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Abstract

Quantum Well Intersubband Photodetectors (QWIPs) are attractive devices for use in very
large focal plane arrays (FPAs) because QWIPs can take advantage of both established
technology for growing and processing GaAs optical devices and commercially available
large area VLSI GaAs IC's. This thesis demonstrates the first normal incidence TE mode
QWIP. Detectivity for the normal incidence TE mode devices was as high as 2x1010

Jones with responsivities as high as 80mA/W corresponding to quantum efficiencies of
0.069% per quantum well. This value for the quantum efficiency compares well to theo-
retical calculations which give a value of 0.068% per quantum well. A detectivity of
2x10 10 Jones is sufficient to produce focal plane arrays with minimum resolvable temper-
ature differences less than 10mK for QWIP FPAs operating with a 300K background in
the LWIR band. For current state of the art read-out ICs and calibration techniques these
TE mode QWIP FPAs will be uniformity limited, not limited by the detectivity of the indi-
vidual TE mode QWIP pixels and thus perform as well as FPAs made from devices with
much higher detectivity. The recognition that the quantum efficiency of TE mode QWIPs,
though low compared to competing devices, is sufficiently high so as not to effect the
overall performance of the FPA is an important contribution of the work.

Finally, in discussing issues related to monolithic integration of QWIP FPAs and their
companion read out integrated cirtuits (ROICs), this thesis has improved the design of the
growth wells used in the epitaxy-on-electronics (E-o-E) integration process and proposed
a new integration technique called epitaxy-on-electronics/selective area waferbonding (E-
o-E/SAW) which combines the strengths of the E-o-E process with the flexibility of grow-
ing on an unprocessed substrate. E-o-E/SAW is quite exciting and very generally applica-
ble to the design of any OEIC which requires integration of VLSI scale electronic circuits
with MSI scale optical devices.

Thesis Supervisor: Clifton G. Fonstad, Jr.
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: John Joannopoulos
Title: Professor of Physics
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Chapter 1

Introduction to Infrared Focal Plane Arrays

1.1 Thesis Organization

The subject of this thesis is infrared (IR) imaging systems. As such the journey starts in

Chapter 1 with a broad historical look at the key discoveries which laid the groundwork

for modern infrared systems in general and this thesis in particular. Particular attention is

paid to the development of the figures of merit which measure progress toward improved

IR imaging systems. Figures of merit warrant this emphasis because they are so important

in both evaluating progress and determining the direction of future work. To facilitate

later analysis of the dependence of imaging system performance on discrete detector per-

formance, a model of an infrared camera that includes discrete detector and system param-

eters will be developed. Chapter 1 finishes with a discussion of the wide variety infrared

detectors using the figures of merit discussed to assess the strengths and weaknesses of the

various technologies for a sampling of current and future applications. Chapter 2 focuses

on the physics of QWIP focal plane arrays in general and the normal incidence quantum

well intersubband photodetectors (QWIPs) which are the central focus of this work in par-

ticular, with an emphasis on the trade-offs involved over competing technologies and the

specific applications in which the author expects this technology to excel. Chapter 3 looks

at the molecular beam epitaxial (MBE) growth of the QWIPs used in this work as well as

their fabrication and the specific technological issues brought about by both growth and

fabrication methods chosen. Chapter 4 looks at the cryogenic measurements of the

world's first normal incidence n-type QWIP without a coupling grating demonstrated as

part of this thesis. Specific attention is paid to the adequacy of the devices demonstrated

to the applications envisioned in Chapter 2, possible avenues to improved performance

and potential pitfalls to final commercialization. Chapter 5 looks at the modeling and

cryogenic measurement of the commercially available GaAs VLSI MESFETs proposed

for use in monolithic integration of the normal incidence QWIPs with the required read
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out integrated circuits (ROICs). Chapter 6 looks at the progress made toward monolithic

integration using the epi-on-electronics (E-o-E) technology developed by K.V. Shenoy

and C.G Fonstad, Jr.[1] Some mention will be made of the contributions of the author to

the E-o-E technology, and the potential of this technology for commercialization of star-

ring FPA cameras. A description is also given of a new selective area wafer bonding

(SAW) technology proposed by the author for use in conjuction with E-o-E to address the

two weaknesses inherent in the E-o-E technology; requirement for low temperature MBE

growth and lateral integration of electrical and optical devices. Finally, Chapter 7 will

summarize the accomplishments of this thesis and discuss directions for further work.

1.2 Historical Introduction

Though heat has been sensed and used by humans since the onset of the species, it was

not until 1800 that Sir William Herschel[2] (1738 - 1822) identified heat as infrared radia-

tion by dispersing sunlight through a prism and measuring the rise in temperature of a

thermometer as a function of spacial position. He found that the largest rise in tempera-

ture occurred in the spectral region "below red" and thereby identified "infrared" radia-

tion. The thermometer thus became the first infrared thermal detector. The first infrared

photon detector would have to wait more than a century until 1904 when J.C. Bose[3]

showed that naturally occurring galena, lead sulfide, exhibited the photovoltaic effect

when exposed to infrared radiation. This photon detector was fundamentally different

from the thermal detector of Herschel in that its sensitivity varied as a function of incident

radiation wavelength, for PbS dropping to zero for infrared radiation with a wavelength

longer than about 3tm. Lead salts were the infrared detectors of choice through World

War II and continue to be used today, but with the discovery of the transistor at Bell Labo-

ratories in 1947 by John Bardeen and Walter Brattain[4] and the explaination thereof the

following year by William Shockley[5], large scale research into the physics and technol-

ogy of all manner of semiconductors lead to the development of new semiconductor based

photon detectors whose spectral response is better suited to remote infrared imaging appli-

cations.
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The most important of these semiconductors for infrared imaging has historically been

Mercury-Cadmium-Telluride (MCT) because variations in the ternary composition allow

the bandgap to be tuned from the visible to beyond 16gm including the three important

atmospheric infrared windows. These photon detectors are termed "intrinsic" since the

photons absorbed generate electron-hole pairs across the bandgap both of which are

mobile in the semiconductor and contribute to the electrical photoresponse. "Extrinsic"

photodetectors in which a single mobile carrier is generated by absorption of a photon at a

fixed impurity site are also possible and even preferable in certain applications. A varia-

tion of the extrinsic photodetector using intersubband transitions in GaAs based quantum

wells, the quantum well intersubband photodetector (QWIP) was first suggested by Esaki

and Sakaki at IBM in 1977[6] and demonstrated by Levine[7] at AT&T in 1987.

Simultaneous with the developing understanding of semiconductors the invention of

the integrated circuit by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild in

1959 sparked a revolution in the Silicon industry which has driven up the density of Sili-

con ICs at a rate of one octave every 18 months for more than thirty years. As the under-

standing of the semiconductors used in IR detectors has matured the emphasis has also

shifted from individual devices to the development of imaging systems using the technol-

ogy first developed for the Silicon industry. The first of these imaging systems used a sin-

gle IR detector and a mechanical scanning system which used rotating mirrors to scan a

two dimensional image onto the single detector. These systems were slow and had poor

temperature resolution because the time for collecting data at each object pixel was so

short. To get a 30Hz image with a spacial resolution equivalent to a television, 640 x 480

the dwell time at each pixel was only 108nS, much too short to make reasonable images.

The next generation of systems used a linear array of devices to increase the dwell time by

a factor of 640 to 694gS. Today technology borrowed from the Silicon industry is being

applied to the development of the two dimensional infrared focal plane array (FPA), or

starring array, used in IR cameras analogous to the common CCD video camera used in

visible light cameras. In these arrays each detector element stares at the object for the full

frame time, 33mS for a 30Hz system, thus giving the optimum signal to noise ratio.
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1.3 Infrared Physics Background

This thesis focuses on infrared imaging using FPAs which implies both that the object

to be imaged must emit radiation in the spectral range in which the detector is sensitive

and that the infrared radiation emitted can travel with acceptable attenuation from the

object to the detector. The start for addressing the issue of emission is the expression for

the spectral energy density in a black body postulated by Max Plank in 1900 and for which

he received the Nobel prize in physics in 1918.

3
h (

S 23 (h lw
n c exp y2 T2nIkT)

J
3

cm Hz
(1.1)

Figure 1.1 shows the black body spectral density for several temperatures as a function of

wavelength. The lowest curve is that for a 300K black body which is a good initial guess

for the spectral density of many of the objects; people, tanks, airplanes, etc. that may be of

interest for imaging.
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Figure 1.1: Black Body Spectral Density
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The peak intensity occurs near 0lim falling off exponentially toward shorter wavelengths

and more gradually toward longer wavelengths. An object that emits radiation with a

spectral distribution given by Equation 1,1 is said to emit as a grey body. If the object is

also a perfect absorber which by Kirchhoff's law also implies that the object is a perfect

emitter, emissivity e = 1, the object is a black body. The power emitted by such an

object per unit object area per unit wavelength is given by:

2tc2h 1

X5 exP(T- 1(XkT)

Watts
2

cm - gm
(1.2)

Grey bodies emit with the same spectral distribution, but with power given by Equation

1.2 attenuated by the emissivity factor E < 1. For the special case of a perfect reflector

E = 0; a perfect reflector does not radiate.

Wavelength in um

Figure 1.2: Photon Flux for Black Body near RT with a bandwidth of l gm

For photon counting detectors, it is often more convenient to write Equation 1.2 in

terms of the photon number by dividing by the photon energy hc/X, dividing by 27x to
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normalize to the field of view of the detector in Steradians and integrating over the wave-

length range over which the detector is sensitive. The result is Equation 1.3.

XH

(D 2c
XP = (p1
L4 (exp( - 1

Photons
2

s. cm Steradian

Figure 1.2 shows the result of integrating Equation 1.3 over a one micron bandwidth as a

function of center wavelength for a series of black body temperatures near 300K.

1610

<c

cco(

0a-

0

e-

O

5

5

LWIR
.. *

... *

MWIR ...

,0 300. *320 340 360 380
-... ·. · · · · · · · · · · · · · ·. ·. ·· · · · · · · ° 

o °

820 300 320 340 360 380
Black Body Temperature - Kelvin

Figure 1.3: Photon flux for detector with 1gm bandwidth and center frequency in
the midwave IR (MWIR) 4gm or long-wave IR (LWIR) 9jim.

Figure 1.3 again shows the photon flux for a bandwidth of 1 m, this time as a function of

black body temperature with fixed center wavelengths of 4gm, labeled as mid-wave infra-

red (MWIR), and 9pm, labeled as long-wave infrared (LWIR). For infrared imaging

applications in which the camera needs to resolve temperature variations within a scene

with an average black body temperature given by the abscissa of Figure 1.3, the ordinate

of Figure 1.3 gives the value of the average infrared background flux. Notice that the

(1.3)
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LWIR band offers about an order of magnitude more photons than the MWIR band. In

addition, the solar background which can be modeled to first order as a black body with a

temperature of -5800K, is lower by about two orders of magnitude.

C-
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280 300 320 340 360 380
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Figure 1.4: Contrast Photon Flux for MWIR (4gm) and LWIR (9l.m) bands with
detector bandwidth of l m

The contrast in photon flux between points within an image that have slightly different

temperatures is given by the derivative of Equation 1.3 with respect to temperature.

dP he
-dv kT2 h P (1.4)

d(D,/dT is shown ratioed to the total background photon flux in Figure 1.4. Notice that

the values are on the order of 1 percent per degree Kelvin. Since good quality images typ-

ically require resolution on the order of 10mK or better, the desired signal is buried in a

background nearly four orders of magnitude larger than the signal itself. Of course this

would be a simple matter of subtraction if it were not for the fact that the background is

not continuous but rather the result of discrete photons whose arrival time at the detector is

r.
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determined by Poisson statistics and therefore introduces shot noise in the background

photon flux. Also note that the contrast ratio for the MWIR band is approximately a factor

of two larger than for the LWIR band. This can be used to advantage in some MWIR

FPAs leading to better performance in spite of the lower photon flux in the MWIR.

The other major factor that determines the wavelength of choice for imaging is the

absorption and scattering properties of the atmosphere. The atmosphere is an extremely

complicated medium with constituent gases giving a complex spectrum of molecular

absorption lines that change in intensity with weather conditions, altitude, latitude, season,

ground conditions and many other factors. In addition natural and man-made particulates

act as scattering centers for radiation in the infrared. Fortunately, the atmosphere has been

studied intensively and very accurate experimental data is available for a wide variety of

possible conditions.
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Figure 1.5: MODTRAN3 calculation of atmospheric transmission through a dis-

tance of 5km at mid-latitude during summer with visibility of 5km and no rain over
farmland.

As an example, Figure 1.5 shows the transmission over a distance of 5km at sea level dur-
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ing summer at mid-latitude under clear weather conditions over farmland. The principle

features are determined by the absorption of water, CO2 and particulates. The data was

calculated using the US military's MODTRAN3[8,9,10] program which has a resolution

of 1cm -1 over the entire spectral range shown. The three atmospheric transmission "win-

dows" are labeled short-wave infrared (SWIR) from 1.8gm to 2.5glm, mid-wave infrared

(MWIR) from 3gm to 5gm and long-wave infrared (LWIR) from 8gm to 12gm. Note the

fortuitous coincidence between the peak in the spectral density for a black body at 300K

near 10gm and the LWIR transmission band between 8gm and 12gm can be seen. The

LWIR spectral band has nearly an order of magnitude larger spectral density than the

MWIR spectral band for a 300K black body making LWIR the preferred detector band in

many surveillance applications. A more detailed discussion of the criteria used to deter-

mine the optimum detector including the detection band will be forthcoming after a very

important discussion of the figures of merit appropriate for infrared detection.

1.4 Figures of Merit for IR detectors and Focal Plane Arrays

Fundamental constants like Plank's constant, h, relate physically measurable quantities

like photon energy and frequency through the system of units we choose to use. i.e. the

physics in the equation E = h' is the statement that the energy and frequency of a pho-

ton are directly proportional to each other. The value of the proportionality constant, h,

depends on the units we use; for MKS units this value is 6.626x10 -34 Joule Second but

once the units are chosen, the value of h is fixed by the physics and in this sense it is a

"fundamental" constant. Figures of merit are not fundamental, but rather are attempts to

rank a variety of different things on a common scale of "goodness". As an example, con-

trary to popular belief, Apples and Oranges are comparable if an appropriate figure of

merit, for example sugar content, is chosen. One can unequivocally state then that

Oranges are "better" than Apples in terms of sugar content. Note the very important point

that figures of merit are in some sense subjective and application dependent; one would

certainly not want to choose a fruit for a pie in terms of the sugar content figure of merit

since it would imply that Oranges were better for making pie than Apples. Clearly to
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determine the optimum fruit for making a pie requires a modification of the figure of merit

to include other than just sugar content. The discussion of infrared focal plane arrays

(FPAs) in the following sections will accentuate the application dependence of figures of

merit in the field of infrared detection and again it will be necessary to modify the standard

figures of merit to include effects unique to this application.

Typically, figures of merit will attempt to remove the effects of easily adjustable

parameters; for infrared devices these might be device area, measurement bandwidth, etc.

in favor of what are considered more fundamental device characteristics like signal to

noise ratio, where noise is properly defined as having contributions from noise sources

like photon shot noise, Johnson noise and array uniformity which are inherent in the oper-

ation of the device and/or difficult to control in device fabrication. Note again, that what

one determines to be "easily" adjustable is somewhat subjective and is likely to change as

technology changes and new applications emerge. For infrared detectors, the initial work

on figures of merit was done by R.C. Jones[11,12,13] at Polaroid Corporation in the

1950's in whose honor the unit cm. A/- [/Watt has been named the "Jones". This work

will be reviewed here as it applies to individual detector elements. It will be shown that

for applications involving large arrays of detectors some of Jones's single detector figures

of merit are inappropriate primarily because they ignore spacial variation among detector

elements within the array and need to be replaced by other figures of merit more represen-

tative of the actual performance observed in large starring arrays.

1.4.1 Responsivity - RX, RBB:

The responsivity is a measure of the dependence of the signal output from a detector

upon the radiant power incident on the detector. Since detectors are in general not spec-

trally flat, it is important to specify the type of source. If the source is nearly monochro-

matic as from the output of a spectrometer one speaks of the spectral responsivity using

R. for the symbol and specifying the wavelength at which the measurement is made. RP

is a special case of the spectral responsivity where the subscript "P" refers to the peak

spectral response. If the source is a black body, one speaks of the black body responsivity
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using the symbol RBB and specifying the temperature of the black body source. The black

body responsivity is related to the spectral responsivity by:

PXR RxWxdk
RBB = Amps/Watt (1.5)

Wxdk
where integration is done over the spectral range from X, to X2 over which the detector is

sensitive and WX is given by Equation 1.2. To reduce measurement noise the incident

radiation is usually chopped. Since some detectors exhibit 1/f noise, it is important to

specify the frequency of measurement. Units for responsivity are Amps/Watt for cur-

rent generating devices like photoconductors or photodiodes and Volts/Watt for photo-

voltaic and most thermal detectors.

1.4.2 Noise Equivalent Power - NEP

NEP is the root mean square, RMS incident radiant power which gives a signal current

equal to the RMS noise current. The source, either monochromatic or black body must be

specified and then the NEP is inversely related to responsivity by:

iN Amps
NEP = - (1.6)

R Amps/Watt

where iN is the noise current. Since the performance of infrared detectors is limited by

noise, NEP which can be thought of as the signal intensity required to give a signal to

noise ratio (SNR) of 1, is more indicative of image quality than responsivity. However,

since NEP does depend on detector area, field of view, noise bandwidth and signal fre-

quency; these parameters must also be specified.

1.4.3 Detectivity - D*

D* is an attempt to remove from NEP the dependence on device area and measurement

bandwidth to facilitate comparison between devices. D* is defined as:

A-f RAf
D* = SNR = Jones (1.7)P (iN )

where AD is the area of the detector, Af is the measurement bandwidth, P is the incident
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optical power, SNR is the signal to noise ratio, ipliN, in either current or voltage, R is the

responsivity, iN is the noise current given below in Equation 1.10 and ip is the photocur-

rent given below in Equation 1.9. For a signal to noise ratio of unity this reduces to:

1/2
(ADAf)D* = Jones (1.8)

NEP

The particular functional dependence on AD and Af comes from the assumption that

the detector is limited by shot noise related to the Poisson distribution in the arrival times

of photons at the detector. Consider for example a detector with quantum efficiency ri

under illumination with a photon arrival rate of Op photons per second per steradian per

unit detector area. The current generated in the detector is then:

ip = 'IqADDPPopQ g Amps (1.9)

where top is the optical transmission efficiency in photons/photon, lop is the solid angle

subtended by the lens, in terms of the f/#, •,P = n/ (4 (f#) 2 + 1) , AD is the detector

area and Op is the photon flux as given by Equation 1.3. The shot noise rms current asso-

ciated with this current is simply:

iN = F4qipgAf Amps (1.10)

so that by multiplying the SNR by AD and Af both the dependence on detector area and

measurement bandwidth are eliminated under the assumption that the detector is shot

noise limited. As with responsivity and NEP, D* is dependent on the type of source, black

body or monochromatic, used to illuminate the detector. As an example, for a detector

whose responsivity as a function of wavelength is Gaussian centered at 9.m with a

FWHM of 1.0gm, D*X is a factor of two larger than D*BB. In terms of detector parameters

and the photon flux as given by Equation 1.3, D*BB. is given by:

D*BB - Jones (1.11)
BB 2he • T opFý P op op
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1.4.4 Noise Equivalent Temperature Difference - NETD

Noise equivalent temperature difference, NETD, has several definitions in the litera-

ture, but will be defined here as the increase in temperature above the background neces-

sary to get a signal to noise ratio of one assuming only shot noise. Other noise sources

sometimes included in NETD will be dealt with separately. In terms of D*, NETD is:

1/2

NETD = (ADA) 2  (1.12)

D*BB dPBB
BB dT

where PBB is the integrated blackbody power in the spectral range over which the detector

is sensitive as shown in Figure 1.1. As a numerical example, a 50Rim x 50jim detector

with a D* of 1010 Jones at a peak wavelength of 10pm using f/2 optics and a bandwidth of

60Hz has an NETD of 10mK. In terms of detector parameters and the photon flux as

given by Equation 1.3, NETD is given by:

,kT2  1
NETD = Xko 2  Kelvin (1.13)hec AD ptfPo ip

where A is the area of the detector, top is the optical transmission efficiency in photons/

photon, tf is the frame integration time, Qop is the solid angle subtended by the lens in

terms of the f/#, LP = i/ (4 (f#) 2 + 1) , g is the photoconductive gain in electrons/

electron rl is the quantum efficiency and Dp is the photon flux as given by Equation 1.3.

1.4.5 Minimum Resolvable Temperature - MRT

D* and NEDT are extremely valuable and widely used figures of merit for discrete

detectors however, for FPAs which may contain a million or more discrete detectors, over-

all image quality is often not determined by the shot noise limit inherent in the definitions

of D* and NEDT. Instead system parameters like detector uniformity, read out integrated

circuit (ROIC) noise and pixel capacitor size often limit image quality. The first two of

these issues will be addressed here using a model of an infrared camera developed by J.M.

Mooney et.al.[14]. The issue of pixel capacitor size is very important but will be left to
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the discussion in Chapter 6 on ROICs. From this a new figure of merit, the minimum

resolvable temperature, MRT, will be defined which includes the system parameters

important for FPAs and which in the limiting case when shot noise is the dominant noise

source will reduce to NEDT. Figure 1.6 shows the simplified model of an IR FPA camera.

Two sources of electrons contribute to the total charge, NT, accumulated in one frame

time, tf, at each pixel. NP is charge accumulated due photons detected at the pixel includ-

ing background photons and signal photons.

Object Space

Focal Plane

Figure 1.6: Simplified model of an IR FPA Camera

ND is charge accumulated due to the dark current at each pixel and is independent of pho-

ton flux. Electrons due to the ROIC noise floor are also included in this picture in the term

ND. The total electron accumulation at a pixel with coordinates i,j is:

X2

NTi,j = Ri j f Ti,() (Ei ( ) Wi, j (  Ti, j) + (1.14)

1-Ei ( ) W ( • , T AB)d+ ,J
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where Tij is the net quantum efficiency of the i,j FPA pixel as a function of wavelength,

Eij is the emissivity of the i,j object pixel as a function of wavelength, Wi, j is the black

body spectral response function given in Equation 1.2 as a function of wavelength and

object pixel temperature, the term [1 - Ei (X) ] is the reflectivity of the i,j object pixel

included to account for the fact that for objects that are not black bodies the object will

have a non-zero reflection as well as emission, NDi,j is the dark current charge accumu-

lated at the i,j FPA pixel during a single frame time and RijBB is the black body responsiv-

ity of the i,j FPA pixel given by:

BB 4
RBB, = A. .j7otD opgCos ( j) (1.15)

where Ai j is the area of the i,j FPA pixel, Top is the optical transmission efficiency in pho-

tons/photon, tf is the frame integration time, 0,1p is the solid angle subtended by the lens in

terms of the f/#, flop = it/(4 (fl#) 2 + 1) . g is the photo-conductive gain in electrons/

electron, i j is the ij FPA pixel angular displacement from the optical axis and the cosine

term represents the systematic variation of pixel illumination with position at the FPA.

The integral term in Equation 1.14 is due to the incident photon flux and the NDij term

is due to detector dark current. In defining the MRT both temporal and spacial variations

across the detector FPA need to be included. The temporal noise in each FPA pixel can be

represented as the sum of two terms:

(•i=, j i, j ) i, j 2 (1.16)

The term aPij is the photon signal dependent variance, which is typically dominated by

shot noise and is therefore from Equation 1.10 equal to the square root of the number of

electrons collected NTij. The term ofij is the additive noise floor associated with the

ROIC and is therefore independent of NT,j. This term also includes the noise due to the

spacial and temporal average dark current (ND,) which is also photon signal independent.

The spacial non-uniformity in the dark current is included in the oSFpA term of Equation

1.16. The spacial noise is measured as a fraction of the mean electron number across the

entire array, commonly referred to as the nonuniformity. The nonuniformity, U, is thereby
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defined by the expression:

sFPA = U(N Ti,j) (1.17)

where the subscript FPA on s implies that aSFpA is defined for the entire FPA, the angle

brackets <> denote spacial averaging and the overbar denotes temporal averaging. This

spacial noise includes effects due to variations in quantum efficiency, variations in g fac-

tor, variations in quantum efficiency all of which are wavelength dependent as well as

variations in device area over the FPA. The total signal dependent portion of the noise is

then given by the sum of Equations 1.16 and 1.17 giving a total time and space averaged

signal to noise ratio of:

NT
SNR = , j (1.18)St 2 s 2

( ,j ) +(FP A

substituting in Equations 1.16 and 1.17 gives:

(NT,.

SNR = i, (1.19)

( W ) + g (NT) + (N)2

Three regions of operation exist for the signal-to-noise ratio. The first is the noise-

floor limited region where the afij term in the denominator of Equation 1.19 dominates

due to large dark current and/or large ROIC noise floor. The SNR for the noise-floor lim-

ited region of operation varies linearly with the total number of electrons collected, (NT,) .

The second region of operation is shot-noise limited where the (NT,) term in the denomi-

nator of Equation 1.19 is greater than the other two terms. The SNR for shot-noise limited

operation varies as (Nj). This is typically the region in which discrete single detector

elements operate and is the ultimate physical limit for operation of FPAs since shot noise

in the arrival of photons is unavoidable. The third region of operation is limited by spacial

noise, i.e. uniformity. The SNR for uniformity limited operation is independent of (Nj)



Section 1.4 - Figures of Merit for IR detectors and Focal Plane Arrays

and therefore also independent of the frame time tf. The fact that the SNR is independent

of the signal is somewhat surprising and marks a crucial difference between the results for

an individual discrete detector in which U=0 by definition and an FPA in which the unifor-

mity and not the performance of the individual devices is often the performance limiting

factor.

Equation 1.3 for the photon flux is combined with Equations 1.14 and 1.15 to give the

relation between photon flux and (N',) :

T
Ni, j) = (A, ) (i, j(gi, j)top electrons (1.20)

Since this is an optical system, the f/# of the system, the optimum area of the detector, AD,
and the cutoff wavelength, Xc, of the detector are all related by diffractive optics. Taking

the first zero in the Airy function as defining the size of the optical blur spot and setting the

area of the detector to match the spot size gives:

AD = (2.44 xf/# x c) (1.21)

The solid angle subtended by the detector is determined by the f/# of the system:

op 2 2 Steradians (1.22)
4 (f/#) + 1 4(f/#)

Combining Equations 1.21 and 1.22 then gives the optimum detector area, solid angle

product: [128]

AD op = 4.68( 2 cm 2 Steradians (1.23)

Finally, a convenient figure of merit for FPA performance can be defined called the

minimum resolvable temperature, MRT:

( .) + g N .) + U2
MRT Kelvin (1.24)

dT
which, since (N is exponentially dependent on temperature becomes:.)

which, since (NTr) is exponentially dependent on temperature becomes:
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•kT 2 1
MRT = hc SNR Kelvin (1.25)he SNR

Note that for the case where shot noise is dominant, i.e. the discrete detector limit,

MRT = NEDT and so can be thought of as an extension of NETD to include the non-

uniformity, dark current and ROIC noise inherent in an FPA. In the same shot-noise limit,

MRT can be related to D* using Equation 1.7.
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ECSI-
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Figure 1.7: Uniformity limit for FPAs in the LWIR, 8pm to 10±m band. Pixel area
50Lm x 50gm, frame rate 30Hz, optics f/# 1.5 AR coated, noise floor 200e-, g = 0.5.

To emphasize the importance of including nonuniformity and the noise floor in calcu-

lations of FPA performance Figure 1.7 shows a comparison of five different detectors in

the LWIR band using MRT as the figure of merit. The three FPAs represented with solid

lines have the same high quantum efficiency of 70% with FPA uniformities of 0.1%,

0.03% and 0.01% after correction. The FPA represented with the dashed line has a quan-

tum efficiency of only 10% but a uniformity equal to the best of the other three FPAs,

0.01%. Note that above a background temperature of -110C the FPA with 10% quantum

efficiency but a uniformity of 0.01% has a lower MRT than the FPA with 70% quantum

i0
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efficiency but a uniformity a factor of 3 worse at 0.03%. The dash dot line represents an

FPA with only 1% quantum efficiency but again 0.01% uniformity. Above a background

temperature of -60C this FPA has a lower MRT than the FPA with 70% quantum effi-

ciency but a uniformity a factor of 3 worse at 0.03%. All of these FPAs are in fact unifor-

mity limited above a temperature of -50C.

Figure 1.8 shows the same set of FPAs this time operating in the MWIR band. The

three FPAs represented with solid lines have the same high quantum efficiency of 70%

with FPA uniformities of 0.1%, 0.03% and 0.01% after correction. The FPA represented

with the dashed line has a quantum efficiency of only 10% but a uniformity equal to the

best of the other three FPA, 0.01%. Note that above a background temperature of -10C the

FPA with 10% quantum efficiency but a uniformity of 0.01% has a better MRT than the

FPA with 70% quantum efficiency but a uniformity a factor of 3 worse at 0.03%. All of

these FPAs are in fact uniformity limited above a temperature of 50C, thus the effect of

changing from the MWIR to the LWIR band is to shift the curves to higher temperature.

E
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Background Temperature - C

Figure 1.8: Uniformity limit for FPAs in the MWIR, 3pm to 5lm band. Pixel area
50gm x 50gm, frame rate 30Hz, optics f/# 1.5 AR coated, noise floor 200e', g = 0.5.
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A more quantitative understanding for the region in which spatial noise is the limiting

factor in FPA performance can be achieved by setting the term containing the uniformity,

U, in the numerator of Equation 1.24 equal to the other two terms in the numerator of

Equation 1.24. Use of Equation 1.20 then gives mean quantum efficiency as a function of

uniformity and photon flux:
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Figure 1.9: Spatial noise limited regime for uniformities of 0.5%, 0.1%, 0.05% and
0.01% in LWIR 8pm to 10p.m band. Pixel area 50p.m x 50pm, frame rate 30Hz, optics
f/# 1.5 AR coated, noise floor 200e-, g = 0.5.

1+ 1 +4 ( )2 f
(i, j) = 100 Percent (1.26)

i, j) op p op P

Equation 1.3 can be used to convert the photon flux term to mean background tempera-

ture. The result is plotted in Figure 1.9 for the LWIR, 8gm to 10gm, band and Figure 1.10

for the MWIR, 3gm to 5gm, band.

2
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Figure 1.10: Spatial noise limited regime for uniformities of 0.5%, 0.1%, 0.05% and

0.01% in MWIR 3gm to 5gm band. Pixel area 50gm x 50gm, frame rate 30Hz, optics
f/# 1.5 AR coated, noise floor 200e-, g = 0.5.

The MWIR band has greater contrast and fewer photons so that for the same unifor-

mity the FPA does not become uniformity limited until a higher background temperature

is reached. To illustrate the effect of the increased photon flux contrast available in the

MWIR band verses the LWIR band on FPA MRT, Figure 1.11 shows a comparison

between an FPA with a quantum efficiency of 70% operating in the LWIR, solid line, and

an FPA with a quantum efficiency of only 1% operating in the MWIR, dashed line. Both

FPAs have the same uniformity and are operating in the uniformity limited regime, but

due to the improved contrast in the MWIR band the FPA operating in the MWIR has a bet-

ter MRT for background temperatures above about 30C

Figure 1.12 shows a comparison of MRT and D* as figures of merit for an FPA.

Notice that for the particular FPA parameters chosen little or no improvement in MRT is

seen for a D* greater than about 1010 Jones. This shows that the FPAs are limited by uni-

formity and not shot noise and therefore D* is not an appropriate figure of merit for the

FPA.
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Background Temperature - C
Figure 1.11: Comparison of MWIR, 3gm to 5gm, and LWIR 8gm to 10gm bands.

Uniformity 0.02%, pixel area 50gm x 50gm, frame rate 30Hz, optics f/# 1.5 AR
coated, noise floor 200e-, g = 0.5.

E

I-

=

E

01
(A

E

.5

U = 0.1% MRT limit = 56.3mK
50-

40o

0 U =0.05% MRT limit = 28.1mK30-

20 - U = 0.025% MRT limit = 14.1mK

10U \ = 0.002% MRT limit = 1.1mK
0

8
10

9
10

10 11
10 10

Detectivity D* - Jones

1310

Figure 1.12: Comparison of D* and MRT as figures of merit for FPAs. LWIR band
8gm to 10gm, f/# 1.5 optics with AR coating, pixel area 50gm x 50gm, noise floor
200e-, background temperature 300K, g = 0.5.
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Section 1.5 - Effect of Calibration on FPA uniformity

In conclusion, this section has developed a model of a focal plane array camera includ-

ing individual detector performance, the effects of uniformity on the performance of the

entire array and the effect of a noise floor due to background shot noise and/or electronic

limits. Using this model it has been shown that in many practical situations the individual

detector performance is not be the limiting factor in overall FPA performance and there-

fore individual detector figures of merit like D* must be replaced by figures of merit like

MRT designed for comparison of FPA based cameras.

1.5 Effect of Calibration on FPA uniformity
It is sometimes argued[15,16] that since pixel by pixel uniformity correction is stan-

dard in FPAs, uniformity is not the a limiting factor in FPA performance. To investigate

this argument Figure 1.13 shows spacial nonuniformity from an InSb array from Cincin-

nati Electronics Corporation[17] fabricated in 1994. The array was corrected at scene

temperatures of 15C and 50C using a two point correction algorithm and a 12bit ADC. If

each pixel's output was linear over the scene temperatures used, this two point correction

would produce perfectly uniform frames for all scene temperatures. However due to the

finite resolution of the digital data and correction coefficients, 12bits, nonlinearity in the

pixel responsivities and spacial variations in the pixel responsivities as a function of the

spectral content of the scene, which changes with changing scene temperature as shown in

Figure 1.2, the spacial uniformity after correction is non-zero.

The minimum MRT from Figure 1.13 is 12mK in spite of individual detector perfor-

mance in excess of 1012 Jones indicating that the overall array performance is limited by

spatial noise, ie. non-uniformity. Notice that from Figure 1.12 the MRT of 12mK corre-

sponds very well to the limit of MRT = 14.1mK for an FPA with U = 0.025 and any D*

greater than about 1010 Jones. Even after correction, the FPA is still not shot noise limited

but is limited by residual non-uniformity! It is interesting to calculate what fraction of the

measured minimum MRT is due to the use of a 12 bit analog to digital converter, ADC, in

the read out integrated circuit, ROIC. For temporal averaged signals, the minimum noise

in a 12 bit ADC is 212/j12 or 0.006%. Since in the non-uniformity limited regime the
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minimum MRT is proportional to the non-uniformity from Figure 1.12 a non-uniformity

of 0.006% corresponds to an MRT of 3.3mK or about 25% of the measured MRT of 12mK

for this FPA. Also note that this array was calibrated at two points 35C apart and MRT at

the extremes of scene temperature are about a factor of two greater than the minimum

MRT. To correct to one LSB over the entire useful scene temperature of 150C requires

calibration about every 10C which for the 1 megapixel format being designed today

means making available 24MB of SRAM memory for storing calibrations. To do better

than this quickly gets prohibitively expensive and complex ensuring that for the foresee-

able future FPAs, will be limited by residual post-correction uniformity and not by pixel

performance.
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Figure 1.13: MRT in an InSb photovoltaic focal plane array after two point unifor-
mity correction at 15C and 50C. Array format 160 x 120,f/# 2.3.[17]

1.6 Review of Selected IR Detector Technologies
The subject of this thesis is primarily quantum well intersubband photodetectors, QWIPs

as used in focal plane arrays, FPAs. However, no technology exists in a vacuum unchal-

lenged and so this subsection will be devoted to an introduction to a selected subset of
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detector technologies all of which are being applied to FPAs and are to a large extent com-

peting for there own niche in the same relatively small FPA market. Here the author will

attempt to put aside his bias for QWIPs and give an objective, but short, evaluation of the

strengths and weaknesses of the available technologies as they pertain to the current list of

likely applications. Of course as camera cost decreases and availability increases the set

of applications is expected to expand and so some attention will also be paid to the tech-

nologies which are most likely to drive down camera cost.

