
UniPlug: A Framework For Ad-hoc Invention Sharing Over A

Campus Network

by

Durga Prasad Pandey

B.Tech., Indian School of Mines Dhanbad (2004)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author -

gram in Media Arts and Sciences
August 20, 2007

Certified by.
Andrew B. Lippman

Senior Research Scientist
MIT Media Laboratory

Thesis Supervisor

Accepted by_
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

SEP 1 4 2007

LIBRARIES

// Deb Roy
Chairperson, Departmental Committee on Graduate Students

MIT Media Laboratory

ROTCH

C_ j

UniPlug: A Framework For Ad-hoc Invention Sharing Over A Campus

Network

by

Durga Prasad Pandey

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on August 20, 2007, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

In the future, there will be a large number of devices, and most of us will own more

than one(some of us already do). Many individual innovators write programs that exploit
features on such devices for interesting, non-standard uses. Usually such inventions are lost

over time. In this thesis, we propose a framework called UniPlug that encourages rapid
and ad-hoc sharing of such inventions. It works by providing distributed repositories to

make inventions publicly available, and providing an easy to use client that locates and
fetches inventions for devices that a user owns. We begin by introducing the problem and

related work. We then formulate the problem technically and design a solution. This is
followed by the description of the implementation of a proof of concept. Further, we discuss
its applicability to disseminating inventions for medical devices along with an example
scenario. We conclude by summarizing this work, and briefly describing our planned future
work.

Thesis Supervisor: Andrew B. Lippman
Title: Senior Research Scientist, MIT Media Laboratory

UniPlug: A Framework For Ad-hoc Invention Sharing Over A Campus

Network

by

Durga Prasad Pandey

The following people served as readers for this thesis:

Thesis Reader

Adjunct Professor of
David P. Reed

Media Arts and Sciences
MIT Media Laboratory

Thesis Reader .

Chris Schmandt
Principal Research Scientist

MIT Media Laboratory

Acknowledgements

I have been fortunate to have Andy Lippman as my advisor. Andy provided me the freedom

to pursue an independent line of research, while questioning my assumptions and pointing

out possibilities to explore. He has managed to create a friendly yet challenging atmosphere

in the group which provided a thoroughly enriching experience. David Reed, my co-advisor

and thesis reader, has been an amazing source of wisdom and insight, and I have learnt a

lot listening and discussing ideas with him. His curiosity is infectious, and he has deeply

influenced my way of thinking. Chris Schmandt, my thesis reader, invited me to speak to

his group last year, and I have become his fan ever since. Chris is highly knowledgeable,

besides being a warm, affable person. Pattie Maes reviewed my thesis proposal and her

sharp, critical comments helped me immensely in revising it into a much better form.

Thank you all for being such great mentors.

Thanks to Rick Shrenker, Dr Julian Goldman and Susan Whitehead from the Medical De-

vice Plug and Play program for all the enlightening discussions I have had about connecting

medical devices with you. I am grateful to Mads Emborg and Sean Moore from Avaya from

your help with providing equipment and software for the demonstration.

Thanks to all my friends and collaborators here at the lab, including Hector, Vyzo, Kwan,

Fulu, Grace, Dawei, Paulina, Philipp, Isha, Manas, Sung, Alea, Seth, Mihir, Orkan, Elan,

Pol, Nadav, Hoda, Ilia, Rachel, Akshay, Ashish, Carlos and many others. I owe extra thanks

to Hector and Kwan for always being willing to help. Thanks are also due to Jitendra,

Shulabh, Ruchi, Yagnick, Priyank, Reena, Manish, Himanshu, Pallav, Birendra, Avesh,

Sanjeev, Nidhi, Monosvita, Kuber, Rupam, Priya, Helen, Kristi, Lien, Kristin, David,

Pankaj, Larry, Rosie, Anton, Andrea, Mithila, Anna, Zeb, Maurizio, Ambar, Anshuman

and many others for making my life in graduate school easier. To Bill Thies I owe a special

debt of gratitude for being a good friend and mentor.

Thanks to Yagnick for your suggestions on system design and for being my programming

guru, and to Shulabh for your sharp analysis of my ideas.

My academic and research career has benefitted a lot from the mentoring and support I

received from a number of people. I'd like to express my heartfelt thanks to Scott, Len,

Vint, Chris, Adrian, Leigh, Achim, Vivek, Sandy, Andreas, Subrata, Mahesh, PJ, Grit,

Jen and Keshav. Thanks are also due to my colleagues from the Digital Vision program,

especially Mans, Margarita and Steve for being such great friends and mentors.

The Media Lab staff is just awesome and I'd like to thank you all. Special thanks to Deb,

Sandy, Gigi, Tesha, Nikki and Linda for making my life so easy. Will and Tom from NecSys

helped me many times and I thank you both.

Finally, my family's love and support has been my inspiration and strength. My mother

taught me the value of education and compassion. My father has been a symbol of honesty

and hard work. My sisters worked hard to not let humble roots come in the way of my

getting a quality education. Thank you guys.

This thesis is yours, as much as it is mine.

To Pitaji and Ma

Contents

Abstract

1 Introduction
1.1 M otivation
1.2 Thesis Structure

2 Background
2.1 FluidVoice

2.1.1 Living The Future(LTF) Project
2.2 Related Work

2.2.1 Personal Router
2.2.2 Peer-to-Peer Networking
2.2.3 Compact Disk DataBase(CDDB)
2.2.4 Advanced Packaging Tool(APT)
2.2.5 Service Discovery Protocols . . .
2.2.6 Device Detection Tools

3 UniPlug Design
3.1 Problem Formulation

3.1.1 Requirements
3.2 UniPlug Components

3.2.1 UniClient
3.2.2 UniServer
3.2.3 External Refer

3.3 UniPlug Models . . .
3.3.1 Peer-to-Peer .
3.3.2 Hybrid
3.3.3 Client-Server
3.3.4 An Appropriat

3.4 Mechanisms

eneO DT...............................3

. 2 8

. 2 9

. 2 9

. 3 0

ence(OpenDHT) . 31
. 3 1

. 3 1

. 3 2

. 3 3

e Model For A Campus Network 33
. 34

3.4.1 Credit Based Directory Election For Fair Load Distribution
3.4.2 Trust Networks and Safe Tagging For Local Security

3.4.3 Context-Oriented Programming For Device Efficiency 39
3.4.4 Locally Relevant Storage For Scalability 42

3.5 Practical Illustration . 43
3.5.1 Setup . 43
3.5.2 Working . 44

4 UniPlug For Diffusion Of Medical Innovations 47
4.1 Motivation . 47
4.2 Leveraging Networked Medical Devices . 49
4.3 A Patient-Centric UniPlug Implementation Scenario 51
4.4 Issues . 53

5 Conclusion 55
5.1 Summary . 55
5.2 Future Work . 55

Bibliography 57

List of Figures

2-1 Screenshot of FluidVoice Web Based Interface 18

3-1 UniPlug Architecture . 29
3-2 UniAvaya M odule . 44

4-1 UniPlug Application Scenario with Medical Devices 52

- u W -'- - ,r - -. : I-..u . - w s~ g :.. .''::; :- .- - - - - -.- - -- -- -- -.- s - - M-"- -4O i m -0 -- :'m -- m ~ - ' -- '' " -'' ' -- : ' -. : .:. .-.: n ' .---; .

Chapter 1

Introduction

1.1 Motivation

In the future, there will be a large number of electronic devices around us, and each in-

dividual will own a number of them(some of us already do). There already has been a

tremendous increase in the number of devices available of various types that can either be

plugged in(USB, Ethernet, Serial) or connected wirelessly(Bluetooth, WiFi) to a computer.

Most of these devices have identification by which they can be uniquely defined, such as

Class ID and Serial number. On the other hand, there are a large number of high level

programming languages today, and individuals routinely discover new device capabilities,

write programs that exploit them, and if they are Internet-savvy, release them as open

source code.

For instance, students at MIT write a wide variety of interesting programs during their

stay here that usually get forgotten over time and are never visible to most of the MIT

population. Some of them, for example, might relate to hacks that exploit features on an

iPod[1], which is a popular gadget. However, there is no good way to look up for such

software right now. So if one needs one of these inventions, one would end up writing it

0 WNPIP P -, W

herself, or else be deprived of it even though it exists on campus. There is a huge opportunity

to make such inventions visible, in small networks such as university campuses like MIT, as

well as networks of small organizations.

