation assumed in
gsection 2,2, caused in each channel, an additional delay equal
to the length of the signal used. In certain cases, this
cunmulative delay may be undesirsble. It is therefore of in-
terest to consider a case where this delay is reduced to a
minimum, In particular we wish to consider here the case
where the signals are retransmitted exactly as they are re-
celved.

Let us assume that all channels are bandlimited and
have the same bandwidth W. Thus the signals are completely
defined by a sequence of equidistant samples taken at a rate
of 2W samples pe seccnd. For simplicity let us assume that the
intermediate stations operate as repeaters, that is retransmit

the signal sample by sample exactly as it has been received.
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Thus in order to obtain the input-output statistics of the
cascade we rieed only to consider the signal one sample at a
time.

The samples x of the first transmitter belong to an
ensemble completely specified by the probability density p(x).
The sample x will travel down the first channel and, because
of the noise, willl be received as y, by the firet intermediate
statlon, as yz by the second intermediate station, and
finally, as y, by the last receiver,

Each shannel 18 represented by a conditional proba-
bility density; for the kth channel p(k)(yklyk_l) gives the

probability distribution of the samples y received by the kthA

Kk’
intermediate station, on the condition that Y.y Was received
at and transmitted by the preceding station. Again we use the
concept of equivalent channel which, in this case, has the
sample x as input and the sample X, as output. It will be
completely defined by the transition probability density
p(ynlx ).

The results of the disorete case may be immedlately

extended to the continuous case: thus we obtain

plaf )= faufoy - [y Py Btytg)- Pl ly o

where the integrations are carried out over the whole range of

the variables.

This result is based on the assumption of the inde-
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pendence of the noise in different channels and 1n successive
gsamples but is otherwise absolutely general,

Bpecial case of additive noise

In a large number of applications, though not always,
the noise may be represented as a random variable added to the
signal.

Under these conditions we may write
R) k)
Byt ) =114y  Raz.n

Substituting into Eq. (8), we see that p(ynlx) is the result

of n successive oonvolutions and therefore, also
plg. 1<) = fuy, )

These results may be expressed in a more elegant form. Let

ﬂ(k)(t) be the "characteristic function® of the distribution

r(k)(u). It is defined(ls) as

@
f’m(t);-. flzu.) ew't duw
~

It immediately follows that

$(t) = $(t) $UE) - ¢™(¢)

where #(t) is the characteristic function of the distribution
f(u) relative to the equivalent channel.

We therefore state the following:
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Theorem: If the noilse in each channel 1is
independent and additive, the characteristie
function of the nolse for the equivalent
channel 18 equal to the product of the char-
acteristio functions for each individual

channel.

It is evident that the properties of the equivalent
channel are independent of the order of the channels in the
cascade,

In this connection 1t is worth recalling that ‘:8)
the mean square deviation of the sum of n independent random
variables is equal to the sum of the mean square deviations of
each random variable,

2.6 Pulse Code Modulation in Cascaded Channels

By pulse code modulation we mean a coding method in
which the signals consist of a suecession of pulses of standard
shape and of either polarity more preclsely a pulse code modu-
lation of order k has an alphabet of 2k symbols, each symbol
belng represented by a partiocular sequence of k pulses,

Since we assumed that the noise affeots each pulse
independently of the way it affected the previous pulses and
since in a P,C.M. system of order k the gign of a pulse is in-
dependent of the sign of all preceding pulses, the amount of
information obtainable from a symbol of a k-order code is k

times the amount of information obtainable from a single pulse.
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If we assume that for a single pulse the transition probability

matrix 1is
o I
P vp
the amount of information obtainable from a symbol of a k-order

(7,10)
& [i- fup)

code is then

where

Fip)=-p tog p - (i-p)bog (1-p)

If we oconsider a cascade of two channels with the
regpective probabilities of error pl, p2 it is easily recog-
nized that the equivalent channel probability matrix may be

written as
- Pe Pe
Pe - Pe

where Py is given by
1~2p, = (1-2p)(1-2p, )

In the case of a cascade of n channels, in which
the 1th channel has the probability of error Py, we would

have

|—2Pe=‘[s ('“ZPU'.) (9)



26,

2.7 A Cascade of Repeaters and a P,C.M. System

2.71 General assumptions.

In this section we compare the behaviour of ocas-
oaded continuous channels and cascaded P.C.,M. channels operat-
ing with the same average transmitter power. The noise power
spectrum ieg the same in both cases. The conditiozs that have
to be imposed in order to obtain a meaningful comparison are
not obvious, therefore we consider two cases: 1in the first,
the two systems have a common average transmitter power and
a common bandwidth and in the second, the bandwidth of the
P,C.,M, system 18 increased so that a single channel of either
system has about the same channel capacity.

For simplicity, we assume that the noise 1la gaussian
and has a flat spectrum and that it is additive to the signal.
In this conneotion it might be worth while to point out the
shot noise and the resiatance noise have heen ehown(lg’zo) to
be gaussianly distributed and to have a flat spectrum at least
up to frequenclies higher than any yet of importance in com-
munication work,

Let N, be the noise power per cycle, so that with
a bandlimited channel of bandwidth W, the noise power 1is NoW.

Let B8 be the average signal power received.

2.72 Cascade of continuous channels.
The noise in each channel (of bandwidth W) is
gausslan and additive to the signal as specified in sectlon 2.71.

We assume that each intermediate gtation operates as a repeater,
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1.e., it retransmits a sample identical to that received. If n
identical channels are so cascaded and if the nolse power per
cycle 18 N, in each channel, the noise power per oyecle in the
equivalent channel 1is nNo. Therefore the maximum amount of

information receivable through the cascade 1is

o)
:',f Kog (J + W bits per sample, (10)
2

2.73 The Cascade of P,C,M. Channels

The average transmitter power will be S as for the
continuous channels. If the integer k is the order of the code,
the bandwildth is chosen to be kW, so that the rate at which the
continuous channel transmits 1ts samples 1is equal to the rate
at which the k-order P.C.M. symbols are transmitted, Thus the
signal to noise ratio becomes Tz%gtv. for each ochannel. The
noise samples will have a mean square deviation N = NokW and a

probability density

provided we seleot units such that the amplitudes of the trans-
mitted pulses are ¥\ 8 . The probebility of error p is then:

(® e}

o 2

nt _2
-| €I 4 e = (11)
P }’ YT n = = dz

& ¥
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The channel capacity of the equivalent channel 1is

‘g [l - /)lf’e)] bits per symbol

and p, 1s given by Eq. (9).
2.74 Comparison
Case I. Both systems have the same bandwidth W, therefore

k = 1. The numerical results are presented in Fig. II,1, As

long as % is equal to 20 db or higher the P.C.M. cascade has,
for all practical purposes, a channel capacity of one bit per
symbol. Indeed when % = 20 db. the parameter P of a channel 1is
equal to 7.66 10-2h. For §'= 10 db, the decrease in the channel
capacity becomes appreclable already for n = 20, The channel
capacity of the continuous case decreases appreclably as n in-
creases as expected from Eq. (10).

Case II, The order k of the P.C.M, system is selected
8o that a single channel of either system has about the ssme
channel capacity. (The average transmitter power and the noise

power spectrum are the same in both cases.) The results are

presented in Fig., II,2,

In the writer'!s opinion the suprior performance of
the P.C.M, can only be ascribed to the sample by sample re-
quantization of the signal. In the P.C.M,, the detector carries
out a ruthless elimination of noise. In some rare instanoces,
the nolse eample 18 so large that the detector is misled. The

point 1s that as long as these instances are very infrequent
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there 18 only a very slight loss in the quality of the system

as more and more ohannels are cascaded,
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CHAPTER IIIL

THE INFLUENCE OF DELAY AT THE INTERMEDIATE STATION

3.0 Introduction

The examples of the previous chapter indlcate without
any doubt that the operation of the intermediate station 18 a
very important factor in the system performance. For example,
if, in a ocascade of P.C.M. channels, the intermedlate stations
did not requantize the samples but retransmitted them as they
were recelved, 1t 18 clear that the probabllity pe, relative to
the equlvalent channel, would have been much larger than that
given by Eq. (II,9) and consequently the system performance
would have been very much poorer. The intermedlate station
may operate on one sample at a time or on groups of samples,
in the latter case the signal will experience a certain amount
of delay. Intultively we feelL that the larger these groups
of samples, the greater wlll be the improvement in the per-
formance of the system, provided sultable signals are used.
Under these condltions, 1f delay 1s allowed at the intermedlate
station, the set of a-posteriorl probabilitles obtalned after
decoding will usually be very peaked. A8s a consequence, 1f the
symbol which has the largest a-poeteriorl probabllity is re-
transnitted, the intermedlate station retransmits with a
relatively small amount of information (namely that necessary
to specify that symbol) a relatively good description of the
set of a-posteriorl probabilities. If on the other hand,

the Intermedlate station retransmits the receilved signal,
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exactly in the form in which 1% has been recelved, 1t
essentially retransmite data from which the whole set of
a-poeteriorl probabllitles may be obtained. Thls procedure
corresponds to retransmitting a large amount of information
(usually, it is infinite) and the corresponding rate of re-
transmission is, usually, much larger than the channel capacity.
As a result a large fraction of the retransmitted information
will be lost and, at the second recelver, the set of a-posteri-
orl probabilitics will convey much less information (about what
was originally transmitted) than the set of a-posteriori proba-
bilities that would have been obtained if the signal of maximum
a-poeteriori probabllity (at the lntermediate station) would
have been retransmlitted.

In fact, the problem_of representing in a convenlent
form, information conveyed by a set of a-posteriori probabili-
ties 18 still unsolved. However it 18 posslible that some
future advances in the theory will, in some cases, show how
to represent, by a selection from a finlte set, the informa-
tion contained in a set of a-posteriori probabllities.

Thus in the present state of the theory 1t appears
that, in a cascade of channels, the per-unit equivocation, 1n
each channel, must be kept as small as possible. And the
"sultable" signals are those signals which allow information
to be transmitted in the channel at a high rate while keeplng
the per-unit equlvocation smaller than a prescribed amount.
This is the coding problem which must be faced each time one

has to communicate information through noise. This problem
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will not be solved here. Only two types of channel are con-
sldered: the first 18 a continuous channel in which %the noise
is gaussianly distributed, additive to the signal and has a
flat spectrum, and the second 18 the usual binary channel.

In the case of the continuous channel, two sete of
slgnals are lndlcated and the most efficient one 1ie exclusively
used in the discussion.

In the binary channel case, a coding procedure 1is
constructed on the general 1dea of error correcting codes(21'22).
These codes are the only ones considered in the discussion.

In both cases, the codes are proved to be optimum in

the limit of very long signals.
3.1 The Continuous Channel

3.11 Definition of the channel.

Consider a channel of bandwidth W in which the nolse
18 gausslan distributed, additive to the signal and, as usual
independent of the signal. 1In addition, let the nolse spectrum
be flat and the average nolse power be N. For convenlence let
No== N/W.

The signals used are of duration T and have an
energy ST so that 8 18 the average signal power. Since the
channel 1s bandlimited, we may represent the slgnale by a
8equence of 2TW samples. The signals may be thought of as
8)

vectors in a 2TW dimensional Bpace.( For all practical

purposes, the scalar product of two such vectors is equal to
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the cross-correlation (without delay) of the corresponding
time functicns.® In this representation, the nclse samples
are gausslan random variables of zero mean and of mean square
deviation equal to N.

This type of channel has already been given con-
slderable attention, both because it i8 a good model for many
channels encountered in practice and also because 1t is con-

(8,26,27,28,29) 4

(8)

venient to discuss mathematically.
discussed the problem from a geometrical point of view.
He showed that the transition probability from one
point in signal space to another point depends only on the
distance, say 4, between these two points. On the other hand,
as the average power of the signal 1s fixed, the slignal polints
lie on the surface of a hypersphere and, consequently, in the
expression of dz, the only term which can vary is8 the double
product term, that is the double scalar product of the two
slgnal vectors. Thus to obtaln the transition probabllities

from one point to another or to obtain (by using Bayes'

* These two quantities are not rigorously equal. Thie is
related to the well-known fact that a function of time
cannot at the same time be bandlimited and be different
from zero only in a finlte time interval. This question

ie completely discussed in reference 29.
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theorem) the a-posteriori probabilities we need only to carry
out the cross-correlations (without delay) between the re-
celved signal and all the possible transmitted eignale.(12’27)
It appears then that the signal points should be

chosen a8 far apart from each other as possible. Therefore,
1t 18 expected that a highly symmetrical conflguration of poilnts
in B8ignal space might constitute an efficient set of signals.
It 18 natural therefore to investligate the regular polytopes as
possible configurations of signal polnts.