Current applications for FPAs can be divided loosely into four categories; space based

astronomy, seeker/tracker for missiles and ordinance, cooled surveillance and uncooled

surveillance. To a large extent, the category into which a particular technology falls

depends on the operating temperature and therefore the cooling mechanism used both

because the operating temperature sets an upper limit on the FPA performance and

because the cooling system is often a large part of the overall system cost. Options for

cooling primarily consist of: closed cycle refrigerators which are big and expensive but

are also reliable, very stable and can cool for long periods of time; Joule-Thompson cool-

ers which are small, light-weight with very fast cool down times, but can cool for only a

short time, typically minutes; liquid refrigerants like liquid Nitrogen, liquid Argon and liq-

uid Helium sometimes find use where there is easy access to such refrigerants and opera-

tion times are on the order of hours; finally, thermo-electric coolers sometimes find use in

systems operated near room temperature where moderate cost and availability of electrical

power can be taken advantage of.

Space based astronomy systems can take advantage of the very cold temperatures in

space to minimize cooling requirements and are therefore often operated near liquid

helium temperatures, about 4K. Furthermore, these detectors are aimed away from any

nearby bodies and so have as their background only the 2.9K remnant of the big bang.

This essentially removes both dark current and background photon current as sources of

noise and these FPAs are limited by the ROIC noise floor and the shot noise in the signal.

As such, high quantum efficiency is extremely important and these FPAs are almost exclu-
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sively made form Mercury Cadmium Telluride, MCT, InSb and lead salts because of their

high quantum efficiency.

Seeker/tracker missiles and ordinance use FPAs to acquire an image from the head of a

missile after launch and then using digital signal processing, DSP, algorithms compare the

acquired image to a set of stored target shapes. Things like the round barrel of a tank gun

are favorite targets and once acquired these missiles are extremely accurate. Because of

their inherent short life and the need for fast cool down, the cooling system of choice for

seeker/tracker missiles is the Joule-Thompson cooler which is lightweight, reliable and

relatively cheap. Several technologies including MCT, PtSi and QWIPs are all competing

for this market which is currently dominated by MCT.

Cooled surveillance applications typically involve a camera in a building, or on a plat-

form like a tank, ship or airplane. In these applications the camera may need to operate for

an extended period of time and so power for a closed cycle refrigerator or liquid refriger-

ants are often supplied. Here, FPA performance is very important since targets are often at

the extreme detection distance and there is a large premium on early detection. Again,

QWIPs, MCT and PtSi are all competing for this market with QWIPs and MCT leading

somewhat in performance criteria and PtSi leading in the cost area.

Uncooled surveillance applications are just now being developed but seem likely to be

the exclusive domain of thermal detectors like the Barium Strontium Titanate, BST,

microbolometers being developed at Texas Instruments[18,19]. These FPAs currently

have MRTs an order of magnitude larger than cooled detectors, but for applications like

rifle sights and hand-held night vision cameras where power and weight limits eliminate

the possibility of using any type of cryogenic cooler, these FPAs are showing a lot of

promise. In addition, because the technology used in making the microbolometers is

largely compatible with standard Silicon CMOS processes, it is expected that these detec-

tors ivill drive down FPA cost and open up many new applications.

Having discussed the broad outline of applications and requirements, a short descrip-

tion of the operating physics and technology of each for a representative group of FPA

devices will be given. To represent the intrinsic photon detectors, MCT has been chosen
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because it is the most established of the available technologies. To represent the Schottky

barrier type extrinsic detectors, PtSi has been chosen again because it is the most estab-

lished of the Schottky barrier technologies. To represent the thermal detectors, the BST

microbolometer has been chosen because it is currently the most advanced of this very old

category of detector. To represent QWIPs, the most common n-type GaAs/AlGaAs QWIP

superlattice structure is chosen.

1.6.1 Mercury Cadmium Telluride, HgCdTe, FPAs

Mercury Cadmium Telluride, MCT, is currently the most important material for high

performance infrared detectors including FPAs. MCT has earned this title due to its versa-

tility and demonstrated performance over thirty-six years since the first reported photo-

conductive detector based on MCT was demonstrated by Lawson et. al. in 1959.[20].

The attractive features of this ternary II-VI semiconductor include a direct energy gap

that ranges from -0.3eV for the semimetal HgTe goes through zero at x = 0.15 for Hg1_

xCdxTe and ranges up to 1.648eV for CdTe. The best fit to the energy gap is given by:[21]

E = - 0.302 + 1.93x - 0.81x + 0.832x + (1.27)
g

5.32x10 4 (1 - 2x) (-1822 +1 eV
S255.2 + 72

Over this entire range of bandgaps which spans the infrared spectrum down to a wave-

length of 0.75gm the crystal lattice constant only varies from 6.4614A for HgTe to

6.4808A for CdTe, a change of 0.3% as given by the expression:[22]

a = 6.4614 + 0.0084x + 0.01168x 2 - 0.0057x 3  Angstroms (1.28)

This very good lattice matching eliminates the problems with growth of mismatched

semiconductors and at the same time provides a natural transparent substrate, CdTe, on

which MCT detectors covering the entire infrared spectrum can be grown. The intrinsic

carrier concentration as a function of composition and temperature can be approximated

by:[JRL]
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ni = (A + Bx + CT+ DxT+ Fx2 + GT) (1.29)

14(hc 3/4 3/2 -he
* 10 )T exp( 2XT)

The electron and light hole effective masses, m e, are very close in the narrow gap

Mercury containing compounds and have been modeled with the Kane[23] band model

as: [24]

= 1 - 1.6 + + - (1.30)
* hc hc (1.30)e -+A

where Ep = 19eV, A = leV and X is the cutoff wavelength. The high frequency dielec-

tric constant is given by:[25]

E = 15.2 - 13.7x + 6.4x2  (1.31)

where x is the Cadmium fraction in the ternary Hgl_-xCdxTe.

Under the assumptions that the noise is dominated by shot noise in the generation and

recombination processes, the recombination rate is Auger limited and the detector is in

thermal equilibrium implying that the generation and recombinations rates are equal, the

spectral current responsivity of the MCT detector is:

R - gq Amps (1.32)
R he Watt

where ir is the quantum efficiency, q is the electron charge and g is the gain in elec-

trons collected per electron generated. Assuming the noise is dominated by shot noise in

the generation and recombination processes, the noise current is given by:

2 2
i = 2 (G +R) ADtAfq g Amps (1.33)

where G is the electron hole pair generation rate in pairs/cm 3s, R is the electron hole

pair recombination rate in pairs/cm 3s, t is the thickness of the sample and Af is the noise

bandwidth. The detectivity DX* is then, using Equations 1.7, 1.9 and 1.10 given by:
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D * = Jones (1.34)
D h--c2 t (G + R)

Assuming that the detector is in equilibrium and therefore the generation and recombi-

nation rates are equal and that the recombination rate is Auger limited, the generation rate

is given by:

1 p•) pairs
Auger n + pairs (1.35)

2A cm - second

where n is the electron concentration, p is the hole concentration, y is an empirical fac-

tor relating hole and electron Auger processes and t'A is the intrinsic Auger lifetime given

approximately by: [26,27]

-18 2 1/2 ( he)
3.8x10 e (1+ ) (1 + 2g) exp

IA 2( seconds (1.36)

m FF 2 ,T3/2

where g. is the ratio of electron to heavy hole effective mass with the electron effective

mass given by Equation 1.30, the heavy hole effective mass will be assumed constant at

0.55, e.. is given by Equation 1.31 and a value for the overlap integral IF1F212 = 0.25 will

be assumed to fit experimental data.[28] For doped n-type materials this is reduced by the

ratio 2 where ni is the intrinsic carrier concentration given by Equation 1.29 and no

is the doping concentration. This gives the Auger lifetime in doped n-type MCT:

TA = 2 ' seconds (1.37)

Substituting Equation 1.37 into Equation 1.34 gives the Auger limited detectivity:

D* = 2hc A Jones (1.38)
S 2hcft P

Y
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Equation 1.38 is plotted in Figure 1.14 as a function of cutoff wavelength for several

detector temperatures assuming an n-type doping of 5.0x10 13/cm 3 which is close to the

currently achievable minimum doping.[29] Note that p-type doping should lead to an

improvement in DX* equal to y1/ 2 where y is a term of fairly high experimental uncertainty,

but is usually taken as 3 < ,y 6.[30] In any case technical difficulties in doping p-type

currently prevent taking advantage of this factor.[29]
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Figure 1.14: DX* for MCT detector with area 50gm x 50pm, Ti = 1, t = 5Rm n =
5x10 13 cm-3 >> p and T as shown.

The individual detector performance indeed approaches the limits shown in Figure

1.14 but problems with uniformity in large area material limit FPA performance to orders

of magnitude less than that shown. The best FPA performance for an MCT FPA with TV

format, 640 x 480, is MRT = 5mK when operated at 50K in the LWIR band and the FPA is

limited by uniformity not DX*. Furthermore, due to difficulties growing bulk CdTe sub-

strates larger than 1", current MCT arrays of this format have very poor reliability and

extreme expense.



Section 1.6 - Review of Selected IR Detector Technologies

1.6.2 Platinum Silicide Schottky Barrier FPAs

Schottky barrier detectors are extrinsic photon detectors in that only a single carrier

contributes to the photo response. When a metal makes intimate contact with an n-type

semiconductor, electrons in the semiconductor move into the metal leaving positive

immobile dopant charges in the depletion layer of the semiconductor.

1V

Se

i-" hv

EF

dN/dE

Figure 1.15: Photoabsorption in a Schottky barrier detector

This movement of electrons continues until the Fermi-level in the metal, which defines

the chemical potential of the electrons, lines up with that of the semiconductor creating a

potential barrier called a Schottky barrier. When a photon whose energy is greater than

the Schottky barrier height OB is absorbed in the metal an energetic electron is created as

shown schematically in Figure 1.15. The excited electrons then do a random walk in the

metal film until they either reach the semiconductor interface and are transported into the

semiconductor or are recombined with a free hole in the metal.

Assuming that the probability of excitation is independent of photon energy and that

the sample is near zero Kelvin so that there is an abrupt transition from filled to empty

states at the Fermi level, the total number of possible excited states, NT is:
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EF+ hv dN states
NT = -dE 3(1.39)

dE 3
F cm

where dN/dE is the density of states in the metal. For an excited electron to cross the

Schottky barrier into the semiconductor, the state to which it has been excited must have a

component of momentum, hv/c, in the direction normal to the interface which corresponds

to an energy greater than the Schottky barrier height, OB. The number of states which

meet this criterion, NE, is given by:

SEF+ hv dN states
NE - P (E) dE (1.40)

EF+B dE cm3

where P(E) is the photoemission probability for the electron with energy E given

by: [31]

P(E) = 1 (EF + B) (1.41)

Considering dN/dE to be nearly independent of energy over the energy range of inter-

est because the Fermi energy is much greater than the photon energy, the integrals in

Equations 1.36 and 1.37 can be replaced by multiplications giving:

dN states (1.42)
N -hv (1.42)T dE 3

cm

2
dN (hv - B) states

E dE 8E1 3

Assuming no collisions between excited electrons or energy losses before the excited

electrons reach the interface, the internal quantum efficiency, r1, is simply the ratio of

Equation 1.43 to 1.42, but since these effects are always present and difficult to model, the

external quantum efficiency is usually used instead expressed as:
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(hv - OB)
Ti =C

1 hv
(1.44)

where C1 is the experimentally determined quantum efficiency coefficient. For PtSi

on p-type Silicon and a PtSi thickness of 20nm C1 = 0.07eVl.

Figure 1.16: PtSi 640 x 480 FPA with MRT = 70mK.[32]

The cutoff wavelength is simply determined by the Schottky barrier height.

S1.24

¢ B
Im (1.45)

For PtSi the cutoff wavelength is about 5Lm with an external quantum efficiency of

about 1%. This seems like a very low number, but because these detectors are fabricated

on large area Silicon using processes developed for the digital Silicon industry, the pixel

uniformity can be excellent, < 0.02%. As discussed in section 1.4 FPAs are often operated

in the uniformity rather than quantum efficiency regime making PtSi extremely competi-

tive, especially for low cost cooled applications. These detectors do have the disadvan-

tage that they need to be cooled to fairly low temperatures, typically less than 50K to

, ,
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reduce the dark current to acceptable levels. As an example of the images possible with

this technology, Figure 1.16 shows an image taken with a 640 x 480 TV format PtSi array

using f/1.5 optics and a frame rate of 30Hz. The MRT is < 70mK.

1.6.3 Micro-Bolometer FPAs

Bolometers are thermal detectors and as such depend on the absorption of electromag-

netic energy to raise the temperature of the detector which in turn causes a change in a

measurable property such as resistance for bolometers, or gas pressure for the Golay cell,

etc. Since the absorption is not measured directly, but rather only the temperature of the

detector is measured, thermal detectors are equally sensitive, on an energy scale, to all fre-

quencies of light absorbed. For the absorption part of the process, a thermal detector can

be represented by a thermal mass H, coupled via a conductance G to a heat sink at con-

stant temperature T.[33] With no incident radiation, the mean temperature of the detector

will also be T. Fluctuations about the mean are determined by the coupling mechanism

between the detector. When radiation is incident on the detector, the rise in temperature is

determined by solving the equation:

rll(t) = H( (t) + GO (t) Watts (1.46)

where I is the power incident on the detector and 11 is the fraction of the incident power

actually absorbed, t is the time and 0 is the difference between the detector temperature

and the heat sink temperature. Typically the signal incident on the detector is chopped at a

frequency o giving for the power incident on the detector the form:

I(t) = 10 + Io exp (jOt) Watts (1.47)

where co is the chopping frequency.

Plugging in Equation 1.47 into Equation 1.46 and solving for the amplitude, o0 and

phase, <p, of the excess temperature 0(t) gives:

I,
60 = 1 Kelvin (1.48)

G2 + 2 H 2
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(p = tan ( ) (1.49)

Equation 1.48 illustrates the important design criteria for thermal detectors with

regards to maximizing the temperature change for a given input power. To make m, as

large as possible G, which measures the coupling of the detector to the heat sink needs to

be made as small as possible with co being chosen small enough that oH is on the order of

or less than G. In applications where the chopping frequency is fixed by a frame rate or

other parameter, H, the thermal mass of the detector must also be made small such that G

and mH are of similar magnitude.

xc
0semitransparent Metal

-Organic Absorber
O Reflectino Metal

Figure 1.17: BST Pixel Structure.

The micro-bolometer accomplishes large reductions in both H and G by micromachin-

ing very small detector elements connected to the heat sink by long thin electrical wires

with as small a conductance as possible consistent with the need to carry a small current.

Figure 1.17 shows the structure of the Barium Strontium Titanate, BST, fabricated at

Texas Instruments[34]. The conversion from temperature change in the pixel to voltage

(
VIetal
,ontact
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change in the output is made by passing a small accurately controlled current through the

BST pixel and monitoring the change in resistance of the detector. If the radiation pro-

duces a change in the pixel temperature 0 and then the output voltage signal is:

VS = iaR det Volts (1.50)

dRdet
where a is the temperature coefficient of resistance ( 1/Rdet) de , Rdet is the detector

resistance and i is the current through the detector. Using Equation 1.48 the open circuit

output voltage is:

TIi aRdet
V = det Volts (1.51)

S G 2 H 2

which gives a responsivity of:

r1iaRdet Volts
R = (1.52)

G2 + 2 2  Watt

The BST detector has demonstrated an excellent uncooled MRT of 47mK by taking

advantage of semiconductor fabrication techniques to make H and G extremely small and

by operating the BST near its paraelectric-ferroelectric phase transition[34] which for the

selected composition of BST is near room temperature and results in the maximum pyro-

electric coefficient a. Because these detectors are compatible with Silicon manufacturing

processes and do not require cooling they are the most likely candidates for hand-held

night vision equipment and low cost moderate performance applications.

1.6.4 Quantum Well Intersubband Photodetectors

The possibility of using intersubband transitions in quantum wells consisting of alter-

nating layers of AlGaAs and GaAs to detect infrared radiation was first suggested by

Esaki and Sakaki[6] at IBM in 1977 and also Smith at AT&T.[35] This followed closely

the technological development of molecular beam epitaxy (MBE) which by the late

1960's Arthur[36] and later Cho[37] had shown was capable of growing single crystal

undoped ternary films of AlGaAs with extremely good thickness control. Technical diffi-

culties controlling layer thickness to within the several atomic layers required to get strong



Section 1.6 - Review of Selected IR Detector Technologies

intersubband absorption, controlling interface roughness to the same monolayer tolerance

and controlling the dopant levels in the quantum wells proved difficult to surmount and it

was not until 1985 that West and Eglash[38] demonstrated the first experimental evidence

for strong intersubband absorption in a multi-quantum well structure.

T

4(
Ls

Distance
Figure 1.18: QWIP Schematic showing 40A GaAs quantum wells under bias and

separated by 300A Al0.31Ga0.69As barriers. Excited electron mean free path L is rep-
resented schematically for an electron generated in the left most well and captured by
the right most well.

This led to a flurry of activity and in 1987, Levine et. al.[7] at AT&T Bell Laboratories

demonstrated the first quantum well intersubband photodetector (QWIP). Levine's first

QWIP was based on intersubband absorption between two bound states and achieved an

impressive peak responsivity of RP = 0.52A/W corresponding to a quantum efficiency

of nearly 6% at 10.8gm which is ideally located in the center of the LWIR atmospheric

transmission band; see Figure 1.5. This device was grown on a computer controlled MBE

machine and consisted of a 50-period superlattice of 65A GaAs wells, doped

n = 1.4x108 cm-3 in the center 50A, and 95A Al0.25Ga0.75As barriers. A schematic of

the quantum well structure is shown in Figure 1.18 The superlattice was sandwiched

between two heavily doped GaAs contact layers and a 45 degree facet was polished on

one edge for coupling in the infrared radiation as shown in Figure 1.19.

300M.- %Ylrl4 '
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VBias

Contacts <IP

hv GaAs Substrate

Figure 1.19: Measurement geometry for edge coupled QWIP devices

Following the logic of Kinch and Yariv[15] but using more recent experimental data it

is possible to use thermodynamic and radiometric considerations to estimate the limits on

performance of individual QWIP detector elements of the type investigated by Levine

et.al. [39,40,41,42]. Unlike MCT which, as discussed in Section 1.6.2, is a minority car-

rier device, QWIPs are majority carrier devices and as such the noise is determined by the

variance in the density of majority carriers within the device:

(An n = nt + n (1.53)

where nt is the density of thermally generated carriers and no is the density of photon

generated carriers which has a contribution due to the signal ((s) and a contribution due

to the background flux (1 B) as given by Equation 1.3 and shown in Figure 1.3. The signal

is equal to the contrast photon flux, dDp/dT, as given by Equation 1.4 and shown in Fig-

ure 1.4, multiplied by the temperature difference between the object of interest and the

background. Assuming approximately 300K background and a small, < 1K, temperature

difference between the object and the background, DOs < D, the total density of photon

generated carriers can be set equal to the density of background generated carriers, nDB.

The ultimate in single detector performance is achieved when n, 2> n,, since the total
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noise is then dominated by the noise in the background photon flux and background lim-

ited performance (BLIP) is achieved.

The thermally generated carrier density is calculated based on the density of states in

the quantum well structure shown in Figure 1.20 taken from the experimental work of

Levine[7]. The structure is composed of a 50-period multi-quantum well superlattice hav-

ing a well width Lw of 40A, a barrier width LB of 480A of Al0.25GaAs and an electron

doping in the well of N, = 1.2x10'"cm-3 . The top 0.5.Lm and bottom ljLm of the super-
lattice have n+ contact layers doped NDC = 1.2x101'cm -3.

V

V

GaAs

Figure 1.20: QWIP conduction band diagram. Quantum well is 40A of GaAs sepa-
rated by 480A Alo.25Gao. 75As barriers.

An envelope function approximation calculation for this structure yields the energy

level diagram also shown in figure 1.20. The first subband lies approximately 95meV

above the GaAs conduction band edge and the second subband lies approximately 5meV

above the continuum edge of the Al0.25Gao.75As barrier. Assuming an infinite quantum

well barrier, the Fermi level is given approximately by:

NDh2L

EF = WeV (1.54)
47cm*

where m* is the electron effective mass in GaAs and is equal to 0.067m0 . For the
quantum well in question this evaluates to 17meV. The density of states in the continuum
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can be approximated by treating the continuum as a wide quantum well of width

L = Lw + LB which for this structure is 520 A. The two dimensional density of states is

then:

47crm* I 8m* (E- V) 1/2-}
PD(E) = 1 L2 (1.55)

h + Ih- cm * eV

where Int(x) is defined as the largest integer less than x. Note that for:

L8m* (E - V) 1/2
2

h 1 ' I(.6
the volume density approaches the bulk value:

( P2D kr-) - 4m* 3/ 1
P3D(E) - = 24 4  J 2 V 3 (1.57)

h cm .eV

To first order for the parameters of Figure 1.20, the Int(x) term in Equation 1.55 is zero

for u < 3meV and one for u < 6meV and so will be neglected. This slightly underestimates

the real two dimensional density of states and the resulting density of thermal generated

carriers. The density of thermally generated carriers above the barrier E= V is thus:

1 dEnt L=•P2D (E-EF)/kT
e +1

(1.58)
3

cm

which after substituting in Equation 1.55 and neglecting the Int(x) term becomes:

(V-EF)
47Em*kT kT 1

n = e (1.59)
h2L cm

Combining Equations 1.59 and 1.54 gives the desired expression for the background

generated carrier density:

(V-EF)
kT Lw kT

n = N W( We (1.60)
3

cm
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For the 45 degree incident experimental configuration of Levine[40], the background

generated carrier density is given by:

op p 1
ncB = t 3 (1.61)

t,/2 cm

where t is the thickness of the active region, 2.65p~m, ,op is the solid angle subtended by

the lens system, 11 is the measured quantum efficiency, 20%, and t is the effective excess

carrier lifetime. The effective excess carrier lifetime is a critical parameter with signifi-

cant uncertainty. Theoretically, the excess carrier lifetime has been estimated to be 70ps

assuming energy loss by electron-phonon interactions, primarily the LO phonon with

energy hv1 = 36.7meV.[43] Experimentally for the QWIP structure of interest here, the

excess carrier lifetime can be estimated from the flattening of the responsivity verses bias

voltage at which point "t- ",/2 = t/2v, where TD is the transit time of a hot electron

across the device and v is the saturation velocity which for GaAs is v - 5x10 6 cm/s at

T=77K.[40] The result for the QWIP structure of Figure 1.20 is t = 27ps. Combining

Equations 1.59 and 1.60 the BLIP condition becomes:

> n (1.62)

which for an f/2 system gives a BLIP temperature of 68K. The excess carrier lifetime can

also be used to directly estimate D*. For a photoconductive detector with radiation inci-

dent at angle 0 to the normal the peak detectivity D*p is given by:

D - * Jones (1.63)

which evaluates to D, = 2xlO10 Jones at 77K and a cutoff wavelength of 10gm. For

comparison, under the same conditions an Auger limited ideal MCT detector would have

a D* = 3x10'2Jones due to the much longer Auger lifetime. However, as argued in Sec-

tion 1.4.5 D* is not the appropriate figure of merit for FPAs and in fact as shown in Figure

1.12 an FPA of QWIP detectors with D, = 2x10 0Jones and nonuniformity limited by
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the 12 bit ADCs used for calibration to 1LSB/Ji4 or 0.006% would have an MRT =

3.3mK exactly equal to the MRT of an FPA of MCT detectors with D, = 3x10'2Jones

and the same post-correction nonuniformity of 0.006% in spite of the more than two

orders of magnitude larger D* for the MCT FPA. The additional D* for the MCT detectors

is of no consequence looking at a background of 300K since the FPA is uniformity lim-

ited.

1.6.5 Summary of Selected IR Detector Technologies

In this section a representative selection of current technologies for IR FPAs has been

discussed. In fact, there are many other materials that are now or have been used in infra-

red cameras. MCT was chosen as a representative of the direct bandgap materials because

of its wide use and tunable band gap, but other materials like InSb for MWIR cameras,

PbS and other lead salts for LWIR cameras and InAs for SWIR cameras are also available

in varying degrees of development and sophistication. All being direct bandgap materials,

the fundamental physics is the same as that explained for MCT though the specific mate-

rial parameters vary from material to material. In the area of Schottky barrier detectors,

PtSi was emphasized due to its current status as the most advanced of this class of detec-

tors. Other materials such at IrSi for LWIR detection are only recently starting to receive

some attention, but again though the material properties vary the physics of all these

Schottky barrier type detectors remains the same as that described for PtSi. The field of

thermal detectors goes back to the very first experiment by Herschel demonstrating the

existence of IR radiation. In the nearly two centuries since that time many thermal detec-

tors have been investigated, but only recently has it been possible to reduce the size and

thermal mass of the individual detectors to the point where one can contemplate making

video images with thermal detectors. The BST bolometers were chosen to exemplify this

class of detectors because they are currently the most advanced of the thermal detector

FPAs, however other detectors based on superconductors, ferromagnetic materials and

organic materials to name a few are also being actively pursued. For the QWIP FPAs the

GaAs/AlGaAs QWIP was described because of its historical position as the first QWIP

detector. Since that time many other material systems and device structures have been
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investigated. In fact it is the authors belief that the field of QWIP detectors is still in its

infancy with many more exciting discoveries yet to be made. Some of the more recent

work including the contributions of this thesis will be discussed in the following chapters.

1.7 Conclusion of Introductory Remarks
Chapter 1 began with a broad historical look at the important physical discoveries that

laid the groundwork for modem infrared systems. A discussion of infrared radiation from

black and grey bodies and atmospheric absorption, was followed by a detailed look at the

figures of merit used in comparing performance of discrete detectors and focal plane

arrays. It was found that in even the best of modem day FPAs the performance as mea-

sured by minimum resolvable temperature, MRT, is limited by array uniformity and not

individual detector performance. This is true even after accounting for calibrations done

to minimize spatial nonuniformity. For this reason MRT and not D* will be used as the

preferred figure of merit when comparing FPAs in this thesis. Finally, a brief look was

taken at applications and at three representative technologies which compete directly or

indirectly with the quantum well intersubband photodetectors which are the subject of this

thesis. In the remainder of the thesis, the focus narrows to the specific normal incidence

QWIPs developed as part of this thesis until the concluding chapter in which once more a

broad look at comparing normal incidence QWIPs to the existing technologies discussed

in Section 1.6 will be taken and specific applications in which normal incidence QWIPs

may be favored are identified.



Chapter 1 - Introduction to Infrared Focal Plane Arrays



Chapter 2

Normal Incidence QWIPs

The first quantum well intersubband photodetectors were discrete devices with light cou-

pled into the device through a 45 degree bevel polished into the substrate as shown in Fig-

ure 1.19. This geometry allows coupling into the dominant transverse magnetic, (TM)

detection mode, but is clearly inappropriate for use in large focal plane starring arrays that

may contain upwards of one hundred thousand devices each needing to be coupled into

the normally incident photon flux with very high uniformity. It is the subject of this chap-

ter to first discuss the device parameters that effect the performance of quantum well inter-

subband photodetectors and then to discuss the methods of coupling normally incident

transverse electric, (TE) light into the individual pixels that make up a large focal plane

starring array. The discussion of device parameters and performance trade-offs is taken up

in Section 2.1. Section 2.2 discusses the theory for the direct TE coupling with no grat-

ings which is the primary subject of this thesis. In particular, results from the superlattice

Kep theory of Ehrenreich et al.[44,48,49] will be used to calculate the performance of

FPAs based on TE mode QWIPs. It will be found that minimum resolvable temperatures,

(MRT) of less than 10mK are possible for TE mode FPAs operating with 300K back-

grounds in the LWIR. Section 2.3 discusses the use of diffraction gratings to couple nor-

mally incident light into the TM detector mode. This method is currently used in the best

commercial FPAs manufactured by Lockheed/Martin and results from these FPAs will be

used as an example for comparison with the TE mode QWIPs of this thesis. Because the

grating coupled TM mode FPA are uniformity limited, predicted MRT for the TE mode

QWIPs of this thesis is comparable to those obtained by Lockheed/Martin. Section 2.4

discusses other options for normal incidence detection. Many of these have not been

widely pursued for FPAs because of issues related to integration, like substrate incompati-

bility. Particular attention will be paid to areas where the epi-on-electronics / selective

area wafer bonding, (E-o-E/SAW) integration technique proposed by the author and dis-



Chapter 2 - Normal Incidence QWIPs

cussed in Chapter 6 may facilitate use of these devices in FPAs. Finally, Section 2.5 con-

cludes the discussion of normal incidence QWIPs with a comparison of the various

technologies available for use in large format focal plane starring arrays.

2.1 QWIP device parameters and performance trade-offs

The purpose of this section is to develop a theoretical framework that can be used to

discuss the fabrication parameters of quantum well intersubband photodetectors and the

performance trade-offs associated with their manipulation. Figure 2.1 shows a schematic

for the operation of one quantum well in a QWIP device. The four dominant processes in

the QWIP: transport above the quantum well, trapping of electrons by the quantum well,

thermionic emission out of the quantum well and photoemission out of the quantum well,

are all shown in Figure 2.1.

7H

loton

3d Continuum

• IDark

lPhoto

- E1+EF
- A- Filled 2d states
- El

Quantum Well
Figure 2.1: Schematic for operation of one well in QWIP. ET is the activation

energy for thermionic emission, Ep is the photon energy for peak detection, EF is
the Fermi level, E1 is the energy of the first bound state and AEC is the conduction
band offset.
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If the barrier regions between the quantum wells are sufficiently thick and the applied

voltage is sufficiently small so that the contribution from tunneling out of the quantum

well is negligible then the major source of dark current is thermionic emission. The ther-

mionic emission current is given by the product of the density of states above the quantum

well, the probability of thermal occupation, the area of the device, the electron charge and

the velocity of carriers in the barrier as shown in Equation 2.1.

IDark = n3dexp - Aev (E) Amps (2.1)

where A is the area of the device, v(E) is the electron velocity as a function of applied elec-

tric field, ET is the thermal activation energy required for an electron to escape the quan-

tum well and is given by ET = AEc - (E1 + EF) , T is the temperature of the device and

n3d is the three dimensional density of states in the barrier region into which the thermi-

onic emission occurs given by:

21 * '3/2
Barrier states

n3 =2 (2.2)n3d 22 3
h cm

In terms of the low field mobility and the electron saturation velocity, vsat, the electron

velocity as a function of applied field is given by:

v (E) = Acm (2.3)

(Vsat

In equilibrium with no light incident on the detector there are only two processes, thermi-

onic emission and trapping. The thermionic emission of electrons from the well must be

balanced by trapping to maintain a constant density of electrons in the well.

When light is incident on the QWIP the dark current remains unchanged, but a photo

current is added due to absorption of photons with probability, 11, where the superscript 1

indicates that this is the quantum efficiency for a single quantum well. In equilibrium, this

photo emission of electrons must be balanced by an additional trapping of electrons into



Chapter 2 - Normal Incidence QWIPs

the well to keep the density of electrons in the well constant. Using p as the capture prob-

ability for an excited electron traversing a quantum well, the photocurrent directly contrib-

uted by photo emission from a single quantum well is given by: [50]

.1
IPhoto Amps (2.4)

where (Ip is the incident photon flux in photons/cm2/s, A is the area of the detector, N is

the number of quantum wells in the device and rl = Nrl1 is the total quantum efficiency for

all N quantum wells.

Figure 2.2 shows a schematic of a QWIP under bias including N quantum wells and

both the emitter and collector contacts. The total directly contributed photocurrent at the

collector of the device is given by summing the contributions from each well taking into

account that a fraction of the electrons photoexcited by earlier wells will be captured by

latter wells. The result is:

N
.1 n-1

Photo P= hoto (1 -p)
n=l

N-1

.1 1 - (-p)
SPhoto p Amps (2.5)

.0000

Collector

Figure 2.2: Multi-well QWIP under bias.

q(pAl 1 (1 - p) = qDpAl1 N p)

E
.L 11
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In addition to the directly contributed photocurrent given by Equation 2.5, there is an

extra injection current from the emitter 8inject which must be present in thermal equilib-

rium in order to maintain a constant density of electrons in each quantum well. This extra

injection current must be sufficiently large such that trapping of electrons from this current

with probability p exactly cancels the net loss electrons due to photoemission and is there-

fore given by:

.1
tPhotoinject Photo Amps (2.6)

The fraction of extra injection current reaching the collector from all N quantum wells

also contributes to the photocurrent seen at the collector since it is indistinquishable from

the directly contributed photocurrent. The fraction of extra injection current is given by:

N .1 (1-p)N
i = (1 -p) SN n ec= Photo P Amps (2.7)

The total photocurrent reaching the collector is the sum of Equations 2.5 and 2.7 and is

given by:[51]

I -i + 8i = DpA' ( 1 -P) Amps (2.8)Photo Photo i= pA N p  Amps (2.8)

The term in square brackets is defined as the photoconductive gain, g, for the QWIP.

( 1 -p)
g 0 (2.9)Np

The capture probability, p, for an excited electron traversing a quantum well is clearly

a quantum mechanical result but it has a classical analog in bulk photoconductors in which

the photoconductive gain is given by the ratio of the carrier lifetime, 'life, to the electrical

transit time, rtransit. With this classical definition, the photoconductive gain can be related

to electron transport properties in the barrier giving:

l -ife V (- ) 'life
transit NL(2.10)
transit P
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where v(E) is the electron velocity as a function of applied field given by Equation 2.3 and

Lp is the length of a single superlattice period. Comparing Equations 2.9 and 2.10 under

the assumption that the capture probability is small compared to one, p << 1, gives for the

capture probability:

(2.11)p = V()t'life

Experimentally, the photoconductive gain and therefore the capture probability can be

determined by careful measurement of the generation-recombination noise in a photocon-

ductor through use of the noise equation: [52]

= 4gqI

2
10

S10

10

C1o1
0i 1

-1in

14

Amps

1
10

Number of Quantum Wells

(2.12)

2
100

Figure 2.3: Calculated photoconductive gain for capture probability of p = 0.01,
0.04, 0.07, 0.1 and 0.2. Experimental data taken from Levine[40], Liu[51] and
Kane[53]. Figure from H.C. Liu.[50]

Values for g calculated from Equation 2.12 for QWIPs and reported by three different

laboratories are shown in Figure 2.3 along with lines representing Equation 2.9 with dif-
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ferent values for the capture probability. It can be seen that much of the data clusters

around the line representing a capture probability of 7%. The value for the capture proba-

bility will be used in Chapter 4 for analysis of experimental data collected on the TE mode

QWIPs fabricated for this thesis. There is however significant spread in the values which

is clear from the five samples with 50 quantum wells which have g values ranging from

0.25 to 0.80 representing capture probabilities ranging from 7% to 2.5%.

All samples are AlGaAs/GaAs QWIPs with similar barrier compositions and similar

barrier widths which from Equation 2.11 eliminates both Lp and v(e) as contributing to the

spread in capture probabilities leaving only the electron lifetime. In a QWIP the electron

lifetime is determined by processes that scatter electrons into the quantum well. Physi-

cally these processes include scattering due to impurities and electrons in the quantum

well, phonons and interface roughness.[54] Experiments varying doping density in the

well suggest that impurity and electron-electron scattering may not be the dominant pro-

cesses because the photoconductive gain did not vary systematically with doping.[52]

Phonon scattering would not be expected to vary substantially from sample to sample

leaving interface effects as the likely cause of the variation in g. Interfaces between the

GaAs wells and AlGaAs barriers are known to be sensitive to growth conditions and can

be very different from sample to sample and from one crystal-growth facility to another.