In this thesis, we propose a framework called the UniPlug that encourages the ad-hoc

sharing of inventions that exploit different features on a device for specific, interesting uses

and contexts. UniPlug makes it effortless for an inventor to share such inventions with the

rest of the community. It makes it easy even for a computer layman to obtain inventions

written for their devices by running software on their computer that goes and looks around

at inventions posted by the community. Inventions can be computer programs or software,

diagrams, websites, video tutorials or online papers.

UniPlug uses device identification information such as Class ID and Product ID to locate

inventions for a device type. For example, when an iPod is plugged in, UniPlug software

running on the computer, called the UniClient, would look around at UniServers on the net-

work for iPod related inventions. The UniServer makes the invention available for download

in an ad-hoc, local manner.

UniClient works by monitoring the Ethernet and USB ports to detect when a device is

plugged in. It monitors the Bluetooth environment for proximity detection of Bluetooth

devices. For network devices such as printers, it queries the UniServer for any information

or programs it might have using the printers' address as an ID. When a device is plugged

in, UniPlug does automatic lookups and downloads software from trusted UniServers. The

UniServers are user populated, and inventions are safe tagged and in some cases the process

of adding an invention is moderated by the administrator to prevent malicious code from

being added.

We have formulated mechanisms such as Credit-based Election of UniServers, Safe Tag-

ging and Trust Networks, Locally Relevant Storage and Context-Oriented Programming to

ensure the efficient and successful operation of this system.

4k 0, 0-61016M W"'§ 1 6191" 1 1" w ft- -I -

1.2 Thesis Structure

Chapter 2 gives background and an overview of work related to the UniPlug. Chapter 3

presents the design of the UniPlug as well as a practical demonstration of the idea. Chapter

4 discusses the applicability of UniPlug to the Medical Device domain. We conclude in

chapter 5 with a summary and future work.

MONO Iffill ------ ---

ON

Chapter 2

Background

2.1 FluidVoice

The inspiration for UniPlug came from work on the FluidVoice[2] project. FluidVoice is

an ad-hoc infrastructure-less voice conferencing system where each node has a local mixer

controlled by a graphical user interface. FluidVoice exploits the broadcast nature of wireless,

which is otherwise considered a weakness because of the shared spectrum. Nodes receive

packets from everyone else and then mix them locally to listen to the desired mix.

FluidVoice is ad-hoc, so users join and leave the network at wish without causing any

disruption to the system. A web based graphical user interface allows mixing to be controlled

locally by representing each node as a named circle. A node's volume is increased or

decreased by dragging its circular icon towards or away from the center of the semicircular

screen(see Figure 2-1). The right and left halves of the semicircle represents the right and

left channels on the speaker.

Communication networks till now have been designed for point to point communication.

Communication nodes are built with an assumption of significant supporting infrastruc-

ture and are preprogrammed. With computing and communication capabilities continually

Fluid Voict

ettingSrhtt://1..9.36Ra(vdlns
Goin Stowd W~est Kedfilne%.

AWdVa"oInwm~n IPAdidBS. 1OZ168.2000I

Done

Figure 2-1: Screenshot of FluidVoice Web Based Interface

improving in the forseeable future, end user devices are increasingly becoming capable of

being programmed to communicate with multiple nodes without the need for additional in-

frastructure. Unlike a traditional voice conference in which central conferencing equipment

does the mixing and everyone listens to the same mix, FluidVoice allows different nodes to

mix audio according to their own wish. The system is symmetric with respect to volume

control, so that if user A pushes user B's icon towards the center thereby increasing B's

volume, A's icon also gets pushed towards the center on B's GUI.

Apart from providing an interesting application over a new system architecture, FluidVoice

also provides an opportunity to stress the wireless environment and reveal weaknesses.

Voice is a compelling application for this purpose because it is a demanding application

that makes the performance of the system visible through perceived degradations in voice

r "An

quality. Traditionally, sensors have typically been used to experiment on ad-hoc wireless

networks. The issue with sensors is that they don't send a lot of data per unit of time

and hence do not stress the network. On the other hand, video can be buffered and played

without any perceivable loss of quality to the user. Real time audio thus provides an

appropriate application as well as test environment.

While working on FluidVoice, we designed and implemented a gateway that allows Avaya's

SIP-based OneX[3] peer-to-peer IP phones to call into the FluidVoice network. Then we

observed that if someone else on the MIT campus were to use FluidVoice and wanted to

interface an Avaya OneX phone, they'd end up either not using the phone or have to write

up the code themselves. A good solution to this problem would be to design a system

to make such ad-hoc inventions easily available to others. Then we could also design a

subsystem that detected an Avaya phone being plugged into the FluidVoice network and

fetch code from the server that would make the phone interoperate with FluidVoice.

The idea was generalized to detecting and sharing inventions for USB, Bluetooth and Eth-

ernet based devices etc. The aim was to allow distributed invention sharing in a community

where everyone benefited from each others inventions.

2.1.1 Living The Future(LTF) Project

One potentially interesting platform to test the UniPlug is the recently proposed Living

the Future(LTF) program[4] at MIT. LTF proposes the establishment of a large-scale test-

bed at MIT to experiment with existing and novel application concepts based on existing,

upcoming and not yet conceived networking concepts and technologies.

The scenario for discussion is a university campus, such as the MIT campus. The funda-

mental idea is to use the MIT community itself for pilot testing of new projects that are

developed here. In this thesis, we will focus our design around such a campus, and show

later how we can scale to larger administrative and geographical entities. A campus is

RA M

typically geographically limited, to a few miles. There could be tens of LANs spread across

the campus.

To understand the context, the MIT campus has about 20,000 members[5] which includes

students, faculty and staff. The MIT community isnt geographically limited to the MIT

Campus alone; a number of its members live in the city of Cambridge outside the MIT

campus. Still others live in surrounding towns such as Newton, Salem etc. It is the over-

arching aim of the Living The Future(LTF) program to include all members of the MIT

community in this large scale experimentation. We need to therefore ensure that there are

ways in which members in geographically diverse locations are able to participate actively

in the program.

Using the MIT community as a testbed will allow quick validation of UniPlug as an easy to

use, useful system and present a framework for the MIT community to share its creations.

The UniPlug system can then be opened to public use and released as open source software.

2.2 Related Work

The UniPlug combines a number of ideas, some of which are similar to aspects of existing

systems, to create a truly unique invention sharing system. There is thus a rich variety of

scholarly work that relates to different aspects of the UniPlug. We briefly describe some of

the most relevant related work below.

2.2.1 Personal Router

Personal Router [6] is a project at MIT that explores the technical challenges associated

with creating open interfaces to wireless services. It enables users to dynamically and

automatically choose between wireless services based upon requirements and prices.

The Personal Router seeks to create and enable a market where services are advertised

and purchased. The UniPlug, on the other hand, openly shares inventions with everyone.

Personal Router deals with purchasable items, while the UniPlug deals with free inventions,

that is shared publicly in an open source way. Also, the Personal Router is targeted at

wireless access only, while the UniPlug is targeted at devices that connect to a computer

via a pluggable port, or through a wireless connection such as Bluetooth, or WiFi. Both

have their benefits; the UniPlug might enable a device to offer a service by providing the

right programs for it, but it doesnt act as a facilitator for any such service or transaction.

The Uniplug has similarities as well to the Personal Router. Both the UniPlug and Personal

router are mobile device based, and involve service advertisement. They are both aimed at

increasing the value offered by devices. We therefore view them as complementary to each

other.

2.2.2 Peer-to-Peer Networking

A Peer-to-Peer(P2P) computer network is one in which network participants cumulatively

provide value, instead of a few centralized servers providing core value to a service or applica-

tion. Peer-to-Peer networks are typically used for connecting nodes via ad-hoc connections.

Such networks are used for many useful purposes such as sharing files containing audio,

video, data, and for voice telephony.

In a pure P2P network, each node acts as both a client as well as a server. This differs

from the conventional client-server model where the server provides services that the client

accesses and communication is typically to and from the server.