3.12 Signals based on regular polytope configurations.

For channels defined in section 3.11, M. J. Golay(26)

has shown that, for a fixed average transmitter power, a P.P.M.
system will achieve the maximum rate of reception with a van-
ishingly small per-unit equivocation in the 1limit of infinitely
large bandwldths and infinitely large signals. This result may
be extended by the same technique to the much larger class of
orthogonal eignale.(zg) In this case, the recelved signal 1s
cross-correlated with all the M = 2TW signals of the trans-~
mitter's alphabet and the probability Pe’ that the signal to
which corresponds the largest cross-correlation coefficient

18 not the aoctually transmitted silgnal, satisfles the ine-~

quality

E<ay(nnr) (1)

where
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=] &S (2)
NO
(M-1)
ﬁ“‘ %‘['"2 y23 J (3)
o ¢
and x) = e dr (L)
po-| =

When [3’1->>‘ , we 8hall often use the first term
of the asymptotic expansion of ty((Sm) and write
Atk

e 2

Considering (1) and (3), it is clear that Pe will go to zero,

in the 1limit of T—>00 , only if we have

2 fog (M-1) ) (6)

/Ll

If this inequality is satisfled, then, in the limit
of T=—>00 , the rate of transmission of information (assum-
ing that all signals have equal a-priori probabilities) will
be smaller than the channel capacity.

Let us reformulate Golay's results in a slightly dif-
ferent way in order to make easier a discussion of the

asymptotic behaviour of other sets of signals.
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The assumptions are
(1) the channel under consideration 1s defined in

gection 3.11
(2) the number of signals, M, satisfles the inequality (6)
(3) the cross-correlation coefficients (Cy, C,,«-:Cy)

of the received signal with the M possible trans-

mitted signals are such that

C.=m, (€<t1,2, ... S, ter, .. M)

C = /25> .

where the subscript t refers to the actually trans-
mitted signal, and the numbers My, Mp,eeeelpyeeeclly
are gausslan random variables of unit dispersion

(4) the output of the channel is the signal which has
the largest cross-correlation coefficient with

the recelved signal.

Then when 1T =00 the probability of error and, there-
fore the per-unit equilvocation goes to zero. If we make the

additional assumption that, in the limit of T—» 00 ,2.—€%§L

18 arbitrarily close to unity, then the rate of transmission
of information 18 arbltrarily close to the channel capaclty

and a8 the per-unit equivocation 18 zero (in the limit), the
rate of reception of information is arbitrarily close to the

channel capacity.



In n-dimensional space, when n 2, 5, there are only
three kinds of regular polytopes; the 8lmplest 18 the regular
simplex.(23) It has n + 1 vertices 8" , Sa’ R Shjn Joined
by ilgﬁil edges 80 that any vertex 18 connected to all other
vertices by an edge of the polytope. In two dimenslions, the
regular simplex 18 the equilateral triangle, in three dimen-
gslons the regular simplex 18 the regular tetrahedron.

Suppose we choose as slgnal polnts ihe vertices of
a regular simplex in the 2TV dimensional space, thus n = 2TW.

—

— —_—
Let the signals be 8% |, g® | gimed

Since S 18 the average signal power we must have

@'@2 2TWS (»&:0,2,....,111;)

59 __s

(23)

and for J # k

since for any regular simplex

S

|
)
&

A k3.
o TR A

For a particular orientation of the polytope, the coordinates

of the xtB vertex, l.e., the samples of the xth 8ignals, are(23)

tk) zm&ﬂ
S =\/25 cos T

2AR-1

KR) n
St =28 Am ZBAEL  ein o [9])
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Let 7? be the received signal, then according to the assump-

tlon of section 3.11, we may write
)
—
= E; +-;?

—»
where S® 18 the transmitted signal and n  the nolse
vector. The components of T are gausslan random variables

of probability density
ul

€ Vv
VamTh
Let us introduce the matrix D] defined by 1ts elements

8
cL - & (L,&= La,...M )
¢ 2TWSN

Suppose that the detector carries out the crose-correlations

(without delay) corresponding to the product

[D] 7] = ¢]

Then

where my and my are gaussian random variables of unit disper-

slon.

As T increases indefinitely ,/ S becomes vanish-
2TWN
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ingly small. Then, 1t i8 clear that, as T and W increase
indefinltely so that 2 Jé%£1 1is very close to unity (although
smaller than unity), the per-unit eaculvocation goes to zero
and the rate of reception of information will become very
close to the maximum rate.

In n-dimensional space, the next regular polytope
i8 the "regular crosspolytope® which has 2n vertices. In two
dimensions the regular crosspolytope 1s the square, in three
dimensions, 1t 18 the regular octahedron. Any vertex B(k)
( where k 1, 2,°+ , 2n) 18 jJoined to all other vertices
except one, denoted by B(k * n),(where the + s8ign holds
for k <n+ 1, and the - sign for k) n)by an edge of the
polytope, and, as caﬁ be easlly verified in the case of the

square and of the octahedron, we have in general

]3&) &:n)z 2
B =2a (7)

vhere a 18 the length of the edge of the regular polytope.
If we consider the vectors Jjolining the center of the polytope,

—_—
say 0, to the vertices, we obtaln a set of 2n vectors OB’ ,

prryg —any
0B ,.... 0B®™ ., It can be verified that each vector 1is

R 4
orthogonal to all others but one; more precisely, OHM is

B(z tn)

orthogonal to all vectors but O . It follows from

—
(7) that OB™ and oktn) gre directly opposite. Thus

g » —_—
the set of vectors O0B” , OB% ,... OB®*¥ consists of n

—

—’
mutually orthogonal vectors 0B’ , OB® , - e... OB™

and

their opposites.
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Let us consider then a matrix [B] defined by its element

(¢}

V2T wSsN

._,
Let T be the received signal and b“ be the actually trans-
mitted signal. Suppose that at the receiver, the computer
element carries out the cross-correlations corresponding to

2 the product

[B]'N.]:C]
Then
CL=-"_"‘— (:".EI) +Ez";r-l‘)u m; (Fi)
VZTwWs N ’
- ) IE&’: EE)’ b_tt? —-»)__ 2TS m
Ct‘\lz'rWSN (° ¥ TTIENTR e (9)

| t (k) k) 278
l:. - ! n no ):- ————
ten” \or ,SN(b-b Y bR \‘ ot Mg (10)

where m,, mg and my , . are gaussian random variables of unit
dispersion.
On the basis of the previous discussion we conclude

that: when T and W increase indefinitely sc that al’agﬁ%‘i—"
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becomes arbitrarily close to one,the rate of reception of in-
formstion 1is arbitrarily close to the channel ocapacity.

In the discussion that follows only orosaspolytope
type signals will be used.

For completeness 1t should be pointed out that the
third kind of regular poclytope is of no interest to us. This
regular polytope has, in n-dimensional apace, oM yertices
which, for a particular orientation of the coordinates system,
might have ( ¢ 1, * 1,.+. *1) as coordinates. It is cvuvious
then that the minimum distance between two vertices 1a inde-
pendent of the number of dimensions n. Thus the probability
of error will not go to zero as n—» 00 .

3.13 TIransition probabllity matrix of a channel.

We oonasider the channel, defined in section 3.11,
1n which we use signala of the crosspolytope type. We further
ageume that, in the receiver, the crosa-correlations specified
in section 3.12 are performed and that the cutp t of the re-
telver 1g the signal whiech has the largest crosge-correlation
coefficlent with the received signal.

We shall use the approximate value for the proba-
111ty of error given by Eq. (1). But, in order to obtain the
transltion probability matrix, we must look into the problem
in more detall besause we are now interested in the relative
frequenoy of the various possidle ways in which an error may
oceur,

It has not veen poassible to arrive at exact exe
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pressions for the elements of the transition probability matrix.
It should be stressed, however, that, from a practical point of
view, only those cases where the probabllity of error is small
are of interest and that 1t 18 even more so 1f the channels
will eventually belong to a cascade. Indeed 1t 18 well known
that for a glven quality of overall transmission the require-
ments on each channel become more severe as the numouer of
channels lncrease.

In view of Eqs. (1), (2) and (3) it is then reason-
able to assume /3"!— » 1, which implies also 5> . It is

cleur that, since A >> 1, the probability that c will be

t:n
the largest number of the set ¢, (1= 1, 2---M) is very much
smaller than the probabllity that cy, (k# t and kX # tt n),

be the largest number of the set Cy this follows immedlately
from the Eqs. (8), (9) and (10). Moreover these relations show

that the probability that c,, (k# £ and k= t tn), be the

k’
largeet number of the set oy 18 indeprendent of k. Therefore
the transltion probablility matrlix may be approximated by the

following M by M matrix:

l-a Peee D 0 D ... D
P l-a p 0
p l-a p 0
(11)
0 P ... P l-a p p
P P l-a
p 0 P . 1"8.-1
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vhere a = (M - 2)p.

By symmetry, the parameter has the approximate value

(Br)
P (22)

3.14 Transition Probability Matrix of the Equivalent
Channel.

Conslder a cascade of n identical channels of the
type defined in section 3.11l. Each one of them 18 supposed
to be operated as described in the previous section, thus at
each intermediate station the symbol most likely to have
caused the received signal is the one which 18 retransmitted.
Each channel 18 then described by a matrix such as that given
by (11).

The equivalent-channel transition-probability matrix
18 equal to the product of the transition-probability-matrices
of the 1ndividual channels. 1t i8 easily seen that the two
diagonals of zeros, present in each factor, will not be
present in the product. 1In order to obtain simple formulas,
let us make a slight approximation: 1let us replace in each
matrix the zeros by a "p." This essentlally replaces each
channel by a channel of slightly lover quality. The form of
the new matrices is left intact when one of them is multiplied
by any other of the same form.

In order to find the product of the matrices we rnly
need to determine the value Pe of the parameter of the equlva-
lent-channel transitlon-probability matrix. As these matrilces

are symmetrlical and commutable, we nesd only to determine thelr
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characteristic values. 1t 18 shown in Appendix III-A that the

characterlstlc values of a matrix [T] defined by 1ts element
b =[1-t-0p]d, +p (i, heiz,... M)

are 1 and 1 - Mp with the respective multiplicities 1 and M - 1.

It follows that the equation for Pe 18

|—Mpe.—..7T (1-Mpi) (13)

Osi

th

vhere Py 18 the parameter of the 1 channel.

In the special case of a cascade of i1dentical

channels we have
n
Mp=1=(1-Mp) (14%)
or in series form

Mpe= (2) Mp -(3) Mp* +(3) Mp>-- (142

3.15 Capacity of the channel.

The symmetry of the transition probability matrix
(11) requires that the input probability of the symbols which
will maximize the rate of receptlion of information 18 unlform.

Thus the channel capacity 1is
C= foj M + (M-z_),p/@:]/; + [1-0-2p] foﬂ ﬁ—{Mq}p}

It should be stressed that this expression i8 approximate
since it is based on the expression (11) of the transition
probability matrix wvhich 1tself is approximate. Often 1t 1is

more convenlent to consider the equlvocation
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Io=-mayplgp ~[1=01-2)p] log [i--2p] (15)
and if Mp <3: 1 we have, approximately,

~ (M-2)p &3 (§) (16)

From a design polnt of view 1t is worth noting that in view
of the relative insensitivity of the logarithm function on
variations of 1ts argument, roughly speaking, Ig 18 unchanged
provided (M - 2)p is kept constant.

3.16 Threshold phenomenon.

In order to ke able to dlscuse the performance of
the system when we change varlous parameters, such as the
signal-to-noise-ratio, the length of the signal and the numnber
of cascaded channels,we introduce a parameter A which will

be referred to as the safety factor. It 18 defined by the

relation

B M= ‘S l
0 17
That it plays the role of a safety factor 1s made clear once

1%t is remembered that the signals used may achleve, 1in the

1imit, the maximum rate of reception of information only 1if

Ion( 5:—

Therefore /u. measures the ratio between the maximum allowable

noilse power and the actual noise pover. For sufficiently large
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bandwidths, the safety factor is approximately equal to the
ratio between the channel capaclty and the rate of transmission.
It is8 to be noted that once fL and M are known, the other
parameters of the channel are specified. The probablillty that
one signal will be received in error 1s approximately given

according to Eq. (5), by

_ A
Pre e?®
e Z\Iﬁﬂn (18)

In terms of /L and M, we have
/3’£=('—,Jr)\/t,“ by M

The sensitivity of Pe for the varlations of M 18 by defini-

tion
o 4
B M 2 ~ -
= — --q_ (1-5) 13791‘4 (l ,x) ,_,) (19)
/..L
Bt

The first term of (19) 1is so that, for any reasonably

§

good channel, 1%t is already of the order of 10 or more.
Rewriting (19) we get

f. _pr_ Px pr!