The responsivity of a QWIP is given by the expression

1
qqlg = qkl (1 -p) Amps (2.13)

X hc hc p Watt

Notice that since the total quantum efficiency is proportional to the number of quantum

wells, l -= Nrl , and the photoconductive gain is inversely proportional to the number of

quantum wells, the current responsivity is independent of the number of quantum wells.

The responsivity is proportional to 1/p though for small p which from Equation 2.11 and

2.3 implies that responsivity is proportional to the carrier mobility in the barriers. Carrier

mobility in the barrier material is one important design parameter and can be varied over

more than one order of magnitude by changing barrier materials. Changes in device

design can also effect the single well quantum efficiency, ill, in two independent ways.
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First, the single well quantum efficiency is proportional to the number of electrons in the

quantum well and the optical absorption coefficient per electron.[53] Since the Fermi

level in a two dimensional system is proportional to the number of occupied states, this

proportionality can be written:

1 47cm*
1 = 2 AEFaOLP (2.14)

where m* is the effective mass in the quantum well, EF is Fermi level in the quantum well,

ao is the absorption coefficient per electron and Lp is the superlattice period. Equation

2.14 implies that increasing the doping in the quantum well will linearly increase the

responsivity and that changes in the absorption coefficient per electron, as can be expected

from changes in polarization of the incident light and/or changes in the band structure of

the QWIP material also linearly effect the responsivity. The single well quantum effi-

ciency can also be affected by introduction of a optical cavity which though it does not

affect the probability of an electron being emitted per photon passing through the quantum

well does affect the number of times a particular photon can pass through a particular

quantum well thereby changing the apparent single well quantum efficiency. Optical cav-

ities, including waveguides[55,56,57,58] and random scattering surfaces[59,60] have been

used in this manner to increase responsivity by nearly an order of magnitude.

The detectivity for a QWIP has been given in Equation 1.7 and can be written in terms of

the responsivity as:

= R Af Jones (2.15)
( <iN)>

with R given by Equation 2.13, AD being the area of the detector, Af being the mea-

surement bandwidth and with the shot noise current, iN , given by Equation 1.10. There

are two operating regimes for the QWIP photodetector depending on whether the noise

current is dominated by dark current, DDark, or the background photocurrent, DB,,. The

dividing line between these two regimes is called the background limited performance

temperature, TBLIp
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For detectors operating at temperatures below TBLIP the detector performance is lim-

ited by background photocurrent which can be written in terms of the background photon

flux is = rlegODBA,. This gives for the noise current:

(i N )= 2eg lDiBADAf Amps (2.16)

Combining Equations 2.13, 2.15 and 2.16 then gives for the BLIP detectivity:

* X Ni 1
DBLIP- Jones (2.17)BLIP he 20B

Notice that all the electron transport factors which affected the responsivity have can-

celled since they have a similar effect on the detector noise. The only remaining depen-

dences are on the characteristics of the incident photon flux and a square root dependence

on both the number of quantum wells and the single well quantum efficiency. For maxi-

mum detectivity under BLIP conditions, one needs to increase the quantum well number

as much as practical, increase the single electron absorption coefficient, and include an

optical cavity with as large a Q as possible, which effectively replace the quantum effi-

ciency 1i with the product Q times TI. In practice, the single well absorption coefficient is

determined by the choice of incident light geometry and material parameters leaving only

the quantum well number, quantum well doping and optical cavity design for engineering

optimization. Note that though the BLIP detectivity increases with the square root of the

Fermi energy, the BLIP temperature decreases beyond a critical Fermi energy discussed

below meaning that doping cannot be increased indefinitely without violating the assump-

tions under which Equation 2.17 was derived.

For detectors operating above TBLP the noise current is determined by the dark cur-

rent. Combining Equations 2.1, 2.10 and 2.12 then gives for the detectivity above TBLIP:

* h 1I Nl
DDk 1  life Jones (2.18)Dark4Ln3d exp(

where ET = AEc - (EF + E,) and in the bound to continuum type QWIPs of Figure 2.1
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the photon energy, Ep, is approximately, Ep = AEc - E1. Again, the detectivity is inde-

pendent of the transport properties of the carriers in the barrier region because transport

properties affect both the dark current and the photocurrent cancelling their effect on

detectivity. Above TBLIp detectivity increases proportional to the square root of the num-

ber of quantum wells and the square root of the excited carrier lifetime. Detectivity

decreases inversely proportional to the square root of the density of states in the barrier

region which can be affected both by choice of barrier material and by barrier heterostruc-

ture design as will be discussed for a particular example in Section 2.3. As discussed in

Section 1.6.4 when comparing QWIPs to MCT based detectors, the detectivity is propor-

tional to the square root of the excited carrier lifetime. Finally, for operation above TBLIP

there is an optimum doping given by maximizing the equation:

DDark o EFexp y- ) Jones (2.19)

which gives for the optimum Fermi level EF = 2kT. For GaAs quantum well QWIP oper-

ating at 77K this corresponds to a sheet electron density of 3.6 x 1011 cm 2 .

The operating temperature required for background limited performance, TBLIP can be

found by equating the background photocurrent with the dark current.

B life .(- E T  electrons (2.20)
L = n3d (T) exp k 3

P cm

The dominant temperature dependence comes from the exponential, so that the tempera-

ture in the density of states, n3d(T), can be replaced by a geometrical average temperature

of 77K to good approximation over the QWIP operating range from 50K to 100K. Equa-

tion 2.20 can then be solved for the TBLIP giving:

TBLIP hn Kelvin (2.21)BLIP r thn 3d (77K)
k( Inm*o - In (Ed)

16m, the BLIP temperature can be increased by decreasing
As can be seen from Equation 2.21, the BLIP temperature can be increased by decreasing
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the density of states in the barrier material or by increasing the absorption coefficient per

electron. The dependence on doping density is weak and the optimum value depends on

the particular values of the other device parameters. As a rule of thumb for bound to con-

tinuum type QWIPs, the product of TBLIp and the cutoff wavelength, hc =  , is given
TT

by XcTBLIP = 650tmK.[53]

In conclusion, for most FPA applications operating with 300K backgrounds and cool-

ers the object is to produce the highest BLIP temperature possible to minimize cooling

requirements. The detector is then operated near or slightly above TBLIP and the detector

is designed to give the highest detectivity possible. This requires growing the maximum

number of quantum wells practical, designing the highest single well quantum efficiency

possible and building the highest Q optical cavity practical and reducing the barrier den-

sity of states through choice of materials and superlattice structure. The remainder of

Chapter 2 uses the results presented in this subsection to discuss specific detector designs.

2.2 TE mode QWIP FPAs

The possibility of a significant normal incidence, TE mode, absorption was first

pointed out by Shik who noted that there are two contributions when the electric field of

the incident photon is in the plane of the quantum well.[61,62,63] The smaller of the two

contribution results from the spin orbit interaction in the valence band and gives for the

ratio of the dipole matrix element for TE to TM polarized light:

1~I - Ao ](2.22)
( ilpzlj) - 3 E + 2 A(2.22)

where Aso is the spin orbit spliting energy in the valence band and Eg is the band gap

energy. This contribution to the relative absorption ratio (RAS) which is the square of the

ratio of the dipole matrix elements is less than 1%. The second contribution results from

the finite in-plane wave vector of the conduction band electrons in a doped quantum well

and is given by:
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F)
i~

(i gpz1)> 2h (FilpzlFj
where kx is the component of the electron wave vector in the direction of the in-plane

dipole, Po is the interband Kane matrix element, Pz is the matrix element for TM polarized

light, Ej is the energy of the jth bound state in the quantum well and Fi and Fj are the enve-

lope portions of the electron wave function which are slowly varying over a unit cell.

Because the band parameters, namely the zone center masses and energies, vary abruptly

between the well and barrier materials, the integral over the envelope functions is nonzero

in the expression above. The contribution from electrons with finite in-plane wave vector

is sizeable and for transitions between a the ground state in the quantum well and the first

continuum state the result has the form:[62]

( i Ii m) ( I EF m (2.24)(ip~j) ( mw E
where m w is the electron effective mass in the quantum well, mb is the electron effective

mass in the quantum well, EF is the Fermi energy and E1 is the energy of the ground state

in the quantum well. For the case of an GaAs quantum well with Al0.30Gao.70As barriers

and a sheet concentration of lx1012 cm-2 this evaluates to a relative absorption coefficient

of approximately 10%. In a numerical calculation, Flatte et al.[46] obtained the similar

result that the TM polarized absorption is about 1200cm-' and the TE polarized absorp-

tion is about 200 cm-' for an ideal superlattice consisting of 40A GaAs quantum wells

and 300A Al0.30Ga0.70As barriers. This calculation used a 14-band model and included

transitions to higher order continuum bands with n = 3-5 which were ignored by Shik and

have been pointed out as being important by Yang.[64]

Equation 2.24 also implies a slight change in the optimum doping for a TE mode

QWIPs operated above TBLIP compared to that calculated for a TM mode QWIPs in Equa-

(ilpln



Section 2.2 - TE mode QWIP FPAs

tion 2.19. This results from the extra factor of EF which comes in for TE mode devices

giving for the detectivity above TBLRP:

*2 EF
DDark oc EFexp --•) Jones (2.25)

which gives an optimum doping of EF = 4kT rather than 2kT for TM mode devices. For

GaAs quantum well QWIP operating at 77K this corresponds to a sheet electron density of

7.2x10 11 cm -2 .

The calculation of Flatte is discussed in Section 2.2.1 and results from this calculation

are used in Section 2.2.2 as well as results of Section 1.4 to show that though the TE

absorption coefficient is small it is sufficient to produce excellent focal plane array (FPA)

images without the additional complexity introduced by adding a grating to couple the

normally incident light into the TM absorption mode. This is the first time the potential

for using TE absorption in focal plane arrays has been numerically evaluated using the 14-

band K*p theory to calculate TE absorption coefficients and then using these absorption

coefficients to calculate the theoretical minimum resolvable temperature (MRT) for an

FPA based on TE absorption operating without a grating. Finally Section 2.2.3 summa-

rizes the findings and addresses qualitatively possible enhancements to the TE mode

absorption due to the effects of strain, applied field and quantum well asymmetry.

2.2.1 Superlattice Kep theory applied to intersubband optical transitions

In this section the superlattice Kop theory of Ehrenreich et.al. [44,48,49] is applied to

the case of a GaAs/A1GaAs QWIP following the 14-band model developed by Flatte,

Young, Peng and Ehrenreich[46]. The addition of the antibonding conduction p states to

the 8-band model which includes the two lowest s conduction bands and six uppermost p

valence bands produces curvature in the heavy-hole (HH) bands and modifies the momen-

tum matrix elements coupling the bands. The increase in TE absorption relative to that

calculated above by Shik is associated with the inclusion of the momentum matrix ele-

ments P1 and Q and the inclusion of transitions to continuum bands with indices n = 2-5.

In this theory, the matrix element P1 couples the s and p conduction bands and is present

in the zinc blende lattice which lacks inversion symmetry, but not in the diamond lattice.
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The matrix element Q couples the p valence bands to the p conduction bands and is

present in both zinc blende and diamond lattices. Q is primarily responsible for the curva-

ture of the HH bands in both zinc blende and diamond lattices. The remainder of this sec-

tion will describe the theory of Flatte et.al.[46] and the results derived from this theory.

The derivation for the bulk 14-band Hamiltonian and the bulk 8-band effective Hamilto-

nian is done in Section 2.2.1.1, the derivation of the superlattice electronic structure is

done in Section 2.2.1.2 and the calculation of the intersubband absorption coefficients for

a representative GaAs/AlGaAs QWIP structure is done in Section 2.2.1.3.

2.2.1.1 Bulk 14-band Hamiltonian and Effective 8-band Hamiltonian

CompressiveUnstrainedStrain
Strain

Q
P1

rPo

LE p(F8)
HE
SE p(F7)

C -

HH P(gF8)
LH
SH ni(•

LE

HE
SE

C

HH

LH

SHI

k k

Figure 2.4: Schematic representation of the 14 bulk bands considered. Four
energies define the unstrained zone-center bands and six define the strained zone
center bands. The matrix element Q couples the six valence band p states to the
six conduction band p states, the matrix element P1 couples the conduction band s
and p states and the matrix element Po couples the valence band p states to the con-
duction band s states. Overbars refer to antibonding states.
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Figure 2.4 shows a schematic representation of the bulk bands including symmetries

for the cases with and without strain. The Hamiltonian appropriate for bulk semiconduc-

tors is:

H (r) -P + V (r) + h [aoxVV(r)] *p
2m 8n 2 (mc)•

(2.26)

where m is the free electron mass, c is the velocity of light in a vacuum, h is Plank's

constant, Y are the Pauli spin matrices, p is the electron momentum and V(r) is the crystal

potential. The 14 k=O basis states (rln, 0), where n is the band index, are defined in Table

2.1 below in terms of the states IS) which transform as atomic s-orbitals, IX), 11), IZ)

which transform as atomic p-orbitals and, WXC), IYC), IZc) which also transform as atomic

p-orbitals. The subscripts "down" and "up" refer to the spin states.

Table 2.1: Bulk Kane k=O states for 14 band model.[44,45]

n:In, 0)

F 6  1 :ISu,)

F8  2: AI2 IZuF) - • " / •Xdown + iYdown)

3: 4i Xdown - iYdown)

F7  4: /iIZup,) + A/i-IXdown +iydown)

F8 6: 3L7IZdown) + AllIXp - iYp)

7: lJXup + i Y,,)

F7  8: J1_"_ zdown)-A 31 3xp-- i Yup)

F8  9:j 2 /Zu,,) - lJ1 Xdow,, + i down)

S10:l 7 IX~ow, - i Ydown)

r7  11: pA/J 3 Itp) + J1-~7 Cdown + iydown)

F8  12:F/3 jTZCdown) + Jl_/6IXC,, - iYCup)

13: J1 lXC., + iYCU,)

F7 14: Ji- j7ZCdown)- i-71 Xcu, - iyC,p)

1If
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The resulting 14 band Hamiltonian has the block diagonal form:

H-
ps

H -
ps -p

(8x8) (8x6)

Htps-p-
PS -P

H-
p

- (6x8) (6x6)

The constituent matrices in Equation 2.27 can be written in diagonal form as follows:

-hS (2.28)H -= Ps (2.28)PS 0 hL p s
where

h2k2
h +
ps 8 2m

E

iPohk

2ntm
0

iPohk

2 ••2nm

iPohk

2ntm

iPohk
0

22n mO

0 0 0

0 0 0

0 0 -A

(2.29)

Equation 2.28 is the standard 8x8 k*p Hamiltonian with no heavy hole dispersion.

h- 0
H- P F
P 0 h- (2.30)

where

+E
g

E
C

h- =
p

E +Ec g

0 E +i
c

0

0

E -Ag c

(2.31)

(2.27)
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[h - 0
H- - = ps- (2.32)ps-p 0 h ]

L ps-p

wnere

ps-p

iPlhk iPlhk

0 Qhk 0

Qhk 0 Qhk2 2 7m 2trm

Qhk

2 7cm

(2.33)

To simplify the solution of the bulk 14-band model, the block diagonalization proce-

dure of Cohen and Heine[65] is used. In this procedure the matrix:

M=

H--
I ps-p

H -- E
ps

Ht- -
ps-p

H-- E
P

(2.34)

with H -- given by Equation 2.32, and its inverse M1 1 are inserted into the Schr6dinger

equation (H - E) = 0 giving:

-1
(H-E) MM b = 0 (2.35)

defining Q~"f = M' this equation becomes:

HefE 0f
ps 1 ff = 0 (2.36)

0 Hef - E
L P



Chapter 2 - Normal Incidence QWIPs

where

HeE = H -- E-H - ps-p_ H -- E+H -
ps ps ps-p H- - E ps psP

(2.37)

The structure of Equation 2.36 breaks the 14-component "ff into an 8-component
"eff and a 6-component -"ff with QD - = V•e. and D- = -(H- - E) 'Il - -•eff where

ps p ps ps P P ps-p ps

the solutions of interest which reduce the 14-band problem to an effective 8-band problem

are •eff = 0. This reduces the numerical complexity sufficiently to justify the extra effort
P

in folding down. The matrix He-! is block diagonal and of the form:
Ps

S0
Heff = ps

ps eff0 h_ps

where heff = h -+ 8h - and 8h -
Ps ps ps ps

is given by:

2
PI1 2
m Er-E -E

C1
+ E-E -E +A C

2
Q

mE-E c -E g1
iP 1 Q F2

m LE-E -Eg
c g

E-E -E +A
c g c

{2Qm[E• Q -
m E-E -Eg

m E-E -Ec g
J2

E-E -E +A

Q2 1
m E-E -E

c g

+ E-E -E +Ac g c

0

0

A2
m[E-E -Eg]

Q2

m [E-Ec - Eg]

where rows and columns of Equation 2.39 are labeled sequentially with the states C (con-

duction band), LH (light hole), HH (heavy hole) and SH (Split-off hole). Equation 2.39

gives the additional terms in the standard 8x8 kep Hamiltonian[44] represented in Equa-

tion 2.28 which result from the inclusion of the antibonding p conduction band states to

(2.38)

22
8h - =
ps 81c2m

(2.39)
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the basis containing the antibonding s conduction band and the bonding p valence band

states.

At this point Equation 2.36 can be solved using second-order perturbation theory by

replacing E with the zone-center energy of the relevant band. Notice that the major effect

of the antibonding p conduction band states is to make the heavy-hole mass finite; i.e. the

(3,3) matrix element in the 8x8 of Equation 2.28 is zero corresponding to infinite heavy-

hole mass but becomes finite in the 14x14 band model due to the non-zero (3,3) element in

Equation 2.39. Masses for all four particles including the effects of the antibonding p con-

duction band states are:

2 2
m 1 P0 (3Eg + 2 A) P 1(3E - 2A c)-- = +(2.40)

mC  mE (Eg + A) mEc (E c - A()

2
m 1 Q (3E c + 3Eg - A )
S1 -1 (2.41)

mHH m (Ec + Eg ) (Ec +Eg - Ac)

2P20 2

m (2.43)
mSH m(E +A) m(Ec + E + A)

where the three momentum matrix elements which couple the states away from the zone

center in the kep formalism are defined as:

PO = -i42-/ (SpzZ v  (2.44)

P = -i2(2.45)

Q = -iJ2T• (xVlpylzJc) = i,,/2/3 (XClp Zv (2.46)
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Since the electron mass in Equation 2.40 only weakly depends on the value of the

matrix element P 1, P1 is determined from the psuedopotential calculation of Cardona

et.al.[45] which yields P 1 = 0.48Po. The experimental values of mC and mHH[ 4 7 ] then

determine the remaining parameters Po and Q. Table 2.2 gives a comparison of the band

parameters for the 8 band model[44], the 14 band model[46] and the psuedopotential cal-

culations[45]. Eg is the fundamental bandgap, Ec is the zone center gap between s and p

states, A is the spin-orbit splitting for the valence band p states and Ac is the spin-orbit

splitting for the antibonding conduction band p states.

8 bands[44] 14 bands[46] Psuedopotential[45]

Eg (eV) 1.519 1.519 1.519

A (eV) 0.341 0.341 0.340

Ec (eV) N/A 3.140 3.140

Ac (eV) N/A 0.171 0.171

E = 21(S pzZv)12/m (eV) 24.1 25.7 26.0

Ep = 21(Slp IZc) 2/m (eV) N/A 5.9 6.0

EQ = 21 (X pzIZc 1 2/m (eV) N/A 13.5 12.0

mHH/m 0.51 N/A N/A

Table 2.2: Comparison of parameters for 8 and 14 band models for GaAs[46]

Table 2.3 shows a comparison of the four experimental masses[66] mc, mLH, mHH and

mSH with the values calculated from the 14-band model used here and the psuedopotential

of Cardona. Considering the accuracy of the experiments, agreement is reasonable.

Experiment[47] 14 bands[46] Psuedopotential[45]

mc/m 0.067 0.067 0.066

mLH/m 0.082 0.089 0.089

mHH/m 0.51 0.51 0.61

mSH/m 0.154 0.22 0.22

Table 2.3: Comparison of experimental and calculated masses for GaAs
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Figure 2.5 shows a comparison of the 8-band model[44] which includes an empirical

term for the heavy hole mass with the 14-band model[46] for the bulk band structure of

GaAs. The most striking feature is the unphysical crossing of the light hole and heavy

hole bands in the 8-band model at moderate values of k. This is eliminated in the 14-band

model with the inclusion of the antibonding conduction band p states which couple to the

bonding valence band p states through the matrix element Q and eliminate the unphysical

crossing of heavy hole and light hole bands. Figure 2.6 shows a blowup of the region

around the unphysical crossing of the heavy hole and light hole bands in the 8-band model

and the correct anti-crossing behavior of the 14-band model. Because this crossing occurs

at fairly large k, k > 0.16A-1, the 8-band model is considered satisfactory for many calcu-

lations.

0

I..

V

2
k - 1/Angstrom

Figure 2.5: Comparison of the bulk 14-band and 8-band k*p models for GaAs.

The band structure shown in Figures 2.5 and 2.6 for GaAs and a similar band structure
for AlGaAs are the inputs into the superlattice (SL) Kep calculation for calculation of the
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superlattice wave functions and subsequently the SL optical absorption coefficients. The

following subsection describes the method of Flatte, Young, Peng and Ehrenreich in cal-

culation of these superlattice wave functions.[46] It will be shown that the 14-band model

leads to a TM absorption of 1200cm -1 in excellent agreement with published experiments

and a TE absorption of 200cm -1 . The TE absorption is about a factor of two larger than

that calculated in Subsection 2.2.2 using the method of Shik and as will be shown in Sec-

tion 2.2.4 is sufficient to give excellent FPA images without the requirement for fabrica-

tion of a coupling grating.

- 0.1 0.125 0.15 0.175 0.2

Figure 2.6: A vertical blowup of the region near the unphysical crossing of light
and heavy hole bands in the 8-band model.[46]

2.2.1.2 Superlattice Electronic Structure

Having calculated thel4-band electronic structure for bulk semiconductors, solutions

to the band structure of a superlattice (SL) consisting of alternating layers, A and B, of two

bulk semiconductors are sought. The layers A and B are alternately stacked in the z direc-

tion with period P. In the limit of infinite extent, the SL is a perfectly periodic, though
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highly anisotropic, crystal with wave functions TSL (L, K) that can be characterized by

SL wave vector K and band index L and which obey Bloch's theorem. Assuming that the

superlattice period is large compared to the underlying bulk crystal lattice constant, the

K=O states of the superlattice can be written as products of slowly varying envelope func-

tions Fn(z) and the k=O Bloch functions (rln, 0) corresponding to band n of the 14 bands

calculated for bulk semiconductors in Section 2.2.1.1.

(rIjSL (L, K = 0)) (rlL, K = 0) = F n(L, K = O;z) (rln, 0) (2.47)
n

Substituting the envelope-function expression of Equation 2.47 along with the Hamil-

tonian of Equation 2.26 into the Schridinger equation (H - E)D = 0 and assuming that the

wave functions of the bulk states (rin, 0) are nearly identical in the SL layers A and B due

to the similarity of the two materials, the multiband Schridinger equation for the K=O

envelope functions can now be written as:

HA(B)(kx, k kzi - E]F (L, K = 0;z) = 0 (2.48)

Solutions are sought to Equation 2.48 for the energies and envelope functions which

satisfy continuity of cell averaged current across the interface between layers A and B.

These boundary conditions for the envelope functions F (L, K = 0;z) are obtained by

integrating Equation 2.48 across the interface between layers A and B:[46]

(n, Op n',O)F z+) +IF a• += Z (n,, O n'O)F, z) + F •( (2.49)

n n

where (n, Opz In', 0) is the momentum matrix element connecting bulk bands.

Having determined the K=O envelope functions, a superlattice Kep theory[44] is used

to express the finite K SL states IL, K) in terms of the K=O envelope function states.

(rL,K) eiK r Fn (L, K;z) (rlN, o)
n

(2.50)
iKe cLN (K) (rIN, O)

N
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Applying the Hamiltonian of Equation 2.26 to the states in Equation 2.50 gives the SL

Kep equation for the cLN's as a function of K.

E N(0) + h2 2 -EL (K) 8NN
N 87 2m (2.51)

+ (N', OIH'IN, 0) ] CLN' (K) = 0

where H' is the Kep part of the Hamiltonian and describes dispersion in the SL bands

hK
(N', OH'IN, 0) = (N', 0pIN, 0) (2.52)

and the momentum matrix elements connecting the superlattice K=O states are

(L', OpL, 0) = I drFn , (L', O;z) Fn (L, O;z) (n', Olp n, 0)
nnn

+ [drFn, (L', O;z) p F (L, O;z) j (2.53)

- (a n n, (L, L') (n', O[pln, 0) + F (L, L') 6,,)
nn

with V being the crystal volume. The H terms have been shown to be smaller by a factor

mc/m relative to the ax terms and will subsequently be ignored.[44]. At this point the fold-

ing down procedure of Flatte et.al.[46] will be applied to the SL bands in a manner analo-

gous to that done for the bulk bands in Section 2.2.1.1 in order to concentrate on the

effects of the p on the conduction band and valence bands of interest. The SL K=0 states

are written here in terms of both the 14-component Fn and the 8-component Ff .

14

(rISL) = Fn (L, K = 0;z) (rin, 0)

n=l (2.54)
8

= F f (L, K = 0;z) (rln, 0)eff

n=1

where analogous to the bulk case, the 14-component
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F-
F = ps (2.55)F-

is expressed in terms of the 8-component Feff for K away from the zone center by:

F - (L, K) = Feff(L,K) (2.56)
ps ps

F- (L, K) = -(H- - E -H - -F -(L, K) (2.57)
pP ps-p ps

The envelope function equation for the effective 8-component model is then:

Hp4 (B) (k, k, ky k=i F - (L, K = O;z) = EF - (L, K = O;z) (2.58)
A (B) xz ps ps

where the Hamiltonian for the bulk materials A and B comes from Equation 2.38 and

including the z dependence due to the alternating A and B SL layers is given by:

ihPokz  ihPokzEF (z) 2irm 2z
6r6 2nm F22am

ihP kz

2tin E (z) 0 027cm Eg
2

0 0 E (z) - k k 0z00 Er(Z)k 2 z
8 81c mHH (z)

ihPokz
2m 0 0 E (z)

~2n~m 7

FC (Z)

FLH(Z)
F HH(z)

FSH (z)

FC(L)F c(Z)

FLH(z)

FHH(Z)

FSH(Z)

(2.59)

In addition to the bulk parameters of Table 2.1, the solution of Equation 2.51 for the

superlattice Kep band structure requires values for the layer thicknesses and the valence

band offset A = Er, (A) - Er, (B) . For the GaAs/AlGaAs quantum well structure dis-

cussed in Sections 2.2.1.3 and 2.2.2 these values are given below in Table 2.4.

Using the procedure described in this section and the parameters of Table 2.4, Flatte

et.al.[46] have solved the superlattice Kep band structure for the case of a 40A GaAs SL A

layer and a 300A Al0.30Gao.70As SL B layer. The results of this calculating are described

E
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in the following section in terms of the resulting optical matrix elements and the absorp-

tion coefficients for intersubband optical absorption.

GaAs/
GaAs Al0.3GaAs GaAsAl0.3GaAs

Eg RT fundamental gap (eV) 1.420 1.786

A spin-orbit splitting (eV) 0.328

mHH/m in (100) direction 0.48

A valence band offset (eV) 0.138

Table 2.4: Kop SL band structure parameters[46]

2.2.1.3 Intersubband Optical Absorption from 14-band SL Kep theory

The superlattice momentum matrix elements discussed in Section 2.2.1.2 involving Pz

and Px determine respectively, the intersubband optical absorption coefficients for light

polarized with electric field perpendicular to the superlattice growth direction, referred to

as TM, and for light polarized with electric field in the plane of the superlattice layers,

referred to as TE. The expressions for the TE and TM intersubband absorption coeffi-

cients in the notation of Section 2.2.1.2 are

22

ax (z) 2= 2 C (EL,(K )
m cOV K L, L'

-fn (EL (K)) ] (L, Kpx (z) L', K)2

x 8 [EL (K) - EL, (K) - hv]

(2.60)

and

(L, KIPx (z) IL', K)= Ft (L, K)p(z) () L',K)

= Ft - (L, K) p -F - (L', K)
ps x (z), ps ps

+Ft - (L, K)p -F- (L', K)
ps x (z),p p

+ Ft- (L, K)p - -F -(L', K)
p x(z),ps-p ps

(2.61)
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where for TE absorption the subscript x is used and for TM absorption the subscript z is

used and the matrix elements between superlattice states (L, Klp,(z)IL', K) are given by

Equation 2.61. The 14-band bulk basis has been decomposed into an 8x8 matrix Pxtz),p , a

6x6 matrix Px cz);, and an 8x6 matrix Px(,).p -,
Before evaluating these Equations 2.60 and 2.61, insight into the expected results can

be obtained from thef-sum rule for intersubband transitions derived by Johnson et.al.[67].

This rule relates the matrix elements involving Px and Pz to the effective masses along and

perpendicular to the superlattice stacking direction z as follows:

(m/mL) = 1+l ,L (2.62)

L'

where the prime on the summation indicates that the L' = L term is excluded and the

oscillator strengths f,, L are given by:

2 (L, OlplL ', 0)
,rL =2 ( 0 L, OpIL 0)  (2.63)

S mEL (O) - EL (O)

Cyclotron resonance measurements of the electron mass parallel and perpendicular to

the superlattice stacking direction[68] show a 50% difference between the Cl effective

masses mcl and mxI which Johnson et al. used in combination with the f-sum rule of

Equation 2.62 to argue that fc2•, C• /2, cI.

This leads to the conclusion that the C1 - C2 intersubband TM absorption deter-

mined by Pz is considerably larger than the intersubband TE absorption determined by Px.

This fact remains unchanged in the 14-band model as shown in Figure 2.7 which shows

both the TE and TM absorption as a function of photon energy for a superlattice consisting

of a 40A GaAs quantum well and a 300A A10. 30Gao.70As barrier. The absorption length

for this calculation is the entire superlattice period, i.e. 340A and the relative absorption

strength (RAS) defined as the ratio of TM/TE absorption coefficients is 0.19. The RAS

value of 0.19 for the 14-band model including continuum states n = 2-5 compares to a

RAS value of 0.10 for the calculation of Shik[62]. Figure 2.8 shows a comparison of the
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8-band and 14-band calculations with the experimental data of Levine et al.[69] for the

same superlattice consisting of a 40A GaAs quantum well and a 300A Al0 .30Ga0.70As bar-

rier.

1
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Figure 2.7: 14 band model calculation of TE and TM absorption coefficients for
a superlattice of 40A GaAs and 300A Alo.30Ga0.70As at 300K. Absorption length
is entire superlattice period, 340A.[46]

Note that the already good agreement between the experiment and the 8-band model is

improved significantly by addition of the antibonding p conduction band states in the 14-

band model. Since the f-sum rule for intersubband transitions discussed above links the

TE and TM absorption coefficients, the excellent agreement between the TM absorption

coefficient calculated with the 14-band model also improves confidence in the TE absorp-

tion coefficient calculated with the same 14-band model. As an example of the implica-

tions of the small, but significant TE absorption coefficient calculated in the 14-band

model, the total percent absorption for a superlattice consisting of 50 periods of 40A GaAs

quantum wells and 300A Al0.30Ga0.70As barriers is 3.4% in the 14-band model. This is
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small compared to the more than 20% absorption for the TM mode, but as shown for the

first time in the following section even this relatively small absorption can be used in

infrared focal plane array cameras to make surprisingly good quality images.

E
I

0

0o

O
0

1000 1200 1400 1600 1800 2000
Photon Energy - 1/cm

Figure 2.8: Comparison of TM absorption for a superlattice of 40A GaAs and
300A Al0.30Gao.70As at 300K. Dotted lines are calculations done with 8-band and
14-band models and solid line is experimental data form Levine.[69] Absorption
length is entire superlattice period, 340A.[46]

2.2.2 Potential for using TE absorption in QWIP focal plane arrays

In Section 1.4.5 a model of an IR focal plane array (FPA) camera was described that

included the effects of non-uniformity in the FPA. Here this model will be applied to the

case of an FPA using quantum well intersubband photodetector (QWIP) pixels operating

using the TE absorption mode. This FPA therefore has no coupling grating or any other

structure designed to excite the TM absorption mode. The TE mode QWIP pixel has a

very simple measurement geometry in which the light is incident perpendicular to either

the front or back of the detector as shown in Figure 2.9.
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VBias

Contacts

4hv

Figure 2.9: Measurement geometry for TE mode QWIP devices

Using the TE absorption coefficient of 200cm 1' for a superlattice consisting of a 40A

GaAs quantum well and a 300A Alo.30Gao.7oAs barrier calculated by Flatte et al.[46] and

described above in Sections 2.2.1 - 2.2.3 the total absorption in a 50 quantum well struc-

ture is:

(50x340A) x( 1O )x m-,-) 200 = 3.4% (2.64)

Using Equation 1.21 for the minimum resolvable temperature (MRT) in a focal plane

array including the effects of non-uniformity, Figure 2.10 shows a comparison of four dif-

ferent detectors in the LWIR band using MRT as the figure of merit. The FPA represented

by the solid line has a high quantum efficiency of 70% with FPA non-uniformity after cor-

rection of 0.03% typical of research grade MCT arrays. The FPA represented with the

dotted line has a quantum efficiency of 20% but a non-uniformity of 0.01%, values typical

of research grade TM mode QWIP FPAs.

Note that above a background temperature of -110C the TM QWIP FPA with 20%

quantum efficiency but a uniformity of 0.01% has a lower MRT than the MCT FPA with

70% quantum efficiency but a uniformity a factor of 3 worse at 0.03%. The dashed line

represents an FPA with only 3.4% quantum efficiency but again 0.01% non-uniformity.

This line is meant to represent the TE mode QWIP FPA with quantum efficiency calcu-

QWIP

GaAs Substrate
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lated from Equation 2.64 and non-uniformity equal to that demonstrated in TM QWIP

FPAs.

1
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Figure 2.10: Uniformity limit for FPAs in the LWIR, 8gpm to 0lm band. Pixel
area 50gpm x 50pm, frame rate 30Hz, optics f/# 1.5 AR coated, noise floor 200e-, g
= 0.5.

Above a background temperature of -80C the TE QWIP FPA has a lower MRT than

the MCT FPA with 70% quantum efficiency but a non-uniformity a factor of 3 worse at

0.03%. Finally, the FPA represented by the dot-dash line has a quantum efficiency of

0.1% and a non-uniformity of 0.01%, values predicted for Iridium Silicide, a Schottky

barrier type detector sensitive to the LWIR band. This FPA has about a factor of three

worse MRT at room temperature than the two QWIP based FPAs, but above room temper-

ature it still out performs the MCT FPA in spite of a quantum efficiency nearly three

orders of magnitude lower.

in
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Figure 2.11: Uniformity limit for FPAs in the MWIR, 3gm to 5gm band. Pixel
area 50gm x 50gm, frame rate 30Hz, optics f/# 1.5 AR coated, noise floor 200e-, g
= 0.5.