Some networks such as Napster, OpenNAP and IRC server channels use a client-server

structure for some tasks (e.g. searching) and a peer-to-peer structure for others[7]. Gnutella

and Freenet use a peer-to-peer structure for all purposes, and are sometimes referred to as

true peer-to-peer networks. Gnutella is however greatly facilitated by directory servers that

inform peers of the network addresses of other peers.

2.2.3 Compact Disk DataBase(CDDB)

The Compact Disk DataBase(CDDB)[8] is in some ways a close analogue of the UniPlug.

The CDDB is a database that allows software applications to look up audio CD information

over the Internet. This is done by the client which calculates a nearly unique disc ID and

then queries the database. Upon receipt of the reply, the client is able to display the artist

name, CD title, track list and other information.

2.2.4 Advanced Packaging Tool(APT)

The Advanced Packaging Tool or APT[9] is a package management front-end used on De-

bian GNU/Linux[10] and its derivatives like Ubuntu[11]. APT simplifies the process of

managing software on Unix-like operating systems, automating the retrieval, configuration

and installation of software packages, either from binary files or by compiling source code.

APT is often hailed as one of Debians best features[12].

In some ways, APT is similar to UniPlug. Both of them fetch programs from a repository,

in a way convenient for the user. But while APT is highly structured in terms of how files

are added and managed, UniPlug is intended to be fast and ad-hoc, something that would

be more useful, for example, for people sharing files quickly within a university. UniPlug is

likely to be used to fetch one or more program files, while APT deals with complete packages

containing many files. UniPlug is less structured, more ad-hoc and is device targeted. APT

is more structured, centrally controlled, and is targeted for computers in general.

The relevant question in considering APT as a candidate for replacement of the UniPlug

is: Is APT the best way to share invention locally? We believe that APT, at least in the

current form, is not. And if we started modifying it to suit our needs, it would end up being

something totally different from what it is today. Given that APT in its current form serves

its intended needs pretty well, we believe that the creation of the UniPlug as a unique entity

is well justified.

2.2.5 Service Discovery Protocols

UniPlug's mechanisms for seeking information are similar to the way service discovery

protocols advertise and seek services. It is envisaged that service discovery would enable

devices to automatically discover network services, including their properties, and services

may advertise their existence in a dynamic way[13]. Some well known service discovery

protocols include the Service Location Protocol(SLP) [14], Jini[15], Salutation[16], Universal

Plug and Play(UPnP) [17], Bluetooth Service Discovery Protocol(SDP) [18], and Konark[19].

We present brief descriptions of these protocols below. Some of the descriptions has been

taken from [13], which includes an excellent review section.

" Service Location protocol(SLP): The Service Location Protocol(SLP) is designed

for TCP/IP networks and is scalable up to large enterprise networks. It is being

developed by the IETF. The SLP architecture consists of User Agents(UA) that per-

form service discovery on behalf of the client, Service Agents(SA) that advertise the

location and characteristics of services and Directory Agents(DA) that collect service

address and information from SAs and respond to service requests from UAs. Service

discovery can also happen without the involvement of a DA.

" Jini: Jini, an extension of Java, addresses the issue of how devices connect with each

other in order to form a simple ad-hoc network, and how these devices provide services

to other devices in the network. Besides pointers to services, Jini can also store Java-

based program code for these services. This means that services may upload device

drivers, an interface, and other programs that help the user to access the service.

NOW, 1 11 1 -_1 _... -I.--- - -

When a client wants to utilize the service, the object code is downloaded from the

Lookup Table to the JVM of the client. Thus the Jini object code offers direct access

to the service using an interface known to the client. This code mobility replaces the

necessity of pre-installing drivers on the client.

Jini is tightly tied to the programming language Java, which makes it dependent

on the programming environment. It also assumes that every device is running the

Java Virtual Machine (JVM), which consumes memory and processing power. This

can be a difficult requirement, which might especially not be fulfilled in embedded

systems. Also Java does not include a mechanism for directly accessing memory or

hardware registers. So there will always be a need for device drivers and other pieces

of supporting software written in C/C++ or assembly[20]. Jini is also only designed

to work with wired networks.

The concept of code mobility in Jini is interesting and somewhat similar to our interest

in storing and retrieving programs in UniPlug. Also, Jini uses a concept called leasing,

which makes it useful for ad-hoc networks. Leasing means that every time a device

joins the network, it registers itself only for a particular period of time, called a lease,

after which the lease expires unless it is renewed. Also, in the recent past, there has

been work on possibly extending Jini to including a way for integrating legacy devices

into the system[21]. Jini thus provides an interesting case study in the design of the

UniPlug.

" Salutation: The Salutation architecture consists of SaLutation Managers(SLMs)

that have the functionality of service brokers. Services register their capability with

an SLM, and clients query the SLM when they need a service. After discovering a

desired service, clients are able to request the utilization of the service through the

SLM.

" Universal Plug and Play(UPnP): Universal Plug and Play(UPnP) extends Mi-

crosoft's Plug and Play technology to the case where devices are reachable through a

TCP/IP network. Its usage is proposed for small office or home networks, where it

enables peer-to-peer mechanisms for auto-configuration of devices, service discovery,

and control of services. The Simple Service Discovery Protocol is used within UPnP

to discover services. SSDP uses HTTP over UDP and is thus designed for usage in

IP networks. UPnP works on the assumption that all the devices are based on a

common protocol that is agreed to by vendors. So the vendors build compiant devices

that adhere to the UPnP device architecture as defined by the UPnP forum working

committee[17]. UniPlug also works by a Plug and Play mechanism to detect devices

being plugged in and fetch inventions for them.

* Bluetooth Service Discovery Protocol: The Bluetooth Service Discovery Proto-

col(SDP) is used to locate services provided by or available via a Bluetooth device.

Bluetooth addresses service discovery specifically for ad-hoc environments where it

supports the following inquiries: search for services by service type; search for ser-

vices by service attributes; and service browsing without a priori knowledge of the

service characteristics. SDP doesnt include functionality for accessing services. How-

ever, the Bluetooth SDP, as the name implies, is only designed to work with Bluetooth

based devices; which makes it inadequate for UniPlug needs.

e Konark: Konark is a service discovery and delivery protocol designed specifically

for ad-hoc, peer-to-peer networks, and targeted towards device independent services

in particular. It has two major aspects - service discovery and service delivery. For

discovery, Konark uses a completely distributed, peer-to-peer mechanism that provides

each device the ability to advertise and discover services in the network. The approach

towards service description is XML based. It includes a description template that

allows services to be described in a human and software understandable forms. A

micro-HTTP server present on each device handles service delivery, which is based

on SOAP. Konark provides a framework for connecting isolated services offered by

proximal pervasive devices over a wireless medium.

Thus we can see that all of the protocols described above have strong features for UniPlug

to draw from. Yet none of them, by itself, is flexible enough to address all our needs. It is

also important to note that discovering a UniPlug repository is not the only aim of UniPlug.

The aim of UniPlug is to provide a framework for developers to share programs using a

seamless access mechanism that allows devices to obtain inventions that are most suitable

for their form and context.

2.2.6 Device Detection Tools

There are a number of popular software tools that are used for detecting the presence

or absence of devices for a particular port. Ifplugd[22] is a tool that is used to detect if

something is connected to the Ethernet port, and it can be configured to run scripts when

the port goes up or down. Ethereal[23] is a widely used program for sniffing packets and

analyzing their details and statistics from an Ethernet port or wireless cards using 802.11

technology. Ifplugd and Ethereal used together can be used to monitor if the Ethernet port

is up or down, and when it is up, to capture the packets and look for identifying information.

In our program we use ngrep[24] to capture packets by calling it from within a shell script

when ifplugd detects that the Ethernet port is turned on.

1susb[25] can be used to scan for USB device and extract information about the device

including its serial number, class ID, manufacturer and product ID, etc. This information

reveals what kind of device it is, and the serial number in combination with the other

information can be used to identify who the device belongs to, and subsequently to lookup

for scripts instructing what the device is supposed to do, or what is supposed to be done

with the device.

Bluetooth devices can be scanned and then probed using the BlueZ[26] utils tools. Various

types of information about the device such as Bluetooth device address, Class ID, services

offered, etc can be gleaned from using bluez.

