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Abstract

We describe the design and implementation of a power-saving protocol for ad hoc
wireless networks. We present the Span power-saving protocol and discuss its imple-
mentation in the context of the Linux operating system. We address the issues of
ad hoc routing, link layer design, and integration with the Linux networking stack
using the 802.11b wireless link technology. From this thesis, we conclude that Span
can be implemented on an 802.11b network with reasonable performance for most
networking applications. Furthermore, our implementation of Span yields a lifetime
improvement of between 12% and 29% at -each node in an ad hoc network. We ar-
gue that with additional hardware, Span can outperform conventional 802.11 ad hoc
networks in terms of capacity, latency, and power savings.
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Chapter 1

Introduction

A wireless ad hoc network is a system of autonomous mobile nodes that cooperatively
route packets for each other. In such a network, nodes other than the packet source
and destination participate in the delivery process. In this thesis, we are primarily
concerned with ad hoc networks where power consumption is an issue, for instance
because nodes are battery-powered. Battery technology is not improving at a rapid
rate, so power consumption is likely to remain an issue in mobile wireless networks.

Since power is often an important issue in many ad hoc networks, there have been
many proposals to incorporate power-awareness into the routing layer [5] or link layer
[19, 25, 26, 28, 31, 34] of an ad hoc network. However, several experiments show
that the relatively high idle radio power consumption in many technologies including
802.11b' [10, 32] plays a very significant role in the lifetime of a node in an ad hoc
network. With this in mind, we designed Span [6], a protocol that saves energy in
dense ad hoc networks by turning most nodes' radios off most of the time, while
preserving capacity.

In previous work [6], we simulated the Span protocol without implementing Span
in a real ad hoc network. The main contribution of this thesis is a demonstration
that the Span protocol is feasible in a real implementation. In this thesis, we describe
an implementation in the Linux operating system for handheld computers.

For our hardware platform, we chose the Compaq iPaq H3670 pocket PC coupled
with Cisco Aironet 340 series wireless network interface cards. Our implementation
has the following desirable features.

1. By construction, it is not simulated. All real-world problems such as unexpected
radio propagation patterns, interference, etc., affect our testbed.

2. It scales to large numbers of real-life computers. We have developed the infras-
tructure needed to program an iPaq to be a Span node in a few seconds.

3. The power model is realistic, because we constructed the network with real
802.11 radio cards and Linux computers.

'We abbreviate the 802.11b link-layer as "802.11" throughout the rest of this thesis.
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1.1 Motivating the use of Ad Hoc Networking

A second goal of this thesis is to motivate the use of ad hoc networks. By constructing
a testbed of real computers that route packets along multi-hop paths, we hope to
enable and encourage the development of interesting applications that take advantage
of the ad hoc paradigm. For example, Buttyan and Hubaux [4] have proposed that
people willing to participate in an ad hoc network forward each others' packets in
exchange for a form of currency. Our implementation can serve as a platform in
which such interesting ideas can be tested.

There is great interest in the mobile computing community in ad hoc networking.
Researchers have proposed the following list of applications for ad hoc networks, and
are also discussing the possibility of commercial applications for ad hoc networking.
Recently at the 2001 ACM/IEEE Conference for Mobile Computing and Applications
(Mobicom 2001), a panel of researchers discussed the question "Will there ever be a
commercial market for ad hoc networks?"

1.1.1 Applications for Ad Hoc Networks

The following is a list of possible applications for ad hoc networking.

1. Military battlefield scenarios in which soldiers carry portable or wearable com-
puters with radios for communication and/or planning.

2. Post-disaster rescue efforts in which any existing wireless infrastructure is dis-
abled or completely destroyed. In this scenario, rescue workers would use either
handheld or wearable computers to create a wireless ad hoc network, for the
purpose of communication and coordination of rescue efforts.

3. Sensor networks in which many nodes scattered about the physical environment
communicate information about the environment. Many sensor networks share
the same multi-hop topology, routing, and power-saving issues as the ad hoc
networks of the above two examples.

4. Temporary collaborations among colleagues. While infrastructure wireless tech-
nology (most notably 802.11) has become a commodity in today's academic and
business campuses, it is clear that not all areas of a school or workplace can
or should be covered by base stations. Long hallways, machine rooms, outdoor
pathways, and sports fields all hold the lowest priority for IT managers deploy-
ing wireless base stations. Yet, people do need to work in such areas, and ad
hoc networks enable connectivity between small numbers of people for short
periods of time.

5. Rooftop networks, proposed in [30], deploy small radio units on top of homes.
Homes communicate with each other to provide Internet connectivity via the
ad hoc network formed by the consumer-owned radio units. Rooftop networks
have been proposed as an alternative to traditional wired ISPs for residences.

12



6. Vehicular networks [20 are made of ad hoc nodes placed in automobiles. Morris
et. al. suggest several interesting applications for such a network: location-
directed multicast, traffic congestion monitoring, fleet tracking, over-the-horizon
police radar detection, and inter-vehicle chat.

7. Cell phone call routing may benefit from ad hoc networking technology. Al-
though the cellular infrastructure is well-established and covers all metropolitan
areas and most suburban and well-populated rural areas, capacity is an issue
during an event that brings a large crowd of people together in one geographic
location. ad hoc networking techniques may provide the answer to this problem,
routing calls away from busy cells, to provide connectivity for more users than
would be possible without such techniques.

8. "Beacon Networks." Systems such as Cricket [24] utilize beacons, small devices
capable of transmitting and receiving both RF and ultrasound signals. To ease
deployment, beacons are battery-powered, necessitating some form of power
conservation.

9. Personal-area networks. Wireless networking technology designed to facilitate
communication between handheld and wearable devices exists today in the form
of Bluetooth [13]. Since personal-area networks are by definition portable, any
personal-area networking technology needs to conserve power.

1.2 The Case for Implementation

In this section we argue that claims made about any ad hoc networking protocol are
ultimately best evaluated in a real implementation. We start with a discussion of
wireless network simulators.

1.2.1 Wireless Network Simulation

To date, most ad hoc networking protocols have been designed and evaluated in
simulation. The most popular simulation environment in the academic community
has been the ns-2 simulator [22], augmented with the CMU Monarch extensions for
wireless radio propagation and emulation of the 802.11 protocol. Many researchers,
including the author, have extended the Monarch package to include support for an
energy model.

Advantages of Simulation

Simulation has many advantages. When the research community standardizes on a
simulation platform, as it has done with ns-2, protocols can be compared with each
other on fair terms. For the same reason, simulation offers great ease of coding, since
researchers are already familiar with how to integrate their protocols with the ns-2
stack. Finally, simulation yields a large fraction of reused code, since most proposals
for ad hoc networking protocols do not change most of the networking stack.

13



Drawbacks of Simulation

However, simulation encourages researchers to make several assumptions about how
wireless radios work. We first define two terms in order to discuss these assumptions.

Reception range is the maximum (approximate) distance at which a transmission
may be received, given fixed transmission and receive powers and radio designs.

Interference range is the range over which a transmission interferes with another
transmission. Note that the interference range will always be larger than the receive
range, and that two or more interfering transmissions can add up to interfere with a
third transmission.

Much work published over the last few years makes most or all of the following
assumptions about the world nodes in an ad hoc network inhabit.

1. Symmetric radio propagation patterns. The radio propagation model in ns-2
with Monarch extensions assumes that the reception and interference ranges
of the radio is roughly constant in all directions, which leads to an idealized
circular reception range and interference range.

2. A two-dimensional world. Nodes in ns-2 and other simulators move in a two-
dimensional world, while real ad hoc networks may occupy several floors of a
building, for example.

3. Random node movement. Nodes in most ns-2 mobile simulations move using a
random waypoint model: every few seconds, a node picks a random destination
and speed, and moves to the destination it chose at the speed it chose. This
is obviously not a realistic mobility model. The way to generate a realistic
mobility model is to either use real people (or cars, boats) in a testbed, or use
a trace from a testbed, cell phone localization data, or GPS data.

4. Energy models. Different radios require different amounts of power to trans-
mit, receive, and listen for packets. Although ns-2 and other simulators use
real cards' parameters, such parameters are constantly changing with each new
release of a vendor's chipset. The surest way to evaluate a new protocol is to
implement it on real hardware.

Consequently, we believe that claims made about ad hoc networks are ultimately
best evaluated in an implementation. Due to its highly configurable nature, we believe
that our testbed implementation can serve as a starting point for the easy implemen-
tation and evaluation of other researchers' ad hoc networking schemes.

1.3 Contributions

The main contribution of this thesis is a demonstration that the Span protocol is
feasible in a real implementation. We contribute methodologies for organizing an
ad hoc networking stack so that the underlying ad hoc routing protocol may easily
integrate with Span, and a software implementation of an 802.11 ad hoc power-saving
MAC layer.

14



Thesis Outline. Chapter 2 of this thesis describes the Span protocol in detail,
formulating the theoretical background to the problem of power-saving in an ad hoc
network. Chapter 3 details our implementation of Span, including our contributions
to the overall ad hoc networking stack and the MAC layer. Chapter 4 presents
the experimental results we obtained that evaluate our implementation. Chapter 5
concludes, presenting future directions for theoretical analysis and related work.
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Chapter 2

Reducing Power Consumption in
an Ad Hoc Network

This chapter discusses techniques for reducing power consumption of battery-powered,
wireless devices participating in an ad hoc network. We begin by discussing why and
how wireless devices consume energy in an ad hoc network.

2.1 The Problem

Minimizing energy consumption is an important challenge in mobile networking. Sig-
nificant progress has been made on low-power hardware design for mobile devices, so
the wireless network interface is often a device's single largest consumer of power.