The conclusion here is that even though TE mode QWIPs have quantum efficiencies a

factor of six lower than TM mode QWIPs; for FPAs operating in the LWIR with back-

ground temperatures above about -100C the FPAs are uniformity limited and there is no

penalty for using the lower quantum efficiency detectors. In fact the grating used to cou-

ple normally incident light into the TM mode QWIP detectors is the largest source of non-

uniformity in TM QWIP FPAs[70] and therefore in the region of operation where MRT is

proportional to non-uniformity, TE QWIP FPAs with no grating should have better MRT

than the TM QWIP FPAs in spite the factor of six lower quantum efficiency of TE QWIPs

verses TM QWIPs as calculated in Section 2.2.1. Figure 2.11 goes through the same argu-

ments in the MWIR band where background photon fluxes are smaller, Figure 1.3, and

photon flux contrast ratios are higher, Figure 1.4. Figure 2.11 shows a comparison of four

different detectors in the MWIR band using MRT as the figure of merit. The FPA repre-
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sented by the solid line has a high quantum efficiency of 70% with FPA non-uniformity

after correction of 0.03% typical of research grade MCT and InSb arrays. The FPA repre-

sented with the dotted line has a quantum efficiency of 20% but a non-uniformity of

0.01%, values typical of research grade TM mode QWIP FPAs. Note that above a back-

ground temperature of -30C the TM QWIP FPA with 20% quantum efficiency but a uni-

formity of 0.01% has a lower MRT than the MCT FPA with 70% quantum efficiency but a

uniformity a factor of 3 worse at 0.03%. The dashed line represents an FPA with only

3.4% quantum efficiency but again 0.01% non-uniformity. This line is meant to represent

the TE mode QWIP FPA with quantum efficiency calculated from Equation 2.64 and non-

uniformity equal to that demonstrated in TM QWIP FPAs. Above a background tempera-

ture of 15C the TE QWIP FPA has a lower MRT than the MCT FPA with 70% quantum

efficiency but a non-uniformity a factor of 3 worse at 0.03%. Finally, the FPA represented

by the dot-dash line has a quantum efficiency of 0.8% and a non-uniformity of 0.01%, val-

ues typical for Platinum Silicide, a Schottky barrier type detector sensitive to the MWIR

band and described in Section 1.6.2. This FPA has about a factor of three worse MRT at

room temperature than the two QWIP based FPAs, but above a background of about 50C

it still out performs the MCT FPA in spite of a quantum efficiency two orders of magni-

tude lower. Again, the point is made that even in the MWIR band where the background

flux is lower at a given background temperature and therefore uniformity is relatively less

important than it is in the LWIR band, TE QWIP FPAs can produce images of a quality

similar to that of MCT and TM QWIP FPAs with all the advantages of inherent in using a

GaAs substrate and without the need for using a TM coupling grating.

To complete this section, Figure 2.12 shows a comparison between an FPA with a

quantum efficiency of 70% operating in the LWIR band typical of MCT, solid line, and an

FPA with a quantum efficiency of only 3.4% operating in the MWIR band, dashed line.

Both FPAs have the same non-uniformity of 0.03% for comparison purposes and are oper-

ating in the uniformity limited regime, but due to the improved photon flux contrast in the

MWIR band, Figure 1.4, the FPA operating in the MWIR has a better MRT for back-

ground temperatures above about -20C.
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i0
Background Temperature - C

Figure 2.12: Comparison of MWIR, 3pm to 5pLm, and LWIR 8tm to 10pm
bands. Uniformity 0.03%, pixel area 50gm x 50tm, frame rate 30Hz, optics f/#
1.5 AR coated, noise floor 200e-, g = 0.5.

In conclusion, even for the rather unfavorable case of TE absorption in square GaAs/

AlGaAs quantum wells, the small absorption coefficient can be combined with improve-

ments in uniformity relative to both direct band systems like MCT FPAs and grating cou-

pled TM QWIP FPAs to produce TE QWIP FPAs with excellent image quality. This is

done in a structure that is extremely simple with no need for a coupling grating and there-

fore lends itself well to manufacturing.

2.2.3 Conclusions and avenues to improvement of TE mode absorption

So far in this section, the TE mode absorption coefficient and its application to TE

mode QWIP FPAs have been discussed in the context of ideal square quantum wells of

GaAs with lattice matched barriers of AlGaAs. In these structures however, non-ideal

quantum wells may offer another avenue to increasing the TE absorption. As an example,

Tidrow et al. have seen large TE/TM absorption ratios in systems having large applied
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fields along the stacking direction for the superlattice.[71] This is particularly interesting

because QWIP detectors operate with rather large bias fields of fewxlO04 V/cm. In fact,

Young et al.[48] have shown that fields of this order in GaAs/AlGaAs quantum wells can

account for the appearance of normally forbidden transitions in the exciton absorption

spectrum and similar effects should occur in the intersubband absorption spectra as well.

The addition of strain in the quantum well structure by adding Indium to the GaAs quan-

tum well could change the TE absorption coefficients in two ways. First, the reduction in

symmetry of the bulk band structure will alter the momentum matrix elements coupling

the various bands and second, the well known segregation of Indium along the growth

direction results in an asymmetric quantum well similar in effect to the addition of a large

built in field.[49] These effects have not been systematically studied here, but qualita-

tively they all can lead to a larger TE absorption coefficient and so the calculations done

above in Section 2.2.2 can be considered lower limits for TE mode QWIP FPAs.

In conclusion, this section has for the first time calculated the potential for using TE

mode QWIPs in focal plane array cameras in terms of the ultimate FPA performance using

minimum resolvable temperature (MRT) as the figure of merit. The TE mode QWIP

absorbances were calculated by Flatte et al.[46] for an ideal superlattice consisting of 50

periods of a 40A GaAs quantum well and a 300A A10.30GaAs barrier in a 14-band super-

lattice Kep theory including the effects of the antibonding p conduction band states.

Including the effects of non-uniformity, it has been shown that in the LWIR band, TE

QWIP FPAs should produce excellent quality images with MRTs lower than those for

MCT FPAs for background temperatures above -100C. In the MWIR band TE QWIP

FPAs should produce excellent quality images with MRTs lower than those for MCT FPAs

for background temperatures above 15C.

2.3 Grating coupled TM mode miniband QWIP FPAs

All of the high performance QWIP FPAs demonstrated to date have used diffraction grat-

ings to couple normally incident light, transverse electric (TE), into the high absorption

coefficient transverse magnetic (TM) mode of n-type QWIPs.[72] This section will dis-
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cuss one particular grating coupled QWIP design developed by Lockheed/Martin which in

addition to a coupling grating uses a superlattice barrier design to reduce the dark current.

This miniband transport type QWIP is an excellent example of the potential for "bandgap

engineering" in III-V semiconductor superlattices which does not exist in bulk photode-

tectors such as those based on MCT.

Diffraction Grating
Cnntk t Mptni

Quantu
Wells

m
. . I

= - ----- 1
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SGaAs Substrate Removed T
Path of Incident Photons 6gm

Figure 2.13: Schematic for QWIP FPA with 1-D diffraction grating.[73]

The gratings in this design are etched into the top side of the QWIP and metalized both

to provide an ohmic contact for biasing the device and to improve the efficiency of the dif-

fraction grating. The IR light is then incident from the substrate side of the device and is

absorbed after diffraction from the grating. One dimensional gratings of the type shown in

Figure 2.13 couple to only one of the two orthogonal TE polarizations and so have a peak

theoretical coupling approaching 50%. Two dimensional gratings have also been used

with similar geometries to allow coupling to both TE polarizations, but these require more

complex lithography.[58]

The best FPA performance for any large format FPA has recently been demonstrated

by Lockheed/Martin using the pixel structure shown in Figure 2.13 with a one dimen-

sional grating.[73,74] The substrate has been removed after hybridization to the Silicon

read-out integrated circuit using an epitaxial lift-off technique.[75] This eliminates cross-

talk between pixels due to reflections at the substrate/air interface and also improves the
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reliability of the hybridization process as will be discussed in Chapter 6. The quantum

well active region uses a bound to miniband transition rather than the bound to continuum

transition depicted in Figure 2.1 and used in the majority of QWIP FPAs.[39] In this

structure, the barrier region between the quantum wells is not simply a bulk wide bandgap

semiconductor like AlGaAs, but rather is a short period superlattice consisting of thin

alternating layers of wide bandgap and narrow bandgap semiconductors as show in Figure

2.14. Transport of photoexcited carriers and dark current occurs in the miniband formed

by coupling between overlapping quantum mechanical wavefunctions in the narrow quan-

tum wells which make up the barrier.

Figure 2.14: Schematic of miniband transport QWIP detector[74]

The advantage of the miniband transport comes from decoupling the conduction band

offset, AEc, and the photon energy, Ep In the bound to continuum type QWIPs of Figure

2.1, the photon energy is determined from the equation:

E, = AE - E 1  (2.65)

which along with the doping density determine the thermionic emission as shown in

Equation 2.1. For the miniband transport QWIP the coupling between the photon energy

and the conduction band offset is broken; instead, the photon energy is determined by the

difference in energy between the ground state in the quantum well and the miniband

energy labeled E2 in Figure 2.14. This allows a large reduction in thermionic emission
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which now occurs for transitions between the heavily populated ground state in the quan-

tum well and the three dimensional continuum which has been lifted up in energy due to

the increase in the conduction band offset.

Figure 2.15: 640 x 480 grating coupled QWIP miniband transport FPA operat-
ing in the LWIR. 5 0km pixel pitch, f/2 optics, 30 frames/second and MRT = 7mK.
Subject is Mexicana Airlines Lockheed L1011. Courtesy Charles Parton (Lock-
heed/Martin)

The decrease in dark current can be easily calculated from Equation 2.1. Comparing

a bound to continuum QWIP with a 10ltm cutoff wavelength, ET = 120meV, and the mini-

band transport QWIP of Figure 2.14 with ET = 300meV, Equation 2.1 gives a twelve fold

decrease in dark current. The decrease in dark current also allows an increase in TBLIP

with the result that the Lockheed/Martin miniband transport QWIP FPA has a TBLIP of

85K for a cutoff wavelength of 0lm.
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Figure 2.16: 640 x 480 grating coupled QWIP miniband transport FPA operat-
ing in the LWIR. 50m pixel pitch, f/2 optics, 30 frames/second and MRT = 7mK.
Image taken in dark room with no illumination. Courtesy Charles Parton (Lock-
heed/Martin)

Figure 2.15 shows a single frame from a 640x480 Lockheed/Martin miniband trans-

port QWIP FPA. The minimum i-esolvable temperature for this FPA is 7mK limited by the

uniformity of the array and not by the quantum efficiency which is 26%. The temperature

resolution is clearly spectacular showing details of the support frame in the tail of the

Lockheed L1011 airliner as well as variations in emissivity caused by the painted mark-

ings which identify the airplane as belonging to Mexicana Airlines. Equally important for

image quality is the lack of blooming in the very hot jet exhaust region which saturates the

detector but does not adversely effect the resolution in neighboring regions. Figure 2.16

shows a single frame from the same QWIP FPA taken with a 300K black background in a

dark room. Again both the temperature and spatial resolutions are excellent allowing for

clear identification of an individual with no illumination.
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In conclusion this section has presented results from a state-of-the-art grating coupled

QWIP miniband transport FPA. The 7mK minimum resolvable temperature is seen to

produce excellent image quality and it is this standard against which the TE mode grating

free QWIPs which are the subject of this thesis will be measured. In addition to image

quality, this FPA exemplifies two other properties relevant to this thesis. First, this mini-

band transport type QWIP is an excellent example of the potential for "bandgap engineer-

ing" in III-V semiconductor superlattices which does not exist in bulk photodetectors such

as those based on MCT. This and other applications of bandgap engineering will likely

lead to improvements in TE mode QWIP devices as well. Finally, the images shown here

with a 300K background are limited in MRT by the spatial nonuniformity and not by the

individual pixel performance. As discussed in Chapter 1 this implies that a reduction in

quantum efficiency which results in a reduction in pixel performance can be traded off for

another desirable quantity with no deterioration in overall FPA performance as measured

by MRT. The TE mode QWIP proposed to take advantage of this excess quantum effi-

ciency to eliminate the coupling grating, which is one of the most difficult steps in FPA

manufacture, thus lowering the quantum efficiency but also dramatically simplifying the

manufacture of the FPA with no performance penalty for uniformity limited operation.

2.4 Alternative normal incidence QWIP technologies

In addition to the widely used grating coupled TM mode QWIPs and newly developed

TE mode QWIPs there are several other III-V based QWIP structures that lead have

potential utility in QWIP FPAs. The alternative structures all attempt to eliminate the

need for a coupling grating while retaining a high quantum efficiency by using an alterna-

tive to the n-type quantum well grown on <100> oriented substrates. Two of these alter-

native normal incidence QWIP technologies will be discussed in this section with a short

description of the physical principles and experimental performance data and a discussion

of issues related to the integration. These particular structures are chosen because they

best exemplify the potential for bandgap engineering and growth manipulation inherent in

QWIP structures, but lacking in the other detector technologies discussed in Section 1.6;
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Mercury Cadmium Telluride, Schottky barrier detectors and bolometers. Section 2.4.1

discusses p-type QWIPs which use the complexities of the valence band in III-V semicon-

ductors to achieve normal incidence absorption without a grating and Section 2.4.2 dis-

cusses AlAs/AlGaAs X-point QWIPs grown on <110> oriented substrates which use the

complexities of the conduction band at the X-point to achieve normal incidence absorp-

tion without a grating. Finally, Section 2.4.3 presents concluding remarks on the promise

of these alternative normal incidence QWIP Technologies.

2.4.1 P-type normal incidence QWIPs

P-type QWIPs were first demonstrated at AT&T where much of the early experimental

work on QWIPs was done.[76] The first devices consisted of 50 periods of a superlattice

with 40A GaAs quantum wells and 300A Al0.30Ga0. 70As barriers grown on <100> GaAs

substrate and are shown schematically in Figure 2.17. The quantum wells were doped p-

type at 4x10 18 cm-3 with Beryllium giving a cutoff wavelength of 7.9gm. The strong mix-

ing in the valence band between the light and heavy holes away from k=O creates a large

absorption coefficient for TE polarized incident light between the occupied heavy hole

bound state and the unoccupied light hole quasibound state with no need for a diffraction

grating.

The quantum efficiency per well was 1=0.65% for a total quantum efficiency for all

50 wells of ir=28%, comparable to the values for n-type grating coupled TM QWIPs and

an order of magnitude larger than TE mode QWIPs. The photoconductive gain was

g=0.034, an order of magnitude smaller than the photoconductive gain for 50 well n-type

QWIPs due to the smaller hole mobility in the AlGaAs barriers and larger hole mass

which leads to a much larger excited carrier capture probability, p=37 %, compared to

p=7% found in the n-type QWIPs. Taken together, these parameters explain the low value

of the responsivity measured at 39mA/W. Detectivity for these devices was 3.1x1010

Jones in spite of the low responsivity because the small gain effects both responsivity and

noise.[76]
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aAe A lounnium Wall

Energy

Figure 2.17: Schematic of band diagram for p-type GaAs/AlGaAs QWIP

One of the important advantages of QWIPs comes from the ability to engineer the

band structure through the growth of superlattices. This means that unlike the case for

bulk semiconductors, the band structure is not a fixed material parameter, but rather can be

modified within limits through the use of strain, variation in material composition and

variation in layer thickness. Bandgap engineering is particularly powerful for p-type

devices because of the complexity of the valence band in III-V semiconductors. An

example is the p-type strained layer In0.30Ga0.70/In0.52Al0.48As QWIP grown on <100>

InP shown in Figure 2.18.[77]

The tensile strain in the quantum well causes the normally degenerate F-point light

hole (LH) and heavy hole (HH) bands to split forcing the light hole band down in energy

relative to the heavy hole band. For appropriate choice of strain and quantum well width

the light hole states become the occupied states in a p-doped quantum well and the heavy

hole states are left unoccupied.[78] The optical transition occurs between the occupied
3 1 33

(Jimj) = (21 ) light hole states and the unoccupied (l| ) heavy hole continuum states

above the barriers. Since the light hole has a small effective mass perpendicular to the
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Section 2.4 - Alternative normal incidence QWIP technologies

superlattice growth direction and a large in-plane density of states, the optical absorption

and responsivity can be significantly increased.
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Figure 2.18: Schematic of band diagram for p-type In0.30Ga0.70As/
In0.52Al0.48As strained layer QWIP grown on InP.[77]

The device of Figure 2.18 consists of twenty 40A quantum wells of In0.30Gao.70As

doped with Beryllium at lx10 18 cm -3 and separated by 450A of In0.52A10.48As lattice

matched to the InP substrate. The quantum efficiency per well was 0.5% for a total quan-

tum efficiency of 10% assuming a capture probability of 37% and a resulting photocon-

ductive gain from Equation 2.9 of g=0.085. The responsivity was 5 lmA/W for a cutoff

wavelength of 8.8gm at 77K resulting in a BLIP detectivity at 77K of 5.9x1010 Jones.

TBLIP was not measured, but the dark current at 77K was more than an order of magnitude

smaller than the photocurrent which at 3K per octave for thermionic emission gives TBLP

of 87K. This is excellent performance comparable to the best TM mode grating coupled

miniband transport QWIPs discussed in Section 2.3.

2.4.2 X-band AIAs/AIGaAs QWIPs

All of the QWIP devices discussed to this point have been grown on <100> oriented

substrates and have used the F-point band structure for confining and transporting carriers.

This is quite common in all III-V semiconductor devices because the energy minimum for
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Chapter 2 - Normal Incidence QWIPs

both holes and electrons in GaAs occurs at the F-point. However, for AlxGal_.As with the

Aluminum fraction x greater than 40% the conduction band minimum moves to the X-

point and the semiconductor becomes indirect. Figure 2.19 shows an n-type QWIP which

takes advantage of the lower symmetry of the X-point to achieve normal incidence detec-

tion with no grating in an n-type device.[77]

TX_

AlAs

Figure 2.19: Schematic of band diagram for X-band AlAs/A10.5 0Ga0 .50As
QWIP. As shown this is a multiwavelength device with responsivity at 2.5gm,
4.3gm and 14.8gm. Resonances are show with dot-dash lines.[77,79]

In order to form the X-point quantum wells, a twenty period superlattice of 30A of

AlAs and 500A of A10.50Ga0.50As was grown on a <110> oriented GaAs wafer. The AlAs

layers which form the quantum wells at the X-point were doped 2x101 8 with Silicon.

Because of multiple resonances above the edge of the quantum well these devices actually

have multiwavelength detection capability with responsivities of 11OA/W, 18.3A/W and

24mA/W at cutoff wavelengths of 2.5gm, 4.3gm and 14.8gm. The huge responsivities at

2.5gm and 4.3gm are due to photoconductive gains calculated to be 630 and 3200 respec-

tively caused by resonant transfer of photoexcited electrons from the X-band into the F-

band where they can not be captured by the X-band quantum well. Detectivities at the
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three bands were 1.1x10 12 Jones, 3.0x10 11 Jones and 1.1x10 9 Jones at 77K. BLIP temper-

ature was not measured, but was less than 77K due to a large dark current.

The very large responsivities and low BLIP temperatures of the X-band QWIPs dis-

cussed here are not amenable to use in FPAs which require the charge generated to be

stored in a small capacitor, however the multiwavelength capability is potentially useful

and with proper choice of materials and superlattice parameters the resonances which led

to the very high photoconductive gains could possibly be suppressed.

2.4.3 Concluding remarks on alternative normal incidence QWIPs

Fabrication of the coupling gratings used in high performance large format QWIP

FPAs constitutes a large part of the FPA chip complexity and cost. In addition, the cou-

pling grating is often times the single largest contributor to nonuniformity in the array.

[80] This section has discussed several alternatives for normal incidence QWIPs that do

not require coupling gratings. The GaAs based p-type QWIPs, InP based p-type strained

layer QWIPs and the n-type X-band QWIPs grown on <110> GaAs have all been shown

to have detectivities well in excess of the lx1010 Jones discussed in Chapter 1 as being the

threshold for uniformity limited performance. Hybrid integration of these devices using

Indium bump bonds as will be discussed in Chapter 6 for TM grating coupled QWIPs

should work well for any of these devices however, if monolithic integration is the goal

these devices all have difficulties. In particular for the InP based p-type QWIPs one would

need to develop high density, high performance InP based electronic devices to integrate

with the InP based QWIPs. Though low density integration has been demonstrated on InP

for microwave applications the VLSI density necessary for QWIP FPAs has yet to be dem-

onstrated. For the n-type QWIPs based on <110> oriented substrates the low mobility in

the X-band leaves no incentive to develop electronic devices on <110> substrates leaving

hybridization as the only alternative. The p-type <100> GaAs QWIP could possibly be

integrated with p-HEMT devices now being developed for cellular phones, but this tech-

nology offers no obvious choice for the integration capacitor and also no VLSI density cir-

cuits. Only the TE mode n-type <100> GaAs based QWIPs which are the subject of this

thesis have the potential for monolithic integration with already existing VLSI density
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MESFET circuits. Issues related to integration of these devices will be discussed in Chap-

ter 6.

2.5 Concluding remarks on normal incidence QWIPs

This chapter has developed the theoretical basis for design of normal incidence

QWIPs. The results from the Kep calculations of Flatte et al. have been used to calculate

the quantum efficiency for a prototypical TE mode QWIP. Using this absorption coeffi-

cient and the FPA performance model developed in Chapter 1 it has been found that mini-

mum resolvable temperatures, (MRT) of less than 10mK are possible for TE mode FPAs

operating under uniformity limited conditions with 300K backgrounds in the LWIR. This

is the first time that calculated TE quantum efficiencies have been used to demonstrate that

FPAs based on TE mode QWIPs can compete with the more standard TM type devices

under conditions in which the 300K background causes FPAs based on both types of

devices to be uniformity limited. In order to understand the current state of QWIP FPAs,

Section 2.3 discussed the use of diffraction gratings to couple normally incident light into

miniband transport type TM mode FPAs developed by Lockheed/Martin. These FPAs

represent the state-of-the-art in FPA performance with 640x480 format arrays demonstrat-

ing MRTs of less than 10mK. The largest format MCT based FPA have similar MRTs, but

with a format of only 256x256, nearly five times fewer devices. PtSi arrays as large as

1024x1024 have been fabricated, but with MRTs more than an order of magnitude larger.

The potential for TE mode FPAs to compete with these TM mode FPAs demonstrated here

bodes well for their acceptance in marketplace. Subsequent chapters will discuss the

experimental work on TE mode QWIPs, including fabrication of devices based on the

analysis presented in this chapter and their characterization.
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Chapter 3

Growth and Fabrication of Normal Incidence QWIPs

3.1 Introduction

This chapter discusses the techniques used for fabrication of normal incidence QWIPs

in the GaInA1As material system. Where the technique used is novel and/or the results are

unusually enlightening some extra time will be spent to expand the explanation. This is

particularly true for Section 3.4 on strained layer heteroepitaxy and critical layer thick-

ness. Section 3.4 has particular relevance to the fabrication of QWIP devices because as

derived in Section 2.1 a good QWIP has "as many quantum wells as practical". Section

3.4 discusses the issues related to determining how many quantum wells are possible

when working with strained layer superlattices. The other two material sections, Section

3.2 on molecular beam epitaxy (MBE) and Section 3.3 on material characterization very

briefly describe the techniques used and present some of the relevant results. Their brev-

ity is a reflection of one of the great advantages present in QWIPs verses other FPA tech-

nologies, namely that high quality HI-V semiconductors have been grown by MBE for

more than twenty years. This has resulted in a very large established knowledge base that

can be leveraged to produce and characterize high quality material in a relatively short

period of time. In addition, high quality GaAs substrates are readily available in sizes up

to 6" diameter from a variety of commercial vendors and a wealth of experimental data

has been published with which to compare characterization results. Combine this with a

material, GaAs, that is fundamentally easy to work with and has none of the subtleties

inherent in II-VI materials and it is no surprise that in the ten years since the first QWIP

was demonstrated QWIP FPAs have surpassed the performance of MCT based FPAs in

spite of forty years of work and a much larger investment in MCT. Finally, Section 3.4

describes the actual fabrication sequence used for the devices presented in this thesis and

Section 3.5 concludes with a discussion of future improvements in QWIP fabrication.
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3.2 Molecular Beam Epitaxy Growth

Samples for this thesis were grown on a Riber 2300 three chamber MBE system.

Details of the techniques used for substrate preparation and growth are quite standard and

are given in the MIT MBE manual[81] so only a couple of key points will be pursued

here. In particular, determination of the temperature of the substrate during MBE growth

is critical and must be consistent across many different growths. An optical pyrometer

with a bandpass filter centered at 2.3gpm was used to measure relative changes in tempera-

ture above 300C. The critical step is the calibration for the emissivity of the sample. This

was done using a phase transition in the surface of GaAs which is visible using insitu

reflection high energy electron diffraction (RHEED). With the Arsenic shutter closed and

the beam equivalent pressure of Arsenic flux incident on the sample less than 10-7 torr,

two orders of magnitude lower than the typical Arsenic flux during growth, the GaAs sur-

face undergoes a phase transition from an Arsenic stable 2x RHEED pattern below 640C

to a Gallium stable 4x RHEED pattern above 640C. Watching for this phase transition

while slowly ramping up the substrate temperature can consistently determine the temper-

ature 640C which is then used to calibrate the pyrometer. Since this temperature is easily

repeatable, a constant of the material and a direct measurement of the sample being

grown, most of the experimental factors are eliminated and consistent results can be

obtained over long periods of time. Note that for the particular pyrometer being used, the

GaAs substrate is transparent to the wavelength of the pyrometer 2.3jim. This means that

for samples mounted with Indium the pyrometer is actually looking at the metallic Indium

on the backside of the sample. In fact this is nearly ideal since the Indium is in intimate

contact, in fact alloyed into, the GaAs substrate and the emissivity of the sample in this

temperature range is nearly independent of the materials being grown all of which have

bandgaps larger than 2.3pm for the InGaA1As material system used in this thesis. The

efficacy of this measurement can be seen insitu under the unfortunate circumstances when

the Indium on the back side of the sample de-wets the Molybdenum sample mounting

block. In this case the pyrometer, which is focused to a spot about 5mm in diameter, will

read large variations in temperature as it move from areas where the Indium has de-wetted
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from the Moly block thus reducing heat conduction to the GaAs from the hot Moly block

and areas where the Indium still makes good contact between the Moly block and the

GaAs sample. Needless to say, samples where this effect is severe are trash.

In addition to good control of temperature, the QWIPs grown in this thesis consisted

of multiple quantum wells which require good control of the layer thicknesses to get max-

imum effect. Good control in this context means average variations in quantum well

width of one monolayer or less which at a typical growth rate of one micron per hour or

one monolayer per second translates into time variations for shutter operations of one sec-

ond or less. This was achieved using a computer system and software designed by a pre-

vious graduate student, J. Vlcek.[82,83] The software, code named "Molly", allows

simple control over both shutter times and effusion cell temperatures. Significant

improvements in the reliability of the hardware system made by the author and the use of

the Molly software have enabled students to grow as many as fifty quantum wells with the

high degree of repeatability required to achieve optimum results.

3.3 Material Characterization

Material characterization done on unprocessed material is an extremely valuable tool

for determining the potential for a particular chip prior to investing a large effort into the

fabrication and testing of individual devices. Two of the most valuable non-destructive

characterization tools, double crystal x-ray and photoluminescence will be discussed in

this section with examples relevant to QWIP device fabrication.

3.3.1 Double Crystal X-ray Diffraction

All X-ray sources produce radiation with a finite dispersion in both angle and energy.

Energy dispersion is determined by the atomic transitions in the target, typically KX1 in

Copper. The angular dispersion is determined by the geometry of the target and collimat-

ing slits and for practical systems is limited to a minimum of about one-tenth of a degree.

Double crystal X-ray diffraction improves this resolution more than two orders of magni-

tude and removes the energy dispersion by reflection of the X-ray beam emitted from the

collimator from a high purity single crystal. For the work in this thesis in which GaAs
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based devices were analyzed, the first crystal was chosen to be a GaAs substrate which

lead to a minimum resolution of -10 arc seconds.[84] A schematic of the DCXD system

is shown in Figure 3.1 along with a selection of relevant angles for GaAs.

Crvrtal Oripntatinn Rrsoo Anolp Collimator

Figure 3.1: Schematic of DCXD system. Inset shows Bragg angles for
GaAs at several common crystal orientations.

The additional resolution afforded by the DCXD allows accurate determination of

both layer thickness and material composition for QWIP samples in a completely non-

destructive manner. The results for QWIP 9065 are shown below in Figure 3.2 in which

the measured DCXD rocking curve is shown on top and the simulated rocking curve cal-

culated using Bede Corporations RADS program[85] is shown below. Superlattice

parameters are determined by varying the inputs to the simulator and finding the best fit to

the measured rocking curve. The periodicity of the large peaks determines accurately the

periodicity of the crystal superlattice which in this case is determined to be 555A +/- 5A.

The position of the fringes relative to the large substrate peak determines the Indium com-

position in the quantum wells, 13% +/- 2% and the splitting in the large peak determines

the Aluminum fraction in the barriers, 30 +/- 5%. The Aluminum fraction in the barriers

is the least accurate number because the lattice constant of AlAs and GaAs are so close

that relatively large changes in Aluminum fraction are required to move the Bragg angle

for the AlGaAs material out from under the GaAs substrate peak. DCXD scans similar to

Figure 3.2 are quite valuable, but they do require significant resources since the signal to
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noise ratio improves with the square root of the number of counts. To bring out the small

fringes requires count times of several minutes per angle point totaling 8-12 hours for a

single run not including time for setup and allignment.
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Figure 3.2: DCXD rocking curve and simulation for QWIP 9065. Quantum
well width 45A In0. 13Ga0.87As, barrier width 510A A10.30Ga0.70As.

3.3.2 Photoluminescence

Photoluminescence, PL, is a non-destructive technique that can be very powerful in

determining the optical properties of quantum well structures. In particular, because the

interband relaxation time is nearly three orders of magnitude slower than the intraband

relaxation, carrier excited high into the conduction band by absorption of a visible photon,

as from an Argon laser, quickly relax to the lowest levels in the conduction band by

phonon emission and then emit photons to relax back to the valence band. The spectral

purity of the emitted photons as measured by a grating spectrometer system similar to that
shown in Figure 3.3 gives information about the starting and ending energy levels of the
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relaxing electron. Particularly when done at low temperature to reduce thermal broaden-

ing of the peaks and dissociation of weakly bound particles, this technique gives sensitive

information on the existence of cooperative quasi-particles like excitons and defect levels

in the quantum wells. Some of these defect levels such as those associated with donors in

n-type quantum wells or acceptors in p-type material are inevitable, but others such as

those associated with quantum well interfaces and excitonic binding are indicative of the

optical properties of the quantum well.

Argon Ion Laser Cryostat

Spectrometer

Figure 3.3: Schematic representation of photoluminescence experiment

Qualitative information can also be gleaned from PL as shown in Figure 3.4 where a

comparison of two simultaneously grown multi-quantum well structures is shown for PL

taken at 25K. The circles are data from a multi-quantum well sample consisting of ten

50A GaAs quantum wells separated by 500A A10.30Ga0.70As barriers grown on a bulk n-

type substrate with a growth temperature of 470C. The dots are data taken from the same

multi-quantum well structure grown simultaneously in the dielectric growth well of a

VLSI MESFET chip as described in Chapter 6 for the epi-on-electronics, E-o-E, optoelec-

tronic integration technique. The data have been normalized to a peak intensity of one to

correct for variations in alignment and incident laser power. The growth temperature was
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chosen to be compatible with the MESFET circuitry.[1,86] The native oxide on the GaAs

was removed using hydrofluoric acid which passivates the surface with Hydrogen. The

Hydrogen is then desorbed in the MBE system by heating the substrate up to the 470C

growth temperature. The similarity of the two peaks demonstrates both the viability of the

Hydrogen passivation technique and the quality of the substrate surface underneath the

electronic circuits. However, the absolute width of the PL peak is nearly 45meV, an order

of magnitude larger than that obtained from similar samples grown at the more typical

growth temperature of 630C. Possible causes include interface roughness[87] and oxygen

incorporation.[88] The specific causes for this increased PL width have not been deter-

mined, but this result clearly indicates both the potential of the E-o-E technique and the

difficulties associated with growing at low temperatures.
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Figure 3.4: Comparison of 25K PL intensity for MQW structure containing 10
50A quantum wells of GaAs separated by 500A Al0.30Ga0 .70As barriers. Circles
are for sample grown on bulk GaAs substrate and dots are for sample grown in
E-o-E dielectric growth well. Both samples grown simultaneously at 470C and
prepared using hydrogen passivation.
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3.4 Strained layer heteroepitaxy and critical layer thickness

This section has particular relevance to the fabrication of QWIP devices because as

derived in Section 2.1 a good QWIP has "as many quantum wells as practical". For the

case of unstrained superlattices, what is practical is limited only by the reliability of the

growth equipment and the perseverance of the grower. However, for the case of strained

superlattices, there is a critical layer thickness beyond which threading dislocations

present at a density of about 1000 per square centimeter in high quality vertical gradient

freeze (VGF) grown semi-insulating substrates[89] begin to glide forming misfits in the

material. The effect of these misfits on QWIP performance has not been explicitly deter-

mined, but Section 3.4 indisputably establishes their existence and presents a theory by

Prof. Fitzgerald for the critical thickness which is consistent with the measured

results.[90] Thus Section 3.4 lays the groundwork for a future study of the effect of dislo-

cations on QWIP performance. In comparison it is not uncommon to find reports of

strained superlattices that are claimed to be defect free for layer structures well beyond the

critical thickness.[91] This conclusion is often based on the use of relatively insensitive

measurement techniques, like X-ray, which can not determine the existence of defects at

the densities often present. The result though is that since the layers are claimed to be

defect free, no effort is put in to determining the effect of defects on device performance

thus squandering an opportunity to better understand critical issues in device performance,

reliability and uniformity. Clearly the applicability of this work is not limited to only

QWIPs.

Defects in the crystalline structure of semiconductors can dramatically change the

electrical and optical properties of the constituent material. Optical devices in particular

tend to be extremely sensitive to defects in the crystal structure which can act as non-radi-

ative recombination centers in optical emitters and sources of increased dark current in

optical detectors such as QWIPs. At the same time, the availability of high quality bulk

single crystal semiconductor substrates with low defect density is largely limited to Sili-

con, GaAs, GaP and InP. These substrates serve as templates for epitaxial growth in tech-

niques such as MBE described above in Section 3.2. If the epitaxial layers grown on top
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of the substrate consist of the either the same semiconductor material as the substrate,

"homoepitaxy", or a different semiconductor material that is chosen to have the same lat-

tice constant, "lattice matched heteroepitaxy" there are no physical limits to the thickness

of the epitaxial layers. Common examples of homoepitaxy are GaAs p-n junction light

emitting diodes and Silicon p-i-n photodetectors. In both cases, the only difference

between layers of the device is the doping type and/or concentration; the semiconductor

material is the same throughout. Common examples of lattice matched heteroepitaxy are

GaAs/AlGaAs infrared lasers grown on GaAs substrates for CD players and

Ino.53Gao.47As/Ino.52Al0.48As 1.55gm infrared lasers grown on InP for optical fiber com-

munications.
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Figure 3.5: Bandgaps Available for the A1GaInAs system at Room Tempera-
ture[66] Solid lines indicate direct band gaps at the F point, dotted lines are indirect.

In both cases the epitaxial layers are lattice matched to the substrate material but in the

GaAs/AlGaAs case the AlGaAs ternary material is lattice matched to the GaAs substrate
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for any arbitrary fraction of Aluminum whereas in the Ino.53Ga0.47As/In0.52Al0.48As case,

only the particular ternary compositions given are lattice matched to the InP substrate.

Figure 3.5 shows a plot of band gap verses lattice constant for the AlGaInAs quaternary

material system with dotted vertical lines indicating the lattice constants for the two sub-

strates, GaAs and InP, with lattice constants in the range accessible by this material sys-

tem.Notice that for a GaAs substrate direct band gaps from 1.42eV to 1.9eV are available

at room temperature in the AlGaAs material system whereas for the InP substrate direct

band gaps from 0.75eV to 1.55eV are available using the quaternary InGaA1As.