-

r——

2 #(hLﬁ Lﬁjkﬁ]

Thus the behaviour of J’ a8 a function of /L falls into two

broad classes:

for large p > -

for ,L close to one
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Thus 1f we conslder different channele having the
same ﬁm— we s8ee that when M becomes close to unity, they
are very eensltive to variations in Jo Remembering

Eqs. (12) and (16) we may write

I~ % LJ(T%)

and noting that the varlations of the logarithmlc factor
are much less important than those of P we state that:

For a given amount of equlvocation, the

gensitivity of the equivocation on varla-

tions in the safety factor )L b=comes

very large as }L approaches unity.
This 18 the well-known threshold phenomenon which 18 more
pronounced the more complicated the coding system 18 and which
manifests itself as the collapse of the system performance
when the nolse pover reaches a ceétain critical value.

3.17 The importarce of the delay at intermedlate stations.

The fact that the system performance experiences only
a 8light decrease when the number n of cascaded channels 1in-
crexzse, as shown by Eq. (14b), 18 obtained at the cost of an
increased delay. The delay between transmission and recep-
tion of the symbol ie increased by at least nT where T is the
duration of the signals used. On the other hand, 1f the delay
must be kept minimum, each intermediate station must retrans-
mit each recelved sample a8 soon as it 18 recelved; in other
words the intermediate station cannot walt for a time T to

decode the eignal completely. Thus we shall compare the pure
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repeater type of system with a system in which the signals

are completely decoded bpefore transmission. In hoth systems,
the same 8ignals are sent by the first transmitter and the
operation of the recelver of the last channel is also the same.

Thus we shall compare the pure repeater type of sys-
tem with a system in which the signals are completely decoded
before retransmission.

It is clear that the cause of any difference of
performance between the two systems 18 closely related to the
previcusly discussed gensitivity of the performance on the
safety factor. Indeed, in ¢the case of pure repeater operatlon,
the nolse encountered in each channel will add itself to the al-
ready distorted sample. As a result, everything happens as 1f
there were only one channel in which the noise pover were n
times the nolse pover of the individual channels. In other
words the safety factor of the equlvalent channel 1s n tlmes
gmaller than that of the individual channels. From the previous
discussion, we expect the quallity of the cascade of n repeaters
to collapse as soon a8 n approaches the safety factor pv of
the individual channels.

In order to emphasize numerically the difference
in perfornance, the followlng tables give the probabllity
that the finally recelved signal 1s 1in error.

In the first table a very large value of gL is
taken to 1llustrate the importance of a complete detection of

the slgnal at each intermedlate station and to show that, 1in
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the case of repeaters, the quality of the cascade deterlorates

very rapidly ae the number of cascaded channels ilncrease.

ft=100

n=1
¥=10 8 1072
M= 100 4.7 1071

M a 1000 1.7 10™75

Table T

Complete detection at
each intermedlate sta-
tion

n=10 n=50
8 1072% g 10723

b7 1079 4.7 1079

1.7 10°™% 1.7 10773

Repeaters
n=10 n=50
2.3 1077 L5
1.6 1077 .28
1.3 1077 .13

In the second table, some less extravagant cases

are presented which still exhibit the same type of Lehaviour.

}L: 20
n=1
M= U4  L.52 1074

M =10 5.23 1076
M = 100 1.14 10°10

M = 1000 2.82 10~15

Table II
Complete detection at

each intermedliate sta-
tion

n=5 n=l0
2.75 10°3 4.5 1073

2.66 105 5.33 1072
5.7 10710 1,14 1077
1.41 10- 2.82 10-1%

Repeaters
n=5
.30
.135
. 0236
5.81 1073
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3.2 The Discrete Case.

To dilscuss exhauetively the influence of delay in
discrete channels ib by 1tself a vast problem. It was decided,
therefore, to consilder exclusively the case of the binary
channel. Thils declsion was made for convenience and because
it 18 felt that the blnary channel 18 the most representative
of all discrete channels.

In order to evaluate the gain in performance of a
cascade when some delay 18 allowed at each intermediate station
we must first find sets of signals which, by their nature, have
some nolse combatting properties. A new coding method has been
devised and 18 described in section 3.21. In the next section
1t *s shown that those slgnals provide the means for a con-
structive proof of Shannon's theorem. In section 3.23 it is
shown how this coding method may be used for single. douvle
and triple error correction.

3.21 Princliple of the codee.

Having restricted ourselves to the binary channel,
our slgnals will coneist of sequencee of binary digits. Thus
the recelved signal will differ from the transmltted silgnal
by some "errors."™ This suggests that we aporoach the problem

(21,22) In

of coding from the error correction point of view.
other words, the kind of signals we are interested in are those

which, by the constraints imposed on them, permit the correction
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of the errors, provided the number of these errors 1is not

(21)

larger than some maximum number. M. J. Golay and R. V.
Hamming(ZZ) have indicated a procedure by which a single error
correcting code may be obtained. Our new method allows us to
construct error correcting codes that may take care or several
errors.

The problem 18 rnot solved directly: we start by
solving 1t under restricted conditions; then a method is in-
dicated by which this restriction may be removed.

Let us formulate the restricted problem. Ve suppose
that the information source supplies the message in the form
of k binary digits which we represent by 5{8, .--8,. (This
sequence of binary digits, wnhicn will be referred to as the

k possilble seauences of

"sequence S," may be any one of the 2
that type.) The problem is to find a sequence of £ binary
digits (which will be referred to as the "checking sequence"

or C-sequence") Cy Cp--+G to be assoclated to the sequence S

so that, on the basie of the recelved sequence S{, Sg,-'-si
and of the checking sequence C1 02-- .(% , We may ocorrect all

errore of the sequence S, provided the number of these errors
18 not larger than the integer "a."

This problem is artificial in the sense that 1t
assumes the C-gequence to be available et the recelver, whereas
in practice the code will be transmitted together with the se-
quence S and is therefore usually subject to errors.

In general terms, the method of solution of the
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reetricted problem may be described ss follows:

(a) A generalized matrix 1s defined and 18 used to com—
pute the blnary diglts 01C2°'.%3 from the digits of the se-
quence S.

(b) It is assumed that, at the recelver, the same come
putation 1s carrled out on vhe received sequence, that i8, the
sequence ST = (8{, sg---si). The result of the computation
1s a set of binary dlgite denoted by Cf, c;g_‘...cer.

(c) The comparison of the sets of binary diglts
c = (Cq, 02,--°%,) and ¢¥ = (cf, Cg--~-q;) provides enough in-

formation to obtain the sequence S from the received sequence

Sr, provided the sequence S did not suffer more than "a"

errors.
Let us consider the double error case.
In thie case, we define a generalized matrix
Adp& where « eum.ﬁ range over all Integers from 1 to k,

and h ranges over all integers from 1 to ¢ . As will be shown
later, the elements of the matrix Aipk, have to be elther
equal to zero or equal %o ane.

It 18 convenient, at this stage, to define a simpli-
fied notation. If we cénaider & particular value of & , 3ay 1,

and a particular value of p y 8ay J, then we may consider the

sequence of bpinary digits

Agjo s Aija s Aija seee Aije

whlch 18 the bilnary representation of some number, say Q.



For slmplicity, we denote this sequence by {Ay,&b )
l..,?.'-. )

and we say that 1t "represents" the number Q.

With each palr of numbers (1,)), (where 1 and }J are

integers no larger than k, and 1 € J) we assoclate a number in

such a way that the correspondence is one-to-one. For con-

venlence, we assume that these numbers range from k + 1 to

k+(§).
All the elements of the generalized matrix A‘ﬂ&
are then deflned by the following set of conditions:

D¢ For 1 ¢ J, the sequence of blnary diglts

{ A‘J”‘Ikz.,z,.. ¢

"represents" the number assoclated to the pair (i,]).

D2: The sequence of binary digits

At
wk
{ Revye,. C

represents the number 1.

Dyi For 1 £ J, the binary digilt Adm is deflned by
the congruence

Ad'c& + A t AJJ& =0 (mod2) (ﬁ:l,z, . 4)

As a consequence of these definlitions 1t appears that

K may be chosen as the least integer such that

2£> (%) + (&)

Let us show that if we define the Cﬁ's and the Qg's

by the congruences
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Cg;ZZ A‘ﬁk 5&6/3 (mud?.) (I{:a,z,.-~.£) (20)

k R
CZ'E’Z.Z A,‘MLS“ A (rm,a—dR,) (K-a,z,.ué’) (21)

we have a double error correcting code.
(a) Suppose a 8ingle error occurred at the 1t position;

then the recelved sequence 1s defined by
= S* + g‘.‘u ¢medl 2) (@=1,2,.. k) (22)

where <&“ 18 the usual Kronecker symbol, that is <ﬂ‘=:
if 1=  and &, = O If Ldo

Let ue conelder the difference C& - CK

C;-C, g‘z‘n ((5<-S ) (SE-5p)  (med z)  (heie,. )

Taking into account (22) we get

k

1]

Aiip  lmed2) (B=12..¢)

And, according to D2, the numbers ALL& define the position 1.

(b) Suppose two errors occurred respectively at the 1th

and at the Jth position, where i'< J. The recelved sequence

1s then defined by

5:35‘1 *‘S’u *‘S’* (mod2)  (a=y2,.. £) (23)
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Computing the differences Cg - Cp, ve get successlvely
R - R N
Ci-C, = Z,.-?-} Hd/“ (SX-S.) (S5 -Ss) (med 2)

=7 % Aggp (i )00 W) et

A +hge Rje + A, (mod2)

and using D3 the last congruence becbmes:
(3
Ce\’-c = ""J& (_/)‘man) (_A.=l)2’...[)

Referring to D1 we see that the seaquence Cﬁ - Cp defines
uniquely the error positions, namely 1 and J.

Let us consider the triple error correcting case.

First let us introduce a one-to-one correspondence
between numbers, on the one hand, and all pairs (1,}) (such
that 1 £ J) and all triples (1i,J,m), (such that 1 < J { m),
on the othef hand. Of course 1,J),m are integers no larger
than k. For convenience we assume that these numbers range
from k + 1 and ({{)-* (f) *(f)-

All the elements of the generallzed matrix.Adﬂxﬁ
(vhere o, p3,0=12,.... R and h=1,2.. £) are then defined by the
following set of conditions:

D;: The sequence of binary digits

{Adcdﬁggzbzw_L

represents the number 1.
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D_: . } represents
2 leL Reiyz,.. @ b

the number assoclated to the pair (1,)).

For 1 < J, the sequence {A

D3: For 1 ¢ J ¢ m, the sequence {ACJ,"IA}K‘bzruzrepresents
the number assoclated to the triple (i,),m).

Dy, : For Y £ 3, Aj 02 18 defined by the congruence
A(),)'-l +A|'_£i‘\ + AJ)JI\ =0 (MZ) (A—-I,L).-- é)
Ds: For 1 ¢ J { m, A%mjék 1s defined by the congruence
A'm)'t'ﬂ +[A£££K * AC(}L ’+ALL‘/mPL
+Aiig KA Ay
+ Amm£&+Am4n)'K+AmmnnA1'£

frrod.2) B=1,2,.... €)

D6: All elements not yet defined are set equal to zero.
It 18 clear that £ may be taken as the least integer

such that

2y (B r ()
Now we wish to prove that 1f we define the Ch's

r
and the C,'s by congruences analogous to (20) and (21),

namely

k k ‘
C=2_ Z 2 A OO (med2) (2)

o=t =l =1

and

S Sy S, (medz) (25)
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then we actually have a triple error correcting code.

(a) Suppose a 8ingle error occurred at the 1th position.

Then the Eq. (22) holds and we obtaln easily

Cr-Co= Ay (medz) (heio,. 4

If ve refer to D; we see that the (C{ - Cp)'s define uniquely

the 10

position.
(b) Suppose two errors occurred, at the 1%N gnd the Jth

positions, respectively. Let, as usual 1 }. Eq. (23)

r‘

h

Cz‘cqi g— Z- ;: qurk (J(xfgd){{iﬁ+5ﬁ){£l+§[) (o 2)

o

holds 1in this case and if we compute C Ch we obtain

n
CR‘C&E Aie "'Hiq'& + HJ’J'(& + A)N’L (rmed 2)

where we used the slfting property of the Kronecker symbol and
the fact that many of the sifted terms are equal to zero accord-
ing to D6’

Remembering Db ve get

e-Co= A (medz)  (Aeie. )

If we refer to D2, ve see that the (Cﬁ - Ch)'s define uniquely
the positions i and J.