The radio in a wireless device operates in one of several states: an xmit state where
the radio is actively transmitting data over a wireless link, a receive state where the
radio is receiving data from the wireless link and passing it up to the software layers of
the mobile device, an idle state where the radio is listening for data but not passing
any information up to the wireless device, and frequently, a sleep state where the
radio is not fully powered-up and cannot detect any incoming data. Figure 2-1 shows
the possible transitions between states; note the lack of a state transition between
sleep and xmit or receive. This is because a sleeping radio cannot detect any incoming
packets, nor can it transmit immediately-it must wake up to the idle mode first.

xmit idle receive

sleep

Figure 2-1: A state machine showing the possible radio states and transitions between
these states.
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The total energy cost of running the radio is equal to

f Pxmt dt + J Precv dt + P ie dt + J Psieep dt (2.1)
Trmt)M Tr e() CV M T)de rsceer(t)

where Tx(t) is the time interval over which the radio is in state x and Px is the power

required for the radio to be in state x. From the Friss free-space and two-ray ground
propagation models [271, it is well-known that the power required to transmit is

{ Gt) 2 Precv-threshd2  d < dcrossover

GxGmh 2 h Precv-threshd d > dcrossover

where Gt is the gain of the transmitting antenna, Gr is the gain of the receiving an-

tenna, A is the wavelength of the carrier frequency, Precv-thresh is the minimum power

permissible at the receiver, ht and hr are the respective heights of the transmitting
and receiving antennas above the ground, and dcrossover is the distance below which
the two-ray ground propagation model applies and above which the Friss free-space
model applies. From Equation 2.2 above we see that transmit power is related to
distance by a power law, dependent on distance.

Equation 2.2 dictates the approach we take to saving power in ad hoc networks.
The basic intuition behind our approach is as follows. If the radio's transmission range
is large (as in a cellular phone), then Equation 2.2 tells us that transmit power will be
significantly larger than either idle or receive power (i.e., Pxmit > Precv). Conversely,
if the radio's transmission range is small (as in a Bluetooth or 802.11 radio), then
transmission power will not be large compared to receive or idle power. We note
here that in many useful ad hoc networks, the transmission range is relatively small
(~ 100 meters).

Figure 2-21 shows a power study that compares the power consumption of 802.11
and Bluetooth cards. These results validate the claims made above about the relative
power consumption of networking interface cards where the transmission range is

relatively small. Note that in a Bluetooth ad hoc network, nodes would need to
periodically enter the inquiry state, leading to increased idle energy consumption.

The coordination problem in wireless, ad hoc, shared-medium networks is to find

a way for most of the radios to operate in the sleep state of Figure 2-1 most of the
time, while the remaining nodes operate in the idle state and deliver packets to the
sleeping nodes. Furthermore, the nodes that sleep most of the time must coordinate
with the nodes in the idle state to arrange for packet delivery.

2.1.1 Problem Requirements

A good power-saving coordination technique for wireless ad-hoc networks ought to
fulfill the following requirements. These requirements form the design goals for Span.

'These results are joint work with Alex Snoeren of the Networks and Mobile Systems Group at
the MIT Laboratory for Computer Science.
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Figure 2-2: Input current versus card state for typical 802.11 and Bluetooth technol-
ogy implementations. The states are identical to those described above except for the
Bluetooth inquiry state, which Bluetooth uses to form links between adjacent nodes
in a Bluetooth ad hoc network.

1. A radio must run most of its electronics to listen for packets. When a packet
actually arrives for the host, the amount of energy required to pass the data
up to the host is small compared to the amount of energy required to listen for
packets in the first place. In other words, Pidle is not much smaller than Precv.
The consequence of this is that in a non-Span network, idle energy consumption
will dominate receive energy consumption, since the radio spends much of its
time in idle mode, waiting for packets to receive. Therefore, a good power-saving
technique should allow as many nodes as possible to put their radio receivers
into the sleep state most of the time.

2. On the other hand, a good coordination technique should forward packets be-
tween any source and destination with minimally-more delay than if all nodes
were in the idle state. This implies that enough nodes must stay idle to form
at least a connected backbone of idle nodes.

3. The algorithm for picking this backbone should be distributed, requiring each
node to make a local decision about its radio's power state.

4. Furthermore, the backbone formed by the idle nodes should provide about as
much total capacity as the original network, since otherwise congestion may
increase. This means that paths that could operate without interference in the
original network should be represented in the backbone. For example, Figure 2-
3 illustrates a topology that violates this principle. In this topology, black
nodes are coordinators. Nodes that are within radio range of each other are
connected by solid or dotted lines. Packets between nodes 3 and 4 may contend
for bandwidth with packets between nodes 1 and 2 (solid arrows). On the other
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Figure 2-3: A connected backbone does not necessarily preserve capacity. In this
connected topology, black nodes are coordinators. Nodes that are within radio range
of each other are connected by solid or dotted lines. Solid lines represent connec-
tions to and between coordinators. Packets between nodes 3 and 4 may contend for
bandwidth with packets between nodes 1 and 2. On the other hand, if node 5 was a
coordinator, no contention would occur.

hand, if node 5 was a coordinator, node 3 can send packets to node 4 via the
path shown by the dotted arrow, and no contention would occur.

5. A good coordination technique should not make many assumptions about the
link layer's facilities for sleeping; it should work with any link-layer that provides
for sleeping and periodic polling, including 802.11's ad-hoc power saving mode.

6. Finally, power saving should inter-operate correctly with whatever routing sys-
tem the ad-hoc network uses.

With these requirements in mind, we now consider some proposed approaches to
saving power in an ad hoc network. One might outfit nodes with power-controllable
radios, and then devise a distributed algorithm to lower the transmit power at each
radio so that the network is still connected, yet saves power. This is termed the
"cminimum-energy routing" approach [30]. This approach requires more complicated
radios, capable of adjusting their transmit power. While the minimum-energy routing
approach satisfies all but our first requirement for an energy-saving protocol, idling
radio interfaces consume a significant amount of power. In a minimum-energy routing
network, the idle energy of a radio still dominates its energy consumption.

Alternatively, one might select a few nodes to perform the bulk of the communi-
cation in the network. This is exactly what Heinzelman et. al's LEACH protocol [14]
does: rotating cluster-heads send information to the base station in a wireless sensor
network. The other nodes in the sensor network choose the closest cluster head and
send their information to it. This approach makes sense in a sensor network, but
does not immediately generalize to a multi-hop ad hoc network where traffic patters
could be markedly different, nodes might be out of direct communication range, and
capacity and latency requirements are of concern.

We consider a multi-hop ad hoc network with fairly primitive, fixed-transmission
power radios. We also assume that the transmission range has been optimized for
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shorter distances, as is true in the commodity 802.11 and Bluetooth radios. We pro-
pose a distributed algorithm to switch off a subset of nodes such that the remaining
nodes form a connected spanning tree over the network. This addresses our first ob-
servation by limiting most of the communication to nodes far away from each other,
since if nodes are too close to each other, they will switch off their radios. Our ap-
proach addresses our second observation by limiting the amount of time a node spends
in idle mode, thus reducing impact of the idle term on radio energy consumption. The
challenge is thus to design a technique whereby nodes can coordinate with each other
to form a backbone of awake nodes over which data can flow in the network.

2.2 Wireless Radio Power Experiments

We now present the results of an experimental verification of the claims made in the
beginning of Section 2.1. Span requires that a node in an ad hoc network turn its radio
off periodically to save power. To determine the feasibility of a Span implementation
in a real ad hoc network, we conducted experiments where we examined both the
steady-state power consumption and instantaneous transitional power consumption
of various network interface cards. Our results agree with those of a similar study
presented by Feeney [10].

2.2.1 Methodology

To accurately model energy consumption, we took measurements of the Cabletron
Roamabout 802.11 DS High Rate network interface card (NIC). We used an IBM
ThinkPad 560 running the Linux 2.2.16 kernel with the wavelan-cs drivers included
in the RedHat 6.2 Linux distribution.

We followed the methodology outlined in [32]. To measure power consumed by
the NIC, we disconnected the battery from the portable computer, and measured the
voltage VR across a 2.2 Q resistor placed in series with the NIC on the PC Card bus.
From this, we calculated the current I going into the NIC as I = VR/2.2 amps. We
also measured the voltage across the NIC. The steady-state voltage across the NIC was
constant, even under network load, at 4.94 V. We then calculated the instantaneous
power P consumed by the NIC as P = 4.94V -I.

For the steady-state power consumption measurements, we obtained the receive
state measurement by putting the card into non-power saving mode, and measuring
the power required to listen for a packet, decode it, and pass its contents up to the
host. The idle state measurement was obtained in the same manner, but measuring
only the power required to listen for a packet. In contrast, the sleep state measurement
was obtained by putting the card into power saving mode, and measuring the average
(lower, and near-constant) power consumption during the part of the power saving
cycle where the card was not listening for packets. The key point is the experimental
confirmation of the large difference between the power consumption of the idle and
sleeping states.
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Figure 2-4: Steady-state power consumption of the Cabletron Roamabout DS wireless
network interface card, in various operating states.

2.2.2 Steady-State Power Consumption Experiments

We summarize the time-averaged, steady-state results in Figure 2-4, and note that
these closely match the results obtained by Feeney and Nilsson [10] for similar 802.11
network interface cards in ad hoc mode. We repeated the same experiment with
the Cisco Aironet 340 series network interface card operating as a base-station (see
Section 3.4 for an explanation of the different operating modes of the Cisco Aironet
340 series cards). Note that for the Cisco card, the sleep state is not available when
the card is in base-station mode. Consequently, the state labeled off in the Cisco
experiment is a state where the card's MAC is disabled, but the card itself is not fully
powered-down nor in a true sleeping state. The results for the Cisco experiment are
shown in Figure 2-5.

2.2.3 State-Transition Experiments

We now present the methodology and experimental results of our experiments to
evaluate the energy and latency penalties of transitioning the card between the sleep
and idle states. These experiments are important because if the energy penalty for
transitioning the card between the sleep and idle states is too high, our technique
will not save power. If the latency penalty of transitioning the card is too high our
technique will incur high latency and capacity penalties.