To access band gaps outside these ranges, epitaxial layers must be grown that have lat-

tices constants different from that of the substrate material. Growth of epitaxial layers on

non-lattice matched substrates is termed "strained layer heteroepitaxy" and is the subject

of this section. Epitaxial layers grown strained on a substrate with a different lattice con-

stant can be either elastically strained or partially relaxed as shown schematically in Fig-

ures 3.6 and 3.7. Because energy is required to form misfit dislocations, in sufficiently

thin or sufficiently lattice matched epitaxial layers the material is elastically strained as

shown in Figure 3.6.

Strained
Epitaxial

Layer

Substrate

Relaxed 

Epilayer

Relaxed Epilayer
Unit Cell

Hetero-interface

Figure 3.6: Schematic diagram for elastically strained epitaxial layer
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However at some thickness, termed the critical thickness, hc, the strain energy released

by the formation of a misfit dislocation equals the energy required to form a misfit disloca-

tion. Beyond this critical thickness threading dislocations already in the substrate and

threading through the epitaxial layer will glide laterally producing a misfit dislocation in

the epitaxial material. This mechanism for misfit formation is shown in Figure 3.7 as first

suggested by Jesser and Mathews[92,93,94] who also calculated the theoretical critical

thickness for this mechanism. The first experimental evidence in semiconductor systems

is from GaAs/GaAsP superlattices grown on GaAs by Mathews and Blakeslee[95] for

whom the critical thickness, hc, is named the "Mathews-Blakeslee critical thickness".

Strained
Epitaxial

Layer

Substrate

Relaxed Epilayer
Unit Cell

Misfit
Dislocation

Figure 3.7: Schematic diagram for misfits is relaxed epitaxial layers

In this section the critical thickness will be calculated first for a single strained epitax-

ial layer in sub-section 3.4.1 following the theoretical work of Mathews[95] as reviewed

by Fitzgerald.[96] Then in sub-section 3.4.2 the theory will be extended for use in

strained layer superlattices following the work of Fitzgerald.[96,90] In subsection 3.4.3

results of an experimental study done by the author in collaboration with Prof. Eugene

Fitzgerald and Mayank Bulsara will be shown in which cathodoluminescence is used to

measure the onset of misfit glide and thereby determine the critical layer thickness in a
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superlattice. This study very clearly corroborates the superlattice theory of Fitzgerald and

sets new limits on the number of superlattice periods that can be grown without misfit for-

mation. Finally, subsection 3.4.4 concludes the remarks on strain and superlattice critical

thickness.

3.4.1 Single layer critical layer thickness

The material systems of interest in this work are all III-V semiconductors crystallizing

in the Zinc-blende crystal lattice. For this crystal structure the slip system is { 111 }<110>.

For epitaxial layers grown on (100) substrates this results in an orthogonal set of misfit

dislocations that form along <110> directions. The dominant type of misfit dislocation

observed in strained layer heteroepitaxy with small lattice constant mismatches are the

600 dislocations which have Burgers vectors 600 from the interface <110> dislocation

line direction and can glide on a { 111 } plane. A diagram of the dislocation flow process is

shown in Figure 3.8.

Strained
Layer

Substrate

SDislocation

Figure 3.8: Diagram of dislocation formation in zinc-blende crystals. Hatched
region is a { 1111 plane.[96]
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Section 3.4 - Strained layer heteroepitaxy and critical layer thickness

First, the critical thickness for a single epitaxial overlayer will be calculated based on

the energy considerations of Mathews. The energy per unit area of an elastically strained

layer of thickness h is: [97]

S2 dyne (3.1)
Yh cm

where E is the elastic strain in the overlayer defined by:

a -a
a, S o (3.2)

a
0

with ao the lattice parameter for the unstrained overlayer and as the lattice parameter for

the substrate. The epitaxial overlayer is attached to the substrate at an interfacial plane, so

Y is Young's modulus under biaxial stress and is defined by:

1 C+2 C11 +2C 12 dyne (33)
S12 2 l C 12 - C11+2(2C44-Cl +C12 12m 2 +mn2 +n2 1 cm2

where 1, m and n are the directional cosines that relate the axis normal to the interface to

the cube axes of the zinc-blende crystal and the CU are the elastic constants of the epitax-

ial overlayer. For the specific case considered here of growth on (100) oriented substrates

Young's modulus becomes:

2C 2
12C2 dyneY = C + C (3.4)y 11  12  C 2

11 cm

If it is assumed, as did Mathew's, that the semiconductors are isotropic, Young's mod-

ulus for biaxial stress reduces to:

Y= 2G(1 + V) dyne1Y = 2 G (3.5)1-v 2
cm

where G is the Shear modulus and v is Poisson's ratio. However, the zinc-blende crystals

of interest here are mildly anisotropic so subsequently Equation 3.4 will be used in favor

of Equation 3.5.
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Misfit dislocations can be introduced to reduce the strain as shown in Figure 3.7 with a

cost in energy per unit area of: [96]

dyne
em

(3.6)

where the fist factor of 2 is for the 2 sets of orthogonal dislocations in each of the <110>

directions, liS is the number of dislocations per unit length along the interface, b is the

magnitude of the Burgers vector of the dislocations, b = as/ J2 for the case of (100) ori-

ented substrates, v is Poisson's ratio, R is the outer cut-off radius of the dislocation energy

shown in Equation 3.10, ex. is the angle between the Burgers vector and the dislocation line

and D is the average shear modulus of the interface given by:

G G b
D = 0 S

'It (G + G ) (1 - v)o S

dyne
em

(3.7)

where Go and Gs are the shear moduli of the epitaxial overlayer and the substrate respec-

tively and are given in terms of the elastic compliances as:

dyne
2

em
(3.8)

and Poisson's ratio n is given in terms of the elastic compliances as:

v (3.9)

If misfit dislocations exist at the interface then the total misfit including both elastic and

plastic deformation is:

a -a
f= S 0 = £ + 8

ao
(3.10)

where E is the elastic strain and () is the plastic strain and the interface dislocation spacing

is given by:

= be!!
S 8
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where beff is the effective Burgers vector defined as the interface-plane component of the

Burgers vector in the direction of the spacing S. For the case of 60° dislocations which

have Burgers vectors 60° from the interface <110> dislocation line direction and can

glide on a {Ill} plane bett = b/2 and the angle a is 60° .

The total energy of the system is the sum of the strain energy given by Equations 3.1

and the dislocation energy given by Equation 3.6, Etot = EE + Eo. The equilibrium value

of strain, £, in the system is found by differentiating the total energy with respect to strain

and setting the result equal to zero giving for the equilibrium strain £* :

2Yh
(3.12)

The value of R depends on the dislocation density. If the interface dislocation spacing S

divided by 2 is greater than the epitaxial overlayer thickness h, then the outer cut-off

radius R is the height of the epitaxial overlayer giving for the equilibrium strain:

2Yh (3.13)

which is simply Equation 3.10 with R replace by h. This corresponds to the low misfit

density case and is the proper equation to use when calculating the critical thickness, ho

which is the epitaxial overlayer thickness at which the addition of the first misfit disloca-

tion becomes energetically favorable. Below and up to this critical thickness, the epitaxial

overlayer is totally strained with no plastic deformation, i.e. f = £* and 8 = O. The

value of the critical thickness can be calculated from a transcendental equation derived

from Equation 3.11 by setting f = £*, h = he' b = 2beff and solving for he:

hc

D( 1 - Vcala) [In ( i)+ 1]

Yf
(3.14)

Equation 3.12 is the critical layer thickness for a single epitaxial overlayer grown

strained on a thick substrate and is the desired result of this subsection. Epitaxial layers
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with misfit! given by Equation 3.8 can be grown on a thick substrate to thickness he given

by Equation 3.12 without introducing misfit dislocations. Table 3.1 gives values of the

required parameters for the binary constituents of the AIGalnAs material system.

Material Y (x10ll dyne/cm2) G (xl0ll dyne/em) v a (A)

GaAs 12.34 4.14 0.311 5.6532

AlAs 16.50 2.59 0.274 5.6623

lnAs 7.93 5.10 0.352 6.0584

lnP 9.49 3.02 0.357 5.8687

GaP 14.78 4.96 0.306 5.4505

AlP 20.76 5.27 0.263 5.4635

Table 3.1: Mechanical properties of AIGaInAs material system

These have been derived using Equation 3.4 for Young's modulus, Equation 3.8 for the

Shear modulus and Equation 3.9 for Poisson's ratio from data for the elastic compliances

from Landolt and Bornstein[66] and summarized in Table 3.2.

Compliances all xl 011 dyne/cm2

a (A)Material
Cll C12 C44

GaAs 11.81 5.32 5.94 5.6532

AlAs 12.02 5.70 5.89 5.6623

InAs 8.33 4.53 3.96 6.0584

InP 10.11 5.61 4.56 5.8687

GaP 14.05 6.20 7.03 5.4505

AlP 18.83 6.71 3.69 5.4635

Table 3.2: Mechanical compliances for selected III-V semiconductors[66]

Parameters for the ternary and quaternary components of this material system can be cal-

culated from the binary parameters using Vegard's law which for the parameter P in a ter-

nary of the form AlxGal_xAs is:
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(3.15)

and in a quaternary of the form AlxGayln l_x_yAsis:

p AlxGaylnl_x_0s = (x) PAlAs + (y) P GaAs + (1 - x - y) P InAs (3.16)

Figure 3.9 shows a plot of Equation 3.12 for the case of InGaAs on GaAs over the

range of Indium fractions from 10% to 30% Indium in InGaAs. The critical thickness for

a single epitaxial layer is seen to be less than 200A over the entire range of Indium frac-

tions plotted.

Having derived the critical thickness for a single epitaxial overlayer using the energy

balance approach of Mathews and Blakeslee, the next subsection uses a slightly different

approach based on balancing of the force on a misfit dislocation to once again derive the

critical thickness for a single epitaxial overlayer and then extend this derivation to the case

of a superlattice which is of particular interest to this thesis. The discussion follows that

of Fitzgerald. [96,90]

... .. .. . .
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. . .. . .. . .. . .
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Figure 3.9: Critical thickness for single epitaxial layer of InGaAs on GaAs
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3.4.2 Superlattice critical layer thickness

This subsection follows the work of Fitzgerald in deriving the critical layer thickness

for a superlattice with n pairs of alternating layers, each pair consisting of a strained mate-

rial with layer thickness hI and an unstrained material with layer thickness h2.

AIGaAs
unstrained

InGaAs
strained

GaAs Substrate

Figure 3.10: Schematic diagram of strained layer superlattice

The strained layer is the first to be grown on the substrate and subsequent layers are grown

as shown schematically in Figure 3.10. The derivation here is equivalent to the approach

used in Section 3.4.1 when the superlattice consists of only a single strain layer, but this

time the force on a pre-existing threading dislocation due to stress i n the overlayer will be

balanced with the line-tension force of the dislocation segment residing in the interface to

determine the overlayer thickness which causes a pre-existing threading dislocation to

glide forming a misfit dislocation. The issue of where the pre-existing threading disloca-

tions come from will not be addressed other than to say that the typical two inch semi-

insulating and p-type GaAs substrates from American Xtal Technology (AXT) grown by

vertical gradient freeze (VGF) and used in this thesis had areal densities of threading dis-

locations specified to be less than 1000 per square centimeter. n-type GaAs substrates also
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grown by AXT using VGF had threading dislocation densities of less 100 per square cen-

timeter.

The glissile dislocations in zinc-blende crystals are the 60° dislocations which have a

{Ill} slip plane. Glide for such a dislocation threading through a strained overlayer is

governed by the component of stress which acts in the direction of the dislocation slip.

The angles involved are shown in Figure 3.8 with resolved shear stress given by:

a = aCOSAcoSq>res
dyne

2
em

(3.17)

where the cosAcoscp term is the Schmid factor which resolves the stress, cr in the

strained overlayer into the glide system of the dislocation. For the zinc-bien de crystals of

interest here, cosA = 1/2 and coscp = ~2/3 .[92] The force per unit length on the dis-

location in the overlayer is given by:

F = a b = abcosAcOSq>res res
dyne
em

(3.18)

where b is the magnitude of the Burgers vector and the stress in the overlayer, cr, is given

for a biaxially strained layer as:

a=a x ay YE dyne
2

em
(3.19)

For overlayers with thickness less than or equal to the critical layer thickness dislocation

glide has not begun and so all the misfit is incorporated as strain in the overlayer. Insert-

ing Equation 3.19 into Equation 3.18 then gives:

F = YEbcOSACOSq>res
dyne
em

(3.20)

The total lateral force on the dislocation in the overlayer is the lateral component of the

force per unit length given by Equation 3.20 multiplied by the lateral length of the disloca-

tion threading through a single strained overlayer of thickness h which is hi cos cp. The

total lateral force on the dislocation in the overlayer, Fo, is then given by:
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(3.21)dyne= YEbhcoSA
F hres

F =o COS<p

The force Fo which acts on the point of intersection between the threading dislocation

(3.22)dyne

and the interface plane is balance by the line tension force Fl which is given by: [94]

FI = ~b(l-ucola)[ln(~)+lJ
noting that cos A = 1/2 and prior to the initiation of plastic deformation f = £ combin-

ing Equations 3.21 and 3.22 gives the critical thickness for a single strained overlayer

equivalent to Equation 3.14 derived based on energy considerations in section 3.4.1.

h =c

D( I-vcola )[In(i) + I]
Yf

em (3.23)

To extend this theory to superlattices of the form shown in Figure 3.10, Fitzgerald[96]

noted that only the strained layers contribute to the force in the overlayer as given by

Equation 3.21. This requires that in a superlattice with n pairs of alternating layers, each

pair consisting of a strained material with layer thickness h} and an unstrained material

with layer thickness hz the total thickness of strained material is nxhI , having strain £}

from Equation 3.10 and thus Equation 3.12 must be replace by:

F =o

F nh1__re_s = YEbnhlcoSAcos<p
dyne (3.24)

Furthermore, the line tension force balancing this strain-resolved force, Fe, must include

both the strained and unstrained layers. Noting that the first misfit will occur at the inter-

face with a strained layer on the bottom and an unstrained layer on top, this then requires

that the h is Equation 3.22 for the line tension force be replaced by (n - 1) (hI + h2) + hI

giving for the line tension force the new equation:

dyne (3.25)
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Setting Equations 3.24 and 3.25 equal and solving for the critical thickness for the strained

layer with the number of periods in the superlattice fixed gives:

(
2 )[ [<n-1)(h1C+\)+h1C] ]

D 1 - V cos a In b + 1

em (3.26)
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Figure 3.11: Critical layer thickness for superlattice as a function of Indium
fraction in the strained layer and number of superlattice periods n. Solid curve n
= 50,dot-dashed curve n = 25 and dashed curve n =10. All curves h2=500A.

Figure 3.11 shows a plot of Equation 3.26 for the case of a superlattice grown on a GaAs

substrate with InGaAs strained layers separated by unstrained AIGaAs layers of thickness

500A with the strained layer thickness plotted on the abscissa. Equivalently, with fixed

strain and layer thicknesses Equations 3.24 and 3.25 can be solved for the critical number

of superlattice periods which are stable with respect to dislocation glide.
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n
c (3.27)
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Figure 3.12: Critical number of superlattice periods as a function of Indium
fraction in the strained layer and strained layer thickness hl' Solid curve
h1=50A,dot -dashed curve h1=40A and dashed curve h1=30A. All curves
h2=50oA.

Figure 3.12 shows a plot of Equation 3.27 for the case of a superlattice grown on a GaAs

substrate with InGaAs strained layers separated by unstrained AIGaAs layers of thickness

500A with the number of superlattice periods plotted on the abscissa.

In this subsection the theory for calculating the critical layer thickness in semiconduc-

tor superlattices has been developed. Since this theory calculates the thickness as which

the first threading dislocation begins to glide, care must be taken in experimentally verify-

ing the theory to use an experimental technique sensitive to very low densities of misfit
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dislocations. Cathodoluminescence is one such technique and a small study done by the

author in collaboration with Prof. Fitzgerald and Mayank Bulsara using Cathodolumines-

cence to characterize InGaAs/GaAs superlattices will be described in the following sub-

section.

3.4.3 Experimental verification of SL critical layer thickness theory

Attempts to experimentally verify the critical layer thickness in superlattices have

been fraught with theoretically unjustifiable claims and use of experimental techniques

that are insufficiently sensitive to properly evaluate the onset of misfit glide that identifies

the critical layer thickness. In particular, theoretical claims that the superlattice critical

thickness can be calculated from the single layer critical thickness, Equation 3.23, by tak-

ing the average strain in superlattice as Eavg defined by taking the strain in each layer and

weighting with the layer thickness and then solving Equation 3.23 for the superlattice crit-

ical thickness are inconsistent with the correct expression Equation 3.26 and overestimate

the critical thickness.[98] Also, often heard claims of the form "If a single strained layer

is below the Mathew's Blackeslee limit and the strained layers are separated by a suffi-

ciently large unstrained layer the strained layers are uncoupled and so there is no limit to

the number of superlattice periods that can be grown." simply beg the question of how

large is "sufficiently large". Equation 3.27 tells exactly how large "sufficiently large" is

and not only is there always a limit to the number of superlattice periods that can be grown

without misfit dislocations, but the inclusion of the unstrained layer h2 though helpful

comes in within a natural log term and given the slow growth rates of most semiconductor

growth systems, -If.Lm/hr for MBE or up to -lOf.Lm/hr for MOCVD, is quite limited in its

stabilizing ability for reasonable layer thicknesses.
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Figure 3.13: Cathodoluminescence from a 25 period superlattice consisting of 50A
InGaAs and 500A of AIGaAs. Samples grown by the author using MBE, CL courtesy of
M. Bulsara. 2% Indium sample has no features to focus on characteristic of high quality
defect free material. 12% Indium sample shows large density of individual misfit disloca-
tions along the two perpendicular <110> crystal directions. 250/0 Indium sample shows
very large density of misfits coalesced into groups which obscure the individual disloca-
tion lines. Note also the large shift in PL peak wavelength for the 25% Indium sample.
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Figure 3.14: Cathodo}uminescence from superlattice consisting of 50A InO.12Gao.88As
quantum wells and 500A AIGaAs barriers. Samples grown by the author using MBE, CL
courtesy of Mayank Bulsara. 5 well sample has no features to focus on characteristic of
high quality defect free material. 15 well sample shows large density of individual misfit
dislocations along the two perpendicular < 110> crystal directions. 25 well sample also
shows large density of individual misfits indicating n is beyond the critical number. Note
also the large shift in PL peak wavelength for the 25 well sample.
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Experimental claims of critical layer thicknesses significantly larger than those given

by Equations 3.26 and 3.27 are typically based on X-ray data which because of the pene-

trating nature of the X-rays and the large spot sizes of the X-ray beams are sensitive pri-

marily to the average plastic deformation which may be only 1 part in 10 million for the

first dislocation in a 4mm X-ray spot, i.e. much below the resolution of the measurement

technique. For this reason cathodoluminescence which can image with submicron resolu-

tion individual misfit dislocations has been used to compare with the critical layer thick-

ness theory described above.
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Figure 3.15: Five samples grown to test SL critical thickness theory of Equa-
tion 3.27 plotted with solid line. "x" indicates beyond critical thickness, "0"
indicates less than critical thickness. Samples grown using MBE by author, CL
done by Mayank Bulsara.

Finally, Figure 3.15 shows the calculated critical number of superlattice periods for

50A InGaAs quantum wells grown on GaAs and separated by 500A AIGaAs barriers with

a solid line and superimposes the experimental data with "0" indicating samples grown
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with no misfit dislocations and "x" indicating samples grown with misfit dislocations as

taken from the data of Figures 3.13 and 3.14.

3.4.4 Conclusions on strain and SL critical layer thickness

In conclusion, this section has developed a theory for calculating the critical layer

thickness both in terms of superlattice period number and strained layer thickness. The

theory is based on balancing the force on a threading dislocation due to the stress in the

strained layer and the opposing force on the threading dislocation at the interface between

the substrate and the superlattice. The result is a theoretical extension of the Mathew's

Blakeslee critical thickness for a single strained overlayer. Five InGaAs/AIGaAs superlat-

tices with varying number of superlattice periods and Indium concentrations were grown

by the author using MBE to test the theory and Cathodoluminescence measurements done

by Mayank Bulsara are consistent with the theory developed. More work is currently in

progress by Prof. Fitzgerald to add SiGe/Si strained layer superlattice data to the current

data set presented here.

3.5 Fabrication of normal incidence QWIPs

Fabrication of the QWIP devices for this thesis was intentionally kept simple with sev-

eral options at each step to allow for optimization of the process for specific applications

and to allow for working around the inevitable broken piece of equipment. The basic flow

for a typical etch isolated LWIR InGaAs/AIGaAs QWIP is shown below in Figures 3.16

through 3.18. Figure 3.16 describes the structure used for MBE growth. The GaAs sub-

strate can be either semi-insulating or n-type, though n-type substrates are sometimes pre-

ferred for their lower density of threading dislocations.[89] For substrates mounted with

Indium the Indium on the back side of the substrate was removed with HCI:H20 as

described in the MIT MBE manual[81].

Figure 3.17 shows a schematic for the result of the pixel isolation etch which was typ-

ically done using a weak phosphoric acid based crystallographic etch consisting of

DIH20:H3P04:H202 in a ratio of 20: 1:1 which consistently gave an etch rate for GaAs of

0.24Jlm/min at room temperature. [99, 100] Side walls for <110> oriented mesa segments
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reveal <ITl> Ga planes which sloped outward from the mesa wall. For <110> oriented

mesa segments the walls are undercut revealing <221> Ga planes. Sidewall orientation is

particularly important for designs that require metallization over the edge of the mesa.

Metal lines traversing the <110> oriented mesas lay continuously over the <ITl> Ga

planes, but metal lines traversing the <110> oriented mesas are broken at the edge of the

mesa.

Active Region
InGaAs
Quantum Well

AIGaAs
Barrier

InGaAs
Quantum Well

Figure 3.16: Step 1: MBE Growth of QWIP. Typical epitaxy consists of -l~m
Si doped 1xl 018 GaAs anode, active superlattice region consisting of 10 pairs of
Si doped 8 xlOl7 Icm3 50A InO.lOGao.90Asquantum wells separated by 500A
undoped Alo.20Gao.80Asbarriers and capped with final Alo.20Gao.80As barrier
and 0.5~m Si doped lx1018 GaAs cathode.

Contact metallization was done using Nil AuGe/Nil Au contact metal layers, thermal

evaporation and a lift-off technique. The metallization was performed in two steps as

shown in Figure 3.18. The first step defined the ohmic metal for contact to the anode and

cathode of the QWIP device. This was done by depositing -20ooA of PECVD Silicon

Dioxide over the entire wafer, patterning the oxide using a positive photoresist and then

thermally evaporating the ohmic contact metallization. Slightly overetching the dielectric

layer leaves an overhang of resist which facilitates the lift-off of the unneeded metal. For

the cathode the ohmic metal consists of a ring around the center of the active region.
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<110>

Figure 3.17: Step 2: Pixel Isolation Etch. Cross section through QWIP pixel
perpendicular to the <T10> direction, bottom and perpendicular to < 110> direc-
tion, right. 20:1:1, DIH20:H3P04:H202, etchant reveals <ITl> and <221> Ga
planes. Figure drawn for pixel array.

For the anode the ohmic metal is a large pad located near the device. As designed, the

anode is common to all the devices on each chip allowing a single anode contact to contact

all the devices for efficient bonding and pin usage. The ohmic metal layers consisted of

100A of Ni which formed a barrier layer to the diffusion of Au into the semiconductor,

2500A of Au/Ge( 12%) eutectic co-evaporated from a commercial source, 250A of Ni to

form a barrier layer which prevents intermixing of upper level Au with Au/Ge eutectic and
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2000A of Au to prevent oxidation of the Ni. After evaporation and liftoff the ohmic metal

was annealed in a rapid thermal annealer (RTA) for 30 seconds at 380C.

Figure 3.18: Step 3: Contact metallization. Figure 3.18a shows a 100f.lm x
100Jlm QWIP pixel after ohmic metallization. Figure 3.18b shows the same
device after completion of bond pad metallization.

Annealing time and temperature are critical, as is the thickness of the first Ni layer, to get

low resistance ohmic contacts that do not short through from the cathode to the anode.

Since metal thickness and annealer calibration vary substantially from run to run, the

transmission line measurement technique[1 0 1] was used to characterize both anode and
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cathode contacts for each chip of devices tested. Figure 3.18a shows a single pixel after

ohmic metal deposition but before bond metal deposition.

Bond pad metallization was also done using a lift-off technique, this time using Futur-

rex NR-8 negative photoresist to form the reentrant profile. [102] Futurrex NR-8 was spun

at a thickness of -3J.lm, patterned and slightly overdeveloped leaving an overhang profile

ideal for lift-off. Total metal thicknesses as large as 1J.lm have been lifted off with no edge

problems using this resist. Bond pad metallization consisted of -0.5Ilm to 111m of pure

gold evaporated using thermal evaporation. This thickness was chosen to allow easy wire

bonding using 2mil gold wire and a ball bonder with a heated stage. Figure 3.18b shows a

single 100J.lm x 100J.lm pixel after completed metallization just prior to bonding into a

DIP package. Figures 3.19 and 3.20 show an SEM of completed 200J.lm x 200J.lm devices

including both metallization and both orientations of edge walls.

Figure 3.19: SEM of 200J.lmx200J.lm QWIP pixels with completed metalliza-
tion. Large spot is crystal defect.

After completing metallization, processed chips which were typically lcm x lcm in

size were cleaved into smaller rectangular die -2mm x 3mm. Individual die were then
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mounted into 14pin DIP packages using superglue and bonded using 2mil gold wire and a

ball bonder with the stage heated to -130C. One bond was made to the anode of the die

and the remaining thirteen pins were used to bond to up to thirteen individual devices.

Where pins were available, bonding was also done to TLM patterns for confirming the

performance of ohmic contacts in the packaged devices.

Figure 3.20: Close-up from same SEM micrograph as used in Figure 3.19.
Metallization and both etch profiles are visible at the comer of the device.

3.6 Conclusions and future directions in fabrication of QWIPs

The fabrication used for the QWIP devices in this thesis was intentionally kept simple

and flexible to maximize the potential for success. In concluding, mention will be made of

some of the next generation complexities that can be added to realize higher performance

devices more suitable for use in large FPAs.

As described above, the MBE grown QWIP structure is very basic consisting of a set

of quantum wells and two ohmic contacts. Significant improvements in this structure can

be obtained by putting the quantum well active region within an optical cavity formed of
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mirrors above and below the quantum wells. This results in light being trapped in the cav-

ity between the mirrors effectively increasing the quantum efficiency of the QWIP. Possi-

bilities for mirrors include two air/GaAs surfaces formed by thinning the QWIP to a

thickness of several microns as is done with the Lockheed/Martin FPAs discussed in

Chapter 6, the inclusion of semiconductor superlattices[55] or the inclusion of oxidized

AlAs mirrors. All of these techniques improve effective quantum efficiency at the cost of

increased MBE growth complexity, often a reasonable trade-off considering that the MBE

growth is done over an entire wafer which can produce many QWIP devices.

As described above, the pixel isolation was done with wet etching. This has the

advantage of simplicity and good surface morphology, but it is somewhat messy and does

not lend itself to large scale manufacture. An alternative to wet etching is reactive ion

etching, RIE, which is a plasma etch process using Boron Trichloride and Silicon Tetra-

chloride. This process has been implemented in Micro-fabrication Shared Experimental

Facility at MIT by the author for etching a wide variety of 111-V semiconductors and is the

logical next step for pixel isolation. Another alternative is oxygen implantation which has

been demonstrated by Levine at AT&T[39] and has the advantage of producing a com-

pletely planar structure. Implantation is widely used both the Silicon CMOS and Gallium

Arsenide MESFET industries, but is not available on campus at MIT.

Finally, AuGe was used as the metallization because of its low contact resistance and

relative ease of use. It does however suffer from two problems; morphology tends to be

rough after annealing causing difficulties with bonding and extreme care must be taken to

prevent the Au from spiking through from the top cathode contact to the anode thus short-

ing out the device. Other possibilities with better morphology and better repeatability

may include Pd/Ge[103] and Ti/Pt[104], both of which are smooth after annealing and are

very shallow.

In conclusion, the simplicity of the fabrication structure chosen for this work has been

extremely beneficial in demonstrating TE mode QWIP devices. Future work needs to

concentrate on maximizing performance of the devices through choice of growth and fab-
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Chapter 4

Measurement and Analysis of Normal Incidence QWIPs

In this chapter measurements done on discrete normal incidence TE mode quantum

well intersubband photodetectors (QWIPs) will be presented. The goal is to demonstrate

that the discrete device performance already achieved meets the criteria laid down in

Chapter 2 for fabrication of high resolution large format focal plane arrays (FPAs) operat-

ing in the long wave infrared (LWIR) atmospheric transmission band from 8gm to 12gm

with minimum resolvable temperatures (MRTs) in the 10mK range. Since discrete

devices are being fabricated the detectivity, D*, is the appropriate figure of merit. How-

ever, as discussed in Section 1.4 and shown in Figure 4.1 below, because the application is

FPAs, uniformity of the array sets a limit on the range of D* which lead to substantial

increases in MRT. For the applications considered here the limiting value of D* is ~1010

Jones and thus TE mode QWIP with detectivities >1010 Jones give excellent results.

o .U = 0.1% MRT limit = 56.3mK

M40

13 0 U =0.05% MRT limit = 28.1mK

S20 U = 0.025% MRT limit = 14.

U = 0.002% MRT limit = 1.1mK
0 9 10 11 12 13

10 10 10 10 10 10
Detectivity D* - Jones

Figure 4.1: Comparison of D* and MRT as figures of merit for FPAs. LWIR
band 8gm to 10gm, f/# 1.5 optics with AR coating, pixel area 50gm x 50gm,
noise floor 200e-, background temperature 300K, g = 0.5.
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The devices were grown by the author at MIT using molecular beam epitaxy (MBE) as

described in Section 3.2. Reflection high energy electron diffraction (RHEED) and double

crystal x-ray (DCXD) were used to determine the material composition and layer thick-

nesses as described in Sections 3.2 and 3.3.1. The devices were fabricated by the author

using the fabrication sequence described in Section 3.5. This chapter begins with a gen-

eral description of the cryogenic measurement systems common to all QWIP measure-

ments. Section 4.1.1 then describes the dark current measurements done by the author to

determine the device cutoff wavelength and background limited performance (BLIP) tem-

perature. Section 4.1.2 describes black body measurements done by the author which

determine the responsivity of the discrete QWIPs. Section 4.1.3 describes spectral

response measurements done in collaboration with Advanced Device Technology (ADT)

that demonstrate the wavelength selectivity and tunability of two of the devices grown by

the author and measured at ADT. Section 4.2 puts together all the measured data to deter-

mine the D* for the discrete devices fabricated, compares these results to the theoretical

predictions of Chapter 2 and discusses the implications for FPA fabrication. Section 4.3

describes independent corroborating measurements done on similar TE mode QWIP

devices fabricated by Alpha Photonics and measured at Wright-Patterson AFB. These

results were first published at the same Device Research Conference at which the MIT

results were published and resulted in a sharing of the claim for first TE mode

QWIP.[106,107] The similarity in the results adds important support to both the explana-

tions presented in this thesis and the claims of feasibility. Finally, Section 4.4 concludes

the discussion of measurements done on normal incidence QWIPs and points to possible

new avenues for improving individual devices and expanding the set of applications.

4.1 Introduction to QWIP measurement

Some elements are common to all QWIP measurements and it is the focus of this

introduction to discuss these common elements, QWIP operating temperature and signal

current, prior to getting into the specifics of dark current, responsivity and spectral

response. As discussed in Chapter 2, QWIP operating temperatures can be characterized
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by the background limited performance (BLIP) temperature defined as the temperature at

which the photocurrent at a given background photon flux OB equals the thermally acti-

vated dark current through the device. The physics behind the BLIP temperature was dis-

cussed in Chapter 2, so the experimental rule of thumb relating the cutoff wavelength, Xc
and the BLIP temperature, TBLIP for QWIPs operating from a bound quantum well state

into a three dimensional continuum

XCTBLIP =650 m K (4.1)

will be used to note that for QWIPs operating in the center of the LWIR band with cut-

off wavelengths about 10pm, TBLIP is about 65K, a temperature most conveniently

reached with a closed cycle Helium refrigerator. Furthermore, because the background

photon flux IB increases at a rate of one octave per 3K, temperature stability during

QWIP measurements is crucial.

Front of DIP Package

Silicon Diode

Copper Pla

14 pin DIP

In-Sn sheet

Feedback -
Silicon Diode

To Cold Head - 4

Figure 4.2: QWIP Cryogenic measurement sample mounting system

To meet the requirements of low temperature and good temperature stability, the

QWIPs devices used in this thesis were mounted into a high thermal conductivity 14pin
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DIP package which in turn was plugged into a mating connector on the copper cold finger

of a closed cycle Helium refrigerator. A Silicon diode temperature sensor was attached to

the end of the copper cold finger and fed into an RMC cryostat control system.

To improve thermal contact between the DIP package and the copper cold finger a thin

Indium-Tin metal sheet was placed between the DIP package and the copper cold finger

and the entire sandwich of DIP package, Indium-Tin metal sheet and copper cold finger

was held in intimate contact with a 1/8" copper plate that covered the front of the DIP

packaged and was screwed into the copper cold finger with two brass bolts. To let in light

for responsivity measurements the copper plate had a hole through the center. A sche-

matic of the mounting hardware is shown in Figure 4.2. To insure the accuracy of the tem-

perature readout a second calibrated Silicon diode temperature sensor, a CY7-SD7 from

Omega Engineering, was bonded into a 14 pin DIP package in a fashion identical to that

used for the QWIP samples. Comparison of the temperature read from the Silicon diode

mounted in the DIP package with the Silicon diode mounted on the cold finger show dif-

ferences of less than 1K demonstrating excellent thermal conductivity between QWIP

samples and the copper cold finger.

The total photocurrent through the QWIP photoconductor is very small, typically on

the order of 10's of nano-Amps when looking at a black body at 300K. Dark current for

temperatures below BLIP drops from this value at a rate of about one octave per 3K. In

order to measure such small currents, the author used an HP4145B semiconductor param-

eter analyzer with all measurements taken using the longest integration time. This

resulted in an experimental noise floor in the 10's of pico-Amps range allowing dark cur-

rent measurements to be taken down to about 40K before falling below the noise floor.

In the remainder of Section 4.1 the specifics of measurements to characterize the

QWIPs devices will be discussed. Section 4.1.1 discusses the measurement of dark cur-

rent, Section 4.1.2 discusses the measurement of black body responsivity and Section

4.1.3 discusses the measurement of spectral response.
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4.1.1 Measurement of dark current

Dark current is the current through the QWIP photoconductor when not exposed to

incident photons. As discussed in Section 1.6.4, if the interwell barriers in the QWIP

superlattice are sufficiently thick to eliminate tunneling through the barrier at the operat-

ing bias, the major source of dark current is thermal excitation of electrons out of the

quantum wells. This current flows above the barriers and is affected by trapping in the

quantum wells and thermionic emission out of the quantum wells which balance to keep

the electron density in the quantum wells constant in time as illustrated in Figure 4.3.

Note that since there is no incident photon flux, the dark current only depends on the phys-

ical characteristics of the QWIP, the bias voltage and the device temperature.

No Illumination

ark

fission

Figure 4.3: Dark current path through a QWIP without illumination. Quantum
well trapping and thermionic emission combine to maintain a constant electron
density in the well.

