

- AIR RESISTANCE OF CYLINDER COMBINATIONS

$$
\underline{A} \quad \underline{H} \underline{E} \underline{S} \underline{I}
$$



May 1916


$$
\mathrm{C} \underline{\mathrm{~N}} \mathrm{~T} \mathrm{E} \mathrm{~N} \mathrm{~T} \underline{S}
$$

Sec. 1 Description of apparatus ..... 1
2 Determination of the resistance of the apparatus ..... 2
3 Alignment of apparatus with the direction of the wind ..... 3
4 Resistance of cylinder combinations ..... 4
5 Determination of K for single cylinders ..... 6
6 Discussion of the preceeding results ..... 7
7 Experiments on the resistance ofcylinder combinations with filledin gaps9
8 General conclusions and recommen- dations ..... 13

## Air Resistance of Cylinder Combinations

The present experiments were undertaken to investigate the shielding effect of cylinders or wires which lie one behind the other such as found in practice in the bracing wires of aeroplanes.

## 1. Description of Apparatus:

The specimens employed were made in the form of woolen rods of three different diameters, viz., $I^{\prime \prime}, 3 / 4^{\prime \prime}$ and length $1 / 2^{\prime \prime}$, and all $18^{\prime \prime}$ in length, which $\lambda^{i s}$ considered most suitable for the four foot wind tunnel. In these experiments the specimens were mounted on an apparatus specially designed for the purpose (Fig. 1) It consists of a Vshaped frame made of $1 / 8^{\prime \prime}$ brass sheet. On the top of each arm of the frame is a horizontal cross piece about $10^{\prime \prime}$ long, which forms with the arm the letter $T$ when viewed in the direction perpendicular to that of the wind. A slot $3 / 16^{\prime \prime}$ wide and about $8^{\prime \prime}$ in length is cut in the centre of each of these cross pieces; $3 / 16^{\prime \prime}$ screws projecting from the ends of the specimens fit into these slots, and are held in position by small nuts. The spacing or gap of a combination of two cylirders can thus be varied by unscrewing the nuts on one of them and sliding
it along the slots. The frame has at its lower end a short spindle which connects it to the balance underneath the wind tunnel.

From the balance pivot to the centre of the slots or the centre of the cylinders the arm was $32.813^{\prime \prime}$. The balance was so constructed that the balance weights gave the resistance directly when the arm was $36^{\prime \prime}$. Hence an arm ratio correction of $\frac{36}{32.813}$ or 1.095 had to be applied to all resistance readings.

## 2. Determination of the Resistance of the Apparatus.

For this purpose the apparatus was mounted on the balance without the specimens, but with the small nuts stuck on to the cross-pieces. The resistance was then measured at different wind speeds. The results are tabulated as follows:

Table I

| Wind speed M. P. H. | Wind speed ft./sec. | $D_{0}$ | $D_{1}$ | $D_{s}=D_{1}-D_{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 35 | 51.33 | . 073 | . 1240 | . 0510 |
| 30 | 44.00 | . 073 | . 1115 | . 0385 |
| 25 | 36.67 | . 073 | . 1000 | . 0270 |
| 20 | 29.33 | . 073 | . 0930 | . 0175 |
| 16 | 23.40 | . 073 | . 0870 | . 0140 |
| 12 | 17.50 | . 073 | . 0825 | . 0095 |

Where $D_{0}=$ zero reading without wind
$D_{1}=$ readings with wind
$D_{s}=$ resistance of the apparatus without arm ratio correction
From all readings of resistance of cylinders and cylinder combinations $D_{s}$ for the corresponding speed was subtredted. Correction was then made for the arm ratio and $K$ calcuiated. Hence the actual resistance of the apparatus was of no interest
3. Alignment of Apparatus with the direction of the wind.