Our first experiments are with the Lucent WaveLAN card. We measured this card
in managed, power-saving mode (i.e., as a client of a base station). We introduce a
new state, off. This state is functionally-equivalent to the sleep state, except in most
hardware implementations, the card is not designed to be rapidly switched between
off and idle. In this mode, the hardware transitions the card between the sleep and
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Figure 2-5: Steady-state power consumption of the Cisco Aironet 340 series wireless
network interface card, in various operating states. Note that the off state shown in
this graph describes the card in non-powersaving mode with the MAC disabled.

State En- Cisco Aironet Apple Compaq Lucent 3Com Air-
ergy (mW) 340 Series AirPort WL100 Orinoco Connect
Transmit 1729 1729 914 1408. 2420
Receive 1235 1482 914 914 1087
Sleep 49 296 N/A 44 188

Table 2.1: Power consumption of various wireless network interface cards, as reported
by Cisco corporation. Note that these results do not include idle power consumption.

idle states, and consequently the card is very efficient. We measured that 0.60 mJ
was consumed (beyond that required for sleeping over the same time period) when
moving from the sleep state to the idle state. This transition takes 0.4 ms.

These figures are very low, and they show that when implemented in hardware, the
penalty for switching card state is quite low. Compared to the following measurements
for the software-controlled Cisco Aironet 340 series card, they show that the penalty
for software control of the card is high both in terms of latency and energy. Figure 2-
6 shows the instantaneous power consumption required to transition the Cisco card
from idle to off and off to idle, respectively.

Finally, we present figures from a Cisco study [8] on the power consumption of
various network interface cards. These numbers validate our previous measurements,
and follow the trends noted earlier in this chapter. Note that the sleep state in this
table is hardware-implemented, while the off states in Figure 2-6 are implemented in
software, and so consume substantially more energy.
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Figure 2-6: Left: Instantaneous idle-to-off power consumption of the Cisco Aironet
340 series wireless network interface card. This graph shows that the idle-to-off
hardware transition time is approximately 0.4 ms. Right: Instantaneous off-to-idle
power consumption of the same card. This graph shows that the off-to-idle hardware
transition time is approximately 20 ms.

2.3 The Span Protocol

Span adaptively elects "coordinators" from all nodes in the network. Span coordina-
tors stay idle continuously and perform multi-hop packet routing within the ad hoc
network, while other nodes remain in power-saving mode and periodically check if
they should become a coordinator.

In the previous section, we have shown how Span is feasible in terms of hardware
implementation. Still, the Span approach is not straightforward: a node must arrange
to become idle not just to send packets, but also to receive packets addressed to it
and to participate in any higher-level routing and control protocols.

The algorithm presented in this chapter, Span, fulfills the above requirements.
Each node in the network running Span makes periodic, local decisions on whether
to transition to sleep or stay awake as a coordinator and participate in the forwarding
backbone topology. To preserve capacity, a node volunteers to be a coordinator
if it discovers, using information it gathered from local broadcast messages, that
two of its neighbors cannot communicate with each other directly or through one or
two existing coordinators. To keep the number of redundant coordinators low and
rotate this role among all nodes, each node delays announcing its willingness by a
random time interval that takes two factors into account: the amount of remaining
battery energy, and the number of pairs of neighbors it can connect together. This
combination ensures, with high probability, a capacity-preserving connected backbone
of coordinators at any point in time, where nodes tend to consume energy at about
the same rate. Span does all this using only local information, and consequently
scales well with the number of nodes. Our simulation results, with energy parameters
from measurements of 802.11 wireless interfaces, show that system lifetime with Span
is more than a factor of two better than without Span, for a range of node densities,
without much reduction in overall forwarding capacity.

Span achieves four goals. First, it ensures that enough coordinators are elected
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Figure 2-7: Span is a protocol that operates under the routing layer and above the
MAC and physical layers. The routing layer uses information Span provides, and
Span takes advantage of any power saving features of the underlying MAC layer.

so that every node is in radio range of at least one coordinator. Second, it rotates
the coordinators in order to ensure that all nodes share the task of providing global
connectivity roughly equally. Third, it attempts to minimize the number of nodes
elected as coordinators, thereby increasing network lifetime, but without suffering a
significant loss of capacity or an increase in latency. Fourth, it elects coordinators
using only local information in a decentralized manner-each node only consults state
stored in local routing tables during the election process.

Span is proactive: each node periodically broadcasts HELLO messages that contain
the node's status (i.e., whether or not the node is a coordinator), its current coordi-
nators, and its current neighbors. From these HELLO messages, each node constructs
a list of the node's neighbors and coordinators, and for each neighbor, a list of its
neighbors and coordinators.

As shown in Figure 2-7, Span runs above the link and MAC layers and interacts
with the routing protocol. This structuring allows Span to take advantage of power-
saving features of the link layer protocol, while still being able to affect the routing
process. For example, non-coordinator nodes can periodically become idle and listen

(as in the 802.11 power-saving mode [1]) or poll (as in LPMAC [19]) for their packets.
Span leverages a feature of modern power-saving MAC layers, in which if a node
has been in the sleep state for a while, packets destined for it are not lost but are
buffered at a neighbor. When the node awakens, it can retrieve these packets from
the buffering node, typically a Span coordinator. Span also requires a modification
to the route lookup process at each node-at any time, only those entries in a node's
routing table that correspond to currently active coordinators can be used as valid
next-hops (unless the next hop is the destination itself).

A Span node switches state from time to time between being a coordinator and
being a non-coordinator. A node includes its current Span state in its HELLO messages.
The following sections describe how a node decides that it should announce that it is
a coordinator, and how it decides that it should withdraw from being a coordinator.

2.3.1 Coordinator Announcement

Periodically, a non-coordinator node determines if it should become a coordinator or
not. The following coordinator eligibility rule in Span ensures that the entire network
is covered with enough coordinators:
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Coordinator eligibility rule: A non-coordinator node should become
a coordinator if it discovers, using only information gathered from local
broadcast messages, that two of its neighbors cannot reach each other
either directly or via one or two coordinators.

This election algorithm does not yield the minimum number of coordinators re-
quired to merely maintain connectedness. However, it roughly ensures that every
populated radio range in the entire network contains at least one coordinator. Be-
cause packets are routed through coordinators, the resulting coordinator topology
should yield good capacity.

Announcement contention occurs when multiple nodes discover the lack of a co-
ordinator at the same time, and all decide to become a coordinator. Span resolves
contention by delaying coordinator announcements with a randomized backoff delay.
Each node chooses a delay value, and delays the HELLO message that announces the
node's volunteering as a coordinator for that amount of time. At the end of the
delay, the node reevaluates its eligibility based on HELLO messages recently received,
and makes its announcement if and only if the eligibility rule still holds.

We consider a variety of factors in our derivation of the backoff delay. Consider first
the case when all nodes have roughly equal energy, which implies that only topology
should play a role in deciding which nodes become coordinators. Let Ni be the
number of neighbors for node i and let Cj be the number of additional pairs of nodes
among these neighbors that would be connected if i were to become a coordinator
and forward packets. Clearly, 0 < Ci < ('i). We call the utility of node i. If
nodes with high Ci become coordinators, fewer coordinators in total may be needed
in order to make sure every node can talk to a coordinator; thus a node with a high
C should volunteer more quickly than one with smaller Ci.

If there are multiple nodes within radio range that all have the same utility, Span
prevents too many of them becoming coordinators. This is because such coordina-
tors would be redundant-they would not increase system capacity, but simply drain
energy. If the potential coordinators make their decisions simultaneously, they may
all decide to become coordinators. If, on the other hand, they decide one at a time,
only the first few will become coordinators, and the rest will notice that there are
already enough coordinators and go back to sleep. To handle this, we use a ran-
domized "slotting-and-damping" method reminiscent of techniques to avoid multiple
retransmissions of lost packets by multicast protocols, such as XTP [7], IGMP [11]
and SRM [12]: the delay for each node is randomly chosen over an interval propor-
tional to Ni x T, where T is the round-trip delay for a small packet over the wireless
link.

Thus, when all nodes have roughly equal energy, the above discussion suggests a
backoff delay of the form:

delay = 1 -- + R x N xT (2.3)
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The randomization is achieved by picking R uniformly at random from the interval

(0,1].
Consider the case when nodes may have unequal energy left in their batteries. We

observe that what matters in a heterogeneous network is not necessarily the absolute
amount of energy available at the node, but the amount of energy scaled to the
maximum amount of energy that the node can have. Let Er denote the amount of
energy (in Joules) at a node that still remains, and Em be the maximum amount of
energy available at the same node. A reasonable (but not the only) notion of fairness
can be achieved by ensuring that a node with a larger value of Er/Em is more likely to
volunteer to become a coordinator more quickly than one with a smaller ratio. Thus,
we need to add a decreasing function of Er/Em that reflects this, to Equation 2.3.
There are an infinite number of such functions, from which we choose a simple linear
one: 1 - Er/Em. In addition to its simplicity, this choice is attractive because it
ensures that the rate with which a node reduces its propensity to advertise (as a
function of the amount of energy it has left), is constant. (We experimented with a
few other functions, including an exponentially decaying function of Er/Em and an
inversely decaying function of Er/Em; the simple linear one worked best.)

Combining this with Equation 2.3 yields the following equation for the backoff
delay in Span:

delay= 1 - r)+ (1 - + R xN xT (2.4)
Em (

Observe that the first term does not have a random component; thus if a node is
running low on energy, its propensity to become a volunteer is guaranteed to diminish
relative to other nodes in the neighborhood with similar neighbors.

In a network with uniform density and energy, our election algorithm rotates coor-
dinators among all nodes of the network. It achieves fairness because the likelihood of
becoming a coordinator falls as a coordinator uses up its battery. In practice, however,
ad hoc networks are rarely uniform. Our announcement rule adapts to non-uniform
topology: a node that connects network partitions together will always be elected a
coordinator. This property preserves capacity over the lifetime of the network. Be-
cause of Span's emphasis on capacity-preservation to the extent possible, such critical
nodes will unavoidably die before other less-critical ones. However, in a mobile Span
network, a given node is rarely stuck in such a position, and this improves fairness
dramatically.