The dark current density is given by the expression:

S= n3dev () mps (4.2)
3d( 2

cm

where v(e) is the electron velocity at the electric field e and n3d is the electron density

in the continuum states above the top of the quantum well. Because the barriers are thick,
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typically -500A, relative to the size of the quantum wells n3d can be taken as the density

of electrons in the bulk barrier material and is given by the expression:

nd 1 8tm*kT 3/ 2  electrons
nd= - 2 exp (-Ea) 3(4.3)

( h cm

where Ea is the activation energy required for an electron to escape from the quantum

well into the continuum and is given by the difference between the energy at the top of the

well and the Fermi energy in the well, Ea = Ephoton - EF, m* is the effective mass of the

electron in the bulk barrier material, T is the temperature of the QWIP and the other con-

stants have their conventional definitions. The electron velocity including the effects of

velocity saturation is approximated using the expression:

v () = cm (4.4)
F, ll2  second

where g is the low field mobility, e is the electric field and vsat is the saturation veloc-

ity of the electron with a value of about 107cm/s in undoped GaAs.

The dark current as a function of bias voltage was measured for the QWIPs grown by

the author using the measurement setup of Figure 4.2 with the addition of an Aluminum

foil cover between the top of the DIP package and the copper plate. The Aluminum foil

cover prevented any radiation from illuminating the QWIP from outside the cryostat and

in addition was kept at same temperature as the QWIP thus reducing the black body emis-

sion from the Aluminum foil cover to negligible levels. The dark current curve for sample

9066 is shown in Figure 4.4. This sample contained 10 quantum wells of width 54A with

composition In0.08Ga0.92As and doped n-type at 5x10 17 cm -3 separated by barriers of

width 450A and composition A10. 15Ga0.85As. Measurement floor is -~ 100pA.
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-1

a.

0

L

a

QWIP Bias - Volts

Figure 4.4: Dark Current for QWIP sample 9066. 10 In0.08Ga0. 92As wells
of width 54A doped n-type 5x10 17 cm-3 with 450A barriers of A10. 15Ga0.85As.

The region up to the first knee is the sweep-out region in which the current of ther-

mally generated carriers collected at the contacts is exponentially dependent on the field

and rises very rapidly up to the point where electrons thermally excited from a quantum

well have negligible chance of being reabsorbed by the same quantum well. The dark cur-

rent then enters the thermal excitation rate limited regime which as shown in Equation 4.2

is proportional to the electron velocity. If thermionic emission were the only mechanism

contributing to the dark current in the sweep-out region, the curves of Figure 4.4 would be

flat between the two knees, however, thermionic assisted tunneling gives electrons with

not quite enough energy to escape the quantum well classically a probability of tunneling

out the quantum well thus contributing to a rise in the dark current.[52] The sharp rise in
the dark current beyond about 3V, corresponding to 6x10 5 V/cm, is due to the onset of
field induced tunneling though the barriers and puts a limit on the usable range of bias
voltages. QWIPs are best operated in the center region between the two knees since
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photo-generated carriers are swept out of the quantum well active region and tunneling

current which adds noise but no photo-signal is negligible.
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Figure 4.5: Dark Current for QWIP sample 9066. 10 In0 08Ga0 92As wells
of width 54A doped n-type 5x10 17 cm -3 with 450A barriers of Alo.15Ga0.85As.
The lowest current point at 40K shows the noise floor of the measurement.

The asymmetry in the dark current curve of Figure 4.4 is likely due to the MBE

growth kinetics which cause dopants to diffuse out of the well into the barrier in the

growth direction[108] and with the addition of strain in the quantum well system leads to

diffusion of Indium out of the well in the growth direction. Both effects tend to lower the

quantum well barrier height in the direction of the growth leading to increased currents in

the positive voltage direction which corresponds to positive bias on the top, last to be

grown, contact of the QWIP device.

The cutoff wavelength of the QWIP photodetector can also be obtained from the expo-

nential dependence of the dark current on the activation energy, Ea, at constant bias as

given by Equation 4.3. Figure 4.5 shows a semilog plot of dark current verses inverse

temperature for sample 9066 at a bias of -2V. The slope of the curve gives an activation
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energy of 112meV which when combined with a Fermi energy of 10meV gives a cutoff

wavelength of 10.2p~m in reasonable agreement with the designed wavelength of 9.5gpm

for this QWIP photoconductor. Table 4.1 shows a summary of dark current data for the

samples used in this thesis and measured by the author at MIT.

Sample Nw IN Inwell Albarrier Wyell Wb er EFermi Xcutoff
(cm) well (%) (%) (A) ( (meV) (glm)

9034 3x101 1  15 7 15 60 500 10 11.4

9062 5x1011  2 10 12 50 500 18 10.5

9066 2x10 11  10 8 15 45 450 7 10.2

9104 1.5x10 11  10 9 15 50 450 5 11.3

Table 4.1: Dark Current Characteristics for QWIP samples

4.1.2 Measurement of responsivity

The responsivity in a QWIP photoconductor is the ratio of the photo-current generated

by the device to the optical power incident on the device. Responsivity is given by:

R e1g Amps (4.5)
hv Watt

where ri is the quantum efficiency of the QWIP photoconductor, e is the electron

charge and g is the photoconductive gain. The quantum efficiency is proportional to the

number of quantum wells, N, and is given by:

1 = Nl 1 = 100(1 - exp (-aLoptical)) % (4.6)

where ilI is the quantum efficiency for a single quantum well, a is the absorption coef-

ficient of the QWIP active region and Loptical is the optical path length through the active

region. The photoconductive gain was derived in Chapter 2 and is given by:

(1 -p) electrons collected
Np electrons generated

where p is the capture probability for an excited electron traversing a quantum well.
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Figure 4.6 shows a schematic of the dominant processes in a QWIP photoconductor

under bias. Note that in order to keep a constant electron density in the quantum well

photo-emitted electrons must be replaced by extra trapping from the stream of excited

electrons resulting in a photoconductive gain given by Equation 4.7.

Illuminated

T

Ex

1 IIJULUIIIIIIIUII A xR•,Va Uaatltan RAAnAnUuxAJ

Figure 4.6: Photocurrent path through a QWIP with illumination. The Dark current
remains the same as in Figure 4.1 however with the addition of photo emission extra
injection is required to maintain a constant electron density in the well.

The responsivity of the TE mode QWIP photoconductors used in this thesis was mea-

sured with the setup of Figure 4.2 with the addition of a ZnSe window through which the

QWIP was exposed to IR light from a black body at a controlled temperature. For mea-

surements done at room temperature, a black cloth sock covered the front of the ZnSe

window to approximate a black body at 293K as shown in Figure 4.7. For measurements

done at 500K, a commercial black body was used which was kept at a controlled 500K

and illuminated the QWIP photoconductor through a circular stop as shown in Figure 4.8.

The photocurrent as a function of bias voltage for sample 9066 at two black body tem-

peratures, 293K and 500K is shown in Figure 4.9. This sample contained 10 quantum

wells of width 54 A with composition In0 .osGaO.92As and doped n-type at 5x10 1 7 cm -3

separated by barriers of width 450A and composition A10. 15Ga0 .85As.
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ZnSe IR Window
Diameter 1.8cm

Cloth Black Body 1.5cm
293K

QWIP i

A'

Cold
Head

Vacuum
Vessel

Sample
/ Holder

Figure 4.2

Figure 4.7: Measurement setup for 293K black body. For 100pm square
QWIP solid angle, QA = 4.4 x 10- str. Photon flux at 10pm for FWHM = 1.5gLm,

DBB = 6.7 x 1016 photons/cm2 s str. Incident power 1.5 x 10-7 Watts.

Ol
Diax

Temperature Controll

Figure 4.8: Measurement setup for 500K black body. For 100lm square
QWIP solid angle, Q = 8.2 x 10- str. Photon flux at 10pm for FWHM = 1.51gm,
CBB = 5.4 x 1017 photons/cm2 s str. Total incident power 2.5 x 10-7 Watts.
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Chapter 4 - Measurement and Analysis of Normal Incidence QWIPs

Device size was approximately 100pm x 100pm. Measurements of photocurrent were

done with the device held at 30K at which temperature the discussion of Section 4.1.1

showed the dark current to be below the noise floor of the experiment. This guaranteed

that all the current was photon related.

-4

u,
0
E
I

o.6-Cr4)

-4 -3 -2 -1 0 1 2 3 4
Bias - Volts

Figure 4.9: Photocurrent for sample 9066 illuminated with black body at
500K, solid line and illuminated with 293K black body, dashed line. Bold dashed
vertcal lines delineate the knees in the curve which define the tunneling domi-
nated, photocurrent dominated (operating region) and low voltage regions of the
photocurrent curves.

To convert photocurrent to responsivity the incident power must be calculated from

the geometry of the measurement system and the black body emission curves of Chapterl,

Equation 1.3. The geometry used with the 293K black body is shown in Figure 4.7. For a

100Lpm x 100Lpm detector with a peak responsivity at 10tpm and a FWHM of 1.5pm typi-

cal of bound to continuum type QWIPs and confirmed by spectral response measurements

described in Section 4.1.3, the result for the power incident on the QWIP photoconductor

from the 293K black body is 1.5 x 10-7 Watts. The geometry used with the 500K black
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body is shown in Figure 4.8. For the same FWHM of 1.5gm, peak responsivity at 10Om

and 100gm x 100gm area the total power incident is 2.5 x 10-7 Watts including both the

power from the 500K black body and the power from the uncooled region around the opti-

cal stop which is at the ambient temperature, 293K.

If photoemission were the only source of electrons the curves of Figure 4.9 would be

flat in the photocurrent dominated operating region between the two knees where all the

photo-excited electrons get swept away from their original quantum well. However, since

we are using a black body to illuminate the QWIP photoconductor photo-assisted tunnel-

ing due to lower energy photons also occurs leading to a slight slope in the photocurrent

dominated region. To eliminate this effect, the value of the photocurrent used for calculat-

ing responsivity is taken just beyond the knee separating the low voltage region from the

photocurrent dominated operating region. For sample 9066 shown in Figure 4.9 this gives

values at a -2 Volt bias of 80 mA/W and 76 mA/W for the 300K and 500K black bodies

respectively. At a 1.25 Volt bias responsivities are 80mA /W and 72 mA/W for the 293K

and 500K black bodies respectively. Because the responsivity of the devices is not

expected to change with illumination intensity, the agreement to within 10% between the

responsivities for the 293K and 500K black bodies is a check on the calculations for the

relative power incident on the QWIP photodetectors for the two setups.

Having calculated the responsivity, Equation 4.5 can then be rearranged to give for the

quantum efficiency per quantum well, rl 1:

hvR %'I = 100 X (4.8)1 Neg well

where N is the number of wells, e is the electron charge and g is the photoconductive

gain given by Equation 4.7. Note that since g is inversely proportional to the number of

quantum wells, both rll and R are independent of the number of quantum wells. For sam-

ple 9066 taking the responsivity to be 80 mA/W at 10gm and assuming a probability of

capture for excited electrons traversing a quantum well of 7% as discussed Chapter 2, the

single well quantum efficiency, 111, is 0.069% in excellent agreement with the theoretical

calculations of Flatte[46] described in Section 2.3 which result in rll = 0.068%. The
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agreement between theory and measurement for this sample is so good as to beg the ques-

tion of exactly how accurate the two numbers are. Table 4.2 shows results from several

devices of various sizes taken from different samples. The standard deviation in single

well quantum efficiencies is about 50% which is a rough estimate of the accuracy of the

experimental number. The error in the theoretical quantum efficiency is more difficult to

estimate because it depends on overlaps between states high in the conduction band.

However, assuming the error here is also about 50%[109] gives agreement between theory

and experiment to within a factor of two in about 60% of the samples, quite reasonable

considering the small size of the numbers involved.

-1

Bias - Volts

Figure 4.10: Dark current, solid lines from top down at temperatures of 80K,
70K, 60K and 40K. Photo-current, dashed line for black body of 293K. BLIP
temperature estimated to be 68K.

Combining the dark current curves of Figure 4.4 with the photocurrent curve of Figure

4.9 for the black body at 293K gives an experimental measure of the background limited

performance (BLIP) temperature for the QWIP photoconductor.
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Experimentally, the BLIP temperature is simply the temperature at which the dark current

equals the photocurrent for a black body at the background temperature, taken by conven-

tion as 293K. Figure 4.10 shows the dark current and photo-current curves for sample

9066 plotted on top of each other. Looking at the negative voltage side of the curve

because the positive voltage side has larger dark current, the BLIP temperature for this

device is estimated to be 68K. Since from Figure 4.5 a cutoff wavelength of 10.2gm was

estimated from the dark current, this is consistent with rule of thumb given in Equation 4.1

that the cutoff wavelength multiplied by the BLIP temperature is approximately 650 LmK

for the bound to continuum type QWIP photoconductors studied here.

4.1.3 Measurement of spectral response

Spectral measurements were done in collaboration with Peter Kannam at ADT to

determine the wavelength dependence of the responsivity. The experimental setup is

shown in Figure 4.11. The sample is held at 77K using a liquid nitrogen dewar and illumi-

nated with the output from a spectrometer which when scanned gives the QWIP respon-

sivity as a function of wavelength.

hv
ZnSe Window QWIP

Figure 4.11: Spectral Response Measurement setup at ADT
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Results of the relative spectral response for sample 9056 is shown in Figure 4.12 as

dots connected by a solid line. This device consisted of 4 50A quantum wells of composi-

tion Ino.15GaAs and doping density 5x101 7 cm3 separated by 500A barriers of composi-

tion Alo0.20GaAs. The cutoff wavelength is shown to be 9.6gm with a peak responsivity at

8.7gm and a FWHM of 1gm. The relative spectral response for sample 9065 is also

shown in Figure 4.12 but as dots connected by a dashed line. This device consisted of 5

40A quantum wells of composition In0 .15Gao.85As and doping density 5x10 17 cm -3 sepa-

rated by 500A barriers of composition A10.30Ga0.70As. The cutoff wavelength is shown to

be 7.5gm with a peak responsivity at 6.5gm and a FWHM of 1.5gm. Both devices have

nice narrow peaks characteristic of intersubband transitions and ideal for applications that

require wavelength selectivity.
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Figure 4.12: Sample 9065, dots connected by dashed line and Sample 9056, dots
connected by solid line. 9065 contains 5 50A In0 .15Gao.85As wells and 500A
Al0 30Gao 70As barriers, target 5.9gm. 9056 contains 4 50A In0.15Gao 85As wells
and 500AooAl0.2Gao.8oAs barriers, target 8.4gm.
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The difference in the peak absorption wavelengths for the two devices is due to the

different well widths and barrier compositions and demonstrates one of the strengths of

III-V based QWIP devices, namely the ability to tune the peak of the response based on

changes in the well widths and compositions.

4.2 Calculation of D* from measured parameters

Having measured dark current and photocurrent it is now possible to calculate the

detectivity of the TE mode QWIP photoconductor under BLIP conditions and use this

number in combination with Figure 4.1 to predict the performance of an FPA of TE mode

QWIPs. The black body detectivity was discussed in Section 1.4.3 and is given in terms

of the black body responsivity as:

* RBBJ'~f
DBB = i) Jones (4.9)BB ( n)

where RBB is the black body responsivity in Amps/Watt, A is the area of the detector,

Af is the frequency range of the measurement and in is the noise current. Under BLIP con-

ditions the noise current is due to generation-recombination noise in the photocurrent gen-

erated by the background photon flux and is given by:

(i n) = ge/ 2, BAAf (4.10)

where g is the photoconductive gain, r1 is the quantum efficiency and %B is the back-

ground photon flux. Combining Equation 4.10 with Equation 4.5 for RBB gives:

D = 12 Jones (4.11)
BB hv 20S B

Notice that the detectivity is independent of photoconductive gain, g, and therefore

independent of the electron transport properties of the device. Detectivity is however pro-

portional to the square root of the number of quantum wells since the total quantum effi-

ciency of the device is proportional to the number of quantum wells. This dependency
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Section 4.2 - Calculation of D* from measured parameters

comes not from the responsivity which is independent of the number of quantum wells but

from the noise in the background photocurrent.

Using Equation 4.11 with caB taken from the geometry of Figure 4.7 the BLIP detec-

tivity for each of the QWIP photodetectors measured at MIT has been calculated in the

last column of Table 4.2. The best QWIP has a BLIP detectivity of 2x10 10 Jones and the

mean for the 10 devices measured is 1.2x1010 Jones with a standard deviation of 3.7x10 9

Jones. These values nicely meet the criteria set forth for use in high quality FPA and as

shown in Figure 4.13 for uniformity set by the 12bit ADC used in calibration will result in

focal plane arrays with excellent minimum resolvable temperatures less than 10mK for

detection in the LWIR band.

-5 -4 -310 10 10
Uniformity

Figure 4.13: Comparison of D* for best and mean TE mode QWIPs.
LWIR band 8p.m to 0lm, f/# 1.2 optics with AR coating, noise floor
200e-, background temperature 293K, g = 0.5. Uniformity for 12bit ADC
of 0.007% indicated by arrow.

This concludes the discussion of measurements done on TE mode QWIPs fabricated

and tested at MIT. The results are quite encouraging and seem to indicate both a good the-

oretical understanding of the dominant processes involved in the detection of normal inci-
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dence radiation and a device performance sufficient to make excellent quality FPAs

without the fabrication complexity involved in using coupling gratings. The following

section discusses corroborating measurements done on TE mode QWIPs with a similar

structure designed and fabricated by Alpha Photonics. This work was done simultaneous

to the work at MIT but the two groups were unknown to each other until the first results

from both groups were published at the Device Research Conference in June, 1995.

4.3 Corroborating Measurements done at Alpha Photonics

Simultaneous to the work done at MIT, Alpha Photonics Incorporated (API) has done

fabrication of TE mode normal incidence QWIP photoconductors using InGaAs quantum

wells and GaAs barriers.[106,110,105] In this section the work of API will be compared

and contrasted with the work done at MIT. A piece of the API sample was also fabricated

into TE mode QWIPs at Wright Laboratory (WL), Wright-Patterson AFB, and some of

these results will be used as well in discussion the API sample.[105] Though there are

some important differences in the results, these differences can be explained based on dif-

ferences in material choices and device structures. The resulting similarity in the detectiv-

ities which is insensitive to these differences, D*BLIP = 2.0x1010 for Alpha Photonics and

D*BLIP = 1.2x1010 for the mean of the MIT devices, lends strength to the claim in this the-

sis that the TE mode QWIP photoconductors have sufficient individual device perfor-

mance to be useful in focal plane arrays.

The API QWIP devices consist of fifty 40A In0.30Ga0.70As quantum wells doped n-

type at 2x1018 cm -3 and separated by 300A barriers of undoped GaAs. Compared to the

MIT devices which were based on InGaAs quantum wells with AlGaAs barriers, the API

devices have no Aluminum in the barriers and to keep a similar conduction band offset,

which along with the quantum well width determines the wavelength of sensitivity, the

Indium fraction in the quantum wells is increased to 30%. InGaAs has a different lattice

constant than GaAs and as discussed in Section 3.4 there are limits on how thick a strained

layer can be grown before the onset of dislocation glide. At 30% Indium the critical thick-
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ness is about 50A as shown in Figure 3.5 therefore a single well of 40A is thermodynami-

cally stable with respect to dislocation glide.
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-1 -0.5 0 0.5 1

Delta theta (degrees)

Figure 4.14: Wright Laboratory measured X-ray data for API Sample.[105]

However, if the superlattice consisting of 40A In0. 30Ga0.70As quantum wells sepa-

rated by 300A of GaAs is repeated fifty times as is done in the API sample, it is clear from

Figure 3.6 that the entire superlattice structure is not stable. This implies that in spite of

the excellent double crystal x-ray results shown below in Figure 4.14 the API sample

clearly has a large number of misfit dislocations. The interesting point that has not been

made before is that these dislocations seem to have no deleterious effect on the QWIP

device performance, in particular the dark current. One can speculate that this is due to

the in-plane nature of the misfit dislocations which therefore may not contribute to excess

dark current and/or the unipolar nature of the QWIP devices that inhibits electron-hole

recombination at the misfits, but clearly this is an area that needs more research in the

future.

The dark photocurrent for the API devices is shown in Figure 4.15. This data was

taken with the device looking at a 300K black body similar to the geometry of Figure 4.7
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Chapter 4 - Measurement and Analysis of Normal Incidence QWIPs

used at MIT. The curves appear slightly less asymmetric than those for the MIT grown

devices indicating possibly a lower growth temperature which would limit the diffusion of

impurities and Indium out of the quantum well region and also possibly better control over

the quantum well interface region. BLIP temperature can be estimated by noting that all

the curves below 50K lie on top of each other indicating background limited operation and

a BLIP temperature estimated at 50K. This is reasonably consistent with the rule of

thumb given in Equation 4.1 for a cutoff wavelength of 12gm.

-2

-3

-4

E -5

i-7

S-8

-10

-11

12

'5 -4 -3 -2 -1 0 1 2 3 4 5
Bias Voltage - V

Figure 4.15: API measured photo current for 200gm diameter device. Top
down: solid line 80K, dotted line 70K, dash-dot line 60K dashed line 50K.

The spectral responsivity of the API sample is shown in Figure 4.16 as measured by

WL. The cutoff wavelength is 11 gm with a peak near 9gm and a FWHM of about 3gm.

The data agrees reasonably well with the FTIR measured peak in the absorption at a wave-

length of 9.7gm. The FWHM is about a factor of two larger than that measured for the

MIT samples indicative of the position of the n=2 resonance state which is further above
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Section 4.3 - Corroborating Measurements done at Alpha Photonics

the edge of the quantum well in the API sample. The peak responsivity measured by API

is 600mA/W using a 300K black body illuminated at 45 degrees to the sample edge, but

due to the measurement geometry this number is expected to be less than the actual value.

For a piece of the same growth processed and measured at WL in normal incidence as

done at MIT, the responsivity is 1500mA/W using a 300K black body.

I -.... ... . . ... .. . ... ... .. ... ... .... .. ... ... ... . .... .. . ... ... ........... ... . ....... ...... .......... .....-

. .. . . . .. . . .. .. . . . . .. . . .. . . .. . .-. . . .. . . .. . . ... . .. . .. . . ..

.. .. . . .. . . ... . .. . . .. . . .. . .. . . . . .. . . . .. . . . .. . .. . .

.. .. . .z .. .. . .*. . . ... .. . . . .. .. . ... .. . .. . . . . . .... . . .. . .

3 4 5 6 7 8 9 10 11
Wavelength - Microns

Figure 4.16: WL measured spectral responsivity for

12 13 14 15

API device.[105]

The responsivity for this device is more than an order of magnitude larger than the

responsivity for the devices measured at MIT, however there are two crucial differences

between the API and MIT samples that explain the difference. First, note from the discus-

sion of Section 2.1 that the photoconductive gain, g, is proportional to the ratio of the

excited electron lifetime, tlife, to the transit time through the device, itransit, and the transit

time of the device is inversely proportional to the electron velocity giving for g:

life ve (E) electrons collected
g transit NLp life electrons generated
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Chapter 4 - Measurement and Analysis of Normal Incidence QWIPs

where ve(E) is the electron velocity as a function of electric field given by Equation 4.4

and Lp is the length of one period in the superlattice active region of the device and N is

the number of quantum wells in the device.

The important point is that the barriers in the API device are GaAs which has a mobil-

ity about five times larger than the mobility in the A10. 15Ga0.8 5As barriers used in the MIT

samples.[ 111] This leads to a 5x increase in the photoconductive gain and a 5x increase in

the responsivity. Actual measurements comparing QWIPs with GaAs barriers to similar

devices with AlGaAs barriers show responsivities for the QWIPs with GaAs barriers

about 10x larger compared to QWIPs with Al0.25Ga0 .75As barriers so the 5x increase in

responsivity predicted from the bulk mobility measurements is a lower limit.[53] The sec-

ond important difference is that the API device used 300A barriers compared with 500A

barriers. Since photoconductive gain is inversely proportional to the superlattice periodic-

ity this leads to a further increase in the responsivity of the API devices of 1.6x compared

to the MIT devices. Taking all these factors into account, the single well quantum effi-

ciency for the API devices is 0.16% if the 5x increase in g is taken from bulk mobility data

or 0.081% if the 10x increase in g is taken from QWIP measurements of Kane et al. Both

numbers are larger, but reasonably close to the value of 0.069% measured for sample 9066

made at MIT. The remainder of the difference can be explained by noting that the API

devices have 2d sheet carrier densities a factor of 3x larger than that of sample 9066

grown at MIT. Since responsivity is proportional to 2d electron density through its depen-

dence on the quantum efficiency, this explains the remainder of the difference between the

responsivity of the API QWIPs and those grown and fabricated at MIT.

Though the responsivity of the API devices is twenty times larger than that of the MIT

QWIPs for the reasons explained above, the BLIP detectivity is nearly identical with a

value of 2x10 10 Jones for the API devices equal to the BLIP detectivity for the best MIT

QWIP. This is explained simply by noting that all of the factors that lead to a larger

responsivity for the API device also lead to a larger background photocurrent noise. Thus

detectivity is independent of the photoconductive gain, independent of the superlattice
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period and only weakly dependent on the position of the 2d sheet carrier density through

its dependence on the fermi level, EF:

DBLIP oc EF exp 2kT Jones (4.13)

Essentially all the devices are near enough to the peak in Equation 4.13 of EF = 2kT,

which for GaAs gives a 2d sheet carrier density of 3x10 11 cm-2 at 65K, that the relative

effect on the BLIP detectivity is minor.

In concluding this comparison of API and MIT QWIP devices it is important to point

out that in a practical FPA system with a limited capacitor size available to collect elec-

trons at each pixel, all equal detectivities are not created equal. In particular, as shown in

the comparison of the API and MIT QWIPs, devices with dramatically different respon-

sivities can end up with the same BLIP detectivity since many factors that affect the

responsivity of a device also affect the noise in the device and the two affects tend to can-

cel when calculating the detectivity. In a system with a fixed capacitor size, BLIP detec-

tivity is inversely proportional to the square root of the photoconductive gain because the

number of electrons that can be stored is fixed. Thus the lower g, lower responsivity

QWIPs of the style grown and fabricated at MIT are favored over the QWIPs grown and

fabricated by API in spite of the detectivity being the same.

4.4 Conclusions on QWIP measurement
In this chapter measurements done on discrete normal incidence TE mode QWIPs

have been presented. The results summarized in Table 4.2 show an average responsivity

of 41 mA/W and a single well quantum efficiency of 0.035% consistent with the single

well quantum efficiency of 0.068% of Section 2.3. The BLIP detectivity resulting from

these measurements has a mean value of 1.2x10 10 Jones for the devices grown, fabricated

and measured at MIT. As discussed in Chapter 1 this is sufficient to produce uniformity

limited FPAs with excellent MRTs less than 10mK without the additional fabrication com-

plexity and expense involved with fabricating diffraction gratings. The devices fabricated

at MIT were also compared with devices from API with slightly different structures but
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very similar BLIP detectivities. The excellent agreement between the measurements done

at MIT and those done at API and WL demonstrates the good understanding of the theory

for TE mode QWIPs as well as the competitiveness of the growth, fabrication and mea-

surement techniques developed as part of this thesis.
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Chapter 5

Modeling and Cryogenic Measurement

of VLSI GaAs MESFET Circuits

5.1 Introduction to VLSI GaAs MESFETs
The most important difference between gallium arsenide and silicon for fabrication of

electronic circuits is existence of a high quality low surface state oxide for Silicon, namely

Silicon Dioxide, and the lack of any comparable oxide for Gallium Arsenide. This simple

observation explains why for GaAs electronics we must talk about metal semiconductor

field effect transistors, MESFETs, rather than the more common Silicon based metal oxide

field effect transistors, MOSFETs. The additional complexities in dealing with a rectify-

ing MES based gate verses an insulating MOS based gate also go a long way in explaining

the overwhelming dominance of Silicon based electronics in the market place.

Despite it's lack of a high quality oxide GaAs has several properties that have pro-

vided niche markets from which GaAs based technology has been able to develop and

expand. First, unlike silicon, GaAs is a direct bandgap semiconductor which means that

electroluminescence is highly efficient which has led to the dominance of GaAs and

related III-V semiconductors in markets for light emitting diodes, LEDs, and semiconduc-

tor lasers. Second, there is a fortuitous alignment of the lattice constant of GaAs and AlAs

which allows growth of very high quality pseudomorphic heterostructures of GaxAll-xAs

on a GaAs substrate with none of the strain related problems associated with growing

SiGe on Si. Advantage of this property will be taken in discussions related to integrating

VLSI GaAs MESFETs with QWIPs in this thesis. Finally, and most important to the topic

of this chapter, the electron mobility for GaAs MESFETs is typically a factor of about ten

higher than that of Silicon MOSFETs at room temperature and the electron saturation

velocity is typically a factor of two to three higher for GaAs MESFETs. Both of these fac-
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tors lead to higher switching speeds and lower propagation delays for a GaAs MESFET

verses a Silicon MOSFET of similar dimensions.

This chapter will first be concerned with developing a physical device model for the

GaAs MESFET which is then used to understand the operation of the device. In addition,

since these devices are intended for use in QWIP staring arrays which operate between 40

and 80 Kelvin, the results of measurements made on individual GaAs MESFETs at cryo-

genic temperatures will be analyzed to extract the relevant device parameters as a function

of operating temperature based on the above mentioned model. Because one of the criti-

cal parameters, the gate capacitance, is not easily extracted from individual devices due to

its extremely small value, about 1.2fF/um2 for an EFET, and the consequent dominance of

the measurement setup, a circuit model of a ring oscillator will be developed from which it

will be shown that the oscillation frequency of the ring oscillator is directly proportional to

the gate capacitance and other parameters which are easily extracted from the DC MES-

FET characterization. Measurement of ring oscillator frequency as a function of tempera-

ture and the subsequent extraction of the gate capacitance completes the characterization

of individual MESFETs at cryogenic temperatures and lays the groundwork for future

QWIP starring array multiplexer designs.

VGS VDS

y=O

yd=h I
x=O x=L

Substrate

Figure 5.1: MESFET Cross Section
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5.2 Physics and Modeling of GaAs MESFET
The GaAs MEtal Semiconductor Field Effect Transistor (MESFET) consists of a doped

channel contacted on each end by ohmic contacts whose thickness is controlled by the

depletion layer below the Schottky metal gate as shown in Figure 5.1. The key element of

this device is the Schottky diode formed between the metal gate and the doped channel.

For GaAs, the density of electron surface states at the interface between the gate metal and

the semiconductor is such that the Fermi level is pinned near mid gap at an energy largely

independent of the metal used for the gate[ll12] and creating a built-in reverse bias VBI
between the gate and the channel. This bias depletes the channel below the gate to an

extent found by integrating Poison's Equation,

V(y) = dy2  (5.1)

with y the distance into the channel down from the gate and boundary conditions given by

the depletion approximation. Assuming a uniformly doped channel for simplicity, and

zero drain-to-source voltage, Vge, the depletion depth as a function of applied gate volt-

age VGS iS

2Es (Vbi - VGS)
d (VGS) qN (5.2)

where Es is the permittivity for GaAs,es = 13.1, E0 = 1.14 (fF/cm) , q is the electron

charge, ND is the volume density of ionized dopant atoms and VB, is the built in junction

potential in the Schottky gate which for GaAs is V,, = 0.75Volts. The applied VGS sub-

tracts from VB,, to modulate the extent of the depletion layer and thus the drain-to-source

current, IDS. With non-zero drain-to-source voltage, the largest extent of the depletion

region, the largest longitudinal electric field and the constriction in the channel all occur

on the drain side of the gate due to the increasing voltage drop along the channel which

leads to a maximum in the reverse gate-to-channel bias on the drain side of the gate. With

zero applied gate voltage, depending on the dopant density ND and the channel depth,

dcH, the channel can be either completely depleted, IDS = 0, or only partially depleted,
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Dlos O. If the channel is completely depleted with zero applied gate voltage, a positive

gate voltage VGs > 0 must be applied to bring the device into conduction and this device is

called an Enhancement mode FET (EFET). If the channel is conducting even with zero

applied gate voltage, a negative gate voltage VGs < 0 must be applied to shut off the

device and this device is called a Depletion mode FET (DFET). The applied gate voltage

above which the channel becomes conducting is called the threshold voltage Vand is cal-

culated by setting d in Equation 1.2 equal to the channel depth, dCH, and then solving for

VGS = VT, we find:

qN 2

V = D h (5.3)T BI 2E
S

For EFETs the channel doping and depth are chosen such that VT> 0 and for DFETs the

channel doping and depth are chosen such that VT< 0. It is important to note that in GaAs

both EFETs and DFETs use electrons and not holes as their current carriers and in both

cases the channel is doped n-type.

To get a basic understanding of the channel current,IDS, a simple model attributed to

Schockley[113] called the gradual channel approximation will be used. This model

assumes the electron drift mobility, Rdrift , is constant with applied electric field giving a

drift velocity

Vdrift= driftE (5.4)

The model also assumes that the gate junction is a slowly varying function of position, the

conducting channel is neutral, the region under the gate is fully depleted, the electric field

in the channel is oriented in the x-direction, the electric field in the depletion region is ori-

ented in the y-direction, the boundary between the channel and the depletion region is

sharp, the channel doping is uniform and the potential across the channel varies so slowly

that the thickness of the depletion region at any point along the length of the gate can be

found by integrating Poison's equation, Equation 5.1, valid for a one-dimensional junc-

tion. All of these assumptions are incorporated in Figure 5.1 and result in an incremental

change in the channel potential, V (x) , given by
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'Dsd"
dV(x) = (5.5)

qLNDW [dch - d (x, VGS)

where W is the gate width and d (x, VGs) is the depletion depth as a function of distance

along the gate length and is by assumption the depletion width below the Schottky gate

due to the gate bias, Equation 5.2, with the additional bias due to the drain-to-source bias,

V (x) and is therefore given by

2Es [V(x) + Vbi - VGS]
d (x, VGS) = VN D  (5.6)

Substituting d (x, VGs) into dV (x) and integrating with respect to x from the source side

of the gate, x = 0, to the drain side of the gate, x = L, gives the desired result for the

channel current, IDs, as a function of applied gate-to-source voltage, VGs, and applied

drain-to-source voltage, VDs

S =2 S(VBs + VBI- VGS) -(VBI -VGS) (57)lOS = go V (5.7)

where go is the channel conductance when no gate metal is present given by

qptND Wdch
go =  L (5.8)

Vpo is the pinch off voltage given by

qNDd h

Vp 0 = (5.9)PO 2e
and the series resistance of the drain-to-gate, RD, and gate-to-source, Rs regions have

been neglected for now. For a given VGs this result is valid from VDs = 0 up to

VDs = Vsat VPO - VB,, + VGs where the channel is completely pinched off at the drain side

of the gate and the saturation channel current is from Equation 5.7
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sat 1 2 (VBI- VGS)o = g V V V (5.10)
DS 0 3 VPO 3 1/2  BI GSVo

For increases in VDS beyond Vsa, the Schockley model assumes that IDS remains constant.

Taking the derivative of Equation 5.10 with respect to applied gate voltage, VGS, gives the

Shockley transconductance of the MESFET in the saturation region.

d- at V -V
g9 g l V=sjJ (5.11)

GS PO

2.5
Vgs ... Shockley Model

0.8V --- Measured DFET

2 , Length 5.0um

0.4V Width 20.Oum ,'

0.2V .J
1.5 ..

E -0.2V

0.5 -
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-------------------------------------------------------------------------------
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Figure 5.2: Comparison of Shockley Model with Measured 20pmx5ptm DFET.