(c) Suppose that three errors occurred, at the 1°h, jth
and m®® positions. Let, as usual, 1 < J { m. The sequence ST

18 given 1n terms of the sequence B by the congruences:



S« ES%‘“SLi*'gd‘ox*grm« pmed2)  (d=12,... k) (25)

If we compute C; - Ch' using Eqgs. (24), (25) and (26) we ob-

taln

C'E"Ca EZ- %% Ao(/sb’A (‘rt'nt*;'; *‘r/m.t)(’{/g*‘({;ﬂ *‘(m‘/;)(‘QJ’L%J +S/”‘J)
(med 2) (R=12,... L)
or

h h= ALL'L'R * ALLJ'R TA imh
T hjin TRa YAjmb
+ Amm(K+Am1-\J'K+AMMmA

where we used the sifting property of the Kronecker symbol

and the fact that many of the sifted terms are equal to zero

according to D6‘

Remembering D5, we get
CZ_CKE th’”\,\ (ﬂnﬂd:) (ﬂ,:l)l,--‘e)

If we refer to D3, we see that the (Cg - Ch)'s define uniquely

the error positions i, J and m.

g.e.d.
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These two examples show very clearly how to con-
efruct an a-error correcting code.

First we create a one-to-one correspondence between
numbers, on the one hand, and all sinples 1, all pairs (1,}),
all triplees (1,J,m), ---: all a-uple (1,J, -+- g) on the other
hand; we assume that the integers 1,J),m ... g are not larger
than k and for all the pairs 1 < J, for all the triples
1<J<m -+ ,for all the a-uples 1 < J< m<++ <g. For
convenlence we assume that the numbers used in the one-to-one
correspondence range from 1 to 1 + (%)-*---- +(g).

All the elements of the generalized matrix AMBW.AQ
(vhere the a subscripts «,3,.... N range from 1 to k and
h ranges from 1 to g ) are then defined by the followling set
of conditions:

Dy: The sequences of binary diglts
{Acu...ce]&

A iR}, (where 1 1)

{Au.l.__” 'La’"“}g (where 1 { J  m)

{Atjnnn‘-g‘ia (where 1 < J <m ---<g)

represent the numbers assoclated with the single 1, the palr
(1,3), the triple (1,),m), +++ , the a-uple (1,j,m, -+ g)
respectively.

D2: All the elements of the matrix A«b"-hﬂ,nOt defined

in D1, are subjected to the only constraint that the equations
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defining the (Cﬂ - Ch)'s, namely,

Iy Aa(p...).k (st- *)(Snfi‘g/z)---- (S“A‘Sx)

(meod 2)

must respectively become

Op = COp = Ay ¢
CF = Cp = Ag.... ik fmod. 2)
f: (ﬂ"-"')z)"' 2)
¢ = ¢c. = A..
h n = Slpm... 3&

in the case of simple, double, triple, .... a~uple errors.
In this case, 1t 18 clear that ¢ need not be larger

than the least integer such that

ENCIRC RSN

The proof that the procedure just described provides
an a-error correcting code is entirely analogous to that of the
triple error éorreeting case but will not be given here.

Thus the restricted problem stated at the beginning
of this section 18 completely solved. In the next section 1t
18 shown how the methods developed here may be used to achieve
ag closely as we wlsh the maximum rate of reception of informa-
tion, 1n the asymptotic case of kK — OO .

3.22 Constructive proof of Shannon's fundamental theorem
in the binary case.

By binary channel we mean a discrete channel having
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-p P
p I-p

as a transitlon probability matrix.
It 18 well known that the channel capacity of such
a channel 1is I - /ﬂ(P)
wherehs in (II,11) Px) = -x fag&x - -2) by (1-%)
Suppose k 1s very large, then according to the law
of large numbers,(lt‘) the probability that the number of errors,

say e, does not fulfill the condition
|+ -rl<e
where € 18 a positive arbitrarily small number, goes to
zero when k —» 00 .
Thus 1f we provide error correction for errors
the total number of which is between k(p - €) and k(p + € ),
then, in the 1limit, the signal will be almost always correctly

received. The number £ of redundant digits 1s the smallest

integer E such that " p
28> () (o) + + [kgwo)

(p-¢)

/
Let P =p+€ . The integer ! y defined as the smallest
1nteger satisfying
2Z>(£.)(263+0
R p )
wlll never be smaller than Z s in other words l is an upper

bound for 2 .
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For very large k, using Stirling's formula, the
last inequality becomes
['> /) ﬁ(’p') + grg (1+2cR)
L
and as k —» 00 ‘ )
—g— = ffP')

Thus to correct all errors in the very long message
of k diglts, we must transmit without errors a correcting sig-
nal k«P (p’) digite long. We may go on repeating this process,
say N times; N 18 bounded above by the condition thatl;ﬂ%p')
pe large enough for the law of large numbers to be applicable.

Let ues evaluate the probabllity that some of the
first N correcting signals will fail, assuming that the (N + 1)
correcting signal 1s correctly received. This will happen when
the number of errors ex in some one of them (whose length 1is
for the time being represented by A ) does not fulfill the

condition

| -pl <e

The probability that this condition is not fulfilled is gilven

oy (105)
Pefl&—pl>e] > JE

when )\ is large.

m
»
>

®
»
-
S

(27)

m
5
P
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For k sufficlently large, the right-hend slde of
(27) ie very small, thus, neglecting second order terms, the
probability Pg that the number of errors liee outside the

prescribed intervals 1is

~ e 2P
P~fd (28)

where the summation is carried out over A=k, A= k)p(p’ Yyeeeen
¥

.wxsz@w.
Since P(p') £ 1, in the sum (28) the last term

is the largest, therefore Pe has an upper bound glven by

_e‘gﬁw
P‘-:NV-’F e [AE (29)
Pa

Up to now we have assumed that the correcting signal of length
1{?”“ wag received without errors.

Suppose that to insure the correct reception of this
last correcting signal, we repeat 1t 2k + 1 times. It 1is
easy to show that the probabllity that this correcting signal
st11l has an error, 1s bounded above by (cf. Appendlx III.B.)
2 pq)” AT

Suppose we select e 80 that

¥, < N+ y 2P9
2 — 2' €
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Equation (30) essentlally requires that the upper bound on the

probability of error of the last error correcting signal (of
N+

length k.? ) be equal tc the upper bound of P,, given by (29).

Taking the logarithm of both sides of (30), we get:
N

dfog(?pq)+1£7a(+pa’g)pm' i 2q ag(Ne\/W)

thus, for 1argelcfw

« [log 4pq | 2ET— vkl

N
That is, as kf goes to infinity, o 18 gilven by

e‘Z)VN

o = -
2pq | g 4p9]

Thus as kFN goes to infinity, the length L of the signal

and all the correcting slignals is given by

mz N
L K{ ezgp | N+
f + 2 Zpq |6g 4Pl F (31)

and the probability of error is smaller than é?;.

Suppose we choose to have N depend on k 1in such a

)@Nm z*%

~ U 2~ —‘
Thenkf o k? whilekF o k3 .

way that

Thus a8 k —e OO , we s8ee that, however small € 1is,

'53-—= 0 (see Eq. (29)) and from (31) we get

o Lo &

—+0 1= flp)
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That 18, in the limit, to transmit k blts we need only ' F 3
— (PI
digitse. In other words as k—»00 , the probability of error

goes to zero and the rate of transmission 1is
|- F{p') blts per diglt.
q.e.de.

3.23 The use of error correcting codes.

From a practical point of view it 18, of course,
impossible to use extremely long codes, not only because they
introduce a delay (which, in a cascade of channels, willl be
multiplied many times) but also because they would require an
impractically large amount of equipment. In this reespect it
should be stressed that the binary channel has an important
advantage over the continuous channel, namely, that all the
operations of coding are binary and thus are likely to be
performed by simpler, cheaper and more rugged equlpment.

First let us consider the single error correcting

code. This case 18 interesting because the artificilal re-
striction imposed on the coding problem in section 3.21 is
easily removed. In fact the construction of slngle error cor-

(21,22) yevertheless, 1t is of in-

recting codes 1s well known,
terest to obtain them as a particular case of our more general

method. As in section 3.21, we assume that the information
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source provides a sequence of k binary digits Sl’ Sz,---Sk.
On the basle of this sequence of digits, we shall compute ¢’

’
additional digits Cp, Cp,..niCp » where /' is the least integer

LS k.0

’
In order to obtain the Ch'e (h=1, 2 --o,l) we shall deflne

such that

!
a matrix Ad.ﬁ (A=1, 2 ***,kand h= 1, 2 °°° ,e) the elements
of which are elther equal to zero or equal to one.

Let B be the set of integers ranglng from 1 to k

but from which all the powers of 2 (that 1is 2°, 2! , 22, e 2 N

have been removed. The set B contains only k integral numbers.
The matrix AaLR. ig defined by the condition that each of the
sequences of binary dlglts {Aé&}&..,z,...,e' represents a number
of the set B in such a way that the correspondences between the
sequences and the numbers are one-to-one.

The Ch's are computed as follows:

R
,,_Z A S =0 (mdz) (’txn,:.,...,e.) (32)

The sequence S and the Cp's are then transmitted.
Suppose that we recelve S{ , Sg, coe S)Ii', C]I_' '“Cé' . Then we

compute the binary ‘c{ligits Dh by the congruence

¢+ AL SY a D (mod2)  (R=uz..-l)

«=|
If the error occurred at the ith position of the sequence S

then, referring to Eq. (32), we see that

‘-‘DRE Aih (K:l,z,..- [7') (33)
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and, according to the definition of A& , the relations (33)

Rk
define uniquely the position 1.
If the error occurred at the Jth posltion of the
sequence C, we would have
D =S (B=12,...,0")
k Jk‘ ) b 3
which obvliously defines the Jth position.

The two cases are differentiated by the fact that
the sequence of D's given by (33) contains at least two ones.
This is obvlious if we remember that the set of integers B does
not contaln any power of two.

An obvious way to extend the error correction scheme
wvould be to use the following method, which is dlecussed for

the double error correcting case.

Let @ be the least integer such that
v’ Rel’ ksl
"> ( l* ) +-( 2 )

Suppose we define the redundant diglte Ski-l’ Sk1-2’ oo 3k+2'

by the set of congruences:
kel Rel'

é %-; Adﬁk SQS =0 (mod?) (R::,z,...?') (34)

where the elements A are defined as in section 3.21.

<3 h
It 18 almost obvious, by now, that such a scheme
provides double error correctlion for all caises provided that
the system of simultaneous congruences (34) admlts a solution.
Examples have shown that this i1s not necessarily the case. To

1llustrate the difficulty let us consider two examples. The
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congruence
q‘+?‘+rx+g-_—-_l (mod2)
has no solution.
The system of congruences
x‘+xg+g‘+'x+g§l (moda)

it xy ty =i (rmod.2)

has no solution, although each of the equations has a solution.

Nevertheless the results obtalned by solving the
restricted problem may be used to devise scheme8 which provide
double error correction, triple error correction +++ . The
schemes that wlill be proposed have been obtalned by trial and
error and have been selected from many other workable schemes.
These schemes are certailnly not optimum but the writer believes
that, probably for some range of values of k, they may turn out
to be reasonably close to the optimum.

As usual let us call S the sequence of k blnary diglts
supposed to be put out by the information source. For double
error correction case, it is proposed to use as transmitted
signal S, Dy, D2, P and Fo.

Where S stands for the k signal digits
Dy stands for the diglts of a double error cor-
recting scheme applied to 8, using Eq. (20).

D etands for the digilts obtalned by the same

procedure but applled to D1

P,Z P, stands for parity checks on D and D, respec-

tively.
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For the triple error correction case, it is proposed

T D,, P P

10 20 P Do Byu B
vhere Ty conslsts of the diglts of a triple error

to transmit the sequences S, T

correcting scheme applied to S computed
by using Eq. (24)
T, consists of the diglts of a triple error

correcting scheme applied to Ty

Dl 18 a double error correcting scheme applied
to T2

D2 s a double error correcting scheme applied
to D1

I& ¢ P2 are parity checks on Di and D2 respectively.

These codlng schemee are used as follows: The trans-
mitted signal oconslists of a succession of sequences of digits
such that each sequence 18 deduclible loglcally from some pre-
ceding one. The recelver verifies whether all these relations
between the proper recelved sequences agree or not. For the
two coding schemes proposed 1t can be verified that any com-
bination of errors (provided their number is no larger than
the maximum number of errors for which the code 1s designed)
will create between the different sequencee of the recelved
slgnal some discordances on the basis of which the errors can
be located and corrected.

For completenese, we mention here that the proposed
schemes will be satisfactory only after a trivial change 1s

made in the definition of the generalized matrices AdﬁR, and
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Ad{!li the question 18 dlscussed 1n Apvendix III.C.
The method used to juetify the condes presented here is
indicated in Apvendix III.D.

3.24 The influence of the delay.

It was not found possible to determine the transition
probability matrix of a binary channel in which the proposed
correcting codes are used. Thus the comparison is carried out
on a probability-of-error basis.