2.3.2 Coordinator Withdrawal

Each coordinator periodically checks if it should withdraw as a coordinator. A node
should withdraw if every pair of its neighbors can reach each other either directly or
via one or two other coordinators. In order to also rotate the coordinators among all
nodes fairly, after a node has been a coordinator for some period of time, it marks
itself as a tentative coordinator if every pair of neighbor nodes can reach each other via
one or two other neighbors, even if those neighbors are not currently coordinators. A
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Figure 2-8: A scenario with 100 nodes, 19 coordinators, and a radio range of 250
meters. The nodes marked "*" are coordinators; the nodes marked "+" are non-
coordinator nodes. Solid lines connect coordinators that are within radio range of
each other.

tentative coordinator can still be used to forward packets. However, the coordinator
announcement algorithm described above treats a tentative coordinator as a non-
coordinator. Thus, by marking itself as tentative, a coordinator gives its neighbors
a chance to become coordinators. A coordinator stays tentative for WT amount of
time, where WT is the maximum value of Equation 2.4. That is,

WT- 3 x Ni x T (2.5)

If a coordinator has not withdrawn after WT, it clears its tentative bit. To prevent an
unlucky low energy node from draining all of its energy once it becomes a coordinator,
the amount of time a node stays as a coordinator before turning on its tentative bit
is proportional to the amount of energy it has (Er/Em).

While Span uses local HELLO messages to propagate topology information, it does
not depend on them for correctness: when HELLO messages are lost, Span elects more
coordinators, but does not disconnect the backbone. Figure 2-8 shows the result of
our election algorithm at a random point in time on a network of 100 nodes in a
1000 meter x 1000 meter area, where each radio has an isotropic circular range with
a 250 meter radius. Solid lines connect coordinators that are within radio range of
each other.

2.4 Chapter Summary

This chapter presented Span, a distributed coordination technique for multi-hop ad
hoc wireless networks that reduces energy consumption without significantly dimin-
ishing the capacity or connectivity of the network. Span adaptively elects coordina-
tors from all nodes in the network, and rotates them in time. Span coordinators stay
awake and perform multi-hop packet routing within the ad hoc network, while other
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nodes remain in power-saving mode and periodically check if they should awaken and
become a coordinator.

With Span, each node uses a random backoff delay to decide whether to become a
coordinator. This delay is a function of the number of other nodes in the neighborhood
that can be bridged using this node, and the amount of energy it has remaining. Our
results show that while Span not only preserves network connectivity, it also preserves
capacity, decreases latency, and provides significant energy savings. For example, for
a practical range of node densities and a practical energy model, our simulations show
that the system lifetime with Span is more than a factor of two better than without
Span.
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Chapter 3

The Span Implementation

This chapter details our implementation of Span in an experimental network testbed
of Compaq iPaqs running Linux, connected via Cisco Aironet 340 wireless network
interfaces. We discuss the issues we faced implementing this network testbed, and the
tools we used to leverage existing work in this area. There were two main challenges
we faced while implementing Span. The first challenge was the efficient integration of
Span with the underlying ad hoc routing protocol. Both Span and the underlying ad
hoc routing protocol use periodic HELLO messages, so it is not immediately clear if one
should send a HELLO message or wait for the other entity to send its HELLO message
and then piggyback data on the outgoing packet. The second challenge is in the link
layer. Due to lack of hardware support for 802.11 ad hoc PSM, we implemented our
own PSM in software. Designing our PSM for correctness, reliability, and performance
was a major effort in this thesis.

Chapter Outline. Section 3.1 of this chapter summarizes the architecture of our
implementation, breaking the discussion down into details of the control and data
paths. Section 3.2 discusses the details of how the Span protocol itself is implemented.
Section 3.3 presents the design of the underlying routing algorithm we implemented,
and discusses the design of any Span-aware routing algorithm. Section 3.4 presents
the design of the software-based 802.11 ad hoc PSM MAC. We conclude in Section 3.5.

3.1 Architecture

Figure 3-1 shows the overall architecture of the software running on a Span node. In
the subsequent sections of this chapter, we will discuss the design of each layer in
turn.

3.1.1 Data Path

In this section, we discuss the data path of a Span node between the layers marked
802.11 and Span in Figure 3-1 above. Section 3.2 discusses the control path.
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Figure 3-1: The overall architecture of the Span network testbed, shown in layers.
The SpanRoutingProtocol box is an interface between Span and the underlying routing
protocol and contains no functionality.
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Figure 3-2: Left: the path of an incoming packet as it travels from the network inter-
face to the Span layer of the networking stack. Right: the path of an outgoing packet
as it travels from the Span layer of the networking stack to the network interface.
Dotted lines indicate calls made in interrupt context; solid lines indicate calls made
in process context. User space is shaded; kernel space is unshaded.

In Figure 3-2 (Left), we see the path that a packet takes upon reception
through the wireless network interface. When Linux calls the interrupt handler
airo-interrupt, airo-interrupt queues the packet in the Linux kernel by calling
netifrx. In the softirq net-rx.action1 for netif..rx, the packet is dequeued from
the kernel queue, and either pushed into the KernelTap element (if Span is running
in user space), or into the FromDevice element (if Span is running in the kernel).
Note that we leverage the existing incoming queue functionality in the Linux kernel.

In Figure 3-2 (Right), we see the path a packet takes upon dispatch from Span,
implemented either in the kernel, or in user-space. In the former case, the ToLinux
Click element calls a function in the Linux kernel to dispatch the outgoing packet
to the correct handler internal to the Linux kernel networking stack. In the later
case, the KernelTap Click element delivers the packet to ethertap code in the Linux
kernel. In both cases, the kernel calls hard-start-xmit in the airo. o module, which
communicates with Span to decide if the packet should be buffered. Based on whether

'A "softirq" in the Linux 2.4 kernel series is similar (but not identical) to a "bottom-half" from
the 2.2 kernel series. It is called by the scheduler asynchronously from the interrupt, and is used for
processing that would take too long in the interrupt handler.

30



check-announce-coordinator()

C = connect-pairs()

if C > 0 then
calculate delay using C as C_i

wait delay

if connect-pairs() > 0 then
announce yourself as a coordinator

Figure 3-3: Coordinator announcement algorithm pseudo-code: a non-coordinator
node periodically calls this routine to see if it should become a coordinator.

int connect-pairs()

n = 0
for each neighbor a in neighbor table do

for each neighbor b such that b > a, in neighbor table do
if share-other-coordinators(a, b) == false then
n := n + 1

return n

Figure 3-4: Coordinator announcement algorithm pseudo-code: returns the number
of neighbor pairs a node can connect if it becomes a coordinator.

the packet's next hop is a coordinator or not, and if the current time is within the
802.11 ad hoc power-saving mode window for advertised traffic. When necessary,
the airo.o module buffers packets, and makes calls to the Cisco Aironet hardware
to transmit packets when possible. To transmit packets, the card allocates a fixed
number of frame identifiers (FIDs), which are handles to a single transmission event.
After transmission is complete, the hardware generates an interrupt so that the driver
can reclaim the FID it used to transmit the packet.

3.2 Span Layer

In this section, we describe our implementation of the Span layer shown in Figure 3-1
above and described in Chapter 2.

3.2.1 Coordinator Election

Span's election algorithm requires each node to advertise its coordinators, its neigh-
bors, and if it is a coordinator, a tentative coordinator, or a non-coordinator. From
this information, the underlying routing protocol builds a neighbor table that con-
tains lists of nodes up to two hops away from it and each node's status as coordinator
or non-coordinator. A node uses information from its neighbor table to determine
if it should announce or withdraw itself as a coordinator. Figures 3-3, 3-4, and 3-5
show the coordinator announcement algorithm. A non-coordinator node periodically
calls check-announce-coordinator to determine if it should become a coordinator
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boolean share-other-coordinators(a, b)

for each coordinator ca in a's coordinator list do

if c-a equals self then

continue

else if ca in b's coordinator list then

return true

else if ca in neighbor table then

for each coordinator c-c_a in c_a's coordinator list do

if c_c-a equals self then

continue

else if c_c_a in b's coordinator list then

return true

return false

Figure 3-5: Coordinator announcement algorithm pseudo-code: returns true if and

only if neighbors a and b are connected by one or two other coordinators. Note that

coordinator lists are kept in the neighbor table.

struct span-encap-hdr {

bool next.hop-coord;

};

Figure 3-6: Encapsulation header for IP packets passing through the Span element.

or not. check-announce-coordinator first computes C, the number of additional

neighbor pairs that would be connected if the node becomes a coordinator, using

connect-pair. If C > 0, the node computes delay using Equation 2.4 and waits

for delay seconds before recomputing C. If C continues to be greater than 0 after

delay seconds, the node announces itself as a coordinator. connect-pair calculates

the number of would-be connected neighbor pairs by iterating through the node's

neighbors in the neighbor table. A similar routine exists for checking if every pair of

neighbor nodes can reach each other via one or two other neighbors. That routine is

used by the withdraw algorithm.
In addition to the coordinator election algorithm shown in Figures 3-3, 3-4, and

3-5, we implemented a special case for electing coordinators. The routing algorithm

can readily detect that a coordinator has left the region through MAC layer failure

feedback. However, the Span election algorithm may not react fast enough to elect

new coordinators. In the worst case, nodes must wait until the old coordinator

information has expired in the neighbor table before a new coordinator can be elected.

Since our routing algorithm falls back to using non-coordinators to route packets if

coordinators do not exist, a non-coordinator node announces itself as a coordinator if

it has received a large number of packets to route in the recent past. If this coordinator

turns out to be redundant, the coordinator withdraw algorithm will force the node

to withdraw itself as a coordinator soon after.
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bool coordinator() const;

bool in-grace() const;

Figure 3-7: The Span interface. The Span module exports this interface for the
purpose of routing protocols.