To asses the accuracy of the Shockley model, Figure 5.2 plots the measured room tem-

perature VDs vs. IDs curves for a 2011m x 5grm DFET. The Shockley model used a doping

density ND = 1.Oe 17/cm3, a channel depth of dch = 0. 142gtm, an electron drift mobil-
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ity of drift• = 4000 cm2 /V- S, and a built in bias of V,, = 0.9 V. It is clear from Fig-

ure 5.2 that despite its simplicity the Shockley model gives an excellent fit to the drain

current for this relatively long gate DFET throughout the linear and saturation regions as

well as in the critical transition region near V,,,. The most striking deviation occurs at

high gate bias where the Schottky gate begins to conduct creating an offset in VDS equal to

the gate-to-source current IGs multiplied by the source resistance Rs . Since the Shockley

model does not include the characteristics of the conducting gate and in our derivation we

have set Rs = 0 the deviation is not surprising. The positive slope in los for VDs beyond

the saturation voltage, V,,,, is the result of increased current injection into the pinch off

region as a function of increased drain voltage. This leads to finite output resistance and

finite gain.

w0

E
E 0.6

VI,

· r

0.4

0.2

0 0.5 1
Vds - Volts

Figure 5.3: Comparison of Shockley Model with Measured 3gmxl.2tpm DFET.

The fit for the 3pm x 1.2pm DFET shown in Figure 5.3 is much less satisfying. In
addition to the shifts due to gate conduction, the saturation voltage, V,,,, the saturation

177

Vgs ... Shockley Model
0.8V --- Measured DFET ..... ** * **•..............

* ,.t Length 1.2um
0.4V Width 3.0um
O.2V

-0.2V ,...... . .

-0.4V I •
Iiii II I aaI- .... •:;i,{* ,. _ --:' . . . .. . . . . .. . . . . .

-----------
7 7

1 m e mmm mm~ •~ m mmm m m mm~r~L"·*· LI·l

-0.5 1.5 2.5

11



Chapter 5 - Modeling and Cryogenic Measurement of VLSI GaAs MESFET Circuits

current, I , , and the transconductance, g,, are all poorly modeled due to "short channel

effects". Short channel effects are the result of the breakdown of both the gradual channel

approximation and the constant electron drift mobility assumption on which the Shockley

model is based. As can be seen from a plot of experimentally measured electron velocity

as a function of applied electric field[114], Figure 5.4, electron drift velocity is propor-

tional to electric field only for electric fields E < 3kV/cm = 0.3 V/gm. For higher elec-

tric fields typical of short gate MESFETs, the electron velocity initially "overshoots" and

then drops down to a "saturation" level in which velocity is only weakly dependent on

electric field. Physically, the velocity overshoot and saturation are both due to electrons

being scattered out of the high mobility F valley and into the higher energy and lower

mobility X and L valleys[115]. Several MESFET models incorporating the physics of

short channel effects have been developed[116,RP_THC], but since the interest here is in

modeling rather than detailed physical understanding a circuit model that takes advantage

of the physical similarities between MESFETs and JFETs to use the JFET modeling capa-

bilities of HSPICE[ 117] will be described. This model has the important advantage that it

accurately models the output characteristics of the MESFETs. In particular, the small sig-

nal output resistance, defined in the pinch off region as:

1 ID Aout AV s (5.12)r -aV Iout DS DS

and the maximum small signal gain given by:

2 V
2a= VGg (5.13)

outgm = VGS - VT

are properly modeled in the HSPICE JFET model. Since the output resistance and maxi-

mum gain are critical parameters in the design of the analog readout circuits for the focal

plane arrays which are the objective of this thesis, the HSPICE JFET model is a very

important tool. The HSPICE equivalent circuit used to describe the Vitesse ion-

implanted, self-aligned, refractory gate MESFET is shown in Figure 5.5.

178



Section 5.2 - Physics and Modeling of GaAs MESFET
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Figure 5.4: Velocity Overshoot and Velocity Saturation in GaAs.

The current source,i°,s, describes the channel current as a function of threshold volt-

age, VT, device geometry, backgate voltage and the applied voltages, VG, Vs and VD. The

total gate current,IDs, includes /°s plus the current due to the Schottky gate which is

divided into gate-source and gate-drain Schottky diodes.

Gate

Source

V

GD

Drain

Figure 5.5: Equivalent Circuit Model for GaAs MESFET.

The total capacitance includes the capacitance associated with the two Schottky gate

diodes, CGs and CGD, which are voltage dependent as well as the geometrical capacitance,
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Cos, associated with the source and drain. The threshold voltage and channel current

models are both taken from Statz[118] as modified by Vitesse[119] and are given by:

0
VT = V + (GAMDS x V D) + K 1 (VBS) (5.14)

where VOr, is the threshold voltage given by Equation 5.3, GAMDS accounts for the bias

dependence and K1 (VBS) , accounts for the backgating effect. The channel current is:

IDS (eff VGS ) VG (1 + VDS SA SUB (5.15)
where effg, is the transconductance parameter which includes the effects of velocity satu-

ration, ax is the drain voltage multiplier which determines the slope of the linear region of

the IDS vs. VDS curve, X is the channel length modulation parameter and both VG and

SAT are contents in Statz's model which have been parameterized to better fit the data.

The transconductance parameter eff is related to the intrinsic transconductance parameter

P and the critical field for onset of velocity saturation, VCRIT by

ef = (5.16)
eff 1 + VCRIT(VGS - VT)

Finally, IsuB, is the subthreshold current as modeled by Lee et.al[120]

ND x Vos -NG x Vos

ISUB = 10 e e (5.17)

where I o , ND and NG are fitting parameters for the empirical model.

Figure 5.6 shows the fit of the HSPICE model described above to the same measured

data as shown in Figure 5.2 for a 20gm x 5gm DFET. The parameters were allowed to

vary within one standard deviation of the Vitesse fabrication process and then optimized

using HSPICE. The resulting HSPICE parameters are shown in Table 5.1, Column 2. The

model clearly shows a very good agreement in both the linear and saturation regimes

including a proper modeling of the VDS offset for large gate-source voltages. The discrep-

ancy for large VGS is likely due to parasitic gate resistance in the measurement apparatus

which reduces the true applied VGS from the measured value.
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Figure 5.6: Comparison of HSPICE Model with Measured 20gmx5gm DFET.
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Figure 5.7: Comparison of HSPICE Model with Measured 3gm x 1.2gm DFET.

181

0.5 1.5 2.5

Vgs HSPICE Model
... HSPICE Model
--- Measured DFET
Length 1.2um
Width 3.0um

yeck~

Vgs
0.8V

0.4V
0.2V
O.OV

p. B 8:aae~**x, W" w. e.6:ri: I a mla as.·,:~LIIV·I:··II *·( I

r~l~ rrrr9LY W rrq

il q· rrrltS vrZY*W wrn V~+~ wrofl"· c

rr'n* t rn"r'~W .w P * *C93~~

nIaBBOse a nene a aenBO~g~.aa anaa on

1 1.5 2.5

C
ft r

" m m

I I I

-0.5

-- v



Chapter 5 - Modeling and Cryogenic Measurement of VLSI GaAs MESFET Circuits

Figure 5.7 shows the fit of the HSPICE model to the same measured data as shown in Fig-

ure 5.3 for a 3Lm x 1.2gm DFET. The resulting HSPICE parameters are shown in Table

5.1 column 3. Again the fit is excellent over the entire IDS vs. Vos curve showing that the

HSPICE model appropriately accounts for the short channel effects that reduced the use-

fulness of the Shockley model at short gate lengths. In particular, the small signal output

resistance calculated by HSPICE is within a small factor of that obtained by direct mea-

surement of the MESFET DC characteristics.

DFET (Lx W)
HSPICE Parameter Units

5um x20um 3um x 1.2um

VrT 645 795 mV

3 190 190 uA/VVG

AL -0.40 -0.4 um

GAMDS 0.0 -0.065 #

X 0.065 0.065 V1

VCRIT 0.0 0.5 V1

a 3.5 3.5 V 1

AW -0.15 -0.15 um

NG 1.1 1.1 V-1

ND 0.2 0.2 V 1

K1 0.35 0.35 V

VG 2.0 2 #

SAT 3.5 3.5 #

Table 5.1: HSPICE parameters for Figures 5.6 and 5.7
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Vgs Va utamax
(Volts) (Volts) (x104 Ohms) (dB)

0.8 -96.6 4.7 41.9

0.6 -39.7 2.9 35.4

0.4 -27.3 2.9 33.5

0.2 -19.6 3.5 32.3

0.0 -12.4 4.4 30.3

-0.2 -8.3 7.5 29.5

Table 5.2: Output Characteristics for 20gm x 5pm DFET
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(0 '1.5
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I

"00.5
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-30 -20
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-10

Figure 5.8: Output parameter extraction for 20gpm x 5.Opm DFET. Vgs from
-0.2V to 0.8V in 0.2V steps. See Table 5.2 for output resistance values.
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-30 -20
Vds - Volts

-10 0

Figure 5.9: Output parameter extraction for 3tm x 1.2gtm DFET. Vgs
from -0.2V to 0.8V in 0.2V steps. See Table 5.3 for output resistance values.

Vgs Va Rout amax
(Volts) (Volts) (x10 4 Ohms) (dB)

0.8 -36.3 3.8 33.4

0.6 -22.5 3.0 30.4

0.4 -18.5 3.1 30.1

0.2 -13.8 3.2 29.2

0.0 -9.4 3.3 27.9

-0.2 -5.9 3.8 26.5

Table 5.3: Output Characteristics for 5gpm x 1.2gpm DFET

The small signal output resistance given by Equation 5.12 and the maximum gain given

by Equation 5.13 of the MESFETs were also measured from the DC characteristics. Fig-

ure 5.8 shows the results for the 20tm x 5.Opm DFET and Figure 5.9 shows the results for
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the 3gm x 1.2gm DFET. It is interesting to note that in spite of the nearly four fold differ-

ence in the channel length, the output resistance changes only by a factor of about three.

This contrasts dramatically with Silicon CMOS where for a comparable 1.2gm n-well

process an increase in the channel length from 1.2gm to 5.0gm leads to an increase of

more than two orders of magnitude in both the small signal output resistance and the max-

imum small signal gain.

5.3 Cryogenic Measurement of GaAs MESFETs
The HSPICE model described above has been used by Vitesse to build a data base for sim-

ulation of MESFET circuits over the military temperature range ( -55C to +125C ). Here,

measurements were performed which extend this range down to the operating temperature

for QWIP FPAs typically 50K to 70K, (-223C to -203C). Individual device measurements

were done on three MESFETs two DFETs and one EFETs with geometries of 20gm x

5gm and 3gm x 1.2gm and 3gm x 1.2gm respectively and which are part of the Process

Control Monitor, PCM, for the OEVLSI-1 chip designed by K.V. Shenoy[121]. The mea-

surements performed were used to extract threshold voltage, VT, transconductance, g,,

source resistance, R,, drain resistance, RD, Schottky barrier height, 4 b and Schottky bar-

rier ideality factor, n all as a function of device temperature. Measurements on ring oscil-

lators used to extract the gate capacitances, CGs and CGD are described in Section 5.4. All

measurements were performed on devices bonded into 14-pin DIP packages and cooled

using a CTI closed cycle Helium refrigerator with a Cryogenics cryostat and cryogenic

temperature controller. Special care was taken to accurately measure the temperature at

the position of the device under test. This included a copper plate which covered the 14-

pin DIP package and was screwed into the Helium refrigerator cold finger forcing intimate

contact between both the front and the back of the 14-pin DIP package and the cold finger.

To confirm our temperature readings an Omega CY7-SD7 calibrated silicon diode temper-

ature sensor was bonded into the 14-pin DIP package along side the device under test.

Without the copper plate, temperature readings from the controller taken with a tempera-
ture diode located at the end of the cold finger were as much as 100K lower than the tem-
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perature readings inside the 14-pin DIP package, but use of the copper plate reduced this

difference to less than 1K which is within the quoted accuracy of the Omega CY7-SD7

silicon diode. A Hewlett-Packard 4145 semiconductor parameter analyzer controlled by a

PC was used to collect the electrical data from the cooled devices. Measurement tech-

niques are based on those used by Vitesse[119] and described in detail by Eric

Braun[122].

5.3.1 I-V Characteristics for MESFETs:

Before extracting the temperature dependence of specific parameters in the MESFET

model described above, a quick look at the I-V characteristics as a function of temperature

will give an important qualitative understanding of what to expect. Figure 5.10 shows the

output I-V characteristics for a 20gm x 5.0gm DFET at 50K, 70K and 300K. Figure 5.11

shows the output I-V characteristics for a 3gm x 1.2gm DFET at the same temperatures.

Both curves show an decrease in the source to drain voltage required to get zero source to

drain current at high gate bias indicating that the Schottky barrier height is increased at

low temperature reducing the gate leakage current. Both curves also show an increase in

the change in the source to drain current for a fixed increase in the gate bias indicating an

increase in the device transconductance. There is a small decrease in the slope of the I-V

characteristic in the saturation region for both curves as the temperature is increased indi-

cating an increase in the small signal output resistance and small signal gain.

Comparing Figures 5.10 and 5.11 for the case of zero gate bias gives an average drain

current of:

W
IDs = 90gA x (5.18)L

at 70K with only a very small change as a function of temperature.

Finally, it is important to point out that this is the first temperature dependent charac-

terization of the Vitesse HGaAsIII devices deonstrating that they work well at the temper-

atures required for operation of QWIP FPAs and though rigorous reliability testing has not

been done, repeated temperature cycling during the measurement had no noticeable effect

on the I-V characteristics. Threshold Voltage and Transconductance:
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Figure 5.10: I-V Characteristics for 20gm x 5.0gm DFET.
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Figure 5.11: I-V Characteristics for 3gm x 1.2pm DFET.
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5.3.2 Threshod Voltage and Transconductance

For each measured temperature, the threshold voltage and transconductance were

extracted from a plot of IDS vs. VGS with VDS = 1 Volt. The maximum slope of this

curve was used as the device transconductance. To find the threshold voltage, the linear

region of the IDS vs. VGS curve was extrapolated and its intersection with the VGS axis,

VoGs, was found.

S

E

3

Vgs - Volts

Figure 5.12: Transconductance and threshold voltage extraction for
3gm x 1.2gm EFET.

The threshold voltage was defined as VT = Vs - VDS/ 2 . Figure 5.12 shows the

extraction for the 3gm x 1.2gm EFET, Figure 5.13 shows the temperature dependence of

the transconductance for the all three devices and Figure 5.14 shows the temperature

dependence of the threshold voltage for all three devices. The transconductance is seen to

increase slowly at a rate of about -0.15mS/mm/K as the temperature is lowered and the

threshold voltage is seen to increase slowly at a rate of about -lmV/K, making all the

devices more EFET like.
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5.3.3 Source and Drain Resistance:

The source and drain resistance were extracted using the method of Chaundhuri and

Das[123]. In this method, the Schottky gate diode is forward biased forcing a current, IGS

through the source resistor. A small drain current (IDS = 1 gA ) was applied to stabilize

the measurement. The source resistance was identified as the slope of the IGs Vs. IDS

curve in the central linear region. Figure 5.15 shows the source resistance for the 3gm x

1.2gm EFET, Figure 5.16 shows the temperature dependence of the source resistance for

all four devices. The drain resistance was extracted in an analogous manner and is shown

for the 3gm x 1.2gm EFET in Figure 5.17. Figure 5.18 shows the temperature depen-

dence of the drain resistance for all three devices. Note that all these devices are symmet-

ric, Rs = RD, within the measurement error.

Vds - Volts

Figure 5.15: Source resistance extraction for 3gm x 1.2gm EFET.
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Figure 5.16: Source resistance temperature dependence.
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Figure 5.17: Drain resistance extraction for 3jim x 1.2gpm EFET.
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Figure 5.18: Drain resistance temperature dependence.

350

5.3.4 Schottky gate barrier height and ideality factor

The Schottky gate barrier height and ideality were measured by tying the source and drain

to ground and applying a forward bias to the gate. Using the approximate expression for

the total current density through a Schottky diode

DS qVGSJ IDS = exp -VsDS A nkT
(5.19)

where Jat is the saturation current density and plotting the natural log of the gate cur-

rent,log (IDS) vs gate voltage, VGB gives a line whos slope is the ideality factor:[124]

n - q  D (5.20)

(dV GS)
The extraction of the ideality factor for the 20gm x 5gm EFET is shown in Figure 5.19.

The current measurement noise floor is about 100pA but for currents higher than this,

there are the expected linear regions from which the ideality factor may be extracted.
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-- 2

(AaE

(

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Vgs - Volts

Figure 5.19: Schottky diode ideality extraction for 20p~m x 5gSm EFET with
Vds = 0. Ideality factors are 4.73, 3.89, 3.26, 2.44, 1.89, 1.40, 1.27, 1.13, 1.07
and 1.05 for temperatures of 30K, 40K, 50K, 70K, 100K, 150K, 200K, 250K,
300K and 350K respectively. Measurement noise floor ~100pA.
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Figure 5.20: Schottky diode ideality factor temperature dependence for
20pm x 5pm EFET with Vds = 0. Data from Figure 5.19.
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Figure 5.20 shows the ideality factor as a function of temperature for the 20pm x 5p.m

EFET with Vds = 0. The fairly strong increase in the ideality factor at low temperature

was at first surprising, but can be understood by a more detailed look at not only the ther-

mionic emission current which dominates near room temperature and results in the simpli-

fied Equation 5.19, but also including the tunneling current which is important for low

temperatures and high channel dopings.[125,126,127]

5.4 Cryogenic Measurement of Gate Capacitance
The gate capacitance is a critical parameter in the design of FPA readouts because the

gate to channel capacitor forms the highest capacitance and most uniform capacitor avail-

able in the HGaAsIII fabrication process. These capacitors will be used in the readouts to

store charge collected by each single pixel over a single frame cycle. A schematic dia-

gram of a simple pixel is shown in Figure 5.21.

VBias

clock

PIXEL Pitch -

Figure 5.21: Schematic of Simple Pixel Layout and Circuit Diagram.

The approximate size of the capacitor required can be estimated from the relation:[128]

Dynamic Range = .Number Stored electrons (5.21)

For a typical dynamic range of 12bits (72dB) this requires that about 17million elec-

trons be stored for each pixel. Assuming a capacitor voltage of 1Volt gives a capacitance

per pixel on the order of 2.7pF. At room temperature the gate capacitance for the Vitesse
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HGaAsIII process is 2fF/gm2 [119] giving a required capacitor area of 1360 Rm2. Since

this large, more than half of the desired pixel size, 50Rmx50pm, more complex pixel

designs that do not require as large capacitors are quite valuable.[129] At this point hav-

ing demonstrated the importance of the gate capacitance value an attempt will be made to

measure the gate capacitance near the QWIP operating temperature. At 2fF/gm2 the larg-

est MESFETs available on the PCM, 20gm x 5.0COm have a capacitance of only 0.2pF.

Since the bond pads, package and dewar together have stray capacitance several orders of

magnitude higher than this, direct measurement of the gate capacitance is not possible.

Instead, after a short discussion of ring oscillators, the oscillation frequency of two ring

oscillators designed by Eric Braun[122] will be used to indirectly measure the gate capac-

itance as a function of temperature.

5.4.1 Ring Oscillator Design

A ring oscillator is fabricated by stringing together an odd number of inverters in a ring

such that for an n inverter ring, the output of the nth inverter is tied to the input of the 1st

inverter. If the inverters have sufficient voltage gain, any small transient noise source at

any inverter input will be quickly amplified to the full output swing of the inverters.

When there are an odd number of inverters, no stable operating point exists and the volt-

age level at each inverter input will oscillate with a period determined by the propagation

delay through the entire ring. Assuming a propagation delay through a single inverter of

ti,, then a ring of n inverters will oscillate with a period ,j,,,= nt,,v where n is an odd

integer. The propagation delay can be estimated [130], using:

AVx C
it. = 2 (5.22)mv I C

where AV is the output voltage swing, CL is the capacitance at the output node, Ic is the

current charging the output capacitance and tj,,v is the propagation delay through a single

inverter defined as average of the time required to charge CL from 10% to 90% of AV and

the time required to discharge CL from 90% to 10% of AV.
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The specific inverter design used in this work is a simple common source amplifier

with an active load consisting of a diode connected DFET shown in Figure 5.22. The

small signal gain for this inverter is:

a = -gmEFETx (ro, EFET II ro, DFET)  (5.23)

Using gmEFET = 350[tS from Figure 5.13, r0,EFET=50kQ and r0,DFET= 4 0kQ2 from Figure

5.8 gives a gain of about 10 at 300K.

VDD

Lt2

VSS

Figure 5.22: Schematic two inverter section of Ring Oscillator.

The output characteristic of each inverter is easily found by applying Kirchoff's Cur-

rent Law to (KCL) to the output node of inverter.

-I =I +I (5.24)DS, DFET DS, EFET g2 (5.24)

and solving graphically for the intersections. Figure 5.23 shows the steps involved in this

procedure as calculated using HSPICE for the specific inverter used in this project at

300K. From Figure 5.23 it is clear that the output voltage swing is determined by the

Schottky barrier height which determines the voltage at which the gate diode turns on. At

room temperature this gives AV_ 0.7 V. The average current charging the output capaci-

tor is approximately Ic = 81 A as read off from Figure 5.23b. The load capacitor value

includes the parasitic capacitance extracted from the layout C, = 8fF, the gate capaci-

tance of the following common source stage given by:
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fFC =1.2 2  (Wdrawn - AW) x (Ldraw - AL) (5.25)
gm

where AW = 0.2gm, AL = 0.4.gm and the drawn dimensions are given in Figure 5.22

resulting in CG = 7fF and the drain capacitance of the inverter EFET and DFET esti-

mated to be one half of the gate capacitance given in Equation 5.25 or

CGS = CGD = 3.5fF for a total load capacitance of CL = 22fF. Plugging these numbers

into Equation 5.22 gives a propagation delay for each inverter of i,, = 190ps or multi-

plying by the number of inverters, 23, the ring oscillator period is ,,rig = 4.4ns which is

about 12% smaller than the HSPICE simulated value of 5ns as shown in Figure 5.24.
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Figure 5.23: Graphical load line calculation of inverter characteristics.
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Chapter 5 - Modeling and Cryogenic Measurement of VLSI GaAs MESFET Circuits

This justifies the use of Equation 5.22 to calculate the change in gate capacitance as a

function of temperature from the measured period of the ring oscillator

VDD

tout

Vin

VSS

Figure 5.24: Ring Oscillator output stage.

Time - nS

Figure 5.25: Ring Oscillator HSPICE Simulation.
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Section 5.4 - Cryogenic Measurement of Gate Capacitance

. In addition to showing the input to the first two stages of the ring oscillator, labeled

"ring(l)" and "ring(2)", Figure 5.25 shows the output of the an additional output stage

which is attached in parallel to the output of the first stage in the ring oscillator and whos

purpose is to both drive the large capacitances associated with going off chip, bond pads,

bond wires, etc. and also to bring the amplitude of the output of the ring oscillator up to

the full power supply range, in this case 2V. The schematic for the output stage is shown

in Figure 5.24. It is this output that will be measured when actually measuring the ring

oscillator frequency as a function of temperature.

5.4.2 Gate Capacitance extraction

Gate capacitance was extracted as a function of temperature by bonding the ring oscil-

lator into a 14-pin DIP package and mounting into the temperature controlled Helium cry-

ostat described above. The output from the ring oscillator was fed into a fast oscilloscope

and the period of the oscillations was measured by hand. The DFET load current was

taken from Figure 5.11 and scaled to the appropriate W/L ratio. The output voltage swing

was taken as 0.7V at 300K and increase by 1.5mV/K [119]. Equation 5.22 was then used

to extract the load capacitance. The results are given in Table 5.4:

Temperature (K) Period (ns) AV (V) Current (gA) Capacitance (fF)

30 4.42 1.11 85 14.7

50 4.40 1.08 82 14.5

80 4.24 1.03 80 14.3

100 4.20 1.0 78 14.2

300 3.10 0.7 73 14.0

Table 5.4: Gate Capacitance Extraction

From the above analysis it is clear that even at the lowest temperatures, the load capac-

itance changes by only 5% from it's value at room temperature which, taking into account

that 40% of this load capacitance is due to layout parasitics means that the gate capaci-

tance changes by less than 10% over the range from room temperature to the operating

temperature of the QWIP FPAs.
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5.5 HSPICE parameter extraction:
To allow accurate modeling of MESFET circuits to be used in FPA readouts, the above

cryogenic temperature measurements were combined and used to fit the I-V characteris-

tics of individual devices in the temperature range from 30K to 100K. The proceedure

used was as shown in Figure 5.26. The results from this analysis for the 20gmx5gm

EFET and 20gmx5gm DFET are sumarized in Tables 5.5 amd 5.6. It can be seen from the

data that within the 30K to 100K operating range for QWIP FPA's, the parameter variation

is within the measurement error and thus a single set of parameters for each device size

and type should be sufficient to cover the entire range.

1. Adjust source and drain resistance parameters, rsh and rshl, based on mea-

surements of Section 5.3.3

2. Adjust gate capacitance parameter, gcap, based on Section 5.4.2.

3. Adjust Schottky diode ideality factor, n, and Schottky diode saturation cur-

rent, is, based on Section 5.3.4. Note: for temperatures below 150K, the satu-

ration current is to small to enter into HSPICE, so it was replace with zero.

This has no effect for gate biases less than about IV.

4. Set temperature related parameters, bex, tcv, trs and trd to zero.

5. Set temperature, using .temp, to appropriate temperature

6. Fit remaining parameters, vto, beta, gamds, lamda and alpha to measured

I-V characteristic at temperature of interest. Note: vto and beta should be

consistent with values measured in Section 5.3.2.

Figure 5.26: HSPICE Parameter Extraction Proceedure

200



Section 5.5 - HSPICE parameter extraction:

Parameter 30K 50K 70K 80K 100K 300K

fit 1.3 2.1 5.7 2.3 12.5 1.6

vto (mV) 496 490 484 500 480 341

beta (jA/V2) 398 487 489 430 425 250

gamds(mYV) -9.2 -3.5 -0.1 -7.7 -1.7 7.6

lamda (mV1) 100 100 116 120 128 101

alpha (V 1) 6.76 4.75 4.0 5.1 6.0 6.1

rsh Q 168 168 169 169 170 210

rshl kW 4.0 4.0 4.1 4.1 4.1 5.0

n (#) 4.73 3.26 2.44 2.30 1.89 1.07

is (fA/Lm2) 0 0.0 0.0 0.0 0.0 0.5

gcap (fF/gm2) 1.26 1.24 1.23 1.23 1.22 1.20

Table 5.5: HSPICE Parameters for 20gpm x 5ptm EFET

Parameter 30K 50K 70K 80K 100K 300K

fit 5.9 3.7 8.9 3.7 3.8 58.3

vto (mV) -503 -500 -508 -500 -501 -645

beta (pA/V2) 285 286 281 286 286 194

gamds(mVY1) 0 0 0 0 0 0.0

lamda (mV1) 69 67 71 64 61 30

alpha (V1) 2.1 2.4 2.0 2.4 2.4 3.5

rsh Q 159 159 160 160 160 210

rshl kWZ 2.3 2.3 2.4 2.4 2.4 3.0

n (#) 4.73 3.26 2.44 2.30 1.89 1.16

is (fA/Lm2) 0 0.0 0.0 0.0 0.0 9.2

gcap (fF/gm2) 1.79 1.77 1.75 1.74 1.72 1.70

Table 5.6: HSPICE Parameters for 20gm x 5gm DFET
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5.6 Conclusions on Cryogenic Characterization of GaAs MESFETs
Measurements have been performed on a set of three enhancement mode and depletion

mode GaAs MESFET's to determine their operating characteristics in the 30K to 100K

temperature range appropriate for FPA operation. All the devices performed well even

after repeated temperature cycling indicating that the dielectric cracking and void forma-

tion problems evident in high temperature processing [122] are not a problem for low tem-

perature operation even though the temperature differences from room temperature are

similar, about 200K. DC measurements have been used extract HSPICE model parame-

ters for both EFETs and DFETs fabricated using the Vitesse HGaAsIII process. The

results show that Vitesse Semiconductor's refractory gate VLSI GaAs MESFETs are ideal

for fabrication of monolithic FPA readout electronics.
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Chapter 6

Monolithic Integration of Normal Incidence QWIPs

Fabrication of high quality, high uniformity quantum well intersubband photodetectors

is only one step in the process of fabricating large format focal plane arrays. The individ-

ual detector pixels must then be biased and connected to a read-out integrated circuit

(ROIC) which converts the current from each QWIP pixel into a digital number propor-

tional in the light intensity at the pixel and formats the data from all the pixels into a bit

stream for transfer off-chip to a signal processing and display unit. In linear arrays or

small two dimensional arrays with a few 10's of elements or less, individual pixels can be

wire bonded and the signals taken immediately off chip. However, in large format FPAs

the total number of pixels varies from 10's of thousands to well over a million per FPA

chip. Furthermore, to maximize the sensitivity of the FPA the photocurrent from each

pixel must be integrated separately and simultaneously with the photocurrents of all the

other pixels in a so-called staring array format. The large number and density of pixels as

well as the requirement for simultaneous current collection requires that staring FPAs have

a capacitor to collect the photocurrent and a simple readout circuit to sample the charge on

the capacitor for each pixel. At the start of a frame collection time the capacitor for each

individual pixel is dumped by grounding both plates. The current is then allowed to col-

lect on the capacitor for one frame time causing the voltage across the capacitor to ramp at

which point the voltage on the capacitor is sampled and the process repeats at a rate typi-

cally between 30 and 300Hz. In the current state-of-the-art infrared cameras, the "dump-

ramp-sample" ROIC is fabricated in Silicon CMOS because of the availability of low

leakage, high capacitance per unit area capacitors and high speed digital and analog cir-

cuits. The Silicon ROIC is then bonded to the GaAs based QWIP FPA chip using Indium

bumps at each pixel as shown schematically in Figure 6.1. This hybridization process can

be made to work as evidenced by the 256x256 Lockheed-Martin QWIP FPAs described in
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Chapter 6 - Monolithic Integration of Normal Incidence QWIPs

Section 2.3 however, there are potentially significant problems with manufacturability and

reliability in hybrid FPA systems.

Incident IR Light 1

Figure 6.1: Schematic of Hybrid Focal Plane Array.

Having built a theoretical understanding for TE mode QWIPs in Chapter 2, demon-

strated high quality TE mode QWIP pixels in Chapters 3-4 and characterized the low tem-

perature performance of refractory metal gate VLSI GaAs MESFETs in Chapter 5 it is the

focus of Chapter 6 to look ahead and discuss the issues involved with fabrication of com-

plete IR camera subsystems including both the QWIP FPA and the ROIC. In particular,

problems associated with hybridization and then two possible solutions to these problems

both using monolithic integration of QWIP FPAs on VLSI GaAs MESFETs will be dis-

cussed. Section 6.1 discusses problems associated with hybrid FPA systems. Section 6.2

gives a short description of the epi-on-electronics (E-o-E) integration technique developed

by Shenoy and Fonstad[1,131] as it applies to QWIP FPAs and with particular attention

paid to the critical well cleaning procedure developed by the author to improve reliability
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in the E-o-E process. Section 6.3 describes the selective area wafer bonding (SAW) tech-

nique proposed by the author to work in combination with the E-o-E technique to address

specific issues of integration peculiar to QWIP FPAs. Finally, Section 6.4 summarizes the

discussion on monolithic integration of QWIP FPAs and looks to possible avenues for fur-

ther research.

6.1 Introduction to Integration of QWIPs
The primary difficulty associated with hybridization using Silicon CMOS ROICs is

due to the thermal expansion coefficient difference between the GaAs substrate used for

the QWIP FPA and the Silicon substrate used for the ROIC in combination with the low

operating temperature of the QWIP FPA. The thermal expansion coefficient of GaAs is

6.9x10 -6 K-1 which is more than twice the thermal expansion coefficient for Silicon which

is 2.6x10 -6 K-1.

Incident IR Light

QWIP Pixel Array
VOID

Silicon CMOS Readout IC

Thickness 500gm

Figure 6.2: Problems with Hybridization - unzipping due to thermal expansion
coefficient mismatch between GaAs, 6.9x10 -6 K- and Silicon, 2.6x10 -6 K-1.
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This 19gm length difference implies that pixels near the periphery of the QWIP FPA

which were originally aligned on top of their respective ROIC pixels are displaced by

about 9.5gm or 20% of the pixel size when at the QWIP FPA operating temperature. The

stress induced by this strain results in formation of voids or unzipping of the QWIP FPA

from the Silicon ROIC as shown schematically in Figure 6.2. To combat the unzipping

problem, QWIP FPAs are often thinned either by lapping or by selectively etching away

the entire substrate to thicknesses on the order of less than 10gm. This allows deforma-

tion of the QWIP FPA in the vertical as well as horizontal directions lessening, but not

eliminating the unzipping problem. In addition, the thinning process adds significant

complexity to the processing of the QWIP FPAs and is one of the more important yield

limiting factors.

One alternative to using hybridization is monolithic integration which uses the same

substrate for both QWIP FPA and ROIC. Monolithic integration is not plagued by any

thermal expansion issues because both the QWIP FPA and the ROIC expand and contract

at the same rate with changes in temperature. Monolithic integration thereby eliminates

both the bump bonding and wafer thinning steps used in hybridization. As discussed in

Section 1.6.2, for monolithic integration with Silicon CMOS ROICs Platinum Silicide

Schottky barrier MWIR detectors and Iridium Silicide Schottky barrier LWIR detectors

are a natural choice, however their relatively low quantum efficiency compared even to

TE mode QWIPs, 0.1% for IrSi in the LWIR verses 3.4% for TE mode QWIPs in the

LWIR, means that FPAs based on monolithic integration on Silicon substrates are limited

in performance. Schottky barrier detectors also tend to operate at very low temperatures,

<40K, requiring more expensive and cumbersome cooling arrangements. To take advan-

tage of higher performance GaAs based QWIP FPAs the ROICs must also be fabricated in

GaAs. This can be achieved by using GaAs based MESFETs such as those fabricated by

Vitesse Semiconductor and characterized for cryogenic temperature performance in Chap-

ter 5. At the operating temperatures for QWIP FPAs the Schottky barrier gate also forms a

low leakage, high capacitance per unit area capacitor suitable for use as the integration

capacitor in dump-ramp-sample GaAs based MESFET ROICs.
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Assuming a QWIP FPA operating temperature of 80K with a pixel pitch of 50gm and an

array size of 256x256 pixels, the difference in the thermal expansion coefficients for Sili-

con and GaAs of 4.3x10 -6 K-1 combined with a temperature difference of 350K between

the melting point of Indium at 157C and the operating point of the QWIP FPA at 80K

results in a length difference of 19pLm between the GaAs and Silicon chips.

There are several possible avenues to integration of QWIP FPAs and MESFET ROICs

on GaAs. For the highest performance one might consider first growing the QWIP FPAs

on a GaAs substrate and then growing a semi-insulating cap region into which the GaAs

MESFETs would be fabricated on top of the QWIP FPAs. This "stacked device" tech-

nique has the advantage that the optical and electronic circuits are vertically integrated,

but requires dedicated, high yield and very expensive fabrication facilities for both the

QWIP FPAs and the MESFET ROICs. One alternative called Epi-on-Electronics (E-o-E)

has been developed by Fonstad and Shenoy[132] which takes already existing commer-

cially fabricated VLSI scale GaAs MESFET circuits and grows optical devices on top of

these circuits using MBE. This technique allows the use of relatively low cost, high qual-

ity GaAs MESFETs and thereby leverages the knowledge and capital built up in fabricat-

ing GaAs MESFETs for high speed electronic applications. A short description of this

technique as it applies to QWIP FPAs will be described in Section 6.2. The second alter-

native to the stacked device technique is based on selective area wafer bonding, (SAW)

and is proposed by the author to be used in combination with the E-o-E technique to spe-

cifically address the issue of fill factor, the ratio of optically active pixel area to total pixel

area, which is somewhat compromised by the planar E-o-E integration technique. The

SAW integration technique is discussed in Section 6.3. Section 6.4 does some comparison

between the monolithic integration options and attempts to layout a path for future work.