It is important that the apparatus should be placed exactly parallel to the axis of the wind tunnel in order that its resistance may be the same in each experiment. To determine the effect of small deviations from the exact parallel position, the apparatus was turned $2^{0}$ to either side of the correct position, and readings were taken of its resistances at the deviated positions, and it was found that the increase in resistance was $8 \%$ In each case, or approximately $4 \%$ per degree. With this apparatus, adjustment could be made to within $1 / 4$ of a degree $w$ ithout difficulty, and therefore error from this source would be within $1 \%$ of the resistance of the apparatus which was itself only about $15 \%$ of the average resistance recorded in this investigation. Mo appreciable error would therefore be introduced in our results due to this cause.
4. Resistance of Cylinder Combinations:

Four combinations of cylinders were tested, and they were made up as follows:-
(I) $1^{\prime \prime}$ and $3 / 4^{\prime \prime}$
(2) $1^{\prime \prime}$ and $1 / 2^{\prime \prime}$
(3) $3 / 4^{\prime \prime}$ and $1 / 2^{\prime \prime}$
(4) $1 / 2^{\prime \prime}$ and $1 / 2^{\prime \prime}$

The larger cylinder was placed in the foremost position in the slots in each case, and the smaller or the rear one was shifted progressively to the rear after each reading was taken. The distance between the cylinders was measured by a pair of callipers. Wind velocity throughout the experiments was 30 miles ab hour.

Table 2 gives the values of $K$ which was calculated from the expression
$\mathrm{R}=\mathrm{KDLV}^{2}$ where
$R$ was the measured resistance in lbs.
D the diameter of the larger. cylinder in feet.
I the length in feet ( $=1.5$ )
$V$ the wind velocity in feet per sec and

In combinations (3) and (4) where the large diameters are $3 / 4^{\prime \prime}$ and $1 / 2^{\prime \prime}$ respectively, the values of K have been reduced to $1^{\prime \prime}$ dia. in the following manner:

From fig. 3 we find that at 30 miles an hour

Therefore at 30 miles per hour,

$$
\begin{aligned}
\text { K for } 1^{\prime \prime} \text { dia. }= & 120 / 123=0.975 \text { times that } \\
& \text { for } 3 / 4^{\prime \prime} \text { dia. } \\
\text { and }= & 120 / 122^{\prime \prime}=0.984 \text { times that } \\
& \text { for } 1 / 2^{\prime \prime} \text { dia. }
\end{aligned}
$$

Therefore in combination (3)

$$
K=R / D L V^{2} \times 0.975
$$

and in combination (4)

$$
K=R / D L V^{2} \times 0.984
$$

The values of $K$ for all the combinations in the table are now comparable with each other and with the $1^{n}$ single cylinder. The values of $K$ are also expressed in percentages of the value for $1^{\prime \prime}$ cylinder (table 2) and are plotted in fig. 2 against cylinder spacings. Cylinder spacings are measured between centres and are in terms of the diameter of the larger cylinder.

프픝 $\underline{2}$

Comparative resistances and resistance
Coefficients of Cylinder Combinations


| 3/4 | - - - | - - - |
| :---: | :---: | :---: |
| $5 / 6$ | - - - | - - - |
| 7/8 | - - - | - - - |
| $1-$ | 38.4 | . 000446 |
| 1-1/8 | - - | - - - |
| 1-1/4 | 50.0 | . 000580 |
| 1-1/2 | 51.1 | . 000592 |
| 1-3/4 | 53.7 | . 000624 |
| 8- | 62.4 | .000723 |
| 2-1/2 | - - - | - - - |
| 2.3/4 | 89. | . 001030 |
| 3 | - - | - - - |
| 3-1/2 | 118. | . 001376 |
| $4-$ | 137. | . 001580 |
| 5- | 148. | . 001660 |
| 6- | - - | - - - |
| $7-$ | 152. | . 001770 |
| $8-$ | - - - | - |
| $9-$ | - - - | - - - |
| $10-$ | - - - | - - - |
| 11- | 163. | .001890 |
| 12- | - - | - - |
| $15-$ | 170. | .001970 |


| - - - | - - - |
| :---: | :---: |
| - | - - - |
| 77.8 | . 000935 |
| 72.6 | .000872 |
| - - - | - - |
| 73.4 | . 000880 |
| 74.5 | . 000895 |
| - - - | - - - |
| 79.9 | . 000960 |
| 87.1 | . 001048 |
| - - | - - - |
| 97.4 | . 001170 |
| 112.0 | . 001345 |
| 128.- | . 001540 |
| 133. | . 001595 |
| 137. | . 001645 |
| 139.9 | .001675 |
| 143.9 | . 001724 |
| - - | - - |
| - | - - - |
| - - | - - |
| - - | - - |
| - - | - - |