3.2.2 Span Encapsulation Header

Span adds a header to each outgoing packet sent by the Linux networking stack. The
purpose of the Span encapsulation header is to inform the link layer whether the
next hop node for the packet is or is not a coordinator. Whether the next hop is
a coordinator is tantamount to whether the next hop is saving power or not, which
changes the link layer's actions as described below in our discussion of the link layer.

3.2.3 Span Interface

The interface that Span exports to the other Click elements is simple. As shown in
Figure 3-7, it consists of two functions that query the state of Span. The function
coordinator returns true if and only if Span at this node has elected itself coor-
dinator. The function in-grace returns true if and only if Span at this node is in
its grace period. The routing protocol is free to make use of this information, and a
Span-aware routing protocol will make extensive use of this information, as described
in the next section.

3.3 Routing Architecture

This section describes the Routing layer shown above in Figure 3-1. The challenge
in implementing this part of Span was formulating the interface that should exist be-
tween Span and the underlying routing protocol, with the goals of efficiency (in terms
of routing and Span message overhead), performance (in terms of power conservation
and routing data)

3.3.1 Routing Layer Interface

By examining at the interaction between Span and several routing protocols, we have
formed a "Span-compliant" routing protocol abstraction, shown in Figure 3-8. All
routing protocols wishing to work with Span should implement the interface shown
in this figure. This decouples the implementation of Span from the implementation
of the routing protocol, facilitating code reuse.

Note that in our architecture, the routing protocol is responsible for updating
two-hop neighborhood information for the node. An alternate design is to move
this functionality into the Span code, separate from the routing code. We chose to
implement two-hop neighborhood maintenance functionality in the routing protocol
because we believe that many useful recent routing protocols (for example, the Grid
location service with geographic forwarding) implement this functionality anyway.
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class SpanRoutingProtocol {
public:

// returns an iterator that scans over only our

// one-hop neighbors

virtual NeighborIterator nbrs() = 0;

// the number of one-hop neighbors we have

virtual int nbrcnt() = 0;

virtual NeighborEntry *find-nbr(IPAddress ip) = 0;

// hint from Span to update other nodes' routing state

virtual void forcerouting-update() = 0;

// returns true iff the next hop for this ip packet

// is a coordinator. should err to give false positives

// for safety.
virtual bool nexthop-coord(IPAddress ip) = 0;

};

Figure 3-8: C++ code specifying the interface for a Span-compliant routing protocol.

A NeighborEntry contains IP and MAC addresses for a node's neighbor, and a

NeighborIterator is an iterator that iterates over NeighborEntry elements. Code
has been edited for clarity.
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Consequently, the routing protocol can suppress or piggyback such HELLO messages
on its own hello messages, potentially resulting in a halving of the number of messages
sent and received.

3.3.2 Dynamically-Sequenced Distance Vector (DSDV)

We implemented Dynamically-Sequenced Distance Vector (DSDV) [23] to route pack-
ets through our wireless network testbed. We implemented all features of DSDV from
scratch, referring to the relevant ns-2 simulator code when necessary.

We chose to implement DSDV because of its simplicity, and because it maintains
neighbor information an infinite number of hops away. While Span only requires infor-
mation about neighbors up to two hops away, it is trivial to extend this functionality
to a fully-operational DSDV implementation.

The DSDV Algorithm

The idea behind DSDV is for each node to distribute distance-vector information
about all destinations to each of its neighbors. More precisely, a node i maintains a
routing table consisting of distances to every destination j in the network {dij} and
corresponding next hops {Nij}. It periodically broadcasts this routing table to its
neighbors in the network. When a node i receives node k's routing table, for each
j, it compares 1 + dkj with dij and sets Nij +- k if the former value is strictly less
than the latter. In this way, DSDV runs a distributed Bellman-Ford shortest-paths
algorithm.

DSDV adds destination-sequenced sequence numbers to the basic algorithm for
the purpose of avoiding stale routes, and the consequent routing loops that can form.
Each destination j keeps track of a sequence number si, which is incremented every
time j advertises its own route (i.e., djj = 0) to its neighbors. A node records sequence
numbers of all the routes it has seen, and rejects routes with lower sequence numbers,
and always (even if the distance metric is worse) replaces routes with strictly greater
sequence numbers than it has already seen. A node x thus performs the Bellman-Ford
distance comparison to determine if it will accept the route if and only if the sequence
number of the route is equal to the highest sequence number x has yet seen.

As described so far, DSDV suffers from a problem with fluctuating routes. To
illustrate this, in Figure 3-9 we see host one advertising a route to all other hosts on the
network. Suppose that the path from node one to node four through Node Collection
A is one hop longer than the same path through Node Collection B. Suppose further
that due to the relative phase of the periodic routing updates in A and B, that the
route through A always arrives at four before the corresponding route through B.
In this situation, the route to one from or through four will fluctuate at the DSDV
routing update period. To prevent this, DSDV adds a settling table which keeps track
of the time that a route takes to settle-stabilize on the least-metric route for a given
sequence number. For each destination, the settling table keeps track of the last and
average settling times. Then on receipt of a new route with a higher sequence number
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Figure 3-9: An example of a network where DSDV routes can fluctuate rapidly. In
the figure the clouds represents sets of mobile hosts providing connectivity between
edges into and out from the cloud.

than previously known, a node forwards on that route, but waits twice the average
settling time before advertising it.

DSDV also maintains a table containing the time it last heard from each neigh-
boring node. If this time grows past a configurable threshold, all routes through that
link are deleted from the node's routing table, and route withdrawal messages are
sent, containing an metric of oc for each route that was broken.

Scaling Properties of DSDV. In terms of storage, each host keeps an entry for
each destination in the network. Thus the storage space required is on the order of the
number of destinations, or nodes, in the ad hoc network. In terms of message size and
number of messages, however, each host's full routing update is of size proportional
to the number of destinations in the network.

Therefore, traffic in any small constant area of the network scales proportionally
with the number of nodes in the network, while the total amount of traffic in the
network scales with the square of network size. As a result, DSDV traffic will easily
dominate the available bandwidth if the number of nodes in the network gets large
enough.

Integrating DSDV with Span

In this section, we describe how we integrated DSDV routing with Span coordina-
tor election. In order to conform to the SpanRoutingProtocol interface, our DSDV
implementation uses the routing protocol's periodic update messages to exchange in-
formation about two-hop neighbors and their Span coordinator status. Information
about two-hop neighbors, therefore, is freely propagated between non-coordinator
nodes, coordinator nodes, and between the two types of nodes.

However, nodes drop route advertisements from non-coordinators to avoid routing
through non-coordinators. The exception to this rule is that a non-coordinator can
serve as the source or destination of a route. A problem with this scheme arises
when a link breaks due to mobility or node failure. In this case, non-coordinators
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need to exchange routing information to discover that a route has disappeared (and
potentially, a new Span coordinator needs to be elected). Consequently, nodes always
listen to route withdrawal messages (route updates with an oc metric).

Testbed Configuration

We now present the Click configuration used in our experiments in Figure 3-10. We
implemented DSDV and Span in separate Click elements; the DSDV and Span ele-
ments communicate through the SpanRPElement interface described above, and pack-
ets move between Click elements as shown by the arrows in the diagram. The Click
elements in this diagram implement the Span and Routing layers of Figure 3-1 above.
The FromDevice, KernelTap, and ToDevice elements interface with the Linux kernel
as described above in Section 3.1.1.

The Click element Span performs two functions in our implementation. As shown
in Figure 3-10, the Span element has four ports, two of which handle processing and
generation of the Span HELLO packets described in the Chapter 2. The remaining two
ports pass through IP packets, inserting a span IP encapsulation header (shown in
Figure 3-6) into the packet.

3.4 Link Layer Design

This section details the design of the software-based link layer used in the testbed.
In the future, we hope to design an open hardware, power-saving MAC. In fact, the
main challenge in the design of the link layer is implementing a power-saving medium
access control (MAC) layer.

None of the major wireless chip makers implement an ad hoc, power-saving MAC
layer in hardware yet [33]. To overcome this problem, we researched two chip sets
that offer a host-based access point operating mode. Most wireless network interface
cards support two forms of access point mode. In host-based access point mode,
the host performs most of the access point functionality. Typically, the card does
not encapsulate 802.3 (Ethernet) frames in this mode. One significant advantage of
host-based AP mode is that the driver writer is given more freedom in the 802.11
implementation. Conversely, In firmware-based access-point mode the access point
functionality is contained in code that is downloaded to volatile card RAM (often
referred to as tertiary firmware), or built in to the non-volatile chip firmware.

We found that the Cisco Aironet 340 series offers a well-documented host-based
access point mode that we can use to implement the power-saving-specific parts of the
MAC; we implemented the remainder of the MAC in software. The main challenge in
implementing the MAC in software is to precisely control when the card sends frames.
To a certain extent, this is impossible to do, and so the software has to sometimes wait
for the card to finish sending or receiving a frame, introducing latency, throughput,
power, and loss-rate problems into the link layer. The main objective of the design
of the software MAC was to minimize these problems, as well as improve upon the
802.11 ad hoc power-saving mode MAC proposed by the IEEE.
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FromDevice(eth0, ...)

Classipfer(12/7ffe, 12/0806 20/0002, 12/7ffd,
12/0800, 12/0806 20/001, -)KernelTap(192.168.0.1/24)

arp request span ip dsdv arp reply (Inv id)
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CheckIPHeader

GetIPAddress(I ARPResp .. Strip(14 Discard

CheckIPHeader

ARPQuerned...)
IPClassifier(dst host 192.168.0.1, -)

local traffic outbound traffic
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EtherEncap(...)

KernelTap(192.168.0.1124)

spanTtraffic iptraffich

EthRewriter(...)