............. '' WROORPO-1 - -- l- -- 11 1- - -.I,- - - I i 1 "41-1

Chapter 3

UniPlug Design

This chapter focusses on the design of the UniPlug. We begin by formulating the problem

that the UniPlug intends to address and sketch out the key requirements that UniPlug must

satisfy to act as a viable solution to this problem. We then describe the different possible

models for the UniPlug architecture and compare their strengths and weaknesses. This is

followed by a description of the various components of UniPlug and their functionality. We

conclude the chapter with a discussion of security, context, fairness and scalability and how

the system is designed to handle them in an effective way.

3.1 Problem Formulation

The problem can be stated as follows: to design a framework that enables invention sharing

across MIT. Inventions could be applications that exploit features on the device to enable

higher utilization. Or they could be programs that enhance a device's value by offering

new affordances or services. The full range of inventions could include device/prototype,

diagram, description, program/software, eprototype, website, etc. Inventions could be in

...... ... 4-, OR

paper/device/electronics. However they must be represented in some electronic form to be

sharable.

If someone builds a piece of software and is willing to share it openly, users who are not

technically savvy should also be able to obtain and use it, easily. The software must

come with a description that is easy to understand. It has to be short, succinct, and

comprehensible to an average computer user, who we also call a computer layman. It must

also specifically warn the user about the changes that the software will make to the system.

So the challenge we are addressing is to take advantage of the presence of connectivity to

make things easier for the user.

3.1.1 Requirements

A UniPlug system must satisfy the following requirements:

" Ad-Hoc: The system must be able to work well in an ad-hoc environment.

" Distributed: The system must allow for a distributed architecture. It must also be

populatable in a distributed way, such as through a centralized webserver or by having

UniServers in p2p/hybrid mode.

" Cooperative: There must exist a mechanism to query other servers about the avail-

ability of a program.

" Safe: The code should either be trusted or be verifiable. There must exist a mecha-

nism to prevent or discourage malicious code submission in the first place, and control

dissemination once its presence is detected.

" Scalable: The system should be able to start with minimum infrastructure, yet it

should be able to scale.

3.2 UniPlug Components

The UniPlug architecture consists of the following components. These components are

responsible for fetching, storing and providing inventions.

Figure 3-1: UniPlug Architecture

3.2.1 UniClient

The UniClient runs in the background on client machines. It monitors ports selected by the

user such as Ethernet, Blutooth and USB etc. Upon detection of a device being plugged

into the port(Ethernet, USB) or coming into proximity(Bluetooth), the UniClient performs

various tasks that have been defined. Such tasks might be periodic, or event-driven. For

example, the UniClient may contact the server on detecting a new device to see if the server

has programs for the device. Or it might start another program on the machine that already

exists locally.

The UniClient maintains a list of UniServers or obtains the list from OpenDHT[27] (which is

discussed next). It is a key UniPlug element and merges with UniServer in the P2P model.

It maintains a list of IDs of devices that are owned or registered with that machine. It has

the following port scanners:

" lsusb[25] for USB devices.

" bluez[26] for bluetooth devices.

" ifplugd[22] for Ethernet devices.

3.2.2 UniServer

The UniServer acts as a repository for UniClients. It provides a storage and directory

service for inventions. Inventions stored on UniServers are accessible by UniClients both

inside and outside the local network.

The UniServer runs as a daemon. It listens for requests from clients, and responds either

with information or sends a not-available reply. The UniServer is also responsible for adding

and deleting new entries. Depending on the mode, the UniServer might or might not contact

other UniServers. In P2P mode it queries peers for programs that are relevant for devices

owned by the user. In hybrid mode, it looks around for programs for the devices registered

with it. The UniServer does periodic checks for programs for the devices it has registered.

It also provides a registration mechanism for subscribing to alerts from other UniServers.

The functions of the UniServer can be listed as follows:

o Handle UniClient requests by listening for requests and replying to UniClient with

content or error code or delay code if looking at other UniServers. Maintain a queue

of requests.

" Query servers periodically and update information about relevant inventions.

" Allow Invention submission through a web server and administrator controlled mod-

eration.

3.2.3 External Reference(OpenDHT)

OpenDHT[27] is a publicly accessible DHT service. Clients of OpenDHT can issue get

and put instructions to any DHT node, which processes their request. They do not need

to run a DHT node in order to be able to use the service. Thus OpenDHT is used as a

highly-available naming and storage service for sophisticated applications. The OpenDHT

server acts as an external reference for UniClients who may be outside the MIT network. It

provides the IP address of UniServers in response to a request from an external UniClient.

3.3 UniPlug Models

There are 3 different models on which a UniPlug architecture might be based. They range

from a fully infrastructure based (client-server) model, to a pure peer-to-peer model. In

between lies the hybrid model, which is part peer-to-peer and part client-server.

The selection of a model for a UniPlug implementation depends on the context for which it

is being built, taking into account the resources available and the best choice of advantages

and disadvantages associated with each model. In the following sections, we describe each

of these models and discuss their relative benefits and drawbacks.

3.3.1 Peer-to-Peer

The Peer-to-Peer model has the following properties:

" Architecture: In a pure P2P model, each node is both a client and a server. Peers

can be discovered by a discovery mechanism, or by querying a directory server or

supernode that keeps track of clients, like how Skype[28] works.

" Content: In P2P mode, each node only hosts content for devices that it owns. So

different nodes might replicate content for a device if the owner of the node owns the

relevant device for that content.

" Suitability: This is suitable for systems where users interact directly with each other

as peers and act as servers for each other. There is no heirarchy.

3.3.2 Hybrid

The hybrid model has the following properties:

" Architecture: In this architecture, certain UniServers have the role of directory

servers. They host information about the content hosted by each node in the network.

They are elected dynamically and a particular UniServer might not always be up. A

community chooses a node to act as a UniServer. This can be done in various ways

such as random selection, round robin, credit based selection, or by simply asking for

volunteers and choosing one between them. It is reasonable to expect that everyone

who gets access to the service also contribute towards it by acting as a UniServer

every once in a while. The non-UniServer nodes are then considered pure UniClients.

The UniServers will also have their own UniClients.

" Content: In this model a community served by a UniServer has its own content, and

only seeks when it doesn't find the content locally. Its like an interlibrary loan where

a book is requested when it is not found locally, but finding it locally is the default.

A UniServer uses its offline time to consult other UniServers and obtain their list of

programs for devices registered by it so that the information is cached locally.

* Suitability: Suitable for an organization with many branches with each branch talk-

ing to each other when needed.

3.3.3 Client-Server

The Client-Server model has the following properties:

" Architecture: The server is always up and its address is well known, hence the

availability is high. The architecture is centralized and therefore less resilient to

failures. It requires regular maintenance and supervision.

" Content: The server has its own content which is limited to what the local community

produces. A server may choose to check with outside servers about availability of files

for a particular device type, as a special case.

" Suitability: Suitable for an organization or local community for inventions only

expected to be produced or used locally.

3.3.4 An Appropriate Model For A Campus Network

For a campus network such as MIT, the hybrid model seems to be the most suitable. This

is because the model allows for an architecture that is not centralized, yet gives the impres-

sion of a supporting architecture that provides services. It makes the ad-hoc community

served by a UniServer look like its being served by a dedicated server, though actually the

designated server keeps changing. The model is inherently more local and cooperative. In

the following section, we will look at mechanisms to ensure fairness in supporting load, i.e.

acting as the directory server. Given the dynamic nature of this model, there is a need to

be able to designate UniServers dynamically, in a cooperative way. There must also exist

mechanisms that allow the system to scale. We discuss each of these issues and our solution

to them.

4001 OW, 4' W, "--- -- -- ___ -- _-_--' 0 _". " -0 - -. 11P, -'__ __.""K' _'_" _-_- , , 4 a - - 0, , III 111001

3.4 Mechanisms

3.4.1 Credit Based Directory Election For Fair Load Distribution

At any time, the UniPlug servers must coordinate to ensure there is at least one designated

directory server for each LAN on campus, so that if there is a request being broadcast

for information about looking for UniPlug server, then the designated directory server can

provide that information. The directory servers are like floating points that are visible

whenever the hosting computer is turned on, but might go invisible anytime the user decides

to turn the computer off. Ideally, if the designated UniServer is about to go off, it informs

the other computers on the LAN about its impending disappearance so that a different

directory server can be selected and its details communicated to other servers on time. But

that might not always happen, so that if a UniServer broadcast doesn't happen in a timeout

period, a new UniServer must be elected and updated with the directory information held

by the node who was the second to last UniServer. This information may be updated when

the last UniServer comes online again. Another strategy is to provide redundancy so that at

any times, at least one node other than the UniServer has the latest directory information.