| - - | - - - - | 87.6 | . 001050 |
| :---: | :---: | :---: | :---: |
| 87.7 | . 000981 | - - - | - - - |
| - - - | - - | 90.6 | . 001090 |
| 83.7 | . 001005 | 90.3 | . 001085 |
| - | - - - | 87. | . 001045 |
| 76.1 | . 000914 | 85.3 | . 001025 |
| 73.3 | . 000881 | 83.6 | . 001005 |
| 70.9 | . 000850 | 80.7 | . 000970 |
| 74.3 | . 000893 | 82.5 | . 000990 |
| 84.9 | . 001020 | 88.1 | . 001060 |
| - | - - - | - | - - - |
| 102.7 | . 001232 | 106.5 | . 001280 |
| 123. | . 001473 | 121.6 | . 001460 |
| 130. | . 001565 | 126.7 | . 001520 |
| 133.8 | . 001605 | - - - | - |
| - - | - - - | 129. | . 001550 |
| 138.3 | . 001662 | - - | - - |
| - | - - - | 132.5 | .001590 |
| 141. | . 001691 | - - - | - - |
| - | - - - | - - - | - - |
| - - - | - - - | - - - | - |
| - | - - - | - - | - - |
| - - - | - - - | - - - | - - - |

5. Determination of $\mathbb{I}$ for single cylinders:
"End effect" as commonly understood in connection with wire resistance experiments was not well defined in our case because the flow was not disturbed by the sharp corners of the ends, as they were not exposed to the air current with our apparatus. The coefficients $K$ in table 2 had not therefore been corrected for this effect, but a separate series of experiments was carried out to determiae the resistance of single cylinders on the same apparatus so that should any error be introduced in the actual coefficients of table 2, it wound be eliminated as they were expressed in percentages of that for the single cylinders so determined.

The three sizes of cylinders were tested at speeds varying from 12 to 35 mides an hour. Tables 3, 4, and 5 give the values of: $K$ for each cylinder from three sets of experiments and these areall plotted against the product of diameter (in feet) and wind velocity (in feet per second) i.e., DV (fig. 3). Values of K for single cylinders used in preparing table 2 were taken from this curve.

The reason for plotting $K$ against DV, or in other words for assuming that $K$ is a function of D.V. is based on the principle of dynamical similarity by which it
can be shown that for the same value of $D V$, the coefficients $K$ is constant. The dimensional effect in our rem sults is thus elminated.
6. Discussion of the preceeding results:

On examining the curves in fig. 2, the first thing to be noticed is that all the combinations have, in general, the same trend in character. That is,- when the rear cylinder is being progressively displaced from a position immediately behind the front cylinder, the resistance of the combination decreases from about $90 \%$ of that of the front cylinder to less than $80 \%$ at about 2 diameters apart; it then increases rather rapidly up to about $3-1 / 2$ to 4 diameters, after which it increases but very slowly as the rear cylinder is still further displaced down stream.

The first part of the curve for the 1 to 1 dia. ratio combination however, shows an exception to the above remark. The resistance in this case does not decrease with the increase of spacing between the cylinders at any point on the curve; and furthermore, when these cylinders are close together they have a resistance much less than any of the other combinations. Starting with about 40\%, it increases to $80 \%$ at about $2-1 / 2$ diameters apart. Except
also for a part of this curve, all the curves lie very close together, crossing and recrossing each other at many points, showing that no one particular combination gives much less resistance than others. The 1 to 1 dia. ratio combination gives appreciably less resistance than the rest of the combinations when placed not more than 3 diameters apart, and a negligibly small amount more at other spacings. In practice then, no good purpose will be served my making the rear wire, where two wires are used, of a smaller diameter than the front one.

| wind Velocity |  | D | $K=\frac{R}{D L V^{2}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M.P.H. | Ft. $/ \mathrm{Sec}$. |  | (1) | (2) | (3) |
| 12 | 17.5 | 1.46 | - - - | - - - | . 00107 |
| 16 | 23.4 | 1.95 | - - - | - | . 00110 |
| 20 | $29 \cdot 3$ | 2.44 | . 00120 | . 00111 | . 00115 |
| 25 | 36.7 | 3.06 | . 00119 | . 00117 | .00117 |
| 30 | 44.0 | 3.66 | . 00118 | . 00119 | .00117 |
| 35 | 51.3 | 4.27 | . 00118 | . 00117 | . 00116 |