ToDevice(ethO)

Figure 3-10: The user-level Click configuration for our testbed experiments. Arrows
in the diagram indicate packet flow between the boxes that represent click elements.
The EthRewriter, Span, and DSDV elements are original contributions of this thesis.
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Figure 3-11: Left: A node arrangement that illustrates the utility of the RTS/CTS
handshake. In this figure Node 1 is sending data to Node 2. Each node's radio range
is indicated by the dotted circles. Right: Data transmitted over the wireless medium
and network allocation vector status as Node 1 sends a packet to Node 2. Time
runs along the x-axis. White boxes represent data, and bold black lines represent a
non-zero network allocation vector.

Span determines when to turn a node's radio on or off, but depends on the low
level MAC layer to support power saving functions, such as buffering packets for
sleeping nodes. We have implemented Span on top of the 802.11 MAC and physical
layers with ad hoc power saving support [1].

3.4.1 IEEE 802.11 Distributed Coordination Function

The IEEE refers to the basic 802.11 medium access protocol as the distributed coordi-
nation function (DCF). The DCF is important because all commodity 802.11 devices,
from PCMCIA client cards to high-end access points, follow the DCF rules. The DCF
is a protocol for collision avoidance (CA) in a multiple-access medium where carrier
sense is available (CSMA); hence the term CSMA/CA. In our testbed we utilized the
DCF implementation in the Cisco Aironet hardware.

In Figure 3-11 we show an arrangement of nodes in an ad hoc networking and the
corresponding traffic over the wireless medium as Node 1 sends to Node 2. The DCF
stipulates that before sending a packet, Node 1 broadcasts a ready to send (RTS)
frame to its local neighborhood; the RTS frame contains the time duration of the
transmission. All nodes keep a piece of state called the network allocation vector
(NAV) that indicates reservation of the shared medium. Nodes that receive the RTS
(Nodes 0 and 4) set their NAVs for the duration of the transmission sequence.

When Node 2 hears an RTS frame for data destined to it from Node 1, it broadcasts
a clear to send (CTS) frame to its local neighborhood. The CTS is similar in structure
to the RTS; both contain duration information. Nodes in Node 2's neighborhood
(Nodes 4 and 3) set their NAVs in a similar way to those in Node I's neighborhood
do when they receive a RTS.

Next, Node 1 sends a data frame to Node 2, and Node 2 responds with an ac-
knowledgment (ACK) frame.

Note that the only real gain in using RTS/CTS frames comes from a reduced
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duration of potential collisions. If stations are sending large data frames, then the
penalty for collisions will be high, since entire frames are discarded at once when
a collision occurs. In this case, the MAC protocol should use RTS/CTS frames.
However, when stations are sending mostly small data frames (close to the size of
the RTS/CTS frame), the penalty for a collision is small, and RTS/CTS frames are
simply a waste of bandwidth. Hence most implementations use RTS/CTS for data
frames of size larger than an adjustable threshold.

Also note that the neighborhoods of Nodes 1 and 2 may differ, and so both the
RTS and the CTS are required to reserve the medium. A side-effect of this is that
the medium is reserved "both ways," and links are forced to be symmetrical (i.e., if
A can transmit to B, then B can transmit to A).

3.4.2 IEEE 802.11 Ad Hoc Power-Saving Mode

The 802.11 ad hoc power-saving mode (PSM) uses periodic beacons to synchronize
nodes in the network. Beacon packets contain timestamps that synchronize nodes'
clocks. A beacon period starts with an ad hoc traffic indication message window
(A TIM window), during which all nodes are listening, and pending traffic transmis-
sions are advertised. A node that receives and acknowledges an advertisement for
unicast or broadcast traffic directed to itself must stay on for the rest of the beacon
period. Otherwise, it can turn itself off at the end of the ATIM window, until the
beginning of the next beacon period. After the ATIM window, advertised traffic is
transmitted. Since traffic cannot be transmitted during the ATIM window, the avail-
able channel capacity is reduced. In our testbed, we implemented the 802.11 ad hoc
PSM in software.

Figure 3-12 shows a typical 802.11 ad hoc PSM traffic scenario where stations
1, 2, and 3 can all hear each other. In the picture, station 1 sends an ATIM to
station 2, which 2 acknowledges. Then, in the subsequent data window, the DCF
RTS/CTS/DATA/ACK sequence may proceed. Note that for the first beacon period,
overhearing stations (such as 3) may sleep outside of the ATIM window, but must
wake up for the subsequent ATIM window. In the second ATIM window, station 1
sends a multicast ATIM in the ATIM window. Consequently it and all other stations
must remain awake for the entire second beacon period. Note that multicast ATIMs
are not acknowledged, and that the RTS/CTS/ACK handshaking is not used for
multicast data, as stipulated by the 802.11 standard.

When the 802.11 MAC layer is asked to send a packet, it may or may not be able
to send it immediately, depending on which ATIMs have been sent and acknowledged
in the immediately preceding or current, ATIM window. If the packet arrives at the
MAC during the ATIM window, or if the advertisement for the packet has not been
acknowledged, it needs to be buffered. In our implementation, we buffer packets for
two beacon periods. Packets that have not been transmitted after two beacon periods
are dropped.

The beacon period and ATIM window size greatly affect routing performance [29].
While using a small ATIM window may improve energy savings, there may not be
enough time for all buffered packets to be advertised. Using an ATIM window that
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Figure 3-12: Two beacon periods' worth of traffic in the 802.11 ad hoc power-saving
mode. We show traffic on the network (top), and (bottom) the on/off status of the

radios at stations numbered one, two, and three. The bold areas of the timeline

indicate the ATIM window.

is too large not only decreases available channel utilization, it may also not leave

enough room between the end of the ATIM window and the beginning of the next
beacon period to transmit all advertised traffic.

Aside from decreased channel capacity, 802.11 PSM (without Span) also suffers

from a long packet delivery latency: for each hop that a packet traverses, the expected

packet delay is half a beacon period.

3.4.3 Improving the 802.11 Ad Hoc Power-Saving MAC

Span can improve routing throughput and packet delivery latency of the 802.11 ad
hoc PSM. Since coordinators do not operate in power saving mode, packets routed

between coordinators do not need to be advertised or delayed. To further take ad-
vantage of the synergy between Span and 802.11 power saving mode, we have made
the following modifications to our simulation of 802.11 power saving mode.

1. No advertisements for packets between coordinators. Packets routed between
coordinators are marked by Span. While the MAC layer still needs to buffer
these packets if they arrive during the ATIM window, it does not send traf-
fic advertisements for them. To ensure that Span does not provide incorrect
information due to topology changes, the MAC maintains a separate neighbor
table. The MAC layer uses a bit in the MAC header of each packet it sends to
notify neighbors of its power saving status. Since the MAC layer can sniff the
header of every packet, including RTS packets, this neighbor table is likely to

be correct. When a node withdraws as a coordinator, advertisements for traffic
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Figure 3-13: Two beacon periods' worth of traffic in the 802.11 ad hoc power-saving
mode, with our improvements. We show traffic on the network (top), and (bottom)
the on/off status of the radios at stations numbered one, two, and three. The bold
areas of the timeline indicate the ATIM window.

to that node will be sent during the next ATIM window. This optimization
allows the ATIM window to be reduced without hurting throughput.

2. Individually advertise each broadcast message. With unmodified 802.11 power
saving mode, a node only needs to send one broadcast advertisement even if it
has more than one broadcast message to send. This is because once a node hears
an advertisement for a broadcast message, it stays up for the entire duration of
the beacon period. Since most traffic to non-coordinator nodes in our network
would be broadcast messages sent by Span and the routing protocol, we modified
the MAC so each broadcast message must be explicitly advertised. For example,
if a node receives 5 broadcast advertisements, no unicast advertisements, and
then 5 broadcast messages after the ATIM window, it can safely turn itself off.

3. New advertised traffic window. In the unmodified 802.11 power-saving mode,
if a node receives a unicast advertisement, it must remain on for the rest of
the beacon period. In a Span network, packets routed via non-coordinator
nodes are rare. To take advantage of this, we introduced a new advertised
traffic window in the MAC. The advertised traffic window is smaller than the
beacon period. It starts at the beginning of the beacon period, and extends
beyond the end of the ATIM window. Outside the ATIM window but inside the
advertised traffic window, advertised packets and packets to coordinators can
be transmitted. Outside the advertised traffic window, however, only packets
between coordinators can be transmitted. This allows a node in power saving
mode to turn itself off at the end of the advertised traffic window until the next
beacon period.
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These three modifications allow each node to use a long beacon period and a
short ATIM window. The short ATIM window improves channel utilization, while
the long beacon period increases the fraction of time a non-coordinator node can
remain asleep. Span does not require these modifications, but does better when they
are implemented.

3.5 Chapter Summary

In this chapter we have described the design of each layer of the Span implementation.
We have also described the interfaces between the different layers of the system, and
pointed out where others can add functionality to the system through these interfaces.
Finally, we have discussed the tools we used to implement each of the layers, and our
reasons for choosing the tools we chose.
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Chapter 4

Experimental Evaluation

In this chapter we present the results of experiments that
performs in a real ad hoc network of handheld computers.

measure how well Span

4.1 Coordinator Election Experiments

This section shows that our Span implementation makes good choices about which
nodes to elect as coordinator.

4.1.1 Test Topologies

We now present some test topologies to verify the correctness of the entire Span
implementation, including the 802.11 ad hoc power-saving software MAC, routing
module, Span module, and their interactions with the Linux kernel and networking
stack.

We began with the four node network topology shown in Figure 4-1, to initially test
our implementation. Not long after, we added four more nodes to form the eight node
topology shown in Figure 4-2. In both topologies, note that our implementation was

Figure 4-1: A four node test topology. In this and subsequent floorplan figures, black
nodes indicate Span coordinators and white nodes indicate non-coordinators. We
note that exactly the right coordinator is elected in this topology.
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Figure 4-2: An eight node test topology.

I

Figure 4-3:
ter x 1000

An approximation to an optimal layout of coordinators in a 1000 me-
meter area. There are 14 coordinators in this layout.

successful in electing the right Span coordinators to provide a connected forwarding
backbone.