The responsibility for acting as a directory server must be shared to ensure fairness. There

are different ways of choosing UniServers to be a directory. These include random selection,

round robin, credit based system, volunteering etc.

The issue with round robin selection is that a node might not be up when its turn comes. On

the other hand, a random selection method will probabilistically ensure over a long period

of time that the average number of times each node is selected is fairly equal. However,

given that nodes availability is not regular, this approach might fail too. The volunteer

method simply fails when some of the nodes never volunteer.

Our solution, which is to use a credit based system, overcomes these issues. In a credit

based system, each node would get credit for the time it acted as a UniServer. The credit

NINO"

values are stored with the current UniServer. This information is available for anyone to

verify, along with a record of changes. When a UniServer selection is to be made, the lowest

credit node will be attempted to be chosen first. If it is not up, the 2nd to lowest node

is attempted and so on. A slight variation to this strategy is to group the nodes into low

credit and high credit groups and randomly try to select one of the low credit nodes.

A node that is inside a local area network that has a directory server can simply ask it about

an invention. However, a node that is not in the local area network needs to have a way to

find where it can locate a UniServer. For this, we use OpenDHT[27], a publicly available

DHT running on the PlanetLab[29] testbed for UniServers to advertise their addresses on.

When an external node needs to find information, it does a query on the OpenDHT, which

returns a value giving the IP address of a UniServer that holds information about the node

holding the relevant file with configuration or program information. The external client

then requests the machine holding the file for a copy and obtains it.

The following example shows how the UniServers' IP address could be added and retrieved

from OpenDHT.

durga@fLuidMachine$. /put .py UniPlugIP wolverine .media.mit . edu

Success

durga~fLuidMachine$./get.py UniPlugIP

wolverine .media. mit . edu

durga@fLuidMachine$./put.py UniPlugIP 18.85.9.170

Success

durga~fLuidMachine$./get.py UniPlugIP

wolverine.media.mit.edu

18.85.9.170

However, inside the local network, the client just broadcasts a request for the file informa-

tion. If what the machine offers is what the client is seeking, it confirms its request, and

Nov. .. INMIW '0 V

the machine sends back a reply with the file, otherwise it returns an error code.

3.4.2 Trust Networks and Safe Tagging For Local Security

A common concern with sharing programs and using a repository to distribute them is that

it might be used maliciously. Its sometimes pointed out that the UniPlug could be used

as a universal virus propagation machine. For example, someone could place a bluejacking

program on a UniPlug server and thus be able to potentially use Bluetooth connection to

hijack devices and then load them with programs to carry out attacks or steal information.

An interesting example in answering this concern is the open source community that has

various contributors producing numerous programs. For the most part, it has been success-

ful in not being misused to stage attacks through malicious code releases.

The possibility of malicious programs being released through UniPlug is however real, and

we consider a combination of two solutions.

Trust Networks: Within a small community network, if it can be verified that a partic-

ular person submitted a piece of program, then if the code is found malicious, the person

will be identified and will face social disapproval and might also be given punitive action.

Such consequences will prevent most people from submitting malicious code because their

reputation will be at stake and once they are identified, their inventions might be rejected

by the community.

Safe Tagging: We propose the idea of tagging inventions so that people who have used an

invention and can verify that its genuine or useful can vote for it, saying so. For example,

a tag could indicate that 15 people have used a program so far and at least 7 of them

have verified the code as being non-malicious. Safe Tagging has three benefits: Firstly, it

creates a genuine/safe reputation for the program or invention. Secondly, the reputation

contributes directly to the programmer's reputation who submitted the code. And thirdly,

NO 410 -40

it contributes to the reputation of the server that is the primary host for the program. The

programmers reputation could be given a score from 0 to 100 to indicate the confidence level

about their truthworthiness based on the reputation of all the programs they have submitted

so far. Thus genuine tagging allows us to create reputations for programs, programmers

and the nodes hosting them. In an active community, this creates a way for the community

to collaboratively screen the safe and genuine from the unsafe and not genuine.

Issues

9 Attacks : One way this system might fail is for a group of malicious users to join

a network and then release malicious programs on their machines. The group could

then go ahead and tag each others' inventions as genuine, perhaps many times over

by assuming fake identities. For instance, a person could create 10 fake identities and

use 9 of them for tagging malicious code as safe while maintaining one of them as a

genuine persona to avoid being detected.

Solutions to this problem might be proactive or reactive. A proactive approach might

be to use a rating system that is slightly more complicated than what we have looked

at earlier. For instance, a person's reputation could be allowed to mature so that

they could have a high reputation only if they have been submitting genuine code for

a reasonable period of time, say a year. Another solution is a strong authentication

method that makes it difficult to impersonate someone else, and real-world credential

checking to ensure that fake identities are not created.

A reactive approach might be that if a program is tagged safe by 10 people and the

11th user recognizes it as being malicious, each of the 10 people must be penalized for

tagging an unsafe program as being safe. Additionally, the programmer who created

it must be heavily penalized. The issue though is, in a p2p or interlibrary system, if

the program was borrowed by a number of people and then discovered to be malicious

by someone, how do we inform the previous users that the program is unsafe. One

solution is to generate email alerts saying this program is unsafe and must be removed.

Another might be for the UniCient to do a proactive check with the UniServer for

malicious alerts associated with its devices every time it is turned on.

* Reputation Consistency: Another issue is that of carrying reputations around.

If user A has a program which has acquired a reputation of 7.8, and user B fetches

the program from A and starts hosting it himself, should be be able to say that the

program has a 7.8 reputation? Would it contribute to his own reputation of being a

safe server even though he did not really host it while the reputation was being built?

Is it fair that someone hosts a program while its reputation is being built and then

someone else is able to come and use the program and host it with the reputation

it has acquired? Closely related is another issue. Without any coordination, how

is the reputation acquired by a program through various different hosts going to be

combined? An extreme example is this: if a program was being hosted by 100 different

people, and each instance got a safe tag from 1 person each they are still each hosting

a program with a pretty low reputation unless they combine all the reputation values

in which case they'd have a reasonable reputable program depending on the actual

number of average tags thats common in that system.

Our solution to this issue involves uniquely identifying each safe tag and disseminating

it so that new safe tags can be identified as such and be added locally so that everyone

is able to calculate the reputation locally. The system might take some time to

converge, but it works without any centralized architecture or the involvement of a

third party.

Finally, If the source is trusted and there is proper authorization from the user, the system

may install and configure high safe-tagged software transparently to the user. This might

be necessary to do, for example, if a grandma with absolutely no technical knowledge is

using the computer. However, in this case a more technically competent person(like her

son) must be able to look at what changes occurred and which software got installed at

what time, and be able to potentially undo the installation and associated changes later.

3.4.3 Context-Oriented Programming For Device Efficiency

If measurements or events are interpreted differently based on an awareness of something,

that something is context. For example, we respond differently to request for help from

a friend doing her homework asking for water, compared to the same person lying in a

hospital asking for water.

This discussion brings up two different meanings of context. The first meaning is the

purpose or intention for which a program is written. For example, if an iPod was converted

into a storage device, the context would be 'iPod as storage'. The second meaning refers to

the variables whose value the program itself senses or measures. For example, the memory

available on the iPod for the above mentioned program would be a context in that sense.

So context is the lens through which we look at a measurement or event. The context

specifies a mode, and our reactions and interpretations are based on that mode. A mode is

a set of conditions or constraints which are used to specify a context. It should be possible

to customize our view based on the mode. And it should also be possible to create new

modes.

Our intention is that UniPlug should be used to encourage writing programs that keep

context in mind while writing programs and the context should be easy to specify, represent

and interpret.

In the following sections, we formalize the notion of context and present a classification of

various kinds of contexts.

MOWN-

Context Classification

In this section, we present an approach to classifying different kinds of contexts one might

encounter when thinking about devices, and a way of representing them.

We believe that contexts can be broadly classified as belonging to one of the following three

categories:

" Device Based

Monitoring battery level or available memory in a phone is an example of a device

based context. Another example is how much of insulin you have left in your injector.