6.2 Epi-on-Electronics integration technique for QWIP FPAs

The epi-on-electronics (E-o-E) technique is an attempt to leverage the large capital

and intellectual investments of the VLSI MESFET industry to quickly and economically

fabricate optoelectronic circuits. This technology allows integration of optical devices on
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the medium scale integration (MSI) level, -thousands of optical devices per square centi-

meter, with VLSI level, -millions of electrical devices per square centimeter, electrical

devices. Production of an E-o-E optoelectronic integrated circuit (OEIC) is done in four

steps: design of VLSI GaAs MESFET electronic circuits using standard layout software

(e.g. Cadence, Mentor Graphics, ...) with selected areas reserved for optical devices and

appropriate simulations using foundry supplied HSPICE parameters, commercial GaAs

foundry fabrication of electronic circuits, epitaxial growth of optical devices in the

reserved areas on the same GaAs substrate used for the electronic devices and finally opti-

cal device fabrication and interconnection with electronic circuits. The first two steps, up

to the point where completed electronic circuits have been fabricated are equivalent to the

fabrication of an electronic GaAs IC and in fact all of the circuits used at MIT have been

fabricated alongside, on the same wafer, purely electronic circuits designed by other uni-

versities through the ARPA/NSF sponsored MOS Implementation System (MOSIS) cir-

cuit broker. Only after the circuits have been fabricated and diced into chip form does

MIT begin the remaining epitaxy and optical device formation steps which result in a

completed OEIC. Figure 6.3 shows a schematic of the E-o-E process flow used by K.V.

Shenoy in the fabrication of OEICs with LEDs being the optical devices. Figure 6.3a

shows the electronic chip as received by MIT after circuit fabrication and dielectric

growth well cleaning done at Vitesse Semiconductor. Figure 6.3b shows the same chip

after MBE growth of the LED. In the region of the growth well where the crystalline sub-

strate has been exposed high quality epitaxial material is grown which is suitable for fabri-

cation of optical devices, in this case LEDs. In the region above the electronic circuits

where the substrate is not exposed the MBE material growth is polycrystalline. Finally,

Figure 6.3c shows the completed OEIC after removal of the unwanted polycrystalline

material on top of the electronic circuits and interconnection of the electronic and optical

devices. Growth wells as small as 50gm have been demonstrated implying a density of

optical devices on the MSI level.
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Figure 6.3: E-o-E OEIC fabrication flow showing Vitesse Semiconductor fab-
ricated VLSI GaAs MESFET chip with cleaned growth well (a); same chip after
MBE growth of LED structure resulting in crystalline material in growth well
and polycrystalline material above circuits (b); completed chip after removal of
polycrystalline GaAs and upper level metallization (c). Courtesy K.V. Shenoy
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Success of the E-o-E integration technique depends on two characteristics of the elec-

tronic circuits; first, the circuits must be able to survive the temperatures of MBE growth

for a period long enough to grow usable optical devices and second, the circuits must be

designed to allow exposure of the undamaged GaAs substrate in regions where the optical

devices are to be grown. The time/temperature characteristics of Vitesse fabricated refrac-

tory metal gate GaAs MESFETs have been investigated by Shenoy[131] and Braun[86]

who found that a metallurgical reaction between the AlCu core and the WNx clad of the

electrical interconnects limits the time which a circuit can be exposed to elevated temper-

atures without permanent damage to approximately 5 hours at 470C as shown in Figure

6.4. The metallurgical reaction between the AlCu core and the WNx clad is characterized

by an Arrhenius characteristic with an activation energy of 3.5eV and linear thermal cycle

time dependence with a saturation at an interconnect resistance 15 times the original value

as shown in Figure 6.5.
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Figure 6.4: Vitesse HGaAs3 metal sheet resistance as a function of 5 hour

thermal cycle temperature. Courtesy Eric Braun[122].
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Figure 6.5: Arrhenius curve set with an activation energy of 3.5eV and
experimentally measured Vitesse HGaAs3 metal 1 sheet resistance thermal
cycle response. Courtesy Eric Braun.[122]

Five hours at 470C is sufficient to grow a wide variety of optical devices including QWIPs

with total grown layer thicknesses of 5gm or less.

The performance of optical devices, both emitters and detectors, is critically depen-

dent on the crystal quality of the device material which in-turn is dependent on the surface

quality of the substrate. Design and preparation of the dielectric growth well (DGW)

regions in the electronic circuits into which the optical devices will be grown is therefore

critical to the success of the E-o-E integration technique. As originally developed by

Shenoy[132] the growth wells consisted of about six microns of intermetal dielectric on

top of a source/drain implant region which acts as the bottom interconnect between the

electronic and optical circuits, Figure 6.6a. As the final step in the processing of these cir-

cuits at Vitesse Semiconductor a scribe line etch is done using RIE which removes this

dielectric material and exposes the substrate. Prior to growth a solvent clean and ashing in

an oxygen plasma remove any organic material left on the substrate by the RIE dielectric
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etch process. A very short, 10 second, dip in buffered hydrofluoric acid removes the oxide

of GaAs which forms on the surface of the substrate after exposure to air leaving a GaAs

surface appropriate for MBE growth. This well cleaning process was used by K. Shenoy

and others[133,134,135] to successfully integrate a variety of optical devices but was

eventually found to result in surfaces with sufficient damage from RIE overetch of the

GaAs substrate to limit uniformity and performance.

Dielectric
Stack -

S/D Implant -

a)

Metal 1
Ohmic Metal

16001 SiO 2

375X SihNA

b)

Figure 6.6: Schematic comparison of the dielectric growth well (DGW), (a)
and metallic growth well (MGW) (b) structures as they appear after returning
from Vitesse Semiconductor. For DGW pre-growth processing includes solvent
clean and buffered oxide etch (BOE) etch. For MGW pre-growth processing
includes solvent clean, metal 1 etch and BOE etch.
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Because uniformity is particularly important in QWIP FPAs, the author proposed a

new metallic growth well (MGW) design in which a metal 1 etch stop layer is introduced

underneath the majority of the dielectric stack, Figure 6.6b. The scribe line etch at Vitesse

then removes the dielectric down to metal 1 but stops prior attacking the GaAs substrate

leaving behind metal 1, and a highly uniform dielectric layer consisting of 375A of Si3N4

and 1600A SiO 2. At MIT the MGW pre-growth preparation then consists of three steps; a

solvent clean and ashing in an oxygen plasma to remove any organic material left on the

substrate by the RIE dielectric etch process, removal of metal 1 with an Aluminum etch,

either an HCl wet etch or a SiC14/BC13 RIE plasma etch with a mask covering everything

except the MGW region to be cleaned in order to prevent damage to the exposed Alumi-

num bonding pads, and removal of the remaining thin dielectrics in buffered hydrofluoric

acid to expose the pristine GaAs substrate.

a) With Al stop etch layer b) Without Al stop etch layer

Figure 6.7: Effect of including metal etch stop layer on crystal quality after.
l gm GaAs growth in growth well on VLSI MESFET chip. With Al etch stop
layer, crystal shows no defects using Nomarski at 1000x. (a) Without Al etch stop
layer, large defects due to RIE surface damage are clearly visible. (b) Note: small
features on both photographs are due to microscope contamination. Growth and
photographs courtesy J. Ahadian and S. Patterson.
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The addition of an ohmic metal/metal 1 ring around the MGW as shown in Figure 6.6b

acts as a lateral etch stop and prevents damage to the surrounding circuits during the buff-

ered hydrofluoric acid etch. This new MGW process has recently been implemented in

the design of MIT-OEIC4 by Joe Ahadian.[136] Figure 6.7 shows a comparison of the

surface of two regions on the same OEIC chip with different growth well preparations

after growth of -1 lm GaAs. Figure 6.7b shows the result for the original DGW process

with defects caused by RIE damage to the GaAs substrate surface highlighted with

arrows. Figure 6.7a shows the result for the new MGW process which has no such defects

indicating that the metal 1 etch stop has successfully eliminated RIE damage and the

resulting crystal defects in the epitaxial material.

A schematic for a QWIP FPA designed using the E-o-E integration technique is shown in

Figure 6.8. Figure 6.8a shows a side view of the chip with the electronics indicated by left

slanting hash marks and the quantum well active region of the QWIP indicated by a thin

horizontal line in the MBE epi region. Note that the bias is applied between a bottom con-

tact consisting of a source/drain implant fabricated as part of the Vitesse MESFET process

and a top contact fabricated after MBE growth of the optical devices. In this design light

is incident from the back side of the substrate which can be polished and coated with an

anti-reflection layer for improved optical coupling. Figure 6.8b shows a top view of a sin-

gle pixel in the QWIP FPA. The absolute size of the pixel is determined by the desired

spatial resolution and operating wavelength of the QWIP FPA. The relative size of the

components is determined by the desired dynamic range of the signal response, and the

complexity of the ROIC. For the example of Figure 6.8b, the parameters for the Javelin

seeker/tracker missile program have been used. This missile has a pixel pitch of 60gm, an

operating wavelength between 8gm and 9.5gm, a dynamic range of 12bits and a frame

rate adjustable from 30 to 300Hz. The 12bit dynamic range requires the storage of 17 mil-

lion electrons per frame which, assuming 1V operating voltage requires a capacitance of

2.7pF. Using for the capacitance of a MESFET gate the value measured in Chapter 5,

-1.3fF/gm 2 , gives a capacitor area of 2200gm2 or approximately 61% of the pixel area.
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Figure 6.8: Schematic of QWIP FPA designed using E-o-E. Side view including
backside illumination (a). Pixel layout drawn to scale for 12bit dynamic range,
2.7pF capacitor, MESFET gate capacitance of 1.2fF/gm2 (b).

This leaves only 1400gm 2 for the QWIP photoconductor, the MESFET ROIC and appro-

priate interconnects. Assuming a minimum of 200Am 2 for the MESFET ROIC leavs only

about 33% or 1200gm 2 for the QWIP photodetector. The fill factor, ratio of QWIP area to

total pixel area, can now be calculated and for this example comes to only 33%. The small

fill factor is an important drawback in the design of QWIP FPAs using the standard E-o-E

technology which places optical and electrical devices next to each other on the same sub-
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strate. This is in contrast to the hybrid technologies which stack optical and electrical

devices on top of each other resulting in fill factors exceeding 90%.

Lenses

a)

115gi

b)

Figure 6.9: Schematic of QWIP FPA with lenses designed using E-o-E (a)
and SEM of lens array from Smith et al. [137]

To combat the fill factor limitation the author has proposed using lenses that are etched

into the back side of the QWIP FPA. This technique has previosly been proposed to

improve the performance of MCT FPAs[138] and the formation of good quality lens
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arrays has been demonstrated by Jones[137] using a resist flow and etch back technique.

Figure 6.9a shows a schematic of the proposed QWIP FPA using E-o-E in combination

with lenses etched on the back side of the OEIC substrate and Figure 6.9b shows an SEM

of a lens array formed using this technique. The monolithically integrated lenses could

potentially improve the fill factors to about 78%, d/4. In addition, because the lenses con-

centrate the light while reducing the active area of the QWIP, the background current in

the QWIP which is proportional to the device area could be reduce by a factor of 3, for the

QWIP FPA of Figure 6.8, resulting in an increase in the BLIP operating temperature of

about 5C, a small but important advantage. One might consider that the premium placed

on uniformity would put very tight fabrication tolerances on the lens array, however

within the narrow bandwidth of sensitivity for the QWIPs, lenses with small fabrication

non-uniformities should have different absolute coupling efficiencies, but negligible varia-

tion in coupling efficiency with temperature and spectral content of the scene. As dis-

cussed in Chapter 1 it is the variation with spectral content which puts such strict

uniformity restraints on the QWIP devices themselves and the constant coupling coeffi-

cient of the lenses can be easily compensated for during array calibration.

In concluding the discussion of QWIP FPAs fabricated using the E-o-E integration

technique, it should be emphasized again that monolithic integration of QWIP FPAs with

their ROICs is extremely attractive. Improved manufacturability and reliability due to the

elimination of the Silicon substrate and the entire hybridization process can potentially

lead to smaller, cheaper and more sophisticated infrared cameras. E-o-E is particularly

attractive because it leverages the investments of the VLSI MESFET industry to econom-

ically fabricate QWIP FPA OEICs. Issues such as the low fill factor inherent in the E-o-E

process are important but soluble using techniques such as the integrated lenses discussed

in this section. There is however a tremendous amount of work yet to be done to jointly

optimize the performance of the electronic circuits and the QWIP FPAs and to demon-

strate that the epitaxial material grown in the E-o-E growth wells is of sufficient quality

and uniformity to produce large area QWIP FPAs. Recognizing this the author has also

proposed a new monolithic integration technique called selective area wafer bonding
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(SAW) which in combination with the E-o-E integration technique can dramatically

reduce the requirements for high quality epitaxy in the E-o-E growth wells while at the

same time providing fill factors greater than 90% and separately optimized QWIP FPA

devices. This technique is the subject of Section 6.3.

6.3 Selective area wafer bonding integration technique

The selective area wafer bonding (SAW) integration technique is designed to build on

the strengths of the E-o-E integration technique while at the same time providing for verti-

cal integration and relaxing some of more severe requirements for high crystal quality in

the low temperature MBE material. In particular, the greatest advantage of E-o-E over all

previous integration methods is that it leverages the large capital and intellectual invest-

ments of the VLSI GaAs MESFET industry to quickly and economically fabricate OEICs

using commercially fabricated VLSI GaAs MESFET circuits. There are two basic weak-

nesses in the E-o-E approach when applied to QWIP FPAs; the first being that the optical

devices and electrical devices are integrated in the same plane, as shown in Figure 6.8b

this leads to low fill factors for QWIP FPAs, the second weakness is that to prevent dam-

age to the MESFET circuits during subsequent MBE growth the MBE must be done at

low temperature, 470C verses the more typical GaAs growth temperature of 580C, requir-

ing extreme care and special growth techniques to get good quality optical material.

Recently there has been an impressive amount of progress in developing E-o-E, particu-

larly with the use of Phosphorus based III-V semiconductors like In0 .50Ga0 .50P which is

lattice matched to GaAs but which can be grown with high quality on GaAs in the 450C to

470C temperature range.[139] A larger set of optical devices could be quickly added to

the E-o-E repertoire however, if there were a way to leverage the large capital and intellec-

tual investment in already existing III-V optical devices based on InGaA1As, InGaAsP and

other material systems that are preferably grown above 470C. Some of these devices like

QWIPs which depend critically on carrier lifetime, recall from Equation 1.60 that D* is

proportional to the square root of the carrier lifetime, are particularly susceptible to possi-

ble degradations in material quality introduced because of the low growth temperature.

218



Section 6.3 - Selective area wafer bonding integration technique

Side View

QWIP

GroundŽ

SI GaAs Substrate

Isolation Etch -~3pm

Top View

QWIP Isolation Trenches

r

i
VLSI MESFET ROIC

SI GaAs Substrate

E-o-E Growth of Pillar
E-o-E Contact Pillar

~ill"1

SAW Integration E-o-E Growth Well

Figure 6.10: Schematic illustration of fabrication flow for E-o-E/SAW integra-
tion. QWIP FPAs are etched using either RIE or wet etching to define the pixel
size and isolate the pixels (a). Pillars are grown on pre-fabricated MESFET VLSI
ROICs using E-o-E (b). Finally, QWIP FPA is wafer bonded on to prepared VLSI
GaAs MESFET ROIC (c). Illumination is from top into QWIP FPA.
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Separate optimization and growth of the optical and electronic devices with no restrictions

on optical device growth temperature is an important advantage of E-o-E/SAW.

The key to the SAW technology is wafer bonding. The idea behind wafer bonding is

that by placing two pristine semiconductors in intimate contact and with the application of

heat and pressure the two semiconductors can be made to bond.[140,141] This is a tech-

nique which has received a lot of attention lately in the Silicon analog device industry

because it can be used to fabricate Silicon on Insulator (SOI) devices with highly linear

characteristics due to the decoupling of the doped substrate and thus the elimination of

voltage dependent substrate coupling. Wafer bonding has also been applied to UI-V semi-

conductors. Wafer bonding is being used in production of high luminosity transparent

substrate orange LEDs fabricated by Hewlett-Packard[142] and has been used to demon-

strate 1.3mm GaInAsP lasers grown on InP substrates and then wafer bonded to a GaAs

substrate.[143] Of particular importance here is that wafer bonds with excellent electrical

characteristics determined by the band discontinuities in the constituent semiconductors

have been obtained for wafer bonding temperatures as low as 450C for 30 minutes. This

is well within the time/temperature tolerance of the Vitesse refractory gate VLSI GaAs

MESFET circuits as shown in Figures 6.4 and 6.5.

The combination of E-o-E with the SAW integration technique (E-o-E/SAW) proposes

to keep the advantages of E-o-E while at the same time enabling vertical integration and

freeing the active portion of the optical devices to be grown with no restrictions on growth

temperature. A schematic diagram of the fabrication flow is shown in figure 6.10. Figure

6.10a shows a QWIP FPA grown on a semi-insulating GaAs substrate. This substrate is a

blank epi-ready substrate as was used in this thesis and the QWIP FPA can be grown at

whatever temperature and using whatever growth technique yields the best device perfor-

mance. After growth the wafer is then processed with a single mask step which etches

narrow isolation trenches between each pixel thus defining the spacial resolution and pixel

format of the QWIP FPA. Figure 6.10b shows a companion ROIC chip which has been

fabricated by Vitesse Semiconductor and contains the VLSI GaAs MESFET ROIC cir-

cuits along with a small, i.e. 20km x 20m, E-o-E growth well. The MGWs have been
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appropriately cleaned and inside each growth well has been grown using E-o-E a contact

pillar which has been etched to remove the surrounding polycrystalline material and to

electrically isolate each pillar. Figure 6.10c then shows the processed QWIP FPA after

wafer bonding to the processed E-o-E chip with contact pillars.

The only function of the contact pillar is to electrically connect the ROIC to the QWIP

FPA. As such the crystal quality of the pillar material is not critical. With sufficiently

high doping even highly dislocated material totally inappropriate for direct fabrication of

optical devices will work as an excellent electrical conductor and after wafer bonding pro-

vide excellent contact to the QWIP FPA. The material used for the pillar can even be

selected specifically to reduce the contact resistance at the wafer bonded interface through

interdiffusion which can be enhanced by using Phosphide based materials with increased

mass transport.
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Figure 6.11: Forward IV characteristics of n-GaAs/n-InP wafer bonded samples.
InP biased positive with respect to GaAs. Wafer bonding done at temperature for
30 minutes in Hydrogen with bonding force of 0.29 N/cm2. Barrier heights are
0.46, 0.42, 0.40 and 0.37eV for bonding temperatures of 450C, 550C, 650C and
700C respectively.[143]
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As a numerical estimate of the effect on QWIP performance of a wafer bonded inter-

face, the data of Wada et al.[143] for the bonding of n-type InP to n-type GaAs can be

used. Figure 6.11 shows the I-V characteristics of an n-type InP sample wafer bonded to

an n-type GaAs sample at temperatures from 450C to 700C for 30 minutes in Hydrogen.

The data are consistent with a theoretical model based on thermionic emission over the

barrier due to the conduction band discontinuity at the GaAs/InP interface. The barrier

heights determined from the curves of Figure 6.11 are 0.46eV, 0.42eV, 0.40eV and 0.37eV

for samples bonded at 450C, 550C, 650C and 700C with an ideality factor of 1.8. and

assuming an effective Richardson constant of 8.4 Amps/(cm 2*K2 ). Both wafers were

bulk material doped 2x10 18 cm -3. All values are higher than the predicted conduction-

band discontinuity of 0.3eV[144] in pristine GaAs/InP junctions presumably due to

defects at the interface.

To calculate the voltage drop across such a GaAs/InP waferbonded interface in a

QWIP the current density can be expressed from thermionic emission theory as:[112]

j= A( qVB( qVF) (qVR) amps

kT = A exp - [ exp - exp 2 (6.1)
cm

where A is the effective Richardson, 8.4 Amps/(cm 2*K2), T is the QWIP operating tem-

perature, VB is the barrier height calculated from Figure 6.11, n is the ideality factor also

calculated from Figure 6.11 to be 1.8, VF is the portion of the applied voltage appearing in

the GaAs which determines the forward bias characteristic and VR is the portion of the

applied voltage appearing in the InP substrate which determines the reverse bias charac-

teristic. From Chapter 4 the BLIP current density for the TE mode QWIPs of this thesis

requires approximately 0.lmA/cm2 in the pillar which when inserted into Equation 6.1

along with the 450C waferbonding barrier height of 0.46eV and a BLIP temperature of

68K gives a voltage drop across the wafer bonding interface of 0.6V, significantly less

than the QWIP operating voltage of 2V and therefore not a limit to the QWIP device per-

formance. Homojunction, GaAs/GaAs, voltage drops, voltage drops across narrow band-

gap materials like InAs/InAs and voltage drops across heavily doped materials in which
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tunneling currents can be as large or larger than the currents due to thermionic emission

are expected to be even lower. Near ideal waferbonding interfaces could be achieve by

doing all the waferbonding within the post-growth UHV environment. In this case after

processing, wafers to be bonded would be loaded back into the vacuum chamber for a

Hydrogen plasma clean identical to that now used prior to MBE growth and then manipu-

lated together and heat treated all within the UHV environment.

InP

;aAs

f·

10nm

Figure 6.12: Cross-sectional transmission electron micrograph of GaAs/InP
heterointerface bonded at 650C for 30 minutes. The misfit dislocations are
indicated by arrows. From H. Wada.[143]

The quality of the wafer bonded interface on the atomic scale is indicated by the cross-
sectional TEM from Wada[143] shown in Figure 6.12. The high resolution of the TEM
image allows one to count the number of atomic planes between the two misfit disloca-
tions, there are 27. This corresponds to a 3.7% lattice mismatch, exactly what one gets by
calculating the lattice mismatch between bulk GaAs with a lattice constant of 5.6532A
and InP with a lattice constant of 5.8687A.
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Figure 6.13: Schematic illustration of fabrication flow for SAW integration pro-
cess. QWIP FPAs are etched using either RIE or wet etching twice; first to define
the pixel size and isolate the pixels (a) and then to define pillars used for contact to
MESFET ROIC (b). Finally, QWIP FPA is wafer bonded on to prepared VLSI
GaAs MESFET ROIC (c). Illumination is from top into QWIP FPA.
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Note also that there are no threading dislocations propagating perpendicular to the

wafer bonded interface. These two characteristics, complete relaxation and zero threading

dislocations are in fact the ideal characteristics of a grown heterointerface with thickness

of the epilayer grown thicker than the critical thickness discussed in Chapter 3. The conti-

nuity of the atomic layers through the interface also implies that the wafer bonding pro-

cess results in a single semiconductor crystal indistinguishable from an ideally relaxed

grown heterointerface and therefore worthy of the name monolithic (undifferentiated)

integration.

For some applications it may be preferable to limit or even eliminate the need for

growing on top of the chip containing the circuits. In this case the wafer bonding can be

done directly onto the cleaned growth well through the use of pillars etched into the mat-

ing optical device as shown schematically in Figure 6.13. Figure 6.13a shows a QWIP

FPA with approximately 8gm of doped pillar material grown on top of the active device

after pixel isolation trenches have been etched approximately 3gm down into the pillar

material. Figure 6.13b shows the same QWIP FPA after masking of the pillars and a fur-

ther 8gm of pillar material has been etched away leaving isolated pixels with one 8gm

high contact pillar per pixel. Figure 6.13c shows the companion VLSI MESFET ROIC

which has had the MGW cleaned to reveal the pristine substrate, but has not been grown

on wafer bonded to the QWIP FPA. This time the wafer bond occurs on the substrate of

the VLSI MESFET ROIC with the pillars acting as an electrical connection and physical

spacer between the ROIC and the QWIP FPA.

In both the E-o-E/SAW integration technique and the pure SAW integration technique

the optical and electrical circuits are vertically integrated allowing for pixel fill factors

approaching 100%. In addition because any E-o-E material required is only used for elec-

trical interconnection the requirements for good crystal quality are dramatically reduced

and therefore the growth and fabrication conditions for the optical and electrical circuits

can be separately optimized. In effect this allows E-o-E/SAW to leverage both the large

investment of the VLSI GaAs MESFET industry and the large investment of the III-V epi-
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taxy industry in a monolithic OEIC that has only semiconductor bonds throughout and is

indistinquishable on an atomic scale from a single heterostructure.

6.4 Conclusions and future work on monolithically integrated QWIPs

In this chapter issues related to the integration of QWIP FPAs with the ROICs that are

required to fabricate IR cameras have been discussed. Monolithic integration based on the

epitaxy-on-electronics technique developed by Shenoy and Fonstad[132,121] has been

compared to current hybrid integration techniques and found to have significant advan-

tages. Finally, a new proposal for monolithic integration based on a combination of E-o-E

and selective area wafer bonding has been put forward to address the issues of crystal

quality and pixel fill factor which are weaknesses in E-o-E integration. This combination

E-o-E/SAW integration keeps the best aspects of the E-o-E process while at the same time

allowing independent optimization of the QWIP FPAs and VLSI MESFET circuits and

improving pixel fill factors to above 90%.

The combination of E-o-E and SAW is very attractive for QWIP FPAs and other

OEICs. Future work toward demonstrating the utility of this technique must start with a

better operational understanding of the parameters which affect the wafer bonding inter-

face. In particular, effects of doping, material composition and bonding temperature need

to be characterized with an eye toward minimizing the time and temperature required to

get high quality, low resistance wafer bonds. As shown in Figures 6.3 and 6.13 10m

square posts are to be aligned within 20jtm square growth wells. This requires an align-

ment tolerance of +/- 5pm, tight, but still smaller than the +/- 1lm tolerance required for

alignment of optical fiber lasers and single mode fibers. As integration density increases

and the MGW size shrinks, the alignment technique used to align the two wafers to be

bonded may become an important limiting factor. Fixtures for alignment underneath a

microscope similar to those used in the alignment of laser diodes and single mode optical

fibers need to be developed possibly with the addition of lithographically defined pins and

sockets to aide in accurate placement. Finally, though the E-o-E/SAW technique has been

discussed in terms of QWIP FPAs and GaAs VLSI MESFETs investigations aimed at
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extensions to other optical material systems like MCT and possibly other electronic cir-

cuits like Silicon CMOS should be interesting.
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Chapter 7

Conclusions and Possible Directions for Further Research

7.1 Thesis Accomplishments
Quantum Well Intersubband Photodetectors (QWIPs) are attractive devices to compete

with Mercury Cadmium Telluride (MCT) narrow bandgap semiconductors for use in very

large focal plane arrays (FPAs) because QWIPs can take advantage of both established

technology for growing and processing GaAs optical devices and commercially available

large area VLSI GaAs IC's. The key disadvantage of high detectivity n-type QWIPs has

been their requirement for a secondary coupling mechanism, typically an etched grating or

roughened surface, in order to couple normally incident TE polarized light into the TM

active quantum wells. Though the etched couplers have been demonstrated to be very

efficient, they add complexity to the fabrication process, non-uniformity to the FPAs and

problems with cross-talk between adjacent array elements. In addition, all current FPAs

use Silicon based multiplexer (MUX) circuits which require bump bonding of the MUX to

the active array elements. This bump bonding process is inherently very low yield and

suffers from "un-zipping" at cryogenic temperatures due to the factor of three mismatch

between the thermal expansion coefficients of GaAs and Silicon. All of these factors limit

system performance as measured by minimum resolvable temperature, MRT, and reduce

yields greatly increasing finished array prices. This thesis demonstrates the first TE active

normal incidence pseudomorphic n-type QWIP. By using TE active devices the need for

couplers is eliminated simplifying the fabrication process, improving uniformity and elim-

inating coupler induced cross talk. The monolithic integration of the QWIPs with VLSI

GaAs MESFETs in which the MUX is fabricated is discussed and a new monolithic inte-

gration technique is proposed called E-o-E/SAW which combines the strengths of the epi-

on-electronics technique with those of an epi only integration process. The E-o-E/SAW

technique uses wafer bonding to monolithically integrate optical devices onto an E-o-E
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electronic circuit chip with epitaxially grown connecting pillars. This allows separate

optimization of the growth for optical devices and connecting pillars and removes the

requirement for high quality MBE to be grown at low temperature. The E-o-E/SAW tech-

nique also allows stacking of the electronic and optical circuits providing for QWIP FPA

fill factors in excess of 90%. E-o-E/SAW should be generally applicable to any OEIC, but

for QWIP FPAs it has special importance because it eliminates the need for bump bonding

as well as all incompatibilities between the MUX and the active FPA. IR cameras fabri-

cated from this technology should have state-of-the-art performance with higher reliabil-

ity, lower cost and better scaling.

Growth of TE active QWIPs has been done using solid source Molecular Beam Epit-

axy (MBE) on <100> GaAs substrates using the AlGaInAs material system. A large num-

ber of growths has been done using a variety of device structures and growth conditions to

investigate the effects of device design and MBE growth on device performance. Charac-

terization of the grown material using Double Crystal X-ray Diffraction (DCXD), Photo-

luminescence (PL) and Cathodoluminescence (CL) has been important to understanding

the properties of the grown material. Fabrication of the QWIPs uses all the common semi-

conductor processing technologies as well as several less common techniques imple-

mented at MIT by the author. Among the latter are silicon tetra-chloride / boron tri-

chloride Reactive Ion Etching (RIE) of GaAIAs, Plasma Enhanced Chemical Vapor Depo-

sition (PECVD) of low stress silicon oxy-nitride dielectrics and negative resist based

metal lift-off. These techniques have been central to the development of the TE active

QWIPs.

A k*p analysis of the TE sensitivity for GaAs/AlGaAs quantum wells shows that dis-

continuities at the quantum well interface including coupling between the p-type valence

band and the s-type conduction band lead to about a 20% ratio of TE to TM absorption

coefficient between the occupied n=1 bound state and the unoccupied n=2 quasi-bound

state for the quantum wells used in this work. The resulting TE absorption coefficient of

about 200cm -1 corresponds to a quantum efficiency of 0.068% per quantum well in a

superlattice with 50A quantum wells and 300A barriers.
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Extensive measurement of individual TE active QWIP devices has been done at cryo-

genic temperatures to characterize dark current, spectral response and black body respon-

sivity of the devices. Background Limited Performance (BLIP) temperatures as high as

68K have been demonstrated with leakage currents at BLIP of less than 0.2mA/cm2.

Responsivities as high as 80mA/W have been measured using a black body at 300K for a

QWIP with 10 Ino.10GaAs 50A quantum wells doped n type 5x101 7 cm-3 and separated by

500A Al0.20GaAs barriers. The detectivity of this device is 2x10 10 Jones at BLIP and the

quantum efficiency per quantum well is 0.068%. This value for the quantum efficiency

per quantum well is in excellent agreement with the kep theoretical predictions of the TE

sensitivity.

An important accomplishment of this thesis is the recognition that the quantum effi-

ciency of TE mode QWIPs, though low compared to competing devices, is sufficiently

high so as not to effect the overall performance of the FPA. A critical analysis of the

requirements for FPAs shows that improvements in overall FPA cost, reliability and per-

formance can be gained by trading off individual device detectivity for improvements in

uniformity and simplifications in the manufacturing process. The TE active QWIPs dem-

onstrated here do exactly that and calculations based on measured devices show that state-

of-the-art minimum resolvable temperature differences, MRTs, of less than 10mK are fea-

sible using these devices while at the same time eliminating the need to manufacture high

quality diffraction gratings. Use of the E-o-E/SAW technology directly addresses the

problems of yield and reliability in existing bump-bonding hybrid integration techniques

to eliminate the need for bump bonding and wafer thinning.

Since the VLSI MESFETs used in the FPA MUXs are commercial products designed

to work within the range -55C to 125C systematic characterization of the component

EFETs and DFETs at cryogenic temperatures has been carried out. All the components

continue to work at temperatures as low as 15K and show no performance or reliability

degradation even after repeated temperature cycling. The primary effects of lowering

temperature are an increase in the transconductance by a factor of about three for a tem-
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perature change from 300K to 60K, an increase in the threshold voltage at a rate of about

1.5mV/K for both EFETs and DFETs and an increase in the Schottky diode gate ideality

factor from near one at 300K to near four at 15K due to an increase in the tunneling of car-

riers across the barrier.

In concluding, Figure 7.1 shows the motto for this work and emphasizes the focus that

has been placed on applying interesting new technology to the problems of manufacturing

infrared cameras.

A New Technology for Improving
Quantum Well Intersubband Photodetector (QWIP)

Focal Plane Array (FPA)
Performance and Manufacturability

Figure 7.1: Advantages of TE mode normal incidence QWIP FPAs

7.2 Possible Directions for Further Research
This thesis has presented several important results which lay the groundwork for fur-

ther progress in QWIP FPA research. These results fall into two broad categories, related

to the performance of individual devices and related to the integration of QWIP FPAs with
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ROICs. In terms of the individual devices, increasing the BLIP temperature always pays

important dividends because of the large cost associated with cryogenic coolers. As dis-

cussed in Chapter 2, the use of short period superlattices as barriers instead of bulk mate-

rial has the advantage that the density of states is significantly reduced, from 3D to quasi

2D, thereby reducing thermionic emission and increasing BLIP temperature. This bound

to miniband type QWIP transition has proved very successful in the TM grating coupled

devices and can be expected to have a similar effect on thermionic emission in TE mode

devices thereby increasing the BLIP temperature though the effect on TE mode absorption

coefficient has not been calculated. The devices investigated in this thesis were all chosen

to have Indium compositions and well widths below the critical thickness as discussed in

Chapter 3. This was done on the assumption that any defects introduced by misfit disloca-

tions would adversely affect carrier lifetime and dark current which in turn deteriorate the

detectivity. However, the one device fabricated by Alpha Photonics had 50 quantum wells

consisting of 40A of In0.30Ga0.70As placing it well beyond the critical thickness. It is pos-

sible that the in-plane nature of these defects has little or no effect on carrier lifetime and

dark current, a fortuitous result that if confirmed by further work would allow the number

of quantum wells to be chosen based on other performance criteria like the photoconduc-

tive gain which decreases with increase quantum well number. The devices investigated

in this thesis were also all in the LWIR band partly because the large background photon

fluxes in this band puts a premium on uniformity and thereby discounts quantum effi-

ciency which is known to be low in TE mode devices and partly because equipment for

measuring in the LWIR band was readily available. Further work now being pursued by

MIT and ADT to expand the range of TE mode devices to shorter as well as longer wave-

lengths and to vertically integrate devices with different spectral responses should be quite

interesting.

In the area of integration, a new integration technique called E-o-E/SAW has been pro-

posed, but there is still a tremendous amount of further research to be done to demonstrate

that high quality OEICs can be produced using this technique. First, though wafer bond-

ing is becoming more wide spread in industry it appears to be somewhat of a "black art"
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with some groups reporting much better results than others. MIT needs to demonstrate

that the know-how exists here to produce high quality wafer bonds compatible with the

time/temperature tolerances of the VLSI GaAs MESFETs used for electronic circuits.

Research into the growth of specially designed epitaxial bonding layers containing narrow

bandgap materials and/or high vapor pressure materials such as InP and InGaP should also

prove fruitful in designing the optimum interface for the E-o-E/SAW process. Finally,

though E-o-E/SAW has been conceived in the context of QWIP FPAs integrated on VLSI

GaAs MESFETs the beauty of the technique is that it if widely applicable. Further

research into its use with Silicon CMOS circuits, InP based optical devices and even MCT

based optical detectors for low background temperature applications may prove fruitful.
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