4.1.2 Simulation Results

Ideally, Span would choose just enough coordinators to preserve connectivity and
capacity, but no more. Any number above this minimum would waste power in the
network. This section compares the number of coordinators Span chooses with the
number that would be required to form a hexagonal grid layout, shown in Figure 4-3;
the hexagonal grid layout of nodes, while perhaps not optimal, produces a connected
backbone in every direction with very few coordinators.

The hexagonal grid layout of coordinators place a coordinator at each vertex of a
hexagon. Every coordinator can communicate with the three coordinators that it is
connected to through an edge of a hexagon, which is 250 meters long (the radio range).
Each hexagon has six coordinators, but each coordinator is shared by three hexagons.
Therefore each hexagon is only responsible for two coordinators. Each hexagon has
an area of 162,380 m 2 . Thus, given a simulation area of d2 meters, the number of
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Figure 4-4: Ideal and actual coordinator density as a function of node density. The
ideal curve represents an approximate lower bound on the number of coordinators
needed. Span elects more coordinators than the ideal case because of lower node
density, coordinator rotation, and announcement collision.

coordinators expected in this area, Cideal is

Cideal - 2 (4.1)
162380

Figure 4-4 shows coordinator density as a function of node density. For each node
density, coordinator density is computed from the average number of coordinators
elected by Span over 500 seconds of five mobile simulations. Points on the "Ideal"
curve in Figure 4-4 are computed using the ideal number of coordinators predicted
by Equation 4.1.

Span elects more coordinators than Equation 4.1 suggests. There are two reasons
for this. First, Equation 4.1 describes a layout in a network that is dense enough
such that there is a node at every corner of every hexagon. When the node density is
moderate, on the other hand, more nodes are needed to provide connectivity between
the hexagons. Second, to rotate coordinators among all nodes, the optimal set of
coordinators may not always be selected.

4.2 Latency Experiments

This section describes the experiments we performed to measure how Span affects
latency in our testbed.

4.2.1 One-hop Latency

To test the latency of our 802.11 power-saving mode MAC, we used ping to mea-
sure the one-hop latencies between a pair of Span coordinators and a pair of non-
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Figure 4-5: A histogram showing the distribution of ping times over one hop between
Span coordinators. The bin size is 70 ms. The mode of the histogram is the first bin,
containing ping times between zero and 70 ins.

coordinators. Figures 4-5 and 4-6 show the resulting distribution of ping times. In
Figure 4-5 we see that most packets take about L = 35 ms to propagate between
Span coordinators. This time is mostly due to processing in the MAC layer.

In Figure 4-6 we see that most packets take either 2170 ms to propagate between
non-coordinators. Note that our 802.11 ad hoc power-saving mode beacon period is
one second for these experiments. From Figure 4-7, we see that the latency between
non-coordinators is composed of the following parts:

1. Wait for the time of the traffic advertisement window (at the beginning of each
1000 ms beacon period) [0-1000 ms, denoted (a) in Figure 4-7],

2. send the data packet advertisement [approximately 10 ms],

3. wait for an acknowledgment to the advertisement (this acknowledgment should
come immediately) [approximately 10 ms],

4. wait for the data window (250 ms from the beginning of the beacon period, to
the beginning of the next beacon period) [approximately 190 ms; this and the
previous two steps are denoted (b) in Figure 4-7],

5. send the data [approximately 10 ms].

As shown in Figure 4-7, this sequence is repeated for the other side to respond
to the ping, with the exception that the other side always waits for approximately
790 ms (denoted (c) in Figure 4-7). Summing the steps in this sequence gives us a
latency L of 1210-2210 ins, depending on when the packet is sent. This calculation
is consistent with the ping times in Figure 4-6.
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Figure 4-6: A histogram showing the distribution of ping times over one hop between
nodes that are not Span coordinators. The bin size is 70 ms. The mode of the
histogram is the 31st bin, which contains ping times between 2100 and 2170 ms.
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Figure 4-7: A time diagram showing the latency incurred by one ping packet between
a pair of Span non-coordinators in 802.11 ad hoc power-saving mode. The dashed
lines indicate beacon period boundaries, while the dotted lines indicate the end of a
traffic advertisement window and the beginning of a data window within one beacon
period.
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Figure 4-8: System energy remaining as a function of time, comparing Span an iso-
lated Span coordinator versus an isolated Span non-coordinator. Each point repre-
sents a reading; readings were taken at five-minute intervals.

In both Figure 4-5 and Figure 4-6 the ping times cluster around L +I- 1000k, k=
1, 2, 3, ... because sometimes the MAC cannot send and receive packets fast enough
to meet the traffic advertisement window and beacon period deadlines. When this
happens, the MAC buffers packets and tries at the next beacon period, resulting in a
delay of one beacon period or 1000 ins. We believe that a hardware implementation
of the MAC would restore the ping time between non-coordinators to L ins.

4.3 Energy Experiments

Using the automatic power management daemon (apm) available with our Linux dis-
tribution on the iPaq, we measured an iPaq's remaining battery energy at five-minute
intervals, starting from a fully-charged battery, and terminating when battery charge
reached a critical low threshold, chosen to be 10%. Both the iPaq and its PC-Card
sleeve were disconnected from the line power throughout the experiment, and the
screen was turned on and remained on throughout the duration of the experiment,
to simulate a human using the iPaq. The readings were taken by a Perl script that
queried the /proc interface to apm daemon.

Figure 4-8 shows the results of this experiment for a Span coordinator and a non-
coordinator. In both cases the nodes were isolated from any other nodes. We note
that the non-coordinator saves 15 minutes' worth of energy by turning off its radio.
The battery lifetime of an iPaq running its radio at full power is 120 minutes. While
this is a modest power savings, it is noticeable in a real system comprised of many
parts that are major power consumers, such as the display, CPU, and memory.

In a separate experiment, we measured the lifetime of a Span coordinator with
the display off. We now calculate the lifetime of a non-coordinator with the dis-
play off. Define T 0c, Tc as the lifetime of a Span (non-) coordinator with the display
on, Tje Tc' as the lifetime of a Span (non-) coordinator with the display off, and

Pa, Pc, PAL, and Pc' as the power consumed by the analogous configurations. Fur-
thermore, define P0 n, Poff as the power consumed by the radio of a Span coordinator
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or non-coordinator, respectively, Pscreen as the power consumed by the iPaq screen
and backlight, and P. as the power consumed by the rest of the iPaq, including the
microprocessor. Then, by definition and from experimental results:

T, = 120 minutes

Tnc = E =135 minutes
Pn c

Tc' = = 240 minutes;P,

and also by definition, we have that

Pc = Pscreen+ Pon + Pp

PC', Pon + Pp

Pn c Pscreen+ Poff + P

P'e = Pof f +pit .

We can then compute the lifetime of an iPaq non-coordinator with its display

backlight off as

E
Tn c =Pc

E

Poff + P
E

Pnc-P+PC,
1

- 1 1 _
135 120 240

= 309 minutes.

In Figure 4-9 we present the results of the above analysis. We note that while

the difference between a Span coordinator and a non-coordinator with the backlight

on is modest (only a 12% increase in node lifetime), our implementation of a Span

non-coordinator increases node lifetime by 29% when the iPaq backlight is turned off.

4.4 Capacity Experiments

We used the ttcp tool [21] to measure the bandwidth available between a pair of

Span coordinators, and a pair of non-coordinators. Figure 4-10 presents the results.

In this experiment, the packet size was 1024 bytes and the number of packets was 500,
for a total of approximately 51KB to transfer across the wireless link. The 802.11 ad

hoc power-saving mode beacon period was one second. In Figure 4-10 (Left), we see

the TCP algorithm adjusting to the slow round-trip time of the link between non-

coordinators. Consequently, the TCP transmission timer expires before the sender

receives an acknowledgment for the packet ending with byte 10,000 (for example),
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Figure 4-9: Total iPaq battery lifetime when a node is a Span coordinator or a
non-coordinator. We separate the results based on whether the iPaq has its display
backlight off or on. The result for a Span non-coordinator with its backlight off is
calculated.

and the sender retransmits several packets in the first 15 seconds. Later in the trace,
we see the sender has adjusted to the slow round trip time. The receiver receives
packets at one-second intervals; sometimes missing receipt of packets in a one-second
period due to lack of CPU time to send and receive a packet advertisement for that
beacon period.

In Figure 4-10 (Right), we see note the subtle break in throughput at every bea-
con period boundary. This is due to the 802.11 ad hoc power-saving mode MAC
disallowing data transmission during the advertisement window.

Between non-coordinators, this experiment achieved a throughput of 10.8 Kbits/s;
between coordinators, this experiment achieved a throughput of 445.3 Kbits/s. The
reason for the difference in throughput is not that the flow between non-coordinators
did not have time to increase its congestion window adequately-both flows finished
with a congestion window of 5440 bytes. There are several reasons for the difference
in throughput. First, as we showed in Chapter 2, it takes some time to enable and
disable the MAC. The second reason there is less capacity pertains directly to the
802.11 card hardware. During the ttcp run between non-coordinators, the link-layer
driver software has less FIDs (see Section 3.1.1) available for use because each ATIM
packet takes a FID. This requires us to periodically stop the Linux transmission queue
(also see Section 3.1.1) more than in the coordinator-coordinator communication case,
resulting in a lower throughput. Finally, because of the closed licensing of the 802.11
hardware we are using, we do not know the effect of repeatedly disabling and enabling
the MAC in software as described in Section 3.4; quite possibly the MAC needs
some time to reinitialize its state after being disabled; this would delay processing of
transmit commands and decrease throughput.
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Figure 4-10: Left: a TCP trace between two Span non-coordinator nodes. Right: a
TCP trace between two Span coordinators. In both figures the x-axis is the time that
the packet was received, with t = 0 equal to the time the first byte was received. The
y-axis is the sequence number of the last byte in the received packet. Each point on
the graph represents the receipt of a 1024-byte packet. The dotted line shows the
link bandwidth.