TABIE 4 Resistance of $3 / 4^{\prime \prime}$ dia Single Cylinder

| Mind | Velocity | D V | $K=\frac{R}{D L V^{2}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M.P.H | Ft./Sec. |  | (1) | (2) | (3) |
| 12 | 17.5 | 1.09 | - - - | - - - | . 00101 |
| 16 | 23.4 | 1.46 | - | - - | -. 00107 |
| 20 | 29.3 | 1.83 | . 00125 | . 00121 | . 00116 |
| 25 | 36.7 | 2.30 | . 00124 | . 00125 | . 00122 |
| 30 | 44.0 | 2.75 | . 00123 | . 00126 | . 00121 |
| 35 | 51.3 | 3.20 | . 00124 | .00121 | . 00122 |

T $A$ B $\underline{E} \underline{5}$ Resistance of $1 / 2^{\prime \prime}$ dia. Single Cylinder

| Wind | Velocity | D V | $K=\frac{R}{\overline{D L V^{2}}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M.P.H | Ft./Sec. |  | (17 | (2) | (3) |
| 12 | 17.5 | 0.73 | - - - | - - - | . 00092 |
| 16 | 23.4 | 0.975 | $\theta$ - - | - - - | . 00106 |
| 20 | 29.3 | 1.22 | . 00125 | . 00117 | .00116 |
| 25 | 36.7 | 1.53 | . 00126 | . 00122 | . 00123 |
| 30 | 44.0 | 1.83 | . 00126 | . 00127 | . 00124 |
| 35 | 51.3 | 2.14 | .00126 | . 00124 | .00124 |

N. B. $\quad D=$ dia. of $c y l i n d e r$ in $f t$
$L=$ length of cylinder in $t$.
$=1.5 \mathrm{ft}$. for all cylinders
$V=$ wind velocity inf/sec.
$R=$ resistance in lbs.

ㅍ: Experiments on the Resistance of
Cylinder Combinations with filled in gaps:
It was thought provable that the resistance of any of the combinations would be reduced if we filled in the gap hetween the cylinders so as to form smooth sides between them. This may be done in practice by wrapping air tight fabric or tape round wires where they occur in pairs.

Four filled in gap combinations of spacings 2, 4,6 and 8 diameters were chosen for test from the 1 to 1 diameter ratio combination and also a filled in combibation of $\stackrel{4}{2}$ diameters spacing from the 1 to $\frac{3}{x} / 2$ diameter ratio conbination to see whether such a refinement would improve the resistance by any larger amount.

Special specimens mere made for this series of experiments, They were in the form of wooden boards with rounded edges. For the 1 to 1 diameter ratio combina$\pm i o n$ the boards each had a uniform thickness of $1^{\prime \prime}$ and width of $3^{\prime \prime}, 5^{\prime \prime}, 7^{\prime \prime}$ and $9^{\prime \prime}$ representing spacings between centres of $2,4,6$ and 8 diameters respectively. For the 1 to $1 / 2$ diameter ratio combination the board was tapered from $I^{\prime \prime}$ diameter at the front edge to $1 / 2^{*}$ diameter at the rear. The lengths were as before all 13 inches. (fig. 4).

The uniform boards were all tested first with one edge facing the wind and then the other in order to eliminate errors in the mounting. It was found, however, that the readings taken from both mountings were in very close agreement.

$$
\underline{I} \underline{A} \underline{E} \underline{E} \quad \underline{6}
$$

| Spacing | Ratio of Cylinder diameter: 1 : 1 |  | Ratio of Cylinder diameters 1 : $1 / 2$ |  |
| :---: | :---: | :---: | :---: | :---: |
| centers in |  | Resistance |  | Resistance |
| diameters of | $K=\mathrm{R}$ | in of | $\mathrm{K}=\mathrm{R}$ | -in \% of |
| the larger | $\overline{D L V}^{2}$ | that of one | $\overline{\mathrm{DLV}}^{2}$ | that of one |
| cylindee |  | single |  | single |
|  |  | cylinder |  | çlinder |
| 2 | . 000608 | 50.6 | - - - | - |
| 4 | . 000604 | 50.3 | .000543 | 45.2 |
| 6 | . 000640 | 53.3 | - - | - |
| 8 | .. 000606 | 50.5 | O- - - | - - |