In FluidVoice for example, when the battery level of a cellphone node goes low, the

context is conveyed, perhaps seeking nearby nodes that can act as relays for signals for

this device, thus reducing the transmission power required and consequently reducing

the rate at which battery is being consumed.

The device based context might also be expressed in terms of a resource management

question: how much of something my device requires does it have? How fast is it

getting depleted/replenished and how long will it be before it gets used up at the

current rate?

" User Based

User based contexts are those that convey information about the user, such as blood

pressure, oxygen level in blood, mood(good, sad, happy), conversation analysis(heated,

pleasant, romantic), temperature, heart rate, status(busy, meeting, in a conference),

special cases, such as conveying an emergency such as getting sick, in a fire, or medical

emergency, in a flood, etc. A person's blood pressure might be interpreted differently

based on their health status.

" Surroundings Based

Surroundings based context can be classified into proximity based context, and lo-

cation base context. Proximity based context differs from location based context in

that it does depend on the neighborhood of the device, but its not tied to a particular

location. The affordances at a place might not necessarily be mapped to location.

Such a mapping might not even be desirable.

Examples of proximity based contexts are temperature, humidity, brightness, the

presence of other nodes, ESSID's available, number of willing relay devices, number

of bluetooth devices, etc.

On the other hand, IP phones in separate departments of an enterprise might be

governed by separate rules. For example, phones used by sales department could be

allowed to make international calls, while phones belonging to the engineering depart-

ment might only be allowed to make local and national calls. Here, the department

is the relevant context. Different departments might not be geographically separate,

but they are administratively separate entities. Or a device might grant access only

in a corporate LAN environment. Our definition of location is broad enough to cover

both geographic locations as well as administrative locations.

The importance of location is that certain services or functions may only be allowed

in certain locations. Or certain services or functions may only be available in certain

locations. So location-based context can be used both to find out if its permissible to

do something because we are at a certain location, or to query if a certain service is

available at a particular location. Examples of location based context include mall,

house, work, gym, department, sensitive areas, etc.

There is an interesting example that involves an interaction of various context types. If

a user make a lot of calls while she is in San Jose(surroundings), it can be interpreted

in various ways. If the user lives in San Jose, she might be making a lot of calls from

home(context: surroundings). Her making a lot of calls might reflect she is lonely(context:

user). Or it might simply be because she has a lot of battery power(context: device) and

thats the primary reason that she calls a lot.

Context Representation

A context representation mechanism should make it easy to define new modes or contexts.

Thus context representation reduces to providing the ability to a user to name a context and

specify the constraints associated with it. Then the device can either be switched to that

context or mode, or the relevant state of the device could be compared with the constraints

specified by various contexts to see if any of them is matching candidate.

It is likely that part of the constraints are matched, maybe by more than one context, and

then the program has to be designed to decide which of the contexts it should choose. Or it

might follow a strict policy so that a context is selected only if all the constraints specified

for it are met.

Context representation will the allow a programmer to leverage the power of different con-

texts to create programs that are aware and that perform optimally under a variety of

contexts.

3.4.4 Locally Relevant Storage For Scalability

In UniPlug we only store locally relevant material, so that the system can scale. The system

only stores programs for devices that are registered by the UniServer for the community

it serves. By doing this, we ensure we have programs available for registered devices. At

the same time, since the number of devices registered with a UniServer is expected to be

limited, the number of programs stored for these devices would also be limited and it doesn't

place a burden on the node. Thus storing locally needed programs on nodes is both useful

and justified. When there is a request from an external node for a program designed for a

locally registered device, the local server may serve a particular number of requests based

on its load, and receive credit for it.

_Row~

3.5 Practical Illustration

In this section, we describe the practical demonstration we built of UniPlug for Avaya one-X

Quick Edition peer-to-peer phones[3]. This demonstration is a proof of concept and shows

that the ideas outlined in this chapter are feasible.

The Avaya one-X Quick Edition is a smart communications system targeted at small busi-

nesses and small branches of enterprises. The one-X phones use SIP-based peer to peer

technology. Once the phones are plugged into the local area network, the system config-

ures itself using a proprietary discovery mechanism in minutes, and all the features such as

voicemail, conferencing and call management become instantly available.

We have built a gateway to enable users to participate in a FluidVoice[2] conference using

these Avaya one-X phones. Therefore, we decided to demonstrate the idea of UniPlug by

openly sharing the Avaya gateway(invention) and fetching and running it automatically

when an Avaya phone is discovered in the network.

3.5.1 Setup

The setup for this demonstration consists of an Avaya one-X QE peer-to-peer phone and

three machines running Linux. The Avaya one-X phone is connected to a primary machine.

The primary machine runs a version of UniClient that monitors the Ethernet port using

the open source tool ifplugd[22]. It also has the software PABX Asterisk[30] installed on it.

The secondary machine has FluidVoice installed on it. It runs the gateway code that takes

voice packets coming from the Avaya phone and converts them to FluidVoice format and

broadcasts it. It also runs a mixer that mixes packets from all the other nodes in the

FluidVoice conference and sends them back to the Avaya phone after encoding them. The

secondary machine runs a version of UniClient that can connect to the UniServer and send

requests for program files.

00
C-

.C o'0

Ur3cieh un*Iin wnth
ensk8w 2 -SSH an Av fOyma a- 3 - Fetch

start

Figure 3-2: UniAvaya Module

Programs are stored on the server. UniServer runs as a daemon on the server. UniServer

accepts requests from UniClient on secondary machine, queries a local MySQL[31] database

to check if it has the gateway program, and replies with the program file, or sends an error

code.

3.5.2 Working

To a user, the underlying system in this demonstration is totally transparent. The user

plugs in an Avaya one-X QE phone into the primary computer. Within a few seconds the

system sets itself up, so that the user can join the FluidVoice conference by dialing '230'.

Behind the scene, a series of steps are involved in setting up the system, and obtaining and

running programs if they aren't available.

The UniPlug demonstration consists of the following steps:

9 Step 1: Initially, the Avaya phone is not plugged in. UniClient is running on the

primary machine monitoring the Ethernet port using the open source tool ifplugd.

* Step 2: The Avaya phone is plugged into the primary machine. As soon as an

Ethernet device is detected by ifplugd, it triggers a script in the UniPlug client module

that starts monitoring if Avaya one-X phones are present in the local area network

by capturing packets from the Ethernet port and analyzing it. We had discovered

earlier from packet capture and analysis that Avaya one-X phones send out a packet

to a multicast address every second. So by capturing packets on the Ethernet port

and checking if the packets destination matches the multicast address that are used

by one-X phones, we can tell if an Avaya one-X phone is present.

* Step 3: If a one-X phone is detected, the client module does the following:

- Step 3.1: Starts the software PABX Asterisk on the local machine. Asterisk

then registers itself as a SIP client with the Avaya one-X phone.

- Step 3.2: ssh into secondary machine and runs the UniClient there. The Uni-

Client checks if the one-X FluidVoice gateway is present on the machine. If

it isnt, the UniClient connects to the UniPlug server and obtains the gateway

code. The code retrieval is carried out by the UniClient establishing a TCP con-

nection with the UniServer. Once the connection is established, the UniClient

sends a request that contains the device identifier. On receiving this request, the

UniServer connects to a local MySQL server[31] and runs a query to check if the

device is listed. If it is, the UniServer sends the gateway program file back to the

UniClient on the same connection. Once this is done, the UniClient terminates

the connection with the UniServer.

It then starts the gateway program, which registers with the Asterisk on the

primary machine as a SIP client, and also waits, listening for calls. One-X is the

SIP server for Asterisk, while Asterisk is the SIP server for Secondary machine.

Thus the calls from One-X go through Asterisk and are eventually handled by

the secondary machine.

* Step 4: At this stage, the system is ready to receive calls from one-X phones and

connect them to the FluidVoice conferencing system. On their part, the Avaya phone

user has to simply dial 230, which we have chosen to be the standard extension to reach

the FluidVoice network, and see if they get connected to FuidVoice. When a one-X

user dials 230, the call gets forwarded to the local machine running Asterisk, since

asterisk has registered itself as a SIP client with extension 230 on the one-X phones.

When Asterisk receives the call, it forwards the call to the secondary machine which

has registered itself as a SIP client with the Asterisk server for extension 230. The

secondary machine answers the call and the caller gets connected to the FluidVoice

conference.