4.5 Capacity of 802.11 Networks

We now describe a graph-theoretic approach to the analysis of the capacity of an
802.11 wireless network, or any MACAW-type [2] network. First, we define total one-
hop capacity C1 (bit -sec- 1) as the total rate of data that all nodes can send over one
hop at once.

In Figure 4-11 we see node A transmitting to node B. When node A sends its RTS
to B, all nodes in A's radio range will not initiate any transmissions for the duration
of A's transmission. This prevents transmissions from nodes in A's radio range to any
other node. Furthermore, nodes in A's radio range will not respond to RTS packets
with a CTS for the duration of A's transmission'. This prevents transmissions to
any nodes in A's radio range. The net result of the RTS packet is that any links
terminating within A's radio range may not be used.

When B receives A's RTS packet, it responds with a CTS packet that has the
same effect on nodes in its neighborhood. The net result is that any link terminating
in either A or B's neighborhood may not be used.

The maximum graph matching problem is a related graph-theoretic problem that
has been closely studied. The maximum graph matching problem is as follows. Given
an undirected graph G = (V, E), select a maximum subset of the edges M C E such
that no two elements of M are adjacent.

We define the maximum two-hop graph matching problem as follows. Given an
undirected graph G = (V, E), select a maximum subset of the edges M C E such
that no element el of M is adjacent to the neighborhood of all e2 = ei E M, where
the neighborhood of e = (vi, v 2 ) E E is {v E V: (vi, v) E E} n {v E V: (v2 , v) E E}.

'Note that this is not true of the MACA [15] protocol, but is true for MACAW and its derivatives,
such as 802.11.
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Figure 4-11: An example of the "two-hop matching" property. In this example, A
is transmitting to B in the direction indicated by the arrow. Solid lines denote links
available for use at the same time as this link while dotted lines denote links that
may not be used concurrently with this link.

In the context of an 802.11 network, we observe that the cardinality IMI of the
maximum two-hop graph matching is equal to the maximum number of nodes in
the network that can transmit at the same time. Thus we can bound the one-hop
capacity as follows: C1 < M| -L where L is the link bandwidth (bit -sec- 1). We plan
to pursue this line of analysis in future work.

4.6 Chapter Summary

In this chapter we have presented experiments that validate the functionality and
performance of our Span implementation. We have presented experiments character-
izing our implementation's coordinator election, latency, node lifetime, and capacity.
We have also presented four and eight-node wireless testbeds constructed at the MIT
Laboratory for Computer Science on the fifth floor of the building.
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Chapter 5

Conclusions

We have presented the design of Span, a power-saving protocol for ad hoc networks.
We have shown some initial results to show that Span preserves the capacity of the
ad hoc network as a whole. We have also described the implementation of an ad
hoc networking testbed that implements Span. Our testbed is highly-scalable: a
new node can be added to the testbed in a total of 4 minutes. Our testbed is also
highly-extensible: our use of the Click modular router software enables us to change
properties of the link layer or routing layer easily and without interference to other
layers of the system. Finally, we have reported the results of experiments to show
that Span does in fact perform as simulated in the testbed.

Key Conclusions. Our key conclusion is that Span is feasible to implement on a
real platform such as Linux. Chapter 2 showed that a hardware implementation of
a link-layer PSM can save large amounts of energy, while Chapter 4 showed that our
implementation of Span can function in a real ad hoc network. Finally, Chapter 3
showed that our implementation can be easily extended. From these observations, we
conclude that both Span and improvements to Span can be implemented on an iPaq
in Linux.

5.1 Related Work

Much work on power-saving is being done in simulation; here the flexibility of a
simulator can enable the analysis of more sophisticated algorithms. Another body of
work comes from other efforts to develop ad hoc networking testbeds.

5.1.1 Power-Saving in Ad Hoc Networks

The set of coordinators elected by Span at any time is a connected dominating set of
the graph formed by the nodes of the ad hoc network. A connected dominating set
S of a graph G is a connected subgraph of G such that every vertex u in G is either
in S or adjacent to some v in S. Routing using connected dominating sets of a graph
can reduce the search space for routes [9, 36].
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Das and Bharghavan [9] approximate the minimum connected dominating set
of an ad hoc network, and route packets using nodes from that set. The set of
coordinators elected by Span, however, has the additional property of being capacity
preserving. Consequently, the connected dominating set elected by Span is likely to
be larger than a minimal connected dominating set. For example, the black nodes
in Figure 2-3 form a minimal connected dominating set. However, Span's election
algorithm would additionally elect node 5 to be a coordinator to preserve capacity.

Wu and Li [36] propose a distributed algorithm for approximating connected dom-
inating sets in an ad hoc network that also appears to preserve capacity. In a later
paper, Wu and Gao [35] discuss power aware routing using the connected dominating
sets. Their algorithm is similar to Span's coordinator election algorithm. Span, how-
ever, elects fewer coordinators because it actively prevents redundant coordinators by
using randomized slotting and damping.

The recent GAF [38] scheme of Xu et al. has similar goals to Span. In GAF, nodes
use geographic location information to divide the world into fixed square grids. The
size of each grid stays constant, regardless of node density. Nodes within a grid switch
between sleeping and listening, with the guarantee that one node in each grid stays up
to route packets. Span differs from GAF in two important ways. First, unlike GAF,
Span does not require that nodes know their geographic positions. Instead, Span uses
local broadcast messages to discover and react to changes in the network topology.
Second, Span integrates with 802.11 power saving mode nicely: non-coordinator nodes
can still receive packets when operating in power saving mode.

In AFECA [37], each node maintains a count of the number of nodes within ra-
dio range, obtained by listening to transmissions on the channel. A node switches
between sleeping and listening, with randomized sleep times proportional to the num-
ber of nearby nodes. The net effect is that the number of listening nodes is roughly
constant, regardless of node density; as the density increases, more energy can be
saved. AFECA's constants are chosen so that there is a high probability that the lis-
tening nodes form a connected graph, so that ad hoc forwarding works. An AFECA
node does not know whether it is required to listen in order to maintain connectivity,
so to be conservative AFECA tends to make nodes listen even when they could be
asleep. Span differs from AFECA in that, with high likelihood, Span never keeps a
node awake unless it is absolutely essential for connecting two of its neighbors. Fur-
thermore, Span explicitly attempts to preserve the same overall system capacity as
the underlying network where all nodes are awake, which ensures that no increase in
congestion occurs.

The PAMAS power-saving medium access protocol [25, 31] turns off a node's radio
when it is overhearing a packet not addressed to it. This approach is suitable for radios
in which processing a received packet is expensive compared to listening to an idle
radio channel. Kravets and Krishnan [16] present a system in which mobile units wake
up periodically and poll a base station for newly arrived packets. Like Stemm and
Katz [32], they show that setting the on/off periods based on application hints reduces
both power and delay. Span assumes the presence of an ad hoc polling mechanism such
as that provided by 802.11, and could potentially work in concert with application
hints; such hints would apply only to sleeping nodes, not coordinators. Smith et al.
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[19] propose an ad hoc network that elects a virtual base station to buffer packets for
local nodes. They do not, however, attempt to make sure that enough of these base
stations are present to preserve connectivity in a multi-hop ad hoc network.

As described in Chapter 2, minimum-energy routing saves power by choosing
paths through a multi-hop ad hoc network that minimize the total transmit en-
ergy. Minimum-energy routing has been extended by Chang and Tassiulas [5] to
maximize overall network lifetime by distributing energy consumption fairly. In this
protocol, nodes adjust their transmission power levels and select routes to optimize
performance. Ramanathan and Rosales-Hain describe distributed algorithms that
vary transmission power and attempt to maintain connectedness [26]. Rodoplu and
Meng give a distributed algorithm to produce minimum-power routes by varying node
transmission power [28]. Wattenhofer et al. [34] describe a topology maintenance algo-
rithm using similar underlying radio support, but their algorithm guarantees global
connectedness using directional information. Span controls whether or not the re-
ceiver is powered on, rather than controlling the transmit power level. It also pays
close attention to overall system capacity, in addition to maintaining connectivity.

In general, the basic idea that a path with many short hops is sometimes more
energy-efficient than one with a few long hops could be applied to any ad hoc network
with variable-power radios and knowledge of positions. This technique and Span's
are orthogonal, so their benefits could potentially be combined.

5.1.2 Other Wireless Network Testbeds

The Grid [17] ad hoc networking testbed is comprised of approximately 20 desktop
computers placed on the floor of an office building. Like our testbed, each node runs
Click modular router software to perform routing tasks.

Unlike our testbed, the Grid testbed uses a standard 802.11 ad hoc link layer. The
Grid testbed does not directly address power-conservation issues; each Grid node is
a line-powered computer.

The Monarch Project

Maltz et. al. [18] constructed a five-node wireless network testbed. Each of their
nodes was a car equipped with a laptop computer, a 900 MHz WaveLan I wireless
network interface card, and a GPS receiver. Their routing protocol was DSR [3],
which they implemented in the BSD networking stack.

As in our work, Maltz et. al. used simulation techniques in order to design
and debug their upper-level routing software. To debug their implementation, they
assigned virtual locations to nodes, and wrote a tool called macfilter that drops
packets from machines not "within range" (according to the virtual locations) of the
destination machine.
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5.2 Future Work

The link-layer of our networking testbed is suboptimal; with a link-layer fully imple-
mented in hardware, the following benefits can be realized.

1. Substantially more energy savings, since a hardware implementation of the
MAC would free host CPU cycles and perform MAC tasks more efficiently.

2. Lower latency and more bandwidth, since much host intervention is required
to send packets. Bandwidth is currently limited because host CPU processing
time is the limiting factor of the link layer.

3. Better host CPU performance, allowing us to run a GUI on the host computer.

We plan to build an open hardware implementation of the 802.11 ad hoc power-
saving mode, or an improved power-saving mode for ad hoc networks. We plan to
make our implementation open because we believe that it will provide an excellent
path for other researchers to implement their own MACAW-like power-saving MACs.
Many power-saving MACs currently exist, yet are not implemented because of the
difficulty involved in doing so.
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