In order to transmit k bits of Ainformation, we use
k’= k+f dlgits and 1f we use an a-error correcting code, the
probablility that the transmitted symbol is misinterpreted at
the first recelver 1s glven by

LY )
I’;Z,(ﬁ)px C\‘-\ (35)
A=as

In practice, only the first term need be taken, thus

Pa(f) o o

at!
and the probability that the symbol is in error, after having

gone through n channels is approximately given by:
' n
P =1-0-P) (36)

e
which, if nP <K 1, may be written as

P = nB-(F)2* +(3) P- -

ga
and if 1t 1s legitimate to take into account only the first

term of (35) and (36), then

! 2 R-a-
P 3“(«’:“) ’ 9 (37)

ea

On the other hand, if a diglt per diglt transmisslon
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18 carried out, the probabillity of error per eymbol 1is:
R
Pf": l-(l-Pe] (38)
where p, 18 given by Eq. (II,10). If the latter equation 1is

expanded in series, we obtaln after simplifications:
foxmp-2(3) pre (3P

which combined with the expansion of (38), becomes

Fox mkp [i-tndp + Kt omp] o kp O (Rutp?) (39)

It must be remembered that the reduction of the probabllity
of error, as indicated by Eqs. (37) and (39) 18 achileved at
the cost of three ltems: F

(1) The rate is reduced: we need X digits instead of
k digits. However when k 1s fairly large, a being in practlce
only a few unlts, the relative difference between k’ and k 1is
small.

&
(2) The delay 18 increased by nk'2%7 seconds where W 1is
the common bandwidth of the cascaded channels.

(3) The amount of equlpment i1s increzsed.

The formulas given ln the discussion above may be

1llustrated by the following numerical examples.

Example 1 n =100 k =100
Lxample L
P Pp Pe,l Pe,Z Pe,3
-~

.67 5.67 1073 2.95 1070  2.59 1077
1005 .105  5.67 1075 2.95 1078  2.59 10713
1076 .o1 5.67 107 2.95 10711  2.59 10717

10
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Example II n 100 k 1000
p Py Pe.l Pe 2 Pe. 3
107 .730 .399 . 0179 5.77 107"
1072 .630 . 050 1.8 10 5.77 1078
10~¢ 088 5.1 104 1.81 1078  s5.77 10712
1077 .00995 5.1 106 1.81 10711 5.77 10716

The fact that these coding procedures may actually
lead to the maximum efficlency may be intultively felt by con-
gldering the case of p= lO~5 in the second table. A three-
error correcting check produces, at the cost of a few percent
increase in slgnal length a probablillity of error per message
through the whole cascade nearly 200 times smaller than the
probability that a single pulse 18 misinterpreted after golng
through a single channel.

It might be of interest to point out that, in the
case of p = 10'7, 1f the samples were repeated as they are re-
ceived (that 18 without requantization) the probabllity of error
of a single pulse after a couple of channels would have been al-
ready reduced to approximately 10"4 and after 100 channels to
.37 (in those conditione the probability that a group of 100

diglts 1s without errors is of the order of 10-201)

(24) 18 also clearly exhibited

The threshold phenomenon
in both tables: 1t is immedlately perceived 1f the first and
last columns are read simultaneously. Mathematically, Eaq. (37)
makes this threshold phenomenon obvious, and, of course the

larger 18 "a" the more pronounced is the threshold phenomenon.



73.

3.25 Further considerations on error correating codes.

The use of error ocorrecting codes increases the length
of the signals. It might be of interest to consider what happens
if the bandwidth is inereased in such a way that the rate at
which information 1s gent remains constant. As usual we assume
that the nolse 1s gaussian and additive, for simplicity, we
also assume that its power apectrum is flat at least throughout
the frequenocy band of interest. As a result, the nolse power
1s increased in proportion to the increase in bandwidth.

As the channel ocapacity of the continuous channel,
affected by gaussian additive noise, insreases as W inoreases
(the signal power 8 remalning constant) 1t might at first
appear that the performance of the system under consideration
should also improve as the bandwidth inoreases. It is found
that this is not always the case. This is to be expected,
slnce we violate the conditions required for maximum rate
of received information (for the continuous shannel) in at
least twe aspeots:! 1) the input probability distripbution
should be gaussian and 2) the detection should be done by
cerosg-correlation. In the case under consideration, the in-
put samples are restricted to take, with equal probability,
the values T 1 and the received signal 1s detected pulse by
pulse,

We conslder two examples, both involving cascades

of 100 channels (n = 100).
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Example I. The messages to be transmitted are coded by
blocks of 40 bites at a time (k = 40). The sigrals require
L6, 58 and 76 pulses for the esingle, double and triple error
correcting codes respectively. The probabilities of error

are given in the following table.

p P P P P

P e,l e,2 e,3
10~8 » 105 8 10190 1,05 10-111,03 10-10
10~6 ¥ 1073 3.210°6 7.7 10-7 1.92 10-6
10=5 L,2 1072 3.3 10°%  L4.45 10=5 2.62 10~%

Example II, The eignals require 88, 101 and 124 pulses for the

single, double and triple error correcting codes respectively.

The probabllities of error are tabulated hereafter,

n= 100 k = 80
P
P P Pe,l Pe,2 Pe,3
10~8 8 105 3.45 1010 1,07 10=12 8.1 10~1%
10~6 8 10°3 3.45 10~ 1.6 108 1.0 1078
10~5 8.3 102  1.53 10°% 2.1 1076 1.1 1076

As k becomes larger, the increase ir the number
of pulses becomes relatively asmaller, (for example if k = 1000
triple error correction 1s provided by an increase of 6% in
length) and therefore the inoresse in bandwidth has less pro-

nounced effeocts. Nevertheless it should be borne in mind that



for k = 100 the increase in bandwidth has important effects
and should not be neglected.

75
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CHAPTER IV
THE OPERATION OF THE INTERMEDIATE
S8TATION AS A DESIGN PROBLEM

L,0 Intreduction

In this chapter we attempt to optimize the operation
ol the intermedlate station. For that purpose 1t ias convenient
to define s new term. We shall call "intermediate station
transfer characteristic, " or for short, ™ransfer charzcterias-
tic, " the function which relates the output signal to the input
signal of the intermedlate station. In other words, the trans-
fer characteristic describes mathematically what was usually
called the "operation of the intermediate station," When the
intermediate statlion operates as a repeater, i.,e., retransmits
the received aignal as 1t is, the transfer characteristic is
an ildeatity opserator. When the intermedlate station retransmits
the signal having the largest a-posteriori probability (of hav-
ing been the originally transmitted one) the corresponding
transfer charscteristic will be called maximum a-posteriori
transfer characteristic {abbreviated M.A.P.T.C.).

In the firat section the oriterion of design 1is
stated and discussed. In section 2 the equationes determining
the optimum transfer charaoteristic in the general case are
derived formally for a cascade of two channels. In order to
obtaln a soluble set of equationa, the problem is, then,
8lightly modiflied and restricted to a sample by sample re-

transmisalon at the intermediate station. Under this condi-
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tion, the optimum input probability distribution and the
optimum transfer characteristic are obtaired for the gaussian
additive nolse case: 1t is shown that the linear transfer
characteristic is optimum., Next the same problem ls considered
in the case where the transmitter sends identical pulses of
elther polarity. In order to obtain soluble equatlons the
criterion of design is modified and the transfer characterias-
tic minimizing the probability of error 1s obtained numerically.
The equation defining this transfer charscteriastic 1s also
obtained by a simple heuristic reasoning. The difference be-
tween a maximun a-posteriori probability detector and an
*optimum" detector (that is a detestor which would extract

all the information contained in the received signal) is
computed numerically for a simple case.

4,1 The Criterion of Design

At first sight, it might appear that the criterion
of design should require the maximizatiocn of the rate of recep-
tion of information., This point of view, however, implles an
unwvarranted idealization: in most practical situations, we are
not only interested in getting as much information (about the
transmitted signals) as possible but we also require that the
information received should contain most of the information
transmitted, in otlier words we require the per-unit equivocation
to be small. This is caused by the fact (already pointed out
in Chapter III) that, at present, we do not know how to handle

efficlently information represented by a set of a-posteriori
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probabilities. When the information received 1s represented
by the member of the set havling the largest a-pnsteriori
probability, it appears that the primary factor of Aimportance
is the per-unit equivocation.

Thus the oriterion that we shall use is the minimiza-
tion of the per-unit equivocation which 18 equivalent to maxl-
mizing the information received when the information transmitted
is kept constant. Of course the obtainable per-unit equivoca-
tion depends on the relacive magnitude of the rate of trans-
mission and the channel capacity in the sense that & reduction
of the rate of transmission of information will reduce the per-
unit equlivocation.

For simplicity, we consider exclusively a cascade of
two ochannels (see Fig. IV,1). The transmitted signal x is re=-
ceived by the intermediate station receiver as y. The latter
signal 1s retranemitted by the intermediate station as a sig-
nal X which 1s finally received at R2 as Y, The problem is
then!: given an adequate ensemble of signals x, find the
intermediate station tranafer characteristic which will maximize
the information received. Let the amount of information (about x)
supplied by Y be indicated by I(x,Y).

The quantity I(x,Y) 1s obtained by averaging over the
engembles of signals x and Y. In particular we may imagine that
1t has been obtalned by averaging I(xY[ Yi): (the information
about x provided by Y, when a particular y, say Yys has been

received by Rl) over the ensemble of all signals ¥y Once the
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tranefer characteristioc 1s chosen, the quantity I(xY |y,) may
be ¢omputed for any Yy and may be considered to provide a
measure for the performance of the system in that particular
case. In other words, I(xY \yi) may be considered as a meas-
ure of the effectiveness of the "strategy" adopted; here the
strategy under evaluation 1s the transfer characteristic.
I(xY | yi) will therefore be referred to as the performance
factor. There is no reason to believe that this performance
factor has any basic significance other than that its average
is equal to I(xY). As a matter of fact, it is not used
directly, in what follows. However, it has been found of
great use in the derivation of the results that follow and for
that reason it is mentioned here. It can easlly be obtalned

from the following expressions:

£y <5, T b 28,
or I(xY/y.) = - E)’ P(x.Y/y‘-) 803 {-ﬂa;(/li) (1)

where P(xY/ yi) is the probability of the pair xY when Yy is
the signal received by Rl.
It the signals x and/or the signals Y range over a
continuous domain, the sums are replaced by integrals without
difficulty since the integrand would then be invarisnt with

respect to any changes of scales of either x or Y.
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It is of interest to point out that, in some cases,
whatever the transfer characteristic 1s, the performance
factor I(xY/’yi) will be negative for some yi's. Consider the
following example: ©Suppose that the input signals x have all
equal a-priori probabilities and that a y exists, say Yor
such that the conditional probabilities r(x/yo) are all equal.
Thus when Yo is received by Rl, the intermediate station has
recelved no information (abcut x) since the sets of proba-
bilities p(x) and r(x/yo) are identical. As a result the
optimum signal that R2 could receive from T2 is the one that
would mean "your guess 1is Just as good as mine.® Even if such
a signal were transmitted by Tz, the signal will be distorted
by noise and in some cases, maybe very rare, it willl be trans-

formed into some other symbol which will mislead R Hence

2‘
gsometimes 32 receives no information (about x) and at other
times it receives some misleading information. Thus the aver-
age, for that particular y, will be negative.

4.2 The Equations Specifying the Optimum Transfer Characteristic

Suppose that both channels are bandlimited (their
common bandwidth is W) and that they are affected by a continu-
ous type of noise, in that, even if their input signals form a
finlte set, the received signals will form an infinite set. Ve
assume that the alphabet, at the transmitter Tl’ consists of M
symbols represented by M gignal-vectors EI, .52 °'?§§. Let 5'
be the signal received at Rl and §r(§) be the signal retrans-

mitted by T2. Thus the vector-function q?(f) completely descripes
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the intermediate station operation and is the unknown of the
present problem, |

From the statistical proprtles of the nolse, we can
obtain the transition probability densitles

PUFTIE)  wnd pUYTF)
of the first and second channel, respectively.

By the theorem on total probaebilities, the equivalent

channel transition probability density 1is

715 = [[ ] a5 a2 L7156 2

where the integration is carried out over the domain D of the
signal space 1n which 5. may happen to be.
Using the following well-known expression for the
information received
I<=H®) - H(Y/S) (3)

we obtain

I =[[...[47;p<§) E(TI) tog E(T/S)
D,

-[/,../dv [%'_ P(31 €(Y]5,)] tog[ 2 P(3) E(Y15)] )
D,
vhere t(7’l§i) is glven by equation (2), and D, is the domain

of 9{ Thus the problem is to find the vector-tunctionif(f)
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which maximizes the amount of information I while fulfilling

the power constraint imposed on the transmitter T2:

z'_"‘_ P(E)H...J ¢ (7 15.) \Zp?'tg”)llc{g:l’l (5)

(2]

The necessary conditions for maximum I may be written, using

Lagrange's method, (see Appendix IV,A)

Q)
—

L=}

- —IX— Lﬂ(g)i P(S) Pm(g[gi)a-o (6)

Q
S

where =1, 2 +++ K; K beling the number of samples 1n a

signal.