We have thus taken advantage of a simple idea, that one-X phones send out periodic packets

to a multicast address, to build a system that immediately detects the presence of one-X

phones in a local area network and gets ready within seconds to receive calls from the one-X

phones.

The objective of the abovementioned illustration is to illustrate the seamless sharing of

innovation. The gateway system that allows one-X phones to talk to FluidVoice is shared

in a way such that UniPlug clients are able to retrieve it whenever a one-X phone is plugged

in. We can generalize this notion to say that whenever the UniPlug client detects a new

device on the network, it could ask the UniPlug server if it has any inventions for the device.

The UniClient and UniServer are built using twisted[32], which is an event driven networking

engine written in Python.

Chapter 4

UniPlug For Diffusion Of Medical

Innovations

4.1 Motivation

In 1999, the Institute of Medicine reported[33] that errors in the delivery of medical care

were leading to 98,000 deaths in the US annually, and recommended applying information

technology to deliver safer care. The lack of appropriate context-based feedback that takes

safety issues into account is a key factor in the occurrence of preventable medical accidents.

There is a compelling need to interconnect medical devices and equipment, and introduce

automated safety checks. More specifically, the lack of control and monitoring in an oper-

ating room has been known to cause accidents. Consider the following case studies:

9 A technician inadvertently turns a defibrillator off that was being used to externally

pace a patients heart. The nurse had closed the privacy curtains around his bed

because the patient needed to use the urinal while the defibrillator was sitting outside

the curtain. The technician going on his rounds saw that the defibrillator was left

turned on after what he assumed was a manual testing so he turned it off. This

resulted in the patient going mild bradycardia[34].

" An emergency medical services paramedic attempted to use a defibrillator on a 67-

year-old man with ventricular tachycardia. Yet nothing happened. The defibrillator

displayed an indication that it was in synchronized mode but provided no feedback

to tell the user that it was not prepared to shock because of low QRS amplitude[34].

" In a fatal incident in 1984, a patient received 16,000 rads instead of the intended 180

rads when undergoing radiation treatment. This incident involved a combination of

technical failures(software and possibly hardware), combined with human behavior

resulting in catastrophic radiation overdoses[34].

" During a laparoscopic procedure, the surgeon and the anesthesiologist must care-

fully orchestrate monitoring with insufflation of the abdomen. It is a teamwork issue

that requires clear communication with complex activities that are interdependen-

tand if there's a lapse anywhere along the way, it could cause a very serious patient

problem[35].

" A patient undergoing gallbladder surgery is under general anesthesia during the pro-

cedure. To avoid image blurring while taking X-ray images during the surgery, it is

necessary to switch off the ventilator that is breathing for the anesthetized patient.

Turning the ventilator off, taking the X-ray, and turning the ventilator back on again

are all manual processes. If the team of caregivers is distracted, it is possible that the

ventilator might not be turned back on. Although very unlikely, this tragedy occurred

recently[36] [37].

" A laser used for airway surgery ignites the oxygen-rich gas providing ventilation,

burning the patient severely[38].

This raises some interesting questions. Could an anesthesiologist in an Operating Room(for

example, at Massachusetts General Hospital) take advantage of network connectivity to

specify context aware high-level instructions and goals to make various operating room

equipment serve her better? Better yet, could the networked or plugged-in appliance itself

make an effort to find out what she wants it to do at a particular time and go on to execute

those tasks, while learning and keeping track of what it learns in the process? Could a

new device unknown to the system so far, be added seamlessly to such a system without

introducing any safety issues? Could we ensure that the whole communication process is

reliable to ensure that their failure doesnt cause accidents to occur? Could we make the

entire process of adding, configuring and managing such devices extremely easy and intuitive

for the technician or nurse?

There are a number of doctors and biomedical engineers who develop new software or build

new systems by interconnecting software that have some of the features mentioned above.

Such inventions are usually lost over time, after being used for a while perhaps, by the

doctor. We propose that the UniPlug system be used both for sharing such inventions

between doctors/engineers at a hospital or a group of hospitals. At the same time, context-

oriented programming can be used to report the context being measured by a medical device

and seek configuration information by the hospital server. By doing this, medical devices'

behavior could be preprogrammed as well as monitored while it is running from a UniServer,

resulting in smart and efficient utilization of medical devices.

4.2 Leveraging Networked Medical Devices

Networking medical devices is one approach to improving the reliability and safety provided

by such systems. A medical system becomes inherently more reliable if networking enables

it to acquire data from different devices and correlate them. For instance, if a patient has

normal heart rate and temperature reading but a very low oxygen level based on pulse

oximeter reading, the system could deduce that the pulse oximeter has probably slipped off

the finger, and raise an alarm for a nurse to check the equipment. It also reduces the human

error factor that is involved in nurses manually taking readings and noting them down or

feeding them into a computer. It could enable readiness assessment checks[23] that increase

the efficiency of the operating room by reducing setup and checking time.

A networked operating room would have to provide high guarantees of reliability and safety.

Messages sent from one machine to another much reach well in time with high probability,

or else the destination machine must detect the delay and raise an alarm if appropriate. A

major hurdle to such networking is that currently, it is not possible to buy the best of breed

operating room equipment because equipment from different vendors isnt interoperable.

Even custom vendor specific equipment systems do not offer adequate networking between

the different operating room devices. To address this need, we propose building a class

library as part of the UniPlug framework that allows a user to write a connecting block

using a high level language such as Python to connect legacy devices into the system.

The UniPlug block would provide basic classes and would allow extensions to be written

by end users to provide advanced or custom functionality. The extensions would then be

contributed to, and shared from, the open UniPlug repository.

The Medical Information Bus was the first well-known effort[39] to develop medical device-

specific communication standard and supporting hardware. It was focused on intravenous

infusion devices and RS-232 hardware. It wasnt adopted by the medical device manu-

facturers due to low clinical demand, complexity, and proprietary hardware requirements.

The MIB concepts were later used to build a family of standards called IEEE 1073[40].

IEEE 1073 initiated efforts to standardize lower layers while adding work on upper layers

in a 7-layer ISO communication model. IEEE 1073 has been standardized by the ISO as

standard 11073[41]. However the adoption and promotion of 11073 by medical device manu-

facturers has been slow. Meanwhile HL7(Health Layer 7) a standards body[42] has formed

standards for communicating patient data between clinical information systems at the appli-

cation level. However HL7 lacks device connectivity, it as never intended for Point-of-Care

devices and monitors. In early 2004, the Medical Device Plug-and-Play program[43]: a

multi-disciplinary, multi-institutional program was formed to support the development and

adoption of clinically grounded solutions for medical device interoperability. The UniPlug

work is being carried out in cooperation with the MD PnP program.

The Medical Devices PnP program is a first step in this area to interconnect various devices

into a system in a standard way, thereby designing a basic open framework that can be used

to connect a variety of devices. This would be an intermediate step that would facilitate

the leap from the current scenario where there are no standards for medical device inter-

connection to a future scenario where there would be a universal standard for the same. In

the medical device community, it is expected to eventually lead to a set of open standards

for communication and control between devices as well as between a computer and various

devices.

The UniPlug would enable sharing inventions for medical devices over a network, to en-

able the efficient utilization of the variety of medical devices attached to patients. Once

inventions are tagged safe by an authority, they can diffuse seamlessly from one UniServer

to another across a network of clinics and hospitals. The next section describes such a

scenario.

4.3 A Patient-Centric UniPlug Implementation Scenario

Figure 4-1 describes a Patient-Centric UniPlug implementation scenario in a hospital. The

UniPlug system has UniClients running on the operating room server. UniClients are

responsible for monitoring inventions for the various devices attached to a patient such as

pulse oximeter, dialysis machine, defibrillator, etc.

The operating room server is connected to various patient devices, as well as the Hospital

A UniServer, which has peer-to-peer connections with hospital B and C UniServers. The

hospital A WebServer interfaces to the hospital A UniServer. The WebServer provides a

Hospital C UniServerHospital B UniServer IF,

00

Lab Technician

Figure 4-1: UniPlug Application Scenario with Medical Devices

web based interface for hospital staff to administer the UniServer, as well as monitor device

states and send configurations for them.