The values in table 6, are the means of four readings and they are, with the exception of the 1 to $1 / 2$ diameter ratio, plotted in fig. 2. It will be seen that $\mathbb{X}$ for the 1 to $l$ diameter ratio combination was practically constant for all the spacings on the curve and its value about
is only $50 \%$ of that of the single cylinder. The resistance of the 1 to $-1 / 2$ diameter ratio combination is about $45 \%$ of that of a single cylinder, a slight improvement.
8. General conclusions and recommendations

From the results of the present investigation the following conclusions may be drawn:-
(1) When two cilinders either of equal diameters or different diameters are placed one behind the other (the larger cylinder in front in the latter case) in an air stream, the resistance of the combination is less than that of the front cylinder alone up to 3 diameters spacing.
(2) For spacings greater than 4 diameters the resistance of a combination of twe cylinders one behind the other is only from $5 \%$ to $10 \%$ less, when the cylinder behind is of a smaller diameter, than that of a combination of equal diameters, provided the distances between centres are the same. For spacings less than 4 diameters the resistonce is however from $10 \%$ to $30 \%$ more in the former case. Hence, as mentioned before, no good purpose will be served in practice by making a combination of two wires of different diameters.
(3) Above 4 diameters spacing, any further increase in the distance between centres is only accompanied by a very slight increase in resistance, about $2-1 / 2 \%$ per diameter spacing at the most.
(4) The resistance of any of the combinations is very much reduced when the gap between the cylinders is filled in, especially when the distance apart is more than 4 diameters of the larger cylinder.

## Recommendations:

(I) The usual practice of using wires of equal diameters where two wires are needed should be adhered to as it is best both from resistance and strength considerations,
(2) Unless the wires are placed very close together (not more than 2 diameters apart between centres) it is abiolutely essential that the gap between them should be filled in, either by wrapping air tight fabric or tape round them or by other means, as two-thidrds of the resistance can be saved in this way. When wires are wropped, their distance apart is of no importance as far as resistence is concerned, for the resistance is constant for all spacings.

As am illustration of the importance of filling in the gap between wires the following calaulation is made for a typical tractor biplane.

Interplane bracing wires $3 / 15^{\prime \prime}$ dia., total length 450 ft. The wires are arranged, as usual, one behind the other and their spacings between centres are 6 aiameters of 1-1/8". Hence the length cirectly exposed to the wind is 225 ft.

15
Take the normal speed of the machine as $75 \mathrm{~m} \cdot \mathrm{p} . \mathrm{h}$. Resistance of $3 / 16^{\prime \prime}$ single wire at $75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. $=0.255$ lbs. per ft. run

From fig. 2, resistance for 6 dia. spacing double wire $=145 \%$ the resistance of a single wire.
. . total resistance of the wires $=1.45 \mathrm{x} .255 \mathrm{x}$ $225=83$ lbs.

$$
\text { H. P. expended }=\frac{83 \times 75 \times 1.46}{550}=16.5
$$

When the gaps are filled in, the resistance is only
$53.3 \%$ the resistance of a single wire.
power expended $=16.5 \times \frac{.533}{145}=6 \mathrm{H} . \mathrm{P}$.
$\therefore$ power saved $=10-1 / 2$ E.P.
If one wire is used, for the same strength it has to be $1 / 4^{\prime \prime}$ in diameter.
Resistance of $1 / 4^{\prime \prime}$ wire $=.355 \times \frac{450}{2}=80 \mathrm{lbs}$.

$$
\text { H. P. expended }=\frac{80 \times 75 \times 1.46}{550}=16
$$

-. Power saved by using $3 / 16^{\prime \prime}$ filled in double

$$
\text { wires }=10 \mathrm{H} . \mathrm{P} .
$$






FIGURE 4


Filled in Gap
Cylinder Combinations