. &
L{) (g) i Me £~ component of the vector (y)
[}

=1
A is the Lagrangian multiplier.

o,

<

.Q...{I/dVZP(S)&?n(SIH 2 a;lwr/ fw(“s) (7)
D

8

=\ 2(5) LIYIS)
where r5;|Y) = ‘ - (8)
7] 7 2E) 15

If we write

q,4) = Z B(E) p" (75,

(za

using (7) we may rewrite (6) into

M &) gos
‘f‘(g}‘)=—i‘r§. (&) p"(7] )ﬂ»-»jd”%%:—l'ﬂ)&grt(il?’) (9)

(o= he,. .. K)
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This set of equations defines the optimum transfer character-
1stic. Thus in order to obtailn an optimum design we should
golve the system of K integral equations given by (9). An
exact solutlion 1s very nearly hopeless because of the rather
involved character of the equatlions, indeed the integrand of
(9) is itself a functional of the unknown functions as 1t 1s
easilly seen vy referring to Eq. (8) and Eq. (2). Thus we may
hope to be able to solve the Eq. (9) only in a few very
speclal cases.

4,3 Particular Cage: Sample by Sample Transmission Through
Additive Nolse

Let us consider the following case: (1) no delay
1s allowed at the intermedlate station, thus the signal must
be retransmitted sample by sample: (2) the noise 1s, in both
channels, additive to the signal, and (3) the nolse probability
density, say nl(t), 1s the same in both channels and is an even
funotion of t. Let us formulate the problem ag follows: using
two transmitters, T1 and T2, of fixed average power, find the
optimum input probability densiby p(x) and the optimum transfer
characteristic ¢p(y). In other words, we have to determine the
functions p(x) and ¢ (y) which maximize the amount of informa-
tion (about x) supplied by Y at R,. This problem may be properly
consldered as the determination of the channel capaclty because
the solution of the problem will specify the transmitted signals
only by their amplitude probability density.

The average amount of information (about x) supplied
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by Y , eay I(x,Y), is given by

I(x,Y)-= _[qz(y) &3 g, (1) dY + F(x)clx[f.‘()’/x) 8o3t(y/x)dy (10)

where Qz(Y) is the probability density of the sample Y
(et RB,),
t(Y x) is the transition probability from x to Y.
The 1limits of integration have been omitted because
it is understood that the integration interval must
include all points where the integrand is different

from zero,

It is easy to see, by direct application of the theorem
on %otal probability that

E(Yx) = [a, n(yg-%) n Y= (9]
We also have
9. () =[,’(x) E(Y/x) dx
Thue t(Y¥/x) 1s a functional of ¢ (y) and q, (Y) 1s 1tself a
furnc tional depending on both ¢ (y) and p(x). Referring to
Ea. (10) we see that I(x,Y) is a functlonal of t(Y x) and
q,(X).

The unknown functions p(x) and ¢ (y) must maximize

I(x,Y) while fulfilling the following constraints:

[F(x) dx = I (11)

/3:" p(x) dx = P (12)

/7.(y) [¢(9)] dy="P (13)
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where P, and P, are, respectively, the average powers of trans-

mitters Tl and Tz.

In order to obtain the necessary conditions for maxi-

mum we introduce small continuous variations cg?(y) and E)p(x).

If we let

_ dmn(t)
M, (t) =FF

we obtain for the first variation of t(Y)x)

StTYIxJ=-i]ﬂd#~%%nL[Y—?qﬂ<§T%)dy (14)

Similarly the first variation of ci(Y) is
3

(Scia(Y) = Id'.r. Elylx) LSP(’I) -Jd/x Jdg pLx) m, (4-x) m, [y- lfl(lj/] J 50(]; (15)

Using Eq. (14) and Eq. (15), the first variation of I(xY) is
easily obtalned:

(SI=..IcL\/ Pog CL(Y)Udﬁfdx n, (y-x) m.[Y-‘f’ls,\]ép(x) —de 7‘(?) "‘z[y“f]é“f"j’}

.*.de {dx E(y|ax) pog t(Y"‘)(SP(T-)
J

f
.Jdar.J dy b(x) 003 t(leJJdv nz[Y—?cgil 'n,(%—x)&f(«j)

The necessary conditions are directly obtained from (16) by

(16)

application of the fundamental lemma of the calculus of varia-

tion.(3°) But in the application of this lemma, we must remember
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that the unknown probability density p(x) must, in additicn
to satisfying the constraints (11) and (1°), be non-negative.
It is expedient then to replace p(x) by the square of a (real)

func tion p (x). Hence P(x)=,yfx)

and (Sp(x) =2 p'(x) ép'(x)

It 1s then found that the necessary conditions for maximum

take the form of a set of three equatlions!

- - 0 _ (17)
deJdY Pl M, (§-%) m, (¥-4) ?o? t—l?;I:)— =X quy) pry)
]t(Y}x) pog.ﬁi’.? dy = ,.Loc‘+v (18)
LYHx)
F(x)':O (19)

Eq. {17) must be satisfied for all values of y; for any x,
either Eq. (18) or Eq. (19) must be satisfied. The constants
v, ,L and A are the Lagrangian multipliers corresponding
to the oconstraints (11), (12) and (13).

b,L Gausslan Additive Nolsge

We have already pointed out the 1lmportance of gausslan
additive nolse., So let us assume that, in both channels, the

nolse probability density 1is
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tL
n, () = S22 (20)

£ -
Vet
where N is the average nolse power,

In order to solve the Eqs. (17), (18) and (19) in this
case we have only one method avallable: by physical reasoning
guess a possible solution and check whether 1t gatisfies the
equations.

Let us recall that the entropy H(y) together with the
informetion (about x) received by Ry, will be a maximum if and

(6’7) As the noize in the second

only if p(x) 1is gaussian.
channel 1s also gaussian, it seems natural that the input of
the seccnd channel shoald also pe gausslan, For, in that case,
Rz recelves as much information aisut y as possipnle under the
constraint that the average power of T2 is oconstant. Thus a
linear transfer charasteristic is required for only 1if y(y)
is linear in y, can both y and ?7(y) have a gaussian distribu-
tion.

At firast sight, one might wonder how 1t i1s possiple
that a linear tranasfer characteristic may be optimum, for a
linear transfer characteristic implies that some signals, al-
though very rare, are retransmitted with a very large amount
of energy. This conjecture 1s not valld because the perform-

ance faoctor is equal to:!

z_( )
gzl“ ';ﬁﬁ + 3(:+::;
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where we assumed P1 = 1 and P2== 1+ N to simplify the notatlone.
This shows that as y becomes very large, the average amount of
information that R, recelives about x becomes approximately
proportional to y2. Ag, on the other hand, the energy 1s
also proportional to y2, the linear characteristic seems
quite natural, since for large y's the (energy) expense becomes
proportional %o the (information) return.
To test this plausibility reasoning, we must sub-

stitute, into the Egs. (17) and (18), the assumed solution:

L
T
Vamr

F('I.)::

Ply)= 3
These relations imply

”L
T Z(+N)
c]ua);- e~
' \[zn11+N)

2
e" 201 +2N)

(Y)=
C’z Vam(142N)

To simplify the notation let us define R and 02 such that

and

\,1.
7R T 2

&3 <1(Y)=-

¥ The momni- ;
The manipulations would remain essentially the same if we had

taken
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If in Eq. (17) we let

&3 %) = ﬂog cL(Y)—- l’og E¢y|z) (21)

tiviz)
1t is easy to show that the contribution of the 1lst term of
(21) 1is

* 14) Py (22)

Let log (Y1) = - ‘j;;" +C

3

where C_, 18 a conetant independent of x or Y.

3
Integration by parts (with respect to Y) of the 2nd
term produces an integrand of the form

= gt (y-y9)*

e? g N e N -(Y-x)
YVt VYarN~  NanNWN 2N

vhich after integration with respect to Y, gives

:z (“_x)l
L . eZT e aN
< 33 VNZr VIWN

Inverting the order of differentiation and of integration we
finally get

4
T T+N ci.(,) (23)

Thus the left-hand member of Eq. (17), which is the sum of
expregsion (22) and (23) is proportional to the product
?(y) %fy), for all y, as 1t is required by (17).

The check of Eq. (18) is immediate.

Thus, 1t has been shown that the necessary ceconditions
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for the maximum amount of received information are satisfled
by the gaussian distributed input and the linear transfer
characteristic (¢ (y)= ky.

4,5 The Digcrete Case

Consider a two-channel system such as the one repre-
sented in Fig, IV,l. BSuppose that the transmitter T1 sendg
pulases of unit amplitude and of either polarity, each type of
pulse having the same probabllity., Suppose that the inter-
medlate etétion is required to retransmit the samples as goon
as they are received. The problem is to find, under these con-
ditions, the optimum transfer characteristic ?(yd of the in-
termediate station,

The equation for the optimum tp(y) may be obtained

from Eq. (17) provided we take into account that

pe)=4[Sa-n +5(x+.)] (21}

where S(X) is the usual Dirac or impulse function.
If thlis substitution 1s carried cut, the following
equation 1s obtained for (r(y)

)
Elyin)

L,y |, [¥-ptyi] Pa3

7

] Y gy -
+4 'n.(tiﬂ)sz[Y (piy)] pog o dy = A Ci‘t'j) ((’(3) : (25)
The direct solution of this equation i1s well nigh

impogsible. Nor was 1t found possible to devise an approximate
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method which would lead to a solution within a reasonable
amount of time.

On the basis of the results of Chapter II, 1t is clear
that the performance of the system, assuming Lf(y) =Xy a8 a
transfer characterietic (where the constant k 1s adjusted to fit
the power constrailnt) is certainly worse than that obtained with
a meximum a-posteriori probability transfer characteristic. It
18 shown in Appendix IV.B, that the latter transfer character-
18tic 18 not optimum either. This proof requires only very
general assumptions on the probability density m (t).

Nevertheless it 18 felt that the problem under con-
sideration 18 of sufficlent interest to create the need for an
even approximate determination of the optimum <f(y). In order
to obtain a simpler equation for qﬂy), let us assume that the
final recelver R2 operates as a maxXximum a-posterlorl probability
detector, that 1s, 1ts output consists of the sample most likely
to have caused the recelved sample.

In addition to the assumption that n,(t) 1s even, let
us assume that nl(t) is a decreacsing function of t, for posi-
tive t. As the symmetry of the problem requires that 4f(y) be
odd, it follows that when the recelved sample Y, at R2, is
positive (resp. negative) the output of R2 will be + 1 (resp. -1).
The probability that the output of R, 1s in error is then a func-

tional of ¢ (y) given by

(4 1)

0 +@ ® t
f”i‘/ d‘//“‘! mty-0 w91 + %fdv[ dy m, Ly +) m, [v-¢] ze)
‘o ‘¢ ° -a0



Taking into account the average power constraint on 77(y)

we obtailn the following equation for ?J(y)

nlyr1) = n(4-1) (27)
n,[«fly)] 7, (y+1) + 71, (y-1) =A ‘f{‘ﬁ ’

If the Lagranglan multiplier A vere known, the transfer
characteristic ?(y) wouid be impliocitely defined by (27).
Equation (27) can be solved numerically by assuming a particu-
lar value of )\ and adjusting the )u by successive aporoxi-
mations until the solution 1>(y) satisfles tne power require-
ment.

The optimization problem is an important problem
because, 1f 1t were solved, 1t would indicate the most that
can be achleved, by the syetem under conslderation. As we
have seen in section 4.2, the problem, when treated formally,
leads to an unsoluble s8ystem of equations. Arparently, the
difficulty comes from the fact that, in thlis treatment, at
each step of the derivation, all the characteristics of the
system under consilderation are taken into account. On the
other hand, it seems reagonable to assume that if, by intro-
ducing certaln approximations, one could separate, even par-
tially, the different factors of the problem, one would obtain
an approximation leading to more readlly solved equations.

This kind of thinking led to a heuristic approach of
the problem. In the particular case under conslderation it
leads to the exact form of Eg. (27). As 1t is felt that this
i1s more than a mere coilncldence, this heurlistic derlvatlion 1is

given here.
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It 18 intultively clear that the optimum transfer
characteristic should depend on the following three factors:
(1) A sample of amplitude y received at Ry, has a
"value" which is a function of y.
(2) The usefulness (to the last recelver R,) of a re-
transmitted sample of amplitude ¢ (y) is a function of y’(y).
(3) The intermedilate station transmitter T, has a fixed
average power.

Since we wish to derlve heurlstically the condition
resulting from the minimlzation of the probabllity of error, we
should use only probablility concepts. Suppose y 18 recelved
and (f(y) 18 retransmitted, let ue find a function of y and

tf(y), say Flry, V(y)] , which will represent the average
value, to the last recelver RZ’ of the esample retranemltted as
¢ (y).