4.4 Issues

Medical devices or software need to be approved by the Federal Food and Drug Adminis-

tration(FDA) [44] as being safe. They are regulated under the Food, Drug and Cosmetics

Act of 1932[45] via the Medical Device Amendments of 1976[46]. There is known set of pro-

cesses for medical device approval. However the notion of doing a safety check on medical

software, as well as the question of interoperability of medical devices is tricky, and even the

FDA doesn't have a clear idea of how to standardize interoperability, and what would be

an appropriate way to evaluate software and certify it as being patient-safe and reliable[47].

Additionally, a medical system presents special requirements compared to the general cases

we have discussed above. The infrastructure for sharing inventions might be ad-hoc, but

that for seeking and sending device configuration has to be stable, known and reliable. The

system must be able to respond to the device in real time. Certain information such as

the patient's temperature can be usually delayed by a few seconds without harm, but other

information such as feedback from a heart equipment must reach within milliseconds. This

a system designed for medical uses has to be extremely safe, reliable, easy to use, available

and robust and presents additional challenges.

toll I1,------- -1

Chapter 5

Conclusion

5.1 Summary

In this thesis, we presented a framework for sharing inventions in an ad-hoc way over a cam-

pus network. We designed an architecture and associated mechanisms and sketched various

architectural models to choose from. We went on to discuss the benefits and drawbacks of

each model and the context for which one might be preferable over the other. Further, we

discussed issues of scalability, security and context-oriented programming, and illustrated

the proof of concept of this system.

Finally, we discussed the role that UniPlug can play in diffusing innovations for medical

devices, especially given the current inclination on the part of clinicians to be able to connect

medical devices from different vendors over a network.

5.2 Future Work

Future work on UniPlug will consist of building more elaborate and varied demonstrations,

as well as refining the ideas and mechanisms we have proposed. For example, a demonstra-

tion that implements all the mechanisms proposed in this thesis. UniPlug holds promise

of encouraging and sharing local inventions, particularly local language applications for

devices. This could have a big impact on how devices are used in developing countries.

Actual experience with UniPlug will only come with a pilot deployment whose usage is

observed and used to refine the idea and implementation. Towards that end, we plan to

deploy UniPlug within the MIT community, perhaps starting with the Media Lab, under the

Living The Future program. The pilot could then be made larger in scope by incorporating

the rest of MIT and eventually being open to the public and being released as open source

code. Such a deployment could be either pure P2P or hybrid, making the architecture

resilient and grassroots level. The deployment would include all the features of UniPlug,

such as safe tagging, leader election, etc.

A demonstration with medical devices is also planned to demonstrate the key value UniPlug

can add in that area. One key area to explore will be the import and export of configurations

for devices. Once that becomes feasible, a web based interface could be used to send periodic

or event based configurations to devices in the UniServers' domain.

N I WON"Ni M

Bibliography

[1] iPod. http://www.apple.com/ipod/ipod.html.

[2] FluidVoice Project. http://viral.media.mit.edu/wiki/tiki-index.php?page=

FluidVoice.

[3] Avaya One-XTM Quick Edition. http: //www. onexdirect .com.

[4] David Reed. An Open Mobile Applications Platform for MIT's Living the Future

(OMAP-LTF), MIT-LTF Architecture Note 1, November 2006.

[5] MIT Population, Institutional Research, Office of the provost. http: //web. mit . edu/

ir/pop/index.html.

[6] David Clark and John Wroclawski. The Personal Router Whitepaper, Version 2.0,

March 2001.

[7] Peer-to-Peer Wikipedia Page. http: //en. wikipedia. org/wiki/Peer-to-peer.

[8] The CD Data Base. http://www.gracenote. com.

[9] Advanced Packaging Tool. http: //www. debian. org/doc/manuals/apt-howto/.

[10] Debian - The Universal Operating System. http: //www. debian. org.

[11] Ubuntu Home Page. http: //www. ubuntu. com.

57

[12] Advanced Packaging Tool Wikipedia Page. http://en.wikipedia.org/wiki/

AdvancedPackagingTool.

[13] C. Bettstetter and C. Renner. A Comparison of Service Discovery Protocols and Im-

plementation of the Service Location Protocol. Proceedings of the Sixth EUNICE Open

European Summer School: Innovative Internet Applications, EUNICE 2000, Twente,

Netherlands, September 2000.

[14] Service Location Protocol Version 2, Internet Engineering Task Force (IETF), RFC

2608, June 1999.

[15] Ken Arnold and et al. The Jini Specification, V1.0 Addison-Wesley 1999. Latest version

is 1.1 available from Sun.

[16] Salutation Architecture Specification, Version 2.0c, Salutation Consortium, June 1999.

[17] Universal Plug and Play Device Architecture, Version 1.0, Microsoft, June 2000.

[18] Specification of the Bluetooth System, Core, Volume 1, Version 1.1, the Bluetooth SIG,

Inc., February 2001.

[19] Sumi Helal, Nitin Desai, Varun Verma, and Choonha Lee. Konark - a service dis-

covery and delivery protocol for ad-hoc networks. In Wireless Communications and

Networking Conference, 2003.

[20] Michael Barr and Jason Steinhorn. How to Implement a Java Virtual Machine. http:

//www.netrino. com/Articles/KaffeAnyone/index.php.

[21] Gerd Aschemann, Svetlana Domnitcheva, Peer Hasselmeyer, Roger Kehr, and Andreas

Zeidler. A Framework for the Integration of Legacy Devices into a Jini Management

Federation. In Proceedings of Tenth IFIP/IEEE International Workshop on Distributed

Systems: Operations and Management (DSOM'99), October 1999.

[22] ifplugd. http: //Opointer. de/lennart/proj ects/ifplugd/.

[23] Ethereal: A Network Protocol Analyzer. http: //www. ethereal. com/.

[24] ngrep - network grep. http: //ngrep. sourcef orge .net/.

[25] Linux-USB Project. http: //sourcef orge .net/projects/linux-usb/.

[26] BlueZ: Official Linux Bluetooth protocol stack. http: //www. bluez. org/.

[27] OpenDHT: A Publicly Accessible DHT Service. http: //opendht . org/.

[28] Skype. http://www.skype. com.

[29] PlanetLab - An open platform for developing, deploying, and accessing planetary-

scale services. www. planet- lab. org/.

[30] Asterisk :: The Open Source Telephony Platform. http: //www. asterisk. org/.

[31] The MySQL Open Source Database. http: //www.mysql.com.

[32] Twisted. http: //twistedmatrix. com/trac/.

[33] Linda Kohn, Janet Corrigan, and Molla Donaldson. To Err is Human: Building a

Safer Health System. National Academies Press, 2000.

[34] John Gosbee and Laura Gosbee. Using Human Factors Engineering to Improve Patient

Safety. Oakbrook Terrace, IL: Joint Commission Resources, 2005.

[35] AAMI News article: Plug-and-Play Connectivity Initiative Launched. AAMI News,

40(1):1, January 2005.

[36] Ann Lofsky. Turn Your Alarms On. Anesthesia Patient Safety Foundation Newsletter,

19(4), Winter 2004.

[37] Richard Shrenker. IEEE Computer "sidebar" on MD PnP program, in article "Software

Engineering for Future Healthcare and Clinical Systems". IEEE Computer, page 30,

April 2006.

[38] Adam Marcus. Once a Tech Fantasy, Plug-and-Play OR Edges Closer to Reality.

Anesthesiology News, January 2007.

[39] Julian Goldman and Susan Whitehead. MDPnP Booklet, February 2007.

[40] David Franklin and David Ostler. The P1073 Medical Information Bus. IEEE Micro,

9(5), September 1989.

[41] ISO/IEEE 11073-00000, Health informatics - Point-of-care Medical Device Communi-

cation - Framework and Overview. http: //www. nap. edu/books/0309068371/html/.

[42] Health Level Seven, Inc. http: //www.h17. org/.

[43] Medical Device "Plug-and-Play" Interoperability Program. http: //mdpnp. org/.

[44] Food and Drug Administration Home Page. www. fda. gov/.

[45] Federal Food, Drug, and Cosmetic Act of 1932. http: //www. f da. gov/opacom/laws/

fdcact/fdctoc .htm.

[46] The Medical Device Amendments of 1976 to the Federal Food, Drug, and Cosmetic

Act. http://www.fda.gov/cdrh/pmapage.html.

[47] Richard Shrenker. Personal Communication, April 2007.