If the sample y recelved at Ry 18 positive and 1f,

as a congfequence, 1t is assumed that + 1 was transmitted by Tl,

the probability of error p(y) is given by

m, (Y1)

F(lj): Mo ly-1) + N ly+)

for y > O

Since the channel preceding the intermz=dlate station
has a binary lnput let us consider the quantity 1 - 2p(y) whose
form 1s identical to the quantity of intereet in the analysls
of cascaded binary channele, cf. Eq. II,9. If p(y)= %, the
recelved sample y 18 of no information value and 1 - 2p(y) =0

If p(y) = 0, the received sample has the maximum information
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value and 1 - 2p(y) = 1. Thue we might expect that 1 - 2p(y)
occurs as a factor in F[:y,tf(yfl . It seems reasonable %o
further assume that the second factor must describe the ef-
fectiveness of the retransmitted sample y(y) from the point
of view of the last recelver. A natural cholce would be the
probabllity p_ [(f(y)] that the retransmitted sample (f(y)
will be correctly interpreted by the last receiver. Thus in

our case

Fc[tpua)]w‘[ +nlpty)] (28)

where z
/n(Z)=]'/th)dt

(o]
Thue we write

Elyeq] ~ [i-2pep] peloy? (29)
Since we are interested in optimizing the average behaviour
of the communication system, we must obviously consider the
average value of F‘[yy q(yi} , the averaging belng carried out
over all y's.
Thus the problem is then to find the ?(y) which
maximizes '
<Fly, o) > (30)
subject to the condition that '

<fpl*>,..= P (31)

Geometrically, in terms of a Hilbert space in which
?(yﬁ 18 a point, the condition (31) represents a surface to

which the point (p(y) 18 constrained. The problem is8 then to
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find a point on that surface for which the scalar (30) 1s

maximum. At that point, the surface (31) and the surface
[ _ rt
< (y,tfw;)] D= C

wlll have a common normal. Hence at that point, we shall
have
” d

If we teke into account Eqs. (28) and (29), we obtain

mn,(Y-1) = N, Y+i1) m (4)
(f“ﬂ e n, (y=1) +7,(y+i) ‘ [(f ’]

vhich 18 identical to Eq. (27).

4.6 Special Case of Gaussian Nolse.

Let the noise be gaussian and additive. Let N be
the average nolse pover, then the nolse probabllity density
1s given by Eq. (20). Taking this into account Eq. (27)

becomes 2
_ g1
e 2W mk% _ A ‘f’lg) (32)

N

This equation has been solved numerically for g = 1 and % =44,
The solutlone are presented in Fig. 1IV,2. We used them to com-
pute the probability of error Pe and the per-unit equlvocation
E. For purposes of comparison, the probability of error Pé
and the equivocation E’ have been computed on the basles of the
maximum a-posteriori probability transfer characteristic (for

ghort M.A.P.T.C.).
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P, Py E E
S

ﬁ =l 9257 o267 0825 '850
%:u L0432 . Ol 5 .257 .262

It should be stressed that as the signal to noilse
ratio becomes large, the solution of (32) resembles more and
more the M.A.P.T.C. and the transition region of the solution
of Eq. (32) gets smaller and smaller.

The results indicated by the table above are of
interest because they give the largest decrease in the
probablility of error that can be achieved under the condition
of sample by sample retransmlission. They imply, therefore,
that any other strategy, such as, for example, requantizing the
recelved sample y to a larger number of levels, will not lead
to an appreciable improvement in the system, once the signal
to nolse ratio is larger than, say, 4. In fact some of these
possibllities have been investigated by the writer and the re-
sults were found to be within the bounds indicated by the table
above.

Esgentially, the equation for ¢ (y) was obtained in
a soluble form at the cost of minimizing the probablility of
error instead of maximizing the information contained in the
received sample. It would be thereforse of interest to evaluate

the difference between the information content of the input-
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slgnal and the output-signal of the recelver deflned above.
This could be done only in the followineg simple cace: The sys-
tem consists of a single channel perturbed by geausslan additive
noise, 1ts input consiste of samples of amplltude t 1, the re-
celver operates as a maximum a-posteriorl probability detector.

Thue the information per pulse (about what was transmitted)

contained in the detector‘s output is, in bits,

I"‘\= I- #(P)

p=t (W

The amount of information per sample contained in the

where

recelved signal and that, by definition, would be contelned in

the outvut of an "optimum" detecuvor 1s glven by

t©
Io = -/ i_[r(w») *plyl-n] £7 i—[rl,h) +plyl-) ] d,g

+00 00
%J pigt Lo piyi) dy +% Plyl-')lo}l plyl-1) dy (33)
‘o ),

where ( ;Ua

plyIE) = (34

The results are presented on Fig. IV,3 and the detalles of the
derivation are presented in Appendix IV,C. These results are
in accordance with the intultive feeling in that, for large sig-

nal to nolse ratios, the rela*tive difference 1n the information
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content is small and that 1t becomes qulte appreclable when the
signal to nolse ratic approaches unity.

4.7 Concluding Remarks

Ordinarily the intultive feeling which guldes the
expert is bullt up by the experience of many simple cases. 1In
the domaln which 18 the obJject of this work only a few casesg
have been treated. Therefore any conclusion must be ccnsidered
tentative and 1s made with the aim of communicating a way of
thinking rather than summarizing, in a few bold sentences, the
baslc nature of the problem.

The characteristic difference between the problem of
communication through channels in cascade and that of communi-
cation through a single channel 18 that, in the latter case,
the transmitter possesses the complete knowledge of what 1t
should transmit. Whereag in the cascade, each intermedizte
station has ¢ 'y partial information about what 1t would like
tc transmit. In fact, the intformation avallable to the inter-
medlate station 18 in the form of a 8et of a-posteriori proba-
bilities.

The amount of (selective) information required to
epecify this set of probabllities 1is inflnite. Even 1f the
probabilities were specified only approximately, 1t is usually
very much greater than the amount of information (about what has
been transmitted by the first tranemitter) supplied by the re-
celved signal. As a result, the intermedlate station must re-

transmlt one or a few of the characteristics of the set of a-



100.

poetariorli probabllities. A convenient characteristic to re-
transmit 18 the member of the set having the largest probability.
This corresvonds to the maximum a-poeteriorl probability trans-
fer characteristlic. In this particular case, 1t appears that
the ilmportant factor 1s the per-unlt equivocation of the

channel (or of the cascade of channels) which precedes the
intermediate station under conslderation. When the per-unit
equivocation 18 smull, the sum of the probebilities of all the
other members of the set i8 small, 80 that the 8pecificetion of
the member having the largest probability conveys nearly eall the
information contained in the recelved signal. When the per-unis
equivocation 18 appreciable, the specification of that member
indicates only one of the many characteristics of the set of
a-posteriori probabilitles. This way of thinking makes 1t
clear that, 1n the cases where the per-unit equlvocation (per
channel) is appreciable, the performznce of the cascade should
deteriorate rapildly as the number of cascaded channels in-
creases. It also makes obvious the reason why such techniques
as the requantization of pulses at each intermediate station or
the complete detection of the signals at each intermediate
station play such an important role in the performance of the

cascade.
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Appendix ITI.A

The characteristic values of the M ty M matrix,

b P .... P
P b ... . P
L b
P i

where b= 1 -(M - 1)p, are respectively 1 and 1 - M
The characteristic values are solution of the deter-

minental equation

c b p

=0
)% c . p
P . e

where ¢ = b =\
th
Subtraoting the last column from the 1lst, 2nd, °**** (M = 1)

column we get

(¢ - p) 0 0 .
0 (¢ = p) 0 )
(o - P)p
(p=¢) (p-20) (p=-nDe

Adding the 1lst, 2nd, +«« (M = l)th row to the last row we get



or

(o - p) 0 ... D

0 (c -~ p) p
p
0 0 0 1 =\

[o-p) 21" (18 =0

q.e.qd.

102.
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Appendix III.B

Consider a algnal of ¢/ binary pulses, the whole
signal being repeated 24 + 1 times. The probabllity that

a particular pulse of the gignal will be misinterpreted is:
24 +1

, A+ A (n(+a-B)
=2, 80 P79

The probability that an error will occur somewhere in the

gignal 1s
2

' 4 g
/ ~r ’ [
B = oo x PG e
The probability p; is a decreasing function of « , and
pé-——» 0 as x — 0o thus, for sufficlently large « , gpé( 1
and the first term of the binomial expansion 18 an upper

bound to Pg,

B. <l
24 +1 q W+
But Fé < ock = )F q
By Stirlings formula, zau) ~ 7% gt «
= ~ 2 4%V
CURRRET
hence
, 3 & & N+ « 3/
< « 4 2 2. (4p9)"
Pe Pre & < Z. (4p9
and
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Appendix III,.C

The double and the triple error ocorrecting checks,
descrived in seotion 3,23, should Le modified in a trivial
way in order to meet the following objection. For simplicity,
this objection will be formulated in detall for the double
error oorrecting case.

Congider a particular combination of two errors,
one affecting the pulse sequence S and the other affecting D1
such that the resulting sequences 8% and D{ agree with each
other. Let us re2member that the sequence D1 is obtalned
from S by carrying out the operations specified by Dq. (20).
It 18 cliear that such a situation can ococur only 1if

(a) the error affecting S occurs in a position to which
18 assoclated a number, the binary representation of which
contains only a single one,

(b) this digit, Just mentioned, i1s the one affected
by the 2nd error, that is, the error affecting Dl.

Esgentially the 2nd error erases the trace of the
lat one. These occurrences will obviously be avoided if to
gsingle errors are associated numbers the binary representa-
tions of which contain at least two ones.,

We shall now show that if kX > 2, we can always
a8soclate to single errors, numbers the binary representations
of which contalin a single one.

The number of these numbers is f 1° if f 1 is the

number of pulses contained in Dl' On the other hand 21 is
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18 defined as the least integer auch that
2l s ke (§) (c1)
Thus, in order to fulfill our supplementary ocondit:i .
we need to have in addition
2bp Sk (C2)
gince there are k possible single errors in 8. It 1s obvlious
that, for large k, Cy implies 02. It can be verifled that it
is8 indeed se¢ except for the case of k = 2,
A simllar reasoning will show that for the triple
error correcting case we must impose the following requirementsa:
(a) s8single errors should be assoclated to numbers the
binary representations of which contalin at least three ones.
(o) double errors should be associated to numbers the
binary —epregentations of which contain at leeast two ones.
We shall show that once k > 3, we can always fulfilll
these additional requirem:znts,
Indeed the triple error correcting code T associated
to the sequence S has a number of pulses ¢ defined as the

least number é such that

2£> ﬂ+(’f)+(%) (C3)
Condition g requires
zf-é-lf)ﬂ{ (ch)
Condition b requires 0
2-?}K+é) (C5)

Again it 1s obvious that for large k, (C4) and (C5)are implied
by (C3). It can be verified numerically that it is aleo the

case fer small k provided k ) 3.
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Appendix III.D

The aim of this appendix is to show how the codes
presented in the text ﬁay be Justified. We shall reason only
on the triple error correcting ocase.

The proof is carrlied out by considering all possible
cases. To consider them all here would be very long, especlally
in view of the fact that the reasoning used falls into a few
definite patterns. We shall therefore examine here a few
typloal cases.

(a) Buppose that three errors occurred in the sequence
Tl; hence the received sequence TI differs from T1 by three
digita. The received signal is then 8 T{ T2 D,y DZIP1 PZ‘
As stated in the text, the recelver uses this aignal to
verify whether all the relations between the proper reoceived
sequences agree or not. In the present case, there are dis-
cordances between S and Tr, on the one hand, and T{ and T, on
the other., The pairs T2 - Dl' D1 - D2' Dy - Pl and D, - P2
are found to agree. We must remember that the code 1is designed
to correct all errors provided their total number 1s £ 3. Thus
we constantly assume in the reassoning here that the number of
errors which did ocour is & 3. From the discordances, 1t 1is
concluded that there is =t least one error in the first three
sequences 8, Tr, T2°

Thus there can be at most two errors in the last

five sequences T2, Dy, Dy, P1 and P2‘ A moment of reflection
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will show that no two errors could have affected these sequences
and at the same time produce the agreemente between the above
mentioned paira. Henoe Tz 1s free from any errors and is used
to correct T;. The corrected sequence obtained from T{ is
found, in this case, to agree with S, from which it is deduced
that 8 was correctly recelived.

(b) Buppose a palr of errors ocourred in 8 and a single
error affected T2. The received signal 1s then of the form
st TlT;DIszlgf The recelver notes the followlng agreements
Dl - Dz’ Dl - Pl' D2 - P2 and the following dlscordances
10 Ty - T T3 - Dy
disagreements at least two sequences muat contaln some errors.

8T - 7., T In order to obtain these three
Thus, at moat, a single error could have affected the last three
sequences, D,, P, and P,., It 1s obvious, then, that D, is free
from errors and so is Dy (on the basia of the agreement Dy - D,).
Dl may be used to correct T2, for, indeed, 1t 1s known that all
errors did not ooccur in the same gequence, thus T2 ia affected
by at most two errors. In the present case, the corrected T2
will agree with Tl, which in its turn, will be used to correct S.
(c) Suppose one error affected Tl, another D2 and the

last P,. The recelved sequence is then of the form

2
S, Ti, T,y D, Dg, P, P;. The receiver notes the tollowing
r )
agreements T, - D, D, - P, D} - Pg and the following dis-

cordances. 8§ = T{, T{ - T2’ D1 - Dg. This last discordance in-
dicates that at least one error must affect one of the D's. The

other two dlscordances indicate that at least one error affects the
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first three sequences. From the firat sonclusion and the

fact that P (resp. Pr ) agrees with Dy (resp. D, ) it follows
that one of the P's is in error. Thus there are at least
three errors and since we need only oconsider the cases where
not more than three errors occurred, we conclude that a single
error affects the group st¥ T Remembering that this single

1

error causes the discordances S - T{ and T{ - T2 it follows

that the error affects T hence S is free from any error.

12

Obviously the cases in which several errors affect
a single sequence are very eaglly deal. with because the
errors are easily located. The cases where each one of
several sequences are affected by a single error require
subtler reasoning but essentially the technique is the same
ag in the case C. In order to convinsce the reader we shall
congider a second situation of this type.

(da) Suppose one error affected S, another T, and the

2

last one Dz. The recelved sequence is then of the form

T, T, Tr Dy Dr, P, P,

agreement D; - P, and the following discordances 8% - Ty,

The receiver notes the following

T, -1, 5 - D, D - D5, DY - P,. From the first three dis-
cordances at least two sequences of the set S, Tl, Tz' D1 must
be in error. In addition, from the last discordance, some

error must affect elther D_ or P hence at meast two errors

2 2?
(in two different sequences) must have affected the set

s, &, T Thus (if the total number of errors is < 3,

12 T Dy
the only case we are interested in) P1 is correct and from the
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agreement P1 - D1 we conclude that D1 is aleo correct. Since
we know that all three errors did not affect the same sequence,
the double error correcting code, D1 will suffice to obtaln the
correct S from the received sequence.

Using the same method to dlascuss all other possible
cases, 1t may be shown that the proposeé cocde allows the cor-

rect 8 to be extracted from the received sequences provided -

they were not affected by more thsn three errors.
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Appendix IV.A

Let tﬁ(?) be the optimum transfer characteristic.
Conslder a continuous bounded vector function t-{(f) and a real
number e such that, for small enough € 's, € 7{("57) 1s for
all ¥'s very small.

If ve replace (?: by ?: + € ’7{ in the expression
for t(?‘g;_) we obtaln the transition probability density cor-
responding to the new transfer characterlstic. Thls probability
denelty is a functlon of € . Let us evpand the lntegrand in
MacLaurin's series, neglecting terms higher than the 1st order,

thus
K ()
LT 1 Gret] = pUITIR] + e n B E

where frl 18 the 44 component ofi
o«

R

and "F 18 the o component of .(E
ol

- )
The variation of t(Y , S1) 1s then, using (IV,2),

S ,-S*L _ezﬂ/&’ ,rl(g)r()"/)’h") Plu(;*,’s’) (h1)

The variation of the information received 1is

8T+ ﬂ ]d?g‘ZP(s)[w&rgt(WS)}St( I5:)
47t gtz £ 2 St
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or

M 7T =
SI-|[. |12 2E) 1}3 - t}y '§l ItFIS) 47
= %,P(se)t(Ylsl)
If we substitute in the last equation St(f\ ?‘;1) by 1ts value
according to Eq. (B.1), and Af we use the fundamental lemma of
variation caloulus,(30) the equations for the optimum ?;(f)

would be

o/

ol =0 (d=1,2,... K)

Pu

- >
if (fo(y) had not to fulfill any constraint,

Yhere

AL | [dY = 2(5, LF13)  PENE) oo
P J]] ¢ ) b ezf(f:;)t(?'ls;) VP pUFIS) (a2

Remembering that
”JJ,V’ SE(F18) =0 (iz1,2,... M)

1t is clear then that expression (B.2) 1s equivalent to (1V.7).
If, as in the text, the optimum vector function
—
7%(?) must satisfy the power constraint (IV.5), using Lagrange's

method one obtains immediately Eq. (1V.6).
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Appendix IV.B

The alm of this appendix is to show that the maximum
a-posteriorl probabllity characteristic is not optimum. To do
8o we conslder a modified transfer characteristic which, for

A = 0, reduces to the orecedlng one. It 1s shown that for
infinitely small A , the information received is larger than
that obtained in the case A = 0.

Both transfer characteristics are represented in
Fig. IV.B. The slze of the modifled transfer characteristic
1s obtalned from the condltion that the averaze power of the
intermediate station should remaln unchanged. Thus, for small

A 's, the retransmitted sample will be I1+71,0)A

The transfer probabllity density of the equivalent

channel for the case of maximum a-posteriori probablility detec-

tion 1is given by:

tiv|y) "Pz' & nin) m (¥-1) +[Jz- -’nla)] 7, (Y +1)

where V
’“‘t’=f (0} b
o
In order to obtaln the transfer probablllty density
of the equlvalent channel for the case of the modifled charac-
teristic we note first that the second channel 18 used as a
three level pulse system. The transition probablility matrix of

the first channel 1is

%fﬂ(o-a) m(1+a)-n(1-a) L- n (1+0)

L - nli+4) m(i1+4)- nl1-4) L+ m(1-0)



iMODlFIED CHARACTERISTIC

FIG. IZ ,4
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The transition probablility denslty of the second channel 1is
the column matrix
m, [y- i-a m,a)]

m, ()

m, [+ +4 n, )

: ]

The equlvalent-channel-probability density 1s given by the
oproduct of the two matrices, thus we obtaln respectively
t (¥|1) ana t (¥]-1).

We have
Ee (Y))= [I' +m(r)} m, (Y-1) +-[2_ - 41(:)] n, (Y +1)

+An,(n){ 2m,(¥) - m,(y-1) -n, (¥+1) = [4 mm] m, ly-) +[§-m-ﬂ M, (Y+1)

where we neglected the second order terms in 4 .
Thus when A changes from zero to an infinitely

small value, t(Yl 1) changes by
SElviy=t, (yi-t(1)

The change in the density of Y is

Silz(Y)-: An, ) {Z.n, ty) - Y- -, (Y+1) + m, Ly+1) -zm, (V-')}

The change 8[ in the average amount of informatlion recelved

is:

Ry St(v) éy 72(7) dy +5]3t(yh) 1’07 Eirl) dy +1 5tm~:)4;tm+)47
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and by substitution:

I = m () 4 jF(y)iy

where

F(Y): [2, n, v)-n, Ly¢n) -1, (‘1")) - &? [-}_— m, (v-1) +% m,(yuj
+.;.: 1}?{[{4 /n.U)] m, (j-l) t [i - 'n(-)] m, (vu)}
- [- _;: m (Y-1) +tmz(Y+v)] L}& m, (¥-1) +i fn,(VH)]
+4 {~. [-:_-04\0)] m, (y-1) +&-mol] m, lYH)] Z:? {[{ )] () ft -] ’"alYﬂl}

+4 {- [£-me] m, -0+ fp + mt] levw)} &3 {[% )] m, (1) +[5+ m] (Y+')]

The last three terms, when lntegrated, may be recognlzed to be

A;gu) times the gain of inTormation received when the re-
tpansmitted amplitudes are ralsed from * 1 %o t[!*ﬁ’hﬂﬂ .
As it 18 clear that this must produce a gain in information
received, these three terms make a positive contribution to
the integral (1).

The second factor in the first term in F(Y) may be

written as

_;_[ Cumt n, (¥-1)-n, Y 1)
3 03{0 4 () }

n (Y-1) (Yt

and consequently the contribution of the first term may be
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written as

n (y-0+7,(Y+1)

Q
4
EM(”‘“wuiﬂ Zg{,ﬁ‘rmﬂu a, (-0) =M (Y +1) } dy (2)
-

ﬂt. ("‘)
n, (Y+1)
function of Y for ¥ » 0, we can show that this last integral 1is

Under the condition that is a non-decreaging

positive. Let us noti that the condition just stated 1is satls-
fied when /n.(t)r\,ef% or when /n.(t)fveJt' .

The logarithmic term in the last intepral lg an even
function of Y which has a maxlmum at ¥ = 0, 1s constantly de-

creasing for ¥ > 0 and as Y —» 0 it reaches the value

Bog .-qfn_ﬂ.)J = A

If we wrlte the logarithmlc factor of the integrand
of (2) as A +-F (Y), where ? (Y) is positive and even, we pet

for the integral (2) o
2J f{y) m,dy - 2J )‘)(Y)m.(v-a)d)’
0

-0
which,from the properties of my (Y) and #(Y),ls vositive.

g.e.qd.
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Apnendix IV.C

The purpose of this appendix 1s to determine the
numerical value of Io’ as defined by EBo. (IV.33).

It 18 convenlent here to use, 1in expression (33),
natural logarithms instead of logarithmse tco the base 2, the
result 1s then written as Ige).

Using (34), ve get

, e .24

Z’gef[rlz"“r‘w-"]= foyz—J%,T - %’ + ["Z (1+€ ) (C.1)

_ L (gn)® L (C.2

‘LQZJEEV o .f[%k(lfe ) )

The first term of (33) is itself a sum of two terms Xy and X,
where

10 (y-1)*
X-_r| €27 | piyh) + ptyl-)| d

-~

(%) (Zf‘;)a
2
Xz=~§{j eznw — fa? [/o(yh) +F(7I tJJ dg

Since p(y|1) + p(y | -1) 1e even 1t ie evident that X, = Xp.
In order to compute Xl, for positive y's we use Eq. (C.1l) and

for negative y's Eq. (C.2), thus
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© _(‘j-l)z' ,
Kooy | e S [l - byt ¥

de
f[i‘f

Hence, by simple transformations,

{;lv-zlffir--%%?i + &2(|+e%%)}

X.=%%1W+—“%ﬁ% +i [ 2]

0 _&LQ
Q z~ o d _ J e_zN ‘[ (.+eaﬂ
] VZTN b’ lire ) 177 Vi Y

(o]

(C.3)
Now for y > O

wvhere

¢t
i(l’aj e * Jr

-@®

the last two terms of (C.3) become reepectively,
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L v ko (2k0)? ke -1
_;__e“' KZ‘ %‘l e ¥ [5— (4% )] (C.4)
o R (2&*4)1 ‘ ]
o c 2 - (C.5)
TR oy L [' P45 ’

If we remember that the contribution of the last two terms
(33) 18 ggVZWQN' and if we combine (C.4) and (C.5)

we finally get

e . X
I:)z Z}ez &) [ - %(W-,)] -zém
cin }_ (ZZR;' e(&%#‘ z@ﬂ)}

If we use the asymptotic expansion of |- Flx) ve get

19 fy o + (&) [1- B3] - 2

+13 N2 Sg - 135 N3 5 +- ]

— - NS,
VL

where

i R-1

{ ‘) = .-
S* B g R (ker) (2 k)4 (4=035,)




.
S, = .082 7k

84 = .003 577

8¢ = .000 061 9

Sp = .000 006 2

It is of interest to compare the asymptotic values

of I,, and IO. Expressing them both in bits we have

I - L 2 lye

M~ 2 VumN 7

I~ 1+ -.583-% e
vanN 2

Thus in the optimum detector case the equlvocation is roughly

N timee the equivocation of the M.A.P. detector case.
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Biograrhical Note

Charles Auguste Desoer was born in Ixelles
(Belgium) on January 1i, 1926. When he was three he moved
to Verviers (Belgium), a textile town whose mills are very
much like those familler to New Englanders. He attended the
public schools of thai ¢ity and gradusted from High 8chool
receiving the "Prix Spéoial du Gouvernement." Thanks to
the courage and the imagination 6f the school staff the
German oooupant never caught up with him and he, therefore,
egoaped slave labor in Germany. In 1944, he veolunteered
for active service in the Belglan Army. After demoblliza-
tion (1945) he attended the University of Llége from which
he graduated, in 1949, receiving the degree of "Ingénieur
Radlo-Elestricien.” He started graduate work at the
Massachusetts Institute of Technology in fall 1949. He
became a Research Aasistant at the Research Laboratory of
Electronics in February 1951. He married Claudine P.
Osterrieth in July 1951.
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